Merge branch 'for-4.19/wiimote' into for-linus
[linux-2.6-microblaze.git] / drivers / spi / spi.c
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/of_gpio.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/pm_domain.h>
35 #include <linux/property.h>
36 #include <linux/export.h>
37 #include <linux/sched/rt.h>
38 #include <uapi/linux/sched/types.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/ioport.h>
42 #include <linux/acpi.h>
43 #include <linux/highmem.h>
44 #include <linux/idr.h>
45 #include <linux/platform_data/x86/apple.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/spi.h>
49
50 #include "internals.h"
51
52 static DEFINE_IDR(spi_master_idr);
53
54 static void spidev_release(struct device *dev)
55 {
56         struct spi_device       *spi = to_spi_device(dev);
57
58         /* spi controllers may cleanup for released devices */
59         if (spi->controller->cleanup)
60                 spi->controller->cleanup(spi);
61
62         spi_controller_put(spi->controller);
63         kfree(spi);
64 }
65
66 static ssize_t
67 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
68 {
69         const struct spi_device *spi = to_spi_device(dev);
70         int len;
71
72         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
73         if (len != -ENODEV)
74                 return len;
75
76         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
77 }
78 static DEVICE_ATTR_RO(modalias);
79
80 #define SPI_STATISTICS_ATTRS(field, file)                               \
81 static ssize_t spi_controller_##field##_show(struct device *dev,        \
82                                              struct device_attribute *attr, \
83                                              char *buf)                 \
84 {                                                                       \
85         struct spi_controller *ctlr = container_of(dev,                 \
86                                          struct spi_controller, dev);   \
87         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
88 }                                                                       \
89 static struct device_attribute dev_attr_spi_controller_##field = {      \
90         .attr = { .name = file, .mode = 0444 },                         \
91         .show = spi_controller_##field##_show,                          \
92 };                                                                      \
93 static ssize_t spi_device_##field##_show(struct device *dev,            \
94                                          struct device_attribute *attr, \
95                                         char *buf)                      \
96 {                                                                       \
97         struct spi_device *spi = to_spi_device(dev);                    \
98         return spi_statistics_##field##_show(&spi->statistics, buf);    \
99 }                                                                       \
100 static struct device_attribute dev_attr_spi_device_##field = {          \
101         .attr = { .name = file, .mode = 0444 },                         \
102         .show = spi_device_##field##_show,                              \
103 }
104
105 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
106 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
107                                             char *buf)                  \
108 {                                                                       \
109         unsigned long flags;                                            \
110         ssize_t len;                                                    \
111         spin_lock_irqsave(&stat->lock, flags);                          \
112         len = sprintf(buf, format_string, stat->field);                 \
113         spin_unlock_irqrestore(&stat->lock, flags);                     \
114         return len;                                                     \
115 }                                                                       \
116 SPI_STATISTICS_ATTRS(name, file)
117
118 #define SPI_STATISTICS_SHOW(field, format_string)                       \
119         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
120                                  field, format_string)
121
122 SPI_STATISTICS_SHOW(messages, "%lu");
123 SPI_STATISTICS_SHOW(transfers, "%lu");
124 SPI_STATISTICS_SHOW(errors, "%lu");
125 SPI_STATISTICS_SHOW(timedout, "%lu");
126
127 SPI_STATISTICS_SHOW(spi_sync, "%lu");
128 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
129 SPI_STATISTICS_SHOW(spi_async, "%lu");
130
131 SPI_STATISTICS_SHOW(bytes, "%llu");
132 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
133 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
134
135 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
136         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
137                                  "transfer_bytes_histo_" number,        \
138                                  transfer_bytes_histo[index],  "%lu")
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
153 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
154 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
155 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
156
157 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
158
159 static struct attribute *spi_dev_attrs[] = {
160         &dev_attr_modalias.attr,
161         NULL,
162 };
163
164 static const struct attribute_group spi_dev_group = {
165         .attrs  = spi_dev_attrs,
166 };
167
168 static struct attribute *spi_device_statistics_attrs[] = {
169         &dev_attr_spi_device_messages.attr,
170         &dev_attr_spi_device_transfers.attr,
171         &dev_attr_spi_device_errors.attr,
172         &dev_attr_spi_device_timedout.attr,
173         &dev_attr_spi_device_spi_sync.attr,
174         &dev_attr_spi_device_spi_sync_immediate.attr,
175         &dev_attr_spi_device_spi_async.attr,
176         &dev_attr_spi_device_bytes.attr,
177         &dev_attr_spi_device_bytes_rx.attr,
178         &dev_attr_spi_device_bytes_tx.attr,
179         &dev_attr_spi_device_transfer_bytes_histo0.attr,
180         &dev_attr_spi_device_transfer_bytes_histo1.attr,
181         &dev_attr_spi_device_transfer_bytes_histo2.attr,
182         &dev_attr_spi_device_transfer_bytes_histo3.attr,
183         &dev_attr_spi_device_transfer_bytes_histo4.attr,
184         &dev_attr_spi_device_transfer_bytes_histo5.attr,
185         &dev_attr_spi_device_transfer_bytes_histo6.attr,
186         &dev_attr_spi_device_transfer_bytes_histo7.attr,
187         &dev_attr_spi_device_transfer_bytes_histo8.attr,
188         &dev_attr_spi_device_transfer_bytes_histo9.attr,
189         &dev_attr_spi_device_transfer_bytes_histo10.attr,
190         &dev_attr_spi_device_transfer_bytes_histo11.attr,
191         &dev_attr_spi_device_transfer_bytes_histo12.attr,
192         &dev_attr_spi_device_transfer_bytes_histo13.attr,
193         &dev_attr_spi_device_transfer_bytes_histo14.attr,
194         &dev_attr_spi_device_transfer_bytes_histo15.attr,
195         &dev_attr_spi_device_transfer_bytes_histo16.attr,
196         &dev_attr_spi_device_transfers_split_maxsize.attr,
197         NULL,
198 };
199
200 static const struct attribute_group spi_device_statistics_group = {
201         .name  = "statistics",
202         .attrs  = spi_device_statistics_attrs,
203 };
204
205 static const struct attribute_group *spi_dev_groups[] = {
206         &spi_dev_group,
207         &spi_device_statistics_group,
208         NULL,
209 };
210
211 static struct attribute *spi_controller_statistics_attrs[] = {
212         &dev_attr_spi_controller_messages.attr,
213         &dev_attr_spi_controller_transfers.attr,
214         &dev_attr_spi_controller_errors.attr,
215         &dev_attr_spi_controller_timedout.attr,
216         &dev_attr_spi_controller_spi_sync.attr,
217         &dev_attr_spi_controller_spi_sync_immediate.attr,
218         &dev_attr_spi_controller_spi_async.attr,
219         &dev_attr_spi_controller_bytes.attr,
220         &dev_attr_spi_controller_bytes_rx.attr,
221         &dev_attr_spi_controller_bytes_tx.attr,
222         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
223         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
224         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
225         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
226         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
227         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
228         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
229         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
230         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
231         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
232         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
233         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
234         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
235         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
236         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
237         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
238         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
239         &dev_attr_spi_controller_transfers_split_maxsize.attr,
240         NULL,
241 };
242
243 static const struct attribute_group spi_controller_statistics_group = {
244         .name  = "statistics",
245         .attrs  = spi_controller_statistics_attrs,
246 };
247
248 static const struct attribute_group *spi_master_groups[] = {
249         &spi_controller_statistics_group,
250         NULL,
251 };
252
253 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
254                                        struct spi_transfer *xfer,
255                                        struct spi_controller *ctlr)
256 {
257         unsigned long flags;
258         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
259
260         if (l2len < 0)
261                 l2len = 0;
262
263         spin_lock_irqsave(&stats->lock, flags);
264
265         stats->transfers++;
266         stats->transfer_bytes_histo[l2len]++;
267
268         stats->bytes += xfer->len;
269         if ((xfer->tx_buf) &&
270             (xfer->tx_buf != ctlr->dummy_tx))
271                 stats->bytes_tx += xfer->len;
272         if ((xfer->rx_buf) &&
273             (xfer->rx_buf != ctlr->dummy_rx))
274                 stats->bytes_rx += xfer->len;
275
276         spin_unlock_irqrestore(&stats->lock, flags);
277 }
278 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
279
280 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
281  * and the sysfs version makes coldplug work too.
282  */
283
284 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
285                                                 const struct spi_device *sdev)
286 {
287         while (id->name[0]) {
288                 if (!strcmp(sdev->modalias, id->name))
289                         return id;
290                 id++;
291         }
292         return NULL;
293 }
294
295 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
296 {
297         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
298
299         return spi_match_id(sdrv->id_table, sdev);
300 }
301 EXPORT_SYMBOL_GPL(spi_get_device_id);
302
303 static int spi_match_device(struct device *dev, struct device_driver *drv)
304 {
305         const struct spi_device *spi = to_spi_device(dev);
306         const struct spi_driver *sdrv = to_spi_driver(drv);
307
308         /* Attempt an OF style match */
309         if (of_driver_match_device(dev, drv))
310                 return 1;
311
312         /* Then try ACPI */
313         if (acpi_driver_match_device(dev, drv))
314                 return 1;
315
316         if (sdrv->id_table)
317                 return !!spi_match_id(sdrv->id_table, spi);
318
319         return strcmp(spi->modalias, drv->name) == 0;
320 }
321
322 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
323 {
324         const struct spi_device         *spi = to_spi_device(dev);
325         int rc;
326
327         rc = acpi_device_uevent_modalias(dev, env);
328         if (rc != -ENODEV)
329                 return rc;
330
331         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
332 }
333
334 struct bus_type spi_bus_type = {
335         .name           = "spi",
336         .dev_groups     = spi_dev_groups,
337         .match          = spi_match_device,
338         .uevent         = spi_uevent,
339 };
340 EXPORT_SYMBOL_GPL(spi_bus_type);
341
342
343 static int spi_drv_probe(struct device *dev)
344 {
345         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
346         struct spi_device               *spi = to_spi_device(dev);
347         int ret;
348
349         ret = of_clk_set_defaults(dev->of_node, false);
350         if (ret)
351                 return ret;
352
353         if (dev->of_node) {
354                 spi->irq = of_irq_get(dev->of_node, 0);
355                 if (spi->irq == -EPROBE_DEFER)
356                         return -EPROBE_DEFER;
357                 if (spi->irq < 0)
358                         spi->irq = 0;
359         }
360
361         ret = dev_pm_domain_attach(dev, true);
362         if (ret)
363                 return ret;
364
365         ret = sdrv->probe(spi);
366         if (ret)
367                 dev_pm_domain_detach(dev, true);
368
369         return ret;
370 }
371
372 static int spi_drv_remove(struct device *dev)
373 {
374         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
375         int ret;
376
377         ret = sdrv->remove(to_spi_device(dev));
378         dev_pm_domain_detach(dev, true);
379
380         return ret;
381 }
382
383 static void spi_drv_shutdown(struct device *dev)
384 {
385         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
386
387         sdrv->shutdown(to_spi_device(dev));
388 }
389
390 /**
391  * __spi_register_driver - register a SPI driver
392  * @owner: owner module of the driver to register
393  * @sdrv: the driver to register
394  * Context: can sleep
395  *
396  * Return: zero on success, else a negative error code.
397  */
398 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
399 {
400         sdrv->driver.owner = owner;
401         sdrv->driver.bus = &spi_bus_type;
402         if (sdrv->probe)
403                 sdrv->driver.probe = spi_drv_probe;
404         if (sdrv->remove)
405                 sdrv->driver.remove = spi_drv_remove;
406         if (sdrv->shutdown)
407                 sdrv->driver.shutdown = spi_drv_shutdown;
408         return driver_register(&sdrv->driver);
409 }
410 EXPORT_SYMBOL_GPL(__spi_register_driver);
411
412 /*-------------------------------------------------------------------------*/
413
414 /* SPI devices should normally not be created by SPI device drivers; that
415  * would make them board-specific.  Similarly with SPI controller drivers.
416  * Device registration normally goes into like arch/.../mach.../board-YYY.c
417  * with other readonly (flashable) information about mainboard devices.
418  */
419
420 struct boardinfo {
421         struct list_head        list;
422         struct spi_board_info   board_info;
423 };
424
425 static LIST_HEAD(board_list);
426 static LIST_HEAD(spi_controller_list);
427
428 /*
429  * Used to protect add/del opertion for board_info list and
430  * spi_controller list, and their matching process
431  * also used to protect object of type struct idr
432  */
433 static DEFINE_MUTEX(board_lock);
434
435 /**
436  * spi_alloc_device - Allocate a new SPI device
437  * @ctlr: Controller to which device is connected
438  * Context: can sleep
439  *
440  * Allows a driver to allocate and initialize a spi_device without
441  * registering it immediately.  This allows a driver to directly
442  * fill the spi_device with device parameters before calling
443  * spi_add_device() on it.
444  *
445  * Caller is responsible to call spi_add_device() on the returned
446  * spi_device structure to add it to the SPI controller.  If the caller
447  * needs to discard the spi_device without adding it, then it should
448  * call spi_dev_put() on it.
449  *
450  * Return: a pointer to the new device, or NULL.
451  */
452 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
453 {
454         struct spi_device       *spi;
455
456         if (!spi_controller_get(ctlr))
457                 return NULL;
458
459         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
460         if (!spi) {
461                 spi_controller_put(ctlr);
462                 return NULL;
463         }
464
465         spi->master = spi->controller = ctlr;
466         spi->dev.parent = &ctlr->dev;
467         spi->dev.bus = &spi_bus_type;
468         spi->dev.release = spidev_release;
469         spi->cs_gpio = -ENOENT;
470
471         spin_lock_init(&spi->statistics.lock);
472
473         device_initialize(&spi->dev);
474         return spi;
475 }
476 EXPORT_SYMBOL_GPL(spi_alloc_device);
477
478 static void spi_dev_set_name(struct spi_device *spi)
479 {
480         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
481
482         if (adev) {
483                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
484                 return;
485         }
486
487         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
488                      spi->chip_select);
489 }
490
491 static int spi_dev_check(struct device *dev, void *data)
492 {
493         struct spi_device *spi = to_spi_device(dev);
494         struct spi_device *new_spi = data;
495
496         if (spi->controller == new_spi->controller &&
497             spi->chip_select == new_spi->chip_select)
498                 return -EBUSY;
499         return 0;
500 }
501
502 /**
503  * spi_add_device - Add spi_device allocated with spi_alloc_device
504  * @spi: spi_device to register
505  *
506  * Companion function to spi_alloc_device.  Devices allocated with
507  * spi_alloc_device can be added onto the spi bus with this function.
508  *
509  * Return: 0 on success; negative errno on failure
510  */
511 int spi_add_device(struct spi_device *spi)
512 {
513         static DEFINE_MUTEX(spi_add_lock);
514         struct spi_controller *ctlr = spi->controller;
515         struct device *dev = ctlr->dev.parent;
516         int status;
517
518         /* Chipselects are numbered 0..max; validate. */
519         if (spi->chip_select >= ctlr->num_chipselect) {
520                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
521                         ctlr->num_chipselect);
522                 return -EINVAL;
523         }
524
525         /* Set the bus ID string */
526         spi_dev_set_name(spi);
527
528         /* We need to make sure there's no other device with this
529          * chipselect **BEFORE** we call setup(), else we'll trash
530          * its configuration.  Lock against concurrent add() calls.
531          */
532         mutex_lock(&spi_add_lock);
533
534         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
535         if (status) {
536                 dev_err(dev, "chipselect %d already in use\n",
537                                 spi->chip_select);
538                 goto done;
539         }
540
541         if (ctlr->cs_gpios)
542                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
543
544         /* Drivers may modify this initial i/o setup, but will
545          * normally rely on the device being setup.  Devices
546          * using SPI_CS_HIGH can't coexist well otherwise...
547          */
548         status = spi_setup(spi);
549         if (status < 0) {
550                 dev_err(dev, "can't setup %s, status %d\n",
551                                 dev_name(&spi->dev), status);
552                 goto done;
553         }
554
555         /* Device may be bound to an active driver when this returns */
556         status = device_add(&spi->dev);
557         if (status < 0)
558                 dev_err(dev, "can't add %s, status %d\n",
559                                 dev_name(&spi->dev), status);
560         else
561                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
562
563 done:
564         mutex_unlock(&spi_add_lock);
565         return status;
566 }
567 EXPORT_SYMBOL_GPL(spi_add_device);
568
569 /**
570  * spi_new_device - instantiate one new SPI device
571  * @ctlr: Controller to which device is connected
572  * @chip: Describes the SPI device
573  * Context: can sleep
574  *
575  * On typical mainboards, this is purely internal; and it's not needed
576  * after board init creates the hard-wired devices.  Some development
577  * platforms may not be able to use spi_register_board_info though, and
578  * this is exported so that for example a USB or parport based adapter
579  * driver could add devices (which it would learn about out-of-band).
580  *
581  * Return: the new device, or NULL.
582  */
583 struct spi_device *spi_new_device(struct spi_controller *ctlr,
584                                   struct spi_board_info *chip)
585 {
586         struct spi_device       *proxy;
587         int                     status;
588
589         /* NOTE:  caller did any chip->bus_num checks necessary.
590          *
591          * Also, unless we change the return value convention to use
592          * error-or-pointer (not NULL-or-pointer), troubleshootability
593          * suggests syslogged diagnostics are best here (ugh).
594          */
595
596         proxy = spi_alloc_device(ctlr);
597         if (!proxy)
598                 return NULL;
599
600         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
601
602         proxy->chip_select = chip->chip_select;
603         proxy->max_speed_hz = chip->max_speed_hz;
604         proxy->mode = chip->mode;
605         proxy->irq = chip->irq;
606         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
607         proxy->dev.platform_data = (void *) chip->platform_data;
608         proxy->controller_data = chip->controller_data;
609         proxy->controller_state = NULL;
610
611         if (chip->properties) {
612                 status = device_add_properties(&proxy->dev, chip->properties);
613                 if (status) {
614                         dev_err(&ctlr->dev,
615                                 "failed to add properties to '%s': %d\n",
616                                 chip->modalias, status);
617                         goto err_dev_put;
618                 }
619         }
620
621         status = spi_add_device(proxy);
622         if (status < 0)
623                 goto err_remove_props;
624
625         return proxy;
626
627 err_remove_props:
628         if (chip->properties)
629                 device_remove_properties(&proxy->dev);
630 err_dev_put:
631         spi_dev_put(proxy);
632         return NULL;
633 }
634 EXPORT_SYMBOL_GPL(spi_new_device);
635
636 /**
637  * spi_unregister_device - unregister a single SPI device
638  * @spi: spi_device to unregister
639  *
640  * Start making the passed SPI device vanish. Normally this would be handled
641  * by spi_unregister_controller().
642  */
643 void spi_unregister_device(struct spi_device *spi)
644 {
645         if (!spi)
646                 return;
647
648         if (spi->dev.of_node) {
649                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
650                 of_node_put(spi->dev.of_node);
651         }
652         if (ACPI_COMPANION(&spi->dev))
653                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
654         device_unregister(&spi->dev);
655 }
656 EXPORT_SYMBOL_GPL(spi_unregister_device);
657
658 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
659                                               struct spi_board_info *bi)
660 {
661         struct spi_device *dev;
662
663         if (ctlr->bus_num != bi->bus_num)
664                 return;
665
666         dev = spi_new_device(ctlr, bi);
667         if (!dev)
668                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
669                         bi->modalias);
670 }
671
672 /**
673  * spi_register_board_info - register SPI devices for a given board
674  * @info: array of chip descriptors
675  * @n: how many descriptors are provided
676  * Context: can sleep
677  *
678  * Board-specific early init code calls this (probably during arch_initcall)
679  * with segments of the SPI device table.  Any device nodes are created later,
680  * after the relevant parent SPI controller (bus_num) is defined.  We keep
681  * this table of devices forever, so that reloading a controller driver will
682  * not make Linux forget about these hard-wired devices.
683  *
684  * Other code can also call this, e.g. a particular add-on board might provide
685  * SPI devices through its expansion connector, so code initializing that board
686  * would naturally declare its SPI devices.
687  *
688  * The board info passed can safely be __initdata ... but be careful of
689  * any embedded pointers (platform_data, etc), they're copied as-is.
690  * Device properties are deep-copied though.
691  *
692  * Return: zero on success, else a negative error code.
693  */
694 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
695 {
696         struct boardinfo *bi;
697         int i;
698
699         if (!n)
700                 return 0;
701
702         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
703         if (!bi)
704                 return -ENOMEM;
705
706         for (i = 0; i < n; i++, bi++, info++) {
707                 struct spi_controller *ctlr;
708
709                 memcpy(&bi->board_info, info, sizeof(*info));
710                 if (info->properties) {
711                         bi->board_info.properties =
712                                         property_entries_dup(info->properties);
713                         if (IS_ERR(bi->board_info.properties))
714                                 return PTR_ERR(bi->board_info.properties);
715                 }
716
717                 mutex_lock(&board_lock);
718                 list_add_tail(&bi->list, &board_list);
719                 list_for_each_entry(ctlr, &spi_controller_list, list)
720                         spi_match_controller_to_boardinfo(ctlr,
721                                                           &bi->board_info);
722                 mutex_unlock(&board_lock);
723         }
724
725         return 0;
726 }
727
728 /*-------------------------------------------------------------------------*/
729
730 static void spi_set_cs(struct spi_device *spi, bool enable)
731 {
732         if (spi->mode & SPI_CS_HIGH)
733                 enable = !enable;
734
735         if (gpio_is_valid(spi->cs_gpio)) {
736                 gpio_set_value(spi->cs_gpio, !enable);
737                 /* Some SPI masters need both GPIO CS & slave_select */
738                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
739                     spi->controller->set_cs)
740                         spi->controller->set_cs(spi, !enable);
741         } else if (spi->controller->set_cs) {
742                 spi->controller->set_cs(spi, !enable);
743         }
744 }
745
746 #ifdef CONFIG_HAS_DMA
747 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
748                 struct sg_table *sgt, void *buf, size_t len,
749                 enum dma_data_direction dir)
750 {
751         const bool vmalloced_buf = is_vmalloc_addr(buf);
752         unsigned int max_seg_size = dma_get_max_seg_size(dev);
753 #ifdef CONFIG_HIGHMEM
754         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
755                                 (unsigned long)buf < (PKMAP_BASE +
756                                         (LAST_PKMAP * PAGE_SIZE)));
757 #else
758         const bool kmap_buf = false;
759 #endif
760         int desc_len;
761         int sgs;
762         struct page *vm_page;
763         struct scatterlist *sg;
764         void *sg_buf;
765         size_t min;
766         int i, ret;
767
768         if (vmalloced_buf || kmap_buf) {
769                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
770                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
771         } else if (virt_addr_valid(buf)) {
772                 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
773                 sgs = DIV_ROUND_UP(len, desc_len);
774         } else {
775                 return -EINVAL;
776         }
777
778         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
779         if (ret != 0)
780                 return ret;
781
782         sg = &sgt->sgl[0];
783         for (i = 0; i < sgs; i++) {
784
785                 if (vmalloced_buf || kmap_buf) {
786                         /*
787                          * Next scatterlist entry size is the minimum between
788                          * the desc_len and the remaining buffer length that
789                          * fits in a page.
790                          */
791                         min = min_t(size_t, desc_len,
792                                     min_t(size_t, len,
793                                           PAGE_SIZE - offset_in_page(buf)));
794                         if (vmalloced_buf)
795                                 vm_page = vmalloc_to_page(buf);
796                         else
797                                 vm_page = kmap_to_page(buf);
798                         if (!vm_page) {
799                                 sg_free_table(sgt);
800                                 return -ENOMEM;
801                         }
802                         sg_set_page(sg, vm_page,
803                                     min, offset_in_page(buf));
804                 } else {
805                         min = min_t(size_t, len, desc_len);
806                         sg_buf = buf;
807                         sg_set_buf(sg, sg_buf, min);
808                 }
809
810                 buf += min;
811                 len -= min;
812                 sg = sg_next(sg);
813         }
814
815         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
816         if (!ret)
817                 ret = -ENOMEM;
818         if (ret < 0) {
819                 sg_free_table(sgt);
820                 return ret;
821         }
822
823         sgt->nents = ret;
824
825         return 0;
826 }
827
828 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
829                    struct sg_table *sgt, enum dma_data_direction dir)
830 {
831         if (sgt->orig_nents) {
832                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
833                 sg_free_table(sgt);
834         }
835 }
836
837 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
838 {
839         struct device *tx_dev, *rx_dev;
840         struct spi_transfer *xfer;
841         int ret;
842
843         if (!ctlr->can_dma)
844                 return 0;
845
846         if (ctlr->dma_tx)
847                 tx_dev = ctlr->dma_tx->device->dev;
848         else
849                 tx_dev = ctlr->dev.parent;
850
851         if (ctlr->dma_rx)
852                 rx_dev = ctlr->dma_rx->device->dev;
853         else
854                 rx_dev = ctlr->dev.parent;
855
856         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
857                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
858                         continue;
859
860                 if (xfer->tx_buf != NULL) {
861                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
862                                           (void *)xfer->tx_buf, xfer->len,
863                                           DMA_TO_DEVICE);
864                         if (ret != 0)
865                                 return ret;
866                 }
867
868                 if (xfer->rx_buf != NULL) {
869                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
870                                           xfer->rx_buf, xfer->len,
871                                           DMA_FROM_DEVICE);
872                         if (ret != 0) {
873                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
874                                               DMA_TO_DEVICE);
875                                 return ret;
876                         }
877                 }
878         }
879
880         ctlr->cur_msg_mapped = true;
881
882         return 0;
883 }
884
885 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
886 {
887         struct spi_transfer *xfer;
888         struct device *tx_dev, *rx_dev;
889
890         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
891                 return 0;
892
893         if (ctlr->dma_tx)
894                 tx_dev = ctlr->dma_tx->device->dev;
895         else
896                 tx_dev = ctlr->dev.parent;
897
898         if (ctlr->dma_rx)
899                 rx_dev = ctlr->dma_rx->device->dev;
900         else
901                 rx_dev = ctlr->dev.parent;
902
903         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
904                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
905                         continue;
906
907                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
908                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
909         }
910
911         return 0;
912 }
913 #else /* !CONFIG_HAS_DMA */
914 static inline int __spi_map_msg(struct spi_controller *ctlr,
915                                 struct spi_message *msg)
916 {
917         return 0;
918 }
919
920 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
921                                   struct spi_message *msg)
922 {
923         return 0;
924 }
925 #endif /* !CONFIG_HAS_DMA */
926
927 static inline int spi_unmap_msg(struct spi_controller *ctlr,
928                                 struct spi_message *msg)
929 {
930         struct spi_transfer *xfer;
931
932         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
933                 /*
934                  * Restore the original value of tx_buf or rx_buf if they are
935                  * NULL.
936                  */
937                 if (xfer->tx_buf == ctlr->dummy_tx)
938                         xfer->tx_buf = NULL;
939                 if (xfer->rx_buf == ctlr->dummy_rx)
940                         xfer->rx_buf = NULL;
941         }
942
943         return __spi_unmap_msg(ctlr, msg);
944 }
945
946 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
947 {
948         struct spi_transfer *xfer;
949         void *tmp;
950         unsigned int max_tx, max_rx;
951
952         if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
953                 max_tx = 0;
954                 max_rx = 0;
955
956                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
957                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
958                             !xfer->tx_buf)
959                                 max_tx = max(xfer->len, max_tx);
960                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
961                             !xfer->rx_buf)
962                                 max_rx = max(xfer->len, max_rx);
963                 }
964
965                 if (max_tx) {
966                         tmp = krealloc(ctlr->dummy_tx, max_tx,
967                                        GFP_KERNEL | GFP_DMA);
968                         if (!tmp)
969                                 return -ENOMEM;
970                         ctlr->dummy_tx = tmp;
971                         memset(tmp, 0, max_tx);
972                 }
973
974                 if (max_rx) {
975                         tmp = krealloc(ctlr->dummy_rx, max_rx,
976                                        GFP_KERNEL | GFP_DMA);
977                         if (!tmp)
978                                 return -ENOMEM;
979                         ctlr->dummy_rx = tmp;
980                 }
981
982                 if (max_tx || max_rx) {
983                         list_for_each_entry(xfer, &msg->transfers,
984                                             transfer_list) {
985                                 if (!xfer->tx_buf)
986                                         xfer->tx_buf = ctlr->dummy_tx;
987                                 if (!xfer->rx_buf)
988                                         xfer->rx_buf = ctlr->dummy_rx;
989                         }
990                 }
991         }
992
993         return __spi_map_msg(ctlr, msg);
994 }
995
996 /*
997  * spi_transfer_one_message - Default implementation of transfer_one_message()
998  *
999  * This is a standard implementation of transfer_one_message() for
1000  * drivers which implement a transfer_one() operation.  It provides
1001  * standard handling of delays and chip select management.
1002  */
1003 static int spi_transfer_one_message(struct spi_controller *ctlr,
1004                                     struct spi_message *msg)
1005 {
1006         struct spi_transfer *xfer;
1007         bool keep_cs = false;
1008         int ret = 0;
1009         unsigned long long ms = 1;
1010         struct spi_statistics *statm = &ctlr->statistics;
1011         struct spi_statistics *stats = &msg->spi->statistics;
1012
1013         spi_set_cs(msg->spi, true);
1014
1015         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1016         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1017
1018         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1019                 trace_spi_transfer_start(msg, xfer);
1020
1021                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1022                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1023
1024                 if (xfer->tx_buf || xfer->rx_buf) {
1025                         reinit_completion(&ctlr->xfer_completion);
1026
1027                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1028                         if (ret < 0) {
1029                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1030                                                                errors);
1031                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1032                                                                errors);
1033                                 dev_err(&msg->spi->dev,
1034                                         "SPI transfer failed: %d\n", ret);
1035                                 goto out;
1036                         }
1037
1038                         if (ret > 0) {
1039                                 ret = 0;
1040                                 ms = 8LL * 1000LL * xfer->len;
1041                                 do_div(ms, xfer->speed_hz);
1042                                 ms += ms + 200; /* some tolerance */
1043
1044                                 if (ms > UINT_MAX)
1045                                         ms = UINT_MAX;
1046
1047                                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1048                                                                  msecs_to_jiffies(ms));
1049                         }
1050
1051                         if (ms == 0) {
1052                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1053                                                                timedout);
1054                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1055                                                                timedout);
1056                                 dev_err(&msg->spi->dev,
1057                                         "SPI transfer timed out\n");
1058                                 msg->status = -ETIMEDOUT;
1059                         }
1060                 } else {
1061                         if (xfer->len)
1062                                 dev_err(&msg->spi->dev,
1063                                         "Bufferless transfer has length %u\n",
1064                                         xfer->len);
1065                 }
1066
1067                 trace_spi_transfer_stop(msg, xfer);
1068
1069                 if (msg->status != -EINPROGRESS)
1070                         goto out;
1071
1072                 if (xfer->delay_usecs) {
1073                         u16 us = xfer->delay_usecs;
1074
1075                         if (us <= 10)
1076                                 udelay(us);
1077                         else
1078                                 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1079                 }
1080
1081                 if (xfer->cs_change) {
1082                         if (list_is_last(&xfer->transfer_list,
1083                                          &msg->transfers)) {
1084                                 keep_cs = true;
1085                         } else {
1086                                 spi_set_cs(msg->spi, false);
1087                                 udelay(10);
1088                                 spi_set_cs(msg->spi, true);
1089                         }
1090                 }
1091
1092                 msg->actual_length += xfer->len;
1093         }
1094
1095 out:
1096         if (ret != 0 || !keep_cs)
1097                 spi_set_cs(msg->spi, false);
1098
1099         if (msg->status == -EINPROGRESS)
1100                 msg->status = ret;
1101
1102         if (msg->status && ctlr->handle_err)
1103                 ctlr->handle_err(ctlr, msg);
1104
1105         spi_res_release(ctlr, msg);
1106
1107         spi_finalize_current_message(ctlr);
1108
1109         return ret;
1110 }
1111
1112 /**
1113  * spi_finalize_current_transfer - report completion of a transfer
1114  * @ctlr: the controller reporting completion
1115  *
1116  * Called by SPI drivers using the core transfer_one_message()
1117  * implementation to notify it that the current interrupt driven
1118  * transfer has finished and the next one may be scheduled.
1119  */
1120 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1121 {
1122         complete(&ctlr->xfer_completion);
1123 }
1124 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1125
1126 /**
1127  * __spi_pump_messages - function which processes spi message queue
1128  * @ctlr: controller to process queue for
1129  * @in_kthread: true if we are in the context of the message pump thread
1130  *
1131  * This function checks if there is any spi message in the queue that
1132  * needs processing and if so call out to the driver to initialize hardware
1133  * and transfer each message.
1134  *
1135  * Note that it is called both from the kthread itself and also from
1136  * inside spi_sync(); the queue extraction handling at the top of the
1137  * function should deal with this safely.
1138  */
1139 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1140 {
1141         unsigned long flags;
1142         bool was_busy = false;
1143         int ret;
1144
1145         /* Lock queue */
1146         spin_lock_irqsave(&ctlr->queue_lock, flags);
1147
1148         /* Make sure we are not already running a message */
1149         if (ctlr->cur_msg) {
1150                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1151                 return;
1152         }
1153
1154         /* If another context is idling the device then defer */
1155         if (ctlr->idling) {
1156                 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1157                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1158                 return;
1159         }
1160
1161         /* Check if the queue is idle */
1162         if (list_empty(&ctlr->queue) || !ctlr->running) {
1163                 if (!ctlr->busy) {
1164                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1165                         return;
1166                 }
1167
1168                 /* Only do teardown in the thread */
1169                 if (!in_kthread) {
1170                         kthread_queue_work(&ctlr->kworker,
1171                                            &ctlr->pump_messages);
1172                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1173                         return;
1174                 }
1175
1176                 ctlr->busy = false;
1177                 ctlr->idling = true;
1178                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1179
1180                 kfree(ctlr->dummy_rx);
1181                 ctlr->dummy_rx = NULL;
1182                 kfree(ctlr->dummy_tx);
1183                 ctlr->dummy_tx = NULL;
1184                 if (ctlr->unprepare_transfer_hardware &&
1185                     ctlr->unprepare_transfer_hardware(ctlr))
1186                         dev_err(&ctlr->dev,
1187                                 "failed to unprepare transfer hardware\n");
1188                 if (ctlr->auto_runtime_pm) {
1189                         pm_runtime_mark_last_busy(ctlr->dev.parent);
1190                         pm_runtime_put_autosuspend(ctlr->dev.parent);
1191                 }
1192                 trace_spi_controller_idle(ctlr);
1193
1194                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1195                 ctlr->idling = false;
1196                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1197                 return;
1198         }
1199
1200         /* Extract head of queue */
1201         ctlr->cur_msg =
1202                 list_first_entry(&ctlr->queue, struct spi_message, queue);
1203
1204         list_del_init(&ctlr->cur_msg->queue);
1205         if (ctlr->busy)
1206                 was_busy = true;
1207         else
1208                 ctlr->busy = true;
1209         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1210
1211         mutex_lock(&ctlr->io_mutex);
1212
1213         if (!was_busy && ctlr->auto_runtime_pm) {
1214                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1215                 if (ret < 0) {
1216                         pm_runtime_put_noidle(ctlr->dev.parent);
1217                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1218                                 ret);
1219                         mutex_unlock(&ctlr->io_mutex);
1220                         return;
1221                 }
1222         }
1223
1224         if (!was_busy)
1225                 trace_spi_controller_busy(ctlr);
1226
1227         if (!was_busy && ctlr->prepare_transfer_hardware) {
1228                 ret = ctlr->prepare_transfer_hardware(ctlr);
1229                 if (ret) {
1230                         dev_err(&ctlr->dev,
1231                                 "failed to prepare transfer hardware\n");
1232
1233                         if (ctlr->auto_runtime_pm)
1234                                 pm_runtime_put(ctlr->dev.parent);
1235                         mutex_unlock(&ctlr->io_mutex);
1236                         return;
1237                 }
1238         }
1239
1240         trace_spi_message_start(ctlr->cur_msg);
1241
1242         if (ctlr->prepare_message) {
1243                 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1244                 if (ret) {
1245                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1246                                 ret);
1247                         ctlr->cur_msg->status = ret;
1248                         spi_finalize_current_message(ctlr);
1249                         goto out;
1250                 }
1251                 ctlr->cur_msg_prepared = true;
1252         }
1253
1254         ret = spi_map_msg(ctlr, ctlr->cur_msg);
1255         if (ret) {
1256                 ctlr->cur_msg->status = ret;
1257                 spi_finalize_current_message(ctlr);
1258                 goto out;
1259         }
1260
1261         ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1262         if (ret) {
1263                 dev_err(&ctlr->dev,
1264                         "failed to transfer one message from queue\n");
1265                 goto out;
1266         }
1267
1268 out:
1269         mutex_unlock(&ctlr->io_mutex);
1270
1271         /* Prod the scheduler in case transfer_one() was busy waiting */
1272         if (!ret)
1273                 cond_resched();
1274 }
1275
1276 /**
1277  * spi_pump_messages - kthread work function which processes spi message queue
1278  * @work: pointer to kthread work struct contained in the controller struct
1279  */
1280 static void spi_pump_messages(struct kthread_work *work)
1281 {
1282         struct spi_controller *ctlr =
1283                 container_of(work, struct spi_controller, pump_messages);
1284
1285         __spi_pump_messages(ctlr, true);
1286 }
1287
1288 static int spi_init_queue(struct spi_controller *ctlr)
1289 {
1290         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1291
1292         ctlr->running = false;
1293         ctlr->busy = false;
1294
1295         kthread_init_worker(&ctlr->kworker);
1296         ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1297                                          "%s", dev_name(&ctlr->dev));
1298         if (IS_ERR(ctlr->kworker_task)) {
1299                 dev_err(&ctlr->dev, "failed to create message pump task\n");
1300                 return PTR_ERR(ctlr->kworker_task);
1301         }
1302         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1303
1304         /*
1305          * Controller config will indicate if this controller should run the
1306          * message pump with high (realtime) priority to reduce the transfer
1307          * latency on the bus by minimising the delay between a transfer
1308          * request and the scheduling of the message pump thread. Without this
1309          * setting the message pump thread will remain at default priority.
1310          */
1311         if (ctlr->rt) {
1312                 dev_info(&ctlr->dev,
1313                         "will run message pump with realtime priority\n");
1314                 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1315         }
1316
1317         return 0;
1318 }
1319
1320 /**
1321  * spi_get_next_queued_message() - called by driver to check for queued
1322  * messages
1323  * @ctlr: the controller to check for queued messages
1324  *
1325  * If there are more messages in the queue, the next message is returned from
1326  * this call.
1327  *
1328  * Return: the next message in the queue, else NULL if the queue is empty.
1329  */
1330 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1331 {
1332         struct spi_message *next;
1333         unsigned long flags;
1334
1335         /* get a pointer to the next message, if any */
1336         spin_lock_irqsave(&ctlr->queue_lock, flags);
1337         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1338                                         queue);
1339         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1340
1341         return next;
1342 }
1343 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1344
1345 /**
1346  * spi_finalize_current_message() - the current message is complete
1347  * @ctlr: the controller to return the message to
1348  *
1349  * Called by the driver to notify the core that the message in the front of the
1350  * queue is complete and can be removed from the queue.
1351  */
1352 void spi_finalize_current_message(struct spi_controller *ctlr)
1353 {
1354         struct spi_message *mesg;
1355         unsigned long flags;
1356         int ret;
1357
1358         spin_lock_irqsave(&ctlr->queue_lock, flags);
1359         mesg = ctlr->cur_msg;
1360         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1361
1362         spi_unmap_msg(ctlr, mesg);
1363
1364         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1365                 ret = ctlr->unprepare_message(ctlr, mesg);
1366                 if (ret) {
1367                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1368                                 ret);
1369                 }
1370         }
1371
1372         spin_lock_irqsave(&ctlr->queue_lock, flags);
1373         ctlr->cur_msg = NULL;
1374         ctlr->cur_msg_prepared = false;
1375         kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1376         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1377
1378         trace_spi_message_done(mesg);
1379
1380         mesg->state = NULL;
1381         if (mesg->complete)
1382                 mesg->complete(mesg->context);
1383 }
1384 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1385
1386 static int spi_start_queue(struct spi_controller *ctlr)
1387 {
1388         unsigned long flags;
1389
1390         spin_lock_irqsave(&ctlr->queue_lock, flags);
1391
1392         if (ctlr->running || ctlr->busy) {
1393                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1394                 return -EBUSY;
1395         }
1396
1397         ctlr->running = true;
1398         ctlr->cur_msg = NULL;
1399         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1400
1401         kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1402
1403         return 0;
1404 }
1405
1406 static int spi_stop_queue(struct spi_controller *ctlr)
1407 {
1408         unsigned long flags;
1409         unsigned limit = 500;
1410         int ret = 0;
1411
1412         spin_lock_irqsave(&ctlr->queue_lock, flags);
1413
1414         /*
1415          * This is a bit lame, but is optimized for the common execution path.
1416          * A wait_queue on the ctlr->busy could be used, but then the common
1417          * execution path (pump_messages) would be required to call wake_up or
1418          * friends on every SPI message. Do this instead.
1419          */
1420         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1421                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1422                 usleep_range(10000, 11000);
1423                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1424         }
1425
1426         if (!list_empty(&ctlr->queue) || ctlr->busy)
1427                 ret = -EBUSY;
1428         else
1429                 ctlr->running = false;
1430
1431         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1432
1433         if (ret) {
1434                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1435                 return ret;
1436         }
1437         return ret;
1438 }
1439
1440 static int spi_destroy_queue(struct spi_controller *ctlr)
1441 {
1442         int ret;
1443
1444         ret = spi_stop_queue(ctlr);
1445
1446         /*
1447          * kthread_flush_worker will block until all work is done.
1448          * If the reason that stop_queue timed out is that the work will never
1449          * finish, then it does no good to call flush/stop thread, so
1450          * return anyway.
1451          */
1452         if (ret) {
1453                 dev_err(&ctlr->dev, "problem destroying queue\n");
1454                 return ret;
1455         }
1456
1457         kthread_flush_worker(&ctlr->kworker);
1458         kthread_stop(ctlr->kworker_task);
1459
1460         return 0;
1461 }
1462
1463 static int __spi_queued_transfer(struct spi_device *spi,
1464                                  struct spi_message *msg,
1465                                  bool need_pump)
1466 {
1467         struct spi_controller *ctlr = spi->controller;
1468         unsigned long flags;
1469
1470         spin_lock_irqsave(&ctlr->queue_lock, flags);
1471
1472         if (!ctlr->running) {
1473                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1474                 return -ESHUTDOWN;
1475         }
1476         msg->actual_length = 0;
1477         msg->status = -EINPROGRESS;
1478
1479         list_add_tail(&msg->queue, &ctlr->queue);
1480         if (!ctlr->busy && need_pump)
1481                 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1482
1483         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1484         return 0;
1485 }
1486
1487 /**
1488  * spi_queued_transfer - transfer function for queued transfers
1489  * @spi: spi device which is requesting transfer
1490  * @msg: spi message which is to handled is queued to driver queue
1491  *
1492  * Return: zero on success, else a negative error code.
1493  */
1494 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1495 {
1496         return __spi_queued_transfer(spi, msg, true);
1497 }
1498
1499 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1500 {
1501         int ret;
1502
1503         ctlr->transfer = spi_queued_transfer;
1504         if (!ctlr->transfer_one_message)
1505                 ctlr->transfer_one_message = spi_transfer_one_message;
1506
1507         /* Initialize and start queue */
1508         ret = spi_init_queue(ctlr);
1509         if (ret) {
1510                 dev_err(&ctlr->dev, "problem initializing queue\n");
1511                 goto err_init_queue;
1512         }
1513         ctlr->queued = true;
1514         ret = spi_start_queue(ctlr);
1515         if (ret) {
1516                 dev_err(&ctlr->dev, "problem starting queue\n");
1517                 goto err_start_queue;
1518         }
1519
1520         return 0;
1521
1522 err_start_queue:
1523         spi_destroy_queue(ctlr);
1524 err_init_queue:
1525         return ret;
1526 }
1527
1528 /**
1529  * spi_flush_queue - Send all pending messages in the queue from the callers'
1530  *                   context
1531  * @ctlr: controller to process queue for
1532  *
1533  * This should be used when one wants to ensure all pending messages have been
1534  * sent before doing something. Is used by the spi-mem code to make sure SPI
1535  * memory operations do not preempt regular SPI transfers that have been queued
1536  * before the spi-mem operation.
1537  */
1538 void spi_flush_queue(struct spi_controller *ctlr)
1539 {
1540         if (ctlr->transfer == spi_queued_transfer)
1541                 __spi_pump_messages(ctlr, false);
1542 }
1543
1544 /*-------------------------------------------------------------------------*/
1545
1546 #if defined(CONFIG_OF)
1547 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1548                            struct device_node *nc)
1549 {
1550         u32 value;
1551         int rc;
1552
1553         /* Mode (clock phase/polarity/etc.) */
1554         if (of_property_read_bool(nc, "spi-cpha"))
1555                 spi->mode |= SPI_CPHA;
1556         if (of_property_read_bool(nc, "spi-cpol"))
1557                 spi->mode |= SPI_CPOL;
1558         if (of_property_read_bool(nc, "spi-cs-high"))
1559                 spi->mode |= SPI_CS_HIGH;
1560         if (of_property_read_bool(nc, "spi-3wire"))
1561                 spi->mode |= SPI_3WIRE;
1562         if (of_property_read_bool(nc, "spi-lsb-first"))
1563                 spi->mode |= SPI_LSB_FIRST;
1564
1565         /* Device DUAL/QUAD mode */
1566         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1567                 switch (value) {
1568                 case 1:
1569                         break;
1570                 case 2:
1571                         spi->mode |= SPI_TX_DUAL;
1572                         break;
1573                 case 4:
1574                         spi->mode |= SPI_TX_QUAD;
1575                         break;
1576                 default:
1577                         dev_warn(&ctlr->dev,
1578                                 "spi-tx-bus-width %d not supported\n",
1579                                 value);
1580                         break;
1581                 }
1582         }
1583
1584         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1585                 switch (value) {
1586                 case 1:
1587                         break;
1588                 case 2:
1589                         spi->mode |= SPI_RX_DUAL;
1590                         break;
1591                 case 4:
1592                         spi->mode |= SPI_RX_QUAD;
1593                         break;
1594                 default:
1595                         dev_warn(&ctlr->dev,
1596                                 "spi-rx-bus-width %d not supported\n",
1597                                 value);
1598                         break;
1599                 }
1600         }
1601
1602         if (spi_controller_is_slave(ctlr)) {
1603                 if (strcmp(nc->name, "slave")) {
1604                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1605                                 nc);
1606                         return -EINVAL;
1607                 }
1608                 return 0;
1609         }
1610
1611         /* Device address */
1612         rc = of_property_read_u32(nc, "reg", &value);
1613         if (rc) {
1614                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1615                         nc, rc);
1616                 return rc;
1617         }
1618         spi->chip_select = value;
1619
1620         /* Device speed */
1621         rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1622         if (rc) {
1623                 dev_err(&ctlr->dev,
1624                         "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1625                 return rc;
1626         }
1627         spi->max_speed_hz = value;
1628
1629         return 0;
1630 }
1631
1632 static struct spi_device *
1633 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1634 {
1635         struct spi_device *spi;
1636         int rc;
1637
1638         /* Alloc an spi_device */
1639         spi = spi_alloc_device(ctlr);
1640         if (!spi) {
1641                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1642                 rc = -ENOMEM;
1643                 goto err_out;
1644         }
1645
1646         /* Select device driver */
1647         rc = of_modalias_node(nc, spi->modalias,
1648                                 sizeof(spi->modalias));
1649         if (rc < 0) {
1650                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1651                 goto err_out;
1652         }
1653
1654         rc = of_spi_parse_dt(ctlr, spi, nc);
1655         if (rc)
1656                 goto err_out;
1657
1658         /* Store a pointer to the node in the device structure */
1659         of_node_get(nc);
1660         spi->dev.of_node = nc;
1661
1662         /* Register the new device */
1663         rc = spi_add_device(spi);
1664         if (rc) {
1665                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1666                 goto err_of_node_put;
1667         }
1668
1669         return spi;
1670
1671 err_of_node_put:
1672         of_node_put(nc);
1673 err_out:
1674         spi_dev_put(spi);
1675         return ERR_PTR(rc);
1676 }
1677
1678 /**
1679  * of_register_spi_devices() - Register child devices onto the SPI bus
1680  * @ctlr:       Pointer to spi_controller device
1681  *
1682  * Registers an spi_device for each child node of controller node which
1683  * represents a valid SPI slave.
1684  */
1685 static void of_register_spi_devices(struct spi_controller *ctlr)
1686 {
1687         struct spi_device *spi;
1688         struct device_node *nc;
1689
1690         if (!ctlr->dev.of_node)
1691                 return;
1692
1693         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1694                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1695                         continue;
1696                 spi = of_register_spi_device(ctlr, nc);
1697                 if (IS_ERR(spi)) {
1698                         dev_warn(&ctlr->dev,
1699                                  "Failed to create SPI device for %pOF\n", nc);
1700                         of_node_clear_flag(nc, OF_POPULATED);
1701                 }
1702         }
1703 }
1704 #else
1705 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1706 #endif
1707
1708 #ifdef CONFIG_ACPI
1709 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1710 {
1711         struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1712         const union acpi_object *obj;
1713
1714         if (!x86_apple_machine)
1715                 return;
1716
1717         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1718             && obj->buffer.length >= 4)
1719                 spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1720
1721         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1722             && obj->buffer.length == 8)
1723                 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1724
1725         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1726             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1727                 spi->mode |= SPI_LSB_FIRST;
1728
1729         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1730             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1731                 spi->mode |= SPI_CPOL;
1732
1733         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1734             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1735                 spi->mode |= SPI_CPHA;
1736 }
1737
1738 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1739 {
1740         struct spi_device *spi = data;
1741         struct spi_controller *ctlr = spi->controller;
1742
1743         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1744                 struct acpi_resource_spi_serialbus *sb;
1745
1746                 sb = &ares->data.spi_serial_bus;
1747                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1748                         /*
1749                          * ACPI DeviceSelection numbering is handled by the
1750                          * host controller driver in Windows and can vary
1751                          * from driver to driver. In Linux we always expect
1752                          * 0 .. max - 1 so we need to ask the driver to
1753                          * translate between the two schemes.
1754                          */
1755                         if (ctlr->fw_translate_cs) {
1756                                 int cs = ctlr->fw_translate_cs(ctlr,
1757                                                 sb->device_selection);
1758                                 if (cs < 0)
1759                                         return cs;
1760                                 spi->chip_select = cs;
1761                         } else {
1762                                 spi->chip_select = sb->device_selection;
1763                         }
1764
1765                         spi->max_speed_hz = sb->connection_speed;
1766
1767                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1768                                 spi->mode |= SPI_CPHA;
1769                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1770                                 spi->mode |= SPI_CPOL;
1771                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1772                                 spi->mode |= SPI_CS_HIGH;
1773                 }
1774         } else if (spi->irq < 0) {
1775                 struct resource r;
1776
1777                 if (acpi_dev_resource_interrupt(ares, 0, &r))
1778                         spi->irq = r.start;
1779         }
1780
1781         /* Always tell the ACPI core to skip this resource */
1782         return 1;
1783 }
1784
1785 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1786                                             struct acpi_device *adev)
1787 {
1788         struct list_head resource_list;
1789         struct spi_device *spi;
1790         int ret;
1791
1792         if (acpi_bus_get_status(adev) || !adev->status.present ||
1793             acpi_device_enumerated(adev))
1794                 return AE_OK;
1795
1796         spi = spi_alloc_device(ctlr);
1797         if (!spi) {
1798                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1799                         dev_name(&adev->dev));
1800                 return AE_NO_MEMORY;
1801         }
1802
1803         ACPI_COMPANION_SET(&spi->dev, adev);
1804         spi->irq = -1;
1805
1806         INIT_LIST_HEAD(&resource_list);
1807         ret = acpi_dev_get_resources(adev, &resource_list,
1808                                      acpi_spi_add_resource, spi);
1809         acpi_dev_free_resource_list(&resource_list);
1810
1811         acpi_spi_parse_apple_properties(spi);
1812
1813         if (ret < 0 || !spi->max_speed_hz) {
1814                 spi_dev_put(spi);
1815                 return AE_OK;
1816         }
1817
1818         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1819                           sizeof(spi->modalias));
1820
1821         if (spi->irq < 0)
1822                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1823
1824         acpi_device_set_enumerated(adev);
1825
1826         adev->power.flags.ignore_parent = true;
1827         if (spi_add_device(spi)) {
1828                 adev->power.flags.ignore_parent = false;
1829                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1830                         dev_name(&adev->dev));
1831                 spi_dev_put(spi);
1832         }
1833
1834         return AE_OK;
1835 }
1836
1837 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1838                                        void *data, void **return_value)
1839 {
1840         struct spi_controller *ctlr = data;
1841         struct acpi_device *adev;
1842
1843         if (acpi_bus_get_device(handle, &adev))
1844                 return AE_OK;
1845
1846         return acpi_register_spi_device(ctlr, adev);
1847 }
1848
1849 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1850 {
1851         acpi_status status;
1852         acpi_handle handle;
1853
1854         handle = ACPI_HANDLE(ctlr->dev.parent);
1855         if (!handle)
1856                 return;
1857
1858         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1859                                      acpi_spi_add_device, NULL, ctlr, NULL);
1860         if (ACPI_FAILURE(status))
1861                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1862 }
1863 #else
1864 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1865 #endif /* CONFIG_ACPI */
1866
1867 static void spi_controller_release(struct device *dev)
1868 {
1869         struct spi_controller *ctlr;
1870
1871         ctlr = container_of(dev, struct spi_controller, dev);
1872         kfree(ctlr);
1873 }
1874
1875 static struct class spi_master_class = {
1876         .name           = "spi_master",
1877         .owner          = THIS_MODULE,
1878         .dev_release    = spi_controller_release,
1879         .dev_groups     = spi_master_groups,
1880 };
1881
1882 #ifdef CONFIG_SPI_SLAVE
1883 /**
1884  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1885  *                   controller
1886  * @spi: device used for the current transfer
1887  */
1888 int spi_slave_abort(struct spi_device *spi)
1889 {
1890         struct spi_controller *ctlr = spi->controller;
1891
1892         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1893                 return ctlr->slave_abort(ctlr);
1894
1895         return -ENOTSUPP;
1896 }
1897 EXPORT_SYMBOL_GPL(spi_slave_abort);
1898
1899 static int match_true(struct device *dev, void *data)
1900 {
1901         return 1;
1902 }
1903
1904 static ssize_t spi_slave_show(struct device *dev,
1905                               struct device_attribute *attr, char *buf)
1906 {
1907         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1908                                                    dev);
1909         struct device *child;
1910
1911         child = device_find_child(&ctlr->dev, NULL, match_true);
1912         return sprintf(buf, "%s\n",
1913                        child ? to_spi_device(child)->modalias : NULL);
1914 }
1915
1916 static ssize_t spi_slave_store(struct device *dev,
1917                                struct device_attribute *attr, const char *buf,
1918                                size_t count)
1919 {
1920         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1921                                                    dev);
1922         struct spi_device *spi;
1923         struct device *child;
1924         char name[32];
1925         int rc;
1926
1927         rc = sscanf(buf, "%31s", name);
1928         if (rc != 1 || !name[0])
1929                 return -EINVAL;
1930
1931         child = device_find_child(&ctlr->dev, NULL, match_true);
1932         if (child) {
1933                 /* Remove registered slave */
1934                 device_unregister(child);
1935                 put_device(child);
1936         }
1937
1938         if (strcmp(name, "(null)")) {
1939                 /* Register new slave */
1940                 spi = spi_alloc_device(ctlr);
1941                 if (!spi)
1942                         return -ENOMEM;
1943
1944                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1945
1946                 rc = spi_add_device(spi);
1947                 if (rc) {
1948                         spi_dev_put(spi);
1949                         return rc;
1950                 }
1951         }
1952
1953         return count;
1954 }
1955
1956 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1957
1958 static struct attribute *spi_slave_attrs[] = {
1959         &dev_attr_slave.attr,
1960         NULL,
1961 };
1962
1963 static const struct attribute_group spi_slave_group = {
1964         .attrs = spi_slave_attrs,
1965 };
1966
1967 static const struct attribute_group *spi_slave_groups[] = {
1968         &spi_controller_statistics_group,
1969         &spi_slave_group,
1970         NULL,
1971 };
1972
1973 static struct class spi_slave_class = {
1974         .name           = "spi_slave",
1975         .owner          = THIS_MODULE,
1976         .dev_release    = spi_controller_release,
1977         .dev_groups     = spi_slave_groups,
1978 };
1979 #else
1980 extern struct class spi_slave_class;    /* dummy */
1981 #endif
1982
1983 /**
1984  * __spi_alloc_controller - allocate an SPI master or slave controller
1985  * @dev: the controller, possibly using the platform_bus
1986  * @size: how much zeroed driver-private data to allocate; the pointer to this
1987  *      memory is in the driver_data field of the returned device,
1988  *      accessible with spi_controller_get_devdata().
1989  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1990  *      slave (true) controller
1991  * Context: can sleep
1992  *
1993  * This call is used only by SPI controller drivers, which are the
1994  * only ones directly touching chip registers.  It's how they allocate
1995  * an spi_controller structure, prior to calling spi_register_controller().
1996  *
1997  * This must be called from context that can sleep.
1998  *
1999  * The caller is responsible for assigning the bus number and initializing the
2000  * controller's methods before calling spi_register_controller(); and (after
2001  * errors adding the device) calling spi_controller_put() to prevent a memory
2002  * leak.
2003  *
2004  * Return: the SPI controller structure on success, else NULL.
2005  */
2006 struct spi_controller *__spi_alloc_controller(struct device *dev,
2007                                               unsigned int size, bool slave)
2008 {
2009         struct spi_controller   *ctlr;
2010
2011         if (!dev)
2012                 return NULL;
2013
2014         ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2015         if (!ctlr)
2016                 return NULL;
2017
2018         device_initialize(&ctlr->dev);
2019         ctlr->bus_num = -1;
2020         ctlr->num_chipselect = 1;
2021         ctlr->slave = slave;
2022         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2023                 ctlr->dev.class = &spi_slave_class;
2024         else
2025                 ctlr->dev.class = &spi_master_class;
2026         ctlr->dev.parent = dev;
2027         pm_suspend_ignore_children(&ctlr->dev, true);
2028         spi_controller_set_devdata(ctlr, &ctlr[1]);
2029
2030         return ctlr;
2031 }
2032 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2033
2034 #ifdef CONFIG_OF
2035 static int of_spi_register_master(struct spi_controller *ctlr)
2036 {
2037         int nb, i, *cs;
2038         struct device_node *np = ctlr->dev.of_node;
2039
2040         if (!np)
2041                 return 0;
2042
2043         nb = of_gpio_named_count(np, "cs-gpios");
2044         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2045
2046         /* Return error only for an incorrectly formed cs-gpios property */
2047         if (nb == 0 || nb == -ENOENT)
2048                 return 0;
2049         else if (nb < 0)
2050                 return nb;
2051
2052         cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2053                           GFP_KERNEL);
2054         ctlr->cs_gpios = cs;
2055
2056         if (!ctlr->cs_gpios)
2057                 return -ENOMEM;
2058
2059         for (i = 0; i < ctlr->num_chipselect; i++)
2060                 cs[i] = -ENOENT;
2061
2062         for (i = 0; i < nb; i++)
2063                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2064
2065         return 0;
2066 }
2067 #else
2068 static int of_spi_register_master(struct spi_controller *ctlr)
2069 {
2070         return 0;
2071 }
2072 #endif
2073
2074 static int spi_controller_check_ops(struct spi_controller *ctlr)
2075 {
2076         /*
2077          * The controller may implement only the high-level SPI-memory like
2078          * operations if it does not support regular SPI transfers, and this is
2079          * valid use case.
2080          * If ->mem_ops is NULL, we request that at least one of the
2081          * ->transfer_xxx() method be implemented.
2082          */
2083         if (ctlr->mem_ops) {
2084                 if (!ctlr->mem_ops->exec_op)
2085                         return -EINVAL;
2086         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2087                    !ctlr->transfer_one_message) {
2088                 return -EINVAL;
2089         }
2090
2091         return 0;
2092 }
2093
2094 /**
2095  * spi_register_controller - register SPI master or slave controller
2096  * @ctlr: initialized master, originally from spi_alloc_master() or
2097  *      spi_alloc_slave()
2098  * Context: can sleep
2099  *
2100  * SPI controllers connect to their drivers using some non-SPI bus,
2101  * such as the platform bus.  The final stage of probe() in that code
2102  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2103  *
2104  * SPI controllers use board specific (often SOC specific) bus numbers,
2105  * and board-specific addressing for SPI devices combines those numbers
2106  * with chip select numbers.  Since SPI does not directly support dynamic
2107  * device identification, boards need configuration tables telling which
2108  * chip is at which address.
2109  *
2110  * This must be called from context that can sleep.  It returns zero on
2111  * success, else a negative error code (dropping the controller's refcount).
2112  * After a successful return, the caller is responsible for calling
2113  * spi_unregister_controller().
2114  *
2115  * Return: zero on success, else a negative error code.
2116  */
2117 int spi_register_controller(struct spi_controller *ctlr)
2118 {
2119         struct device           *dev = ctlr->dev.parent;
2120         struct boardinfo        *bi;
2121         int                     status = -ENODEV;
2122         int                     id, first_dynamic;
2123
2124         if (!dev)
2125                 return -ENODEV;
2126
2127         /*
2128          * Make sure all necessary hooks are implemented before registering
2129          * the SPI controller.
2130          */
2131         status = spi_controller_check_ops(ctlr);
2132         if (status)
2133                 return status;
2134
2135         if (!spi_controller_is_slave(ctlr)) {
2136                 status = of_spi_register_master(ctlr);
2137                 if (status)
2138                         return status;
2139         }
2140
2141         /* even if it's just one always-selected device, there must
2142          * be at least one chipselect
2143          */
2144         if (ctlr->num_chipselect == 0)
2145                 return -EINVAL;
2146         /* allocate dynamic bus number using Linux idr */
2147         if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2148                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2149                 if (id >= 0) {
2150                         ctlr->bus_num = id;
2151                         mutex_lock(&board_lock);
2152                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2153                                        ctlr->bus_num + 1, GFP_KERNEL);
2154                         mutex_unlock(&board_lock);
2155                         if (WARN(id < 0, "couldn't get idr"))
2156                                 return id == -ENOSPC ? -EBUSY : id;
2157                 }
2158         }
2159         if (ctlr->bus_num < 0) {
2160                 first_dynamic = of_alias_get_highest_id("spi");
2161                 if (first_dynamic < 0)
2162                         first_dynamic = 0;
2163                 else
2164                         first_dynamic++;
2165
2166                 mutex_lock(&board_lock);
2167                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2168                                0, GFP_KERNEL);
2169                 mutex_unlock(&board_lock);
2170                 if (WARN(id < 0, "couldn't get idr"))
2171                         return id;
2172                 ctlr->bus_num = id;
2173         }
2174         INIT_LIST_HEAD(&ctlr->queue);
2175         spin_lock_init(&ctlr->queue_lock);
2176         spin_lock_init(&ctlr->bus_lock_spinlock);
2177         mutex_init(&ctlr->bus_lock_mutex);
2178         mutex_init(&ctlr->io_mutex);
2179         ctlr->bus_lock_flag = 0;
2180         init_completion(&ctlr->xfer_completion);
2181         if (!ctlr->max_dma_len)
2182                 ctlr->max_dma_len = INT_MAX;
2183
2184         /* register the device, then userspace will see it.
2185          * registration fails if the bus ID is in use.
2186          */
2187         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2188         status = device_add(&ctlr->dev);
2189         if (status < 0) {
2190                 /* free bus id */
2191                 mutex_lock(&board_lock);
2192                 idr_remove(&spi_master_idr, ctlr->bus_num);
2193                 mutex_unlock(&board_lock);
2194                 goto done;
2195         }
2196         dev_dbg(dev, "registered %s %s\n",
2197                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2198                         dev_name(&ctlr->dev));
2199
2200         /*
2201          * If we're using a queued driver, start the queue. Note that we don't
2202          * need the queueing logic if the driver is only supporting high-level
2203          * memory operations.
2204          */
2205         if (ctlr->transfer) {
2206                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2207         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2208                 status = spi_controller_initialize_queue(ctlr);
2209                 if (status) {
2210                         device_del(&ctlr->dev);
2211                         /* free bus id */
2212                         mutex_lock(&board_lock);
2213                         idr_remove(&spi_master_idr, ctlr->bus_num);
2214                         mutex_unlock(&board_lock);
2215                         goto done;
2216                 }
2217         }
2218         /* add statistics */
2219         spin_lock_init(&ctlr->statistics.lock);
2220
2221         mutex_lock(&board_lock);
2222         list_add_tail(&ctlr->list, &spi_controller_list);
2223         list_for_each_entry(bi, &board_list, list)
2224                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2225         mutex_unlock(&board_lock);
2226
2227         /* Register devices from the device tree and ACPI */
2228         of_register_spi_devices(ctlr);
2229         acpi_register_spi_devices(ctlr);
2230 done:
2231         return status;
2232 }
2233 EXPORT_SYMBOL_GPL(spi_register_controller);
2234
2235 static void devm_spi_unregister(struct device *dev, void *res)
2236 {
2237         spi_unregister_controller(*(struct spi_controller **)res);
2238 }
2239
2240 /**
2241  * devm_spi_register_controller - register managed SPI master or slave
2242  *      controller
2243  * @dev:    device managing SPI controller
2244  * @ctlr: initialized controller, originally from spi_alloc_master() or
2245  *      spi_alloc_slave()
2246  * Context: can sleep
2247  *
2248  * Register a SPI device as with spi_register_controller() which will
2249  * automatically be unregistered and freed.
2250  *
2251  * Return: zero on success, else a negative error code.
2252  */
2253 int devm_spi_register_controller(struct device *dev,
2254                                  struct spi_controller *ctlr)
2255 {
2256         struct spi_controller **ptr;
2257         int ret;
2258
2259         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2260         if (!ptr)
2261                 return -ENOMEM;
2262
2263         ret = spi_register_controller(ctlr);
2264         if (!ret) {
2265                 *ptr = ctlr;
2266                 devres_add(dev, ptr);
2267         } else {
2268                 devres_free(ptr);
2269         }
2270
2271         return ret;
2272 }
2273 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2274
2275 static int __unregister(struct device *dev, void *null)
2276 {
2277         spi_unregister_device(to_spi_device(dev));
2278         return 0;
2279 }
2280
2281 /**
2282  * spi_unregister_controller - unregister SPI master or slave controller
2283  * @ctlr: the controller being unregistered
2284  * Context: can sleep
2285  *
2286  * This call is used only by SPI controller drivers, which are the
2287  * only ones directly touching chip registers.
2288  *
2289  * This must be called from context that can sleep.
2290  *
2291  * Note that this function also drops a reference to the controller.
2292  */
2293 void spi_unregister_controller(struct spi_controller *ctlr)
2294 {
2295         struct spi_controller *found;
2296         int id = ctlr->bus_num;
2297         int dummy;
2298
2299         /* First make sure that this controller was ever added */
2300         mutex_lock(&board_lock);
2301         found = idr_find(&spi_master_idr, id);
2302         mutex_unlock(&board_lock);
2303         if (ctlr->queued) {
2304                 if (spi_destroy_queue(ctlr))
2305                         dev_err(&ctlr->dev, "queue remove failed\n");
2306         }
2307         mutex_lock(&board_lock);
2308         list_del(&ctlr->list);
2309         mutex_unlock(&board_lock);
2310
2311         dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2312         device_unregister(&ctlr->dev);
2313         /* free bus id */
2314         mutex_lock(&board_lock);
2315         if (found == ctlr)
2316                 idr_remove(&spi_master_idr, id);
2317         mutex_unlock(&board_lock);
2318 }
2319 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2320
2321 int spi_controller_suspend(struct spi_controller *ctlr)
2322 {
2323         int ret;
2324
2325         /* Basically no-ops for non-queued controllers */
2326         if (!ctlr->queued)
2327                 return 0;
2328
2329         ret = spi_stop_queue(ctlr);
2330         if (ret)
2331                 dev_err(&ctlr->dev, "queue stop failed\n");
2332
2333         return ret;
2334 }
2335 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2336
2337 int spi_controller_resume(struct spi_controller *ctlr)
2338 {
2339         int ret;
2340
2341         if (!ctlr->queued)
2342                 return 0;
2343
2344         ret = spi_start_queue(ctlr);
2345         if (ret)
2346                 dev_err(&ctlr->dev, "queue restart failed\n");
2347
2348         return ret;
2349 }
2350 EXPORT_SYMBOL_GPL(spi_controller_resume);
2351
2352 static int __spi_controller_match(struct device *dev, const void *data)
2353 {
2354         struct spi_controller *ctlr;
2355         const u16 *bus_num = data;
2356
2357         ctlr = container_of(dev, struct spi_controller, dev);
2358         return ctlr->bus_num == *bus_num;
2359 }
2360
2361 /**
2362  * spi_busnum_to_master - look up master associated with bus_num
2363  * @bus_num: the master's bus number
2364  * Context: can sleep
2365  *
2366  * This call may be used with devices that are registered after
2367  * arch init time.  It returns a refcounted pointer to the relevant
2368  * spi_controller (which the caller must release), or NULL if there is
2369  * no such master registered.
2370  *
2371  * Return: the SPI master structure on success, else NULL.
2372  */
2373 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2374 {
2375         struct device           *dev;
2376         struct spi_controller   *ctlr = NULL;
2377
2378         dev = class_find_device(&spi_master_class, NULL, &bus_num,
2379                                 __spi_controller_match);
2380         if (dev)
2381                 ctlr = container_of(dev, struct spi_controller, dev);
2382         /* reference got in class_find_device */
2383         return ctlr;
2384 }
2385 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2386
2387 /*-------------------------------------------------------------------------*/
2388
2389 /* Core methods for SPI resource management */
2390
2391 /**
2392  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2393  *                 during the processing of a spi_message while using
2394  *                 spi_transfer_one
2395  * @spi:     the spi device for which we allocate memory
2396  * @release: the release code to execute for this resource
2397  * @size:    size to alloc and return
2398  * @gfp:     GFP allocation flags
2399  *
2400  * Return: the pointer to the allocated data
2401  *
2402  * This may get enhanced in the future to allocate from a memory pool
2403  * of the @spi_device or @spi_controller to avoid repeated allocations.
2404  */
2405 void *spi_res_alloc(struct spi_device *spi,
2406                     spi_res_release_t release,
2407                     size_t size, gfp_t gfp)
2408 {
2409         struct spi_res *sres;
2410
2411         sres = kzalloc(sizeof(*sres) + size, gfp);
2412         if (!sres)
2413                 return NULL;
2414
2415         INIT_LIST_HEAD(&sres->entry);
2416         sres->release = release;
2417
2418         return sres->data;
2419 }
2420 EXPORT_SYMBOL_GPL(spi_res_alloc);
2421
2422 /**
2423  * spi_res_free - free an spi resource
2424  * @res: pointer to the custom data of a resource
2425  *
2426  */
2427 void spi_res_free(void *res)
2428 {
2429         struct spi_res *sres = container_of(res, struct spi_res, data);
2430
2431         if (!res)
2432                 return;
2433
2434         WARN_ON(!list_empty(&sres->entry));
2435         kfree(sres);
2436 }
2437 EXPORT_SYMBOL_GPL(spi_res_free);
2438
2439 /**
2440  * spi_res_add - add a spi_res to the spi_message
2441  * @message: the spi message
2442  * @res:     the spi_resource
2443  */
2444 void spi_res_add(struct spi_message *message, void *res)
2445 {
2446         struct spi_res *sres = container_of(res, struct spi_res, data);
2447
2448         WARN_ON(!list_empty(&sres->entry));
2449         list_add_tail(&sres->entry, &message->resources);
2450 }
2451 EXPORT_SYMBOL_GPL(spi_res_add);
2452
2453 /**
2454  * spi_res_release - release all spi resources for this message
2455  * @ctlr:  the @spi_controller
2456  * @message: the @spi_message
2457  */
2458 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2459 {
2460         struct spi_res *res;
2461
2462         while (!list_empty(&message->resources)) {
2463                 res = list_last_entry(&message->resources,
2464                                       struct spi_res, entry);
2465
2466                 if (res->release)
2467                         res->release(ctlr, message, res->data);
2468
2469                 list_del(&res->entry);
2470
2471                 kfree(res);
2472         }
2473 }
2474 EXPORT_SYMBOL_GPL(spi_res_release);
2475
2476 /*-------------------------------------------------------------------------*/
2477
2478 /* Core methods for spi_message alterations */
2479
2480 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2481                                             struct spi_message *msg,
2482                                             void *res)
2483 {
2484         struct spi_replaced_transfers *rxfer = res;
2485         size_t i;
2486
2487         /* call extra callback if requested */
2488         if (rxfer->release)
2489                 rxfer->release(ctlr, msg, res);
2490
2491         /* insert replaced transfers back into the message */
2492         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2493
2494         /* remove the formerly inserted entries */
2495         for (i = 0; i < rxfer->inserted; i++)
2496                 list_del(&rxfer->inserted_transfers[i].transfer_list);
2497 }
2498
2499 /**
2500  * spi_replace_transfers - replace transfers with several transfers
2501  *                         and register change with spi_message.resources
2502  * @msg:           the spi_message we work upon
2503  * @xfer_first:    the first spi_transfer we want to replace
2504  * @remove:        number of transfers to remove
2505  * @insert:        the number of transfers we want to insert instead
2506  * @release:       extra release code necessary in some circumstances
2507  * @extradatasize: extra data to allocate (with alignment guarantees
2508  *                 of struct @spi_transfer)
2509  * @gfp:           gfp flags
2510  *
2511  * Returns: pointer to @spi_replaced_transfers,
2512  *          PTR_ERR(...) in case of errors.
2513  */
2514 struct spi_replaced_transfers *spi_replace_transfers(
2515         struct spi_message *msg,
2516         struct spi_transfer *xfer_first,
2517         size_t remove,
2518         size_t insert,
2519         spi_replaced_release_t release,
2520         size_t extradatasize,
2521         gfp_t gfp)
2522 {
2523         struct spi_replaced_transfers *rxfer;
2524         struct spi_transfer *xfer;
2525         size_t i;
2526
2527         /* allocate the structure using spi_res */
2528         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2529                               insert * sizeof(struct spi_transfer)
2530                               + sizeof(struct spi_replaced_transfers)
2531                               + extradatasize,
2532                               gfp);
2533         if (!rxfer)
2534                 return ERR_PTR(-ENOMEM);
2535
2536         /* the release code to invoke before running the generic release */
2537         rxfer->release = release;
2538
2539         /* assign extradata */
2540         if (extradatasize)
2541                 rxfer->extradata =
2542                         &rxfer->inserted_transfers[insert];
2543
2544         /* init the replaced_transfers list */
2545         INIT_LIST_HEAD(&rxfer->replaced_transfers);
2546
2547         /* assign the list_entry after which we should reinsert
2548          * the @replaced_transfers - it may be spi_message.messages!
2549          */
2550         rxfer->replaced_after = xfer_first->transfer_list.prev;
2551
2552         /* remove the requested number of transfers */
2553         for (i = 0; i < remove; i++) {
2554                 /* if the entry after replaced_after it is msg->transfers
2555                  * then we have been requested to remove more transfers
2556                  * than are in the list
2557                  */
2558                 if (rxfer->replaced_after->next == &msg->transfers) {
2559                         dev_err(&msg->spi->dev,
2560                                 "requested to remove more spi_transfers than are available\n");
2561                         /* insert replaced transfers back into the message */
2562                         list_splice(&rxfer->replaced_transfers,
2563                                     rxfer->replaced_after);
2564
2565                         /* free the spi_replace_transfer structure */
2566                         spi_res_free(rxfer);
2567
2568                         /* and return with an error */
2569                         return ERR_PTR(-EINVAL);
2570                 }
2571
2572                 /* remove the entry after replaced_after from list of
2573                  * transfers and add it to list of replaced_transfers
2574                  */
2575                 list_move_tail(rxfer->replaced_after->next,
2576                                &rxfer->replaced_transfers);
2577         }
2578
2579         /* create copy of the given xfer with identical settings
2580          * based on the first transfer to get removed
2581          */
2582         for (i = 0; i < insert; i++) {
2583                 /* we need to run in reverse order */
2584                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2585
2586                 /* copy all spi_transfer data */
2587                 memcpy(xfer, xfer_first, sizeof(*xfer));
2588
2589                 /* add to list */
2590                 list_add(&xfer->transfer_list, rxfer->replaced_after);
2591
2592                 /* clear cs_change and delay_usecs for all but the last */
2593                 if (i) {
2594                         xfer->cs_change = false;
2595                         xfer->delay_usecs = 0;
2596                 }
2597         }
2598
2599         /* set up inserted */
2600         rxfer->inserted = insert;
2601
2602         /* and register it with spi_res/spi_message */
2603         spi_res_add(msg, rxfer);
2604
2605         return rxfer;
2606 }
2607 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2608
2609 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2610                                         struct spi_message *msg,
2611                                         struct spi_transfer **xferp,
2612                                         size_t maxsize,
2613                                         gfp_t gfp)
2614 {
2615         struct spi_transfer *xfer = *xferp, *xfers;
2616         struct spi_replaced_transfers *srt;
2617         size_t offset;
2618         size_t count, i;
2619
2620         /* warn once about this fact that we are splitting a transfer */
2621         dev_warn_once(&msg->spi->dev,
2622                       "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2623                       xfer->len, maxsize);
2624
2625         /* calculate how many we have to replace */
2626         count = DIV_ROUND_UP(xfer->len, maxsize);
2627
2628         /* create replacement */
2629         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2630         if (IS_ERR(srt))
2631                 return PTR_ERR(srt);
2632         xfers = srt->inserted_transfers;
2633
2634         /* now handle each of those newly inserted spi_transfers
2635          * note that the replacements spi_transfers all are preset
2636          * to the same values as *xferp, so tx_buf, rx_buf and len
2637          * are all identical (as well as most others)
2638          * so we just have to fix up len and the pointers.
2639          *
2640          * this also includes support for the depreciated
2641          * spi_message.is_dma_mapped interface
2642          */
2643
2644         /* the first transfer just needs the length modified, so we
2645          * run it outside the loop
2646          */
2647         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2648
2649         /* all the others need rx_buf/tx_buf also set */
2650         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2651                 /* update rx_buf, tx_buf and dma */
2652                 if (xfers[i].rx_buf)
2653                         xfers[i].rx_buf += offset;
2654                 if (xfers[i].rx_dma)
2655                         xfers[i].rx_dma += offset;
2656                 if (xfers[i].tx_buf)
2657                         xfers[i].tx_buf += offset;
2658                 if (xfers[i].tx_dma)
2659                         xfers[i].tx_dma += offset;
2660
2661                 /* update length */
2662                 xfers[i].len = min(maxsize, xfers[i].len - offset);
2663         }
2664
2665         /* we set up xferp to the last entry we have inserted,
2666          * so that we skip those already split transfers
2667          */
2668         *xferp = &xfers[count - 1];
2669
2670         /* increment statistics counters */
2671         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2672                                        transfers_split_maxsize);
2673         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2674                                        transfers_split_maxsize);
2675
2676         return 0;
2677 }
2678
2679 /**
2680  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2681  *                              when an individual transfer exceeds a
2682  *                              certain size
2683  * @ctlr:    the @spi_controller for this transfer
2684  * @msg:   the @spi_message to transform
2685  * @maxsize:  the maximum when to apply this
2686  * @gfp: GFP allocation flags
2687  *
2688  * Return: status of transformation
2689  */
2690 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2691                                 struct spi_message *msg,
2692                                 size_t maxsize,
2693                                 gfp_t gfp)
2694 {
2695         struct spi_transfer *xfer;
2696         int ret;
2697
2698         /* iterate over the transfer_list,
2699          * but note that xfer is advanced to the last transfer inserted
2700          * to avoid checking sizes again unnecessarily (also xfer does
2701          * potentiall belong to a different list by the time the
2702          * replacement has happened
2703          */
2704         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2705                 if (xfer->len > maxsize) {
2706                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2707                                                            maxsize, gfp);
2708                         if (ret)
2709                                 return ret;
2710                 }
2711         }
2712
2713         return 0;
2714 }
2715 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2716
2717 /*-------------------------------------------------------------------------*/
2718
2719 /* Core methods for SPI controller protocol drivers.  Some of the
2720  * other core methods are currently defined as inline functions.
2721  */
2722
2723 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2724                                         u8 bits_per_word)
2725 {
2726         if (ctlr->bits_per_word_mask) {
2727                 /* Only 32 bits fit in the mask */
2728                 if (bits_per_word > 32)
2729                         return -EINVAL;
2730                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2731                         return -EINVAL;
2732         }
2733
2734         return 0;
2735 }
2736
2737 /**
2738  * spi_setup - setup SPI mode and clock rate
2739  * @spi: the device whose settings are being modified
2740  * Context: can sleep, and no requests are queued to the device
2741  *
2742  * SPI protocol drivers may need to update the transfer mode if the
2743  * device doesn't work with its default.  They may likewise need
2744  * to update clock rates or word sizes from initial values.  This function
2745  * changes those settings, and must be called from a context that can sleep.
2746  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2747  * effect the next time the device is selected and data is transferred to
2748  * or from it.  When this function returns, the spi device is deselected.
2749  *
2750  * Note that this call will fail if the protocol driver specifies an option
2751  * that the underlying controller or its driver does not support.  For
2752  * example, not all hardware supports wire transfers using nine bit words,
2753  * LSB-first wire encoding, or active-high chipselects.
2754  *
2755  * Return: zero on success, else a negative error code.
2756  */
2757 int spi_setup(struct spi_device *spi)
2758 {
2759         unsigned        bad_bits, ugly_bits;
2760         int             status;
2761
2762         /* check mode to prevent that DUAL and QUAD set at the same time
2763          */
2764         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2765                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2766                 dev_err(&spi->dev,
2767                 "setup: can not select dual and quad at the same time\n");
2768                 return -EINVAL;
2769         }
2770         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2771          */
2772         if ((spi->mode & SPI_3WIRE) && (spi->mode &
2773                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2774                 return -EINVAL;
2775         /* help drivers fail *cleanly* when they need options
2776          * that aren't supported with their current controller
2777          */
2778         bad_bits = spi->mode & ~spi->controller->mode_bits;
2779         ugly_bits = bad_bits &
2780                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2781         if (ugly_bits) {
2782                 dev_warn(&spi->dev,
2783                          "setup: ignoring unsupported mode bits %x\n",
2784                          ugly_bits);
2785                 spi->mode &= ~ugly_bits;
2786                 bad_bits &= ~ugly_bits;
2787         }
2788         if (bad_bits) {
2789                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2790                         bad_bits);
2791                 return -EINVAL;
2792         }
2793
2794         if (!spi->bits_per_word)
2795                 spi->bits_per_word = 8;
2796
2797         status = __spi_validate_bits_per_word(spi->controller,
2798                                               spi->bits_per_word);
2799         if (status)
2800                 return status;
2801
2802         if (!spi->max_speed_hz)
2803                 spi->max_speed_hz = spi->controller->max_speed_hz;
2804
2805         if (spi->controller->setup)
2806                 status = spi->controller->setup(spi);
2807
2808         spi_set_cs(spi, false);
2809
2810         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2811                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2812                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2813                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2814                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2815                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
2816                         spi->bits_per_word, spi->max_speed_hz,
2817                         status);
2818
2819         return status;
2820 }
2821 EXPORT_SYMBOL_GPL(spi_setup);
2822
2823 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2824 {
2825         struct spi_controller *ctlr = spi->controller;
2826         struct spi_transfer *xfer;
2827         int w_size;
2828
2829         if (list_empty(&message->transfers))
2830                 return -EINVAL;
2831
2832         /* Half-duplex links include original MicroWire, and ones with
2833          * only one data pin like SPI_3WIRE (switches direction) or where
2834          * either MOSI or MISO is missing.  They can also be caused by
2835          * software limitations.
2836          */
2837         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2838             (spi->mode & SPI_3WIRE)) {
2839                 unsigned flags = ctlr->flags;
2840
2841                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2842                         if (xfer->rx_buf && xfer->tx_buf)
2843                                 return -EINVAL;
2844                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2845                                 return -EINVAL;
2846                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2847                                 return -EINVAL;
2848                 }
2849         }
2850
2851         /**
2852          * Set transfer bits_per_word and max speed as spi device default if
2853          * it is not set for this transfer.
2854          * Set transfer tx_nbits and rx_nbits as single transfer default
2855          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2856          */
2857         message->frame_length = 0;
2858         list_for_each_entry(xfer, &message->transfers, transfer_list) {
2859                 message->frame_length += xfer->len;
2860                 if (!xfer->bits_per_word)
2861                         xfer->bits_per_word = spi->bits_per_word;
2862
2863                 if (!xfer->speed_hz)
2864                         xfer->speed_hz = spi->max_speed_hz;
2865                 if (!xfer->speed_hz)
2866                         xfer->speed_hz = ctlr->max_speed_hz;
2867
2868                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2869                         xfer->speed_hz = ctlr->max_speed_hz;
2870
2871                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2872                         return -EINVAL;
2873
2874                 /*
2875                  * SPI transfer length should be multiple of SPI word size
2876                  * where SPI word size should be power-of-two multiple
2877                  */
2878                 if (xfer->bits_per_word <= 8)
2879                         w_size = 1;
2880                 else if (xfer->bits_per_word <= 16)
2881                         w_size = 2;
2882                 else
2883                         w_size = 4;
2884
2885                 /* No partial transfers accepted */
2886                 if (xfer->len % w_size)
2887                         return -EINVAL;
2888
2889                 if (xfer->speed_hz && ctlr->min_speed_hz &&
2890                     xfer->speed_hz < ctlr->min_speed_hz)
2891                         return -EINVAL;
2892
2893                 if (xfer->tx_buf && !xfer->tx_nbits)
2894                         xfer->tx_nbits = SPI_NBITS_SINGLE;
2895                 if (xfer->rx_buf && !xfer->rx_nbits)
2896                         xfer->rx_nbits = SPI_NBITS_SINGLE;
2897                 /* check transfer tx/rx_nbits:
2898                  * 1. check the value matches one of single, dual and quad
2899                  * 2. check tx/rx_nbits match the mode in spi_device
2900                  */
2901                 if (xfer->tx_buf) {
2902                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2903                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
2904                                 xfer->tx_nbits != SPI_NBITS_QUAD)
2905                                 return -EINVAL;
2906                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2907                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2908                                 return -EINVAL;
2909                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2910                                 !(spi->mode & SPI_TX_QUAD))
2911                                 return -EINVAL;
2912                 }
2913                 /* check transfer rx_nbits */
2914                 if (xfer->rx_buf) {
2915                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2916                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
2917                                 xfer->rx_nbits != SPI_NBITS_QUAD)
2918                                 return -EINVAL;
2919                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2920                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2921                                 return -EINVAL;
2922                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2923                                 !(spi->mode & SPI_RX_QUAD))
2924                                 return -EINVAL;
2925                 }
2926         }
2927
2928         message->status = -EINPROGRESS;
2929
2930         return 0;
2931 }
2932
2933 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2934 {
2935         struct spi_controller *ctlr = spi->controller;
2936
2937         /*
2938          * Some controllers do not support doing regular SPI transfers. Return
2939          * ENOTSUPP when this is the case.
2940          */
2941         if (!ctlr->transfer)
2942                 return -ENOTSUPP;
2943
2944         message->spi = spi;
2945
2946         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2947         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2948
2949         trace_spi_message_submit(message);
2950
2951         return ctlr->transfer(spi, message);
2952 }
2953
2954 /**
2955  * spi_async - asynchronous SPI transfer
2956  * @spi: device with which data will be exchanged
2957  * @message: describes the data transfers, including completion callback
2958  * Context: any (irqs may be blocked, etc)
2959  *
2960  * This call may be used in_irq and other contexts which can't sleep,
2961  * as well as from task contexts which can sleep.
2962  *
2963  * The completion callback is invoked in a context which can't sleep.
2964  * Before that invocation, the value of message->status is undefined.
2965  * When the callback is issued, message->status holds either zero (to
2966  * indicate complete success) or a negative error code.  After that
2967  * callback returns, the driver which issued the transfer request may
2968  * deallocate the associated memory; it's no longer in use by any SPI
2969  * core or controller driver code.
2970  *
2971  * Note that although all messages to a spi_device are handled in
2972  * FIFO order, messages may go to different devices in other orders.
2973  * Some device might be higher priority, or have various "hard" access
2974  * time requirements, for example.
2975  *
2976  * On detection of any fault during the transfer, processing of
2977  * the entire message is aborted, and the device is deselected.
2978  * Until returning from the associated message completion callback,
2979  * no other spi_message queued to that device will be processed.
2980  * (This rule applies equally to all the synchronous transfer calls,
2981  * which are wrappers around this core asynchronous primitive.)
2982  *
2983  * Return: zero on success, else a negative error code.
2984  */
2985 int spi_async(struct spi_device *spi, struct spi_message *message)
2986 {
2987         struct spi_controller *ctlr = spi->controller;
2988         int ret;
2989         unsigned long flags;
2990
2991         ret = __spi_validate(spi, message);
2992         if (ret != 0)
2993                 return ret;
2994
2995         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2996
2997         if (ctlr->bus_lock_flag)
2998                 ret = -EBUSY;
2999         else
3000                 ret = __spi_async(spi, message);
3001
3002         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3003
3004         return ret;
3005 }
3006 EXPORT_SYMBOL_GPL(spi_async);
3007
3008 /**
3009  * spi_async_locked - version of spi_async with exclusive bus usage
3010  * @spi: device with which data will be exchanged
3011  * @message: describes the data transfers, including completion callback
3012  * Context: any (irqs may be blocked, etc)
3013  *
3014  * This call may be used in_irq and other contexts which can't sleep,
3015  * as well as from task contexts which can sleep.
3016  *
3017  * The completion callback is invoked in a context which can't sleep.
3018  * Before that invocation, the value of message->status is undefined.
3019  * When the callback is issued, message->status holds either zero (to
3020  * indicate complete success) or a negative error code.  After that
3021  * callback returns, the driver which issued the transfer request may
3022  * deallocate the associated memory; it's no longer in use by any SPI
3023  * core or controller driver code.
3024  *
3025  * Note that although all messages to a spi_device are handled in
3026  * FIFO order, messages may go to different devices in other orders.
3027  * Some device might be higher priority, or have various "hard" access
3028  * time requirements, for example.
3029  *
3030  * On detection of any fault during the transfer, processing of
3031  * the entire message is aborted, and the device is deselected.
3032  * Until returning from the associated message completion callback,
3033  * no other spi_message queued to that device will be processed.
3034  * (This rule applies equally to all the synchronous transfer calls,
3035  * which are wrappers around this core asynchronous primitive.)
3036  *
3037  * Return: zero on success, else a negative error code.
3038  */
3039 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3040 {
3041         struct spi_controller *ctlr = spi->controller;
3042         int ret;
3043         unsigned long flags;
3044
3045         ret = __spi_validate(spi, message);
3046         if (ret != 0)
3047                 return ret;
3048
3049         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3050
3051         ret = __spi_async(spi, message);
3052
3053         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3054
3055         return ret;
3056
3057 }
3058 EXPORT_SYMBOL_GPL(spi_async_locked);
3059
3060 /*-------------------------------------------------------------------------*/
3061
3062 /* Utility methods for SPI protocol drivers, layered on
3063  * top of the core.  Some other utility methods are defined as
3064  * inline functions.
3065  */
3066
3067 static void spi_complete(void *arg)
3068 {
3069         complete(arg);
3070 }
3071
3072 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3073 {
3074         DECLARE_COMPLETION_ONSTACK(done);
3075         int status;
3076         struct spi_controller *ctlr = spi->controller;
3077         unsigned long flags;
3078
3079         status = __spi_validate(spi, message);
3080         if (status != 0)
3081                 return status;
3082
3083         message->complete = spi_complete;
3084         message->context = &done;
3085         message->spi = spi;
3086
3087         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3088         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3089
3090         /* If we're not using the legacy transfer method then we will
3091          * try to transfer in the calling context so special case.
3092          * This code would be less tricky if we could remove the
3093          * support for driver implemented message queues.
3094          */
3095         if (ctlr->transfer == spi_queued_transfer) {
3096                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3097
3098                 trace_spi_message_submit(message);
3099
3100                 status = __spi_queued_transfer(spi, message, false);
3101
3102                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3103         } else {
3104                 status = spi_async_locked(spi, message);
3105         }
3106
3107         if (status == 0) {
3108                 /* Push out the messages in the calling context if we
3109                  * can.
3110                  */
3111                 if (ctlr->transfer == spi_queued_transfer) {
3112                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3113                                                        spi_sync_immediate);
3114                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3115                                                        spi_sync_immediate);
3116                         __spi_pump_messages(ctlr, false);
3117                 }
3118
3119                 wait_for_completion(&done);
3120                 status = message->status;
3121         }
3122         message->context = NULL;
3123         return status;
3124 }
3125
3126 /**
3127  * spi_sync - blocking/synchronous SPI data transfers
3128  * @spi: device with which data will be exchanged
3129  * @message: describes the data transfers
3130  * Context: can sleep
3131  *
3132  * This call may only be used from a context that may sleep.  The sleep
3133  * is non-interruptible, and has no timeout.  Low-overhead controller
3134  * drivers may DMA directly into and out of the message buffers.
3135  *
3136  * Note that the SPI device's chip select is active during the message,
3137  * and then is normally disabled between messages.  Drivers for some
3138  * frequently-used devices may want to minimize costs of selecting a chip,
3139  * by leaving it selected in anticipation that the next message will go
3140  * to the same chip.  (That may increase power usage.)
3141  *
3142  * Also, the caller is guaranteeing that the memory associated with the
3143  * message will not be freed before this call returns.
3144  *
3145  * Return: zero on success, else a negative error code.
3146  */
3147 int spi_sync(struct spi_device *spi, struct spi_message *message)
3148 {
3149         int ret;
3150
3151         mutex_lock(&spi->controller->bus_lock_mutex);
3152         ret = __spi_sync(spi, message);
3153         mutex_unlock(&spi->controller->bus_lock_mutex);
3154
3155         return ret;
3156 }
3157 EXPORT_SYMBOL_GPL(spi_sync);
3158
3159 /**
3160  * spi_sync_locked - version of spi_sync with exclusive bus usage
3161  * @spi: device with which data will be exchanged
3162  * @message: describes the data transfers
3163  * Context: can sleep
3164  *
3165  * This call may only be used from a context that may sleep.  The sleep
3166  * is non-interruptible, and has no timeout.  Low-overhead controller
3167  * drivers may DMA directly into and out of the message buffers.
3168  *
3169  * This call should be used by drivers that require exclusive access to the
3170  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3171  * be released by a spi_bus_unlock call when the exclusive access is over.
3172  *
3173  * Return: zero on success, else a negative error code.
3174  */
3175 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3176 {
3177         return __spi_sync(spi, message);
3178 }
3179 EXPORT_SYMBOL_GPL(spi_sync_locked);
3180
3181 /**
3182  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3183  * @ctlr: SPI bus master that should be locked for exclusive bus access
3184  * Context: can sleep
3185  *
3186  * This call may only be used from a context that may sleep.  The sleep
3187  * is non-interruptible, and has no timeout.
3188  *
3189  * This call should be used by drivers that require exclusive access to the
3190  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3191  * exclusive access is over. Data transfer must be done by spi_sync_locked
3192  * and spi_async_locked calls when the SPI bus lock is held.
3193  *
3194  * Return: always zero.
3195  */
3196 int spi_bus_lock(struct spi_controller *ctlr)
3197 {
3198         unsigned long flags;
3199
3200         mutex_lock(&ctlr->bus_lock_mutex);
3201
3202         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3203         ctlr->bus_lock_flag = 1;
3204         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3205
3206         /* mutex remains locked until spi_bus_unlock is called */
3207
3208         return 0;
3209 }
3210 EXPORT_SYMBOL_GPL(spi_bus_lock);
3211
3212 /**
3213  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3214  * @ctlr: SPI bus master that was locked for exclusive bus access
3215  * Context: can sleep
3216  *
3217  * This call may only be used from a context that may sleep.  The sleep
3218  * is non-interruptible, and has no timeout.
3219  *
3220  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3221  * call.
3222  *
3223  * Return: always zero.
3224  */
3225 int spi_bus_unlock(struct spi_controller *ctlr)
3226 {
3227         ctlr->bus_lock_flag = 0;
3228
3229         mutex_unlock(&ctlr->bus_lock_mutex);
3230
3231         return 0;
3232 }
3233 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3234
3235 /* portable code must never pass more than 32 bytes */
3236 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
3237
3238 static u8       *buf;
3239
3240 /**
3241  * spi_write_then_read - SPI synchronous write followed by read
3242  * @spi: device with which data will be exchanged
3243  * @txbuf: data to be written (need not be dma-safe)
3244  * @n_tx: size of txbuf, in bytes
3245  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3246  * @n_rx: size of rxbuf, in bytes
3247  * Context: can sleep
3248  *
3249  * This performs a half duplex MicroWire style transaction with the
3250  * device, sending txbuf and then reading rxbuf.  The return value
3251  * is zero for success, else a negative errno status code.
3252  * This call may only be used from a context that may sleep.
3253  *
3254  * Parameters to this routine are always copied using a small buffer;
3255  * portable code should never use this for more than 32 bytes.
3256  * Performance-sensitive or bulk transfer code should instead use
3257  * spi_{async,sync}() calls with dma-safe buffers.
3258  *
3259  * Return: zero on success, else a negative error code.
3260  */
3261 int spi_write_then_read(struct spi_device *spi,
3262                 const void *txbuf, unsigned n_tx,
3263                 void *rxbuf, unsigned n_rx)
3264 {
3265         static DEFINE_MUTEX(lock);
3266
3267         int                     status;
3268         struct spi_message      message;
3269         struct spi_transfer     x[2];
3270         u8                      *local_buf;
3271
3272         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3273          * copying here, (as a pure convenience thing), but we can
3274          * keep heap costs out of the hot path unless someone else is
3275          * using the pre-allocated buffer or the transfer is too large.
3276          */
3277         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3278                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3279                                     GFP_KERNEL | GFP_DMA);
3280                 if (!local_buf)
3281                         return -ENOMEM;
3282         } else {
3283                 local_buf = buf;
3284         }
3285
3286         spi_message_init(&message);
3287         memset(x, 0, sizeof(x));
3288         if (n_tx) {
3289                 x[0].len = n_tx;
3290                 spi_message_add_tail(&x[0], &message);
3291         }
3292         if (n_rx) {
3293                 x[1].len = n_rx;
3294                 spi_message_add_tail(&x[1], &message);
3295         }
3296
3297         memcpy(local_buf, txbuf, n_tx);
3298         x[0].tx_buf = local_buf;
3299         x[1].rx_buf = local_buf + n_tx;
3300
3301         /* do the i/o */
3302         status = spi_sync(spi, &message);
3303         if (status == 0)
3304                 memcpy(rxbuf, x[1].rx_buf, n_rx);
3305
3306         if (x[0].tx_buf == buf)
3307                 mutex_unlock(&lock);
3308         else
3309                 kfree(local_buf);
3310
3311         return status;
3312 }
3313 EXPORT_SYMBOL_GPL(spi_write_then_read);
3314
3315 /*-------------------------------------------------------------------------*/
3316
3317 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3318 static int __spi_of_device_match(struct device *dev, void *data)
3319 {
3320         return dev->of_node == data;
3321 }
3322
3323 /* must call put_device() when done with returned spi_device device */
3324 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3325 {
3326         struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3327                                                 __spi_of_device_match);
3328         return dev ? to_spi_device(dev) : NULL;
3329 }
3330
3331 static int __spi_of_controller_match(struct device *dev, const void *data)
3332 {
3333         return dev->of_node == data;
3334 }
3335
3336 /* the spi controllers are not using spi_bus, so we find it with another way */
3337 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3338 {
3339         struct device *dev;
3340
3341         dev = class_find_device(&spi_master_class, NULL, node,
3342                                 __spi_of_controller_match);
3343         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3344                 dev = class_find_device(&spi_slave_class, NULL, node,
3345                                         __spi_of_controller_match);
3346         if (!dev)
3347                 return NULL;
3348
3349         /* reference got in class_find_device */
3350         return container_of(dev, struct spi_controller, dev);
3351 }
3352
3353 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3354                          void *arg)
3355 {
3356         struct of_reconfig_data *rd = arg;
3357         struct spi_controller *ctlr;
3358         struct spi_device *spi;
3359
3360         switch (of_reconfig_get_state_change(action, arg)) {
3361         case OF_RECONFIG_CHANGE_ADD:
3362                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3363                 if (ctlr == NULL)
3364                         return NOTIFY_OK;       /* not for us */
3365
3366                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3367                         put_device(&ctlr->dev);
3368                         return NOTIFY_OK;
3369                 }
3370
3371                 spi = of_register_spi_device(ctlr, rd->dn);
3372                 put_device(&ctlr->dev);
3373
3374                 if (IS_ERR(spi)) {
3375                         pr_err("%s: failed to create for '%pOF'\n",
3376                                         __func__, rd->dn);
3377                         of_node_clear_flag(rd->dn, OF_POPULATED);
3378                         return notifier_from_errno(PTR_ERR(spi));
3379                 }
3380                 break;
3381
3382         case OF_RECONFIG_CHANGE_REMOVE:
3383                 /* already depopulated? */
3384                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3385                         return NOTIFY_OK;
3386
3387                 /* find our device by node */
3388                 spi = of_find_spi_device_by_node(rd->dn);
3389                 if (spi == NULL)
3390                         return NOTIFY_OK;       /* no? not meant for us */
3391
3392                 /* unregister takes one ref away */
3393                 spi_unregister_device(spi);
3394
3395                 /* and put the reference of the find */
3396                 put_device(&spi->dev);
3397                 break;
3398         }
3399
3400         return NOTIFY_OK;
3401 }
3402
3403 static struct notifier_block spi_of_notifier = {
3404         .notifier_call = of_spi_notify,
3405 };
3406 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3407 extern struct notifier_block spi_of_notifier;
3408 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3409
3410 #if IS_ENABLED(CONFIG_ACPI)
3411 static int spi_acpi_controller_match(struct device *dev, const void *data)
3412 {
3413         return ACPI_COMPANION(dev->parent) == data;
3414 }
3415
3416 static int spi_acpi_device_match(struct device *dev, void *data)
3417 {
3418         return ACPI_COMPANION(dev) == data;
3419 }
3420
3421 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3422 {
3423         struct device *dev;
3424
3425         dev = class_find_device(&spi_master_class, NULL, adev,
3426                                 spi_acpi_controller_match);
3427         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3428                 dev = class_find_device(&spi_slave_class, NULL, adev,
3429                                         spi_acpi_controller_match);
3430         if (!dev)
3431                 return NULL;
3432
3433         return container_of(dev, struct spi_controller, dev);
3434 }
3435
3436 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3437 {
3438         struct device *dev;
3439
3440         dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3441
3442         return dev ? to_spi_device(dev) : NULL;
3443 }
3444
3445 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3446                            void *arg)
3447 {
3448         struct acpi_device *adev = arg;
3449         struct spi_controller *ctlr;
3450         struct spi_device *spi;
3451
3452         switch (value) {
3453         case ACPI_RECONFIG_DEVICE_ADD:
3454                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3455                 if (!ctlr)
3456                         break;
3457
3458                 acpi_register_spi_device(ctlr, adev);
3459                 put_device(&ctlr->dev);
3460                 break;
3461         case ACPI_RECONFIG_DEVICE_REMOVE:
3462                 if (!acpi_device_enumerated(adev))
3463                         break;
3464
3465                 spi = acpi_spi_find_device_by_adev(adev);
3466                 if (!spi)
3467                         break;
3468
3469                 spi_unregister_device(spi);
3470                 put_device(&spi->dev);
3471                 break;
3472         }
3473
3474         return NOTIFY_OK;
3475 }
3476
3477 static struct notifier_block spi_acpi_notifier = {
3478         .notifier_call = acpi_spi_notify,
3479 };
3480 #else
3481 extern struct notifier_block spi_acpi_notifier;
3482 #endif
3483
3484 static int __init spi_init(void)
3485 {
3486         int     status;
3487
3488         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3489         if (!buf) {
3490                 status = -ENOMEM;
3491                 goto err0;
3492         }
3493
3494         status = bus_register(&spi_bus_type);
3495         if (status < 0)
3496                 goto err1;
3497
3498         status = class_register(&spi_master_class);
3499         if (status < 0)
3500                 goto err2;
3501
3502         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3503                 status = class_register(&spi_slave_class);
3504                 if (status < 0)
3505                         goto err3;
3506         }
3507
3508         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3509                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3510         if (IS_ENABLED(CONFIG_ACPI))
3511                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3512
3513         return 0;
3514
3515 err3:
3516         class_unregister(&spi_master_class);
3517 err2:
3518         bus_unregister(&spi_bus_type);
3519 err1:
3520         kfree(buf);
3521         buf = NULL;
3522 err0:
3523         return status;
3524 }
3525
3526 /* board_info is normally registered in arch_initcall(),
3527  * but even essential drivers wait till later
3528  *
3529  * REVISIT only boardinfo really needs static linking. the rest (device and
3530  * driver registration) _could_ be dynamically linked (modular) ... costs
3531  * include needing to have boardinfo data structures be much more public.
3532  */
3533 postcore_initcall(spi_init);
3534