Merge tag 'hwlock-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson...
[linux-2.6-microblaze.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48         struct spi_device       *spi = to_spi_device(dev);
49
50         /* spi controllers may cleanup for released devices */
51         if (spi->controller->cleanup)
52                 spi->controller->cleanup(spi);
53
54         spi_controller_put(spi->controller);
55         kfree(spi->driver_override);
56         kfree(spi);
57 }
58
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62         const struct spi_device *spi = to_spi_device(dev);
63         int len;
64
65         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66         if (len != -ENODEV)
67                 return len;
68
69         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
73 static ssize_t driver_override_store(struct device *dev,
74                                      struct device_attribute *a,
75                                      const char *buf, size_t count)
76 {
77         struct spi_device *spi = to_spi_device(dev);
78         const char *end = memchr(buf, '\n', count);
79         const size_t len = end ? end - buf : count;
80         const char *driver_override, *old;
81
82         /* We need to keep extra room for a newline when displaying value */
83         if (len >= (PAGE_SIZE - 1))
84                 return -EINVAL;
85
86         driver_override = kstrndup(buf, len, GFP_KERNEL);
87         if (!driver_override)
88                 return -ENOMEM;
89
90         device_lock(dev);
91         old = spi->driver_override;
92         if (len) {
93                 spi->driver_override = driver_override;
94         } else {
95                 /* Empty string, disable driver override */
96                 spi->driver_override = NULL;
97                 kfree(driver_override);
98         }
99         device_unlock(dev);
100         kfree(old);
101
102         return count;
103 }
104
105 static ssize_t driver_override_show(struct device *dev,
106                                     struct device_attribute *a, char *buf)
107 {
108         const struct spi_device *spi = to_spi_device(dev);
109         ssize_t len;
110
111         device_lock(dev);
112         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113         device_unlock(dev);
114         return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117
118 #define SPI_STATISTICS_ATTRS(field, file)                               \
119 static ssize_t spi_controller_##field##_show(struct device *dev,        \
120                                              struct device_attribute *attr, \
121                                              char *buf)                 \
122 {                                                                       \
123         struct spi_controller *ctlr = container_of(dev,                 \
124                                          struct spi_controller, dev);   \
125         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
126 }                                                                       \
127 static struct device_attribute dev_attr_spi_controller_##field = {      \
128         .attr = { .name = file, .mode = 0444 },                         \
129         .show = spi_controller_##field##_show,                          \
130 };                                                                      \
131 static ssize_t spi_device_##field##_show(struct device *dev,            \
132                                          struct device_attribute *attr, \
133                                         char *buf)                      \
134 {                                                                       \
135         struct spi_device *spi = to_spi_device(dev);                    \
136         return spi_statistics_##field##_show(&spi->statistics, buf);    \
137 }                                                                       \
138 static struct device_attribute dev_attr_spi_device_##field = {          \
139         .attr = { .name = file, .mode = 0444 },                         \
140         .show = spi_device_##field##_show,                              \
141 }
142
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145                                             char *buf)                  \
146 {                                                                       \
147         unsigned long flags;                                            \
148         ssize_t len;                                                    \
149         spin_lock_irqsave(&stat->lock, flags);                          \
150         len = sprintf(buf, format_string, stat->field);                 \
151         spin_unlock_irqrestore(&stat->lock, flags);                     \
152         return len;                                                     \
153 }                                                                       \
154 SPI_STATISTICS_ATTRS(name, file)
155
156 #define SPI_STATISTICS_SHOW(field, format_string)                       \
157         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
158                                  field, format_string)
159
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
174         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
175                                  "transfer_bytes_histo_" number,        \
176                                  transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
197 static struct attribute *spi_dev_attrs[] = {
198         &dev_attr_modalias.attr,
199         &dev_attr_driver_override.attr,
200         NULL,
201 };
202
203 static const struct attribute_group spi_dev_group = {
204         .attrs  = spi_dev_attrs,
205 };
206
207 static struct attribute *spi_device_statistics_attrs[] = {
208         &dev_attr_spi_device_messages.attr,
209         &dev_attr_spi_device_transfers.attr,
210         &dev_attr_spi_device_errors.attr,
211         &dev_attr_spi_device_timedout.attr,
212         &dev_attr_spi_device_spi_sync.attr,
213         &dev_attr_spi_device_spi_sync_immediate.attr,
214         &dev_attr_spi_device_spi_async.attr,
215         &dev_attr_spi_device_bytes.attr,
216         &dev_attr_spi_device_bytes_rx.attr,
217         &dev_attr_spi_device_bytes_tx.attr,
218         &dev_attr_spi_device_transfer_bytes_histo0.attr,
219         &dev_attr_spi_device_transfer_bytes_histo1.attr,
220         &dev_attr_spi_device_transfer_bytes_histo2.attr,
221         &dev_attr_spi_device_transfer_bytes_histo3.attr,
222         &dev_attr_spi_device_transfer_bytes_histo4.attr,
223         &dev_attr_spi_device_transfer_bytes_histo5.attr,
224         &dev_attr_spi_device_transfer_bytes_histo6.attr,
225         &dev_attr_spi_device_transfer_bytes_histo7.attr,
226         &dev_attr_spi_device_transfer_bytes_histo8.attr,
227         &dev_attr_spi_device_transfer_bytes_histo9.attr,
228         &dev_attr_spi_device_transfer_bytes_histo10.attr,
229         &dev_attr_spi_device_transfer_bytes_histo11.attr,
230         &dev_attr_spi_device_transfer_bytes_histo12.attr,
231         &dev_attr_spi_device_transfer_bytes_histo13.attr,
232         &dev_attr_spi_device_transfer_bytes_histo14.attr,
233         &dev_attr_spi_device_transfer_bytes_histo15.attr,
234         &dev_attr_spi_device_transfer_bytes_histo16.attr,
235         &dev_attr_spi_device_transfers_split_maxsize.attr,
236         NULL,
237 };
238
239 static const struct attribute_group spi_device_statistics_group = {
240         .name  = "statistics",
241         .attrs  = spi_device_statistics_attrs,
242 };
243
244 static const struct attribute_group *spi_dev_groups[] = {
245         &spi_dev_group,
246         &spi_device_statistics_group,
247         NULL,
248 };
249
250 static struct attribute *spi_controller_statistics_attrs[] = {
251         &dev_attr_spi_controller_messages.attr,
252         &dev_attr_spi_controller_transfers.attr,
253         &dev_attr_spi_controller_errors.attr,
254         &dev_attr_spi_controller_timedout.attr,
255         &dev_attr_spi_controller_spi_sync.attr,
256         &dev_attr_spi_controller_spi_sync_immediate.attr,
257         &dev_attr_spi_controller_spi_async.attr,
258         &dev_attr_spi_controller_bytes.attr,
259         &dev_attr_spi_controller_bytes_rx.attr,
260         &dev_attr_spi_controller_bytes_tx.attr,
261         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278         &dev_attr_spi_controller_transfers_split_maxsize.attr,
279         NULL,
280 };
281
282 static const struct attribute_group spi_controller_statistics_group = {
283         .name  = "statistics",
284         .attrs  = spi_controller_statistics_attrs,
285 };
286
287 static const struct attribute_group *spi_master_groups[] = {
288         &spi_controller_statistics_group,
289         NULL,
290 };
291
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293                                        struct spi_transfer *xfer,
294                                        struct spi_controller *ctlr)
295 {
296         unsigned long flags;
297         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299         if (l2len < 0)
300                 l2len = 0;
301
302         spin_lock_irqsave(&stats->lock, flags);
303
304         stats->transfers++;
305         stats->transfer_bytes_histo[l2len]++;
306
307         stats->bytes += xfer->len;
308         if ((xfer->tx_buf) &&
309             (xfer->tx_buf != ctlr->dummy_tx))
310                 stats->bytes_tx += xfer->len;
311         if ((xfer->rx_buf) &&
312             (xfer->rx_buf != ctlr->dummy_rx))
313                 stats->bytes_rx += xfer->len;
314
315         spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324                                                 const struct spi_device *sdev)
325 {
326         while (id->name[0]) {
327                 if (!strcmp(sdev->modalias, id->name))
328                         return id;
329                 id++;
330         }
331         return NULL;
332 }
333
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338         return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344         const struct spi_device *spi = to_spi_device(dev);
345         const struct spi_driver *sdrv = to_spi_driver(drv);
346
347         /* Check override first, and if set, only use the named driver */
348         if (spi->driver_override)
349                 return strcmp(spi->driver_override, drv->name) == 0;
350
351         /* Attempt an OF style match */
352         if (of_driver_match_device(dev, drv))
353                 return 1;
354
355         /* Then try ACPI */
356         if (acpi_driver_match_device(dev, drv))
357                 return 1;
358
359         if (sdrv->id_table)
360                 return !!spi_match_id(sdrv->id_table, spi);
361
362         return strcmp(spi->modalias, drv->name) == 0;
363 }
364
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367         const struct spi_device         *spi = to_spi_device(dev);
368         int rc;
369
370         rc = acpi_device_uevent_modalias(dev, env);
371         if (rc != -ENODEV)
372                 return rc;
373
374         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376
377 struct bus_type spi_bus_type = {
378         .name           = "spi",
379         .dev_groups     = spi_dev_groups,
380         .match          = spi_match_device,
381         .uevent         = spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384
385
386 static int spi_drv_probe(struct device *dev)
387 {
388         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
389         struct spi_device               *spi = to_spi_device(dev);
390         int ret;
391
392         ret = of_clk_set_defaults(dev->of_node, false);
393         if (ret)
394                 return ret;
395
396         if (dev->of_node) {
397                 spi->irq = of_irq_get(dev->of_node, 0);
398                 if (spi->irq == -EPROBE_DEFER)
399                         return -EPROBE_DEFER;
400                 if (spi->irq < 0)
401                         spi->irq = 0;
402         }
403
404         ret = dev_pm_domain_attach(dev, true);
405         if (ret)
406                 return ret;
407
408         ret = sdrv->probe(spi);
409         if (ret)
410                 dev_pm_domain_detach(dev, true);
411
412         return ret;
413 }
414
415 static int spi_drv_remove(struct device *dev)
416 {
417         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
418         int ret;
419
420         ret = sdrv->remove(to_spi_device(dev));
421         dev_pm_domain_detach(dev, true);
422
423         return ret;
424 }
425
426 static void spi_drv_shutdown(struct device *dev)
427 {
428         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
429
430         sdrv->shutdown(to_spi_device(dev));
431 }
432
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443         sdrv->driver.owner = owner;
444         sdrv->driver.bus = &spi_bus_type;
445         if (sdrv->probe)
446                 sdrv->driver.probe = spi_drv_probe;
447         if (sdrv->remove)
448                 sdrv->driver.remove = spi_drv_remove;
449         if (sdrv->shutdown)
450                 sdrv->driver.shutdown = spi_drv_shutdown;
451         return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454
455 /*-------------------------------------------------------------------------*/
456
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462
463 struct boardinfo {
464         struct list_head        list;
465         struct spi_board_info   board_info;
466 };
467
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470
471 /*
472  * Used to protect add/del operation for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497         struct spi_device       *spi;
498
499         if (!spi_controller_get(ctlr))
500                 return NULL;
501
502         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503         if (!spi) {
504                 spi_controller_put(ctlr);
505                 return NULL;
506         }
507
508         spi->master = spi->controller = ctlr;
509         spi->dev.parent = &ctlr->dev;
510         spi->dev.bus = &spi_bus_type;
511         spi->dev.release = spidev_release;
512         spi->cs_gpio = -ENOENT;
513
514         spin_lock_init(&spi->statistics.lock);
515
516         device_initialize(&spi->dev);
517         return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520
521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524
525         if (adev) {
526                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527                 return;
528         }
529
530         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531                      spi->chip_select);
532 }
533
534 static int spi_dev_check(struct device *dev, void *data)
535 {
536         struct spi_device *spi = to_spi_device(dev);
537         struct spi_device *new_spi = data;
538
539         if (spi->controller == new_spi->controller &&
540             spi->chip_select == new_spi->chip_select)
541                 return -EBUSY;
542         return 0;
543 }
544
545 /**
546  * spi_add_device - Add spi_device allocated with spi_alloc_device
547  * @spi: spi_device to register
548  *
549  * Companion function to spi_alloc_device.  Devices allocated with
550  * spi_alloc_device can be added onto the spi bus with this function.
551  *
552  * Return: 0 on success; negative errno on failure
553  */
554 int spi_add_device(struct spi_device *spi)
555 {
556         static DEFINE_MUTEX(spi_add_lock);
557         struct spi_controller *ctlr = spi->controller;
558         struct device *dev = ctlr->dev.parent;
559         int status;
560
561         /* Chipselects are numbered 0..max; validate. */
562         if (spi->chip_select >= ctlr->num_chipselect) {
563                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564                         ctlr->num_chipselect);
565                 return -EINVAL;
566         }
567
568         /* Set the bus ID string */
569         spi_dev_set_name(spi);
570
571         /* We need to make sure there's no other device with this
572          * chipselect **BEFORE** we call setup(), else we'll trash
573          * its configuration.  Lock against concurrent add() calls.
574          */
575         mutex_lock(&spi_add_lock);
576
577         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578         if (status) {
579                 dev_err(dev, "chipselect %d already in use\n",
580                                 spi->chip_select);
581                 goto done;
582         }
583
584         /* Descriptors take precedence */
585         if (ctlr->cs_gpiods)
586                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587         else if (ctlr->cs_gpios)
588                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589
590         /* Drivers may modify this initial i/o setup, but will
591          * normally rely on the device being setup.  Devices
592          * using SPI_CS_HIGH can't coexist well otherwise...
593          */
594         status = spi_setup(spi);
595         if (status < 0) {
596                 dev_err(dev, "can't setup %s, status %d\n",
597                                 dev_name(&spi->dev), status);
598                 goto done;
599         }
600
601         /* Device may be bound to an active driver when this returns */
602         status = device_add(&spi->dev);
603         if (status < 0)
604                 dev_err(dev, "can't add %s, status %d\n",
605                                 dev_name(&spi->dev), status);
606         else
607                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608
609 done:
610         mutex_unlock(&spi_add_lock);
611         return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614
615 /**
616  * spi_new_device - instantiate one new SPI device
617  * @ctlr: Controller to which device is connected
618  * @chip: Describes the SPI device
619  * Context: can sleep
620  *
621  * On typical mainboards, this is purely internal; and it's not needed
622  * after board init creates the hard-wired devices.  Some development
623  * platforms may not be able to use spi_register_board_info though, and
624  * this is exported so that for example a USB or parport based adapter
625  * driver could add devices (which it would learn about out-of-band).
626  *
627  * Return: the new device, or NULL.
628  */
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630                                   struct spi_board_info *chip)
631 {
632         struct spi_device       *proxy;
633         int                     status;
634
635         /* NOTE:  caller did any chip->bus_num checks necessary.
636          *
637          * Also, unless we change the return value convention to use
638          * error-or-pointer (not NULL-or-pointer), troubleshootability
639          * suggests syslogged diagnostics are best here (ugh).
640          */
641
642         proxy = spi_alloc_device(ctlr);
643         if (!proxy)
644                 return NULL;
645
646         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647
648         proxy->chip_select = chip->chip_select;
649         proxy->max_speed_hz = chip->max_speed_hz;
650         proxy->mode = chip->mode;
651         proxy->irq = chip->irq;
652         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653         proxy->dev.platform_data = (void *) chip->platform_data;
654         proxy->controller_data = chip->controller_data;
655         proxy->controller_state = NULL;
656
657         if (chip->properties) {
658                 status = device_add_properties(&proxy->dev, chip->properties);
659                 if (status) {
660                         dev_err(&ctlr->dev,
661                                 "failed to add properties to '%s': %d\n",
662                                 chip->modalias, status);
663                         goto err_dev_put;
664                 }
665         }
666
667         status = spi_add_device(proxy);
668         if (status < 0)
669                 goto err_remove_props;
670
671         return proxy;
672
673 err_remove_props:
674         if (chip->properties)
675                 device_remove_properties(&proxy->dev);
676 err_dev_put:
677         spi_dev_put(proxy);
678         return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681
682 /**
683  * spi_unregister_device - unregister a single SPI device
684  * @spi: spi_device to unregister
685  *
686  * Start making the passed SPI device vanish. Normally this would be handled
687  * by spi_unregister_controller().
688  */
689 void spi_unregister_device(struct spi_device *spi)
690 {
691         if (!spi)
692                 return;
693
694         if (spi->dev.of_node) {
695                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696                 of_node_put(spi->dev.of_node);
697         }
698         if (ACPI_COMPANION(&spi->dev))
699                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700         device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705                                               struct spi_board_info *bi)
706 {
707         struct spi_device *dev;
708
709         if (ctlr->bus_num != bi->bus_num)
710                 return;
711
712         dev = spi_new_device(ctlr, bi);
713         if (!dev)
714                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715                         bi->modalias);
716 }
717
718 /**
719  * spi_register_board_info - register SPI devices for a given board
720  * @info: array of chip descriptors
721  * @n: how many descriptors are provided
722  * Context: can sleep
723  *
724  * Board-specific early init code calls this (probably during arch_initcall)
725  * with segments of the SPI device table.  Any device nodes are created later,
726  * after the relevant parent SPI controller (bus_num) is defined.  We keep
727  * this table of devices forever, so that reloading a controller driver will
728  * not make Linux forget about these hard-wired devices.
729  *
730  * Other code can also call this, e.g. a particular add-on board might provide
731  * SPI devices through its expansion connector, so code initializing that board
732  * would naturally declare its SPI devices.
733  *
734  * The board info passed can safely be __initdata ... but be careful of
735  * any embedded pointers (platform_data, etc), they're copied as-is.
736  * Device properties are deep-copied though.
737  *
738  * Return: zero on success, else a negative error code.
739  */
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742         struct boardinfo *bi;
743         int i;
744
745         if (!n)
746                 return 0;
747
748         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749         if (!bi)
750                 return -ENOMEM;
751
752         for (i = 0; i < n; i++, bi++, info++) {
753                 struct spi_controller *ctlr;
754
755                 memcpy(&bi->board_info, info, sizeof(*info));
756                 if (info->properties) {
757                         bi->board_info.properties =
758                                         property_entries_dup(info->properties);
759                         if (IS_ERR(bi->board_info.properties))
760                                 return PTR_ERR(bi->board_info.properties);
761                 }
762
763                 mutex_lock(&board_lock);
764                 list_add_tail(&bi->list, &board_list);
765                 list_for_each_entry(ctlr, &spi_controller_list, list)
766                         spi_match_controller_to_boardinfo(ctlr,
767                                                           &bi->board_info);
768                 mutex_unlock(&board_lock);
769         }
770
771         return 0;
772 }
773
774 /*-------------------------------------------------------------------------*/
775
776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778         bool enable1 = enable;
779
780         if (!spi->controller->set_cs_timing) {
781                 if (enable1)
782                         spi_delay_exec(&spi->controller->cs_setup, NULL);
783                 else
784                         spi_delay_exec(&spi->controller->cs_hold, NULL);
785         }
786
787         if (spi->mode & SPI_CS_HIGH)
788                 enable = !enable;
789
790         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
791                 /*
792                  * Honour the SPI_NO_CS flag and invert the enable line, as
793                  * active low is default for SPI. Execution paths that handle
794                  * polarity inversion in gpiolib (such as device tree) will
795                  * enforce active high using the SPI_CS_HIGH resulting in a
796                  * double inversion through the code above.
797                  */
798                 if (!(spi->mode & SPI_NO_CS)) {
799                         if (spi->cs_gpiod)
800                                 gpiod_set_value_cansleep(spi->cs_gpiod,
801                                                          !enable);
802                         else
803                                 gpio_set_value_cansleep(spi->cs_gpio, !enable);
804                 }
805                 /* Some SPI masters need both GPIO CS & slave_select */
806                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
807                     spi->controller->set_cs)
808                         spi->controller->set_cs(spi, !enable);
809         } else if (spi->controller->set_cs) {
810                 spi->controller->set_cs(spi, !enable);
811         }
812
813         if (!spi->controller->set_cs_timing) {
814                 if (!enable1)
815                         spi_delay_exec(&spi->controller->cs_inactive, NULL);
816         }
817 }
818
819 #ifdef CONFIG_HAS_DMA
820 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
821                 struct sg_table *sgt, void *buf, size_t len,
822                 enum dma_data_direction dir)
823 {
824         const bool vmalloced_buf = is_vmalloc_addr(buf);
825         unsigned int max_seg_size = dma_get_max_seg_size(dev);
826 #ifdef CONFIG_HIGHMEM
827         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
828                                 (unsigned long)buf < (PKMAP_BASE +
829                                         (LAST_PKMAP * PAGE_SIZE)));
830 #else
831         const bool kmap_buf = false;
832 #endif
833         int desc_len;
834         int sgs;
835         struct page *vm_page;
836         struct scatterlist *sg;
837         void *sg_buf;
838         size_t min;
839         int i, ret;
840
841         if (vmalloced_buf || kmap_buf) {
842                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
843                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
844         } else if (virt_addr_valid(buf)) {
845                 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
846                 sgs = DIV_ROUND_UP(len, desc_len);
847         } else {
848                 return -EINVAL;
849         }
850
851         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
852         if (ret != 0)
853                 return ret;
854
855         sg = &sgt->sgl[0];
856         for (i = 0; i < sgs; i++) {
857
858                 if (vmalloced_buf || kmap_buf) {
859                         /*
860                          * Next scatterlist entry size is the minimum between
861                          * the desc_len and the remaining buffer length that
862                          * fits in a page.
863                          */
864                         min = min_t(size_t, desc_len,
865                                     min_t(size_t, len,
866                                           PAGE_SIZE - offset_in_page(buf)));
867                         if (vmalloced_buf)
868                                 vm_page = vmalloc_to_page(buf);
869                         else
870                                 vm_page = kmap_to_page(buf);
871                         if (!vm_page) {
872                                 sg_free_table(sgt);
873                                 return -ENOMEM;
874                         }
875                         sg_set_page(sg, vm_page,
876                                     min, offset_in_page(buf));
877                 } else {
878                         min = min_t(size_t, len, desc_len);
879                         sg_buf = buf;
880                         sg_set_buf(sg, sg_buf, min);
881                 }
882
883                 buf += min;
884                 len -= min;
885                 sg = sg_next(sg);
886         }
887
888         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
889         if (!ret)
890                 ret = -ENOMEM;
891         if (ret < 0) {
892                 sg_free_table(sgt);
893                 return ret;
894         }
895
896         sgt->nents = ret;
897
898         return 0;
899 }
900
901 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
902                    struct sg_table *sgt, enum dma_data_direction dir)
903 {
904         if (sgt->orig_nents) {
905                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
906                 sg_free_table(sgt);
907         }
908 }
909
910 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
911 {
912         struct device *tx_dev, *rx_dev;
913         struct spi_transfer *xfer;
914         int ret;
915
916         if (!ctlr->can_dma)
917                 return 0;
918
919         if (ctlr->dma_tx)
920                 tx_dev = ctlr->dma_tx->device->dev;
921         else
922                 tx_dev = ctlr->dev.parent;
923
924         if (ctlr->dma_rx)
925                 rx_dev = ctlr->dma_rx->device->dev;
926         else
927                 rx_dev = ctlr->dev.parent;
928
929         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
930                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
931                         continue;
932
933                 if (xfer->tx_buf != NULL) {
934                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
935                                           (void *)xfer->tx_buf, xfer->len,
936                                           DMA_TO_DEVICE);
937                         if (ret != 0)
938                                 return ret;
939                 }
940
941                 if (xfer->rx_buf != NULL) {
942                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
943                                           xfer->rx_buf, xfer->len,
944                                           DMA_FROM_DEVICE);
945                         if (ret != 0) {
946                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
947                                               DMA_TO_DEVICE);
948                                 return ret;
949                         }
950                 }
951         }
952
953         ctlr->cur_msg_mapped = true;
954
955         return 0;
956 }
957
958 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
959 {
960         struct spi_transfer *xfer;
961         struct device *tx_dev, *rx_dev;
962
963         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
964                 return 0;
965
966         if (ctlr->dma_tx)
967                 tx_dev = ctlr->dma_tx->device->dev;
968         else
969                 tx_dev = ctlr->dev.parent;
970
971         if (ctlr->dma_rx)
972                 rx_dev = ctlr->dma_rx->device->dev;
973         else
974                 rx_dev = ctlr->dev.parent;
975
976         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
977                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
978                         continue;
979
980                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
981                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
982         }
983
984         return 0;
985 }
986 #else /* !CONFIG_HAS_DMA */
987 static inline int __spi_map_msg(struct spi_controller *ctlr,
988                                 struct spi_message *msg)
989 {
990         return 0;
991 }
992
993 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
994                                   struct spi_message *msg)
995 {
996         return 0;
997 }
998 #endif /* !CONFIG_HAS_DMA */
999
1000 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1001                                 struct spi_message *msg)
1002 {
1003         struct spi_transfer *xfer;
1004
1005         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1006                 /*
1007                  * Restore the original value of tx_buf or rx_buf if they are
1008                  * NULL.
1009                  */
1010                 if (xfer->tx_buf == ctlr->dummy_tx)
1011                         xfer->tx_buf = NULL;
1012                 if (xfer->rx_buf == ctlr->dummy_rx)
1013                         xfer->rx_buf = NULL;
1014         }
1015
1016         return __spi_unmap_msg(ctlr, msg);
1017 }
1018
1019 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1020 {
1021         struct spi_transfer *xfer;
1022         void *tmp;
1023         unsigned int max_tx, max_rx;
1024
1025         if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1026                 max_tx = 0;
1027                 max_rx = 0;
1028
1029                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1030                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1031                             !xfer->tx_buf)
1032                                 max_tx = max(xfer->len, max_tx);
1033                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1034                             !xfer->rx_buf)
1035                                 max_rx = max(xfer->len, max_rx);
1036                 }
1037
1038                 if (max_tx) {
1039                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1040                                        GFP_KERNEL | GFP_DMA);
1041                         if (!tmp)
1042                                 return -ENOMEM;
1043                         ctlr->dummy_tx = tmp;
1044                         memset(tmp, 0, max_tx);
1045                 }
1046
1047                 if (max_rx) {
1048                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1049                                        GFP_KERNEL | GFP_DMA);
1050                         if (!tmp)
1051                                 return -ENOMEM;
1052                         ctlr->dummy_rx = tmp;
1053                 }
1054
1055                 if (max_tx || max_rx) {
1056                         list_for_each_entry(xfer, &msg->transfers,
1057                                             transfer_list) {
1058                                 if (!xfer->len)
1059                                         continue;
1060                                 if (!xfer->tx_buf)
1061                                         xfer->tx_buf = ctlr->dummy_tx;
1062                                 if (!xfer->rx_buf)
1063                                         xfer->rx_buf = ctlr->dummy_rx;
1064                         }
1065                 }
1066         }
1067
1068         return __spi_map_msg(ctlr, msg);
1069 }
1070
1071 static int spi_transfer_wait(struct spi_controller *ctlr,
1072                              struct spi_message *msg,
1073                              struct spi_transfer *xfer)
1074 {
1075         struct spi_statistics *statm = &ctlr->statistics;
1076         struct spi_statistics *stats = &msg->spi->statistics;
1077         unsigned long long ms = 1;
1078
1079         if (spi_controller_is_slave(ctlr)) {
1080                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1081                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1082                         return -EINTR;
1083                 }
1084         } else {
1085                 ms = 8LL * 1000LL * xfer->len;
1086                 do_div(ms, xfer->speed_hz);
1087                 ms += ms + 200; /* some tolerance */
1088
1089                 if (ms > UINT_MAX)
1090                         ms = UINT_MAX;
1091
1092                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1093                                                  msecs_to_jiffies(ms));
1094
1095                 if (ms == 0) {
1096                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1097                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1098                         dev_err(&msg->spi->dev,
1099                                 "SPI transfer timed out\n");
1100                         return -ETIMEDOUT;
1101                 }
1102         }
1103
1104         return 0;
1105 }
1106
1107 static void _spi_transfer_delay_ns(u32 ns)
1108 {
1109         if (!ns)
1110                 return;
1111         if (ns <= 1000) {
1112                 ndelay(ns);
1113         } else {
1114                 u32 us = DIV_ROUND_UP(ns, 1000);
1115
1116                 if (us <= 10)
1117                         udelay(us);
1118                 else
1119                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1120         }
1121 }
1122
1123 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1124 {
1125         u32 delay = _delay->value;
1126         u32 unit = _delay->unit;
1127         u32 hz;
1128
1129         if (!delay)
1130                 return 0;
1131
1132         switch (unit) {
1133         case SPI_DELAY_UNIT_USECS:
1134                 delay *= 1000;
1135                 break;
1136         case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1137                 break;
1138         case SPI_DELAY_UNIT_SCK:
1139                 /* clock cycles need to be obtained from spi_transfer */
1140                 if (!xfer)
1141                         return -EINVAL;
1142                 /* if there is no effective speed know, then approximate
1143                  * by underestimating with half the requested hz
1144                  */
1145                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1146                 if (!hz)
1147                         return -EINVAL;
1148                 delay *= DIV_ROUND_UP(1000000000, hz);
1149                 break;
1150         default:
1151                 return -EINVAL;
1152         }
1153
1154         return delay;
1155 }
1156 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1157
1158 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1159 {
1160         int delay;
1161
1162         if (!_delay)
1163                 return -EINVAL;
1164
1165         delay = spi_delay_to_ns(_delay, xfer);
1166         if (delay < 0)
1167                 return delay;
1168
1169         _spi_transfer_delay_ns(delay);
1170
1171         return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(spi_delay_exec);
1174
1175 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1176                                           struct spi_transfer *xfer)
1177 {
1178         u32 delay = xfer->cs_change_delay.value;
1179         u32 unit = xfer->cs_change_delay.unit;
1180         int ret;
1181
1182         /* return early on "fast" mode - for everything but USECS */
1183         if (!delay) {
1184                 if (unit == SPI_DELAY_UNIT_USECS)
1185                         _spi_transfer_delay_ns(10000);
1186                 return;
1187         }
1188
1189         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1190         if (ret) {
1191                 dev_err_once(&msg->spi->dev,
1192                              "Use of unsupported delay unit %i, using default of 10us\n",
1193                              unit);
1194                 _spi_transfer_delay_ns(10000);
1195         }
1196 }
1197
1198 /*
1199  * spi_transfer_one_message - Default implementation of transfer_one_message()
1200  *
1201  * This is a standard implementation of transfer_one_message() for
1202  * drivers which implement a transfer_one() operation.  It provides
1203  * standard handling of delays and chip select management.
1204  */
1205 static int spi_transfer_one_message(struct spi_controller *ctlr,
1206                                     struct spi_message *msg)
1207 {
1208         struct spi_transfer *xfer;
1209         bool keep_cs = false;
1210         int ret = 0;
1211         struct spi_statistics *statm = &ctlr->statistics;
1212         struct spi_statistics *stats = &msg->spi->statistics;
1213
1214         spi_set_cs(msg->spi, true);
1215
1216         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1217         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1218
1219         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1220                 trace_spi_transfer_start(msg, xfer);
1221
1222                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1223                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1224
1225                 if (!ctlr->ptp_sts_supported) {
1226                         xfer->ptp_sts_word_pre = 0;
1227                         ptp_read_system_prets(xfer->ptp_sts);
1228                 }
1229
1230                 if (xfer->tx_buf || xfer->rx_buf) {
1231                         reinit_completion(&ctlr->xfer_completion);
1232
1233                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1234                         if (ret < 0) {
1235                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1236                                                                errors);
1237                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1238                                                                errors);
1239                                 dev_err(&msg->spi->dev,
1240                                         "SPI transfer failed: %d\n", ret);
1241                                 goto out;
1242                         }
1243
1244                         if (ret > 0) {
1245                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1246                                 if (ret < 0)
1247                                         msg->status = ret;
1248                         }
1249                 } else {
1250                         if (xfer->len)
1251                                 dev_err(&msg->spi->dev,
1252                                         "Bufferless transfer has length %u\n",
1253                                         xfer->len);
1254                 }
1255
1256                 if (!ctlr->ptp_sts_supported) {
1257                         ptp_read_system_postts(xfer->ptp_sts);
1258                         xfer->ptp_sts_word_post = xfer->len;
1259                 }
1260
1261                 trace_spi_transfer_stop(msg, xfer);
1262
1263                 if (msg->status != -EINPROGRESS)
1264                         goto out;
1265
1266                 spi_transfer_delay_exec(xfer);
1267
1268                 if (xfer->cs_change) {
1269                         if (list_is_last(&xfer->transfer_list,
1270                                          &msg->transfers)) {
1271                                 keep_cs = true;
1272                         } else {
1273                                 spi_set_cs(msg->spi, false);
1274                                 _spi_transfer_cs_change_delay(msg, xfer);
1275                                 spi_set_cs(msg->spi, true);
1276                         }
1277                 }
1278
1279                 msg->actual_length += xfer->len;
1280         }
1281
1282 out:
1283         if (ret != 0 || !keep_cs)
1284                 spi_set_cs(msg->spi, false);
1285
1286         if (msg->status == -EINPROGRESS)
1287                 msg->status = ret;
1288
1289         if (msg->status && ctlr->handle_err)
1290                 ctlr->handle_err(ctlr, msg);
1291
1292         spi_res_release(ctlr, msg);
1293
1294         spi_finalize_current_message(ctlr);
1295
1296         return ret;
1297 }
1298
1299 /**
1300  * spi_finalize_current_transfer - report completion of a transfer
1301  * @ctlr: the controller reporting completion
1302  *
1303  * Called by SPI drivers using the core transfer_one_message()
1304  * implementation to notify it that the current interrupt driven
1305  * transfer has finished and the next one may be scheduled.
1306  */
1307 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1308 {
1309         complete(&ctlr->xfer_completion);
1310 }
1311 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1312
1313 /**
1314  * __spi_pump_messages - function which processes spi message queue
1315  * @ctlr: controller to process queue for
1316  * @in_kthread: true if we are in the context of the message pump thread
1317  *
1318  * This function checks if there is any spi message in the queue that
1319  * needs processing and if so call out to the driver to initialize hardware
1320  * and transfer each message.
1321  *
1322  * Note that it is called both from the kthread itself and also from
1323  * inside spi_sync(); the queue extraction handling at the top of the
1324  * function should deal with this safely.
1325  */
1326 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1327 {
1328         struct spi_transfer *xfer;
1329         struct spi_message *msg;
1330         bool was_busy = false;
1331         unsigned long flags;
1332         int ret;
1333
1334         /* Lock queue */
1335         spin_lock_irqsave(&ctlr->queue_lock, flags);
1336
1337         /* Make sure we are not already running a message */
1338         if (ctlr->cur_msg) {
1339                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1340                 return;
1341         }
1342
1343         /* If another context is idling the device then defer */
1344         if (ctlr->idling) {
1345                 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1346                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1347                 return;
1348         }
1349
1350         /* Check if the queue is idle */
1351         if (list_empty(&ctlr->queue) || !ctlr->running) {
1352                 if (!ctlr->busy) {
1353                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1354                         return;
1355                 }
1356
1357                 /* Only do teardown in the thread */
1358                 if (!in_kthread) {
1359                         kthread_queue_work(&ctlr->kworker,
1360                                            &ctlr->pump_messages);
1361                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1362                         return;
1363                 }
1364
1365                 ctlr->busy = false;
1366                 ctlr->idling = true;
1367                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1368
1369                 kfree(ctlr->dummy_rx);
1370                 ctlr->dummy_rx = NULL;
1371                 kfree(ctlr->dummy_tx);
1372                 ctlr->dummy_tx = NULL;
1373                 if (ctlr->unprepare_transfer_hardware &&
1374                     ctlr->unprepare_transfer_hardware(ctlr))
1375                         dev_err(&ctlr->dev,
1376                                 "failed to unprepare transfer hardware\n");
1377                 if (ctlr->auto_runtime_pm) {
1378                         pm_runtime_mark_last_busy(ctlr->dev.parent);
1379                         pm_runtime_put_autosuspend(ctlr->dev.parent);
1380                 }
1381                 trace_spi_controller_idle(ctlr);
1382
1383                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1384                 ctlr->idling = false;
1385                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1386                 return;
1387         }
1388
1389         /* Extract head of queue */
1390         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1391         ctlr->cur_msg = msg;
1392
1393         list_del_init(&msg->queue);
1394         if (ctlr->busy)
1395                 was_busy = true;
1396         else
1397                 ctlr->busy = true;
1398         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1399
1400         mutex_lock(&ctlr->io_mutex);
1401
1402         if (!was_busy && ctlr->auto_runtime_pm) {
1403                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1404                 if (ret < 0) {
1405                         pm_runtime_put_noidle(ctlr->dev.parent);
1406                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1407                                 ret);
1408                         mutex_unlock(&ctlr->io_mutex);
1409                         return;
1410                 }
1411         }
1412
1413         if (!was_busy)
1414                 trace_spi_controller_busy(ctlr);
1415
1416         if (!was_busy && ctlr->prepare_transfer_hardware) {
1417                 ret = ctlr->prepare_transfer_hardware(ctlr);
1418                 if (ret) {
1419                         dev_err(&ctlr->dev,
1420                                 "failed to prepare transfer hardware: %d\n",
1421                                 ret);
1422
1423                         if (ctlr->auto_runtime_pm)
1424                                 pm_runtime_put(ctlr->dev.parent);
1425
1426                         msg->status = ret;
1427                         spi_finalize_current_message(ctlr);
1428
1429                         mutex_unlock(&ctlr->io_mutex);
1430                         return;
1431                 }
1432         }
1433
1434         trace_spi_message_start(msg);
1435
1436         if (ctlr->prepare_message) {
1437                 ret = ctlr->prepare_message(ctlr, msg);
1438                 if (ret) {
1439                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1440                                 ret);
1441                         msg->status = ret;
1442                         spi_finalize_current_message(ctlr);
1443                         goto out;
1444                 }
1445                 ctlr->cur_msg_prepared = true;
1446         }
1447
1448         ret = spi_map_msg(ctlr, msg);
1449         if (ret) {
1450                 msg->status = ret;
1451                 spi_finalize_current_message(ctlr);
1452                 goto out;
1453         }
1454
1455         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1456                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1457                         xfer->ptp_sts_word_pre = 0;
1458                         ptp_read_system_prets(xfer->ptp_sts);
1459                 }
1460         }
1461
1462         ret = ctlr->transfer_one_message(ctlr, msg);
1463         if (ret) {
1464                 dev_err(&ctlr->dev,
1465                         "failed to transfer one message from queue\n");
1466                 goto out;
1467         }
1468
1469 out:
1470         mutex_unlock(&ctlr->io_mutex);
1471
1472         /* Prod the scheduler in case transfer_one() was busy waiting */
1473         if (!ret)
1474                 cond_resched();
1475 }
1476
1477 /**
1478  * spi_pump_messages - kthread work function which processes spi message queue
1479  * @work: pointer to kthread work struct contained in the controller struct
1480  */
1481 static void spi_pump_messages(struct kthread_work *work)
1482 {
1483         struct spi_controller *ctlr =
1484                 container_of(work, struct spi_controller, pump_messages);
1485
1486         __spi_pump_messages(ctlr, true);
1487 }
1488
1489 /**
1490  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1491  *                          TX timestamp for the requested byte from the SPI
1492  *                          transfer. The frequency with which this function
1493  *                          must be called (once per word, once for the whole
1494  *                          transfer, once per batch of words etc) is arbitrary
1495  *                          as long as the @tx buffer offset is greater than or
1496  *                          equal to the requested byte at the time of the
1497  *                          call. The timestamp is only taken once, at the
1498  *                          first such call. It is assumed that the driver
1499  *                          advances its @tx buffer pointer monotonically.
1500  * @ctlr: Pointer to the spi_controller structure of the driver
1501  * @xfer: Pointer to the transfer being timestamped
1502  * @progress: How many words (not bytes) have been transferred so far
1503  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1504  *            transfer, for less jitter in time measurement. Only compatible
1505  *            with PIO drivers. If true, must follow up with
1506  *            spi_take_timestamp_post or otherwise system will crash.
1507  *            WARNING: for fully predictable results, the CPU frequency must
1508  *            also be under control (governor).
1509  */
1510 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1511                             struct spi_transfer *xfer,
1512                             size_t progress, bool irqs_off)
1513 {
1514         if (!xfer->ptp_sts)
1515                 return;
1516
1517         if (xfer->timestamped_pre)
1518                 return;
1519
1520         if (progress < xfer->ptp_sts_word_pre)
1521                 return;
1522
1523         /* Capture the resolution of the timestamp */
1524         xfer->ptp_sts_word_pre = progress;
1525
1526         xfer->timestamped_pre = true;
1527
1528         if (irqs_off) {
1529                 local_irq_save(ctlr->irq_flags);
1530                 preempt_disable();
1531         }
1532
1533         ptp_read_system_prets(xfer->ptp_sts);
1534 }
1535 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1536
1537 /**
1538  * spi_take_timestamp_post - helper for drivers to collect the end of the
1539  *                           TX timestamp for the requested byte from the SPI
1540  *                           transfer. Can be called with an arbitrary
1541  *                           frequency: only the first call where @tx exceeds
1542  *                           or is equal to the requested word will be
1543  *                           timestamped.
1544  * @ctlr: Pointer to the spi_controller structure of the driver
1545  * @xfer: Pointer to the transfer being timestamped
1546  * @progress: How many words (not bytes) have been transferred so far
1547  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1548  */
1549 void spi_take_timestamp_post(struct spi_controller *ctlr,
1550                              struct spi_transfer *xfer,
1551                              size_t progress, bool irqs_off)
1552 {
1553         if (!xfer->ptp_sts)
1554                 return;
1555
1556         if (xfer->timestamped_post)
1557                 return;
1558
1559         if (progress < xfer->ptp_sts_word_post)
1560                 return;
1561
1562         ptp_read_system_postts(xfer->ptp_sts);
1563
1564         if (irqs_off) {
1565                 local_irq_restore(ctlr->irq_flags);
1566                 preempt_enable();
1567         }
1568
1569         /* Capture the resolution of the timestamp */
1570         xfer->ptp_sts_word_post = progress;
1571
1572         xfer->timestamped_post = true;
1573 }
1574 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1575
1576 /**
1577  * spi_set_thread_rt - set the controller to pump at realtime priority
1578  * @ctlr: controller to boost priority of
1579  *
1580  * This can be called because the controller requested realtime priority
1581  * (by setting the ->rt value before calling spi_register_controller()) or
1582  * because a device on the bus said that its transfers needed realtime
1583  * priority.
1584  *
1585  * NOTE: at the moment if any device on a bus says it needs realtime then
1586  * the thread will be at realtime priority for all transfers on that
1587  * controller.  If this eventually becomes a problem we may see if we can
1588  * find a way to boost the priority only temporarily during relevant
1589  * transfers.
1590  */
1591 static void spi_set_thread_rt(struct spi_controller *ctlr)
1592 {
1593         struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1594
1595         dev_info(&ctlr->dev,
1596                 "will run message pump with realtime priority\n");
1597         sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1598 }
1599
1600 static int spi_init_queue(struct spi_controller *ctlr)
1601 {
1602         ctlr->running = false;
1603         ctlr->busy = false;
1604
1605         kthread_init_worker(&ctlr->kworker);
1606         ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1607                                          "%s", dev_name(&ctlr->dev));
1608         if (IS_ERR(ctlr->kworker_task)) {
1609                 dev_err(&ctlr->dev, "failed to create message pump task\n");
1610                 return PTR_ERR(ctlr->kworker_task);
1611         }
1612         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1613
1614         /*
1615          * Controller config will indicate if this controller should run the
1616          * message pump with high (realtime) priority to reduce the transfer
1617          * latency on the bus by minimising the delay between a transfer
1618          * request and the scheduling of the message pump thread. Without this
1619          * setting the message pump thread will remain at default priority.
1620          */
1621         if (ctlr->rt)
1622                 spi_set_thread_rt(ctlr);
1623
1624         return 0;
1625 }
1626
1627 /**
1628  * spi_get_next_queued_message() - called by driver to check for queued
1629  * messages
1630  * @ctlr: the controller to check for queued messages
1631  *
1632  * If there are more messages in the queue, the next message is returned from
1633  * this call.
1634  *
1635  * Return: the next message in the queue, else NULL if the queue is empty.
1636  */
1637 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1638 {
1639         struct spi_message *next;
1640         unsigned long flags;
1641
1642         /* get a pointer to the next message, if any */
1643         spin_lock_irqsave(&ctlr->queue_lock, flags);
1644         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1645                                         queue);
1646         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1647
1648         return next;
1649 }
1650 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1651
1652 /**
1653  * spi_finalize_current_message() - the current message is complete
1654  * @ctlr: the controller to return the message to
1655  *
1656  * Called by the driver to notify the core that the message in the front of the
1657  * queue is complete and can be removed from the queue.
1658  */
1659 void spi_finalize_current_message(struct spi_controller *ctlr)
1660 {
1661         struct spi_transfer *xfer;
1662         struct spi_message *mesg;
1663         unsigned long flags;
1664         int ret;
1665
1666         spin_lock_irqsave(&ctlr->queue_lock, flags);
1667         mesg = ctlr->cur_msg;
1668         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1669
1670         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1671                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1672                         ptp_read_system_postts(xfer->ptp_sts);
1673                         xfer->ptp_sts_word_post = xfer->len;
1674                 }
1675         }
1676
1677         if (unlikely(ctlr->ptp_sts_supported)) {
1678                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1679                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped_pre);
1680                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped_post);
1681                 }
1682         }
1683
1684         spi_unmap_msg(ctlr, mesg);
1685
1686         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1687                 ret = ctlr->unprepare_message(ctlr, mesg);
1688                 if (ret) {
1689                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1690                                 ret);
1691                 }
1692         }
1693
1694         spin_lock_irqsave(&ctlr->queue_lock, flags);
1695         ctlr->cur_msg = NULL;
1696         ctlr->cur_msg_prepared = false;
1697         kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1698         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1699
1700         trace_spi_message_done(mesg);
1701
1702         mesg->state = NULL;
1703         if (mesg->complete)
1704                 mesg->complete(mesg->context);
1705 }
1706 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1707
1708 static int spi_start_queue(struct spi_controller *ctlr)
1709 {
1710         unsigned long flags;
1711
1712         spin_lock_irqsave(&ctlr->queue_lock, flags);
1713
1714         if (ctlr->running || ctlr->busy) {
1715                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1716                 return -EBUSY;
1717         }
1718
1719         ctlr->running = true;
1720         ctlr->cur_msg = NULL;
1721         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1722
1723         kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1724
1725         return 0;
1726 }
1727
1728 static int spi_stop_queue(struct spi_controller *ctlr)
1729 {
1730         unsigned long flags;
1731         unsigned limit = 500;
1732         int ret = 0;
1733
1734         spin_lock_irqsave(&ctlr->queue_lock, flags);
1735
1736         /*
1737          * This is a bit lame, but is optimized for the common execution path.
1738          * A wait_queue on the ctlr->busy could be used, but then the common
1739          * execution path (pump_messages) would be required to call wake_up or
1740          * friends on every SPI message. Do this instead.
1741          */
1742         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1743                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1744                 usleep_range(10000, 11000);
1745                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1746         }
1747
1748         if (!list_empty(&ctlr->queue) || ctlr->busy)
1749                 ret = -EBUSY;
1750         else
1751                 ctlr->running = false;
1752
1753         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1754
1755         if (ret) {
1756                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1757                 return ret;
1758         }
1759         return ret;
1760 }
1761
1762 static int spi_destroy_queue(struct spi_controller *ctlr)
1763 {
1764         int ret;
1765
1766         ret = spi_stop_queue(ctlr);
1767
1768         /*
1769          * kthread_flush_worker will block until all work is done.
1770          * If the reason that stop_queue timed out is that the work will never
1771          * finish, then it does no good to call flush/stop thread, so
1772          * return anyway.
1773          */
1774         if (ret) {
1775                 dev_err(&ctlr->dev, "problem destroying queue\n");
1776                 return ret;
1777         }
1778
1779         kthread_flush_worker(&ctlr->kworker);
1780         kthread_stop(ctlr->kworker_task);
1781
1782         return 0;
1783 }
1784
1785 static int __spi_queued_transfer(struct spi_device *spi,
1786                                  struct spi_message *msg,
1787                                  bool need_pump)
1788 {
1789         struct spi_controller *ctlr = spi->controller;
1790         unsigned long flags;
1791
1792         spin_lock_irqsave(&ctlr->queue_lock, flags);
1793
1794         if (!ctlr->running) {
1795                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1796                 return -ESHUTDOWN;
1797         }
1798         msg->actual_length = 0;
1799         msg->status = -EINPROGRESS;
1800
1801         list_add_tail(&msg->queue, &ctlr->queue);
1802         if (!ctlr->busy && need_pump)
1803                 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1804
1805         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1806         return 0;
1807 }
1808
1809 /**
1810  * spi_queued_transfer - transfer function for queued transfers
1811  * @spi: spi device which is requesting transfer
1812  * @msg: spi message which is to handled is queued to driver queue
1813  *
1814  * Return: zero on success, else a negative error code.
1815  */
1816 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1817 {
1818         return __spi_queued_transfer(spi, msg, true);
1819 }
1820
1821 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1822 {
1823         int ret;
1824
1825         ctlr->transfer = spi_queued_transfer;
1826         if (!ctlr->transfer_one_message)
1827                 ctlr->transfer_one_message = spi_transfer_one_message;
1828
1829         /* Initialize and start queue */
1830         ret = spi_init_queue(ctlr);
1831         if (ret) {
1832                 dev_err(&ctlr->dev, "problem initializing queue\n");
1833                 goto err_init_queue;
1834         }
1835         ctlr->queued = true;
1836         ret = spi_start_queue(ctlr);
1837         if (ret) {
1838                 dev_err(&ctlr->dev, "problem starting queue\n");
1839                 goto err_start_queue;
1840         }
1841
1842         return 0;
1843
1844 err_start_queue:
1845         spi_destroy_queue(ctlr);
1846 err_init_queue:
1847         return ret;
1848 }
1849
1850 /**
1851  * spi_flush_queue - Send all pending messages in the queue from the callers'
1852  *                   context
1853  * @ctlr: controller to process queue for
1854  *
1855  * This should be used when one wants to ensure all pending messages have been
1856  * sent before doing something. Is used by the spi-mem code to make sure SPI
1857  * memory operations do not preempt regular SPI transfers that have been queued
1858  * before the spi-mem operation.
1859  */
1860 void spi_flush_queue(struct spi_controller *ctlr)
1861 {
1862         if (ctlr->transfer == spi_queued_transfer)
1863                 __spi_pump_messages(ctlr, false);
1864 }
1865
1866 /*-------------------------------------------------------------------------*/
1867
1868 #if defined(CONFIG_OF)
1869 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1870                            struct device_node *nc)
1871 {
1872         u32 value;
1873         int rc;
1874
1875         /* Mode (clock phase/polarity/etc.) */
1876         if (of_property_read_bool(nc, "spi-cpha"))
1877                 spi->mode |= SPI_CPHA;
1878         if (of_property_read_bool(nc, "spi-cpol"))
1879                 spi->mode |= SPI_CPOL;
1880         if (of_property_read_bool(nc, "spi-3wire"))
1881                 spi->mode |= SPI_3WIRE;
1882         if (of_property_read_bool(nc, "spi-lsb-first"))
1883                 spi->mode |= SPI_LSB_FIRST;
1884         if (of_property_read_bool(nc, "spi-cs-high"))
1885                 spi->mode |= SPI_CS_HIGH;
1886
1887         /* Device DUAL/QUAD mode */
1888         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1889                 switch (value) {
1890                 case 1:
1891                         break;
1892                 case 2:
1893                         spi->mode |= SPI_TX_DUAL;
1894                         break;
1895                 case 4:
1896                         spi->mode |= SPI_TX_QUAD;
1897                         break;
1898                 case 8:
1899                         spi->mode |= SPI_TX_OCTAL;
1900                         break;
1901                 default:
1902                         dev_warn(&ctlr->dev,
1903                                 "spi-tx-bus-width %d not supported\n",
1904                                 value);
1905                         break;
1906                 }
1907         }
1908
1909         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1910                 switch (value) {
1911                 case 1:
1912                         break;
1913                 case 2:
1914                         spi->mode |= SPI_RX_DUAL;
1915                         break;
1916                 case 4:
1917                         spi->mode |= SPI_RX_QUAD;
1918                         break;
1919                 case 8:
1920                         spi->mode |= SPI_RX_OCTAL;
1921                         break;
1922                 default:
1923                         dev_warn(&ctlr->dev,
1924                                 "spi-rx-bus-width %d not supported\n",
1925                                 value);
1926                         break;
1927                 }
1928         }
1929
1930         if (spi_controller_is_slave(ctlr)) {
1931                 if (!of_node_name_eq(nc, "slave")) {
1932                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1933                                 nc);
1934                         return -EINVAL;
1935                 }
1936                 return 0;
1937         }
1938
1939         /* Device address */
1940         rc = of_property_read_u32(nc, "reg", &value);
1941         if (rc) {
1942                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1943                         nc, rc);
1944                 return rc;
1945         }
1946         spi->chip_select = value;
1947
1948         /*
1949          * For descriptors associated with the device, polarity inversion is
1950          * handled in the gpiolib, so all gpio chip selects are "active high"
1951          * in the logical sense, the gpiolib will invert the line if need be.
1952          */
1953         if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1954             ctlr->cs_gpiods[spi->chip_select])
1955                 spi->mode |= SPI_CS_HIGH;
1956
1957         /* Device speed */
1958         rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1959         if (rc) {
1960                 dev_err(&ctlr->dev,
1961                         "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1962                 return rc;
1963         }
1964         spi->max_speed_hz = value;
1965
1966         return 0;
1967 }
1968
1969 static struct spi_device *
1970 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1971 {
1972         struct spi_device *spi;
1973         int rc;
1974
1975         /* Alloc an spi_device */
1976         spi = spi_alloc_device(ctlr);
1977         if (!spi) {
1978                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1979                 rc = -ENOMEM;
1980                 goto err_out;
1981         }
1982
1983         /* Select device driver */
1984         rc = of_modalias_node(nc, spi->modalias,
1985                                 sizeof(spi->modalias));
1986         if (rc < 0) {
1987                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1988                 goto err_out;
1989         }
1990
1991         rc = of_spi_parse_dt(ctlr, spi, nc);
1992         if (rc)
1993                 goto err_out;
1994
1995         /* Store a pointer to the node in the device structure */
1996         of_node_get(nc);
1997         spi->dev.of_node = nc;
1998
1999         /* Register the new device */
2000         rc = spi_add_device(spi);
2001         if (rc) {
2002                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2003                 goto err_of_node_put;
2004         }
2005
2006         return spi;
2007
2008 err_of_node_put:
2009         of_node_put(nc);
2010 err_out:
2011         spi_dev_put(spi);
2012         return ERR_PTR(rc);
2013 }
2014
2015 /**
2016  * of_register_spi_devices() - Register child devices onto the SPI bus
2017  * @ctlr:       Pointer to spi_controller device
2018  *
2019  * Registers an spi_device for each child node of controller node which
2020  * represents a valid SPI slave.
2021  */
2022 static void of_register_spi_devices(struct spi_controller *ctlr)
2023 {
2024         struct spi_device *spi;
2025         struct device_node *nc;
2026
2027         if (!ctlr->dev.of_node)
2028                 return;
2029
2030         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2031                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2032                         continue;
2033                 spi = of_register_spi_device(ctlr, nc);
2034                 if (IS_ERR(spi)) {
2035                         dev_warn(&ctlr->dev,
2036                                  "Failed to create SPI device for %pOF\n", nc);
2037                         of_node_clear_flag(nc, OF_POPULATED);
2038                 }
2039         }
2040 }
2041 #else
2042 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2043 #endif
2044
2045 #ifdef CONFIG_ACPI
2046 struct acpi_spi_lookup {
2047         struct spi_controller   *ctlr;
2048         u32                     max_speed_hz;
2049         u32                     mode;
2050         int                     irq;
2051         u8                      bits_per_word;
2052         u8                      chip_select;
2053 };
2054
2055 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2056                                             struct acpi_spi_lookup *lookup)
2057 {
2058         const union acpi_object *obj;
2059
2060         if (!x86_apple_machine)
2061                 return;
2062
2063         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2064             && obj->buffer.length >= 4)
2065                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2066
2067         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2068             && obj->buffer.length == 8)
2069                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2070
2071         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2072             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2073                 lookup->mode |= SPI_LSB_FIRST;
2074
2075         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2076             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2077                 lookup->mode |= SPI_CPOL;
2078
2079         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2080             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2081                 lookup->mode |= SPI_CPHA;
2082 }
2083
2084 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2085 {
2086         struct acpi_spi_lookup *lookup = data;
2087         struct spi_controller *ctlr = lookup->ctlr;
2088
2089         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2090                 struct acpi_resource_spi_serialbus *sb;
2091                 acpi_handle parent_handle;
2092                 acpi_status status;
2093
2094                 sb = &ares->data.spi_serial_bus;
2095                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2096
2097                         status = acpi_get_handle(NULL,
2098                                                  sb->resource_source.string_ptr,
2099                                                  &parent_handle);
2100
2101                         if (ACPI_FAILURE(status) ||
2102                             ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2103                                 return -ENODEV;
2104
2105                         /*
2106                          * ACPI DeviceSelection numbering is handled by the
2107                          * host controller driver in Windows and can vary
2108                          * from driver to driver. In Linux we always expect
2109                          * 0 .. max - 1 so we need to ask the driver to
2110                          * translate between the two schemes.
2111                          */
2112                         if (ctlr->fw_translate_cs) {
2113                                 int cs = ctlr->fw_translate_cs(ctlr,
2114                                                 sb->device_selection);
2115                                 if (cs < 0)
2116                                         return cs;
2117                                 lookup->chip_select = cs;
2118                         } else {
2119                                 lookup->chip_select = sb->device_selection;
2120                         }
2121
2122                         lookup->max_speed_hz = sb->connection_speed;
2123
2124                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2125                                 lookup->mode |= SPI_CPHA;
2126                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2127                                 lookup->mode |= SPI_CPOL;
2128                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2129                                 lookup->mode |= SPI_CS_HIGH;
2130                 }
2131         } else if (lookup->irq < 0) {
2132                 struct resource r;
2133
2134                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2135                         lookup->irq = r.start;
2136         }
2137
2138         /* Always tell the ACPI core to skip this resource */
2139         return 1;
2140 }
2141
2142 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2143                                             struct acpi_device *adev)
2144 {
2145         acpi_handle parent_handle = NULL;
2146         struct list_head resource_list;
2147         struct acpi_spi_lookup lookup = {};
2148         struct spi_device *spi;
2149         int ret;
2150
2151         if (acpi_bus_get_status(adev) || !adev->status.present ||
2152             acpi_device_enumerated(adev))
2153                 return AE_OK;
2154
2155         lookup.ctlr             = ctlr;
2156         lookup.irq              = -1;
2157
2158         INIT_LIST_HEAD(&resource_list);
2159         ret = acpi_dev_get_resources(adev, &resource_list,
2160                                      acpi_spi_add_resource, &lookup);
2161         acpi_dev_free_resource_list(&resource_list);
2162
2163         if (ret < 0)
2164                 /* found SPI in _CRS but it points to another controller */
2165                 return AE_OK;
2166
2167         if (!lookup.max_speed_hz &&
2168             !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2169             ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2170                 /* Apple does not use _CRS but nested devices for SPI slaves */
2171                 acpi_spi_parse_apple_properties(adev, &lookup);
2172         }
2173
2174         if (!lookup.max_speed_hz)
2175                 return AE_OK;
2176
2177         spi = spi_alloc_device(ctlr);
2178         if (!spi) {
2179                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2180                         dev_name(&adev->dev));
2181                 return AE_NO_MEMORY;
2182         }
2183
2184         ACPI_COMPANION_SET(&spi->dev, adev);
2185         spi->max_speed_hz       = lookup.max_speed_hz;
2186         spi->mode               = lookup.mode;
2187         spi->irq                = lookup.irq;
2188         spi->bits_per_word      = lookup.bits_per_word;
2189         spi->chip_select        = lookup.chip_select;
2190
2191         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2192                           sizeof(spi->modalias));
2193
2194         if (spi->irq < 0)
2195                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2196
2197         acpi_device_set_enumerated(adev);
2198
2199         adev->power.flags.ignore_parent = true;
2200         if (spi_add_device(spi)) {
2201                 adev->power.flags.ignore_parent = false;
2202                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2203                         dev_name(&adev->dev));
2204                 spi_dev_put(spi);
2205         }
2206
2207         return AE_OK;
2208 }
2209
2210 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2211                                        void *data, void **return_value)
2212 {
2213         struct spi_controller *ctlr = data;
2214         struct acpi_device *adev;
2215
2216         if (acpi_bus_get_device(handle, &adev))
2217                 return AE_OK;
2218
2219         return acpi_register_spi_device(ctlr, adev);
2220 }
2221
2222 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2223
2224 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2225 {
2226         acpi_status status;
2227         acpi_handle handle;
2228
2229         handle = ACPI_HANDLE(ctlr->dev.parent);
2230         if (!handle)
2231                 return;
2232
2233         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2234                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2235                                      acpi_spi_add_device, NULL, ctlr, NULL);
2236         if (ACPI_FAILURE(status))
2237                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2238 }
2239 #else
2240 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2241 #endif /* CONFIG_ACPI */
2242
2243 static void spi_controller_release(struct device *dev)
2244 {
2245         struct spi_controller *ctlr;
2246
2247         ctlr = container_of(dev, struct spi_controller, dev);
2248         kfree(ctlr);
2249 }
2250
2251 static struct class spi_master_class = {
2252         .name           = "spi_master",
2253         .owner          = THIS_MODULE,
2254         .dev_release    = spi_controller_release,
2255         .dev_groups     = spi_master_groups,
2256 };
2257
2258 #ifdef CONFIG_SPI_SLAVE
2259 /**
2260  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2261  *                   controller
2262  * @spi: device used for the current transfer
2263  */
2264 int spi_slave_abort(struct spi_device *spi)
2265 {
2266         struct spi_controller *ctlr = spi->controller;
2267
2268         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2269                 return ctlr->slave_abort(ctlr);
2270
2271         return -ENOTSUPP;
2272 }
2273 EXPORT_SYMBOL_GPL(spi_slave_abort);
2274
2275 static int match_true(struct device *dev, void *data)
2276 {
2277         return 1;
2278 }
2279
2280 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2281                           char *buf)
2282 {
2283         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2284                                                    dev);
2285         struct device *child;
2286
2287         child = device_find_child(&ctlr->dev, NULL, match_true);
2288         return sprintf(buf, "%s\n",
2289                        child ? to_spi_device(child)->modalias : NULL);
2290 }
2291
2292 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2293                            const char *buf, size_t count)
2294 {
2295         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2296                                                    dev);
2297         struct spi_device *spi;
2298         struct device *child;
2299         char name[32];
2300         int rc;
2301
2302         rc = sscanf(buf, "%31s", name);
2303         if (rc != 1 || !name[0])
2304                 return -EINVAL;
2305
2306         child = device_find_child(&ctlr->dev, NULL, match_true);
2307         if (child) {
2308                 /* Remove registered slave */
2309                 device_unregister(child);
2310                 put_device(child);
2311         }
2312
2313         if (strcmp(name, "(null)")) {
2314                 /* Register new slave */
2315                 spi = spi_alloc_device(ctlr);
2316                 if (!spi)
2317                         return -ENOMEM;
2318
2319                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2320
2321                 rc = spi_add_device(spi);
2322                 if (rc) {
2323                         spi_dev_put(spi);
2324                         return rc;
2325                 }
2326         }
2327
2328         return count;
2329 }
2330
2331 static DEVICE_ATTR_RW(slave);
2332
2333 static struct attribute *spi_slave_attrs[] = {
2334         &dev_attr_slave.attr,
2335         NULL,
2336 };
2337
2338 static const struct attribute_group spi_slave_group = {
2339         .attrs = spi_slave_attrs,
2340 };
2341
2342 static const struct attribute_group *spi_slave_groups[] = {
2343         &spi_controller_statistics_group,
2344         &spi_slave_group,
2345         NULL,
2346 };
2347
2348 static struct class spi_slave_class = {
2349         .name           = "spi_slave",
2350         .owner          = THIS_MODULE,
2351         .dev_release    = spi_controller_release,
2352         .dev_groups     = spi_slave_groups,
2353 };
2354 #else
2355 extern struct class spi_slave_class;    /* dummy */
2356 #endif
2357
2358 /**
2359  * __spi_alloc_controller - allocate an SPI master or slave controller
2360  * @dev: the controller, possibly using the platform_bus
2361  * @size: how much zeroed driver-private data to allocate; the pointer to this
2362  *      memory is in the driver_data field of the returned device, accessible
2363  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2364  *      drivers granting DMA access to portions of their private data need to
2365  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2366  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2367  *      slave (true) controller
2368  * Context: can sleep
2369  *
2370  * This call is used only by SPI controller drivers, which are the
2371  * only ones directly touching chip registers.  It's how they allocate
2372  * an spi_controller structure, prior to calling spi_register_controller().
2373  *
2374  * This must be called from context that can sleep.
2375  *
2376  * The caller is responsible for assigning the bus number and initializing the
2377  * controller's methods before calling spi_register_controller(); and (after
2378  * errors adding the device) calling spi_controller_put() to prevent a memory
2379  * leak.
2380  *
2381  * Return: the SPI controller structure on success, else NULL.
2382  */
2383 struct spi_controller *__spi_alloc_controller(struct device *dev,
2384                                               unsigned int size, bool slave)
2385 {
2386         struct spi_controller   *ctlr;
2387         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2388
2389         if (!dev)
2390                 return NULL;
2391
2392         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2393         if (!ctlr)
2394                 return NULL;
2395
2396         device_initialize(&ctlr->dev);
2397         ctlr->bus_num = -1;
2398         ctlr->num_chipselect = 1;
2399         ctlr->slave = slave;
2400         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2401                 ctlr->dev.class = &spi_slave_class;
2402         else
2403                 ctlr->dev.class = &spi_master_class;
2404         ctlr->dev.parent = dev;
2405         pm_suspend_ignore_children(&ctlr->dev, true);
2406         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2407
2408         return ctlr;
2409 }
2410 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2411
2412 #ifdef CONFIG_OF
2413 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2414 {
2415         int nb, i, *cs;
2416         struct device_node *np = ctlr->dev.of_node;
2417
2418         if (!np)
2419                 return 0;
2420
2421         nb = of_gpio_named_count(np, "cs-gpios");
2422         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2423
2424         /* Return error only for an incorrectly formed cs-gpios property */
2425         if (nb == 0 || nb == -ENOENT)
2426                 return 0;
2427         else if (nb < 0)
2428                 return nb;
2429
2430         cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2431                           GFP_KERNEL);
2432         ctlr->cs_gpios = cs;
2433
2434         if (!ctlr->cs_gpios)
2435                 return -ENOMEM;
2436
2437         for (i = 0; i < ctlr->num_chipselect; i++)
2438                 cs[i] = -ENOENT;
2439
2440         for (i = 0; i < nb; i++)
2441                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2442
2443         return 0;
2444 }
2445 #else
2446 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2447 {
2448         return 0;
2449 }
2450 #endif
2451
2452 /**
2453  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2454  * @ctlr: The SPI master to grab GPIO descriptors for
2455  */
2456 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2457 {
2458         int nb, i;
2459         struct gpio_desc **cs;
2460         struct device *dev = &ctlr->dev;
2461         unsigned long native_cs_mask = 0;
2462         unsigned int num_cs_gpios = 0;
2463
2464         nb = gpiod_count(dev, "cs");
2465         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2466
2467         /* No GPIOs at all is fine, else return the error */
2468         if (nb == 0 || nb == -ENOENT)
2469                 return 0;
2470         else if (nb < 0)
2471                 return nb;
2472
2473         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2474                           GFP_KERNEL);
2475         if (!cs)
2476                 return -ENOMEM;
2477         ctlr->cs_gpiods = cs;
2478
2479         for (i = 0; i < nb; i++) {
2480                 /*
2481                  * Most chipselects are active low, the inverted
2482                  * semantics are handled by special quirks in gpiolib,
2483                  * so initializing them GPIOD_OUT_LOW here means
2484                  * "unasserted", in most cases this will drive the physical
2485                  * line high.
2486                  */
2487                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2488                                                       GPIOD_OUT_LOW);
2489                 if (IS_ERR(cs[i]))
2490                         return PTR_ERR(cs[i]);
2491
2492                 if (cs[i]) {
2493                         /*
2494                          * If we find a CS GPIO, name it after the device and
2495                          * chip select line.
2496                          */
2497                         char *gpioname;
2498
2499                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2500                                                   dev_name(dev), i);
2501                         if (!gpioname)
2502                                 return -ENOMEM;
2503                         gpiod_set_consumer_name(cs[i], gpioname);
2504                         num_cs_gpios++;
2505                         continue;
2506                 }
2507
2508                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2509                         dev_err(dev, "Invalid native chip select %d\n", i);
2510                         return -EINVAL;
2511                 }
2512                 native_cs_mask |= BIT(i);
2513         }
2514
2515         ctlr->unused_native_cs = ffz(native_cs_mask);
2516         if (num_cs_gpios && ctlr->max_native_cs &&
2517             ctlr->unused_native_cs >= ctlr->max_native_cs) {
2518                 dev_err(dev, "No unused native chip select available\n");
2519                 return -EINVAL;
2520         }
2521
2522         return 0;
2523 }
2524
2525 static int spi_controller_check_ops(struct spi_controller *ctlr)
2526 {
2527         /*
2528          * The controller may implement only the high-level SPI-memory like
2529          * operations if it does not support regular SPI transfers, and this is
2530          * valid use case.
2531          * If ->mem_ops is NULL, we request that at least one of the
2532          * ->transfer_xxx() method be implemented.
2533          */
2534         if (ctlr->mem_ops) {
2535                 if (!ctlr->mem_ops->exec_op)
2536                         return -EINVAL;
2537         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2538                    !ctlr->transfer_one_message) {
2539                 return -EINVAL;
2540         }
2541
2542         return 0;
2543 }
2544
2545 /**
2546  * spi_register_controller - register SPI master or slave controller
2547  * @ctlr: initialized master, originally from spi_alloc_master() or
2548  *      spi_alloc_slave()
2549  * Context: can sleep
2550  *
2551  * SPI controllers connect to their drivers using some non-SPI bus,
2552  * such as the platform bus.  The final stage of probe() in that code
2553  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2554  *
2555  * SPI controllers use board specific (often SOC specific) bus numbers,
2556  * and board-specific addressing for SPI devices combines those numbers
2557  * with chip select numbers.  Since SPI does not directly support dynamic
2558  * device identification, boards need configuration tables telling which
2559  * chip is at which address.
2560  *
2561  * This must be called from context that can sleep.  It returns zero on
2562  * success, else a negative error code (dropping the controller's refcount).
2563  * After a successful return, the caller is responsible for calling
2564  * spi_unregister_controller().
2565  *
2566  * Return: zero on success, else a negative error code.
2567  */
2568 int spi_register_controller(struct spi_controller *ctlr)
2569 {
2570         struct device           *dev = ctlr->dev.parent;
2571         struct boardinfo        *bi;
2572         int                     status;
2573         int                     id, first_dynamic;
2574
2575         if (!dev)
2576                 return -ENODEV;
2577
2578         /*
2579          * Make sure all necessary hooks are implemented before registering
2580          * the SPI controller.
2581          */
2582         status = spi_controller_check_ops(ctlr);
2583         if (status)
2584                 return status;
2585
2586         if (ctlr->bus_num >= 0) {
2587                 /* devices with a fixed bus num must check-in with the num */
2588                 mutex_lock(&board_lock);
2589                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2590                         ctlr->bus_num + 1, GFP_KERNEL);
2591                 mutex_unlock(&board_lock);
2592                 if (WARN(id < 0, "couldn't get idr"))
2593                         return id == -ENOSPC ? -EBUSY : id;
2594                 ctlr->bus_num = id;
2595         } else if (ctlr->dev.of_node) {
2596                 /* allocate dynamic bus number using Linux idr */
2597                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2598                 if (id >= 0) {
2599                         ctlr->bus_num = id;
2600                         mutex_lock(&board_lock);
2601                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2602                                        ctlr->bus_num + 1, GFP_KERNEL);
2603                         mutex_unlock(&board_lock);
2604                         if (WARN(id < 0, "couldn't get idr"))
2605                                 return id == -ENOSPC ? -EBUSY : id;
2606                 }
2607         }
2608         if (ctlr->bus_num < 0) {
2609                 first_dynamic = of_alias_get_highest_id("spi");
2610                 if (first_dynamic < 0)
2611                         first_dynamic = 0;
2612                 else
2613                         first_dynamic++;
2614
2615                 mutex_lock(&board_lock);
2616                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2617                                0, GFP_KERNEL);
2618                 mutex_unlock(&board_lock);
2619                 if (WARN(id < 0, "couldn't get idr"))
2620                         return id;
2621                 ctlr->bus_num = id;
2622         }
2623         INIT_LIST_HEAD(&ctlr->queue);
2624         spin_lock_init(&ctlr->queue_lock);
2625         spin_lock_init(&ctlr->bus_lock_spinlock);
2626         mutex_init(&ctlr->bus_lock_mutex);
2627         mutex_init(&ctlr->io_mutex);
2628         ctlr->bus_lock_flag = 0;
2629         init_completion(&ctlr->xfer_completion);
2630         if (!ctlr->max_dma_len)
2631                 ctlr->max_dma_len = INT_MAX;
2632
2633         /* register the device, then userspace will see it.
2634          * registration fails if the bus ID is in use.
2635          */
2636         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2637
2638         if (!spi_controller_is_slave(ctlr)) {
2639                 if (ctlr->use_gpio_descriptors) {
2640                         status = spi_get_gpio_descs(ctlr);
2641                         if (status)
2642                                 return status;
2643                         /*
2644                          * A controller using GPIO descriptors always
2645                          * supports SPI_CS_HIGH if need be.
2646                          */
2647                         ctlr->mode_bits |= SPI_CS_HIGH;
2648                 } else {
2649                         /* Legacy code path for GPIOs from DT */
2650                         status = of_spi_get_gpio_numbers(ctlr);
2651                         if (status)
2652                                 return status;
2653                 }
2654         }
2655
2656         /*
2657          * Even if it's just one always-selected device, there must
2658          * be at least one chipselect.
2659          */
2660         if (!ctlr->num_chipselect)
2661                 return -EINVAL;
2662
2663         status = device_add(&ctlr->dev);
2664         if (status < 0) {
2665                 /* free bus id */
2666                 mutex_lock(&board_lock);
2667                 idr_remove(&spi_master_idr, ctlr->bus_num);
2668                 mutex_unlock(&board_lock);
2669                 goto done;
2670         }
2671         dev_dbg(dev, "registered %s %s\n",
2672                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2673                         dev_name(&ctlr->dev));
2674
2675         /*
2676          * If we're using a queued driver, start the queue. Note that we don't
2677          * need the queueing logic if the driver is only supporting high-level
2678          * memory operations.
2679          */
2680         if (ctlr->transfer) {
2681                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2682         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2683                 status = spi_controller_initialize_queue(ctlr);
2684                 if (status) {
2685                         device_del(&ctlr->dev);
2686                         /* free bus id */
2687                         mutex_lock(&board_lock);
2688                         idr_remove(&spi_master_idr, ctlr->bus_num);
2689                         mutex_unlock(&board_lock);
2690                         goto done;
2691                 }
2692         }
2693         /* add statistics */
2694         spin_lock_init(&ctlr->statistics.lock);
2695
2696         mutex_lock(&board_lock);
2697         list_add_tail(&ctlr->list, &spi_controller_list);
2698         list_for_each_entry(bi, &board_list, list)
2699                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2700         mutex_unlock(&board_lock);
2701
2702         /* Register devices from the device tree and ACPI */
2703         of_register_spi_devices(ctlr);
2704         acpi_register_spi_devices(ctlr);
2705 done:
2706         return status;
2707 }
2708 EXPORT_SYMBOL_GPL(spi_register_controller);
2709
2710 static void devm_spi_unregister(struct device *dev, void *res)
2711 {
2712         spi_unregister_controller(*(struct spi_controller **)res);
2713 }
2714
2715 /**
2716  * devm_spi_register_controller - register managed SPI master or slave
2717  *      controller
2718  * @dev:    device managing SPI controller
2719  * @ctlr: initialized controller, originally from spi_alloc_master() or
2720  *      spi_alloc_slave()
2721  * Context: can sleep
2722  *
2723  * Register a SPI device as with spi_register_controller() which will
2724  * automatically be unregistered and freed.
2725  *
2726  * Return: zero on success, else a negative error code.
2727  */
2728 int devm_spi_register_controller(struct device *dev,
2729                                  struct spi_controller *ctlr)
2730 {
2731         struct spi_controller **ptr;
2732         int ret;
2733
2734         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2735         if (!ptr)
2736                 return -ENOMEM;
2737
2738         ret = spi_register_controller(ctlr);
2739         if (!ret) {
2740                 *ptr = ctlr;
2741                 devres_add(dev, ptr);
2742         } else {
2743                 devres_free(ptr);
2744         }
2745
2746         return ret;
2747 }
2748 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2749
2750 static int __unregister(struct device *dev, void *null)
2751 {
2752         spi_unregister_device(to_spi_device(dev));
2753         return 0;
2754 }
2755
2756 /**
2757  * spi_unregister_controller - unregister SPI master or slave controller
2758  * @ctlr: the controller being unregistered
2759  * Context: can sleep
2760  *
2761  * This call is used only by SPI controller drivers, which are the
2762  * only ones directly touching chip registers.
2763  *
2764  * This must be called from context that can sleep.
2765  *
2766  * Note that this function also drops a reference to the controller.
2767  */
2768 void spi_unregister_controller(struct spi_controller *ctlr)
2769 {
2770         struct spi_controller *found;
2771         int id = ctlr->bus_num;
2772
2773         /* First make sure that this controller was ever added */
2774         mutex_lock(&board_lock);
2775         found = idr_find(&spi_master_idr, id);
2776         mutex_unlock(&board_lock);
2777         if (ctlr->queued) {
2778                 if (spi_destroy_queue(ctlr))
2779                         dev_err(&ctlr->dev, "queue remove failed\n");
2780         }
2781         mutex_lock(&board_lock);
2782         list_del(&ctlr->list);
2783         mutex_unlock(&board_lock);
2784
2785         device_for_each_child(&ctlr->dev, NULL, __unregister);
2786         device_unregister(&ctlr->dev);
2787         /* free bus id */
2788         mutex_lock(&board_lock);
2789         if (found == ctlr)
2790                 idr_remove(&spi_master_idr, id);
2791         mutex_unlock(&board_lock);
2792 }
2793 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2794
2795 int spi_controller_suspend(struct spi_controller *ctlr)
2796 {
2797         int ret;
2798
2799         /* Basically no-ops for non-queued controllers */
2800         if (!ctlr->queued)
2801                 return 0;
2802
2803         ret = spi_stop_queue(ctlr);
2804         if (ret)
2805                 dev_err(&ctlr->dev, "queue stop failed\n");
2806
2807         return ret;
2808 }
2809 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2810
2811 int spi_controller_resume(struct spi_controller *ctlr)
2812 {
2813         int ret;
2814
2815         if (!ctlr->queued)
2816                 return 0;
2817
2818         ret = spi_start_queue(ctlr);
2819         if (ret)
2820                 dev_err(&ctlr->dev, "queue restart failed\n");
2821
2822         return ret;
2823 }
2824 EXPORT_SYMBOL_GPL(spi_controller_resume);
2825
2826 static int __spi_controller_match(struct device *dev, const void *data)
2827 {
2828         struct spi_controller *ctlr;
2829         const u16 *bus_num = data;
2830
2831         ctlr = container_of(dev, struct spi_controller, dev);
2832         return ctlr->bus_num == *bus_num;
2833 }
2834
2835 /**
2836  * spi_busnum_to_master - look up master associated with bus_num
2837  * @bus_num: the master's bus number
2838  * Context: can sleep
2839  *
2840  * This call may be used with devices that are registered after
2841  * arch init time.  It returns a refcounted pointer to the relevant
2842  * spi_controller (which the caller must release), or NULL if there is
2843  * no such master registered.
2844  *
2845  * Return: the SPI master structure on success, else NULL.
2846  */
2847 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2848 {
2849         struct device           *dev;
2850         struct spi_controller   *ctlr = NULL;
2851
2852         dev = class_find_device(&spi_master_class, NULL, &bus_num,
2853                                 __spi_controller_match);
2854         if (dev)
2855                 ctlr = container_of(dev, struct spi_controller, dev);
2856         /* reference got in class_find_device */
2857         return ctlr;
2858 }
2859 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2860
2861 /*-------------------------------------------------------------------------*/
2862
2863 /* Core methods for SPI resource management */
2864
2865 /**
2866  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2867  *                 during the processing of a spi_message while using
2868  *                 spi_transfer_one
2869  * @spi:     the spi device for which we allocate memory
2870  * @release: the release code to execute for this resource
2871  * @size:    size to alloc and return
2872  * @gfp:     GFP allocation flags
2873  *
2874  * Return: the pointer to the allocated data
2875  *
2876  * This may get enhanced in the future to allocate from a memory pool
2877  * of the @spi_device or @spi_controller to avoid repeated allocations.
2878  */
2879 void *spi_res_alloc(struct spi_device *spi,
2880                     spi_res_release_t release,
2881                     size_t size, gfp_t gfp)
2882 {
2883         struct spi_res *sres;
2884
2885         sres = kzalloc(sizeof(*sres) + size, gfp);
2886         if (!sres)
2887                 return NULL;
2888
2889         INIT_LIST_HEAD(&sres->entry);
2890         sres->release = release;
2891
2892         return sres->data;
2893 }
2894 EXPORT_SYMBOL_GPL(spi_res_alloc);
2895
2896 /**
2897  * spi_res_free - free an spi resource
2898  * @res: pointer to the custom data of a resource
2899  *
2900  */
2901 void spi_res_free(void *res)
2902 {
2903         struct spi_res *sres = container_of(res, struct spi_res, data);
2904
2905         if (!res)
2906                 return;
2907
2908         WARN_ON(!list_empty(&sres->entry));
2909         kfree(sres);
2910 }
2911 EXPORT_SYMBOL_GPL(spi_res_free);
2912
2913 /**
2914  * spi_res_add - add a spi_res to the spi_message
2915  * @message: the spi message
2916  * @res:     the spi_resource
2917  */
2918 void spi_res_add(struct spi_message *message, void *res)
2919 {
2920         struct spi_res *sres = container_of(res, struct spi_res, data);
2921
2922         WARN_ON(!list_empty(&sres->entry));
2923         list_add_tail(&sres->entry, &message->resources);
2924 }
2925 EXPORT_SYMBOL_GPL(spi_res_add);
2926
2927 /**
2928  * spi_res_release - release all spi resources for this message
2929  * @ctlr:  the @spi_controller
2930  * @message: the @spi_message
2931  */
2932 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2933 {
2934         struct spi_res *res, *tmp;
2935
2936         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2937                 if (res->release)
2938                         res->release(ctlr, message, res->data);
2939
2940                 list_del(&res->entry);
2941
2942                 kfree(res);
2943         }
2944 }
2945 EXPORT_SYMBOL_GPL(spi_res_release);
2946
2947 /*-------------------------------------------------------------------------*/
2948
2949 /* Core methods for spi_message alterations */
2950
2951 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2952                                             struct spi_message *msg,
2953                                             void *res)
2954 {
2955         struct spi_replaced_transfers *rxfer = res;
2956         size_t i;
2957
2958         /* call extra callback if requested */
2959         if (rxfer->release)
2960                 rxfer->release(ctlr, msg, res);
2961
2962         /* insert replaced transfers back into the message */
2963         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2964
2965         /* remove the formerly inserted entries */
2966         for (i = 0; i < rxfer->inserted; i++)
2967                 list_del(&rxfer->inserted_transfers[i].transfer_list);
2968 }
2969
2970 /**
2971  * spi_replace_transfers - replace transfers with several transfers
2972  *                         and register change with spi_message.resources
2973  * @msg:           the spi_message we work upon
2974  * @xfer_first:    the first spi_transfer we want to replace
2975  * @remove:        number of transfers to remove
2976  * @insert:        the number of transfers we want to insert instead
2977  * @release:       extra release code necessary in some circumstances
2978  * @extradatasize: extra data to allocate (with alignment guarantees
2979  *                 of struct @spi_transfer)
2980  * @gfp:           gfp flags
2981  *
2982  * Returns: pointer to @spi_replaced_transfers,
2983  *          PTR_ERR(...) in case of errors.
2984  */
2985 struct spi_replaced_transfers *spi_replace_transfers(
2986         struct spi_message *msg,
2987         struct spi_transfer *xfer_first,
2988         size_t remove,
2989         size_t insert,
2990         spi_replaced_release_t release,
2991         size_t extradatasize,
2992         gfp_t gfp)
2993 {
2994         struct spi_replaced_transfers *rxfer;
2995         struct spi_transfer *xfer;
2996         size_t i;
2997
2998         /* allocate the structure using spi_res */
2999         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3000                               struct_size(rxfer, inserted_transfers, insert)
3001                               + extradatasize,
3002                               gfp);
3003         if (!rxfer)
3004                 return ERR_PTR(-ENOMEM);
3005
3006         /* the release code to invoke before running the generic release */
3007         rxfer->release = release;
3008
3009         /* assign extradata */
3010         if (extradatasize)
3011                 rxfer->extradata =
3012                         &rxfer->inserted_transfers[insert];
3013
3014         /* init the replaced_transfers list */
3015         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3016
3017         /* assign the list_entry after which we should reinsert
3018          * the @replaced_transfers - it may be spi_message.messages!
3019          */
3020         rxfer->replaced_after = xfer_first->transfer_list.prev;
3021
3022         /* remove the requested number of transfers */
3023         for (i = 0; i < remove; i++) {
3024                 /* if the entry after replaced_after it is msg->transfers
3025                  * then we have been requested to remove more transfers
3026                  * than are in the list
3027                  */
3028                 if (rxfer->replaced_after->next == &msg->transfers) {
3029                         dev_err(&msg->spi->dev,
3030                                 "requested to remove more spi_transfers than are available\n");
3031                         /* insert replaced transfers back into the message */
3032                         list_splice(&rxfer->replaced_transfers,
3033                                     rxfer->replaced_after);
3034
3035                         /* free the spi_replace_transfer structure */
3036                         spi_res_free(rxfer);
3037
3038                         /* and return with an error */
3039                         return ERR_PTR(-EINVAL);
3040                 }
3041
3042                 /* remove the entry after replaced_after from list of
3043                  * transfers and add it to list of replaced_transfers
3044                  */
3045                 list_move_tail(rxfer->replaced_after->next,
3046                                &rxfer->replaced_transfers);
3047         }
3048
3049         /* create copy of the given xfer with identical settings
3050          * based on the first transfer to get removed
3051          */
3052         for (i = 0; i < insert; i++) {
3053                 /* we need to run in reverse order */
3054                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3055
3056                 /* copy all spi_transfer data */
3057                 memcpy(xfer, xfer_first, sizeof(*xfer));
3058
3059                 /* add to list */
3060                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3061
3062                 /* clear cs_change and delay for all but the last */
3063                 if (i) {
3064                         xfer->cs_change = false;
3065                         xfer->delay_usecs = 0;
3066                         xfer->delay.value = 0;
3067                 }
3068         }
3069
3070         /* set up inserted */
3071         rxfer->inserted = insert;
3072
3073         /* and register it with spi_res/spi_message */
3074         spi_res_add(msg, rxfer);
3075
3076         return rxfer;
3077 }
3078 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3079
3080 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3081                                         struct spi_message *msg,
3082                                         struct spi_transfer **xferp,
3083                                         size_t maxsize,
3084                                         gfp_t gfp)
3085 {
3086         struct spi_transfer *xfer = *xferp, *xfers;
3087         struct spi_replaced_transfers *srt;
3088         size_t offset;
3089         size_t count, i;
3090
3091         /* calculate how many we have to replace */
3092         count = DIV_ROUND_UP(xfer->len, maxsize);
3093
3094         /* create replacement */
3095         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3096         if (IS_ERR(srt))
3097                 return PTR_ERR(srt);
3098         xfers = srt->inserted_transfers;
3099
3100         /* now handle each of those newly inserted spi_transfers
3101          * note that the replacements spi_transfers all are preset
3102          * to the same values as *xferp, so tx_buf, rx_buf and len
3103          * are all identical (as well as most others)
3104          * so we just have to fix up len and the pointers.
3105          *
3106          * this also includes support for the depreciated
3107          * spi_message.is_dma_mapped interface
3108          */
3109
3110         /* the first transfer just needs the length modified, so we
3111          * run it outside the loop
3112          */
3113         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3114
3115         /* all the others need rx_buf/tx_buf also set */
3116         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3117                 /* update rx_buf, tx_buf and dma */
3118                 if (xfers[i].rx_buf)
3119                         xfers[i].rx_buf += offset;
3120                 if (xfers[i].rx_dma)
3121                         xfers[i].rx_dma += offset;
3122                 if (xfers[i].tx_buf)
3123                         xfers[i].tx_buf += offset;
3124                 if (xfers[i].tx_dma)
3125                         xfers[i].tx_dma += offset;
3126
3127                 /* update length */
3128                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3129         }
3130
3131         /* we set up xferp to the last entry we have inserted,
3132          * so that we skip those already split transfers
3133          */
3134         *xferp = &xfers[count - 1];
3135
3136         /* increment statistics counters */
3137         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3138                                        transfers_split_maxsize);
3139         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3140                                        transfers_split_maxsize);
3141
3142         return 0;
3143 }
3144
3145 /**
3146  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3147  *                              when an individual transfer exceeds a
3148  *                              certain size
3149  * @ctlr:    the @spi_controller for this transfer
3150  * @msg:   the @spi_message to transform
3151  * @maxsize:  the maximum when to apply this
3152  * @gfp: GFP allocation flags
3153  *
3154  * Return: status of transformation
3155  */
3156 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3157                                 struct spi_message *msg,
3158                                 size_t maxsize,
3159                                 gfp_t gfp)
3160 {
3161         struct spi_transfer *xfer;
3162         int ret;
3163
3164         /* iterate over the transfer_list,
3165          * but note that xfer is advanced to the last transfer inserted
3166          * to avoid checking sizes again unnecessarily (also xfer does
3167          * potentiall belong to a different list by the time the
3168          * replacement has happened
3169          */
3170         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3171                 if (xfer->len > maxsize) {
3172                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3173                                                            maxsize, gfp);
3174                         if (ret)
3175                                 return ret;
3176                 }
3177         }
3178
3179         return 0;
3180 }
3181 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3182
3183 /*-------------------------------------------------------------------------*/
3184
3185 /* Core methods for SPI controller protocol drivers.  Some of the
3186  * other core methods are currently defined as inline functions.
3187  */
3188
3189 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3190                                         u8 bits_per_word)
3191 {
3192         if (ctlr->bits_per_word_mask) {
3193                 /* Only 32 bits fit in the mask */
3194                 if (bits_per_word > 32)
3195                         return -EINVAL;
3196                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3197                         return -EINVAL;
3198         }
3199
3200         return 0;
3201 }
3202
3203 /**
3204  * spi_setup - setup SPI mode and clock rate
3205  * @spi: the device whose settings are being modified
3206  * Context: can sleep, and no requests are queued to the device
3207  *
3208  * SPI protocol drivers may need to update the transfer mode if the
3209  * device doesn't work with its default.  They may likewise need
3210  * to update clock rates or word sizes from initial values.  This function
3211  * changes those settings, and must be called from a context that can sleep.
3212  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3213  * effect the next time the device is selected and data is transferred to
3214  * or from it.  When this function returns, the spi device is deselected.
3215  *
3216  * Note that this call will fail if the protocol driver specifies an option
3217  * that the underlying controller or its driver does not support.  For
3218  * example, not all hardware supports wire transfers using nine bit words,
3219  * LSB-first wire encoding, or active-high chipselects.
3220  *
3221  * Return: zero on success, else a negative error code.
3222  */
3223 int spi_setup(struct spi_device *spi)
3224 {
3225         unsigned        bad_bits, ugly_bits;
3226         int             status;
3227
3228         /* check mode to prevent that DUAL and QUAD set at the same time
3229          */
3230         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3231                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3232                 dev_err(&spi->dev,
3233                 "setup: can not select dual and quad at the same time\n");
3234                 return -EINVAL;
3235         }
3236         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3237          */
3238         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3239                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3240                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3241                 return -EINVAL;
3242         /* help drivers fail *cleanly* when they need options
3243          * that aren't supported with their current controller
3244          * SPI_CS_WORD has a fallback software implementation,
3245          * so it is ignored here.
3246          */
3247         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3248         /* nothing prevents from working with active-high CS in case if it
3249          * is driven by GPIO.
3250          */
3251         if (gpio_is_valid(spi->cs_gpio))
3252                 bad_bits &= ~SPI_CS_HIGH;
3253         ugly_bits = bad_bits &
3254                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3255                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3256         if (ugly_bits) {
3257                 dev_warn(&spi->dev,
3258                          "setup: ignoring unsupported mode bits %x\n",
3259                          ugly_bits);
3260                 spi->mode &= ~ugly_bits;
3261                 bad_bits &= ~ugly_bits;
3262         }
3263         if (bad_bits) {
3264                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3265                         bad_bits);
3266                 return -EINVAL;
3267         }
3268
3269         if (!spi->bits_per_word)
3270                 spi->bits_per_word = 8;
3271
3272         status = __spi_validate_bits_per_word(spi->controller,
3273                                               spi->bits_per_word);
3274         if (status)
3275                 return status;
3276
3277         if (!spi->max_speed_hz)
3278                 spi->max_speed_hz = spi->controller->max_speed_hz;
3279
3280         if (spi->controller->setup)
3281                 status = spi->controller->setup(spi);
3282
3283         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3284                 status = pm_runtime_get_sync(spi->controller->dev.parent);
3285                 if (status < 0) {
3286                         pm_runtime_put_noidle(spi->controller->dev.parent);
3287                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3288                                 status);
3289                         return status;
3290                 }
3291
3292                 /*
3293                  * We do not want to return positive value from pm_runtime_get,
3294                  * there are many instances of devices calling spi_setup() and
3295                  * checking for a non-zero return value instead of a negative
3296                  * return value.
3297                  */
3298                 status = 0;
3299
3300                 spi_set_cs(spi, false);
3301                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3302                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3303         } else {
3304                 spi_set_cs(spi, false);
3305         }
3306
3307         if (spi->rt && !spi->controller->rt) {
3308                 spi->controller->rt = true;
3309                 spi_set_thread_rt(spi->controller);
3310         }
3311
3312         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3313                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3314                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3315                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3316                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3317                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3318                         spi->bits_per_word, spi->max_speed_hz,
3319                         status);
3320
3321         return status;
3322 }
3323 EXPORT_SYMBOL_GPL(spi_setup);
3324
3325 /**
3326  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3327  * @spi: the device that requires specific CS timing configuration
3328  * @setup: CS setup time specified via @spi_delay
3329  * @hold: CS hold time specified via @spi_delay
3330  * @inactive: CS inactive delay between transfers specified via @spi_delay
3331  *
3332  * Return: zero on success, else a negative error code.
3333  */
3334 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3335                       struct spi_delay *hold, struct spi_delay *inactive)
3336 {
3337         size_t len;
3338
3339         if (spi->controller->set_cs_timing)
3340                 return spi->controller->set_cs_timing(spi, setup, hold,
3341                                                       inactive);
3342
3343         if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3344             (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3345             (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3346                 dev_err(&spi->dev,
3347                         "Clock-cycle delays for CS not supported in SW mode\n");
3348                 return -ENOTSUPP;
3349         }
3350
3351         len = sizeof(struct spi_delay);
3352
3353         /* copy delays to controller */
3354         if (setup)
3355                 memcpy(&spi->controller->cs_setup, setup, len);
3356         else
3357                 memset(&spi->controller->cs_setup, 0, len);
3358
3359         if (hold)
3360                 memcpy(&spi->controller->cs_hold, hold, len);
3361         else
3362                 memset(&spi->controller->cs_hold, 0, len);
3363
3364         if (inactive)
3365                 memcpy(&spi->controller->cs_inactive, inactive, len);
3366         else
3367                 memset(&spi->controller->cs_inactive, 0, len);
3368
3369         return 0;
3370 }
3371 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3372
3373 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3374                                        struct spi_device *spi)
3375 {
3376         int delay1, delay2;
3377
3378         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3379         if (delay1 < 0)
3380                 return delay1;
3381
3382         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3383         if (delay2 < 0)
3384                 return delay2;
3385
3386         if (delay1 < delay2)
3387                 memcpy(&xfer->word_delay, &spi->word_delay,
3388                        sizeof(xfer->word_delay));
3389
3390         return 0;
3391 }
3392
3393 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3394 {
3395         struct spi_controller *ctlr = spi->controller;
3396         struct spi_transfer *xfer;
3397         int w_size;
3398
3399         if (list_empty(&message->transfers))
3400                 return -EINVAL;
3401
3402         /* If an SPI controller does not support toggling the CS line on each
3403          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3404          * for the CS line, we can emulate the CS-per-word hardware function by
3405          * splitting transfers into one-word transfers and ensuring that
3406          * cs_change is set for each transfer.
3407          */
3408         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3409                                           spi->cs_gpiod ||
3410                                           gpio_is_valid(spi->cs_gpio))) {
3411                 size_t maxsize;
3412                 int ret;
3413
3414                 maxsize = (spi->bits_per_word + 7) / 8;
3415
3416                 /* spi_split_transfers_maxsize() requires message->spi */
3417                 message->spi = spi;
3418
3419                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3420                                                   GFP_KERNEL);
3421                 if (ret)
3422                         return ret;
3423
3424                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3425                         /* don't change cs_change on the last entry in the list */
3426                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3427                                 break;
3428                         xfer->cs_change = 1;
3429                 }
3430         }
3431
3432         /* Half-duplex links include original MicroWire, and ones with
3433          * only one data pin like SPI_3WIRE (switches direction) or where
3434          * either MOSI or MISO is missing.  They can also be caused by
3435          * software limitations.
3436          */
3437         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3438             (spi->mode & SPI_3WIRE)) {
3439                 unsigned flags = ctlr->flags;
3440
3441                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3442                         if (xfer->rx_buf && xfer->tx_buf)
3443                                 return -EINVAL;
3444                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3445                                 return -EINVAL;
3446                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3447                                 return -EINVAL;
3448                 }
3449         }
3450
3451         /**
3452          * Set transfer bits_per_word and max speed as spi device default if
3453          * it is not set for this transfer.
3454          * Set transfer tx_nbits and rx_nbits as single transfer default
3455          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3456          * Ensure transfer word_delay is at least as long as that required by
3457          * device itself.
3458          */
3459         message->frame_length = 0;
3460         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3461                 xfer->effective_speed_hz = 0;
3462                 message->frame_length += xfer->len;
3463                 if (!xfer->bits_per_word)
3464                         xfer->bits_per_word = spi->bits_per_word;
3465
3466                 if (!xfer->speed_hz)
3467                         xfer->speed_hz = spi->max_speed_hz;
3468
3469                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3470                         xfer->speed_hz = ctlr->max_speed_hz;
3471
3472                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3473                         return -EINVAL;
3474
3475                 /*
3476                  * SPI transfer length should be multiple of SPI word size
3477                  * where SPI word size should be power-of-two multiple
3478                  */
3479                 if (xfer->bits_per_word <= 8)
3480                         w_size = 1;
3481                 else if (xfer->bits_per_word <= 16)
3482                         w_size = 2;
3483                 else
3484                         w_size = 4;
3485
3486                 /* No partial transfers accepted */
3487                 if (xfer->len % w_size)
3488                         return -EINVAL;
3489
3490                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3491                     xfer->speed_hz < ctlr->min_speed_hz)
3492                         return -EINVAL;
3493
3494                 if (xfer->tx_buf && !xfer->tx_nbits)
3495                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3496                 if (xfer->rx_buf && !xfer->rx_nbits)
3497                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3498                 /* check transfer tx/rx_nbits:
3499                  * 1. check the value matches one of single, dual and quad
3500                  * 2. check tx/rx_nbits match the mode in spi_device
3501                  */
3502                 if (xfer->tx_buf) {
3503                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3504                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3505                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3506                                 return -EINVAL;
3507                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3508                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3509                                 return -EINVAL;
3510                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3511                                 !(spi->mode & SPI_TX_QUAD))
3512                                 return -EINVAL;
3513                 }
3514                 /* check transfer rx_nbits */
3515                 if (xfer->rx_buf) {
3516                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3517                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3518                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3519                                 return -EINVAL;
3520                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3521                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3522                                 return -EINVAL;
3523                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3524                                 !(spi->mode & SPI_RX_QUAD))
3525                                 return -EINVAL;
3526                 }
3527
3528                 if (_spi_xfer_word_delay_update(xfer, spi))
3529                         return -EINVAL;
3530         }
3531
3532         message->status = -EINPROGRESS;
3533
3534         return 0;
3535 }
3536
3537 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3538 {
3539         struct spi_controller *ctlr = spi->controller;
3540         struct spi_transfer *xfer;
3541
3542         /*
3543          * Some controllers do not support doing regular SPI transfers. Return
3544          * ENOTSUPP when this is the case.
3545          */
3546         if (!ctlr->transfer)
3547                 return -ENOTSUPP;
3548
3549         message->spi = spi;
3550
3551         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3552         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3553
3554         trace_spi_message_submit(message);
3555
3556         if (!ctlr->ptp_sts_supported) {
3557                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3558                         xfer->ptp_sts_word_pre = 0;
3559                         ptp_read_system_prets(xfer->ptp_sts);
3560                 }
3561         }
3562
3563         return ctlr->transfer(spi, message);
3564 }
3565
3566 /**
3567  * spi_async - asynchronous SPI transfer
3568  * @spi: device with which data will be exchanged
3569  * @message: describes the data transfers, including completion callback
3570  * Context: any (irqs may be blocked, etc)
3571  *
3572  * This call may be used in_irq and other contexts which can't sleep,
3573  * as well as from task contexts which can sleep.
3574  *
3575  * The completion callback is invoked in a context which can't sleep.
3576  * Before that invocation, the value of message->status is undefined.
3577  * When the callback is issued, message->status holds either zero (to
3578  * indicate complete success) or a negative error code.  After that
3579  * callback returns, the driver which issued the transfer request may
3580  * deallocate the associated memory; it's no longer in use by any SPI
3581  * core or controller driver code.
3582  *
3583  * Note that although all messages to a spi_device are handled in
3584  * FIFO order, messages may go to different devices in other orders.
3585  * Some device might be higher priority, or have various "hard" access
3586  * time requirements, for example.
3587  *
3588  * On detection of any fault during the transfer, processing of
3589  * the entire message is aborted, and the device is deselected.
3590  * Until returning from the associated message completion callback,
3591  * no other spi_message queued to that device will be processed.
3592  * (This rule applies equally to all the synchronous transfer calls,
3593  * which are wrappers around this core asynchronous primitive.)
3594  *
3595  * Return: zero on success, else a negative error code.
3596  */
3597 int spi_async(struct spi_device *spi, struct spi_message *message)
3598 {
3599         struct spi_controller *ctlr = spi->controller;
3600         int ret;
3601         unsigned long flags;
3602
3603         ret = __spi_validate(spi, message);
3604         if (ret != 0)
3605                 return ret;
3606
3607         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3608
3609         if (ctlr->bus_lock_flag)
3610                 ret = -EBUSY;
3611         else
3612                 ret = __spi_async(spi, message);
3613
3614         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3615
3616         return ret;
3617 }
3618 EXPORT_SYMBOL_GPL(spi_async);
3619
3620 /**
3621  * spi_async_locked - version of spi_async with exclusive bus usage
3622  * @spi: device with which data will be exchanged
3623  * @message: describes the data transfers, including completion callback
3624  * Context: any (irqs may be blocked, etc)
3625  *
3626  * This call may be used in_irq and other contexts which can't sleep,
3627  * as well as from task contexts which can sleep.
3628  *
3629  * The completion callback is invoked in a context which can't sleep.
3630  * Before that invocation, the value of message->status is undefined.
3631  * When the callback is issued, message->status holds either zero (to
3632  * indicate complete success) or a negative error code.  After that
3633  * callback returns, the driver which issued the transfer request may
3634  * deallocate the associated memory; it's no longer in use by any SPI
3635  * core or controller driver code.
3636  *
3637  * Note that although all messages to a spi_device are handled in
3638  * FIFO order, messages may go to different devices in other orders.
3639  * Some device might be higher priority, or have various "hard" access
3640  * time requirements, for example.
3641  *
3642  * On detection of any fault during the transfer, processing of
3643  * the entire message is aborted, and the device is deselected.
3644  * Until returning from the associated message completion callback,
3645  * no other spi_message queued to that device will be processed.
3646  * (This rule applies equally to all the synchronous transfer calls,
3647  * which are wrappers around this core asynchronous primitive.)
3648  *
3649  * Return: zero on success, else a negative error code.
3650  */
3651 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3652 {
3653         struct spi_controller *ctlr = spi->controller;
3654         int ret;
3655         unsigned long flags;
3656
3657         ret = __spi_validate(spi, message);
3658         if (ret != 0)
3659                 return ret;
3660
3661         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3662
3663         ret = __spi_async(spi, message);
3664
3665         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3666
3667         return ret;
3668
3669 }
3670 EXPORT_SYMBOL_GPL(spi_async_locked);
3671
3672 /*-------------------------------------------------------------------------*/
3673
3674 /* Utility methods for SPI protocol drivers, layered on
3675  * top of the core.  Some other utility methods are defined as
3676  * inline functions.
3677  */
3678
3679 static void spi_complete(void *arg)
3680 {
3681         complete(arg);
3682 }
3683
3684 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3685 {
3686         DECLARE_COMPLETION_ONSTACK(done);
3687         int status;
3688         struct spi_controller *ctlr = spi->controller;
3689         unsigned long flags;
3690
3691         status = __spi_validate(spi, message);
3692         if (status != 0)
3693                 return status;
3694
3695         message->complete = spi_complete;
3696         message->context = &done;
3697         message->spi = spi;
3698
3699         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3700         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3701
3702         /* If we're not using the legacy transfer method then we will
3703          * try to transfer in the calling context so special case.
3704          * This code would be less tricky if we could remove the
3705          * support for driver implemented message queues.
3706          */
3707         if (ctlr->transfer == spi_queued_transfer) {
3708                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3709
3710                 trace_spi_message_submit(message);
3711
3712                 status = __spi_queued_transfer(spi, message, false);
3713
3714                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3715         } else {
3716                 status = spi_async_locked(spi, message);
3717         }
3718
3719         if (status == 0) {
3720                 /* Push out the messages in the calling context if we
3721                  * can.
3722                  */
3723                 if (ctlr->transfer == spi_queued_transfer) {
3724                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3725                                                        spi_sync_immediate);
3726                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3727                                                        spi_sync_immediate);
3728                         __spi_pump_messages(ctlr, false);
3729                 }
3730
3731                 wait_for_completion(&done);
3732                 status = message->status;
3733         }
3734         message->context = NULL;
3735         return status;
3736 }
3737
3738 /**
3739  * spi_sync - blocking/synchronous SPI data transfers
3740  * @spi: device with which data will be exchanged
3741  * @message: describes the data transfers
3742  * Context: can sleep
3743  *
3744  * This call may only be used from a context that may sleep.  The sleep
3745  * is non-interruptible, and has no timeout.  Low-overhead controller
3746  * drivers may DMA directly into and out of the message buffers.
3747  *
3748  * Note that the SPI device's chip select is active during the message,
3749  * and then is normally disabled between messages.  Drivers for some
3750  * frequently-used devices may want to minimize costs of selecting a chip,
3751  * by leaving it selected in anticipation that the next message will go
3752  * to the same chip.  (That may increase power usage.)
3753  *
3754  * Also, the caller is guaranteeing that the memory associated with the
3755  * message will not be freed before this call returns.
3756  *
3757  * Return: zero on success, else a negative error code.
3758  */
3759 int spi_sync(struct spi_device *spi, struct spi_message *message)
3760 {
3761         int ret;
3762
3763         mutex_lock(&spi->controller->bus_lock_mutex);
3764         ret = __spi_sync(spi, message);
3765         mutex_unlock(&spi->controller->bus_lock_mutex);
3766
3767         return ret;
3768 }
3769 EXPORT_SYMBOL_GPL(spi_sync);
3770
3771 /**
3772  * spi_sync_locked - version of spi_sync with exclusive bus usage
3773  * @spi: device with which data will be exchanged
3774  * @message: describes the data transfers
3775  * Context: can sleep
3776  *
3777  * This call may only be used from a context that may sleep.  The sleep
3778  * is non-interruptible, and has no timeout.  Low-overhead controller
3779  * drivers may DMA directly into and out of the message buffers.
3780  *
3781  * This call should be used by drivers that require exclusive access to the
3782  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3783  * be released by a spi_bus_unlock call when the exclusive access is over.
3784  *
3785  * Return: zero on success, else a negative error code.
3786  */
3787 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3788 {
3789         return __spi_sync(spi, message);
3790 }
3791 EXPORT_SYMBOL_GPL(spi_sync_locked);
3792
3793 /**
3794  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3795  * @ctlr: SPI bus master that should be locked for exclusive bus access
3796  * Context: can sleep
3797  *
3798  * This call may only be used from a context that may sleep.  The sleep
3799  * is non-interruptible, and has no timeout.
3800  *
3801  * This call should be used by drivers that require exclusive access to the
3802  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3803  * exclusive access is over. Data transfer must be done by spi_sync_locked
3804  * and spi_async_locked calls when the SPI bus lock is held.
3805  *
3806  * Return: always zero.
3807  */
3808 int spi_bus_lock(struct spi_controller *ctlr)
3809 {
3810         unsigned long flags;
3811
3812         mutex_lock(&ctlr->bus_lock_mutex);
3813
3814         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3815         ctlr->bus_lock_flag = 1;
3816         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3817
3818         /* mutex remains locked until spi_bus_unlock is called */
3819
3820         return 0;
3821 }
3822 EXPORT_SYMBOL_GPL(spi_bus_lock);
3823
3824 /**
3825  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3826  * @ctlr: SPI bus master that was locked for exclusive bus access
3827  * Context: can sleep
3828  *
3829  * This call may only be used from a context that may sleep.  The sleep
3830  * is non-interruptible, and has no timeout.
3831  *
3832  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3833  * call.
3834  *
3835  * Return: always zero.
3836  */
3837 int spi_bus_unlock(struct spi_controller *ctlr)
3838 {
3839         ctlr->bus_lock_flag = 0;
3840
3841         mutex_unlock(&ctlr->bus_lock_mutex);
3842
3843         return 0;
3844 }
3845 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3846
3847 /* portable code must never pass more than 32 bytes */
3848 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
3849
3850 static u8       *buf;
3851
3852 /**
3853  * spi_write_then_read - SPI synchronous write followed by read
3854  * @spi: device with which data will be exchanged
3855  * @txbuf: data to be written (need not be dma-safe)
3856  * @n_tx: size of txbuf, in bytes
3857  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3858  * @n_rx: size of rxbuf, in bytes
3859  * Context: can sleep
3860  *
3861  * This performs a half duplex MicroWire style transaction with the
3862  * device, sending txbuf and then reading rxbuf.  The return value
3863  * is zero for success, else a negative errno status code.
3864  * This call may only be used from a context that may sleep.
3865  *
3866  * Parameters to this routine are always copied using a small buffer;
3867  * portable code should never use this for more than 32 bytes.
3868  * Performance-sensitive or bulk transfer code should instead use
3869  * spi_{async,sync}() calls with dma-safe buffers.
3870  *
3871  * Return: zero on success, else a negative error code.
3872  */
3873 int spi_write_then_read(struct spi_device *spi,
3874                 const void *txbuf, unsigned n_tx,
3875                 void *rxbuf, unsigned n_rx)
3876 {
3877         static DEFINE_MUTEX(lock);
3878
3879         int                     status;
3880         struct spi_message      message;
3881         struct spi_transfer     x[2];
3882         u8                      *local_buf;
3883
3884         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3885          * copying here, (as a pure convenience thing), but we can
3886          * keep heap costs out of the hot path unless someone else is
3887          * using the pre-allocated buffer or the transfer is too large.
3888          */
3889         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3890                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3891                                     GFP_KERNEL | GFP_DMA);
3892                 if (!local_buf)
3893                         return -ENOMEM;
3894         } else {
3895                 local_buf = buf;
3896         }
3897
3898         spi_message_init(&message);
3899         memset(x, 0, sizeof(x));
3900         if (n_tx) {
3901                 x[0].len = n_tx;
3902                 spi_message_add_tail(&x[0], &message);
3903         }
3904         if (n_rx) {
3905                 x[1].len = n_rx;
3906                 spi_message_add_tail(&x[1], &message);
3907         }
3908
3909         memcpy(local_buf, txbuf, n_tx);
3910         x[0].tx_buf = local_buf;
3911         x[1].rx_buf = local_buf + n_tx;
3912
3913         /* do the i/o */
3914         status = spi_sync(spi, &message);
3915         if (status == 0)
3916                 memcpy(rxbuf, x[1].rx_buf, n_rx);
3917
3918         if (x[0].tx_buf == buf)
3919                 mutex_unlock(&lock);
3920         else
3921                 kfree(local_buf);
3922
3923         return status;
3924 }
3925 EXPORT_SYMBOL_GPL(spi_write_then_read);
3926
3927 /*-------------------------------------------------------------------------*/
3928
3929 #if IS_ENABLED(CONFIG_OF)
3930 /* must call put_device() when done with returned spi_device device */
3931 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3932 {
3933         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3934
3935         return dev ? to_spi_device(dev) : NULL;
3936 }
3937 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3938 #endif /* IS_ENABLED(CONFIG_OF) */
3939
3940 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3941 /* the spi controllers are not using spi_bus, so we find it with another way */
3942 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3943 {
3944         struct device *dev;
3945
3946         dev = class_find_device_by_of_node(&spi_master_class, node);
3947         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3948                 dev = class_find_device_by_of_node(&spi_slave_class, node);
3949         if (!dev)
3950                 return NULL;
3951
3952         /* reference got in class_find_device */
3953         return container_of(dev, struct spi_controller, dev);
3954 }
3955
3956 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3957                          void *arg)
3958 {
3959         struct of_reconfig_data *rd = arg;
3960         struct spi_controller *ctlr;
3961         struct spi_device *spi;
3962
3963         switch (of_reconfig_get_state_change(action, arg)) {
3964         case OF_RECONFIG_CHANGE_ADD:
3965                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3966                 if (ctlr == NULL)
3967                         return NOTIFY_OK;       /* not for us */
3968
3969                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3970                         put_device(&ctlr->dev);
3971                         return NOTIFY_OK;
3972                 }
3973
3974                 spi = of_register_spi_device(ctlr, rd->dn);
3975                 put_device(&ctlr->dev);
3976
3977                 if (IS_ERR(spi)) {
3978                         pr_err("%s: failed to create for '%pOF'\n",
3979                                         __func__, rd->dn);
3980                         of_node_clear_flag(rd->dn, OF_POPULATED);
3981                         return notifier_from_errno(PTR_ERR(spi));
3982                 }
3983                 break;
3984
3985         case OF_RECONFIG_CHANGE_REMOVE:
3986                 /* already depopulated? */
3987                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3988                         return NOTIFY_OK;
3989
3990                 /* find our device by node */
3991                 spi = of_find_spi_device_by_node(rd->dn);
3992                 if (spi == NULL)
3993                         return NOTIFY_OK;       /* no? not meant for us */
3994
3995                 /* unregister takes one ref away */
3996                 spi_unregister_device(spi);
3997
3998                 /* and put the reference of the find */
3999                 put_device(&spi->dev);
4000                 break;
4001         }
4002
4003         return NOTIFY_OK;
4004 }
4005
4006 static struct notifier_block spi_of_notifier = {
4007         .notifier_call = of_spi_notify,
4008 };
4009 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4010 extern struct notifier_block spi_of_notifier;
4011 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4012
4013 #if IS_ENABLED(CONFIG_ACPI)
4014 static int spi_acpi_controller_match(struct device *dev, const void *data)
4015 {
4016         return ACPI_COMPANION(dev->parent) == data;
4017 }
4018
4019 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4020 {
4021         struct device *dev;
4022
4023         dev = class_find_device(&spi_master_class, NULL, adev,
4024                                 spi_acpi_controller_match);
4025         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4026                 dev = class_find_device(&spi_slave_class, NULL, adev,
4027                                         spi_acpi_controller_match);
4028         if (!dev)
4029                 return NULL;
4030
4031         return container_of(dev, struct spi_controller, dev);
4032 }
4033
4034 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4035 {
4036         struct device *dev;
4037
4038         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4039         return dev ? to_spi_device(dev) : NULL;
4040 }
4041
4042 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4043                            void *arg)
4044 {
4045         struct acpi_device *adev = arg;
4046         struct spi_controller *ctlr;
4047         struct spi_device *spi;
4048
4049         switch (value) {
4050         case ACPI_RECONFIG_DEVICE_ADD:
4051                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4052                 if (!ctlr)
4053                         break;
4054
4055                 acpi_register_spi_device(ctlr, adev);
4056                 put_device(&ctlr->dev);
4057                 break;
4058         case ACPI_RECONFIG_DEVICE_REMOVE:
4059                 if (!acpi_device_enumerated(adev))
4060                         break;
4061
4062                 spi = acpi_spi_find_device_by_adev(adev);
4063                 if (!spi)
4064                         break;
4065
4066                 spi_unregister_device(spi);
4067                 put_device(&spi->dev);
4068                 break;
4069         }
4070
4071         return NOTIFY_OK;
4072 }
4073
4074 static struct notifier_block spi_acpi_notifier = {
4075         .notifier_call = acpi_spi_notify,
4076 };
4077 #else
4078 extern struct notifier_block spi_acpi_notifier;
4079 #endif
4080
4081 static int __init spi_init(void)
4082 {
4083         int     status;
4084
4085         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4086         if (!buf) {
4087                 status = -ENOMEM;
4088                 goto err0;
4089         }
4090
4091         status = bus_register(&spi_bus_type);
4092         if (status < 0)
4093                 goto err1;
4094
4095         status = class_register(&spi_master_class);
4096         if (status < 0)
4097                 goto err2;
4098
4099         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4100                 status = class_register(&spi_slave_class);
4101                 if (status < 0)
4102                         goto err3;
4103         }
4104
4105         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4106                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4107         if (IS_ENABLED(CONFIG_ACPI))
4108                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4109
4110         return 0;
4111
4112 err3:
4113         class_unregister(&spi_master_class);
4114 err2:
4115         bus_unregister(&spi_bus_type);
4116 err1:
4117         kfree(buf);
4118         buf = NULL;
4119 err0:
4120         return status;
4121 }
4122
4123 /* board_info is normally registered in arch_initcall(),
4124  * but even essential drivers wait till later
4125  *
4126  * REVISIT only boardinfo really needs static linking. the rest (device and
4127  * driver registration) _could_ be dynamically linked (modular) ... costs
4128  * include needing to have boardinfo data structures be much more public.
4129  */
4130 postcore_initcall(spi_init);