Merge tag 'livepatching-for-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48         struct spi_device       *spi = to_spi_device(dev);
49
50         /* spi controllers may cleanup for released devices */
51         if (spi->controller->cleanup)
52                 spi->controller->cleanup(spi);
53
54         spi_controller_put(spi->controller);
55         kfree(spi->driver_override);
56         kfree(spi);
57 }
58
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62         const struct spi_device *spi = to_spi_device(dev);
63         int len;
64
65         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66         if (len != -ENODEV)
67                 return len;
68
69         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
73 static ssize_t driver_override_store(struct device *dev,
74                                      struct device_attribute *a,
75                                      const char *buf, size_t count)
76 {
77         struct spi_device *spi = to_spi_device(dev);
78         const char *end = memchr(buf, '\n', count);
79         const size_t len = end ? end - buf : count;
80         const char *driver_override, *old;
81
82         /* We need to keep extra room for a newline when displaying value */
83         if (len >= (PAGE_SIZE - 1))
84                 return -EINVAL;
85
86         driver_override = kstrndup(buf, len, GFP_KERNEL);
87         if (!driver_override)
88                 return -ENOMEM;
89
90         device_lock(dev);
91         old = spi->driver_override;
92         if (len) {
93                 spi->driver_override = driver_override;
94         } else {
95                 /* Empty string, disable driver override */
96                 spi->driver_override = NULL;
97                 kfree(driver_override);
98         }
99         device_unlock(dev);
100         kfree(old);
101
102         return count;
103 }
104
105 static ssize_t driver_override_show(struct device *dev,
106                                     struct device_attribute *a, char *buf)
107 {
108         const struct spi_device *spi = to_spi_device(dev);
109         ssize_t len;
110
111         device_lock(dev);
112         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113         device_unlock(dev);
114         return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117
118 #define SPI_STATISTICS_ATTRS(field, file)                               \
119 static ssize_t spi_controller_##field##_show(struct device *dev,        \
120                                              struct device_attribute *attr, \
121                                              char *buf)                 \
122 {                                                                       \
123         struct spi_controller *ctlr = container_of(dev,                 \
124                                          struct spi_controller, dev);   \
125         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
126 }                                                                       \
127 static struct device_attribute dev_attr_spi_controller_##field = {      \
128         .attr = { .name = file, .mode = 0444 },                         \
129         .show = spi_controller_##field##_show,                          \
130 };                                                                      \
131 static ssize_t spi_device_##field##_show(struct device *dev,            \
132                                          struct device_attribute *attr, \
133                                         char *buf)                      \
134 {                                                                       \
135         struct spi_device *spi = to_spi_device(dev);                    \
136         return spi_statistics_##field##_show(&spi->statistics, buf);    \
137 }                                                                       \
138 static struct device_attribute dev_attr_spi_device_##field = {          \
139         .attr = { .name = file, .mode = 0444 },                         \
140         .show = spi_device_##field##_show,                              \
141 }
142
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145                                             char *buf)                  \
146 {                                                                       \
147         unsigned long flags;                                            \
148         ssize_t len;                                                    \
149         spin_lock_irqsave(&stat->lock, flags);                          \
150         len = sprintf(buf, format_string, stat->field);                 \
151         spin_unlock_irqrestore(&stat->lock, flags);                     \
152         return len;                                                     \
153 }                                                                       \
154 SPI_STATISTICS_ATTRS(name, file)
155
156 #define SPI_STATISTICS_SHOW(field, format_string)                       \
157         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
158                                  field, format_string)
159
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
174         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
175                                  "transfer_bytes_histo_" number,        \
176                                  transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
197 static struct attribute *spi_dev_attrs[] = {
198         &dev_attr_modalias.attr,
199         &dev_attr_driver_override.attr,
200         NULL,
201 };
202
203 static const struct attribute_group spi_dev_group = {
204         .attrs  = spi_dev_attrs,
205 };
206
207 static struct attribute *spi_device_statistics_attrs[] = {
208         &dev_attr_spi_device_messages.attr,
209         &dev_attr_spi_device_transfers.attr,
210         &dev_attr_spi_device_errors.attr,
211         &dev_attr_spi_device_timedout.attr,
212         &dev_attr_spi_device_spi_sync.attr,
213         &dev_attr_spi_device_spi_sync_immediate.attr,
214         &dev_attr_spi_device_spi_async.attr,
215         &dev_attr_spi_device_bytes.attr,
216         &dev_attr_spi_device_bytes_rx.attr,
217         &dev_attr_spi_device_bytes_tx.attr,
218         &dev_attr_spi_device_transfer_bytes_histo0.attr,
219         &dev_attr_spi_device_transfer_bytes_histo1.attr,
220         &dev_attr_spi_device_transfer_bytes_histo2.attr,
221         &dev_attr_spi_device_transfer_bytes_histo3.attr,
222         &dev_attr_spi_device_transfer_bytes_histo4.attr,
223         &dev_attr_spi_device_transfer_bytes_histo5.attr,
224         &dev_attr_spi_device_transfer_bytes_histo6.attr,
225         &dev_attr_spi_device_transfer_bytes_histo7.attr,
226         &dev_attr_spi_device_transfer_bytes_histo8.attr,
227         &dev_attr_spi_device_transfer_bytes_histo9.attr,
228         &dev_attr_spi_device_transfer_bytes_histo10.attr,
229         &dev_attr_spi_device_transfer_bytes_histo11.attr,
230         &dev_attr_spi_device_transfer_bytes_histo12.attr,
231         &dev_attr_spi_device_transfer_bytes_histo13.attr,
232         &dev_attr_spi_device_transfer_bytes_histo14.attr,
233         &dev_attr_spi_device_transfer_bytes_histo15.attr,
234         &dev_attr_spi_device_transfer_bytes_histo16.attr,
235         &dev_attr_spi_device_transfers_split_maxsize.attr,
236         NULL,
237 };
238
239 static const struct attribute_group spi_device_statistics_group = {
240         .name  = "statistics",
241         .attrs  = spi_device_statistics_attrs,
242 };
243
244 static const struct attribute_group *spi_dev_groups[] = {
245         &spi_dev_group,
246         &spi_device_statistics_group,
247         NULL,
248 };
249
250 static struct attribute *spi_controller_statistics_attrs[] = {
251         &dev_attr_spi_controller_messages.attr,
252         &dev_attr_spi_controller_transfers.attr,
253         &dev_attr_spi_controller_errors.attr,
254         &dev_attr_spi_controller_timedout.attr,
255         &dev_attr_spi_controller_spi_sync.attr,
256         &dev_attr_spi_controller_spi_sync_immediate.attr,
257         &dev_attr_spi_controller_spi_async.attr,
258         &dev_attr_spi_controller_bytes.attr,
259         &dev_attr_spi_controller_bytes_rx.attr,
260         &dev_attr_spi_controller_bytes_tx.attr,
261         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278         &dev_attr_spi_controller_transfers_split_maxsize.attr,
279         NULL,
280 };
281
282 static const struct attribute_group spi_controller_statistics_group = {
283         .name  = "statistics",
284         .attrs  = spi_controller_statistics_attrs,
285 };
286
287 static const struct attribute_group *spi_master_groups[] = {
288         &spi_controller_statistics_group,
289         NULL,
290 };
291
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293                                        struct spi_transfer *xfer,
294                                        struct spi_controller *ctlr)
295 {
296         unsigned long flags;
297         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299         if (l2len < 0)
300                 l2len = 0;
301
302         spin_lock_irqsave(&stats->lock, flags);
303
304         stats->transfers++;
305         stats->transfer_bytes_histo[l2len]++;
306
307         stats->bytes += xfer->len;
308         if ((xfer->tx_buf) &&
309             (xfer->tx_buf != ctlr->dummy_tx))
310                 stats->bytes_tx += xfer->len;
311         if ((xfer->rx_buf) &&
312             (xfer->rx_buf != ctlr->dummy_rx))
313                 stats->bytes_rx += xfer->len;
314
315         spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324                                                 const struct spi_device *sdev)
325 {
326         while (id->name[0]) {
327                 if (!strcmp(sdev->modalias, id->name))
328                         return id;
329                 id++;
330         }
331         return NULL;
332 }
333
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338         return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344         const struct spi_device *spi = to_spi_device(dev);
345         const struct spi_driver *sdrv = to_spi_driver(drv);
346
347         /* Check override first, and if set, only use the named driver */
348         if (spi->driver_override)
349                 return strcmp(spi->driver_override, drv->name) == 0;
350
351         /* Attempt an OF style match */
352         if (of_driver_match_device(dev, drv))
353                 return 1;
354
355         /* Then try ACPI */
356         if (acpi_driver_match_device(dev, drv))
357                 return 1;
358
359         if (sdrv->id_table)
360                 return !!spi_match_id(sdrv->id_table, spi);
361
362         return strcmp(spi->modalias, drv->name) == 0;
363 }
364
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367         const struct spi_device         *spi = to_spi_device(dev);
368         int rc;
369
370         rc = acpi_device_uevent_modalias(dev, env);
371         if (rc != -ENODEV)
372                 return rc;
373
374         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376
377 static int spi_probe(struct device *dev)
378 {
379         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
380         struct spi_device               *spi = to_spi_device(dev);
381         int ret;
382
383         ret = of_clk_set_defaults(dev->of_node, false);
384         if (ret)
385                 return ret;
386
387         if (dev->of_node) {
388                 spi->irq = of_irq_get(dev->of_node, 0);
389                 if (spi->irq == -EPROBE_DEFER)
390                         return -EPROBE_DEFER;
391                 if (spi->irq < 0)
392                         spi->irq = 0;
393         }
394
395         ret = dev_pm_domain_attach(dev, true);
396         if (ret)
397                 return ret;
398
399         if (sdrv->probe) {
400                 ret = sdrv->probe(spi);
401                 if (ret)
402                         dev_pm_domain_detach(dev, true);
403         }
404
405         return ret;
406 }
407
408 static int spi_remove(struct device *dev)
409 {
410         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
411
412         if (sdrv->remove) {
413                 int ret;
414
415                 ret = sdrv->remove(to_spi_device(dev));
416                 if (ret)
417                         dev_warn(dev,
418                                  "Failed to unbind driver (%pe), ignoring\n",
419                                  ERR_PTR(ret));
420         }
421
422         dev_pm_domain_detach(dev, true);
423
424         return 0;
425 }
426
427 static void spi_shutdown(struct device *dev)
428 {
429         if (dev->driver) {
430                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
431
432                 if (sdrv->shutdown)
433                         sdrv->shutdown(to_spi_device(dev));
434         }
435 }
436
437 struct bus_type spi_bus_type = {
438         .name           = "spi",
439         .dev_groups     = spi_dev_groups,
440         .match          = spi_match_device,
441         .uevent         = spi_uevent,
442         .probe          = spi_probe,
443         .remove         = spi_remove,
444         .shutdown       = spi_shutdown,
445 };
446 EXPORT_SYMBOL_GPL(spi_bus_type);
447
448 /**
449  * __spi_register_driver - register a SPI driver
450  * @owner: owner module of the driver to register
451  * @sdrv: the driver to register
452  * Context: can sleep
453  *
454  * Return: zero on success, else a negative error code.
455  */
456 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
457 {
458         sdrv->driver.owner = owner;
459         sdrv->driver.bus = &spi_bus_type;
460         return driver_register(&sdrv->driver);
461 }
462 EXPORT_SYMBOL_GPL(__spi_register_driver);
463
464 /*-------------------------------------------------------------------------*/
465
466 /* SPI devices should normally not be created by SPI device drivers; that
467  * would make them board-specific.  Similarly with SPI controller drivers.
468  * Device registration normally goes into like arch/.../mach.../board-YYY.c
469  * with other readonly (flashable) information about mainboard devices.
470  */
471
472 struct boardinfo {
473         struct list_head        list;
474         struct spi_board_info   board_info;
475 };
476
477 static LIST_HEAD(board_list);
478 static LIST_HEAD(spi_controller_list);
479
480 /*
481  * Used to protect add/del operation for board_info list and
482  * spi_controller list, and their matching process
483  * also used to protect object of type struct idr
484  */
485 static DEFINE_MUTEX(board_lock);
486
487 /*
488  * Prevents addition of devices with same chip select and
489  * addition of devices below an unregistering controller.
490  */
491 static DEFINE_MUTEX(spi_add_lock);
492
493 /**
494  * spi_alloc_device - Allocate a new SPI device
495  * @ctlr: Controller to which device is connected
496  * Context: can sleep
497  *
498  * Allows a driver to allocate and initialize a spi_device without
499  * registering it immediately.  This allows a driver to directly
500  * fill the spi_device with device parameters before calling
501  * spi_add_device() on it.
502  *
503  * Caller is responsible to call spi_add_device() on the returned
504  * spi_device structure to add it to the SPI controller.  If the caller
505  * needs to discard the spi_device without adding it, then it should
506  * call spi_dev_put() on it.
507  *
508  * Return: a pointer to the new device, or NULL.
509  */
510 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
511 {
512         struct spi_device       *spi;
513
514         if (!spi_controller_get(ctlr))
515                 return NULL;
516
517         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
518         if (!spi) {
519                 spi_controller_put(ctlr);
520                 return NULL;
521         }
522
523         spi->master = spi->controller = ctlr;
524         spi->dev.parent = &ctlr->dev;
525         spi->dev.bus = &spi_bus_type;
526         spi->dev.release = spidev_release;
527         spi->cs_gpio = -ENOENT;
528         spi->mode = ctlr->buswidth_override_bits;
529
530         spin_lock_init(&spi->statistics.lock);
531
532         device_initialize(&spi->dev);
533         return spi;
534 }
535 EXPORT_SYMBOL_GPL(spi_alloc_device);
536
537 static void spi_dev_set_name(struct spi_device *spi)
538 {
539         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
540
541         if (adev) {
542                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
543                 return;
544         }
545
546         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
547                      spi->chip_select);
548 }
549
550 static int spi_dev_check(struct device *dev, void *data)
551 {
552         struct spi_device *spi = to_spi_device(dev);
553         struct spi_device *new_spi = data;
554
555         if (spi->controller == new_spi->controller &&
556             spi->chip_select == new_spi->chip_select)
557                 return -EBUSY;
558         return 0;
559 }
560
561 /**
562  * spi_add_device - Add spi_device allocated with spi_alloc_device
563  * @spi: spi_device to register
564  *
565  * Companion function to spi_alloc_device.  Devices allocated with
566  * spi_alloc_device can be added onto the spi bus with this function.
567  *
568  * Return: 0 on success; negative errno on failure
569  */
570 int spi_add_device(struct spi_device *spi)
571 {
572         struct spi_controller *ctlr = spi->controller;
573         struct device *dev = ctlr->dev.parent;
574         int status;
575
576         /* Chipselects are numbered 0..max; validate. */
577         if (spi->chip_select >= ctlr->num_chipselect) {
578                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
579                         ctlr->num_chipselect);
580                 return -EINVAL;
581         }
582
583         /* Set the bus ID string */
584         spi_dev_set_name(spi);
585
586         /* We need to make sure there's no other device with this
587          * chipselect **BEFORE** we call setup(), else we'll trash
588          * its configuration.  Lock against concurrent add() calls.
589          */
590         mutex_lock(&spi_add_lock);
591
592         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
593         if (status) {
594                 dev_err(dev, "chipselect %d already in use\n",
595                                 spi->chip_select);
596                 goto done;
597         }
598
599         /* Controller may unregister concurrently */
600         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
601             !device_is_registered(&ctlr->dev)) {
602                 status = -ENODEV;
603                 goto done;
604         }
605
606         /* Descriptors take precedence */
607         if (ctlr->cs_gpiods)
608                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
609         else if (ctlr->cs_gpios)
610                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
611
612         /* Drivers may modify this initial i/o setup, but will
613          * normally rely on the device being setup.  Devices
614          * using SPI_CS_HIGH can't coexist well otherwise...
615          */
616         status = spi_setup(spi);
617         if (status < 0) {
618                 dev_err(dev, "can't setup %s, status %d\n",
619                                 dev_name(&spi->dev), status);
620                 goto done;
621         }
622
623         /* Device may be bound to an active driver when this returns */
624         status = device_add(&spi->dev);
625         if (status < 0)
626                 dev_err(dev, "can't add %s, status %d\n",
627                                 dev_name(&spi->dev), status);
628         else
629                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
630
631 done:
632         mutex_unlock(&spi_add_lock);
633         return status;
634 }
635 EXPORT_SYMBOL_GPL(spi_add_device);
636
637 /**
638  * spi_new_device - instantiate one new SPI device
639  * @ctlr: Controller to which device is connected
640  * @chip: Describes the SPI device
641  * Context: can sleep
642  *
643  * On typical mainboards, this is purely internal; and it's not needed
644  * after board init creates the hard-wired devices.  Some development
645  * platforms may not be able to use spi_register_board_info though, and
646  * this is exported so that for example a USB or parport based adapter
647  * driver could add devices (which it would learn about out-of-band).
648  *
649  * Return: the new device, or NULL.
650  */
651 struct spi_device *spi_new_device(struct spi_controller *ctlr,
652                                   struct spi_board_info *chip)
653 {
654         struct spi_device       *proxy;
655         int                     status;
656
657         /* NOTE:  caller did any chip->bus_num checks necessary.
658          *
659          * Also, unless we change the return value convention to use
660          * error-or-pointer (not NULL-or-pointer), troubleshootability
661          * suggests syslogged diagnostics are best here (ugh).
662          */
663
664         proxy = spi_alloc_device(ctlr);
665         if (!proxy)
666                 return NULL;
667
668         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
669
670         proxy->chip_select = chip->chip_select;
671         proxy->max_speed_hz = chip->max_speed_hz;
672         proxy->mode = chip->mode;
673         proxy->irq = chip->irq;
674         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
675         proxy->dev.platform_data = (void *) chip->platform_data;
676         proxy->controller_data = chip->controller_data;
677         proxy->controller_state = NULL;
678
679         if (chip->properties) {
680                 status = device_add_properties(&proxy->dev, chip->properties);
681                 if (status) {
682                         dev_err(&ctlr->dev,
683                                 "failed to add properties to '%s': %d\n",
684                                 chip->modalias, status);
685                         goto err_dev_put;
686                 }
687         }
688
689         status = spi_add_device(proxy);
690         if (status < 0)
691                 goto err_remove_props;
692
693         return proxy;
694
695 err_remove_props:
696         if (chip->properties)
697                 device_remove_properties(&proxy->dev);
698 err_dev_put:
699         spi_dev_put(proxy);
700         return NULL;
701 }
702 EXPORT_SYMBOL_GPL(spi_new_device);
703
704 /**
705  * spi_unregister_device - unregister a single SPI device
706  * @spi: spi_device to unregister
707  *
708  * Start making the passed SPI device vanish. Normally this would be handled
709  * by spi_unregister_controller().
710  */
711 void spi_unregister_device(struct spi_device *spi)
712 {
713         if (!spi)
714                 return;
715
716         if (spi->dev.of_node) {
717                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
718                 of_node_put(spi->dev.of_node);
719         }
720         if (ACPI_COMPANION(&spi->dev))
721                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
722         device_unregister(&spi->dev);
723 }
724 EXPORT_SYMBOL_GPL(spi_unregister_device);
725
726 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
727                                               struct spi_board_info *bi)
728 {
729         struct spi_device *dev;
730
731         if (ctlr->bus_num != bi->bus_num)
732                 return;
733
734         dev = spi_new_device(ctlr, bi);
735         if (!dev)
736                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
737                         bi->modalias);
738 }
739
740 /**
741  * spi_register_board_info - register SPI devices for a given board
742  * @info: array of chip descriptors
743  * @n: how many descriptors are provided
744  * Context: can sleep
745  *
746  * Board-specific early init code calls this (probably during arch_initcall)
747  * with segments of the SPI device table.  Any device nodes are created later,
748  * after the relevant parent SPI controller (bus_num) is defined.  We keep
749  * this table of devices forever, so that reloading a controller driver will
750  * not make Linux forget about these hard-wired devices.
751  *
752  * Other code can also call this, e.g. a particular add-on board might provide
753  * SPI devices through its expansion connector, so code initializing that board
754  * would naturally declare its SPI devices.
755  *
756  * The board info passed can safely be __initdata ... but be careful of
757  * any embedded pointers (platform_data, etc), they're copied as-is.
758  * Device properties are deep-copied though.
759  *
760  * Return: zero on success, else a negative error code.
761  */
762 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
763 {
764         struct boardinfo *bi;
765         int i;
766
767         if (!n)
768                 return 0;
769
770         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
771         if (!bi)
772                 return -ENOMEM;
773
774         for (i = 0; i < n; i++, bi++, info++) {
775                 struct spi_controller *ctlr;
776
777                 memcpy(&bi->board_info, info, sizeof(*info));
778                 if (info->properties) {
779                         bi->board_info.properties =
780                                         property_entries_dup(info->properties);
781                         if (IS_ERR(bi->board_info.properties))
782                                 return PTR_ERR(bi->board_info.properties);
783                 }
784
785                 mutex_lock(&board_lock);
786                 list_add_tail(&bi->list, &board_list);
787                 list_for_each_entry(ctlr, &spi_controller_list, list)
788                         spi_match_controller_to_boardinfo(ctlr,
789                                                           &bi->board_info);
790                 mutex_unlock(&board_lock);
791         }
792
793         return 0;
794 }
795
796 /*-------------------------------------------------------------------------*/
797
798 static void spi_set_cs(struct spi_device *spi, bool enable)
799 {
800         bool enable1 = enable;
801
802         /*
803          * Avoid calling into the driver (or doing delays) if the chip select
804          * isn't actually changing from the last time this was called.
805          */
806         if ((spi->controller->last_cs_enable == enable) &&
807             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
808                 return;
809
810         spi->controller->last_cs_enable = enable;
811         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
812
813         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
814             !spi->controller->set_cs_timing) {
815                 if (enable1)
816                         spi_delay_exec(&spi->controller->cs_setup, NULL);
817                 else
818                         spi_delay_exec(&spi->controller->cs_hold, NULL);
819         }
820
821         if (spi->mode & SPI_CS_HIGH)
822                 enable = !enable;
823
824         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
825                 if (!(spi->mode & SPI_NO_CS)) {
826                         if (spi->cs_gpiod)
827                                 /* polarity handled by gpiolib */
828                                 gpiod_set_value_cansleep(spi->cs_gpiod,
829                                                          enable1);
830                         else
831                                 /*
832                                  * invert the enable line, as active low is
833                                  * default for SPI.
834                                  */
835                                 gpio_set_value_cansleep(spi->cs_gpio, !enable);
836                 }
837                 /* Some SPI masters need both GPIO CS & slave_select */
838                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
839                     spi->controller->set_cs)
840                         spi->controller->set_cs(spi, !enable);
841         } else if (spi->controller->set_cs) {
842                 spi->controller->set_cs(spi, !enable);
843         }
844
845         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
846             !spi->controller->set_cs_timing) {
847                 if (!enable1)
848                         spi_delay_exec(&spi->controller->cs_inactive, NULL);
849         }
850 }
851
852 #ifdef CONFIG_HAS_DMA
853 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
854                 struct sg_table *sgt, void *buf, size_t len,
855                 enum dma_data_direction dir)
856 {
857         const bool vmalloced_buf = is_vmalloc_addr(buf);
858         unsigned int max_seg_size = dma_get_max_seg_size(dev);
859 #ifdef CONFIG_HIGHMEM
860         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
861                                 (unsigned long)buf < (PKMAP_BASE +
862                                         (LAST_PKMAP * PAGE_SIZE)));
863 #else
864         const bool kmap_buf = false;
865 #endif
866         int desc_len;
867         int sgs;
868         struct page *vm_page;
869         struct scatterlist *sg;
870         void *sg_buf;
871         size_t min;
872         int i, ret;
873
874         if (vmalloced_buf || kmap_buf) {
875                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
876                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
877         } else if (virt_addr_valid(buf)) {
878                 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
879                 sgs = DIV_ROUND_UP(len, desc_len);
880         } else {
881                 return -EINVAL;
882         }
883
884         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
885         if (ret != 0)
886                 return ret;
887
888         sg = &sgt->sgl[0];
889         for (i = 0; i < sgs; i++) {
890
891                 if (vmalloced_buf || kmap_buf) {
892                         /*
893                          * Next scatterlist entry size is the minimum between
894                          * the desc_len and the remaining buffer length that
895                          * fits in a page.
896                          */
897                         min = min_t(size_t, desc_len,
898                                     min_t(size_t, len,
899                                           PAGE_SIZE - offset_in_page(buf)));
900                         if (vmalloced_buf)
901                                 vm_page = vmalloc_to_page(buf);
902                         else
903                                 vm_page = kmap_to_page(buf);
904                         if (!vm_page) {
905                                 sg_free_table(sgt);
906                                 return -ENOMEM;
907                         }
908                         sg_set_page(sg, vm_page,
909                                     min, offset_in_page(buf));
910                 } else {
911                         min = min_t(size_t, len, desc_len);
912                         sg_buf = buf;
913                         sg_set_buf(sg, sg_buf, min);
914                 }
915
916                 buf += min;
917                 len -= min;
918                 sg = sg_next(sg);
919         }
920
921         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
922         if (!ret)
923                 ret = -ENOMEM;
924         if (ret < 0) {
925                 sg_free_table(sgt);
926                 return ret;
927         }
928
929         sgt->nents = ret;
930
931         return 0;
932 }
933
934 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
935                    struct sg_table *sgt, enum dma_data_direction dir)
936 {
937         if (sgt->orig_nents) {
938                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
939                 sg_free_table(sgt);
940         }
941 }
942
943 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
944 {
945         struct device *tx_dev, *rx_dev;
946         struct spi_transfer *xfer;
947         int ret;
948
949         if (!ctlr->can_dma)
950                 return 0;
951
952         if (ctlr->dma_tx)
953                 tx_dev = ctlr->dma_tx->device->dev;
954         else
955                 tx_dev = ctlr->dev.parent;
956
957         if (ctlr->dma_rx)
958                 rx_dev = ctlr->dma_rx->device->dev;
959         else
960                 rx_dev = ctlr->dev.parent;
961
962         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
963                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
964                         continue;
965
966                 if (xfer->tx_buf != NULL) {
967                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
968                                           (void *)xfer->tx_buf, xfer->len,
969                                           DMA_TO_DEVICE);
970                         if (ret != 0)
971                                 return ret;
972                 }
973
974                 if (xfer->rx_buf != NULL) {
975                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
976                                           xfer->rx_buf, xfer->len,
977                                           DMA_FROM_DEVICE);
978                         if (ret != 0) {
979                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
980                                               DMA_TO_DEVICE);
981                                 return ret;
982                         }
983                 }
984         }
985
986         ctlr->cur_msg_mapped = true;
987
988         return 0;
989 }
990
991 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
992 {
993         struct spi_transfer *xfer;
994         struct device *tx_dev, *rx_dev;
995
996         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
997                 return 0;
998
999         if (ctlr->dma_tx)
1000                 tx_dev = ctlr->dma_tx->device->dev;
1001         else
1002                 tx_dev = ctlr->dev.parent;
1003
1004         if (ctlr->dma_rx)
1005                 rx_dev = ctlr->dma_rx->device->dev;
1006         else
1007                 rx_dev = ctlr->dev.parent;
1008
1009         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1010                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1011                         continue;
1012
1013                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1014                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1015         }
1016
1017         ctlr->cur_msg_mapped = false;
1018
1019         return 0;
1020 }
1021 #else /* !CONFIG_HAS_DMA */
1022 static inline int __spi_map_msg(struct spi_controller *ctlr,
1023                                 struct spi_message *msg)
1024 {
1025         return 0;
1026 }
1027
1028 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1029                                   struct spi_message *msg)
1030 {
1031         return 0;
1032 }
1033 #endif /* !CONFIG_HAS_DMA */
1034
1035 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1036                                 struct spi_message *msg)
1037 {
1038         struct spi_transfer *xfer;
1039
1040         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1041                 /*
1042                  * Restore the original value of tx_buf or rx_buf if they are
1043                  * NULL.
1044                  */
1045                 if (xfer->tx_buf == ctlr->dummy_tx)
1046                         xfer->tx_buf = NULL;
1047                 if (xfer->rx_buf == ctlr->dummy_rx)
1048                         xfer->rx_buf = NULL;
1049         }
1050
1051         return __spi_unmap_msg(ctlr, msg);
1052 }
1053
1054 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1055 {
1056         struct spi_transfer *xfer;
1057         void *tmp;
1058         unsigned int max_tx, max_rx;
1059
1060         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1061                 && !(msg->spi->mode & SPI_3WIRE)) {
1062                 max_tx = 0;
1063                 max_rx = 0;
1064
1065                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1066                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1067                             !xfer->tx_buf)
1068                                 max_tx = max(xfer->len, max_tx);
1069                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1070                             !xfer->rx_buf)
1071                                 max_rx = max(xfer->len, max_rx);
1072                 }
1073
1074                 if (max_tx) {
1075                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1076                                        GFP_KERNEL | GFP_DMA);
1077                         if (!tmp)
1078                                 return -ENOMEM;
1079                         ctlr->dummy_tx = tmp;
1080                         memset(tmp, 0, max_tx);
1081                 }
1082
1083                 if (max_rx) {
1084                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1085                                        GFP_KERNEL | GFP_DMA);
1086                         if (!tmp)
1087                                 return -ENOMEM;
1088                         ctlr->dummy_rx = tmp;
1089                 }
1090
1091                 if (max_tx || max_rx) {
1092                         list_for_each_entry(xfer, &msg->transfers,
1093                                             transfer_list) {
1094                                 if (!xfer->len)
1095                                         continue;
1096                                 if (!xfer->tx_buf)
1097                                         xfer->tx_buf = ctlr->dummy_tx;
1098                                 if (!xfer->rx_buf)
1099                                         xfer->rx_buf = ctlr->dummy_rx;
1100                         }
1101                 }
1102         }
1103
1104         return __spi_map_msg(ctlr, msg);
1105 }
1106
1107 static int spi_transfer_wait(struct spi_controller *ctlr,
1108                              struct spi_message *msg,
1109                              struct spi_transfer *xfer)
1110 {
1111         struct spi_statistics *statm = &ctlr->statistics;
1112         struct spi_statistics *stats = &msg->spi->statistics;
1113         u32 speed_hz = xfer->speed_hz;
1114         unsigned long long ms;
1115
1116         if (spi_controller_is_slave(ctlr)) {
1117                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1118                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1119                         return -EINTR;
1120                 }
1121         } else {
1122                 if (!speed_hz)
1123                         speed_hz = 100000;
1124
1125                 ms = 8LL * 1000LL * xfer->len;
1126                 do_div(ms, speed_hz);
1127                 ms += ms + 200; /* some tolerance */
1128
1129                 if (ms > UINT_MAX)
1130                         ms = UINT_MAX;
1131
1132                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1133                                                  msecs_to_jiffies(ms));
1134
1135                 if (ms == 0) {
1136                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1137                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1138                         dev_err(&msg->spi->dev,
1139                                 "SPI transfer timed out\n");
1140                         return -ETIMEDOUT;
1141                 }
1142         }
1143
1144         return 0;
1145 }
1146
1147 static void _spi_transfer_delay_ns(u32 ns)
1148 {
1149         if (!ns)
1150                 return;
1151         if (ns <= 1000) {
1152                 ndelay(ns);
1153         } else {
1154                 u32 us = DIV_ROUND_UP(ns, 1000);
1155
1156                 if (us <= 10)
1157                         udelay(us);
1158                 else
1159                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1160         }
1161 }
1162
1163 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1164 {
1165         u32 delay = _delay->value;
1166         u32 unit = _delay->unit;
1167         u32 hz;
1168
1169         if (!delay)
1170                 return 0;
1171
1172         switch (unit) {
1173         case SPI_DELAY_UNIT_USECS:
1174                 delay *= 1000;
1175                 break;
1176         case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1177                 break;
1178         case SPI_DELAY_UNIT_SCK:
1179                 /* clock cycles need to be obtained from spi_transfer */
1180                 if (!xfer)
1181                         return -EINVAL;
1182                 /* if there is no effective speed know, then approximate
1183                  * by underestimating with half the requested hz
1184                  */
1185                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1186                 if (!hz)
1187                         return -EINVAL;
1188                 delay *= DIV_ROUND_UP(1000000000, hz);
1189                 break;
1190         default:
1191                 return -EINVAL;
1192         }
1193
1194         return delay;
1195 }
1196 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1197
1198 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1199 {
1200         int delay;
1201
1202         might_sleep();
1203
1204         if (!_delay)
1205                 return -EINVAL;
1206
1207         delay = spi_delay_to_ns(_delay, xfer);
1208         if (delay < 0)
1209                 return delay;
1210
1211         _spi_transfer_delay_ns(delay);
1212
1213         return 0;
1214 }
1215 EXPORT_SYMBOL_GPL(spi_delay_exec);
1216
1217 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1218                                           struct spi_transfer *xfer)
1219 {
1220         u32 delay = xfer->cs_change_delay.value;
1221         u32 unit = xfer->cs_change_delay.unit;
1222         int ret;
1223
1224         /* return early on "fast" mode - for everything but USECS */
1225         if (!delay) {
1226                 if (unit == SPI_DELAY_UNIT_USECS)
1227                         _spi_transfer_delay_ns(10000);
1228                 return;
1229         }
1230
1231         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1232         if (ret) {
1233                 dev_err_once(&msg->spi->dev,
1234                              "Use of unsupported delay unit %i, using default of 10us\n",
1235                              unit);
1236                 _spi_transfer_delay_ns(10000);
1237         }
1238 }
1239
1240 /*
1241  * spi_transfer_one_message - Default implementation of transfer_one_message()
1242  *
1243  * This is a standard implementation of transfer_one_message() for
1244  * drivers which implement a transfer_one() operation.  It provides
1245  * standard handling of delays and chip select management.
1246  */
1247 static int spi_transfer_one_message(struct spi_controller *ctlr,
1248                                     struct spi_message *msg)
1249 {
1250         struct spi_transfer *xfer;
1251         bool keep_cs = false;
1252         int ret = 0;
1253         struct spi_statistics *statm = &ctlr->statistics;
1254         struct spi_statistics *stats = &msg->spi->statistics;
1255
1256         spi_set_cs(msg->spi, true);
1257
1258         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1259         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1260
1261         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1262                 trace_spi_transfer_start(msg, xfer);
1263
1264                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1265                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1266
1267                 if (!ctlr->ptp_sts_supported) {
1268                         xfer->ptp_sts_word_pre = 0;
1269                         ptp_read_system_prets(xfer->ptp_sts);
1270                 }
1271
1272                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1273                         reinit_completion(&ctlr->xfer_completion);
1274
1275 fallback_pio:
1276                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1277                         if (ret < 0) {
1278                                 if (ctlr->cur_msg_mapped &&
1279                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1280                                         __spi_unmap_msg(ctlr, msg);
1281                                         ctlr->fallback = true;
1282                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1283                                         goto fallback_pio;
1284                                 }
1285
1286                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1287                                                                errors);
1288                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1289                                                                errors);
1290                                 dev_err(&msg->spi->dev,
1291                                         "SPI transfer failed: %d\n", ret);
1292                                 goto out;
1293                         }
1294
1295                         if (ret > 0) {
1296                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1297                                 if (ret < 0)
1298                                         msg->status = ret;
1299                         }
1300                 } else {
1301                         if (xfer->len)
1302                                 dev_err(&msg->spi->dev,
1303                                         "Bufferless transfer has length %u\n",
1304                                         xfer->len);
1305                 }
1306
1307                 if (!ctlr->ptp_sts_supported) {
1308                         ptp_read_system_postts(xfer->ptp_sts);
1309                         xfer->ptp_sts_word_post = xfer->len;
1310                 }
1311
1312                 trace_spi_transfer_stop(msg, xfer);
1313
1314                 if (msg->status != -EINPROGRESS)
1315                         goto out;
1316
1317                 spi_transfer_delay_exec(xfer);
1318
1319                 if (xfer->cs_change) {
1320                         if (list_is_last(&xfer->transfer_list,
1321                                          &msg->transfers)) {
1322                                 keep_cs = true;
1323                         } else {
1324                                 spi_set_cs(msg->spi, false);
1325                                 _spi_transfer_cs_change_delay(msg, xfer);
1326                                 spi_set_cs(msg->spi, true);
1327                         }
1328                 }
1329
1330                 msg->actual_length += xfer->len;
1331         }
1332
1333 out:
1334         if (ret != 0 || !keep_cs)
1335                 spi_set_cs(msg->spi, false);
1336
1337         if (msg->status == -EINPROGRESS)
1338                 msg->status = ret;
1339
1340         if (msg->status && ctlr->handle_err)
1341                 ctlr->handle_err(ctlr, msg);
1342
1343         spi_finalize_current_message(ctlr);
1344
1345         return ret;
1346 }
1347
1348 /**
1349  * spi_finalize_current_transfer - report completion of a transfer
1350  * @ctlr: the controller reporting completion
1351  *
1352  * Called by SPI drivers using the core transfer_one_message()
1353  * implementation to notify it that the current interrupt driven
1354  * transfer has finished and the next one may be scheduled.
1355  */
1356 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1357 {
1358         complete(&ctlr->xfer_completion);
1359 }
1360 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1361
1362 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1363 {
1364         if (ctlr->auto_runtime_pm) {
1365                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1366                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1367         }
1368 }
1369
1370 /**
1371  * __spi_pump_messages - function which processes spi message queue
1372  * @ctlr: controller to process queue for
1373  * @in_kthread: true if we are in the context of the message pump thread
1374  *
1375  * This function checks if there is any spi message in the queue that
1376  * needs processing and if so call out to the driver to initialize hardware
1377  * and transfer each message.
1378  *
1379  * Note that it is called both from the kthread itself and also from
1380  * inside spi_sync(); the queue extraction handling at the top of the
1381  * function should deal with this safely.
1382  */
1383 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1384 {
1385         struct spi_transfer *xfer;
1386         struct spi_message *msg;
1387         bool was_busy = false;
1388         unsigned long flags;
1389         int ret;
1390
1391         /* Lock queue */
1392         spin_lock_irqsave(&ctlr->queue_lock, flags);
1393
1394         /* Make sure we are not already running a message */
1395         if (ctlr->cur_msg) {
1396                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1397                 return;
1398         }
1399
1400         /* If another context is idling the device then defer */
1401         if (ctlr->idling) {
1402                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1403                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1404                 return;
1405         }
1406
1407         /* Check if the queue is idle */
1408         if (list_empty(&ctlr->queue) || !ctlr->running) {
1409                 if (!ctlr->busy) {
1410                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1411                         return;
1412                 }
1413
1414                 /* Defer any non-atomic teardown to the thread */
1415                 if (!in_kthread) {
1416                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1417                             !ctlr->unprepare_transfer_hardware) {
1418                                 spi_idle_runtime_pm(ctlr);
1419                                 ctlr->busy = false;
1420                                 trace_spi_controller_idle(ctlr);
1421                         } else {
1422                                 kthread_queue_work(ctlr->kworker,
1423                                                    &ctlr->pump_messages);
1424                         }
1425                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1426                         return;
1427                 }
1428
1429                 ctlr->busy = false;
1430                 ctlr->idling = true;
1431                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1432
1433                 kfree(ctlr->dummy_rx);
1434                 ctlr->dummy_rx = NULL;
1435                 kfree(ctlr->dummy_tx);
1436                 ctlr->dummy_tx = NULL;
1437                 if (ctlr->unprepare_transfer_hardware &&
1438                     ctlr->unprepare_transfer_hardware(ctlr))
1439                         dev_err(&ctlr->dev,
1440                                 "failed to unprepare transfer hardware\n");
1441                 spi_idle_runtime_pm(ctlr);
1442                 trace_spi_controller_idle(ctlr);
1443
1444                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1445                 ctlr->idling = false;
1446                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1447                 return;
1448         }
1449
1450         /* Extract head of queue */
1451         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1452         ctlr->cur_msg = msg;
1453
1454         list_del_init(&msg->queue);
1455         if (ctlr->busy)
1456                 was_busy = true;
1457         else
1458                 ctlr->busy = true;
1459         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1460
1461         mutex_lock(&ctlr->io_mutex);
1462
1463         if (!was_busy && ctlr->auto_runtime_pm) {
1464                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1465                 if (ret < 0) {
1466                         pm_runtime_put_noidle(ctlr->dev.parent);
1467                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1468                                 ret);
1469                         mutex_unlock(&ctlr->io_mutex);
1470                         return;
1471                 }
1472         }
1473
1474         if (!was_busy)
1475                 trace_spi_controller_busy(ctlr);
1476
1477         if (!was_busy && ctlr->prepare_transfer_hardware) {
1478                 ret = ctlr->prepare_transfer_hardware(ctlr);
1479                 if (ret) {
1480                         dev_err(&ctlr->dev,
1481                                 "failed to prepare transfer hardware: %d\n",
1482                                 ret);
1483
1484                         if (ctlr->auto_runtime_pm)
1485                                 pm_runtime_put(ctlr->dev.parent);
1486
1487                         msg->status = ret;
1488                         spi_finalize_current_message(ctlr);
1489
1490                         mutex_unlock(&ctlr->io_mutex);
1491                         return;
1492                 }
1493         }
1494
1495         trace_spi_message_start(msg);
1496
1497         if (ctlr->prepare_message) {
1498                 ret = ctlr->prepare_message(ctlr, msg);
1499                 if (ret) {
1500                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1501                                 ret);
1502                         msg->status = ret;
1503                         spi_finalize_current_message(ctlr);
1504                         goto out;
1505                 }
1506                 ctlr->cur_msg_prepared = true;
1507         }
1508
1509         ret = spi_map_msg(ctlr, msg);
1510         if (ret) {
1511                 msg->status = ret;
1512                 spi_finalize_current_message(ctlr);
1513                 goto out;
1514         }
1515
1516         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1517                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1518                         xfer->ptp_sts_word_pre = 0;
1519                         ptp_read_system_prets(xfer->ptp_sts);
1520                 }
1521         }
1522
1523         ret = ctlr->transfer_one_message(ctlr, msg);
1524         if (ret) {
1525                 dev_err(&ctlr->dev,
1526                         "failed to transfer one message from queue\n");
1527                 goto out;
1528         }
1529
1530 out:
1531         mutex_unlock(&ctlr->io_mutex);
1532
1533         /* Prod the scheduler in case transfer_one() was busy waiting */
1534         if (!ret)
1535                 cond_resched();
1536 }
1537
1538 /**
1539  * spi_pump_messages - kthread work function which processes spi message queue
1540  * @work: pointer to kthread work struct contained in the controller struct
1541  */
1542 static void spi_pump_messages(struct kthread_work *work)
1543 {
1544         struct spi_controller *ctlr =
1545                 container_of(work, struct spi_controller, pump_messages);
1546
1547         __spi_pump_messages(ctlr, true);
1548 }
1549
1550 /**
1551  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1552  *                          TX timestamp for the requested byte from the SPI
1553  *                          transfer. The frequency with which this function
1554  *                          must be called (once per word, once for the whole
1555  *                          transfer, once per batch of words etc) is arbitrary
1556  *                          as long as the @tx buffer offset is greater than or
1557  *                          equal to the requested byte at the time of the
1558  *                          call. The timestamp is only taken once, at the
1559  *                          first such call. It is assumed that the driver
1560  *                          advances its @tx buffer pointer monotonically.
1561  * @ctlr: Pointer to the spi_controller structure of the driver
1562  * @xfer: Pointer to the transfer being timestamped
1563  * @progress: How many words (not bytes) have been transferred so far
1564  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1565  *            transfer, for less jitter in time measurement. Only compatible
1566  *            with PIO drivers. If true, must follow up with
1567  *            spi_take_timestamp_post or otherwise system will crash.
1568  *            WARNING: for fully predictable results, the CPU frequency must
1569  *            also be under control (governor).
1570  */
1571 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1572                             struct spi_transfer *xfer,
1573                             size_t progress, bool irqs_off)
1574 {
1575         if (!xfer->ptp_sts)
1576                 return;
1577
1578         if (xfer->timestamped)
1579                 return;
1580
1581         if (progress > xfer->ptp_sts_word_pre)
1582                 return;
1583
1584         /* Capture the resolution of the timestamp */
1585         xfer->ptp_sts_word_pre = progress;
1586
1587         if (irqs_off) {
1588                 local_irq_save(ctlr->irq_flags);
1589                 preempt_disable();
1590         }
1591
1592         ptp_read_system_prets(xfer->ptp_sts);
1593 }
1594 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1595
1596 /**
1597  * spi_take_timestamp_post - helper for drivers to collect the end of the
1598  *                           TX timestamp for the requested byte from the SPI
1599  *                           transfer. Can be called with an arbitrary
1600  *                           frequency: only the first call where @tx exceeds
1601  *                           or is equal to the requested word will be
1602  *                           timestamped.
1603  * @ctlr: Pointer to the spi_controller structure of the driver
1604  * @xfer: Pointer to the transfer being timestamped
1605  * @progress: How many words (not bytes) have been transferred so far
1606  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1607  */
1608 void spi_take_timestamp_post(struct spi_controller *ctlr,
1609                              struct spi_transfer *xfer,
1610                              size_t progress, bool irqs_off)
1611 {
1612         if (!xfer->ptp_sts)
1613                 return;
1614
1615         if (xfer->timestamped)
1616                 return;
1617
1618         if (progress < xfer->ptp_sts_word_post)
1619                 return;
1620
1621         ptp_read_system_postts(xfer->ptp_sts);
1622
1623         if (irqs_off) {
1624                 local_irq_restore(ctlr->irq_flags);
1625                 preempt_enable();
1626         }
1627
1628         /* Capture the resolution of the timestamp */
1629         xfer->ptp_sts_word_post = progress;
1630
1631         xfer->timestamped = true;
1632 }
1633 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1634
1635 /**
1636  * spi_set_thread_rt - set the controller to pump at realtime priority
1637  * @ctlr: controller to boost priority of
1638  *
1639  * This can be called because the controller requested realtime priority
1640  * (by setting the ->rt value before calling spi_register_controller()) or
1641  * because a device on the bus said that its transfers needed realtime
1642  * priority.
1643  *
1644  * NOTE: at the moment if any device on a bus says it needs realtime then
1645  * the thread will be at realtime priority for all transfers on that
1646  * controller.  If this eventually becomes a problem we may see if we can
1647  * find a way to boost the priority only temporarily during relevant
1648  * transfers.
1649  */
1650 static void spi_set_thread_rt(struct spi_controller *ctlr)
1651 {
1652         dev_info(&ctlr->dev,
1653                 "will run message pump with realtime priority\n");
1654         sched_set_fifo(ctlr->kworker->task);
1655 }
1656
1657 static int spi_init_queue(struct spi_controller *ctlr)
1658 {
1659         ctlr->running = false;
1660         ctlr->busy = false;
1661
1662         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1663         if (IS_ERR(ctlr->kworker)) {
1664                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1665                 return PTR_ERR(ctlr->kworker);
1666         }
1667
1668         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1669
1670         /*
1671          * Controller config will indicate if this controller should run the
1672          * message pump with high (realtime) priority to reduce the transfer
1673          * latency on the bus by minimising the delay between a transfer
1674          * request and the scheduling of the message pump thread. Without this
1675          * setting the message pump thread will remain at default priority.
1676          */
1677         if (ctlr->rt)
1678                 spi_set_thread_rt(ctlr);
1679
1680         return 0;
1681 }
1682
1683 /**
1684  * spi_get_next_queued_message() - called by driver to check for queued
1685  * messages
1686  * @ctlr: the controller to check for queued messages
1687  *
1688  * If there are more messages in the queue, the next message is returned from
1689  * this call.
1690  *
1691  * Return: the next message in the queue, else NULL if the queue is empty.
1692  */
1693 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1694 {
1695         struct spi_message *next;
1696         unsigned long flags;
1697
1698         /* get a pointer to the next message, if any */
1699         spin_lock_irqsave(&ctlr->queue_lock, flags);
1700         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1701                                         queue);
1702         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1703
1704         return next;
1705 }
1706 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1707
1708 /**
1709  * spi_finalize_current_message() - the current message is complete
1710  * @ctlr: the controller to return the message to
1711  *
1712  * Called by the driver to notify the core that the message in the front of the
1713  * queue is complete and can be removed from the queue.
1714  */
1715 void spi_finalize_current_message(struct spi_controller *ctlr)
1716 {
1717         struct spi_transfer *xfer;
1718         struct spi_message *mesg;
1719         unsigned long flags;
1720         int ret;
1721
1722         spin_lock_irqsave(&ctlr->queue_lock, flags);
1723         mesg = ctlr->cur_msg;
1724         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1725
1726         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1727                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1728                         ptp_read_system_postts(xfer->ptp_sts);
1729                         xfer->ptp_sts_word_post = xfer->len;
1730                 }
1731         }
1732
1733         if (unlikely(ctlr->ptp_sts_supported))
1734                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1735                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1736
1737         spi_unmap_msg(ctlr, mesg);
1738
1739         /* In the prepare_messages callback the spi bus has the opportunity to
1740          * split a transfer to smaller chunks.
1741          * Release splited transfers here since spi_map_msg is done on the
1742          * splited transfers.
1743          */
1744         spi_res_release(ctlr, mesg);
1745
1746         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1747                 ret = ctlr->unprepare_message(ctlr, mesg);
1748                 if (ret) {
1749                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1750                                 ret);
1751                 }
1752         }
1753
1754         spin_lock_irqsave(&ctlr->queue_lock, flags);
1755         ctlr->cur_msg = NULL;
1756         ctlr->cur_msg_prepared = false;
1757         ctlr->fallback = false;
1758         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1759         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1760
1761         trace_spi_message_done(mesg);
1762
1763         mesg->state = NULL;
1764         if (mesg->complete)
1765                 mesg->complete(mesg->context);
1766 }
1767 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1768
1769 static int spi_start_queue(struct spi_controller *ctlr)
1770 {
1771         unsigned long flags;
1772
1773         spin_lock_irqsave(&ctlr->queue_lock, flags);
1774
1775         if (ctlr->running || ctlr->busy) {
1776                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1777                 return -EBUSY;
1778         }
1779
1780         ctlr->running = true;
1781         ctlr->cur_msg = NULL;
1782         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1783
1784         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1785
1786         return 0;
1787 }
1788
1789 static int spi_stop_queue(struct spi_controller *ctlr)
1790 {
1791         unsigned long flags;
1792         unsigned limit = 500;
1793         int ret = 0;
1794
1795         spin_lock_irqsave(&ctlr->queue_lock, flags);
1796
1797         /*
1798          * This is a bit lame, but is optimized for the common execution path.
1799          * A wait_queue on the ctlr->busy could be used, but then the common
1800          * execution path (pump_messages) would be required to call wake_up or
1801          * friends on every SPI message. Do this instead.
1802          */
1803         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1804                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1805                 usleep_range(10000, 11000);
1806                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1807         }
1808
1809         if (!list_empty(&ctlr->queue) || ctlr->busy)
1810                 ret = -EBUSY;
1811         else
1812                 ctlr->running = false;
1813
1814         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1815
1816         if (ret) {
1817                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1818                 return ret;
1819         }
1820         return ret;
1821 }
1822
1823 static int spi_destroy_queue(struct spi_controller *ctlr)
1824 {
1825         int ret;
1826
1827         ret = spi_stop_queue(ctlr);
1828
1829         /*
1830          * kthread_flush_worker will block until all work is done.
1831          * If the reason that stop_queue timed out is that the work will never
1832          * finish, then it does no good to call flush/stop thread, so
1833          * return anyway.
1834          */
1835         if (ret) {
1836                 dev_err(&ctlr->dev, "problem destroying queue\n");
1837                 return ret;
1838         }
1839
1840         kthread_destroy_worker(ctlr->kworker);
1841
1842         return 0;
1843 }
1844
1845 static int __spi_queued_transfer(struct spi_device *spi,
1846                                  struct spi_message *msg,
1847                                  bool need_pump)
1848 {
1849         struct spi_controller *ctlr = spi->controller;
1850         unsigned long flags;
1851
1852         spin_lock_irqsave(&ctlr->queue_lock, flags);
1853
1854         if (!ctlr->running) {
1855                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1856                 return -ESHUTDOWN;
1857         }
1858         msg->actual_length = 0;
1859         msg->status = -EINPROGRESS;
1860
1861         list_add_tail(&msg->queue, &ctlr->queue);
1862         if (!ctlr->busy && need_pump)
1863                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1864
1865         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1866         return 0;
1867 }
1868
1869 /**
1870  * spi_queued_transfer - transfer function for queued transfers
1871  * @spi: spi device which is requesting transfer
1872  * @msg: spi message which is to handled is queued to driver queue
1873  *
1874  * Return: zero on success, else a negative error code.
1875  */
1876 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1877 {
1878         return __spi_queued_transfer(spi, msg, true);
1879 }
1880
1881 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1882 {
1883         int ret;
1884
1885         ctlr->transfer = spi_queued_transfer;
1886         if (!ctlr->transfer_one_message)
1887                 ctlr->transfer_one_message = spi_transfer_one_message;
1888
1889         /* Initialize and start queue */
1890         ret = spi_init_queue(ctlr);
1891         if (ret) {
1892                 dev_err(&ctlr->dev, "problem initializing queue\n");
1893                 goto err_init_queue;
1894         }
1895         ctlr->queued = true;
1896         ret = spi_start_queue(ctlr);
1897         if (ret) {
1898                 dev_err(&ctlr->dev, "problem starting queue\n");
1899                 goto err_start_queue;
1900         }
1901
1902         return 0;
1903
1904 err_start_queue:
1905         spi_destroy_queue(ctlr);
1906 err_init_queue:
1907         return ret;
1908 }
1909
1910 /**
1911  * spi_flush_queue - Send all pending messages in the queue from the callers'
1912  *                   context
1913  * @ctlr: controller to process queue for
1914  *
1915  * This should be used when one wants to ensure all pending messages have been
1916  * sent before doing something. Is used by the spi-mem code to make sure SPI
1917  * memory operations do not preempt regular SPI transfers that have been queued
1918  * before the spi-mem operation.
1919  */
1920 void spi_flush_queue(struct spi_controller *ctlr)
1921 {
1922         if (ctlr->transfer == spi_queued_transfer)
1923                 __spi_pump_messages(ctlr, false);
1924 }
1925
1926 /*-------------------------------------------------------------------------*/
1927
1928 #if defined(CONFIG_OF)
1929 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1930                            struct device_node *nc)
1931 {
1932         u32 value;
1933         int rc;
1934
1935         /* Mode (clock phase/polarity/etc.) */
1936         if (of_property_read_bool(nc, "spi-cpha"))
1937                 spi->mode |= SPI_CPHA;
1938         if (of_property_read_bool(nc, "spi-cpol"))
1939                 spi->mode |= SPI_CPOL;
1940         if (of_property_read_bool(nc, "spi-3wire"))
1941                 spi->mode |= SPI_3WIRE;
1942         if (of_property_read_bool(nc, "spi-lsb-first"))
1943                 spi->mode |= SPI_LSB_FIRST;
1944         if (of_property_read_bool(nc, "spi-cs-high"))
1945                 spi->mode |= SPI_CS_HIGH;
1946
1947         /* Device DUAL/QUAD mode */
1948         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1949                 switch (value) {
1950                 case 0:
1951                         spi->mode |= SPI_NO_TX;
1952                         break;
1953                 case 1:
1954                         break;
1955                 case 2:
1956                         spi->mode |= SPI_TX_DUAL;
1957                         break;
1958                 case 4:
1959                         spi->mode |= SPI_TX_QUAD;
1960                         break;
1961                 case 8:
1962                         spi->mode |= SPI_TX_OCTAL;
1963                         break;
1964                 default:
1965                         dev_warn(&ctlr->dev,
1966                                 "spi-tx-bus-width %d not supported\n",
1967                                 value);
1968                         break;
1969                 }
1970         }
1971
1972         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1973                 switch (value) {
1974                 case 0:
1975                         spi->mode |= SPI_NO_RX;
1976                         break;
1977                 case 1:
1978                         break;
1979                 case 2:
1980                         spi->mode |= SPI_RX_DUAL;
1981                         break;
1982                 case 4:
1983                         spi->mode |= SPI_RX_QUAD;
1984                         break;
1985                 case 8:
1986                         spi->mode |= SPI_RX_OCTAL;
1987                         break;
1988                 default:
1989                         dev_warn(&ctlr->dev,
1990                                 "spi-rx-bus-width %d not supported\n",
1991                                 value);
1992                         break;
1993                 }
1994         }
1995
1996         if (spi_controller_is_slave(ctlr)) {
1997                 if (!of_node_name_eq(nc, "slave")) {
1998                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1999                                 nc);
2000                         return -EINVAL;
2001                 }
2002                 return 0;
2003         }
2004
2005         /* Device address */
2006         rc = of_property_read_u32(nc, "reg", &value);
2007         if (rc) {
2008                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2009                         nc, rc);
2010                 return rc;
2011         }
2012         spi->chip_select = value;
2013
2014         /* Device speed */
2015         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2016                 spi->max_speed_hz = value;
2017
2018         return 0;
2019 }
2020
2021 static struct spi_device *
2022 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2023 {
2024         struct spi_device *spi;
2025         int rc;
2026
2027         /* Alloc an spi_device */
2028         spi = spi_alloc_device(ctlr);
2029         if (!spi) {
2030                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2031                 rc = -ENOMEM;
2032                 goto err_out;
2033         }
2034
2035         /* Select device driver */
2036         rc = of_modalias_node(nc, spi->modalias,
2037                                 sizeof(spi->modalias));
2038         if (rc < 0) {
2039                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2040                 goto err_out;
2041         }
2042
2043         rc = of_spi_parse_dt(ctlr, spi, nc);
2044         if (rc)
2045                 goto err_out;
2046
2047         /* Store a pointer to the node in the device structure */
2048         of_node_get(nc);
2049         spi->dev.of_node = nc;
2050
2051         /* Register the new device */
2052         rc = spi_add_device(spi);
2053         if (rc) {
2054                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2055                 goto err_of_node_put;
2056         }
2057
2058         return spi;
2059
2060 err_of_node_put:
2061         of_node_put(nc);
2062 err_out:
2063         spi_dev_put(spi);
2064         return ERR_PTR(rc);
2065 }
2066
2067 /**
2068  * of_register_spi_devices() - Register child devices onto the SPI bus
2069  * @ctlr:       Pointer to spi_controller device
2070  *
2071  * Registers an spi_device for each child node of controller node which
2072  * represents a valid SPI slave.
2073  */
2074 static void of_register_spi_devices(struct spi_controller *ctlr)
2075 {
2076         struct spi_device *spi;
2077         struct device_node *nc;
2078
2079         if (!ctlr->dev.of_node)
2080                 return;
2081
2082         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2083                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2084                         continue;
2085                 spi = of_register_spi_device(ctlr, nc);
2086                 if (IS_ERR(spi)) {
2087                         dev_warn(&ctlr->dev,
2088                                  "Failed to create SPI device for %pOF\n", nc);
2089                         of_node_clear_flag(nc, OF_POPULATED);
2090                 }
2091         }
2092 }
2093 #else
2094 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2095 #endif
2096
2097 #ifdef CONFIG_ACPI
2098 struct acpi_spi_lookup {
2099         struct spi_controller   *ctlr;
2100         u32                     max_speed_hz;
2101         u32                     mode;
2102         int                     irq;
2103         u8                      bits_per_word;
2104         u8                      chip_select;
2105 };
2106
2107 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2108                                             struct acpi_spi_lookup *lookup)
2109 {
2110         const union acpi_object *obj;
2111
2112         if (!x86_apple_machine)
2113                 return;
2114
2115         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2116             && obj->buffer.length >= 4)
2117                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2118
2119         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2120             && obj->buffer.length == 8)
2121                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2122
2123         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2124             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2125                 lookup->mode |= SPI_LSB_FIRST;
2126
2127         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2128             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2129                 lookup->mode |= SPI_CPOL;
2130
2131         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2132             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2133                 lookup->mode |= SPI_CPHA;
2134 }
2135
2136 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2137 {
2138         struct acpi_spi_lookup *lookup = data;
2139         struct spi_controller *ctlr = lookup->ctlr;
2140
2141         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2142                 struct acpi_resource_spi_serialbus *sb;
2143                 acpi_handle parent_handle;
2144                 acpi_status status;
2145
2146                 sb = &ares->data.spi_serial_bus;
2147                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2148
2149                         status = acpi_get_handle(NULL,
2150                                                  sb->resource_source.string_ptr,
2151                                                  &parent_handle);
2152
2153                         if (ACPI_FAILURE(status) ||
2154                             ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2155                                 return -ENODEV;
2156
2157                         /*
2158                          * ACPI DeviceSelection numbering is handled by the
2159                          * host controller driver in Windows and can vary
2160                          * from driver to driver. In Linux we always expect
2161                          * 0 .. max - 1 so we need to ask the driver to
2162                          * translate between the two schemes.
2163                          */
2164                         if (ctlr->fw_translate_cs) {
2165                                 int cs = ctlr->fw_translate_cs(ctlr,
2166                                                 sb->device_selection);
2167                                 if (cs < 0)
2168                                         return cs;
2169                                 lookup->chip_select = cs;
2170                         } else {
2171                                 lookup->chip_select = sb->device_selection;
2172                         }
2173
2174                         lookup->max_speed_hz = sb->connection_speed;
2175                         lookup->bits_per_word = sb->data_bit_length;
2176
2177                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2178                                 lookup->mode |= SPI_CPHA;
2179                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2180                                 lookup->mode |= SPI_CPOL;
2181                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2182                                 lookup->mode |= SPI_CS_HIGH;
2183                 }
2184         } else if (lookup->irq < 0) {
2185                 struct resource r;
2186
2187                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2188                         lookup->irq = r.start;
2189         }
2190
2191         /* Always tell the ACPI core to skip this resource */
2192         return 1;
2193 }
2194
2195 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2196                                             struct acpi_device *adev)
2197 {
2198         acpi_handle parent_handle = NULL;
2199         struct list_head resource_list;
2200         struct acpi_spi_lookup lookup = {};
2201         struct spi_device *spi;
2202         int ret;
2203
2204         if (acpi_bus_get_status(adev) || !adev->status.present ||
2205             acpi_device_enumerated(adev))
2206                 return AE_OK;
2207
2208         lookup.ctlr             = ctlr;
2209         lookup.irq              = -1;
2210
2211         INIT_LIST_HEAD(&resource_list);
2212         ret = acpi_dev_get_resources(adev, &resource_list,
2213                                      acpi_spi_add_resource, &lookup);
2214         acpi_dev_free_resource_list(&resource_list);
2215
2216         if (ret < 0)
2217                 /* found SPI in _CRS but it points to another controller */
2218                 return AE_OK;
2219
2220         if (!lookup.max_speed_hz &&
2221             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2222             ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2223                 /* Apple does not use _CRS but nested devices for SPI slaves */
2224                 acpi_spi_parse_apple_properties(adev, &lookup);
2225         }
2226
2227         if (!lookup.max_speed_hz)
2228                 return AE_OK;
2229
2230         spi = spi_alloc_device(ctlr);
2231         if (!spi) {
2232                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2233                         dev_name(&adev->dev));
2234                 return AE_NO_MEMORY;
2235         }
2236
2237
2238         ACPI_COMPANION_SET(&spi->dev, adev);
2239         spi->max_speed_hz       = lookup.max_speed_hz;
2240         spi->mode               |= lookup.mode;
2241         spi->irq                = lookup.irq;
2242         spi->bits_per_word      = lookup.bits_per_word;
2243         spi->chip_select        = lookup.chip_select;
2244
2245         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2246                           sizeof(spi->modalias));
2247
2248         if (spi->irq < 0)
2249                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2250
2251         acpi_device_set_enumerated(adev);
2252
2253         adev->power.flags.ignore_parent = true;
2254         if (spi_add_device(spi)) {
2255                 adev->power.flags.ignore_parent = false;
2256                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2257                         dev_name(&adev->dev));
2258                 spi_dev_put(spi);
2259         }
2260
2261         return AE_OK;
2262 }
2263
2264 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2265                                        void *data, void **return_value)
2266 {
2267         struct spi_controller *ctlr = data;
2268         struct acpi_device *adev;
2269
2270         if (acpi_bus_get_device(handle, &adev))
2271                 return AE_OK;
2272
2273         return acpi_register_spi_device(ctlr, adev);
2274 }
2275
2276 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2277
2278 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2279 {
2280         acpi_status status;
2281         acpi_handle handle;
2282
2283         handle = ACPI_HANDLE(ctlr->dev.parent);
2284         if (!handle)
2285                 return;
2286
2287         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2288                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2289                                      acpi_spi_add_device, NULL, ctlr, NULL);
2290         if (ACPI_FAILURE(status))
2291                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2292 }
2293 #else
2294 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2295 #endif /* CONFIG_ACPI */
2296
2297 static void spi_controller_release(struct device *dev)
2298 {
2299         struct spi_controller *ctlr;
2300
2301         ctlr = container_of(dev, struct spi_controller, dev);
2302         kfree(ctlr);
2303 }
2304
2305 static struct class spi_master_class = {
2306         .name           = "spi_master",
2307         .owner          = THIS_MODULE,
2308         .dev_release    = spi_controller_release,
2309         .dev_groups     = spi_master_groups,
2310 };
2311
2312 #ifdef CONFIG_SPI_SLAVE
2313 /**
2314  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2315  *                   controller
2316  * @spi: device used for the current transfer
2317  */
2318 int spi_slave_abort(struct spi_device *spi)
2319 {
2320         struct spi_controller *ctlr = spi->controller;
2321
2322         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2323                 return ctlr->slave_abort(ctlr);
2324
2325         return -ENOTSUPP;
2326 }
2327 EXPORT_SYMBOL_GPL(spi_slave_abort);
2328
2329 static int match_true(struct device *dev, void *data)
2330 {
2331         return 1;
2332 }
2333
2334 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2335                           char *buf)
2336 {
2337         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2338                                                    dev);
2339         struct device *child;
2340
2341         child = device_find_child(&ctlr->dev, NULL, match_true);
2342         return sprintf(buf, "%s\n",
2343                        child ? to_spi_device(child)->modalias : NULL);
2344 }
2345
2346 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2347                            const char *buf, size_t count)
2348 {
2349         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2350                                                    dev);
2351         struct spi_device *spi;
2352         struct device *child;
2353         char name[32];
2354         int rc;
2355
2356         rc = sscanf(buf, "%31s", name);
2357         if (rc != 1 || !name[0])
2358                 return -EINVAL;
2359
2360         child = device_find_child(&ctlr->dev, NULL, match_true);
2361         if (child) {
2362                 /* Remove registered slave */
2363                 device_unregister(child);
2364                 put_device(child);
2365         }
2366
2367         if (strcmp(name, "(null)")) {
2368                 /* Register new slave */
2369                 spi = spi_alloc_device(ctlr);
2370                 if (!spi)
2371                         return -ENOMEM;
2372
2373                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2374
2375                 rc = spi_add_device(spi);
2376                 if (rc) {
2377                         spi_dev_put(spi);
2378                         return rc;
2379                 }
2380         }
2381
2382         return count;
2383 }
2384
2385 static DEVICE_ATTR_RW(slave);
2386
2387 static struct attribute *spi_slave_attrs[] = {
2388         &dev_attr_slave.attr,
2389         NULL,
2390 };
2391
2392 static const struct attribute_group spi_slave_group = {
2393         .attrs = spi_slave_attrs,
2394 };
2395
2396 static const struct attribute_group *spi_slave_groups[] = {
2397         &spi_controller_statistics_group,
2398         &spi_slave_group,
2399         NULL,
2400 };
2401
2402 static struct class spi_slave_class = {
2403         .name           = "spi_slave",
2404         .owner          = THIS_MODULE,
2405         .dev_release    = spi_controller_release,
2406         .dev_groups     = spi_slave_groups,
2407 };
2408 #else
2409 extern struct class spi_slave_class;    /* dummy */
2410 #endif
2411
2412 /**
2413  * __spi_alloc_controller - allocate an SPI master or slave controller
2414  * @dev: the controller, possibly using the platform_bus
2415  * @size: how much zeroed driver-private data to allocate; the pointer to this
2416  *      memory is in the driver_data field of the returned device, accessible
2417  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2418  *      drivers granting DMA access to portions of their private data need to
2419  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2420  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2421  *      slave (true) controller
2422  * Context: can sleep
2423  *
2424  * This call is used only by SPI controller drivers, which are the
2425  * only ones directly touching chip registers.  It's how they allocate
2426  * an spi_controller structure, prior to calling spi_register_controller().
2427  *
2428  * This must be called from context that can sleep.
2429  *
2430  * The caller is responsible for assigning the bus number and initializing the
2431  * controller's methods before calling spi_register_controller(); and (after
2432  * errors adding the device) calling spi_controller_put() to prevent a memory
2433  * leak.
2434  *
2435  * Return: the SPI controller structure on success, else NULL.
2436  */
2437 struct spi_controller *__spi_alloc_controller(struct device *dev,
2438                                               unsigned int size, bool slave)
2439 {
2440         struct spi_controller   *ctlr;
2441         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2442
2443         if (!dev)
2444                 return NULL;
2445
2446         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2447         if (!ctlr)
2448                 return NULL;
2449
2450         device_initialize(&ctlr->dev);
2451         ctlr->bus_num = -1;
2452         ctlr->num_chipselect = 1;
2453         ctlr->slave = slave;
2454         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2455                 ctlr->dev.class = &spi_slave_class;
2456         else
2457                 ctlr->dev.class = &spi_master_class;
2458         ctlr->dev.parent = dev;
2459         pm_suspend_ignore_children(&ctlr->dev, true);
2460         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2461
2462         return ctlr;
2463 }
2464 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2465
2466 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2467 {
2468         spi_controller_put(*(struct spi_controller **)ctlr);
2469 }
2470
2471 /**
2472  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2473  * @dev: physical device of SPI controller
2474  * @size: how much zeroed driver-private data to allocate
2475  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2476  * Context: can sleep
2477  *
2478  * Allocate an SPI controller and automatically release a reference on it
2479  * when @dev is unbound from its driver.  Drivers are thus relieved from
2480  * having to call spi_controller_put().
2481  *
2482  * The arguments to this function are identical to __spi_alloc_controller().
2483  *
2484  * Return: the SPI controller structure on success, else NULL.
2485  */
2486 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2487                                                    unsigned int size,
2488                                                    bool slave)
2489 {
2490         struct spi_controller **ptr, *ctlr;
2491
2492         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2493                            GFP_KERNEL);
2494         if (!ptr)
2495                 return NULL;
2496
2497         ctlr = __spi_alloc_controller(dev, size, slave);
2498         if (ctlr) {
2499                 *ptr = ctlr;
2500                 devres_add(dev, ptr);
2501         } else {
2502                 devres_free(ptr);
2503         }
2504
2505         return ctlr;
2506 }
2507 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2508
2509 #ifdef CONFIG_OF
2510 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2511 {
2512         int nb, i, *cs;
2513         struct device_node *np = ctlr->dev.of_node;
2514
2515         if (!np)
2516                 return 0;
2517
2518         nb = of_gpio_named_count(np, "cs-gpios");
2519         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2520
2521         /* Return error only for an incorrectly formed cs-gpios property */
2522         if (nb == 0 || nb == -ENOENT)
2523                 return 0;
2524         else if (nb < 0)
2525                 return nb;
2526
2527         cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2528                           GFP_KERNEL);
2529         ctlr->cs_gpios = cs;
2530
2531         if (!ctlr->cs_gpios)
2532                 return -ENOMEM;
2533
2534         for (i = 0; i < ctlr->num_chipselect; i++)
2535                 cs[i] = -ENOENT;
2536
2537         for (i = 0; i < nb; i++)
2538                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2539
2540         return 0;
2541 }
2542 #else
2543 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2544 {
2545         return 0;
2546 }
2547 #endif
2548
2549 /**
2550  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2551  * @ctlr: The SPI master to grab GPIO descriptors for
2552  */
2553 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2554 {
2555         int nb, i;
2556         struct gpio_desc **cs;
2557         struct device *dev = &ctlr->dev;
2558         unsigned long native_cs_mask = 0;
2559         unsigned int num_cs_gpios = 0;
2560
2561         nb = gpiod_count(dev, "cs");
2562         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2563
2564         /* No GPIOs at all is fine, else return the error */
2565         if (nb == 0 || nb == -ENOENT)
2566                 return 0;
2567         else if (nb < 0)
2568                 return nb;
2569
2570         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2571                           GFP_KERNEL);
2572         if (!cs)
2573                 return -ENOMEM;
2574         ctlr->cs_gpiods = cs;
2575
2576         for (i = 0; i < nb; i++) {
2577                 /*
2578                  * Most chipselects are active low, the inverted
2579                  * semantics are handled by special quirks in gpiolib,
2580                  * so initializing them GPIOD_OUT_LOW here means
2581                  * "unasserted", in most cases this will drive the physical
2582                  * line high.
2583                  */
2584                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2585                                                       GPIOD_OUT_LOW);
2586                 if (IS_ERR(cs[i]))
2587                         return PTR_ERR(cs[i]);
2588
2589                 if (cs[i]) {
2590                         /*
2591                          * If we find a CS GPIO, name it after the device and
2592                          * chip select line.
2593                          */
2594                         char *gpioname;
2595
2596                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2597                                                   dev_name(dev), i);
2598                         if (!gpioname)
2599                                 return -ENOMEM;
2600                         gpiod_set_consumer_name(cs[i], gpioname);
2601                         num_cs_gpios++;
2602                         continue;
2603                 }
2604
2605                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2606                         dev_err(dev, "Invalid native chip select %d\n", i);
2607                         return -EINVAL;
2608                 }
2609                 native_cs_mask |= BIT(i);
2610         }
2611
2612         ctlr->unused_native_cs = ffz(native_cs_mask);
2613         if (num_cs_gpios && ctlr->max_native_cs &&
2614             ctlr->unused_native_cs >= ctlr->max_native_cs) {
2615                 dev_err(dev, "No unused native chip select available\n");
2616                 return -EINVAL;
2617         }
2618
2619         return 0;
2620 }
2621
2622 static int spi_controller_check_ops(struct spi_controller *ctlr)
2623 {
2624         /*
2625          * The controller may implement only the high-level SPI-memory like
2626          * operations if it does not support regular SPI transfers, and this is
2627          * valid use case.
2628          * If ->mem_ops is NULL, we request that at least one of the
2629          * ->transfer_xxx() method be implemented.
2630          */
2631         if (ctlr->mem_ops) {
2632                 if (!ctlr->mem_ops->exec_op)
2633                         return -EINVAL;
2634         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2635                    !ctlr->transfer_one_message) {
2636                 return -EINVAL;
2637         }
2638
2639         return 0;
2640 }
2641
2642 /**
2643  * spi_register_controller - register SPI master or slave controller
2644  * @ctlr: initialized master, originally from spi_alloc_master() or
2645  *      spi_alloc_slave()
2646  * Context: can sleep
2647  *
2648  * SPI controllers connect to their drivers using some non-SPI bus,
2649  * such as the platform bus.  The final stage of probe() in that code
2650  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2651  *
2652  * SPI controllers use board specific (often SOC specific) bus numbers,
2653  * and board-specific addressing for SPI devices combines those numbers
2654  * with chip select numbers.  Since SPI does not directly support dynamic
2655  * device identification, boards need configuration tables telling which
2656  * chip is at which address.
2657  *
2658  * This must be called from context that can sleep.  It returns zero on
2659  * success, else a negative error code (dropping the controller's refcount).
2660  * After a successful return, the caller is responsible for calling
2661  * spi_unregister_controller().
2662  *
2663  * Return: zero on success, else a negative error code.
2664  */
2665 int spi_register_controller(struct spi_controller *ctlr)
2666 {
2667         struct device           *dev = ctlr->dev.parent;
2668         struct boardinfo        *bi;
2669         int                     status;
2670         int                     id, first_dynamic;
2671
2672         if (!dev)
2673                 return -ENODEV;
2674
2675         /*
2676          * Make sure all necessary hooks are implemented before registering
2677          * the SPI controller.
2678          */
2679         status = spi_controller_check_ops(ctlr);
2680         if (status)
2681                 return status;
2682
2683         if (ctlr->bus_num >= 0) {
2684                 /* devices with a fixed bus num must check-in with the num */
2685                 mutex_lock(&board_lock);
2686                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2687                         ctlr->bus_num + 1, GFP_KERNEL);
2688                 mutex_unlock(&board_lock);
2689                 if (WARN(id < 0, "couldn't get idr"))
2690                         return id == -ENOSPC ? -EBUSY : id;
2691                 ctlr->bus_num = id;
2692         } else if (ctlr->dev.of_node) {
2693                 /* allocate dynamic bus number using Linux idr */
2694                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2695                 if (id >= 0) {
2696                         ctlr->bus_num = id;
2697                         mutex_lock(&board_lock);
2698                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2699                                        ctlr->bus_num + 1, GFP_KERNEL);
2700                         mutex_unlock(&board_lock);
2701                         if (WARN(id < 0, "couldn't get idr"))
2702                                 return id == -ENOSPC ? -EBUSY : id;
2703                 }
2704         }
2705         if (ctlr->bus_num < 0) {
2706                 first_dynamic = of_alias_get_highest_id("spi");
2707                 if (first_dynamic < 0)
2708                         first_dynamic = 0;
2709                 else
2710                         first_dynamic++;
2711
2712                 mutex_lock(&board_lock);
2713                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2714                                0, GFP_KERNEL);
2715                 mutex_unlock(&board_lock);
2716                 if (WARN(id < 0, "couldn't get idr"))
2717                         return id;
2718                 ctlr->bus_num = id;
2719         }
2720         INIT_LIST_HEAD(&ctlr->queue);
2721         spin_lock_init(&ctlr->queue_lock);
2722         spin_lock_init(&ctlr->bus_lock_spinlock);
2723         mutex_init(&ctlr->bus_lock_mutex);
2724         mutex_init(&ctlr->io_mutex);
2725         ctlr->bus_lock_flag = 0;
2726         init_completion(&ctlr->xfer_completion);
2727         if (!ctlr->max_dma_len)
2728                 ctlr->max_dma_len = INT_MAX;
2729
2730         /* register the device, then userspace will see it.
2731          * registration fails if the bus ID is in use.
2732          */
2733         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2734
2735         if (!spi_controller_is_slave(ctlr)) {
2736                 if (ctlr->use_gpio_descriptors) {
2737                         status = spi_get_gpio_descs(ctlr);
2738                         if (status)
2739                                 goto free_bus_id;
2740                         /*
2741                          * A controller using GPIO descriptors always
2742                          * supports SPI_CS_HIGH if need be.
2743                          */
2744                         ctlr->mode_bits |= SPI_CS_HIGH;
2745                 } else {
2746                         /* Legacy code path for GPIOs from DT */
2747                         status = of_spi_get_gpio_numbers(ctlr);
2748                         if (status)
2749                                 goto free_bus_id;
2750                 }
2751         }
2752
2753         /*
2754          * Even if it's just one always-selected device, there must
2755          * be at least one chipselect.
2756          */
2757         if (!ctlr->num_chipselect) {
2758                 status = -EINVAL;
2759                 goto free_bus_id;
2760         }
2761
2762         status = device_add(&ctlr->dev);
2763         if (status < 0)
2764                 goto free_bus_id;
2765         dev_dbg(dev, "registered %s %s\n",
2766                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2767                         dev_name(&ctlr->dev));
2768
2769         /*
2770          * If we're using a queued driver, start the queue. Note that we don't
2771          * need the queueing logic if the driver is only supporting high-level
2772          * memory operations.
2773          */
2774         if (ctlr->transfer) {
2775                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2776         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2777                 status = spi_controller_initialize_queue(ctlr);
2778                 if (status) {
2779                         device_del(&ctlr->dev);
2780                         goto free_bus_id;
2781                 }
2782         }
2783         /* add statistics */
2784         spin_lock_init(&ctlr->statistics.lock);
2785
2786         mutex_lock(&board_lock);
2787         list_add_tail(&ctlr->list, &spi_controller_list);
2788         list_for_each_entry(bi, &board_list, list)
2789                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2790         mutex_unlock(&board_lock);
2791
2792         /* Register devices from the device tree and ACPI */
2793         of_register_spi_devices(ctlr);
2794         acpi_register_spi_devices(ctlr);
2795         return status;
2796
2797 free_bus_id:
2798         mutex_lock(&board_lock);
2799         idr_remove(&spi_master_idr, ctlr->bus_num);
2800         mutex_unlock(&board_lock);
2801         return status;
2802 }
2803 EXPORT_SYMBOL_GPL(spi_register_controller);
2804
2805 static void devm_spi_unregister(struct device *dev, void *res)
2806 {
2807         spi_unregister_controller(*(struct spi_controller **)res);
2808 }
2809
2810 /**
2811  * devm_spi_register_controller - register managed SPI master or slave
2812  *      controller
2813  * @dev:    device managing SPI controller
2814  * @ctlr: initialized controller, originally from spi_alloc_master() or
2815  *      spi_alloc_slave()
2816  * Context: can sleep
2817  *
2818  * Register a SPI device as with spi_register_controller() which will
2819  * automatically be unregistered and freed.
2820  *
2821  * Return: zero on success, else a negative error code.
2822  */
2823 int devm_spi_register_controller(struct device *dev,
2824                                  struct spi_controller *ctlr)
2825 {
2826         struct spi_controller **ptr;
2827         int ret;
2828
2829         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2830         if (!ptr)
2831                 return -ENOMEM;
2832
2833         ret = spi_register_controller(ctlr);
2834         if (!ret) {
2835                 *ptr = ctlr;
2836                 devres_add(dev, ptr);
2837         } else {
2838                 devres_free(ptr);
2839         }
2840
2841         return ret;
2842 }
2843 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2844
2845 static int devm_spi_match_controller(struct device *dev, void *res, void *ctlr)
2846 {
2847         return *(struct spi_controller **)res == ctlr;
2848 }
2849
2850 static int __unregister(struct device *dev, void *null)
2851 {
2852         spi_unregister_device(to_spi_device(dev));
2853         return 0;
2854 }
2855
2856 /**
2857  * spi_unregister_controller - unregister SPI master or slave controller
2858  * @ctlr: the controller being unregistered
2859  * Context: can sleep
2860  *
2861  * This call is used only by SPI controller drivers, which are the
2862  * only ones directly touching chip registers.
2863  *
2864  * This must be called from context that can sleep.
2865  *
2866  * Note that this function also drops a reference to the controller.
2867  */
2868 void spi_unregister_controller(struct spi_controller *ctlr)
2869 {
2870         struct spi_controller *found;
2871         int id = ctlr->bus_num;
2872
2873         /* Prevent addition of new devices, unregister existing ones */
2874         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2875                 mutex_lock(&spi_add_lock);
2876
2877         device_for_each_child(&ctlr->dev, NULL, __unregister);
2878
2879         /* First make sure that this controller was ever added */
2880         mutex_lock(&board_lock);
2881         found = idr_find(&spi_master_idr, id);
2882         mutex_unlock(&board_lock);
2883         if (ctlr->queued) {
2884                 if (spi_destroy_queue(ctlr))
2885                         dev_err(&ctlr->dev, "queue remove failed\n");
2886         }
2887         mutex_lock(&board_lock);
2888         list_del(&ctlr->list);
2889         mutex_unlock(&board_lock);
2890
2891         device_del(&ctlr->dev);
2892
2893         /* Release the last reference on the controller if its driver
2894          * has not yet been converted to devm_spi_alloc_master/slave().
2895          */
2896         if (!devres_find(ctlr->dev.parent, devm_spi_release_controller,
2897                          devm_spi_match_controller, ctlr))
2898                 put_device(&ctlr->dev);
2899
2900         /* free bus id */
2901         mutex_lock(&board_lock);
2902         if (found == ctlr)
2903                 idr_remove(&spi_master_idr, id);
2904         mutex_unlock(&board_lock);
2905
2906         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2907                 mutex_unlock(&spi_add_lock);
2908 }
2909 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2910
2911 int spi_controller_suspend(struct spi_controller *ctlr)
2912 {
2913         int ret;
2914
2915         /* Basically no-ops for non-queued controllers */
2916         if (!ctlr->queued)
2917                 return 0;
2918
2919         ret = spi_stop_queue(ctlr);
2920         if (ret)
2921                 dev_err(&ctlr->dev, "queue stop failed\n");
2922
2923         return ret;
2924 }
2925 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2926
2927 int spi_controller_resume(struct spi_controller *ctlr)
2928 {
2929         int ret;
2930
2931         if (!ctlr->queued)
2932                 return 0;
2933
2934         ret = spi_start_queue(ctlr);
2935         if (ret)
2936                 dev_err(&ctlr->dev, "queue restart failed\n");
2937
2938         return ret;
2939 }
2940 EXPORT_SYMBOL_GPL(spi_controller_resume);
2941
2942 static int __spi_controller_match(struct device *dev, const void *data)
2943 {
2944         struct spi_controller *ctlr;
2945         const u16 *bus_num = data;
2946
2947         ctlr = container_of(dev, struct spi_controller, dev);
2948         return ctlr->bus_num == *bus_num;
2949 }
2950
2951 /**
2952  * spi_busnum_to_master - look up master associated with bus_num
2953  * @bus_num: the master's bus number
2954  * Context: can sleep
2955  *
2956  * This call may be used with devices that are registered after
2957  * arch init time.  It returns a refcounted pointer to the relevant
2958  * spi_controller (which the caller must release), or NULL if there is
2959  * no such master registered.
2960  *
2961  * Return: the SPI master structure on success, else NULL.
2962  */
2963 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2964 {
2965         struct device           *dev;
2966         struct spi_controller   *ctlr = NULL;
2967
2968         dev = class_find_device(&spi_master_class, NULL, &bus_num,
2969                                 __spi_controller_match);
2970         if (dev)
2971                 ctlr = container_of(dev, struct spi_controller, dev);
2972         /* reference got in class_find_device */
2973         return ctlr;
2974 }
2975 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2976
2977 /*-------------------------------------------------------------------------*/
2978
2979 /* Core methods for SPI resource management */
2980
2981 /**
2982  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2983  *                 during the processing of a spi_message while using
2984  *                 spi_transfer_one
2985  * @spi:     the spi device for which we allocate memory
2986  * @release: the release code to execute for this resource
2987  * @size:    size to alloc and return
2988  * @gfp:     GFP allocation flags
2989  *
2990  * Return: the pointer to the allocated data
2991  *
2992  * This may get enhanced in the future to allocate from a memory pool
2993  * of the @spi_device or @spi_controller to avoid repeated allocations.
2994  */
2995 void *spi_res_alloc(struct spi_device *spi,
2996                     spi_res_release_t release,
2997                     size_t size, gfp_t gfp)
2998 {
2999         struct spi_res *sres;
3000
3001         sres = kzalloc(sizeof(*sres) + size, gfp);
3002         if (!sres)
3003                 return NULL;
3004
3005         INIT_LIST_HEAD(&sres->entry);
3006         sres->release = release;
3007
3008         return sres->data;
3009 }
3010 EXPORT_SYMBOL_GPL(spi_res_alloc);
3011
3012 /**
3013  * spi_res_free - free an spi resource
3014  * @res: pointer to the custom data of a resource
3015  *
3016  */
3017 void spi_res_free(void *res)
3018 {
3019         struct spi_res *sres = container_of(res, struct spi_res, data);
3020
3021         if (!res)
3022                 return;
3023
3024         WARN_ON(!list_empty(&sres->entry));
3025         kfree(sres);
3026 }
3027 EXPORT_SYMBOL_GPL(spi_res_free);
3028
3029 /**
3030  * spi_res_add - add a spi_res to the spi_message
3031  * @message: the spi message
3032  * @res:     the spi_resource
3033  */
3034 void spi_res_add(struct spi_message *message, void *res)
3035 {
3036         struct spi_res *sres = container_of(res, struct spi_res, data);
3037
3038         WARN_ON(!list_empty(&sres->entry));
3039         list_add_tail(&sres->entry, &message->resources);
3040 }
3041 EXPORT_SYMBOL_GPL(spi_res_add);
3042
3043 /**
3044  * spi_res_release - release all spi resources for this message
3045  * @ctlr:  the @spi_controller
3046  * @message: the @spi_message
3047  */
3048 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3049 {
3050         struct spi_res *res, *tmp;
3051
3052         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3053                 if (res->release)
3054                         res->release(ctlr, message, res->data);
3055
3056                 list_del(&res->entry);
3057
3058                 kfree(res);
3059         }
3060 }
3061 EXPORT_SYMBOL_GPL(spi_res_release);
3062
3063 /*-------------------------------------------------------------------------*/
3064
3065 /* Core methods for spi_message alterations */
3066
3067 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3068                                             struct spi_message *msg,
3069                                             void *res)
3070 {
3071         struct spi_replaced_transfers *rxfer = res;
3072         size_t i;
3073
3074         /* call extra callback if requested */
3075         if (rxfer->release)
3076                 rxfer->release(ctlr, msg, res);
3077
3078         /* insert replaced transfers back into the message */
3079         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3080
3081         /* remove the formerly inserted entries */
3082         for (i = 0; i < rxfer->inserted; i++)
3083                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3084 }
3085
3086 /**
3087  * spi_replace_transfers - replace transfers with several transfers
3088  *                         and register change with spi_message.resources
3089  * @msg:           the spi_message we work upon
3090  * @xfer_first:    the first spi_transfer we want to replace
3091  * @remove:        number of transfers to remove
3092  * @insert:        the number of transfers we want to insert instead
3093  * @release:       extra release code necessary in some circumstances
3094  * @extradatasize: extra data to allocate (with alignment guarantees
3095  *                 of struct @spi_transfer)
3096  * @gfp:           gfp flags
3097  *
3098  * Returns: pointer to @spi_replaced_transfers,
3099  *          PTR_ERR(...) in case of errors.
3100  */
3101 struct spi_replaced_transfers *spi_replace_transfers(
3102         struct spi_message *msg,
3103         struct spi_transfer *xfer_first,
3104         size_t remove,
3105         size_t insert,
3106         spi_replaced_release_t release,
3107         size_t extradatasize,
3108         gfp_t gfp)
3109 {
3110         struct spi_replaced_transfers *rxfer;
3111         struct spi_transfer *xfer;
3112         size_t i;
3113
3114         /* allocate the structure using spi_res */
3115         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3116                               struct_size(rxfer, inserted_transfers, insert)
3117                               + extradatasize,
3118                               gfp);
3119         if (!rxfer)
3120                 return ERR_PTR(-ENOMEM);
3121
3122         /* the release code to invoke before running the generic release */
3123         rxfer->release = release;
3124
3125         /* assign extradata */
3126         if (extradatasize)
3127                 rxfer->extradata =
3128                         &rxfer->inserted_transfers[insert];
3129
3130         /* init the replaced_transfers list */
3131         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3132
3133         /* assign the list_entry after which we should reinsert
3134          * the @replaced_transfers - it may be spi_message.messages!
3135          */
3136         rxfer->replaced_after = xfer_first->transfer_list.prev;
3137
3138         /* remove the requested number of transfers */
3139         for (i = 0; i < remove; i++) {
3140                 /* if the entry after replaced_after it is msg->transfers
3141                  * then we have been requested to remove more transfers
3142                  * than are in the list
3143                  */
3144                 if (rxfer->replaced_after->next == &msg->transfers) {
3145                         dev_err(&msg->spi->dev,
3146                                 "requested to remove more spi_transfers than are available\n");
3147                         /* insert replaced transfers back into the message */
3148                         list_splice(&rxfer->replaced_transfers,
3149                                     rxfer->replaced_after);
3150
3151                         /* free the spi_replace_transfer structure */
3152                         spi_res_free(rxfer);
3153
3154                         /* and return with an error */
3155                         return ERR_PTR(-EINVAL);
3156                 }
3157
3158                 /* remove the entry after replaced_after from list of
3159                  * transfers and add it to list of replaced_transfers
3160                  */
3161                 list_move_tail(rxfer->replaced_after->next,
3162                                &rxfer->replaced_transfers);
3163         }
3164
3165         /* create copy of the given xfer with identical settings
3166          * based on the first transfer to get removed
3167          */
3168         for (i = 0; i < insert; i++) {
3169                 /* we need to run in reverse order */
3170                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3171
3172                 /* copy all spi_transfer data */
3173                 memcpy(xfer, xfer_first, sizeof(*xfer));
3174
3175                 /* add to list */
3176                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3177
3178                 /* clear cs_change and delay for all but the last */
3179                 if (i) {
3180                         xfer->cs_change = false;
3181                         xfer->delay_usecs = 0;
3182                         xfer->delay.value = 0;
3183                 }
3184         }
3185
3186         /* set up inserted */
3187         rxfer->inserted = insert;
3188
3189         /* and register it with spi_res/spi_message */
3190         spi_res_add(msg, rxfer);
3191
3192         return rxfer;
3193 }
3194 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3195
3196 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3197                                         struct spi_message *msg,
3198                                         struct spi_transfer **xferp,
3199                                         size_t maxsize,
3200                                         gfp_t gfp)
3201 {
3202         struct spi_transfer *xfer = *xferp, *xfers;
3203         struct spi_replaced_transfers *srt;
3204         size_t offset;
3205         size_t count, i;
3206
3207         /* calculate how many we have to replace */
3208         count = DIV_ROUND_UP(xfer->len, maxsize);
3209
3210         /* create replacement */
3211         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3212         if (IS_ERR(srt))
3213                 return PTR_ERR(srt);
3214         xfers = srt->inserted_transfers;
3215
3216         /* now handle each of those newly inserted spi_transfers
3217          * note that the replacements spi_transfers all are preset
3218          * to the same values as *xferp, so tx_buf, rx_buf and len
3219          * are all identical (as well as most others)
3220          * so we just have to fix up len and the pointers.
3221          *
3222          * this also includes support for the depreciated
3223          * spi_message.is_dma_mapped interface
3224          */
3225
3226         /* the first transfer just needs the length modified, so we
3227          * run it outside the loop
3228          */
3229         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3230
3231         /* all the others need rx_buf/tx_buf also set */
3232         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3233                 /* update rx_buf, tx_buf and dma */
3234                 if (xfers[i].rx_buf)
3235                         xfers[i].rx_buf += offset;
3236                 if (xfers[i].rx_dma)
3237                         xfers[i].rx_dma += offset;
3238                 if (xfers[i].tx_buf)
3239                         xfers[i].tx_buf += offset;
3240                 if (xfers[i].tx_dma)
3241                         xfers[i].tx_dma += offset;
3242
3243                 /* update length */
3244                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3245         }
3246
3247         /* we set up xferp to the last entry we have inserted,
3248          * so that we skip those already split transfers
3249          */
3250         *xferp = &xfers[count - 1];
3251
3252         /* increment statistics counters */
3253         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3254                                        transfers_split_maxsize);
3255         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3256                                        transfers_split_maxsize);
3257
3258         return 0;
3259 }
3260
3261 /**
3262  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3263  *                               when an individual transfer exceeds a
3264  *                               certain size
3265  * @ctlr:    the @spi_controller for this transfer
3266  * @msg:   the @spi_message to transform
3267  * @maxsize:  the maximum when to apply this
3268  * @gfp: GFP allocation flags
3269  *
3270  * Return: status of transformation
3271  */
3272 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3273                                 struct spi_message *msg,
3274                                 size_t maxsize,
3275                                 gfp_t gfp)
3276 {
3277         struct spi_transfer *xfer;
3278         int ret;
3279
3280         /* iterate over the transfer_list,
3281          * but note that xfer is advanced to the last transfer inserted
3282          * to avoid checking sizes again unnecessarily (also xfer does
3283          * potentiall belong to a different list by the time the
3284          * replacement has happened
3285          */
3286         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3287                 if (xfer->len > maxsize) {
3288                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3289                                                            maxsize, gfp);
3290                         if (ret)
3291                                 return ret;
3292                 }
3293         }
3294
3295         return 0;
3296 }
3297 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3298
3299 /*-------------------------------------------------------------------------*/
3300
3301 /* Core methods for SPI controller protocol drivers.  Some of the
3302  * other core methods are currently defined as inline functions.
3303  */
3304
3305 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3306                                         u8 bits_per_word)
3307 {
3308         if (ctlr->bits_per_word_mask) {
3309                 /* Only 32 bits fit in the mask */
3310                 if (bits_per_word > 32)
3311                         return -EINVAL;
3312                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3313                         return -EINVAL;
3314         }
3315
3316         return 0;
3317 }
3318
3319 /**
3320  * spi_setup - setup SPI mode and clock rate
3321  * @spi: the device whose settings are being modified
3322  * Context: can sleep, and no requests are queued to the device
3323  *
3324  * SPI protocol drivers may need to update the transfer mode if the
3325  * device doesn't work with its default.  They may likewise need
3326  * to update clock rates or word sizes from initial values.  This function
3327  * changes those settings, and must be called from a context that can sleep.
3328  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3329  * effect the next time the device is selected and data is transferred to
3330  * or from it.  When this function returns, the spi device is deselected.
3331  *
3332  * Note that this call will fail if the protocol driver specifies an option
3333  * that the underlying controller or its driver does not support.  For
3334  * example, not all hardware supports wire transfers using nine bit words,
3335  * LSB-first wire encoding, or active-high chipselects.
3336  *
3337  * Return: zero on success, else a negative error code.
3338  */
3339 int spi_setup(struct spi_device *spi)
3340 {
3341         unsigned        bad_bits, ugly_bits;
3342         int             status;
3343
3344         /*
3345          * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3346          * are set at the same time
3347          */
3348         if ((hweight_long(spi->mode &
3349                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3350             (hweight_long(spi->mode &
3351                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3352                 dev_err(&spi->dev,
3353                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3354                 return -EINVAL;
3355         }
3356         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3357          */
3358         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3359                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3360                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3361                 return -EINVAL;
3362         /* help drivers fail *cleanly* when they need options
3363          * that aren't supported with their current controller
3364          * SPI_CS_WORD has a fallback software implementation,
3365          * so it is ignored here.
3366          */
3367         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3368                                  SPI_NO_TX | SPI_NO_RX);
3369         /* nothing prevents from working with active-high CS in case if it
3370          * is driven by GPIO.
3371          */
3372         if (gpio_is_valid(spi->cs_gpio))
3373                 bad_bits &= ~SPI_CS_HIGH;
3374         ugly_bits = bad_bits &
3375                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3376                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3377         if (ugly_bits) {
3378                 dev_warn(&spi->dev,
3379                          "setup: ignoring unsupported mode bits %x\n",
3380                          ugly_bits);
3381                 spi->mode &= ~ugly_bits;
3382                 bad_bits &= ~ugly_bits;
3383         }
3384         if (bad_bits) {
3385                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3386                         bad_bits);
3387                 return -EINVAL;
3388         }
3389
3390         if (!spi->bits_per_word)
3391                 spi->bits_per_word = 8;
3392
3393         status = __spi_validate_bits_per_word(spi->controller,
3394                                               spi->bits_per_word);
3395         if (status)
3396                 return status;
3397
3398         if (spi->controller->max_speed_hz &&
3399             (!spi->max_speed_hz ||
3400              spi->max_speed_hz > spi->controller->max_speed_hz))
3401                 spi->max_speed_hz = spi->controller->max_speed_hz;
3402
3403         mutex_lock(&spi->controller->io_mutex);
3404
3405         if (spi->controller->setup)
3406                 status = spi->controller->setup(spi);
3407
3408         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3409                 status = pm_runtime_get_sync(spi->controller->dev.parent);
3410                 if (status < 0) {
3411                         mutex_unlock(&spi->controller->io_mutex);
3412                         pm_runtime_put_noidle(spi->controller->dev.parent);
3413                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3414                                 status);
3415                         return status;
3416                 }
3417
3418                 /*
3419                  * We do not want to return positive value from pm_runtime_get,
3420                  * there are many instances of devices calling spi_setup() and
3421                  * checking for a non-zero return value instead of a negative
3422                  * return value.
3423                  */
3424                 status = 0;
3425
3426                 spi_set_cs(spi, false);
3427                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3428                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3429         } else {
3430                 spi_set_cs(spi, false);
3431         }
3432
3433         mutex_unlock(&spi->controller->io_mutex);
3434
3435         if (spi->rt && !spi->controller->rt) {
3436                 spi->controller->rt = true;
3437                 spi_set_thread_rt(spi->controller);
3438         }
3439
3440         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3441                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3442                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3443                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3444                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3445                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3446                         spi->bits_per_word, spi->max_speed_hz,
3447                         status);
3448
3449         return status;
3450 }
3451 EXPORT_SYMBOL_GPL(spi_setup);
3452
3453 /**
3454  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3455  * @spi: the device that requires specific CS timing configuration
3456  * @setup: CS setup time specified via @spi_delay
3457  * @hold: CS hold time specified via @spi_delay
3458  * @inactive: CS inactive delay between transfers specified via @spi_delay
3459  *
3460  * Return: zero on success, else a negative error code.
3461  */
3462 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3463                       struct spi_delay *hold, struct spi_delay *inactive)
3464 {
3465         struct device *parent = spi->controller->dev.parent;
3466         size_t len;
3467         int status;
3468
3469         if (spi->controller->set_cs_timing &&
3470             !(spi->cs_gpiod || gpio_is_valid(spi->cs_gpio))) {
3471                 if (spi->controller->auto_runtime_pm) {
3472                         status = pm_runtime_get_sync(parent);
3473                         if (status < 0) {
3474                                 pm_runtime_put_noidle(parent);
3475                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3476                                         status);
3477                                 return status;
3478                         }
3479
3480                         status = spi->controller->set_cs_timing(spi, setup,
3481                                                                 hold, inactive);
3482                         pm_runtime_mark_last_busy(parent);
3483                         pm_runtime_put_autosuspend(parent);
3484                         return status;
3485                 } else {
3486                         return spi->controller->set_cs_timing(spi, setup, hold,
3487                                                               inactive);
3488                 }
3489         }
3490
3491         if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3492             (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3493             (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3494                 dev_err(&spi->dev,
3495                         "Clock-cycle delays for CS not supported in SW mode\n");
3496                 return -ENOTSUPP;
3497         }
3498
3499         len = sizeof(struct spi_delay);
3500
3501         /* copy delays to controller */
3502         if (setup)
3503                 memcpy(&spi->controller->cs_setup, setup, len);
3504         else
3505                 memset(&spi->controller->cs_setup, 0, len);
3506
3507         if (hold)
3508                 memcpy(&spi->controller->cs_hold, hold, len);
3509         else
3510                 memset(&spi->controller->cs_hold, 0, len);
3511
3512         if (inactive)
3513                 memcpy(&spi->controller->cs_inactive, inactive, len);
3514         else
3515                 memset(&spi->controller->cs_inactive, 0, len);
3516
3517         return 0;
3518 }
3519 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3520
3521 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3522                                        struct spi_device *spi)
3523 {
3524         int delay1, delay2;
3525
3526         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3527         if (delay1 < 0)
3528                 return delay1;
3529
3530         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3531         if (delay2 < 0)
3532                 return delay2;
3533
3534         if (delay1 < delay2)
3535                 memcpy(&xfer->word_delay, &spi->word_delay,
3536                        sizeof(xfer->word_delay));
3537
3538         return 0;
3539 }
3540
3541 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3542 {
3543         struct spi_controller *ctlr = spi->controller;
3544         struct spi_transfer *xfer;
3545         int w_size;
3546
3547         if (list_empty(&message->transfers))
3548                 return -EINVAL;
3549
3550         /* If an SPI controller does not support toggling the CS line on each
3551          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3552          * for the CS line, we can emulate the CS-per-word hardware function by
3553          * splitting transfers into one-word transfers and ensuring that
3554          * cs_change is set for each transfer.
3555          */
3556         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3557                                           spi->cs_gpiod ||
3558                                           gpio_is_valid(spi->cs_gpio))) {
3559                 size_t maxsize;
3560                 int ret;
3561
3562                 maxsize = (spi->bits_per_word + 7) / 8;
3563
3564                 /* spi_split_transfers_maxsize() requires message->spi */
3565                 message->spi = spi;
3566
3567                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3568                                                   GFP_KERNEL);
3569                 if (ret)
3570                         return ret;
3571
3572                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3573                         /* don't change cs_change on the last entry in the list */
3574                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3575                                 break;
3576                         xfer->cs_change = 1;
3577                 }
3578         }
3579
3580         /* Half-duplex links include original MicroWire, and ones with
3581          * only one data pin like SPI_3WIRE (switches direction) or where
3582          * either MOSI or MISO is missing.  They can also be caused by
3583          * software limitations.
3584          */
3585         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3586             (spi->mode & SPI_3WIRE)) {
3587                 unsigned flags = ctlr->flags;
3588
3589                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3590                         if (xfer->rx_buf && xfer->tx_buf)
3591                                 return -EINVAL;
3592                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3593                                 return -EINVAL;
3594                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3595                                 return -EINVAL;
3596                 }
3597         }
3598
3599         /**
3600          * Set transfer bits_per_word and max speed as spi device default if
3601          * it is not set for this transfer.
3602          * Set transfer tx_nbits and rx_nbits as single transfer default
3603          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3604          * Ensure transfer word_delay is at least as long as that required by
3605          * device itself.
3606          */
3607         message->frame_length = 0;
3608         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3609                 xfer->effective_speed_hz = 0;
3610                 message->frame_length += xfer->len;
3611                 if (!xfer->bits_per_word)
3612                         xfer->bits_per_word = spi->bits_per_word;
3613
3614                 if (!xfer->speed_hz)
3615                         xfer->speed_hz = spi->max_speed_hz;
3616
3617                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3618                         xfer->speed_hz = ctlr->max_speed_hz;
3619
3620                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3621                         return -EINVAL;
3622
3623                 /*
3624                  * SPI transfer length should be multiple of SPI word size
3625                  * where SPI word size should be power-of-two multiple
3626                  */
3627                 if (xfer->bits_per_word <= 8)
3628                         w_size = 1;
3629                 else if (xfer->bits_per_word <= 16)
3630                         w_size = 2;
3631                 else
3632                         w_size = 4;
3633
3634                 /* No partial transfers accepted */
3635                 if (xfer->len % w_size)
3636                         return -EINVAL;
3637
3638                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3639                     xfer->speed_hz < ctlr->min_speed_hz)
3640                         return -EINVAL;
3641
3642                 if (xfer->tx_buf && !xfer->tx_nbits)
3643                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3644                 if (xfer->rx_buf && !xfer->rx_nbits)
3645                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3646                 /* check transfer tx/rx_nbits:
3647                  * 1. check the value matches one of single, dual and quad
3648                  * 2. check tx/rx_nbits match the mode in spi_device
3649                  */
3650                 if (xfer->tx_buf) {
3651                         if (spi->mode & SPI_NO_TX)
3652                                 return -EINVAL;
3653                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3654                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3655                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3656                                 return -EINVAL;
3657                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3658                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3659                                 return -EINVAL;
3660                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3661                                 !(spi->mode & SPI_TX_QUAD))
3662                                 return -EINVAL;
3663                 }
3664                 /* check transfer rx_nbits */
3665                 if (xfer->rx_buf) {
3666                         if (spi->mode & SPI_NO_RX)
3667                                 return -EINVAL;
3668                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3669                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3670                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3671                                 return -EINVAL;
3672                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3673                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3674                                 return -EINVAL;
3675                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3676                                 !(spi->mode & SPI_RX_QUAD))
3677                                 return -EINVAL;
3678                 }
3679
3680                 if (_spi_xfer_word_delay_update(xfer, spi))
3681                         return -EINVAL;
3682         }
3683
3684         message->status = -EINPROGRESS;
3685
3686         return 0;
3687 }
3688
3689 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3690 {
3691         struct spi_controller *ctlr = spi->controller;
3692         struct spi_transfer *xfer;
3693
3694         /*
3695          * Some controllers do not support doing regular SPI transfers. Return
3696          * ENOTSUPP when this is the case.
3697          */
3698         if (!ctlr->transfer)
3699                 return -ENOTSUPP;
3700
3701         message->spi = spi;
3702
3703         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3704         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3705
3706         trace_spi_message_submit(message);
3707
3708         if (!ctlr->ptp_sts_supported) {
3709                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3710                         xfer->ptp_sts_word_pre = 0;
3711                         ptp_read_system_prets(xfer->ptp_sts);
3712                 }
3713         }
3714
3715         return ctlr->transfer(spi, message);
3716 }
3717
3718 /**
3719  * spi_async - asynchronous SPI transfer
3720  * @spi: device with which data will be exchanged
3721  * @message: describes the data transfers, including completion callback
3722  * Context: any (irqs may be blocked, etc)
3723  *
3724  * This call may be used in_irq and other contexts which can't sleep,
3725  * as well as from task contexts which can sleep.
3726  *
3727  * The completion callback is invoked in a context which can't sleep.
3728  * Before that invocation, the value of message->status is undefined.
3729  * When the callback is issued, message->status holds either zero (to
3730  * indicate complete success) or a negative error code.  After that
3731  * callback returns, the driver which issued the transfer request may
3732  * deallocate the associated memory; it's no longer in use by any SPI
3733  * core or controller driver code.
3734  *
3735  * Note that although all messages to a spi_device are handled in
3736  * FIFO order, messages may go to different devices in other orders.
3737  * Some device might be higher priority, or have various "hard" access
3738  * time requirements, for example.
3739  *
3740  * On detection of any fault during the transfer, processing of
3741  * the entire message is aborted, and the device is deselected.
3742  * Until returning from the associated message completion callback,
3743  * no other spi_message queued to that device will be processed.
3744  * (This rule applies equally to all the synchronous transfer calls,
3745  * which are wrappers around this core asynchronous primitive.)
3746  *
3747  * Return: zero on success, else a negative error code.
3748  */
3749 int spi_async(struct spi_device *spi, struct spi_message *message)
3750 {
3751         struct spi_controller *ctlr = spi->controller;
3752         int ret;
3753         unsigned long flags;
3754
3755         ret = __spi_validate(spi, message);
3756         if (ret != 0)
3757                 return ret;
3758
3759         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3760
3761         if (ctlr->bus_lock_flag)
3762                 ret = -EBUSY;
3763         else
3764                 ret = __spi_async(spi, message);
3765
3766         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3767
3768         return ret;
3769 }
3770 EXPORT_SYMBOL_GPL(spi_async);
3771
3772 /**
3773  * spi_async_locked - version of spi_async with exclusive bus usage
3774  * @spi: device with which data will be exchanged
3775  * @message: describes the data transfers, including completion callback
3776  * Context: any (irqs may be blocked, etc)
3777  *
3778  * This call may be used in_irq and other contexts which can't sleep,
3779  * as well as from task contexts which can sleep.
3780  *
3781  * The completion callback is invoked in a context which can't sleep.
3782  * Before that invocation, the value of message->status is undefined.
3783  * When the callback is issued, message->status holds either zero (to
3784  * indicate complete success) or a negative error code.  After that
3785  * callback returns, the driver which issued the transfer request may
3786  * deallocate the associated memory; it's no longer in use by any SPI
3787  * core or controller driver code.
3788  *
3789  * Note that although all messages to a spi_device are handled in
3790  * FIFO order, messages may go to different devices in other orders.
3791  * Some device might be higher priority, or have various "hard" access
3792  * time requirements, for example.
3793  *
3794  * On detection of any fault during the transfer, processing of
3795  * the entire message is aborted, and the device is deselected.
3796  * Until returning from the associated message completion callback,
3797  * no other spi_message queued to that device will be processed.
3798  * (This rule applies equally to all the synchronous transfer calls,
3799  * which are wrappers around this core asynchronous primitive.)
3800  *
3801  * Return: zero on success, else a negative error code.
3802  */
3803 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3804 {
3805         struct spi_controller *ctlr = spi->controller;
3806         int ret;
3807         unsigned long flags;
3808
3809         ret = __spi_validate(spi, message);
3810         if (ret != 0)
3811                 return ret;
3812
3813         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3814
3815         ret = __spi_async(spi, message);
3816
3817         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3818
3819         return ret;
3820
3821 }
3822 EXPORT_SYMBOL_GPL(spi_async_locked);
3823
3824 /*-------------------------------------------------------------------------*/
3825
3826 /* Utility methods for SPI protocol drivers, layered on
3827  * top of the core.  Some other utility methods are defined as
3828  * inline functions.
3829  */
3830
3831 static void spi_complete(void *arg)
3832 {
3833         complete(arg);
3834 }
3835
3836 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3837 {
3838         DECLARE_COMPLETION_ONSTACK(done);
3839         int status;
3840         struct spi_controller *ctlr = spi->controller;
3841         unsigned long flags;
3842
3843         status = __spi_validate(spi, message);
3844         if (status != 0)
3845                 return status;
3846
3847         message->complete = spi_complete;
3848         message->context = &done;
3849         message->spi = spi;
3850
3851         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3852         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3853
3854         /* If we're not using the legacy transfer method then we will
3855          * try to transfer in the calling context so special case.
3856          * This code would be less tricky if we could remove the
3857          * support for driver implemented message queues.
3858          */
3859         if (ctlr->transfer == spi_queued_transfer) {
3860                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3861
3862                 trace_spi_message_submit(message);
3863
3864                 status = __spi_queued_transfer(spi, message, false);
3865
3866                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3867         } else {
3868                 status = spi_async_locked(spi, message);
3869         }
3870
3871         if (status == 0) {
3872                 /* Push out the messages in the calling context if we
3873                  * can.
3874                  */
3875                 if (ctlr->transfer == spi_queued_transfer) {
3876                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3877                                                        spi_sync_immediate);
3878                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3879                                                        spi_sync_immediate);
3880                         __spi_pump_messages(ctlr, false);
3881                 }
3882
3883                 wait_for_completion(&done);
3884                 status = message->status;
3885         }
3886         message->context = NULL;
3887         return status;
3888 }
3889
3890 /**
3891  * spi_sync - blocking/synchronous SPI data transfers
3892  * @spi: device with which data will be exchanged
3893  * @message: describes the data transfers
3894  * Context: can sleep
3895  *
3896  * This call may only be used from a context that may sleep.  The sleep
3897  * is non-interruptible, and has no timeout.  Low-overhead controller
3898  * drivers may DMA directly into and out of the message buffers.
3899  *
3900  * Note that the SPI device's chip select is active during the message,
3901  * and then is normally disabled between messages.  Drivers for some
3902  * frequently-used devices may want to minimize costs of selecting a chip,
3903  * by leaving it selected in anticipation that the next message will go
3904  * to the same chip.  (That may increase power usage.)
3905  *
3906  * Also, the caller is guaranteeing that the memory associated with the
3907  * message will not be freed before this call returns.
3908  *
3909  * Return: zero on success, else a negative error code.
3910  */
3911 int spi_sync(struct spi_device *spi, struct spi_message *message)
3912 {
3913         int ret;
3914
3915         mutex_lock(&spi->controller->bus_lock_mutex);
3916         ret = __spi_sync(spi, message);
3917         mutex_unlock(&spi->controller->bus_lock_mutex);
3918
3919         return ret;
3920 }
3921 EXPORT_SYMBOL_GPL(spi_sync);
3922
3923 /**
3924  * spi_sync_locked - version of spi_sync with exclusive bus usage
3925  * @spi: device with which data will be exchanged
3926  * @message: describes the data transfers
3927  * Context: can sleep
3928  *
3929  * This call may only be used from a context that may sleep.  The sleep
3930  * is non-interruptible, and has no timeout.  Low-overhead controller
3931  * drivers may DMA directly into and out of the message buffers.
3932  *
3933  * This call should be used by drivers that require exclusive access to the
3934  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3935  * be released by a spi_bus_unlock call when the exclusive access is over.
3936  *
3937  * Return: zero on success, else a negative error code.
3938  */
3939 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3940 {
3941         return __spi_sync(spi, message);
3942 }
3943 EXPORT_SYMBOL_GPL(spi_sync_locked);
3944
3945 /**
3946  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3947  * @ctlr: SPI bus master that should be locked for exclusive bus access
3948  * Context: can sleep
3949  *
3950  * This call may only be used from a context that may sleep.  The sleep
3951  * is non-interruptible, and has no timeout.
3952  *
3953  * This call should be used by drivers that require exclusive access to the
3954  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3955  * exclusive access is over. Data transfer must be done by spi_sync_locked
3956  * and spi_async_locked calls when the SPI bus lock is held.
3957  *
3958  * Return: always zero.
3959  */
3960 int spi_bus_lock(struct spi_controller *ctlr)
3961 {
3962         unsigned long flags;
3963
3964         mutex_lock(&ctlr->bus_lock_mutex);
3965
3966         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3967         ctlr->bus_lock_flag = 1;
3968         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3969
3970         /* mutex remains locked until spi_bus_unlock is called */
3971
3972         return 0;
3973 }
3974 EXPORT_SYMBOL_GPL(spi_bus_lock);
3975
3976 /**
3977  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3978  * @ctlr: SPI bus master that was locked for exclusive bus access
3979  * Context: can sleep
3980  *
3981  * This call may only be used from a context that may sleep.  The sleep
3982  * is non-interruptible, and has no timeout.
3983  *
3984  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3985  * call.
3986  *
3987  * Return: always zero.
3988  */
3989 int spi_bus_unlock(struct spi_controller *ctlr)
3990 {
3991         ctlr->bus_lock_flag = 0;
3992
3993         mutex_unlock(&ctlr->bus_lock_mutex);
3994
3995         return 0;
3996 }
3997 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3998
3999 /* portable code must never pass more than 32 bytes */
4000 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4001
4002 static u8       *buf;
4003
4004 /**
4005  * spi_write_then_read - SPI synchronous write followed by read
4006  * @spi: device with which data will be exchanged
4007  * @txbuf: data to be written (need not be dma-safe)
4008  * @n_tx: size of txbuf, in bytes
4009  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4010  * @n_rx: size of rxbuf, in bytes
4011  * Context: can sleep
4012  *
4013  * This performs a half duplex MicroWire style transaction with the
4014  * device, sending txbuf and then reading rxbuf.  The return value
4015  * is zero for success, else a negative errno status code.
4016  * This call may only be used from a context that may sleep.
4017  *
4018  * Parameters to this routine are always copied using a small buffer.
4019  * Performance-sensitive or bulk transfer code should instead use
4020  * spi_{async,sync}() calls with dma-safe buffers.
4021  *
4022  * Return: zero on success, else a negative error code.
4023  */
4024 int spi_write_then_read(struct spi_device *spi,
4025                 const void *txbuf, unsigned n_tx,
4026                 void *rxbuf, unsigned n_rx)
4027 {
4028         static DEFINE_MUTEX(lock);
4029
4030         int                     status;
4031         struct spi_message      message;
4032         struct spi_transfer     x[2];
4033         u8                      *local_buf;
4034
4035         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
4036          * copying here, (as a pure convenience thing), but we can
4037          * keep heap costs out of the hot path unless someone else is
4038          * using the pre-allocated buffer or the transfer is too large.
4039          */
4040         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4041                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4042                                     GFP_KERNEL | GFP_DMA);
4043                 if (!local_buf)
4044                         return -ENOMEM;
4045         } else {
4046                 local_buf = buf;
4047         }
4048
4049         spi_message_init(&message);
4050         memset(x, 0, sizeof(x));
4051         if (n_tx) {
4052                 x[0].len = n_tx;
4053                 spi_message_add_tail(&x[0], &message);
4054         }
4055         if (n_rx) {
4056                 x[1].len = n_rx;
4057                 spi_message_add_tail(&x[1], &message);
4058         }
4059
4060         memcpy(local_buf, txbuf, n_tx);
4061         x[0].tx_buf = local_buf;
4062         x[1].rx_buf = local_buf + n_tx;
4063
4064         /* do the i/o */
4065         status = spi_sync(spi, &message);
4066         if (status == 0)
4067                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4068
4069         if (x[0].tx_buf == buf)
4070                 mutex_unlock(&lock);
4071         else
4072                 kfree(local_buf);
4073
4074         return status;
4075 }
4076 EXPORT_SYMBOL_GPL(spi_write_then_read);
4077
4078 /*-------------------------------------------------------------------------*/
4079
4080 #if IS_ENABLED(CONFIG_OF)
4081 /* must call put_device() when done with returned spi_device device */
4082 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4083 {
4084         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4085
4086         return dev ? to_spi_device(dev) : NULL;
4087 }
4088 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4089 #endif /* IS_ENABLED(CONFIG_OF) */
4090
4091 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4092 /* the spi controllers are not using spi_bus, so we find it with another way */
4093 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4094 {
4095         struct device *dev;
4096
4097         dev = class_find_device_by_of_node(&spi_master_class, node);
4098         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4099                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4100         if (!dev)
4101                 return NULL;
4102
4103         /* reference got in class_find_device */
4104         return container_of(dev, struct spi_controller, dev);
4105 }
4106
4107 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4108                          void *arg)
4109 {
4110         struct of_reconfig_data *rd = arg;
4111         struct spi_controller *ctlr;
4112         struct spi_device *spi;
4113
4114         switch (of_reconfig_get_state_change(action, arg)) {
4115         case OF_RECONFIG_CHANGE_ADD:
4116                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4117                 if (ctlr == NULL)
4118                         return NOTIFY_OK;       /* not for us */
4119
4120                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4121                         put_device(&ctlr->dev);
4122                         return NOTIFY_OK;
4123                 }
4124
4125                 spi = of_register_spi_device(ctlr, rd->dn);
4126                 put_device(&ctlr->dev);
4127
4128                 if (IS_ERR(spi)) {
4129                         pr_err("%s: failed to create for '%pOF'\n",
4130                                         __func__, rd->dn);
4131                         of_node_clear_flag(rd->dn, OF_POPULATED);
4132                         return notifier_from_errno(PTR_ERR(spi));
4133                 }
4134                 break;
4135
4136         case OF_RECONFIG_CHANGE_REMOVE:
4137                 /* already depopulated? */
4138                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4139                         return NOTIFY_OK;
4140
4141                 /* find our device by node */
4142                 spi = of_find_spi_device_by_node(rd->dn);
4143                 if (spi == NULL)
4144                         return NOTIFY_OK;       /* no? not meant for us */
4145
4146                 /* unregister takes one ref away */
4147                 spi_unregister_device(spi);
4148
4149                 /* and put the reference of the find */
4150                 put_device(&spi->dev);
4151                 break;
4152         }
4153
4154         return NOTIFY_OK;
4155 }
4156
4157 static struct notifier_block spi_of_notifier = {
4158         .notifier_call = of_spi_notify,
4159 };
4160 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4161 extern struct notifier_block spi_of_notifier;
4162 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4163
4164 #if IS_ENABLED(CONFIG_ACPI)
4165 static int spi_acpi_controller_match(struct device *dev, const void *data)
4166 {
4167         return ACPI_COMPANION(dev->parent) == data;
4168 }
4169
4170 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4171 {
4172         struct device *dev;
4173
4174         dev = class_find_device(&spi_master_class, NULL, adev,
4175                                 spi_acpi_controller_match);
4176         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4177                 dev = class_find_device(&spi_slave_class, NULL, adev,
4178                                         spi_acpi_controller_match);
4179         if (!dev)
4180                 return NULL;
4181
4182         return container_of(dev, struct spi_controller, dev);
4183 }
4184
4185 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4186 {
4187         struct device *dev;
4188
4189         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4190         return to_spi_device(dev);
4191 }
4192
4193 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4194                            void *arg)
4195 {
4196         struct acpi_device *adev = arg;
4197         struct spi_controller *ctlr;
4198         struct spi_device *spi;
4199
4200         switch (value) {
4201         case ACPI_RECONFIG_DEVICE_ADD:
4202                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4203                 if (!ctlr)
4204                         break;
4205
4206                 acpi_register_spi_device(ctlr, adev);
4207                 put_device(&ctlr->dev);
4208                 break;
4209         case ACPI_RECONFIG_DEVICE_REMOVE:
4210                 if (!acpi_device_enumerated(adev))
4211                         break;
4212
4213                 spi = acpi_spi_find_device_by_adev(adev);
4214                 if (!spi)
4215                         break;
4216
4217                 spi_unregister_device(spi);
4218                 put_device(&spi->dev);
4219                 break;
4220         }
4221
4222         return NOTIFY_OK;
4223 }
4224
4225 static struct notifier_block spi_acpi_notifier = {
4226         .notifier_call = acpi_spi_notify,
4227 };
4228 #else
4229 extern struct notifier_block spi_acpi_notifier;
4230 #endif
4231
4232 static int __init spi_init(void)
4233 {
4234         int     status;
4235
4236         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4237         if (!buf) {
4238                 status = -ENOMEM;
4239                 goto err0;
4240         }
4241
4242         status = bus_register(&spi_bus_type);
4243         if (status < 0)
4244                 goto err1;
4245
4246         status = class_register(&spi_master_class);
4247         if (status < 0)
4248                 goto err2;
4249
4250         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4251                 status = class_register(&spi_slave_class);
4252                 if (status < 0)
4253                         goto err3;
4254         }
4255
4256         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4257                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4258         if (IS_ENABLED(CONFIG_ACPI))
4259                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4260
4261         return 0;
4262
4263 err3:
4264         class_unregister(&spi_master_class);
4265 err2:
4266         bus_unregister(&spi_bus_type);
4267 err1:
4268         kfree(buf);
4269         buf = NULL;
4270 err0:
4271         return status;
4272 }
4273
4274 /* board_info is normally registered in arch_initcall(),
4275  * but even essential drivers wait till later
4276  *
4277  * REVISIT only boardinfo really needs static linking. the rest (device and
4278  * driver registration) _could_ be dynamically linked (modular) ... costs
4279  * include needing to have boardinfo data structures be much more public.
4280  */
4281 postcore_initcall(spi_init);