Merge tag 'nfs-for-5.9-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[linux-2.6-microblaze.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48         struct spi_device       *spi = to_spi_device(dev);
49
50         /* spi controllers may cleanup for released devices */
51         if (spi->controller->cleanup)
52                 spi->controller->cleanup(spi);
53
54         spi_controller_put(spi->controller);
55         kfree(spi->driver_override);
56         kfree(spi);
57 }
58
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62         const struct spi_device *spi = to_spi_device(dev);
63         int len;
64
65         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66         if (len != -ENODEV)
67                 return len;
68
69         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
73 static ssize_t driver_override_store(struct device *dev,
74                                      struct device_attribute *a,
75                                      const char *buf, size_t count)
76 {
77         struct spi_device *spi = to_spi_device(dev);
78         const char *end = memchr(buf, '\n', count);
79         const size_t len = end ? end - buf : count;
80         const char *driver_override, *old;
81
82         /* We need to keep extra room for a newline when displaying value */
83         if (len >= (PAGE_SIZE - 1))
84                 return -EINVAL;
85
86         driver_override = kstrndup(buf, len, GFP_KERNEL);
87         if (!driver_override)
88                 return -ENOMEM;
89
90         device_lock(dev);
91         old = spi->driver_override;
92         if (len) {
93                 spi->driver_override = driver_override;
94         } else {
95                 /* Empty string, disable driver override */
96                 spi->driver_override = NULL;
97                 kfree(driver_override);
98         }
99         device_unlock(dev);
100         kfree(old);
101
102         return count;
103 }
104
105 static ssize_t driver_override_show(struct device *dev,
106                                     struct device_attribute *a, char *buf)
107 {
108         const struct spi_device *spi = to_spi_device(dev);
109         ssize_t len;
110
111         device_lock(dev);
112         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113         device_unlock(dev);
114         return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117
118 #define SPI_STATISTICS_ATTRS(field, file)                               \
119 static ssize_t spi_controller_##field##_show(struct device *dev,        \
120                                              struct device_attribute *attr, \
121                                              char *buf)                 \
122 {                                                                       \
123         struct spi_controller *ctlr = container_of(dev,                 \
124                                          struct spi_controller, dev);   \
125         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
126 }                                                                       \
127 static struct device_attribute dev_attr_spi_controller_##field = {      \
128         .attr = { .name = file, .mode = 0444 },                         \
129         .show = spi_controller_##field##_show,                          \
130 };                                                                      \
131 static ssize_t spi_device_##field##_show(struct device *dev,            \
132                                          struct device_attribute *attr, \
133                                         char *buf)                      \
134 {                                                                       \
135         struct spi_device *spi = to_spi_device(dev);                    \
136         return spi_statistics_##field##_show(&spi->statistics, buf);    \
137 }                                                                       \
138 static struct device_attribute dev_attr_spi_device_##field = {          \
139         .attr = { .name = file, .mode = 0444 },                         \
140         .show = spi_device_##field##_show,                              \
141 }
142
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145                                             char *buf)                  \
146 {                                                                       \
147         unsigned long flags;                                            \
148         ssize_t len;                                                    \
149         spin_lock_irqsave(&stat->lock, flags);                          \
150         len = sprintf(buf, format_string, stat->field);                 \
151         spin_unlock_irqrestore(&stat->lock, flags);                     \
152         return len;                                                     \
153 }                                                                       \
154 SPI_STATISTICS_ATTRS(name, file)
155
156 #define SPI_STATISTICS_SHOW(field, format_string)                       \
157         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
158                                  field, format_string)
159
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
174         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
175                                  "transfer_bytes_histo_" number,        \
176                                  transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
197 static struct attribute *spi_dev_attrs[] = {
198         &dev_attr_modalias.attr,
199         &dev_attr_driver_override.attr,
200         NULL,
201 };
202
203 static const struct attribute_group spi_dev_group = {
204         .attrs  = spi_dev_attrs,
205 };
206
207 static struct attribute *spi_device_statistics_attrs[] = {
208         &dev_attr_spi_device_messages.attr,
209         &dev_attr_spi_device_transfers.attr,
210         &dev_attr_spi_device_errors.attr,
211         &dev_attr_spi_device_timedout.attr,
212         &dev_attr_spi_device_spi_sync.attr,
213         &dev_attr_spi_device_spi_sync_immediate.attr,
214         &dev_attr_spi_device_spi_async.attr,
215         &dev_attr_spi_device_bytes.attr,
216         &dev_attr_spi_device_bytes_rx.attr,
217         &dev_attr_spi_device_bytes_tx.attr,
218         &dev_attr_spi_device_transfer_bytes_histo0.attr,
219         &dev_attr_spi_device_transfer_bytes_histo1.attr,
220         &dev_attr_spi_device_transfer_bytes_histo2.attr,
221         &dev_attr_spi_device_transfer_bytes_histo3.attr,
222         &dev_attr_spi_device_transfer_bytes_histo4.attr,
223         &dev_attr_spi_device_transfer_bytes_histo5.attr,
224         &dev_attr_spi_device_transfer_bytes_histo6.attr,
225         &dev_attr_spi_device_transfer_bytes_histo7.attr,
226         &dev_attr_spi_device_transfer_bytes_histo8.attr,
227         &dev_attr_spi_device_transfer_bytes_histo9.attr,
228         &dev_attr_spi_device_transfer_bytes_histo10.attr,
229         &dev_attr_spi_device_transfer_bytes_histo11.attr,
230         &dev_attr_spi_device_transfer_bytes_histo12.attr,
231         &dev_attr_spi_device_transfer_bytes_histo13.attr,
232         &dev_attr_spi_device_transfer_bytes_histo14.attr,
233         &dev_attr_spi_device_transfer_bytes_histo15.attr,
234         &dev_attr_spi_device_transfer_bytes_histo16.attr,
235         &dev_attr_spi_device_transfers_split_maxsize.attr,
236         NULL,
237 };
238
239 static const struct attribute_group spi_device_statistics_group = {
240         .name  = "statistics",
241         .attrs  = spi_device_statistics_attrs,
242 };
243
244 static const struct attribute_group *spi_dev_groups[] = {
245         &spi_dev_group,
246         &spi_device_statistics_group,
247         NULL,
248 };
249
250 static struct attribute *spi_controller_statistics_attrs[] = {
251         &dev_attr_spi_controller_messages.attr,
252         &dev_attr_spi_controller_transfers.attr,
253         &dev_attr_spi_controller_errors.attr,
254         &dev_attr_spi_controller_timedout.attr,
255         &dev_attr_spi_controller_spi_sync.attr,
256         &dev_attr_spi_controller_spi_sync_immediate.attr,
257         &dev_attr_spi_controller_spi_async.attr,
258         &dev_attr_spi_controller_bytes.attr,
259         &dev_attr_spi_controller_bytes_rx.attr,
260         &dev_attr_spi_controller_bytes_tx.attr,
261         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278         &dev_attr_spi_controller_transfers_split_maxsize.attr,
279         NULL,
280 };
281
282 static const struct attribute_group spi_controller_statistics_group = {
283         .name  = "statistics",
284         .attrs  = spi_controller_statistics_attrs,
285 };
286
287 static const struct attribute_group *spi_master_groups[] = {
288         &spi_controller_statistics_group,
289         NULL,
290 };
291
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293                                        struct spi_transfer *xfer,
294                                        struct spi_controller *ctlr)
295 {
296         unsigned long flags;
297         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299         if (l2len < 0)
300                 l2len = 0;
301
302         spin_lock_irqsave(&stats->lock, flags);
303
304         stats->transfers++;
305         stats->transfer_bytes_histo[l2len]++;
306
307         stats->bytes += xfer->len;
308         if ((xfer->tx_buf) &&
309             (xfer->tx_buf != ctlr->dummy_tx))
310                 stats->bytes_tx += xfer->len;
311         if ((xfer->rx_buf) &&
312             (xfer->rx_buf != ctlr->dummy_rx))
313                 stats->bytes_rx += xfer->len;
314
315         spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324                                                 const struct spi_device *sdev)
325 {
326         while (id->name[0]) {
327                 if (!strcmp(sdev->modalias, id->name))
328                         return id;
329                 id++;
330         }
331         return NULL;
332 }
333
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338         return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344         const struct spi_device *spi = to_spi_device(dev);
345         const struct spi_driver *sdrv = to_spi_driver(drv);
346
347         /* Check override first, and if set, only use the named driver */
348         if (spi->driver_override)
349                 return strcmp(spi->driver_override, drv->name) == 0;
350
351         /* Attempt an OF style match */
352         if (of_driver_match_device(dev, drv))
353                 return 1;
354
355         /* Then try ACPI */
356         if (acpi_driver_match_device(dev, drv))
357                 return 1;
358
359         if (sdrv->id_table)
360                 return !!spi_match_id(sdrv->id_table, spi);
361
362         return strcmp(spi->modalias, drv->name) == 0;
363 }
364
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367         const struct spi_device         *spi = to_spi_device(dev);
368         int rc;
369
370         rc = acpi_device_uevent_modalias(dev, env);
371         if (rc != -ENODEV)
372                 return rc;
373
374         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376
377 struct bus_type spi_bus_type = {
378         .name           = "spi",
379         .dev_groups     = spi_dev_groups,
380         .match          = spi_match_device,
381         .uevent         = spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384
385
386 static int spi_drv_probe(struct device *dev)
387 {
388         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
389         struct spi_device               *spi = to_spi_device(dev);
390         int ret;
391
392         ret = of_clk_set_defaults(dev->of_node, false);
393         if (ret)
394                 return ret;
395
396         if (dev->of_node) {
397                 spi->irq = of_irq_get(dev->of_node, 0);
398                 if (spi->irq == -EPROBE_DEFER)
399                         return -EPROBE_DEFER;
400                 if (spi->irq < 0)
401                         spi->irq = 0;
402         }
403
404         ret = dev_pm_domain_attach(dev, true);
405         if (ret)
406                 return ret;
407
408         ret = sdrv->probe(spi);
409         if (ret)
410                 dev_pm_domain_detach(dev, true);
411
412         return ret;
413 }
414
415 static int spi_drv_remove(struct device *dev)
416 {
417         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
418         int ret;
419
420         ret = sdrv->remove(to_spi_device(dev));
421         dev_pm_domain_detach(dev, true);
422
423         return ret;
424 }
425
426 static void spi_drv_shutdown(struct device *dev)
427 {
428         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
429
430         sdrv->shutdown(to_spi_device(dev));
431 }
432
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443         sdrv->driver.owner = owner;
444         sdrv->driver.bus = &spi_bus_type;
445         if (sdrv->probe)
446                 sdrv->driver.probe = spi_drv_probe;
447         if (sdrv->remove)
448                 sdrv->driver.remove = spi_drv_remove;
449         if (sdrv->shutdown)
450                 sdrv->driver.shutdown = spi_drv_shutdown;
451         return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454
455 /*-------------------------------------------------------------------------*/
456
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462
463 struct boardinfo {
464         struct list_head        list;
465         struct spi_board_info   board_info;
466 };
467
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470
471 /*
472  * Used to protect add/del operation for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497         struct spi_device       *spi;
498
499         if (!spi_controller_get(ctlr))
500                 return NULL;
501
502         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503         if (!spi) {
504                 spi_controller_put(ctlr);
505                 return NULL;
506         }
507
508         spi->master = spi->controller = ctlr;
509         spi->dev.parent = &ctlr->dev;
510         spi->dev.bus = &spi_bus_type;
511         spi->dev.release = spidev_release;
512         spi->cs_gpio = -ENOENT;
513         spi->mode = ctlr->buswidth_override_bits;
514
515         spin_lock_init(&spi->statistics.lock);
516
517         device_initialize(&spi->dev);
518         return spi;
519 }
520 EXPORT_SYMBOL_GPL(spi_alloc_device);
521
522 static void spi_dev_set_name(struct spi_device *spi)
523 {
524         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
525
526         if (adev) {
527                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
528                 return;
529         }
530
531         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
532                      spi->chip_select);
533 }
534
535 static int spi_dev_check(struct device *dev, void *data)
536 {
537         struct spi_device *spi = to_spi_device(dev);
538         struct spi_device *new_spi = data;
539
540         if (spi->controller == new_spi->controller &&
541             spi->chip_select == new_spi->chip_select)
542                 return -EBUSY;
543         return 0;
544 }
545
546 /**
547  * spi_add_device - Add spi_device allocated with spi_alloc_device
548  * @spi: spi_device to register
549  *
550  * Companion function to spi_alloc_device.  Devices allocated with
551  * spi_alloc_device can be added onto the spi bus with this function.
552  *
553  * Return: 0 on success; negative errno on failure
554  */
555 int spi_add_device(struct spi_device *spi)
556 {
557         static DEFINE_MUTEX(spi_add_lock);
558         struct spi_controller *ctlr = spi->controller;
559         struct device *dev = ctlr->dev.parent;
560         int status;
561
562         /* Chipselects are numbered 0..max; validate. */
563         if (spi->chip_select >= ctlr->num_chipselect) {
564                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
565                         ctlr->num_chipselect);
566                 return -EINVAL;
567         }
568
569         /* Set the bus ID string */
570         spi_dev_set_name(spi);
571
572         /* We need to make sure there's no other device with this
573          * chipselect **BEFORE** we call setup(), else we'll trash
574          * its configuration.  Lock against concurrent add() calls.
575          */
576         mutex_lock(&spi_add_lock);
577
578         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
579         if (status) {
580                 dev_err(dev, "chipselect %d already in use\n",
581                                 spi->chip_select);
582                 goto done;
583         }
584
585         /* Descriptors take precedence */
586         if (ctlr->cs_gpiods)
587                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
588         else if (ctlr->cs_gpios)
589                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
590
591         /* Drivers may modify this initial i/o setup, but will
592          * normally rely on the device being setup.  Devices
593          * using SPI_CS_HIGH can't coexist well otherwise...
594          */
595         status = spi_setup(spi);
596         if (status < 0) {
597                 dev_err(dev, "can't setup %s, status %d\n",
598                                 dev_name(&spi->dev), status);
599                 goto done;
600         }
601
602         /* Device may be bound to an active driver when this returns */
603         status = device_add(&spi->dev);
604         if (status < 0)
605                 dev_err(dev, "can't add %s, status %d\n",
606                                 dev_name(&spi->dev), status);
607         else
608                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
609
610 done:
611         mutex_unlock(&spi_add_lock);
612         return status;
613 }
614 EXPORT_SYMBOL_GPL(spi_add_device);
615
616 /**
617  * spi_new_device - instantiate one new SPI device
618  * @ctlr: Controller to which device is connected
619  * @chip: Describes the SPI device
620  * Context: can sleep
621  *
622  * On typical mainboards, this is purely internal; and it's not needed
623  * after board init creates the hard-wired devices.  Some development
624  * platforms may not be able to use spi_register_board_info though, and
625  * this is exported so that for example a USB or parport based adapter
626  * driver could add devices (which it would learn about out-of-band).
627  *
628  * Return: the new device, or NULL.
629  */
630 struct spi_device *spi_new_device(struct spi_controller *ctlr,
631                                   struct spi_board_info *chip)
632 {
633         struct spi_device       *proxy;
634         int                     status;
635
636         /* NOTE:  caller did any chip->bus_num checks necessary.
637          *
638          * Also, unless we change the return value convention to use
639          * error-or-pointer (not NULL-or-pointer), troubleshootability
640          * suggests syslogged diagnostics are best here (ugh).
641          */
642
643         proxy = spi_alloc_device(ctlr);
644         if (!proxy)
645                 return NULL;
646
647         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
648
649         proxy->chip_select = chip->chip_select;
650         proxy->max_speed_hz = chip->max_speed_hz;
651         proxy->mode = chip->mode;
652         proxy->irq = chip->irq;
653         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
654         proxy->dev.platform_data = (void *) chip->platform_data;
655         proxy->controller_data = chip->controller_data;
656         proxy->controller_state = NULL;
657
658         if (chip->properties) {
659                 status = device_add_properties(&proxy->dev, chip->properties);
660                 if (status) {
661                         dev_err(&ctlr->dev,
662                                 "failed to add properties to '%s': %d\n",
663                                 chip->modalias, status);
664                         goto err_dev_put;
665                 }
666         }
667
668         status = spi_add_device(proxy);
669         if (status < 0)
670                 goto err_remove_props;
671
672         return proxy;
673
674 err_remove_props:
675         if (chip->properties)
676                 device_remove_properties(&proxy->dev);
677 err_dev_put:
678         spi_dev_put(proxy);
679         return NULL;
680 }
681 EXPORT_SYMBOL_GPL(spi_new_device);
682
683 /**
684  * spi_unregister_device - unregister a single SPI device
685  * @spi: spi_device to unregister
686  *
687  * Start making the passed SPI device vanish. Normally this would be handled
688  * by spi_unregister_controller().
689  */
690 void spi_unregister_device(struct spi_device *spi)
691 {
692         if (!spi)
693                 return;
694
695         if (spi->dev.of_node) {
696                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
697                 of_node_put(spi->dev.of_node);
698         }
699         if (ACPI_COMPANION(&spi->dev))
700                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
701         device_unregister(&spi->dev);
702 }
703 EXPORT_SYMBOL_GPL(spi_unregister_device);
704
705 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
706                                               struct spi_board_info *bi)
707 {
708         struct spi_device *dev;
709
710         if (ctlr->bus_num != bi->bus_num)
711                 return;
712
713         dev = spi_new_device(ctlr, bi);
714         if (!dev)
715                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
716                         bi->modalias);
717 }
718
719 /**
720  * spi_register_board_info - register SPI devices for a given board
721  * @info: array of chip descriptors
722  * @n: how many descriptors are provided
723  * Context: can sleep
724  *
725  * Board-specific early init code calls this (probably during arch_initcall)
726  * with segments of the SPI device table.  Any device nodes are created later,
727  * after the relevant parent SPI controller (bus_num) is defined.  We keep
728  * this table of devices forever, so that reloading a controller driver will
729  * not make Linux forget about these hard-wired devices.
730  *
731  * Other code can also call this, e.g. a particular add-on board might provide
732  * SPI devices through its expansion connector, so code initializing that board
733  * would naturally declare its SPI devices.
734  *
735  * The board info passed can safely be __initdata ... but be careful of
736  * any embedded pointers (platform_data, etc), they're copied as-is.
737  * Device properties are deep-copied though.
738  *
739  * Return: zero on success, else a negative error code.
740  */
741 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
742 {
743         struct boardinfo *bi;
744         int i;
745
746         if (!n)
747                 return 0;
748
749         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
750         if (!bi)
751                 return -ENOMEM;
752
753         for (i = 0; i < n; i++, bi++, info++) {
754                 struct spi_controller *ctlr;
755
756                 memcpy(&bi->board_info, info, sizeof(*info));
757                 if (info->properties) {
758                         bi->board_info.properties =
759                                         property_entries_dup(info->properties);
760                         if (IS_ERR(bi->board_info.properties))
761                                 return PTR_ERR(bi->board_info.properties);
762                 }
763
764                 mutex_lock(&board_lock);
765                 list_add_tail(&bi->list, &board_list);
766                 list_for_each_entry(ctlr, &spi_controller_list, list)
767                         spi_match_controller_to_boardinfo(ctlr,
768                                                           &bi->board_info);
769                 mutex_unlock(&board_lock);
770         }
771
772         return 0;
773 }
774
775 /*-------------------------------------------------------------------------*/
776
777 static void spi_set_cs(struct spi_device *spi, bool enable)
778 {
779         bool enable1 = enable;
780
781         /*
782          * Avoid calling into the driver (or doing delays) if the chip select
783          * isn't actually changing from the last time this was called.
784          */
785         if ((spi->controller->last_cs_enable == enable) &&
786             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
787                 return;
788
789         spi->controller->last_cs_enable = enable;
790         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
791
792         if (!spi->controller->set_cs_timing) {
793                 if (enable1)
794                         spi_delay_exec(&spi->controller->cs_setup, NULL);
795                 else
796                         spi_delay_exec(&spi->controller->cs_hold, NULL);
797         }
798
799         if (spi->mode & SPI_CS_HIGH)
800                 enable = !enable;
801
802         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
803                 /*
804                  * Honour the SPI_NO_CS flag and invert the enable line, as
805                  * active low is default for SPI. Execution paths that handle
806                  * polarity inversion in gpiolib (such as device tree) will
807                  * enforce active high using the SPI_CS_HIGH resulting in a
808                  * double inversion through the code above.
809                  */
810                 if (!(spi->mode & SPI_NO_CS)) {
811                         if (spi->cs_gpiod)
812                                 gpiod_set_value_cansleep(spi->cs_gpiod,
813                                                          !enable);
814                         else
815                                 gpio_set_value_cansleep(spi->cs_gpio, !enable);
816                 }
817                 /* Some SPI masters need both GPIO CS & slave_select */
818                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
819                     spi->controller->set_cs)
820                         spi->controller->set_cs(spi, !enable);
821         } else if (spi->controller->set_cs) {
822                 spi->controller->set_cs(spi, !enable);
823         }
824
825         if (!spi->controller->set_cs_timing) {
826                 if (!enable1)
827                         spi_delay_exec(&spi->controller->cs_inactive, NULL);
828         }
829 }
830
831 #ifdef CONFIG_HAS_DMA
832 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
833                 struct sg_table *sgt, void *buf, size_t len,
834                 enum dma_data_direction dir)
835 {
836         const bool vmalloced_buf = is_vmalloc_addr(buf);
837         unsigned int max_seg_size = dma_get_max_seg_size(dev);
838 #ifdef CONFIG_HIGHMEM
839         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
840                                 (unsigned long)buf < (PKMAP_BASE +
841                                         (LAST_PKMAP * PAGE_SIZE)));
842 #else
843         const bool kmap_buf = false;
844 #endif
845         int desc_len;
846         int sgs;
847         struct page *vm_page;
848         struct scatterlist *sg;
849         void *sg_buf;
850         size_t min;
851         int i, ret;
852
853         if (vmalloced_buf || kmap_buf) {
854                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
855                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
856         } else if (virt_addr_valid(buf)) {
857                 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
858                 sgs = DIV_ROUND_UP(len, desc_len);
859         } else {
860                 return -EINVAL;
861         }
862
863         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
864         if (ret != 0)
865                 return ret;
866
867         sg = &sgt->sgl[0];
868         for (i = 0; i < sgs; i++) {
869
870                 if (vmalloced_buf || kmap_buf) {
871                         /*
872                          * Next scatterlist entry size is the minimum between
873                          * the desc_len and the remaining buffer length that
874                          * fits in a page.
875                          */
876                         min = min_t(size_t, desc_len,
877                                     min_t(size_t, len,
878                                           PAGE_SIZE - offset_in_page(buf)));
879                         if (vmalloced_buf)
880                                 vm_page = vmalloc_to_page(buf);
881                         else
882                                 vm_page = kmap_to_page(buf);
883                         if (!vm_page) {
884                                 sg_free_table(sgt);
885                                 return -ENOMEM;
886                         }
887                         sg_set_page(sg, vm_page,
888                                     min, offset_in_page(buf));
889                 } else {
890                         min = min_t(size_t, len, desc_len);
891                         sg_buf = buf;
892                         sg_set_buf(sg, sg_buf, min);
893                 }
894
895                 buf += min;
896                 len -= min;
897                 sg = sg_next(sg);
898         }
899
900         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
901         if (!ret)
902                 ret = -ENOMEM;
903         if (ret < 0) {
904                 sg_free_table(sgt);
905                 return ret;
906         }
907
908         sgt->nents = ret;
909
910         return 0;
911 }
912
913 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
914                    struct sg_table *sgt, enum dma_data_direction dir)
915 {
916         if (sgt->orig_nents) {
917                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
918                 sg_free_table(sgt);
919         }
920 }
921
922 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
923 {
924         struct device *tx_dev, *rx_dev;
925         struct spi_transfer *xfer;
926         int ret;
927
928         if (!ctlr->can_dma)
929                 return 0;
930
931         if (ctlr->dma_tx)
932                 tx_dev = ctlr->dma_tx->device->dev;
933         else
934                 tx_dev = ctlr->dev.parent;
935
936         if (ctlr->dma_rx)
937                 rx_dev = ctlr->dma_rx->device->dev;
938         else
939                 rx_dev = ctlr->dev.parent;
940
941         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
942                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
943                         continue;
944
945                 if (xfer->tx_buf != NULL) {
946                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
947                                           (void *)xfer->tx_buf, xfer->len,
948                                           DMA_TO_DEVICE);
949                         if (ret != 0)
950                                 return ret;
951                 }
952
953                 if (xfer->rx_buf != NULL) {
954                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
955                                           xfer->rx_buf, xfer->len,
956                                           DMA_FROM_DEVICE);
957                         if (ret != 0) {
958                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
959                                               DMA_TO_DEVICE);
960                                 return ret;
961                         }
962                 }
963         }
964
965         ctlr->cur_msg_mapped = true;
966
967         return 0;
968 }
969
970 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
971 {
972         struct spi_transfer *xfer;
973         struct device *tx_dev, *rx_dev;
974
975         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
976                 return 0;
977
978         if (ctlr->dma_tx)
979                 tx_dev = ctlr->dma_tx->device->dev;
980         else
981                 tx_dev = ctlr->dev.parent;
982
983         if (ctlr->dma_rx)
984                 rx_dev = ctlr->dma_rx->device->dev;
985         else
986                 rx_dev = ctlr->dev.parent;
987
988         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
989                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
990                         continue;
991
992                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
993                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
994         }
995
996         ctlr->cur_msg_mapped = false;
997
998         return 0;
999 }
1000 #else /* !CONFIG_HAS_DMA */
1001 static inline int __spi_map_msg(struct spi_controller *ctlr,
1002                                 struct spi_message *msg)
1003 {
1004         return 0;
1005 }
1006
1007 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1008                                   struct spi_message *msg)
1009 {
1010         return 0;
1011 }
1012 #endif /* !CONFIG_HAS_DMA */
1013
1014 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1015                                 struct spi_message *msg)
1016 {
1017         struct spi_transfer *xfer;
1018
1019         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1020                 /*
1021                  * Restore the original value of tx_buf or rx_buf if they are
1022                  * NULL.
1023                  */
1024                 if (xfer->tx_buf == ctlr->dummy_tx)
1025                         xfer->tx_buf = NULL;
1026                 if (xfer->rx_buf == ctlr->dummy_rx)
1027                         xfer->rx_buf = NULL;
1028         }
1029
1030         return __spi_unmap_msg(ctlr, msg);
1031 }
1032
1033 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1034 {
1035         struct spi_transfer *xfer;
1036         void *tmp;
1037         unsigned int max_tx, max_rx;
1038
1039         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1040                 && !(msg->spi->mode & SPI_3WIRE)) {
1041                 max_tx = 0;
1042                 max_rx = 0;
1043
1044                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1045                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1046                             !xfer->tx_buf)
1047                                 max_tx = max(xfer->len, max_tx);
1048                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1049                             !xfer->rx_buf)
1050                                 max_rx = max(xfer->len, max_rx);
1051                 }
1052
1053                 if (max_tx) {
1054                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1055                                        GFP_KERNEL | GFP_DMA);
1056                         if (!tmp)
1057                                 return -ENOMEM;
1058                         ctlr->dummy_tx = tmp;
1059                         memset(tmp, 0, max_tx);
1060                 }
1061
1062                 if (max_rx) {
1063                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1064                                        GFP_KERNEL | GFP_DMA);
1065                         if (!tmp)
1066                                 return -ENOMEM;
1067                         ctlr->dummy_rx = tmp;
1068                 }
1069
1070                 if (max_tx || max_rx) {
1071                         list_for_each_entry(xfer, &msg->transfers,
1072                                             transfer_list) {
1073                                 if (!xfer->len)
1074                                         continue;
1075                                 if (!xfer->tx_buf)
1076                                         xfer->tx_buf = ctlr->dummy_tx;
1077                                 if (!xfer->rx_buf)
1078                                         xfer->rx_buf = ctlr->dummy_rx;
1079                         }
1080                 }
1081         }
1082
1083         return __spi_map_msg(ctlr, msg);
1084 }
1085
1086 static int spi_transfer_wait(struct spi_controller *ctlr,
1087                              struct spi_message *msg,
1088                              struct spi_transfer *xfer)
1089 {
1090         struct spi_statistics *statm = &ctlr->statistics;
1091         struct spi_statistics *stats = &msg->spi->statistics;
1092         unsigned long long ms;
1093
1094         if (spi_controller_is_slave(ctlr)) {
1095                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1096                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1097                         return -EINTR;
1098                 }
1099         } else {
1100                 ms = 8LL * 1000LL * xfer->len;
1101                 do_div(ms, xfer->speed_hz);
1102                 ms += ms + 200; /* some tolerance */
1103
1104                 if (ms > UINT_MAX)
1105                         ms = UINT_MAX;
1106
1107                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1108                                                  msecs_to_jiffies(ms));
1109
1110                 if (ms == 0) {
1111                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1112                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1113                         dev_err(&msg->spi->dev,
1114                                 "SPI transfer timed out\n");
1115                         return -ETIMEDOUT;
1116                 }
1117         }
1118
1119         return 0;
1120 }
1121
1122 static void _spi_transfer_delay_ns(u32 ns)
1123 {
1124         if (!ns)
1125                 return;
1126         if (ns <= 1000) {
1127                 ndelay(ns);
1128         } else {
1129                 u32 us = DIV_ROUND_UP(ns, 1000);
1130
1131                 if (us <= 10)
1132                         udelay(us);
1133                 else
1134                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1135         }
1136 }
1137
1138 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1139 {
1140         u32 delay = _delay->value;
1141         u32 unit = _delay->unit;
1142         u32 hz;
1143
1144         if (!delay)
1145                 return 0;
1146
1147         switch (unit) {
1148         case SPI_DELAY_UNIT_USECS:
1149                 delay *= 1000;
1150                 break;
1151         case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1152                 break;
1153         case SPI_DELAY_UNIT_SCK:
1154                 /* clock cycles need to be obtained from spi_transfer */
1155                 if (!xfer)
1156                         return -EINVAL;
1157                 /* if there is no effective speed know, then approximate
1158                  * by underestimating with half the requested hz
1159                  */
1160                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1161                 if (!hz)
1162                         return -EINVAL;
1163                 delay *= DIV_ROUND_UP(1000000000, hz);
1164                 break;
1165         default:
1166                 return -EINVAL;
1167         }
1168
1169         return delay;
1170 }
1171 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1172
1173 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1174 {
1175         int delay;
1176
1177         might_sleep();
1178
1179         if (!_delay)
1180                 return -EINVAL;
1181
1182         delay = spi_delay_to_ns(_delay, xfer);
1183         if (delay < 0)
1184                 return delay;
1185
1186         _spi_transfer_delay_ns(delay);
1187
1188         return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(spi_delay_exec);
1191
1192 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1193                                           struct spi_transfer *xfer)
1194 {
1195         u32 delay = xfer->cs_change_delay.value;
1196         u32 unit = xfer->cs_change_delay.unit;
1197         int ret;
1198
1199         /* return early on "fast" mode - for everything but USECS */
1200         if (!delay) {
1201                 if (unit == SPI_DELAY_UNIT_USECS)
1202                         _spi_transfer_delay_ns(10000);
1203                 return;
1204         }
1205
1206         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1207         if (ret) {
1208                 dev_err_once(&msg->spi->dev,
1209                              "Use of unsupported delay unit %i, using default of 10us\n",
1210                              unit);
1211                 _spi_transfer_delay_ns(10000);
1212         }
1213 }
1214
1215 /*
1216  * spi_transfer_one_message - Default implementation of transfer_one_message()
1217  *
1218  * This is a standard implementation of transfer_one_message() for
1219  * drivers which implement a transfer_one() operation.  It provides
1220  * standard handling of delays and chip select management.
1221  */
1222 static int spi_transfer_one_message(struct spi_controller *ctlr,
1223                                     struct spi_message *msg)
1224 {
1225         struct spi_transfer *xfer;
1226         bool keep_cs = false;
1227         int ret = 0;
1228         struct spi_statistics *statm = &ctlr->statistics;
1229         struct spi_statistics *stats = &msg->spi->statistics;
1230
1231         spi_set_cs(msg->spi, true);
1232
1233         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1234         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1235
1236         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1237                 trace_spi_transfer_start(msg, xfer);
1238
1239                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1240                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1241
1242                 if (!ctlr->ptp_sts_supported) {
1243                         xfer->ptp_sts_word_pre = 0;
1244                         ptp_read_system_prets(xfer->ptp_sts);
1245                 }
1246
1247                 if (xfer->tx_buf || xfer->rx_buf) {
1248                         reinit_completion(&ctlr->xfer_completion);
1249
1250 fallback_pio:
1251                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1252                         if (ret < 0) {
1253                                 if (ctlr->cur_msg_mapped &&
1254                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1255                                         __spi_unmap_msg(ctlr, msg);
1256                                         ctlr->fallback = true;
1257                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1258                                         goto fallback_pio;
1259                                 }
1260
1261                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1262                                                                errors);
1263                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1264                                                                errors);
1265                                 dev_err(&msg->spi->dev,
1266                                         "SPI transfer failed: %d\n", ret);
1267                                 goto out;
1268                         }
1269
1270                         if (ret > 0) {
1271                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1272                                 if (ret < 0)
1273                                         msg->status = ret;
1274                         }
1275                 } else {
1276                         if (xfer->len)
1277                                 dev_err(&msg->spi->dev,
1278                                         "Bufferless transfer has length %u\n",
1279                                         xfer->len);
1280                 }
1281
1282                 if (!ctlr->ptp_sts_supported) {
1283                         ptp_read_system_postts(xfer->ptp_sts);
1284                         xfer->ptp_sts_word_post = xfer->len;
1285                 }
1286
1287                 trace_spi_transfer_stop(msg, xfer);
1288
1289                 if (msg->status != -EINPROGRESS)
1290                         goto out;
1291
1292                 spi_transfer_delay_exec(xfer);
1293
1294                 if (xfer->cs_change) {
1295                         if (list_is_last(&xfer->transfer_list,
1296                                          &msg->transfers)) {
1297                                 keep_cs = true;
1298                         } else {
1299                                 spi_set_cs(msg->spi, false);
1300                                 _spi_transfer_cs_change_delay(msg, xfer);
1301                                 spi_set_cs(msg->spi, true);
1302                         }
1303                 }
1304
1305                 msg->actual_length += xfer->len;
1306         }
1307
1308 out:
1309         if (ret != 0 || !keep_cs)
1310                 spi_set_cs(msg->spi, false);
1311
1312         if (msg->status == -EINPROGRESS)
1313                 msg->status = ret;
1314
1315         if (msg->status && ctlr->handle_err)
1316                 ctlr->handle_err(ctlr, msg);
1317
1318         spi_res_release(ctlr, msg);
1319
1320         spi_finalize_current_message(ctlr);
1321
1322         return ret;
1323 }
1324
1325 /**
1326  * spi_finalize_current_transfer - report completion of a transfer
1327  * @ctlr: the controller reporting completion
1328  *
1329  * Called by SPI drivers using the core transfer_one_message()
1330  * implementation to notify it that the current interrupt driven
1331  * transfer has finished and the next one may be scheduled.
1332  */
1333 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1334 {
1335         complete(&ctlr->xfer_completion);
1336 }
1337 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1338
1339 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1340 {
1341         if (ctlr->auto_runtime_pm) {
1342                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1343                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1344         }
1345 }
1346
1347 /**
1348  * __spi_pump_messages - function which processes spi message queue
1349  * @ctlr: controller to process queue for
1350  * @in_kthread: true if we are in the context of the message pump thread
1351  *
1352  * This function checks if there is any spi message in the queue that
1353  * needs processing and if so call out to the driver to initialize hardware
1354  * and transfer each message.
1355  *
1356  * Note that it is called both from the kthread itself and also from
1357  * inside spi_sync(); the queue extraction handling at the top of the
1358  * function should deal with this safely.
1359  */
1360 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1361 {
1362         struct spi_transfer *xfer;
1363         struct spi_message *msg;
1364         bool was_busy = false;
1365         unsigned long flags;
1366         int ret;
1367
1368         /* Lock queue */
1369         spin_lock_irqsave(&ctlr->queue_lock, flags);
1370
1371         /* Make sure we are not already running a message */
1372         if (ctlr->cur_msg) {
1373                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1374                 return;
1375         }
1376
1377         /* If another context is idling the device then defer */
1378         if (ctlr->idling) {
1379                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1380                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1381                 return;
1382         }
1383
1384         /* Check if the queue is idle */
1385         if (list_empty(&ctlr->queue) || !ctlr->running) {
1386                 if (!ctlr->busy) {
1387                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1388                         return;
1389                 }
1390
1391                 /* Defer any non-atomic teardown to the thread */
1392                 if (!in_kthread) {
1393                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1394                             !ctlr->unprepare_transfer_hardware) {
1395                                 spi_idle_runtime_pm(ctlr);
1396                                 ctlr->busy = false;
1397                                 trace_spi_controller_idle(ctlr);
1398                         } else {
1399                                 kthread_queue_work(ctlr->kworker,
1400                                                    &ctlr->pump_messages);
1401                         }
1402                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1403                         return;
1404                 }
1405
1406                 ctlr->busy = false;
1407                 ctlr->idling = true;
1408                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1409
1410                 kfree(ctlr->dummy_rx);
1411                 ctlr->dummy_rx = NULL;
1412                 kfree(ctlr->dummy_tx);
1413                 ctlr->dummy_tx = NULL;
1414                 if (ctlr->unprepare_transfer_hardware &&
1415                     ctlr->unprepare_transfer_hardware(ctlr))
1416                         dev_err(&ctlr->dev,
1417                                 "failed to unprepare transfer hardware\n");
1418                 spi_idle_runtime_pm(ctlr);
1419                 trace_spi_controller_idle(ctlr);
1420
1421                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1422                 ctlr->idling = false;
1423                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424                 return;
1425         }
1426
1427         /* Extract head of queue */
1428         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1429         ctlr->cur_msg = msg;
1430
1431         list_del_init(&msg->queue);
1432         if (ctlr->busy)
1433                 was_busy = true;
1434         else
1435                 ctlr->busy = true;
1436         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1437
1438         mutex_lock(&ctlr->io_mutex);
1439
1440         if (!was_busy && ctlr->auto_runtime_pm) {
1441                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1442                 if (ret < 0) {
1443                         pm_runtime_put_noidle(ctlr->dev.parent);
1444                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1445                                 ret);
1446                         mutex_unlock(&ctlr->io_mutex);
1447                         return;
1448                 }
1449         }
1450
1451         if (!was_busy)
1452                 trace_spi_controller_busy(ctlr);
1453
1454         if (!was_busy && ctlr->prepare_transfer_hardware) {
1455                 ret = ctlr->prepare_transfer_hardware(ctlr);
1456                 if (ret) {
1457                         dev_err(&ctlr->dev,
1458                                 "failed to prepare transfer hardware: %d\n",
1459                                 ret);
1460
1461                         if (ctlr->auto_runtime_pm)
1462                                 pm_runtime_put(ctlr->dev.parent);
1463
1464                         msg->status = ret;
1465                         spi_finalize_current_message(ctlr);
1466
1467                         mutex_unlock(&ctlr->io_mutex);
1468                         return;
1469                 }
1470         }
1471
1472         trace_spi_message_start(msg);
1473
1474         if (ctlr->prepare_message) {
1475                 ret = ctlr->prepare_message(ctlr, msg);
1476                 if (ret) {
1477                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1478                                 ret);
1479                         msg->status = ret;
1480                         spi_finalize_current_message(ctlr);
1481                         goto out;
1482                 }
1483                 ctlr->cur_msg_prepared = true;
1484         }
1485
1486         ret = spi_map_msg(ctlr, msg);
1487         if (ret) {
1488                 msg->status = ret;
1489                 spi_finalize_current_message(ctlr);
1490                 goto out;
1491         }
1492
1493         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1494                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1495                         xfer->ptp_sts_word_pre = 0;
1496                         ptp_read_system_prets(xfer->ptp_sts);
1497                 }
1498         }
1499
1500         ret = ctlr->transfer_one_message(ctlr, msg);
1501         if (ret) {
1502                 dev_err(&ctlr->dev,
1503                         "failed to transfer one message from queue\n");
1504                 goto out;
1505         }
1506
1507 out:
1508         mutex_unlock(&ctlr->io_mutex);
1509
1510         /* Prod the scheduler in case transfer_one() was busy waiting */
1511         if (!ret)
1512                 cond_resched();
1513 }
1514
1515 /**
1516  * spi_pump_messages - kthread work function which processes spi message queue
1517  * @work: pointer to kthread work struct contained in the controller struct
1518  */
1519 static void spi_pump_messages(struct kthread_work *work)
1520 {
1521         struct spi_controller *ctlr =
1522                 container_of(work, struct spi_controller, pump_messages);
1523
1524         __spi_pump_messages(ctlr, true);
1525 }
1526
1527 /**
1528  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1529  *                          TX timestamp for the requested byte from the SPI
1530  *                          transfer. The frequency with which this function
1531  *                          must be called (once per word, once for the whole
1532  *                          transfer, once per batch of words etc) is arbitrary
1533  *                          as long as the @tx buffer offset is greater than or
1534  *                          equal to the requested byte at the time of the
1535  *                          call. The timestamp is only taken once, at the
1536  *                          first such call. It is assumed that the driver
1537  *                          advances its @tx buffer pointer monotonically.
1538  * @ctlr: Pointer to the spi_controller structure of the driver
1539  * @xfer: Pointer to the transfer being timestamped
1540  * @progress: How many words (not bytes) have been transferred so far
1541  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1542  *            transfer, for less jitter in time measurement. Only compatible
1543  *            with PIO drivers. If true, must follow up with
1544  *            spi_take_timestamp_post or otherwise system will crash.
1545  *            WARNING: for fully predictable results, the CPU frequency must
1546  *            also be under control (governor).
1547  */
1548 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1549                             struct spi_transfer *xfer,
1550                             size_t progress, bool irqs_off)
1551 {
1552         if (!xfer->ptp_sts)
1553                 return;
1554
1555         if (xfer->timestamped)
1556                 return;
1557
1558         if (progress > xfer->ptp_sts_word_pre)
1559                 return;
1560
1561         /* Capture the resolution of the timestamp */
1562         xfer->ptp_sts_word_pre = progress;
1563
1564         if (irqs_off) {
1565                 local_irq_save(ctlr->irq_flags);
1566                 preempt_disable();
1567         }
1568
1569         ptp_read_system_prets(xfer->ptp_sts);
1570 }
1571 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1572
1573 /**
1574  * spi_take_timestamp_post - helper for drivers to collect the end of the
1575  *                           TX timestamp for the requested byte from the SPI
1576  *                           transfer. Can be called with an arbitrary
1577  *                           frequency: only the first call where @tx exceeds
1578  *                           or is equal to the requested word will be
1579  *                           timestamped.
1580  * @ctlr: Pointer to the spi_controller structure of the driver
1581  * @xfer: Pointer to the transfer being timestamped
1582  * @progress: How many words (not bytes) have been transferred so far
1583  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1584  */
1585 void spi_take_timestamp_post(struct spi_controller *ctlr,
1586                              struct spi_transfer *xfer,
1587                              size_t progress, bool irqs_off)
1588 {
1589         if (!xfer->ptp_sts)
1590                 return;
1591
1592         if (xfer->timestamped)
1593                 return;
1594
1595         if (progress < xfer->ptp_sts_word_post)
1596                 return;
1597
1598         ptp_read_system_postts(xfer->ptp_sts);
1599
1600         if (irqs_off) {
1601                 local_irq_restore(ctlr->irq_flags);
1602                 preempt_enable();
1603         }
1604
1605         /* Capture the resolution of the timestamp */
1606         xfer->ptp_sts_word_post = progress;
1607
1608         xfer->timestamped = true;
1609 }
1610 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1611
1612 /**
1613  * spi_set_thread_rt - set the controller to pump at realtime priority
1614  * @ctlr: controller to boost priority of
1615  *
1616  * This can be called because the controller requested realtime priority
1617  * (by setting the ->rt value before calling spi_register_controller()) or
1618  * because a device on the bus said that its transfers needed realtime
1619  * priority.
1620  *
1621  * NOTE: at the moment if any device on a bus says it needs realtime then
1622  * the thread will be at realtime priority for all transfers on that
1623  * controller.  If this eventually becomes a problem we may see if we can
1624  * find a way to boost the priority only temporarily during relevant
1625  * transfers.
1626  */
1627 static void spi_set_thread_rt(struct spi_controller *ctlr)
1628 {
1629         dev_info(&ctlr->dev,
1630                 "will run message pump with realtime priority\n");
1631         sched_set_fifo(ctlr->kworker->task);
1632 }
1633
1634 static int spi_init_queue(struct spi_controller *ctlr)
1635 {
1636         ctlr->running = false;
1637         ctlr->busy = false;
1638
1639         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1640         if (IS_ERR(ctlr->kworker)) {
1641                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1642                 return PTR_ERR(ctlr->kworker);
1643         }
1644
1645         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1646
1647         /*
1648          * Controller config will indicate if this controller should run the
1649          * message pump with high (realtime) priority to reduce the transfer
1650          * latency on the bus by minimising the delay between a transfer
1651          * request and the scheduling of the message pump thread. Without this
1652          * setting the message pump thread will remain at default priority.
1653          */
1654         if (ctlr->rt)
1655                 spi_set_thread_rt(ctlr);
1656
1657         return 0;
1658 }
1659
1660 /**
1661  * spi_get_next_queued_message() - called by driver to check for queued
1662  * messages
1663  * @ctlr: the controller to check for queued messages
1664  *
1665  * If there are more messages in the queue, the next message is returned from
1666  * this call.
1667  *
1668  * Return: the next message in the queue, else NULL if the queue is empty.
1669  */
1670 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1671 {
1672         struct spi_message *next;
1673         unsigned long flags;
1674
1675         /* get a pointer to the next message, if any */
1676         spin_lock_irqsave(&ctlr->queue_lock, flags);
1677         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1678                                         queue);
1679         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1680
1681         return next;
1682 }
1683 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1684
1685 /**
1686  * spi_finalize_current_message() - the current message is complete
1687  * @ctlr: the controller to return the message to
1688  *
1689  * Called by the driver to notify the core that the message in the front of the
1690  * queue is complete and can be removed from the queue.
1691  */
1692 void spi_finalize_current_message(struct spi_controller *ctlr)
1693 {
1694         struct spi_transfer *xfer;
1695         struct spi_message *mesg;
1696         unsigned long flags;
1697         int ret;
1698
1699         spin_lock_irqsave(&ctlr->queue_lock, flags);
1700         mesg = ctlr->cur_msg;
1701         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1702
1703         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1704                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1705                         ptp_read_system_postts(xfer->ptp_sts);
1706                         xfer->ptp_sts_word_post = xfer->len;
1707                 }
1708         }
1709
1710         if (unlikely(ctlr->ptp_sts_supported))
1711                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1712                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1713
1714         spi_unmap_msg(ctlr, mesg);
1715
1716         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1717                 ret = ctlr->unprepare_message(ctlr, mesg);
1718                 if (ret) {
1719                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1720                                 ret);
1721                 }
1722         }
1723
1724         spin_lock_irqsave(&ctlr->queue_lock, flags);
1725         ctlr->cur_msg = NULL;
1726         ctlr->cur_msg_prepared = false;
1727         ctlr->fallback = false;
1728         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1729         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1730
1731         trace_spi_message_done(mesg);
1732
1733         mesg->state = NULL;
1734         if (mesg->complete)
1735                 mesg->complete(mesg->context);
1736 }
1737 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1738
1739 static int spi_start_queue(struct spi_controller *ctlr)
1740 {
1741         unsigned long flags;
1742
1743         spin_lock_irqsave(&ctlr->queue_lock, flags);
1744
1745         if (ctlr->running || ctlr->busy) {
1746                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1747                 return -EBUSY;
1748         }
1749
1750         ctlr->running = true;
1751         ctlr->cur_msg = NULL;
1752         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1753
1754         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1755
1756         return 0;
1757 }
1758
1759 static int spi_stop_queue(struct spi_controller *ctlr)
1760 {
1761         unsigned long flags;
1762         unsigned limit = 500;
1763         int ret = 0;
1764
1765         spin_lock_irqsave(&ctlr->queue_lock, flags);
1766
1767         /*
1768          * This is a bit lame, but is optimized for the common execution path.
1769          * A wait_queue on the ctlr->busy could be used, but then the common
1770          * execution path (pump_messages) would be required to call wake_up or
1771          * friends on every SPI message. Do this instead.
1772          */
1773         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1774                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1775                 usleep_range(10000, 11000);
1776                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1777         }
1778
1779         if (!list_empty(&ctlr->queue) || ctlr->busy)
1780                 ret = -EBUSY;
1781         else
1782                 ctlr->running = false;
1783
1784         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1785
1786         if (ret) {
1787                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1788                 return ret;
1789         }
1790         return ret;
1791 }
1792
1793 static int spi_destroy_queue(struct spi_controller *ctlr)
1794 {
1795         int ret;
1796
1797         ret = spi_stop_queue(ctlr);
1798
1799         /*
1800          * kthread_flush_worker will block until all work is done.
1801          * If the reason that stop_queue timed out is that the work will never
1802          * finish, then it does no good to call flush/stop thread, so
1803          * return anyway.
1804          */
1805         if (ret) {
1806                 dev_err(&ctlr->dev, "problem destroying queue\n");
1807                 return ret;
1808         }
1809
1810         kthread_destroy_worker(ctlr->kworker);
1811
1812         return 0;
1813 }
1814
1815 static int __spi_queued_transfer(struct spi_device *spi,
1816                                  struct spi_message *msg,
1817                                  bool need_pump)
1818 {
1819         struct spi_controller *ctlr = spi->controller;
1820         unsigned long flags;
1821
1822         spin_lock_irqsave(&ctlr->queue_lock, flags);
1823
1824         if (!ctlr->running) {
1825                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1826                 return -ESHUTDOWN;
1827         }
1828         msg->actual_length = 0;
1829         msg->status = -EINPROGRESS;
1830
1831         list_add_tail(&msg->queue, &ctlr->queue);
1832         if (!ctlr->busy && need_pump)
1833                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1834
1835         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1836         return 0;
1837 }
1838
1839 /**
1840  * spi_queued_transfer - transfer function for queued transfers
1841  * @spi: spi device which is requesting transfer
1842  * @msg: spi message which is to handled is queued to driver queue
1843  *
1844  * Return: zero on success, else a negative error code.
1845  */
1846 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1847 {
1848         return __spi_queued_transfer(spi, msg, true);
1849 }
1850
1851 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1852 {
1853         int ret;
1854
1855         ctlr->transfer = spi_queued_transfer;
1856         if (!ctlr->transfer_one_message)
1857                 ctlr->transfer_one_message = spi_transfer_one_message;
1858
1859         /* Initialize and start queue */
1860         ret = spi_init_queue(ctlr);
1861         if (ret) {
1862                 dev_err(&ctlr->dev, "problem initializing queue\n");
1863                 goto err_init_queue;
1864         }
1865         ctlr->queued = true;
1866         ret = spi_start_queue(ctlr);
1867         if (ret) {
1868                 dev_err(&ctlr->dev, "problem starting queue\n");
1869                 goto err_start_queue;
1870         }
1871
1872         return 0;
1873
1874 err_start_queue:
1875         spi_destroy_queue(ctlr);
1876 err_init_queue:
1877         return ret;
1878 }
1879
1880 /**
1881  * spi_flush_queue - Send all pending messages in the queue from the callers'
1882  *                   context
1883  * @ctlr: controller to process queue for
1884  *
1885  * This should be used when one wants to ensure all pending messages have been
1886  * sent before doing something. Is used by the spi-mem code to make sure SPI
1887  * memory operations do not preempt regular SPI transfers that have been queued
1888  * before the spi-mem operation.
1889  */
1890 void spi_flush_queue(struct spi_controller *ctlr)
1891 {
1892         if (ctlr->transfer == spi_queued_transfer)
1893                 __spi_pump_messages(ctlr, false);
1894 }
1895
1896 /*-------------------------------------------------------------------------*/
1897
1898 #if defined(CONFIG_OF)
1899 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1900                            struct device_node *nc)
1901 {
1902         u32 value;
1903         int rc;
1904
1905         /* Mode (clock phase/polarity/etc.) */
1906         if (of_property_read_bool(nc, "spi-cpha"))
1907                 spi->mode |= SPI_CPHA;
1908         if (of_property_read_bool(nc, "spi-cpol"))
1909                 spi->mode |= SPI_CPOL;
1910         if (of_property_read_bool(nc, "spi-3wire"))
1911                 spi->mode |= SPI_3WIRE;
1912         if (of_property_read_bool(nc, "spi-lsb-first"))
1913                 spi->mode |= SPI_LSB_FIRST;
1914         if (of_property_read_bool(nc, "spi-cs-high"))
1915                 spi->mode |= SPI_CS_HIGH;
1916
1917         /* Device DUAL/QUAD mode */
1918         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1919                 switch (value) {
1920                 case 1:
1921                         break;
1922                 case 2:
1923                         spi->mode |= SPI_TX_DUAL;
1924                         break;
1925                 case 4:
1926                         spi->mode |= SPI_TX_QUAD;
1927                         break;
1928                 case 8:
1929                         spi->mode |= SPI_TX_OCTAL;
1930                         break;
1931                 default:
1932                         dev_warn(&ctlr->dev,
1933                                 "spi-tx-bus-width %d not supported\n",
1934                                 value);
1935                         break;
1936                 }
1937         }
1938
1939         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1940                 switch (value) {
1941                 case 1:
1942                         break;
1943                 case 2:
1944                         spi->mode |= SPI_RX_DUAL;
1945                         break;
1946                 case 4:
1947                         spi->mode |= SPI_RX_QUAD;
1948                         break;
1949                 case 8:
1950                         spi->mode |= SPI_RX_OCTAL;
1951                         break;
1952                 default:
1953                         dev_warn(&ctlr->dev,
1954                                 "spi-rx-bus-width %d not supported\n",
1955                                 value);
1956                         break;
1957                 }
1958         }
1959
1960         if (spi_controller_is_slave(ctlr)) {
1961                 if (!of_node_name_eq(nc, "slave")) {
1962                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1963                                 nc);
1964                         return -EINVAL;
1965                 }
1966                 return 0;
1967         }
1968
1969         /* Device address */
1970         rc = of_property_read_u32(nc, "reg", &value);
1971         if (rc) {
1972                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1973                         nc, rc);
1974                 return rc;
1975         }
1976         spi->chip_select = value;
1977
1978         /*
1979          * For descriptors associated with the device, polarity inversion is
1980          * handled in the gpiolib, so all gpio chip selects are "active high"
1981          * in the logical sense, the gpiolib will invert the line if need be.
1982          */
1983         if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1984             ctlr->cs_gpiods[spi->chip_select])
1985                 spi->mode |= SPI_CS_HIGH;
1986
1987         /* Device speed */
1988         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
1989                 spi->max_speed_hz = value;
1990
1991         return 0;
1992 }
1993
1994 static struct spi_device *
1995 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1996 {
1997         struct spi_device *spi;
1998         int rc;
1999
2000         /* Alloc an spi_device */
2001         spi = spi_alloc_device(ctlr);
2002         if (!spi) {
2003                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2004                 rc = -ENOMEM;
2005                 goto err_out;
2006         }
2007
2008         /* Select device driver */
2009         rc = of_modalias_node(nc, spi->modalias,
2010                                 sizeof(spi->modalias));
2011         if (rc < 0) {
2012                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2013                 goto err_out;
2014         }
2015
2016         rc = of_spi_parse_dt(ctlr, spi, nc);
2017         if (rc)
2018                 goto err_out;
2019
2020         /* Store a pointer to the node in the device structure */
2021         of_node_get(nc);
2022         spi->dev.of_node = nc;
2023
2024         /* Register the new device */
2025         rc = spi_add_device(spi);
2026         if (rc) {
2027                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2028                 goto err_of_node_put;
2029         }
2030
2031         return spi;
2032
2033 err_of_node_put:
2034         of_node_put(nc);
2035 err_out:
2036         spi_dev_put(spi);
2037         return ERR_PTR(rc);
2038 }
2039
2040 /**
2041  * of_register_spi_devices() - Register child devices onto the SPI bus
2042  * @ctlr:       Pointer to spi_controller device
2043  *
2044  * Registers an spi_device for each child node of controller node which
2045  * represents a valid SPI slave.
2046  */
2047 static void of_register_spi_devices(struct spi_controller *ctlr)
2048 {
2049         struct spi_device *spi;
2050         struct device_node *nc;
2051
2052         if (!ctlr->dev.of_node)
2053                 return;
2054
2055         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2056                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2057                         continue;
2058                 spi = of_register_spi_device(ctlr, nc);
2059                 if (IS_ERR(spi)) {
2060                         dev_warn(&ctlr->dev,
2061                                  "Failed to create SPI device for %pOF\n", nc);
2062                         of_node_clear_flag(nc, OF_POPULATED);
2063                 }
2064         }
2065 }
2066 #else
2067 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2068 #endif
2069
2070 #ifdef CONFIG_ACPI
2071 struct acpi_spi_lookup {
2072         struct spi_controller   *ctlr;
2073         u32                     max_speed_hz;
2074         u32                     mode;
2075         int                     irq;
2076         u8                      bits_per_word;
2077         u8                      chip_select;
2078 };
2079
2080 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2081                                             struct acpi_spi_lookup *lookup)
2082 {
2083         const union acpi_object *obj;
2084
2085         if (!x86_apple_machine)
2086                 return;
2087
2088         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2089             && obj->buffer.length >= 4)
2090                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2091
2092         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2093             && obj->buffer.length == 8)
2094                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2095
2096         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2097             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2098                 lookup->mode |= SPI_LSB_FIRST;
2099
2100         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2101             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2102                 lookup->mode |= SPI_CPOL;
2103
2104         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2105             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2106                 lookup->mode |= SPI_CPHA;
2107 }
2108
2109 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2110 {
2111         struct acpi_spi_lookup *lookup = data;
2112         struct spi_controller *ctlr = lookup->ctlr;
2113
2114         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2115                 struct acpi_resource_spi_serialbus *sb;
2116                 acpi_handle parent_handle;
2117                 acpi_status status;
2118
2119                 sb = &ares->data.spi_serial_bus;
2120                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2121
2122                         status = acpi_get_handle(NULL,
2123                                                  sb->resource_source.string_ptr,
2124                                                  &parent_handle);
2125
2126                         if (ACPI_FAILURE(status) ||
2127                             ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2128                                 return -ENODEV;
2129
2130                         /*
2131                          * ACPI DeviceSelection numbering is handled by the
2132                          * host controller driver in Windows and can vary
2133                          * from driver to driver. In Linux we always expect
2134                          * 0 .. max - 1 so we need to ask the driver to
2135                          * translate between the two schemes.
2136                          */
2137                         if (ctlr->fw_translate_cs) {
2138                                 int cs = ctlr->fw_translate_cs(ctlr,
2139                                                 sb->device_selection);
2140                                 if (cs < 0)
2141                                         return cs;
2142                                 lookup->chip_select = cs;
2143                         } else {
2144                                 lookup->chip_select = sb->device_selection;
2145                         }
2146
2147                         lookup->max_speed_hz = sb->connection_speed;
2148                         lookup->bits_per_word = sb->data_bit_length;
2149
2150                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2151                                 lookup->mode |= SPI_CPHA;
2152                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2153                                 lookup->mode |= SPI_CPOL;
2154                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2155                                 lookup->mode |= SPI_CS_HIGH;
2156                 }
2157         } else if (lookup->irq < 0) {
2158                 struct resource r;
2159
2160                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2161                         lookup->irq = r.start;
2162         }
2163
2164         /* Always tell the ACPI core to skip this resource */
2165         return 1;
2166 }
2167
2168 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2169                                             struct acpi_device *adev)
2170 {
2171         acpi_handle parent_handle = NULL;
2172         struct list_head resource_list;
2173         struct acpi_spi_lookup lookup = {};
2174         struct spi_device *spi;
2175         int ret;
2176
2177         if (acpi_bus_get_status(adev) || !adev->status.present ||
2178             acpi_device_enumerated(adev))
2179                 return AE_OK;
2180
2181         lookup.ctlr             = ctlr;
2182         lookup.irq              = -1;
2183
2184         INIT_LIST_HEAD(&resource_list);
2185         ret = acpi_dev_get_resources(adev, &resource_list,
2186                                      acpi_spi_add_resource, &lookup);
2187         acpi_dev_free_resource_list(&resource_list);
2188
2189         if (ret < 0)
2190                 /* found SPI in _CRS but it points to another controller */
2191                 return AE_OK;
2192
2193         if (!lookup.max_speed_hz &&
2194             !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2195             ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2196                 /* Apple does not use _CRS but nested devices for SPI slaves */
2197                 acpi_spi_parse_apple_properties(adev, &lookup);
2198         }
2199
2200         if (!lookup.max_speed_hz)
2201                 return AE_OK;
2202
2203         spi = spi_alloc_device(ctlr);
2204         if (!spi) {
2205                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2206                         dev_name(&adev->dev));
2207                 return AE_NO_MEMORY;
2208         }
2209
2210
2211         ACPI_COMPANION_SET(&spi->dev, adev);
2212         spi->max_speed_hz       = lookup.max_speed_hz;
2213         spi->mode               |= lookup.mode;
2214         spi->irq                = lookup.irq;
2215         spi->bits_per_word      = lookup.bits_per_word;
2216         spi->chip_select        = lookup.chip_select;
2217
2218         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2219                           sizeof(spi->modalias));
2220
2221         if (spi->irq < 0)
2222                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2223
2224         acpi_device_set_enumerated(adev);
2225
2226         adev->power.flags.ignore_parent = true;
2227         if (spi_add_device(spi)) {
2228                 adev->power.flags.ignore_parent = false;
2229                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2230                         dev_name(&adev->dev));
2231                 spi_dev_put(spi);
2232         }
2233
2234         return AE_OK;
2235 }
2236
2237 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2238                                        void *data, void **return_value)
2239 {
2240         struct spi_controller *ctlr = data;
2241         struct acpi_device *adev;
2242
2243         if (acpi_bus_get_device(handle, &adev))
2244                 return AE_OK;
2245
2246         return acpi_register_spi_device(ctlr, adev);
2247 }
2248
2249 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2250
2251 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2252 {
2253         acpi_status status;
2254         acpi_handle handle;
2255
2256         handle = ACPI_HANDLE(ctlr->dev.parent);
2257         if (!handle)
2258                 return;
2259
2260         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2261                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2262                                      acpi_spi_add_device, NULL, ctlr, NULL);
2263         if (ACPI_FAILURE(status))
2264                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2265 }
2266 #else
2267 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2268 #endif /* CONFIG_ACPI */
2269
2270 static void spi_controller_release(struct device *dev)
2271 {
2272         struct spi_controller *ctlr;
2273
2274         ctlr = container_of(dev, struct spi_controller, dev);
2275         kfree(ctlr);
2276 }
2277
2278 static struct class spi_master_class = {
2279         .name           = "spi_master",
2280         .owner          = THIS_MODULE,
2281         .dev_release    = spi_controller_release,
2282         .dev_groups     = spi_master_groups,
2283 };
2284
2285 #ifdef CONFIG_SPI_SLAVE
2286 /**
2287  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2288  *                   controller
2289  * @spi: device used for the current transfer
2290  */
2291 int spi_slave_abort(struct spi_device *spi)
2292 {
2293         struct spi_controller *ctlr = spi->controller;
2294
2295         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2296                 return ctlr->slave_abort(ctlr);
2297
2298         return -ENOTSUPP;
2299 }
2300 EXPORT_SYMBOL_GPL(spi_slave_abort);
2301
2302 static int match_true(struct device *dev, void *data)
2303 {
2304         return 1;
2305 }
2306
2307 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2308                           char *buf)
2309 {
2310         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2311                                                    dev);
2312         struct device *child;
2313
2314         child = device_find_child(&ctlr->dev, NULL, match_true);
2315         return sprintf(buf, "%s\n",
2316                        child ? to_spi_device(child)->modalias : NULL);
2317 }
2318
2319 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2320                            const char *buf, size_t count)
2321 {
2322         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2323                                                    dev);
2324         struct spi_device *spi;
2325         struct device *child;
2326         char name[32];
2327         int rc;
2328
2329         rc = sscanf(buf, "%31s", name);
2330         if (rc != 1 || !name[0])
2331                 return -EINVAL;
2332
2333         child = device_find_child(&ctlr->dev, NULL, match_true);
2334         if (child) {
2335                 /* Remove registered slave */
2336                 device_unregister(child);
2337                 put_device(child);
2338         }
2339
2340         if (strcmp(name, "(null)")) {
2341                 /* Register new slave */
2342                 spi = spi_alloc_device(ctlr);
2343                 if (!spi)
2344                         return -ENOMEM;
2345
2346                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2347
2348                 rc = spi_add_device(spi);
2349                 if (rc) {
2350                         spi_dev_put(spi);
2351                         return rc;
2352                 }
2353         }
2354
2355         return count;
2356 }
2357
2358 static DEVICE_ATTR_RW(slave);
2359
2360 static struct attribute *spi_slave_attrs[] = {
2361         &dev_attr_slave.attr,
2362         NULL,
2363 };
2364
2365 static const struct attribute_group spi_slave_group = {
2366         .attrs = spi_slave_attrs,
2367 };
2368
2369 static const struct attribute_group *spi_slave_groups[] = {
2370         &spi_controller_statistics_group,
2371         &spi_slave_group,
2372         NULL,
2373 };
2374
2375 static struct class spi_slave_class = {
2376         .name           = "spi_slave",
2377         .owner          = THIS_MODULE,
2378         .dev_release    = spi_controller_release,
2379         .dev_groups     = spi_slave_groups,
2380 };
2381 #else
2382 extern struct class spi_slave_class;    /* dummy */
2383 #endif
2384
2385 /**
2386  * __spi_alloc_controller - allocate an SPI master or slave controller
2387  * @dev: the controller, possibly using the platform_bus
2388  * @size: how much zeroed driver-private data to allocate; the pointer to this
2389  *      memory is in the driver_data field of the returned device, accessible
2390  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2391  *      drivers granting DMA access to portions of their private data need to
2392  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2393  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2394  *      slave (true) controller
2395  * Context: can sleep
2396  *
2397  * This call is used only by SPI controller drivers, which are the
2398  * only ones directly touching chip registers.  It's how they allocate
2399  * an spi_controller structure, prior to calling spi_register_controller().
2400  *
2401  * This must be called from context that can sleep.
2402  *
2403  * The caller is responsible for assigning the bus number and initializing the
2404  * controller's methods before calling spi_register_controller(); and (after
2405  * errors adding the device) calling spi_controller_put() to prevent a memory
2406  * leak.
2407  *
2408  * Return: the SPI controller structure on success, else NULL.
2409  */
2410 struct spi_controller *__spi_alloc_controller(struct device *dev,
2411                                               unsigned int size, bool slave)
2412 {
2413         struct spi_controller   *ctlr;
2414         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2415
2416         if (!dev)
2417                 return NULL;
2418
2419         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2420         if (!ctlr)
2421                 return NULL;
2422
2423         device_initialize(&ctlr->dev);
2424         ctlr->bus_num = -1;
2425         ctlr->num_chipselect = 1;
2426         ctlr->slave = slave;
2427         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2428                 ctlr->dev.class = &spi_slave_class;
2429         else
2430                 ctlr->dev.class = &spi_master_class;
2431         ctlr->dev.parent = dev;
2432         pm_suspend_ignore_children(&ctlr->dev, true);
2433         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2434
2435         return ctlr;
2436 }
2437 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2438
2439 #ifdef CONFIG_OF
2440 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2441 {
2442         int nb, i, *cs;
2443         struct device_node *np = ctlr->dev.of_node;
2444
2445         if (!np)
2446                 return 0;
2447
2448         nb = of_gpio_named_count(np, "cs-gpios");
2449         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2450
2451         /* Return error only for an incorrectly formed cs-gpios property */
2452         if (nb == 0 || nb == -ENOENT)
2453                 return 0;
2454         else if (nb < 0)
2455                 return nb;
2456
2457         cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2458                           GFP_KERNEL);
2459         ctlr->cs_gpios = cs;
2460
2461         if (!ctlr->cs_gpios)
2462                 return -ENOMEM;
2463
2464         for (i = 0; i < ctlr->num_chipselect; i++)
2465                 cs[i] = -ENOENT;
2466
2467         for (i = 0; i < nb; i++)
2468                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2469
2470         return 0;
2471 }
2472 #else
2473 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2474 {
2475         return 0;
2476 }
2477 #endif
2478
2479 /**
2480  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2481  * @ctlr: The SPI master to grab GPIO descriptors for
2482  */
2483 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2484 {
2485         int nb, i;
2486         struct gpio_desc **cs;
2487         struct device *dev = &ctlr->dev;
2488         unsigned long native_cs_mask = 0;
2489         unsigned int num_cs_gpios = 0;
2490
2491         nb = gpiod_count(dev, "cs");
2492         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2493
2494         /* No GPIOs at all is fine, else return the error */
2495         if (nb == 0 || nb == -ENOENT)
2496                 return 0;
2497         else if (nb < 0)
2498                 return nb;
2499
2500         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2501                           GFP_KERNEL);
2502         if (!cs)
2503                 return -ENOMEM;
2504         ctlr->cs_gpiods = cs;
2505
2506         for (i = 0; i < nb; i++) {
2507                 /*
2508                  * Most chipselects are active low, the inverted
2509                  * semantics are handled by special quirks in gpiolib,
2510                  * so initializing them GPIOD_OUT_LOW here means
2511                  * "unasserted", in most cases this will drive the physical
2512                  * line high.
2513                  */
2514                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2515                                                       GPIOD_OUT_LOW);
2516                 if (IS_ERR(cs[i]))
2517                         return PTR_ERR(cs[i]);
2518
2519                 if (cs[i]) {
2520                         /*
2521                          * If we find a CS GPIO, name it after the device and
2522                          * chip select line.
2523                          */
2524                         char *gpioname;
2525
2526                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2527                                                   dev_name(dev), i);
2528                         if (!gpioname)
2529                                 return -ENOMEM;
2530                         gpiod_set_consumer_name(cs[i], gpioname);
2531                         num_cs_gpios++;
2532                         continue;
2533                 }
2534
2535                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2536                         dev_err(dev, "Invalid native chip select %d\n", i);
2537                         return -EINVAL;
2538                 }
2539                 native_cs_mask |= BIT(i);
2540         }
2541
2542         ctlr->unused_native_cs = ffz(native_cs_mask);
2543         if (num_cs_gpios && ctlr->max_native_cs &&
2544             ctlr->unused_native_cs >= ctlr->max_native_cs) {
2545                 dev_err(dev, "No unused native chip select available\n");
2546                 return -EINVAL;
2547         }
2548
2549         return 0;
2550 }
2551
2552 static int spi_controller_check_ops(struct spi_controller *ctlr)
2553 {
2554         /*
2555          * The controller may implement only the high-level SPI-memory like
2556          * operations if it does not support regular SPI transfers, and this is
2557          * valid use case.
2558          * If ->mem_ops is NULL, we request that at least one of the
2559          * ->transfer_xxx() method be implemented.
2560          */
2561         if (ctlr->mem_ops) {
2562                 if (!ctlr->mem_ops->exec_op)
2563                         return -EINVAL;
2564         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2565                    !ctlr->transfer_one_message) {
2566                 return -EINVAL;
2567         }
2568
2569         return 0;
2570 }
2571
2572 /**
2573  * spi_register_controller - register SPI master or slave controller
2574  * @ctlr: initialized master, originally from spi_alloc_master() or
2575  *      spi_alloc_slave()
2576  * Context: can sleep
2577  *
2578  * SPI controllers connect to their drivers using some non-SPI bus,
2579  * such as the platform bus.  The final stage of probe() in that code
2580  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2581  *
2582  * SPI controllers use board specific (often SOC specific) bus numbers,
2583  * and board-specific addressing for SPI devices combines those numbers
2584  * with chip select numbers.  Since SPI does not directly support dynamic
2585  * device identification, boards need configuration tables telling which
2586  * chip is at which address.
2587  *
2588  * This must be called from context that can sleep.  It returns zero on
2589  * success, else a negative error code (dropping the controller's refcount).
2590  * After a successful return, the caller is responsible for calling
2591  * spi_unregister_controller().
2592  *
2593  * Return: zero on success, else a negative error code.
2594  */
2595 int spi_register_controller(struct spi_controller *ctlr)
2596 {
2597         struct device           *dev = ctlr->dev.parent;
2598         struct boardinfo        *bi;
2599         int                     status;
2600         int                     id, first_dynamic;
2601
2602         if (!dev)
2603                 return -ENODEV;
2604
2605         /*
2606          * Make sure all necessary hooks are implemented before registering
2607          * the SPI controller.
2608          */
2609         status = spi_controller_check_ops(ctlr);
2610         if (status)
2611                 return status;
2612
2613         if (ctlr->bus_num >= 0) {
2614                 /* devices with a fixed bus num must check-in with the num */
2615                 mutex_lock(&board_lock);
2616                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2617                         ctlr->bus_num + 1, GFP_KERNEL);
2618                 mutex_unlock(&board_lock);
2619                 if (WARN(id < 0, "couldn't get idr"))
2620                         return id == -ENOSPC ? -EBUSY : id;
2621                 ctlr->bus_num = id;
2622         } else if (ctlr->dev.of_node) {
2623                 /* allocate dynamic bus number using Linux idr */
2624                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2625                 if (id >= 0) {
2626                         ctlr->bus_num = id;
2627                         mutex_lock(&board_lock);
2628                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2629                                        ctlr->bus_num + 1, GFP_KERNEL);
2630                         mutex_unlock(&board_lock);
2631                         if (WARN(id < 0, "couldn't get idr"))
2632                                 return id == -ENOSPC ? -EBUSY : id;
2633                 }
2634         }
2635         if (ctlr->bus_num < 0) {
2636                 first_dynamic = of_alias_get_highest_id("spi");
2637                 if (first_dynamic < 0)
2638                         first_dynamic = 0;
2639                 else
2640                         first_dynamic++;
2641
2642                 mutex_lock(&board_lock);
2643                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2644                                0, GFP_KERNEL);
2645                 mutex_unlock(&board_lock);
2646                 if (WARN(id < 0, "couldn't get idr"))
2647                         return id;
2648                 ctlr->bus_num = id;
2649         }
2650         INIT_LIST_HEAD(&ctlr->queue);
2651         spin_lock_init(&ctlr->queue_lock);
2652         spin_lock_init(&ctlr->bus_lock_spinlock);
2653         mutex_init(&ctlr->bus_lock_mutex);
2654         mutex_init(&ctlr->io_mutex);
2655         ctlr->bus_lock_flag = 0;
2656         init_completion(&ctlr->xfer_completion);
2657         if (!ctlr->max_dma_len)
2658                 ctlr->max_dma_len = INT_MAX;
2659
2660         /* register the device, then userspace will see it.
2661          * registration fails if the bus ID is in use.
2662          */
2663         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2664
2665         if (!spi_controller_is_slave(ctlr)) {
2666                 if (ctlr->use_gpio_descriptors) {
2667                         status = spi_get_gpio_descs(ctlr);
2668                         if (status)
2669                                 goto free_bus_id;
2670                         /*
2671                          * A controller using GPIO descriptors always
2672                          * supports SPI_CS_HIGH if need be.
2673                          */
2674                         ctlr->mode_bits |= SPI_CS_HIGH;
2675                 } else {
2676                         /* Legacy code path for GPIOs from DT */
2677                         status = of_spi_get_gpio_numbers(ctlr);
2678                         if (status)
2679                                 goto free_bus_id;
2680                 }
2681         }
2682
2683         /*
2684          * Even if it's just one always-selected device, there must
2685          * be at least one chipselect.
2686          */
2687         if (!ctlr->num_chipselect) {
2688                 status = -EINVAL;
2689                 goto free_bus_id;
2690         }
2691
2692         status = device_add(&ctlr->dev);
2693         if (status < 0)
2694                 goto free_bus_id;
2695         dev_dbg(dev, "registered %s %s\n",
2696                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2697                         dev_name(&ctlr->dev));
2698
2699         /*
2700          * If we're using a queued driver, start the queue. Note that we don't
2701          * need the queueing logic if the driver is only supporting high-level
2702          * memory operations.
2703          */
2704         if (ctlr->transfer) {
2705                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2706         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2707                 status = spi_controller_initialize_queue(ctlr);
2708                 if (status) {
2709                         device_del(&ctlr->dev);
2710                         goto free_bus_id;
2711                 }
2712         }
2713         /* add statistics */
2714         spin_lock_init(&ctlr->statistics.lock);
2715
2716         mutex_lock(&board_lock);
2717         list_add_tail(&ctlr->list, &spi_controller_list);
2718         list_for_each_entry(bi, &board_list, list)
2719                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2720         mutex_unlock(&board_lock);
2721
2722         /* Register devices from the device tree and ACPI */
2723         of_register_spi_devices(ctlr);
2724         acpi_register_spi_devices(ctlr);
2725         return status;
2726
2727 free_bus_id:
2728         mutex_lock(&board_lock);
2729         idr_remove(&spi_master_idr, ctlr->bus_num);
2730         mutex_unlock(&board_lock);
2731         return status;
2732 }
2733 EXPORT_SYMBOL_GPL(spi_register_controller);
2734
2735 static void devm_spi_unregister(struct device *dev, void *res)
2736 {
2737         spi_unregister_controller(*(struct spi_controller **)res);
2738 }
2739
2740 /**
2741  * devm_spi_register_controller - register managed SPI master or slave
2742  *      controller
2743  * @dev:    device managing SPI controller
2744  * @ctlr: initialized controller, originally from spi_alloc_master() or
2745  *      spi_alloc_slave()
2746  * Context: can sleep
2747  *
2748  * Register a SPI device as with spi_register_controller() which will
2749  * automatically be unregistered and freed.
2750  *
2751  * Return: zero on success, else a negative error code.
2752  */
2753 int devm_spi_register_controller(struct device *dev,
2754                                  struct spi_controller *ctlr)
2755 {
2756         struct spi_controller **ptr;
2757         int ret;
2758
2759         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2760         if (!ptr)
2761                 return -ENOMEM;
2762
2763         ret = spi_register_controller(ctlr);
2764         if (!ret) {
2765                 *ptr = ctlr;
2766                 devres_add(dev, ptr);
2767         } else {
2768                 devres_free(ptr);
2769         }
2770
2771         return ret;
2772 }
2773 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2774
2775 static int __unregister(struct device *dev, void *null)
2776 {
2777         spi_unregister_device(to_spi_device(dev));
2778         return 0;
2779 }
2780
2781 /**
2782  * spi_unregister_controller - unregister SPI master or slave controller
2783  * @ctlr: the controller being unregistered
2784  * Context: can sleep
2785  *
2786  * This call is used only by SPI controller drivers, which are the
2787  * only ones directly touching chip registers.
2788  *
2789  * This must be called from context that can sleep.
2790  *
2791  * Note that this function also drops a reference to the controller.
2792  */
2793 void spi_unregister_controller(struct spi_controller *ctlr)
2794 {
2795         struct spi_controller *found;
2796         int id = ctlr->bus_num;
2797
2798         device_for_each_child(&ctlr->dev, NULL, __unregister);
2799
2800         /* First make sure that this controller was ever added */
2801         mutex_lock(&board_lock);
2802         found = idr_find(&spi_master_idr, id);
2803         mutex_unlock(&board_lock);
2804         if (ctlr->queued) {
2805                 if (spi_destroy_queue(ctlr))
2806                         dev_err(&ctlr->dev, "queue remove failed\n");
2807         }
2808         mutex_lock(&board_lock);
2809         list_del(&ctlr->list);
2810         mutex_unlock(&board_lock);
2811
2812         device_unregister(&ctlr->dev);
2813         /* free bus id */
2814         mutex_lock(&board_lock);
2815         if (found == ctlr)
2816                 idr_remove(&spi_master_idr, id);
2817         mutex_unlock(&board_lock);
2818 }
2819 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2820
2821 int spi_controller_suspend(struct spi_controller *ctlr)
2822 {
2823         int ret;
2824
2825         /* Basically no-ops for non-queued controllers */
2826         if (!ctlr->queued)
2827                 return 0;
2828
2829         ret = spi_stop_queue(ctlr);
2830         if (ret)
2831                 dev_err(&ctlr->dev, "queue stop failed\n");
2832
2833         return ret;
2834 }
2835 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2836
2837 int spi_controller_resume(struct spi_controller *ctlr)
2838 {
2839         int ret;
2840
2841         if (!ctlr->queued)
2842                 return 0;
2843
2844         ret = spi_start_queue(ctlr);
2845         if (ret)
2846                 dev_err(&ctlr->dev, "queue restart failed\n");
2847
2848         return ret;
2849 }
2850 EXPORT_SYMBOL_GPL(spi_controller_resume);
2851
2852 static int __spi_controller_match(struct device *dev, const void *data)
2853 {
2854         struct spi_controller *ctlr;
2855         const u16 *bus_num = data;
2856
2857         ctlr = container_of(dev, struct spi_controller, dev);
2858         return ctlr->bus_num == *bus_num;
2859 }
2860
2861 /**
2862  * spi_busnum_to_master - look up master associated with bus_num
2863  * @bus_num: the master's bus number
2864  * Context: can sleep
2865  *
2866  * This call may be used with devices that are registered after
2867  * arch init time.  It returns a refcounted pointer to the relevant
2868  * spi_controller (which the caller must release), or NULL if there is
2869  * no such master registered.
2870  *
2871  * Return: the SPI master structure on success, else NULL.
2872  */
2873 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2874 {
2875         struct device           *dev;
2876         struct spi_controller   *ctlr = NULL;
2877
2878         dev = class_find_device(&spi_master_class, NULL, &bus_num,
2879                                 __spi_controller_match);
2880         if (dev)
2881                 ctlr = container_of(dev, struct spi_controller, dev);
2882         /* reference got in class_find_device */
2883         return ctlr;
2884 }
2885 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2886
2887 /*-------------------------------------------------------------------------*/
2888
2889 /* Core methods for SPI resource management */
2890
2891 /**
2892  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2893  *                 during the processing of a spi_message while using
2894  *                 spi_transfer_one
2895  * @spi:     the spi device for which we allocate memory
2896  * @release: the release code to execute for this resource
2897  * @size:    size to alloc and return
2898  * @gfp:     GFP allocation flags
2899  *
2900  * Return: the pointer to the allocated data
2901  *
2902  * This may get enhanced in the future to allocate from a memory pool
2903  * of the @spi_device or @spi_controller to avoid repeated allocations.
2904  */
2905 void *spi_res_alloc(struct spi_device *spi,
2906                     spi_res_release_t release,
2907                     size_t size, gfp_t gfp)
2908 {
2909         struct spi_res *sres;
2910
2911         sres = kzalloc(sizeof(*sres) + size, gfp);
2912         if (!sres)
2913                 return NULL;
2914
2915         INIT_LIST_HEAD(&sres->entry);
2916         sres->release = release;
2917
2918         return sres->data;
2919 }
2920 EXPORT_SYMBOL_GPL(spi_res_alloc);
2921
2922 /**
2923  * spi_res_free - free an spi resource
2924  * @res: pointer to the custom data of a resource
2925  *
2926  */
2927 void spi_res_free(void *res)
2928 {
2929         struct spi_res *sres = container_of(res, struct spi_res, data);
2930
2931         if (!res)
2932                 return;
2933
2934         WARN_ON(!list_empty(&sres->entry));
2935         kfree(sres);
2936 }
2937 EXPORT_SYMBOL_GPL(spi_res_free);
2938
2939 /**
2940  * spi_res_add - add a spi_res to the spi_message
2941  * @message: the spi message
2942  * @res:     the spi_resource
2943  */
2944 void spi_res_add(struct spi_message *message, void *res)
2945 {
2946         struct spi_res *sres = container_of(res, struct spi_res, data);
2947
2948         WARN_ON(!list_empty(&sres->entry));
2949         list_add_tail(&sres->entry, &message->resources);
2950 }
2951 EXPORT_SYMBOL_GPL(spi_res_add);
2952
2953 /**
2954  * spi_res_release - release all spi resources for this message
2955  * @ctlr:  the @spi_controller
2956  * @message: the @spi_message
2957  */
2958 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2959 {
2960         struct spi_res *res, *tmp;
2961
2962         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2963                 if (res->release)
2964                         res->release(ctlr, message, res->data);
2965
2966                 list_del(&res->entry);
2967
2968                 kfree(res);
2969         }
2970 }
2971 EXPORT_SYMBOL_GPL(spi_res_release);
2972
2973 /*-------------------------------------------------------------------------*/
2974
2975 /* Core methods for spi_message alterations */
2976
2977 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2978                                             struct spi_message *msg,
2979                                             void *res)
2980 {
2981         struct spi_replaced_transfers *rxfer = res;
2982         size_t i;
2983
2984         /* call extra callback if requested */
2985         if (rxfer->release)
2986                 rxfer->release(ctlr, msg, res);
2987
2988         /* insert replaced transfers back into the message */
2989         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2990
2991         /* remove the formerly inserted entries */
2992         for (i = 0; i < rxfer->inserted; i++)
2993                 list_del(&rxfer->inserted_transfers[i].transfer_list);
2994 }
2995
2996 /**
2997  * spi_replace_transfers - replace transfers with several transfers
2998  *                         and register change with spi_message.resources
2999  * @msg:           the spi_message we work upon
3000  * @xfer_first:    the first spi_transfer we want to replace
3001  * @remove:        number of transfers to remove
3002  * @insert:        the number of transfers we want to insert instead
3003  * @release:       extra release code necessary in some circumstances
3004  * @extradatasize: extra data to allocate (with alignment guarantees
3005  *                 of struct @spi_transfer)
3006  * @gfp:           gfp flags
3007  *
3008  * Returns: pointer to @spi_replaced_transfers,
3009  *          PTR_ERR(...) in case of errors.
3010  */
3011 struct spi_replaced_transfers *spi_replace_transfers(
3012         struct spi_message *msg,
3013         struct spi_transfer *xfer_first,
3014         size_t remove,
3015         size_t insert,
3016         spi_replaced_release_t release,
3017         size_t extradatasize,
3018         gfp_t gfp)
3019 {
3020         struct spi_replaced_transfers *rxfer;
3021         struct spi_transfer *xfer;
3022         size_t i;
3023
3024         /* allocate the structure using spi_res */
3025         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3026                               struct_size(rxfer, inserted_transfers, insert)
3027                               + extradatasize,
3028                               gfp);
3029         if (!rxfer)
3030                 return ERR_PTR(-ENOMEM);
3031
3032         /* the release code to invoke before running the generic release */
3033         rxfer->release = release;
3034
3035         /* assign extradata */
3036         if (extradatasize)
3037                 rxfer->extradata =
3038                         &rxfer->inserted_transfers[insert];
3039
3040         /* init the replaced_transfers list */
3041         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3042
3043         /* assign the list_entry after which we should reinsert
3044          * the @replaced_transfers - it may be spi_message.messages!
3045          */
3046         rxfer->replaced_after = xfer_first->transfer_list.prev;
3047
3048         /* remove the requested number of transfers */
3049         for (i = 0; i < remove; i++) {
3050                 /* if the entry after replaced_after it is msg->transfers
3051                  * then we have been requested to remove more transfers
3052                  * than are in the list
3053                  */
3054                 if (rxfer->replaced_after->next == &msg->transfers) {
3055                         dev_err(&msg->spi->dev,
3056                                 "requested to remove more spi_transfers than are available\n");
3057                         /* insert replaced transfers back into the message */
3058                         list_splice(&rxfer->replaced_transfers,
3059                                     rxfer->replaced_after);
3060
3061                         /* free the spi_replace_transfer structure */
3062                         spi_res_free(rxfer);
3063
3064                         /* and return with an error */
3065                         return ERR_PTR(-EINVAL);
3066                 }
3067
3068                 /* remove the entry after replaced_after from list of
3069                  * transfers and add it to list of replaced_transfers
3070                  */
3071                 list_move_tail(rxfer->replaced_after->next,
3072                                &rxfer->replaced_transfers);
3073         }
3074
3075         /* create copy of the given xfer with identical settings
3076          * based on the first transfer to get removed
3077          */
3078         for (i = 0; i < insert; i++) {
3079                 /* we need to run in reverse order */
3080                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3081
3082                 /* copy all spi_transfer data */
3083                 memcpy(xfer, xfer_first, sizeof(*xfer));
3084
3085                 /* add to list */
3086                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3087
3088                 /* clear cs_change and delay for all but the last */
3089                 if (i) {
3090                         xfer->cs_change = false;
3091                         xfer->delay_usecs = 0;
3092                         xfer->delay.value = 0;
3093                 }
3094         }
3095
3096         /* set up inserted */
3097         rxfer->inserted = insert;
3098
3099         /* and register it with spi_res/spi_message */
3100         spi_res_add(msg, rxfer);
3101
3102         return rxfer;
3103 }
3104 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3105
3106 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3107                                         struct spi_message *msg,
3108                                         struct spi_transfer **xferp,
3109                                         size_t maxsize,
3110                                         gfp_t gfp)
3111 {
3112         struct spi_transfer *xfer = *xferp, *xfers;
3113         struct spi_replaced_transfers *srt;
3114         size_t offset;
3115         size_t count, i;
3116
3117         /* calculate how many we have to replace */
3118         count = DIV_ROUND_UP(xfer->len, maxsize);
3119
3120         /* create replacement */
3121         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3122         if (IS_ERR(srt))
3123                 return PTR_ERR(srt);
3124         xfers = srt->inserted_transfers;
3125
3126         /* now handle each of those newly inserted spi_transfers
3127          * note that the replacements spi_transfers all are preset
3128          * to the same values as *xferp, so tx_buf, rx_buf and len
3129          * are all identical (as well as most others)
3130          * so we just have to fix up len and the pointers.
3131          *
3132          * this also includes support for the depreciated
3133          * spi_message.is_dma_mapped interface
3134          */
3135
3136         /* the first transfer just needs the length modified, so we
3137          * run it outside the loop
3138          */
3139         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3140
3141         /* all the others need rx_buf/tx_buf also set */
3142         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3143                 /* update rx_buf, tx_buf and dma */
3144                 if (xfers[i].rx_buf)
3145                         xfers[i].rx_buf += offset;
3146                 if (xfers[i].rx_dma)
3147                         xfers[i].rx_dma += offset;
3148                 if (xfers[i].tx_buf)
3149                         xfers[i].tx_buf += offset;
3150                 if (xfers[i].tx_dma)
3151                         xfers[i].tx_dma += offset;
3152
3153                 /* update length */
3154                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3155         }
3156
3157         /* we set up xferp to the last entry we have inserted,
3158          * so that we skip those already split transfers
3159          */
3160         *xferp = &xfers[count - 1];
3161
3162         /* increment statistics counters */
3163         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3164                                        transfers_split_maxsize);
3165         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3166                                        transfers_split_maxsize);
3167
3168         return 0;
3169 }
3170
3171 /**
3172  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3173  *                              when an individual transfer exceeds a
3174  *                              certain size
3175  * @ctlr:    the @spi_controller for this transfer
3176  * @msg:   the @spi_message to transform
3177  * @maxsize:  the maximum when to apply this
3178  * @gfp: GFP allocation flags
3179  *
3180  * Return: status of transformation
3181  */
3182 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3183                                 struct spi_message *msg,
3184                                 size_t maxsize,
3185                                 gfp_t gfp)
3186 {
3187         struct spi_transfer *xfer;
3188         int ret;
3189
3190         /* iterate over the transfer_list,
3191          * but note that xfer is advanced to the last transfer inserted
3192          * to avoid checking sizes again unnecessarily (also xfer does
3193          * potentiall belong to a different list by the time the
3194          * replacement has happened
3195          */
3196         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3197                 if (xfer->len > maxsize) {
3198                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3199                                                            maxsize, gfp);
3200                         if (ret)
3201                                 return ret;
3202                 }
3203         }
3204
3205         return 0;
3206 }
3207 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3208
3209 /*-------------------------------------------------------------------------*/
3210
3211 /* Core methods for SPI controller protocol drivers.  Some of the
3212  * other core methods are currently defined as inline functions.
3213  */
3214
3215 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3216                                         u8 bits_per_word)
3217 {
3218         if (ctlr->bits_per_word_mask) {
3219                 /* Only 32 bits fit in the mask */
3220                 if (bits_per_word > 32)
3221                         return -EINVAL;
3222                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3223                         return -EINVAL;
3224         }
3225
3226         return 0;
3227 }
3228
3229 /**
3230  * spi_setup - setup SPI mode and clock rate
3231  * @spi: the device whose settings are being modified
3232  * Context: can sleep, and no requests are queued to the device
3233  *
3234  * SPI protocol drivers may need to update the transfer mode if the
3235  * device doesn't work with its default.  They may likewise need
3236  * to update clock rates or word sizes from initial values.  This function
3237  * changes those settings, and must be called from a context that can sleep.
3238  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3239  * effect the next time the device is selected and data is transferred to
3240  * or from it.  When this function returns, the spi device is deselected.
3241  *
3242  * Note that this call will fail if the protocol driver specifies an option
3243  * that the underlying controller or its driver does not support.  For
3244  * example, not all hardware supports wire transfers using nine bit words,
3245  * LSB-first wire encoding, or active-high chipselects.
3246  *
3247  * Return: zero on success, else a negative error code.
3248  */
3249 int spi_setup(struct spi_device *spi)
3250 {
3251         unsigned        bad_bits, ugly_bits;
3252         int             status;
3253
3254         /* check mode to prevent that DUAL and QUAD set at the same time
3255          */
3256         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3257                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3258                 dev_err(&spi->dev,
3259                 "setup: can not select dual and quad at the same time\n");
3260                 return -EINVAL;
3261         }
3262         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3263          */
3264         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3265                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3266                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3267                 return -EINVAL;
3268         /* help drivers fail *cleanly* when they need options
3269          * that aren't supported with their current controller
3270          * SPI_CS_WORD has a fallback software implementation,
3271          * so it is ignored here.
3272          */
3273         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3274         /* nothing prevents from working with active-high CS in case if it
3275          * is driven by GPIO.
3276          */
3277         if (gpio_is_valid(spi->cs_gpio))
3278                 bad_bits &= ~SPI_CS_HIGH;
3279         ugly_bits = bad_bits &
3280                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3281                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3282         if (ugly_bits) {
3283                 dev_warn(&spi->dev,
3284                          "setup: ignoring unsupported mode bits %x\n",
3285                          ugly_bits);
3286                 spi->mode &= ~ugly_bits;
3287                 bad_bits &= ~ugly_bits;
3288         }
3289         if (bad_bits) {
3290                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3291                         bad_bits);
3292                 return -EINVAL;
3293         }
3294
3295         if (!spi->bits_per_word)
3296                 spi->bits_per_word = 8;
3297
3298         status = __spi_validate_bits_per_word(spi->controller,
3299                                               spi->bits_per_word);
3300         if (status)
3301                 return status;
3302
3303         if (!spi->max_speed_hz)
3304                 spi->max_speed_hz = spi->controller->max_speed_hz;
3305
3306         if (spi->controller->setup)
3307                 status = spi->controller->setup(spi);
3308
3309         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3310                 status = pm_runtime_get_sync(spi->controller->dev.parent);
3311                 if (status < 0) {
3312                         pm_runtime_put_noidle(spi->controller->dev.parent);
3313                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3314                                 status);
3315                         return status;
3316                 }
3317
3318                 /*
3319                  * We do not want to return positive value from pm_runtime_get,
3320                  * there are many instances of devices calling spi_setup() and
3321                  * checking for a non-zero return value instead of a negative
3322                  * return value.
3323                  */
3324                 status = 0;
3325
3326                 spi_set_cs(spi, false);
3327                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3328                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3329         } else {
3330                 spi_set_cs(spi, false);
3331         }
3332
3333         if (spi->rt && !spi->controller->rt) {
3334                 spi->controller->rt = true;
3335                 spi_set_thread_rt(spi->controller);
3336         }
3337
3338         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3339                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3340                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3341                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3342                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3343                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3344                         spi->bits_per_word, spi->max_speed_hz,
3345                         status);
3346
3347         return status;
3348 }
3349 EXPORT_SYMBOL_GPL(spi_setup);
3350
3351 /**
3352  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3353  * @spi: the device that requires specific CS timing configuration
3354  * @setup: CS setup time specified via @spi_delay
3355  * @hold: CS hold time specified via @spi_delay
3356  * @inactive: CS inactive delay between transfers specified via @spi_delay
3357  *
3358  * Return: zero on success, else a negative error code.
3359  */
3360 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3361                       struct spi_delay *hold, struct spi_delay *inactive)
3362 {
3363         size_t len;
3364
3365         if (spi->controller->set_cs_timing)
3366                 return spi->controller->set_cs_timing(spi, setup, hold,
3367                                                       inactive);
3368
3369         if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3370             (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3371             (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3372                 dev_err(&spi->dev,
3373                         "Clock-cycle delays for CS not supported in SW mode\n");
3374                 return -ENOTSUPP;
3375         }
3376
3377         len = sizeof(struct spi_delay);
3378
3379         /* copy delays to controller */
3380         if (setup)
3381                 memcpy(&spi->controller->cs_setup, setup, len);
3382         else
3383                 memset(&spi->controller->cs_setup, 0, len);
3384
3385         if (hold)
3386                 memcpy(&spi->controller->cs_hold, hold, len);
3387         else
3388                 memset(&spi->controller->cs_hold, 0, len);
3389
3390         if (inactive)
3391                 memcpy(&spi->controller->cs_inactive, inactive, len);
3392         else
3393                 memset(&spi->controller->cs_inactive, 0, len);
3394
3395         return 0;
3396 }
3397 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3398
3399 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3400                                        struct spi_device *spi)
3401 {
3402         int delay1, delay2;
3403
3404         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3405         if (delay1 < 0)
3406                 return delay1;
3407
3408         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3409         if (delay2 < 0)
3410                 return delay2;
3411
3412         if (delay1 < delay2)
3413                 memcpy(&xfer->word_delay, &spi->word_delay,
3414                        sizeof(xfer->word_delay));
3415
3416         return 0;
3417 }
3418
3419 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3420 {
3421         struct spi_controller *ctlr = spi->controller;
3422         struct spi_transfer *xfer;
3423         int w_size;
3424
3425         if (list_empty(&message->transfers))
3426                 return -EINVAL;
3427
3428         /* If an SPI controller does not support toggling the CS line on each
3429          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3430          * for the CS line, we can emulate the CS-per-word hardware function by
3431          * splitting transfers into one-word transfers and ensuring that
3432          * cs_change is set for each transfer.
3433          */
3434         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3435                                           spi->cs_gpiod ||
3436                                           gpio_is_valid(spi->cs_gpio))) {
3437                 size_t maxsize;
3438                 int ret;
3439
3440                 maxsize = (spi->bits_per_word + 7) / 8;
3441
3442                 /* spi_split_transfers_maxsize() requires message->spi */
3443                 message->spi = spi;
3444
3445                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3446                                                   GFP_KERNEL);
3447                 if (ret)
3448                         return ret;
3449
3450                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3451                         /* don't change cs_change on the last entry in the list */
3452                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3453                                 break;
3454                         xfer->cs_change = 1;
3455                 }
3456         }
3457
3458         /* Half-duplex links include original MicroWire, and ones with
3459          * only one data pin like SPI_3WIRE (switches direction) or where
3460          * either MOSI or MISO is missing.  They can also be caused by
3461          * software limitations.
3462          */
3463         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3464             (spi->mode & SPI_3WIRE)) {
3465                 unsigned flags = ctlr->flags;
3466
3467                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3468                         if (xfer->rx_buf && xfer->tx_buf)
3469                                 return -EINVAL;
3470                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3471                                 return -EINVAL;
3472                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3473                                 return -EINVAL;
3474                 }
3475         }
3476
3477         /**
3478          * Set transfer bits_per_word and max speed as spi device default if
3479          * it is not set for this transfer.
3480          * Set transfer tx_nbits and rx_nbits as single transfer default
3481          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3482          * Ensure transfer word_delay is at least as long as that required by
3483          * device itself.
3484          */
3485         message->frame_length = 0;
3486         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3487                 xfer->effective_speed_hz = 0;
3488                 message->frame_length += xfer->len;
3489                 if (!xfer->bits_per_word)
3490                         xfer->bits_per_word = spi->bits_per_word;
3491
3492                 if (!xfer->speed_hz)
3493                         xfer->speed_hz = spi->max_speed_hz;
3494
3495                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3496                         xfer->speed_hz = ctlr->max_speed_hz;
3497
3498                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3499                         return -EINVAL;
3500
3501                 /*
3502                  * SPI transfer length should be multiple of SPI word size
3503                  * where SPI word size should be power-of-two multiple
3504                  */
3505                 if (xfer->bits_per_word <= 8)
3506                         w_size = 1;
3507                 else if (xfer->bits_per_word <= 16)
3508                         w_size = 2;
3509                 else
3510                         w_size = 4;
3511
3512                 /* No partial transfers accepted */
3513                 if (xfer->len % w_size)
3514                         return -EINVAL;
3515
3516                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3517                     xfer->speed_hz < ctlr->min_speed_hz)
3518                         return -EINVAL;
3519
3520                 if (xfer->tx_buf && !xfer->tx_nbits)
3521                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3522                 if (xfer->rx_buf && !xfer->rx_nbits)
3523                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3524                 /* check transfer tx/rx_nbits:
3525                  * 1. check the value matches one of single, dual and quad
3526                  * 2. check tx/rx_nbits match the mode in spi_device
3527                  */
3528                 if (xfer->tx_buf) {
3529                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3530                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3531                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3532                                 return -EINVAL;
3533                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3534                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3535                                 return -EINVAL;
3536                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3537                                 !(spi->mode & SPI_TX_QUAD))
3538                                 return -EINVAL;
3539                 }
3540                 /* check transfer rx_nbits */
3541                 if (xfer->rx_buf) {
3542                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3543                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3544                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3545                                 return -EINVAL;
3546                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3547                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3548                                 return -EINVAL;
3549                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3550                                 !(spi->mode & SPI_RX_QUAD))
3551                                 return -EINVAL;
3552                 }
3553
3554                 if (_spi_xfer_word_delay_update(xfer, spi))
3555                         return -EINVAL;
3556         }
3557
3558         message->status = -EINPROGRESS;
3559
3560         return 0;
3561 }
3562
3563 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3564 {
3565         struct spi_controller *ctlr = spi->controller;
3566         struct spi_transfer *xfer;
3567
3568         /*
3569          * Some controllers do not support doing regular SPI transfers. Return
3570          * ENOTSUPP when this is the case.
3571          */
3572         if (!ctlr->transfer)
3573                 return -ENOTSUPP;
3574
3575         message->spi = spi;
3576
3577         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3578         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3579
3580         trace_spi_message_submit(message);
3581
3582         if (!ctlr->ptp_sts_supported) {
3583                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3584                         xfer->ptp_sts_word_pre = 0;
3585                         ptp_read_system_prets(xfer->ptp_sts);
3586                 }
3587         }
3588
3589         return ctlr->transfer(spi, message);
3590 }
3591
3592 /**
3593  * spi_async - asynchronous SPI transfer
3594  * @spi: device with which data will be exchanged
3595  * @message: describes the data transfers, including completion callback
3596  * Context: any (irqs may be blocked, etc)
3597  *
3598  * This call may be used in_irq and other contexts which can't sleep,
3599  * as well as from task contexts which can sleep.
3600  *
3601  * The completion callback is invoked in a context which can't sleep.
3602  * Before that invocation, the value of message->status is undefined.
3603  * When the callback is issued, message->status holds either zero (to
3604  * indicate complete success) or a negative error code.  After that
3605  * callback returns, the driver which issued the transfer request may
3606  * deallocate the associated memory; it's no longer in use by any SPI
3607  * core or controller driver code.
3608  *
3609  * Note that although all messages to a spi_device are handled in
3610  * FIFO order, messages may go to different devices in other orders.
3611  * Some device might be higher priority, or have various "hard" access
3612  * time requirements, for example.
3613  *
3614  * On detection of any fault during the transfer, processing of
3615  * the entire message is aborted, and the device is deselected.
3616  * Until returning from the associated message completion callback,
3617  * no other spi_message queued to that device will be processed.
3618  * (This rule applies equally to all the synchronous transfer calls,
3619  * which are wrappers around this core asynchronous primitive.)
3620  *
3621  * Return: zero on success, else a negative error code.
3622  */
3623 int spi_async(struct spi_device *spi, struct spi_message *message)
3624 {
3625         struct spi_controller *ctlr = spi->controller;
3626         int ret;
3627         unsigned long flags;
3628
3629         ret = __spi_validate(spi, message);
3630         if (ret != 0)
3631                 return ret;
3632
3633         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3634
3635         if (ctlr->bus_lock_flag)
3636                 ret = -EBUSY;
3637         else
3638                 ret = __spi_async(spi, message);
3639
3640         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3641
3642         return ret;
3643 }
3644 EXPORT_SYMBOL_GPL(spi_async);
3645
3646 /**
3647  * spi_async_locked - version of spi_async with exclusive bus usage
3648  * @spi: device with which data will be exchanged
3649  * @message: describes the data transfers, including completion callback
3650  * Context: any (irqs may be blocked, etc)
3651  *
3652  * This call may be used in_irq and other contexts which can't sleep,
3653  * as well as from task contexts which can sleep.
3654  *
3655  * The completion callback is invoked in a context which can't sleep.
3656  * Before that invocation, the value of message->status is undefined.
3657  * When the callback is issued, message->status holds either zero (to
3658  * indicate complete success) or a negative error code.  After that
3659  * callback returns, the driver which issued the transfer request may
3660  * deallocate the associated memory; it's no longer in use by any SPI
3661  * core or controller driver code.
3662  *
3663  * Note that although all messages to a spi_device are handled in
3664  * FIFO order, messages may go to different devices in other orders.
3665  * Some device might be higher priority, or have various "hard" access
3666  * time requirements, for example.
3667  *
3668  * On detection of any fault during the transfer, processing of
3669  * the entire message is aborted, and the device is deselected.
3670  * Until returning from the associated message completion callback,
3671  * no other spi_message queued to that device will be processed.
3672  * (This rule applies equally to all the synchronous transfer calls,
3673  * which are wrappers around this core asynchronous primitive.)
3674  *
3675  * Return: zero on success, else a negative error code.
3676  */
3677 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3678 {
3679         struct spi_controller *ctlr = spi->controller;
3680         int ret;
3681         unsigned long flags;
3682
3683         ret = __spi_validate(spi, message);
3684         if (ret != 0)
3685                 return ret;
3686
3687         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3688
3689         ret = __spi_async(spi, message);
3690
3691         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3692
3693         return ret;
3694
3695 }
3696 EXPORT_SYMBOL_GPL(spi_async_locked);
3697
3698 /*-------------------------------------------------------------------------*/
3699
3700 /* Utility methods for SPI protocol drivers, layered on
3701  * top of the core.  Some other utility methods are defined as
3702  * inline functions.
3703  */
3704
3705 static void spi_complete(void *arg)
3706 {
3707         complete(arg);
3708 }
3709
3710 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3711 {
3712         DECLARE_COMPLETION_ONSTACK(done);
3713         int status;
3714         struct spi_controller *ctlr = spi->controller;
3715         unsigned long flags;
3716
3717         status = __spi_validate(spi, message);
3718         if (status != 0)
3719                 return status;
3720
3721         message->complete = spi_complete;
3722         message->context = &done;
3723         message->spi = spi;
3724
3725         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3726         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3727
3728         /* If we're not using the legacy transfer method then we will
3729          * try to transfer in the calling context so special case.
3730          * This code would be less tricky if we could remove the
3731          * support for driver implemented message queues.
3732          */
3733         if (ctlr->transfer == spi_queued_transfer) {
3734                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3735
3736                 trace_spi_message_submit(message);
3737
3738                 status = __spi_queued_transfer(spi, message, false);
3739
3740                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3741         } else {
3742                 status = spi_async_locked(spi, message);
3743         }
3744
3745         if (status == 0) {
3746                 /* Push out the messages in the calling context if we
3747                  * can.
3748                  */
3749                 if (ctlr->transfer == spi_queued_transfer) {
3750                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3751                                                        spi_sync_immediate);
3752                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3753                                                        spi_sync_immediate);
3754                         __spi_pump_messages(ctlr, false);
3755                 }
3756
3757                 wait_for_completion(&done);
3758                 status = message->status;
3759         }
3760         message->context = NULL;
3761         return status;
3762 }
3763
3764 /**
3765  * spi_sync - blocking/synchronous SPI data transfers
3766  * @spi: device with which data will be exchanged
3767  * @message: describes the data transfers
3768  * Context: can sleep
3769  *
3770  * This call may only be used from a context that may sleep.  The sleep
3771  * is non-interruptible, and has no timeout.  Low-overhead controller
3772  * drivers may DMA directly into and out of the message buffers.
3773  *
3774  * Note that the SPI device's chip select is active during the message,
3775  * and then is normally disabled between messages.  Drivers for some
3776  * frequently-used devices may want to minimize costs of selecting a chip,
3777  * by leaving it selected in anticipation that the next message will go
3778  * to the same chip.  (That may increase power usage.)
3779  *
3780  * Also, the caller is guaranteeing that the memory associated with the
3781  * message will not be freed before this call returns.
3782  *
3783  * Return: zero on success, else a negative error code.
3784  */
3785 int spi_sync(struct spi_device *spi, struct spi_message *message)
3786 {
3787         int ret;
3788
3789         mutex_lock(&spi->controller->bus_lock_mutex);
3790         ret = __spi_sync(spi, message);
3791         mutex_unlock(&spi->controller->bus_lock_mutex);
3792
3793         return ret;
3794 }
3795 EXPORT_SYMBOL_GPL(spi_sync);
3796
3797 /**
3798  * spi_sync_locked - version of spi_sync with exclusive bus usage
3799  * @spi: device with which data will be exchanged
3800  * @message: describes the data transfers
3801  * Context: can sleep
3802  *
3803  * This call may only be used from a context that may sleep.  The sleep
3804  * is non-interruptible, and has no timeout.  Low-overhead controller
3805  * drivers may DMA directly into and out of the message buffers.
3806  *
3807  * This call should be used by drivers that require exclusive access to the
3808  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3809  * be released by a spi_bus_unlock call when the exclusive access is over.
3810  *
3811  * Return: zero on success, else a negative error code.
3812  */
3813 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3814 {
3815         return __spi_sync(spi, message);
3816 }
3817 EXPORT_SYMBOL_GPL(spi_sync_locked);
3818
3819 /**
3820  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3821  * @ctlr: SPI bus master that should be locked for exclusive bus access
3822  * Context: can sleep
3823  *
3824  * This call may only be used from a context that may sleep.  The sleep
3825  * is non-interruptible, and has no timeout.
3826  *
3827  * This call should be used by drivers that require exclusive access to the
3828  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3829  * exclusive access is over. Data transfer must be done by spi_sync_locked
3830  * and spi_async_locked calls when the SPI bus lock is held.
3831  *
3832  * Return: always zero.
3833  */
3834 int spi_bus_lock(struct spi_controller *ctlr)
3835 {
3836         unsigned long flags;
3837
3838         mutex_lock(&ctlr->bus_lock_mutex);
3839
3840         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3841         ctlr->bus_lock_flag = 1;
3842         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3843
3844         /* mutex remains locked until spi_bus_unlock is called */
3845
3846         return 0;
3847 }
3848 EXPORT_SYMBOL_GPL(spi_bus_lock);
3849
3850 /**
3851  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3852  * @ctlr: SPI bus master that was locked for exclusive bus access
3853  * Context: can sleep
3854  *
3855  * This call may only be used from a context that may sleep.  The sleep
3856  * is non-interruptible, and has no timeout.
3857  *
3858  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3859  * call.
3860  *
3861  * Return: always zero.
3862  */
3863 int spi_bus_unlock(struct spi_controller *ctlr)
3864 {
3865         ctlr->bus_lock_flag = 0;
3866
3867         mutex_unlock(&ctlr->bus_lock_mutex);
3868
3869         return 0;
3870 }
3871 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3872
3873 /* portable code must never pass more than 32 bytes */
3874 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
3875
3876 static u8       *buf;
3877
3878 /**
3879  * spi_write_then_read - SPI synchronous write followed by read
3880  * @spi: device with which data will be exchanged
3881  * @txbuf: data to be written (need not be dma-safe)
3882  * @n_tx: size of txbuf, in bytes
3883  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3884  * @n_rx: size of rxbuf, in bytes
3885  * Context: can sleep
3886  *
3887  * This performs a half duplex MicroWire style transaction with the
3888  * device, sending txbuf and then reading rxbuf.  The return value
3889  * is zero for success, else a negative errno status code.
3890  * This call may only be used from a context that may sleep.
3891  *
3892  * Parameters to this routine are always copied using a small buffer.
3893  * Performance-sensitive or bulk transfer code should instead use
3894  * spi_{async,sync}() calls with dma-safe buffers.
3895  *
3896  * Return: zero on success, else a negative error code.
3897  */
3898 int spi_write_then_read(struct spi_device *spi,
3899                 const void *txbuf, unsigned n_tx,
3900                 void *rxbuf, unsigned n_rx)
3901 {
3902         static DEFINE_MUTEX(lock);
3903
3904         int                     status;
3905         struct spi_message      message;
3906         struct spi_transfer     x[2];
3907         u8                      *local_buf;
3908
3909         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3910          * copying here, (as a pure convenience thing), but we can
3911          * keep heap costs out of the hot path unless someone else is
3912          * using the pre-allocated buffer or the transfer is too large.
3913          */
3914         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3915                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3916                                     GFP_KERNEL | GFP_DMA);
3917                 if (!local_buf)
3918                         return -ENOMEM;
3919         } else {
3920                 local_buf = buf;
3921         }
3922
3923         spi_message_init(&message);
3924         memset(x, 0, sizeof(x));
3925         if (n_tx) {
3926                 x[0].len = n_tx;
3927                 spi_message_add_tail(&x[0], &message);
3928         }
3929         if (n_rx) {
3930                 x[1].len = n_rx;
3931                 spi_message_add_tail(&x[1], &message);
3932         }
3933
3934         memcpy(local_buf, txbuf, n_tx);
3935         x[0].tx_buf = local_buf;
3936         x[1].rx_buf = local_buf + n_tx;
3937
3938         /* do the i/o */
3939         status = spi_sync(spi, &message);
3940         if (status == 0)
3941                 memcpy(rxbuf, x[1].rx_buf, n_rx);
3942
3943         if (x[0].tx_buf == buf)
3944                 mutex_unlock(&lock);
3945         else
3946                 kfree(local_buf);
3947
3948         return status;
3949 }
3950 EXPORT_SYMBOL_GPL(spi_write_then_read);
3951
3952 /*-------------------------------------------------------------------------*/
3953
3954 #if IS_ENABLED(CONFIG_OF)
3955 /* must call put_device() when done with returned spi_device device */
3956 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3957 {
3958         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3959
3960         return dev ? to_spi_device(dev) : NULL;
3961 }
3962 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3963 #endif /* IS_ENABLED(CONFIG_OF) */
3964
3965 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3966 /* the spi controllers are not using spi_bus, so we find it with another way */
3967 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3968 {
3969         struct device *dev;
3970
3971         dev = class_find_device_by_of_node(&spi_master_class, node);
3972         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3973                 dev = class_find_device_by_of_node(&spi_slave_class, node);
3974         if (!dev)
3975                 return NULL;
3976
3977         /* reference got in class_find_device */
3978         return container_of(dev, struct spi_controller, dev);
3979 }
3980
3981 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3982                          void *arg)
3983 {
3984         struct of_reconfig_data *rd = arg;
3985         struct spi_controller *ctlr;
3986         struct spi_device *spi;
3987
3988         switch (of_reconfig_get_state_change(action, arg)) {
3989         case OF_RECONFIG_CHANGE_ADD:
3990                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3991                 if (ctlr == NULL)
3992                         return NOTIFY_OK;       /* not for us */
3993
3994                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3995                         put_device(&ctlr->dev);
3996                         return NOTIFY_OK;
3997                 }
3998
3999                 spi = of_register_spi_device(ctlr, rd->dn);
4000                 put_device(&ctlr->dev);
4001
4002                 if (IS_ERR(spi)) {
4003                         pr_err("%s: failed to create for '%pOF'\n",
4004                                         __func__, rd->dn);
4005                         of_node_clear_flag(rd->dn, OF_POPULATED);
4006                         return notifier_from_errno(PTR_ERR(spi));
4007                 }
4008                 break;
4009
4010         case OF_RECONFIG_CHANGE_REMOVE:
4011                 /* already depopulated? */
4012                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4013                         return NOTIFY_OK;
4014
4015                 /* find our device by node */
4016                 spi = of_find_spi_device_by_node(rd->dn);
4017                 if (spi == NULL)
4018                         return NOTIFY_OK;       /* no? not meant for us */
4019
4020                 /* unregister takes one ref away */
4021                 spi_unregister_device(spi);
4022
4023                 /* and put the reference of the find */
4024                 put_device(&spi->dev);
4025                 break;
4026         }
4027
4028         return NOTIFY_OK;
4029 }
4030
4031 static struct notifier_block spi_of_notifier = {
4032         .notifier_call = of_spi_notify,
4033 };
4034 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4035 extern struct notifier_block spi_of_notifier;
4036 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4037
4038 #if IS_ENABLED(CONFIG_ACPI)
4039 static int spi_acpi_controller_match(struct device *dev, const void *data)
4040 {
4041         return ACPI_COMPANION(dev->parent) == data;
4042 }
4043
4044 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4045 {
4046         struct device *dev;
4047
4048         dev = class_find_device(&spi_master_class, NULL, adev,
4049                                 spi_acpi_controller_match);
4050         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4051                 dev = class_find_device(&spi_slave_class, NULL, adev,
4052                                         spi_acpi_controller_match);
4053         if (!dev)
4054                 return NULL;
4055
4056         return container_of(dev, struct spi_controller, dev);
4057 }
4058
4059 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4060 {
4061         struct device *dev;
4062
4063         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4064         return to_spi_device(dev);
4065 }
4066
4067 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4068                            void *arg)
4069 {
4070         struct acpi_device *adev = arg;
4071         struct spi_controller *ctlr;
4072         struct spi_device *spi;
4073
4074         switch (value) {
4075         case ACPI_RECONFIG_DEVICE_ADD:
4076                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4077                 if (!ctlr)
4078                         break;
4079
4080                 acpi_register_spi_device(ctlr, adev);
4081                 put_device(&ctlr->dev);
4082                 break;
4083         case ACPI_RECONFIG_DEVICE_REMOVE:
4084                 if (!acpi_device_enumerated(adev))
4085                         break;
4086
4087                 spi = acpi_spi_find_device_by_adev(adev);
4088                 if (!spi)
4089                         break;
4090
4091                 spi_unregister_device(spi);
4092                 put_device(&spi->dev);
4093                 break;
4094         }
4095
4096         return NOTIFY_OK;
4097 }
4098
4099 static struct notifier_block spi_acpi_notifier = {
4100         .notifier_call = acpi_spi_notify,
4101 };
4102 #else
4103 extern struct notifier_block spi_acpi_notifier;
4104 #endif
4105
4106 static int __init spi_init(void)
4107 {
4108         int     status;
4109
4110         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4111         if (!buf) {
4112                 status = -ENOMEM;
4113                 goto err0;
4114         }
4115
4116         status = bus_register(&spi_bus_type);
4117         if (status < 0)
4118                 goto err1;
4119
4120         status = class_register(&spi_master_class);
4121         if (status < 0)
4122                 goto err2;
4123
4124         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4125                 status = class_register(&spi_slave_class);
4126                 if (status < 0)
4127                         goto err3;
4128         }
4129
4130         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4131                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4132         if (IS_ENABLED(CONFIG_ACPI))
4133                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4134
4135         return 0;
4136
4137 err3:
4138         class_unregister(&spi_master_class);
4139 err2:
4140         bus_unregister(&spi_bus_type);
4141 err1:
4142         kfree(buf);
4143         buf = NULL;
4144 err0:
4145         return status;
4146 }
4147
4148 /* board_info is normally registered in arch_initcall(),
4149  * but even essential drivers wait till later
4150  *
4151  * REVISIT only boardinfo really needs static linking. the rest (device and
4152  * driver registration) _could_ be dynamically linked (modular) ... costs
4153  * include needing to have boardinfo data structures be much more public.
4154  */
4155 postcore_initcall(spi_init);