d794180e83dc4dff6ad40f717cd0ed48abfb63a8
[linux-2.6-microblaze.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/delay.h>
17 #include <linux/pci.h>
18 #include <linux/wait.h>
19 #include <linux/spi/spi.h>
20 #include <linux/interrupt.h>
21 #include <linux/sched.h>
22 #include <linux/spi/spidev.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/platform_device.h>
26
27 #include <linux/dmaengine.h>
28 #include <linux/pch_dma.h>
29
30 /* Register offsets */
31 #define PCH_SPCR                0x00    /* SPI control register */
32 #define PCH_SPBRR               0x04    /* SPI baud rate register */
33 #define PCH_SPSR                0x08    /* SPI status register */
34 #define PCH_SPDWR               0x0C    /* SPI write data register */
35 #define PCH_SPDRR               0x10    /* SPI read data register */
36 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
37 #define PCH_SRST                0x1C    /* SPI reset register */
38 #define PCH_ADDRESS_SIZE        0x20
39
40 #define PCH_SPSR_TFD            0x000007C0
41 #define PCH_SPSR_RFD            0x0000F800
42
43 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
44 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
45
46 #define PCH_RX_THOLD            7
47 #define PCH_RX_THOLD_MAX        15
48
49 #define PCH_TX_THOLD            2
50
51 #define PCH_MAX_BAUDRATE        5000000
52 #define PCH_MAX_FIFO_DEPTH      16
53
54 #define STATUS_RUNNING          1
55 #define STATUS_EXITING          2
56 #define PCH_SLEEP_TIME          10
57
58 #define SSN_LOW                 0x02U
59 #define SSN_HIGH                0x03U
60 #define SSN_NO_CONTROL          0x00U
61 #define PCH_MAX_CS              0xFF
62 #define PCI_DEVICE_ID_GE_SPI    0x8816
63
64 #define SPCR_SPE_BIT            (1 << 0)
65 #define SPCR_MSTR_BIT           (1 << 1)
66 #define SPCR_LSBF_BIT           (1 << 4)
67 #define SPCR_CPHA_BIT           (1 << 5)
68 #define SPCR_CPOL_BIT           (1 << 6)
69 #define SPCR_TFIE_BIT           (1 << 8)
70 #define SPCR_RFIE_BIT           (1 << 9)
71 #define SPCR_FIE_BIT            (1 << 10)
72 #define SPCR_ORIE_BIT           (1 << 11)
73 #define SPCR_MDFIE_BIT          (1 << 12)
74 #define SPCR_FICLR_BIT          (1 << 24)
75 #define SPSR_TFI_BIT            (1 << 0)
76 #define SPSR_RFI_BIT            (1 << 1)
77 #define SPSR_FI_BIT             (1 << 2)
78 #define SPSR_ORF_BIT            (1 << 3)
79 #define SPBRR_SIZE_BIT          (1 << 10)
80
81 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
82                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
83
84 #define SPCR_RFIC_FIELD         20
85 #define SPCR_TFIC_FIELD         16
86
87 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
88 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
89 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
90
91 #define PCH_CLOCK_HZ            50000000
92 #define PCH_MAX_SPBR            1023
93
94 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
95 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
96 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
97 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
98
99 /*
100  * Set the number of SPI instance max
101  * Intel EG20T PCH :            1ch
102  * LAPIS Semiconductor ML7213 IOH :     2ch
103  * LAPIS Semiconductor ML7223 IOH :     1ch
104  * LAPIS Semiconductor ML7831 IOH :     1ch
105 */
106 #define PCH_SPI_MAX_DEV                 2
107
108 #define PCH_BUF_SIZE            4096
109 #define PCH_DMA_TRANS_SIZE      12
110
111 static int use_dma = 1;
112
113 struct pch_spi_dma_ctrl {
114         struct dma_async_tx_descriptor  *desc_tx;
115         struct dma_async_tx_descriptor  *desc_rx;
116         struct pch_dma_slave            param_tx;
117         struct pch_dma_slave            param_rx;
118         struct dma_chan         *chan_tx;
119         struct dma_chan         *chan_rx;
120         struct scatterlist              *sg_tx_p;
121         struct scatterlist              *sg_rx_p;
122         struct scatterlist              sg_tx;
123         struct scatterlist              sg_rx;
124         int                             nent;
125         void                            *tx_buf_virt;
126         void                            *rx_buf_virt;
127         dma_addr_t                      tx_buf_dma;
128         dma_addr_t                      rx_buf_dma;
129 };
130 /**
131  * struct pch_spi_data - Holds the SPI channel specific details
132  * @io_remap_addr:              The remapped PCI base address
133  * @master:                     Pointer to the SPI master structure
134  * @work:                       Reference to work queue handler
135  * @wait:                       Wait queue for waking up upon receiving an
136  *                              interrupt.
137  * @transfer_complete:          Status of SPI Transfer
138  * @bcurrent_msg_processing:    Status flag for message processing
139  * @lock:                       Lock for protecting this structure
140  * @queue:                      SPI Message queue
141  * @status:                     Status of the SPI driver
142  * @bpw_len:                    Length of data to be transferred in bits per
143  *                              word
144  * @transfer_active:            Flag showing active transfer
145  * @tx_index:                   Transmit data count; for bookkeeping during
146  *                              transfer
147  * @rx_index:                   Receive data count; for bookkeeping during
148  *                              transfer
149  * @tx_buff:                    Buffer for data to be transmitted
150  * @rx_index:                   Buffer for Received data
151  * @n_curnt_chip:               The chip number that this SPI driver currently
152  *                              operates on
153  * @current_chip:               Reference to the current chip that this SPI
154  *                              driver currently operates on
155  * @current_msg:                The current message that this SPI driver is
156  *                              handling
157  * @cur_trans:                  The current transfer that this SPI driver is
158  *                              handling
159  * @board_dat:                  Reference to the SPI device data structure
160  * @plat_dev:                   platform_device structure
161  * @ch:                         SPI channel number
162  * @irq_reg_sts:                Status of IRQ registration
163  */
164 struct pch_spi_data {
165         void __iomem *io_remap_addr;
166         unsigned long io_base_addr;
167         struct spi_master *master;
168         struct work_struct work;
169         wait_queue_head_t wait;
170         u8 transfer_complete;
171         u8 bcurrent_msg_processing;
172         spinlock_t lock;
173         struct list_head queue;
174         u8 status;
175         u32 bpw_len;
176         u8 transfer_active;
177         u32 tx_index;
178         u32 rx_index;
179         u16 *pkt_tx_buff;
180         u16 *pkt_rx_buff;
181         u8 n_curnt_chip;
182         struct spi_device *current_chip;
183         struct spi_message *current_msg;
184         struct spi_transfer *cur_trans;
185         struct pch_spi_board_data *board_dat;
186         struct platform_device  *plat_dev;
187         int ch;
188         struct pch_spi_dma_ctrl dma;
189         int use_dma;
190         u8 irq_reg_sts;
191         int save_total_len;
192 };
193
194 /**
195  * struct pch_spi_board_data - Holds the SPI device specific details
196  * @pdev:               Pointer to the PCI device
197  * @suspend_sts:        Status of suspend
198  * @num:                The number of SPI device instance
199  */
200 struct pch_spi_board_data {
201         struct pci_dev *pdev;
202         u8 suspend_sts;
203         int num;
204 };
205
206 struct pch_pd_dev_save {
207         int num;
208         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
209         struct pch_spi_board_data *board_dat;
210 };
211
212 static const struct pci_device_id pch_spi_pcidev_id[] = {
213         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
214         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
215         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
216         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
217         { }
218 };
219
220 /**
221  * pch_spi_writereg() - Performs  register writes
222  * @master:     Pointer to struct spi_master.
223  * @idx:        Register offset.
224  * @val:        Value to be written to register.
225  */
226 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
227 {
228         struct pch_spi_data *data = spi_master_get_devdata(master);
229         iowrite32(val, (data->io_remap_addr + idx));
230 }
231
232 /**
233  * pch_spi_readreg() - Performs register reads
234  * @master:     Pointer to struct spi_master.
235  * @idx:        Register offset.
236  */
237 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
238 {
239         struct pch_spi_data *data = spi_master_get_devdata(master);
240         return ioread32(data->io_remap_addr + idx);
241 }
242
243 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
244                                       u32 set, u32 clr)
245 {
246         u32 tmp = pch_spi_readreg(master, idx);
247         tmp = (tmp & ~clr) | set;
248         pch_spi_writereg(master, idx, tmp);
249 }
250
251 static void pch_spi_set_master_mode(struct spi_master *master)
252 {
253         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
254 }
255
256 /**
257  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
258  * @master:     Pointer to struct spi_master.
259  */
260 static void pch_spi_clear_fifo(struct spi_master *master)
261 {
262         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
263         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
264 }
265
266 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
267                                 void __iomem *io_remap_addr)
268 {
269         u32 n_read, tx_index, rx_index, bpw_len;
270         u16 *pkt_rx_buffer, *pkt_tx_buff;
271         int read_cnt;
272         u32 reg_spcr_val;
273         void __iomem *spsr;
274         void __iomem *spdrr;
275         void __iomem *spdwr;
276
277         spsr = io_remap_addr + PCH_SPSR;
278         iowrite32(reg_spsr_val, spsr);
279
280         if (data->transfer_active) {
281                 rx_index = data->rx_index;
282                 tx_index = data->tx_index;
283                 bpw_len = data->bpw_len;
284                 pkt_rx_buffer = data->pkt_rx_buff;
285                 pkt_tx_buff = data->pkt_tx_buff;
286
287                 spdrr = io_remap_addr + PCH_SPDRR;
288                 spdwr = io_remap_addr + PCH_SPDWR;
289
290                 n_read = PCH_READABLE(reg_spsr_val);
291
292                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
293                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
294                         if (tx_index < bpw_len)
295                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
296                 }
297
298                 /* disable RFI if not needed */
299                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
300                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
301                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
302
303                         /* reset rx threshold */
304                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
305                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
306
307                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
308                 }
309
310                 /* update counts */
311                 data->tx_index = tx_index;
312                 data->rx_index = rx_index;
313
314                 /* if transfer complete interrupt */
315                 if (reg_spsr_val & SPSR_FI_BIT) {
316                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
317                                 /* disable interrupts */
318                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
319                                                    PCH_ALL);
320
321                                 /* transfer is completed;
322                                    inform pch_spi_process_messages */
323                                 data->transfer_complete = true;
324                                 data->transfer_active = false;
325                                 wake_up(&data->wait);
326                         } else {
327                                 dev_vdbg(&data->master->dev,
328                                         "%s : Transfer is not completed",
329                                         __func__);
330                         }
331                 }
332         }
333 }
334
335 /**
336  * pch_spi_handler() - Interrupt handler
337  * @irq:        The interrupt number.
338  * @dev_id:     Pointer to struct pch_spi_board_data.
339  */
340 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
341 {
342         u32 reg_spsr_val;
343         void __iomem *spsr;
344         void __iomem *io_remap_addr;
345         irqreturn_t ret = IRQ_NONE;
346         struct pch_spi_data *data = dev_id;
347         struct pch_spi_board_data *board_dat = data->board_dat;
348
349         if (board_dat->suspend_sts) {
350                 dev_dbg(&board_dat->pdev->dev,
351                         "%s returning due to suspend\n", __func__);
352                 return IRQ_NONE;
353         }
354
355         io_remap_addr = data->io_remap_addr;
356         spsr = io_remap_addr + PCH_SPSR;
357
358         reg_spsr_val = ioread32(spsr);
359
360         if (reg_spsr_val & SPSR_ORF_BIT) {
361                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
362                 if (data->current_msg->complete) {
363                         data->transfer_complete = true;
364                         data->current_msg->status = -EIO;
365                         data->current_msg->complete(data->current_msg->context);
366                         data->bcurrent_msg_processing = false;
367                         data->current_msg = NULL;
368                         data->cur_trans = NULL;
369                 }
370         }
371
372         if (data->use_dma)
373                 return IRQ_NONE;
374
375         /* Check if the interrupt is for SPI device */
376         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
377                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
378                 ret = IRQ_HANDLED;
379         }
380
381         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
382                 __func__, ret);
383
384         return ret;
385 }
386
387 /**
388  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
389  * @master:     Pointer to struct spi_master.
390  * @speed_hz:   Baud rate.
391  */
392 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
393 {
394         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
395
396         /* if baud rate is less than we can support limit it */
397         if (n_spbr > PCH_MAX_SPBR)
398                 n_spbr = PCH_MAX_SPBR;
399
400         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
401 }
402
403 /**
404  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
405  * @master:             Pointer to struct spi_master.
406  * @bits_per_word:      Bits per word for SPI transfer.
407  */
408 static void pch_spi_set_bits_per_word(struct spi_master *master,
409                                       u8 bits_per_word)
410 {
411         if (bits_per_word == 8)
412                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
413         else
414                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
415 }
416
417 /**
418  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
419  * @spi:        Pointer to struct spi_device.
420  */
421 static void pch_spi_setup_transfer(struct spi_device *spi)
422 {
423         u32 flags = 0;
424
425         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
426                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
427                 spi->max_speed_hz);
428         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
429
430         /* set bits per word */
431         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
432
433         if (!(spi->mode & SPI_LSB_FIRST))
434                 flags |= SPCR_LSBF_BIT;
435         if (spi->mode & SPI_CPOL)
436                 flags |= SPCR_CPOL_BIT;
437         if (spi->mode & SPI_CPHA)
438                 flags |= SPCR_CPHA_BIT;
439         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
440                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
441
442         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
443         pch_spi_clear_fifo(spi->master);
444 }
445
446 /**
447  * pch_spi_reset() - Clears SPI registers
448  * @master:     Pointer to struct spi_master.
449  */
450 static void pch_spi_reset(struct spi_master *master)
451 {
452         /* write 1 to reset SPI */
453         pch_spi_writereg(master, PCH_SRST, 0x1);
454
455         /* clear reset */
456         pch_spi_writereg(master, PCH_SRST, 0x0);
457 }
458
459 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
460 {
461
462         struct spi_transfer *transfer;
463         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
464         int retval;
465         unsigned long flags;
466
467         spin_lock_irqsave(&data->lock, flags);
468         /* validate Tx/Rx buffers and Transfer length */
469         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
470                 if (!transfer->tx_buf && !transfer->rx_buf) {
471                         dev_err(&pspi->dev,
472                                 "%s Tx and Rx buffer NULL\n", __func__);
473                         retval = -EINVAL;
474                         goto err_return_spinlock;
475                 }
476
477                 if (!transfer->len) {
478                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
479                                 __func__);
480                         retval = -EINVAL;
481                         goto err_return_spinlock;
482                 }
483
484                 dev_dbg(&pspi->dev,
485                         "%s Tx/Rx buffer valid. Transfer length valid\n",
486                         __func__);
487         }
488         spin_unlock_irqrestore(&data->lock, flags);
489
490         /* We won't process any messages if we have been asked to terminate */
491         if (data->status == STATUS_EXITING) {
492                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
493                 retval = -ESHUTDOWN;
494                 goto err_out;
495         }
496
497         /* If suspended ,return -EINVAL */
498         if (data->board_dat->suspend_sts) {
499                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
500                 retval = -EINVAL;
501                 goto err_out;
502         }
503
504         /* set status of message */
505         pmsg->actual_length = 0;
506         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
507
508         pmsg->status = -EINPROGRESS;
509         spin_lock_irqsave(&data->lock, flags);
510         /* add message to queue */
511         list_add_tail(&pmsg->queue, &data->queue);
512         spin_unlock_irqrestore(&data->lock, flags);
513
514         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
515
516         schedule_work(&data->work);
517         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
518
519         retval = 0;
520
521 err_out:
522         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
523         return retval;
524 err_return_spinlock:
525         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
526         spin_unlock_irqrestore(&data->lock, flags);
527         return retval;
528 }
529
530 static inline void pch_spi_select_chip(struct pch_spi_data *data,
531                                        struct spi_device *pspi)
532 {
533         if (data->current_chip != NULL) {
534                 if (pspi->chip_select != data->n_curnt_chip) {
535                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
536                         data->current_chip = NULL;
537                 }
538         }
539
540         data->current_chip = pspi;
541
542         data->n_curnt_chip = data->current_chip->chip_select;
543
544         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
545         pch_spi_setup_transfer(pspi);
546 }
547
548 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
549 {
550         int size;
551         u32 n_writes;
552         int j;
553         struct spi_message *pmsg, *tmp;
554         const u8 *tx_buf;
555         const u16 *tx_sbuf;
556
557         /* set baud rate if needed */
558         if (data->cur_trans->speed_hz) {
559                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
560                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
561         }
562
563         /* set bits per word if needed */
564         if (data->cur_trans->bits_per_word &&
565             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
566                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
567                 pch_spi_set_bits_per_word(data->master,
568                                           data->cur_trans->bits_per_word);
569                 *bpw = data->cur_trans->bits_per_word;
570         } else {
571                 *bpw = data->current_msg->spi->bits_per_word;
572         }
573
574         /* reset Tx/Rx index */
575         data->tx_index = 0;
576         data->rx_index = 0;
577
578         data->bpw_len = data->cur_trans->len / (*bpw / 8);
579
580         /* find alloc size */
581         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
582
583         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
584         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
585         if (data->pkt_tx_buff != NULL) {
586                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
587                 if (!data->pkt_rx_buff)
588                         kfree(data->pkt_tx_buff);
589         }
590
591         if (!data->pkt_rx_buff) {
592                 /* flush queue and set status of all transfers to -ENOMEM */
593                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
594                         pmsg->status = -ENOMEM;
595
596                         if (pmsg->complete)
597                                 pmsg->complete(pmsg->context);
598
599                         /* delete from queue */
600                         list_del_init(&pmsg->queue);
601                 }
602                 return;
603         }
604
605         /* copy Tx Data */
606         if (data->cur_trans->tx_buf != NULL) {
607                 if (*bpw == 8) {
608                         tx_buf = data->cur_trans->tx_buf;
609                         for (j = 0; j < data->bpw_len; j++)
610                                 data->pkt_tx_buff[j] = *tx_buf++;
611                 } else {
612                         tx_sbuf = data->cur_trans->tx_buf;
613                         for (j = 0; j < data->bpw_len; j++)
614                                 data->pkt_tx_buff[j] = *tx_sbuf++;
615                 }
616         }
617
618         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
619         n_writes = data->bpw_len;
620         if (n_writes > PCH_MAX_FIFO_DEPTH)
621                 n_writes = PCH_MAX_FIFO_DEPTH;
622
623         dev_dbg(&data->master->dev,
624                 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
625                 __func__);
626         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
627
628         for (j = 0; j < n_writes; j++)
629                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
630
631         /* update tx_index */
632         data->tx_index = j;
633
634         /* reset transfer complete flag */
635         data->transfer_complete = false;
636         data->transfer_active = true;
637 }
638
639 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
640 {
641         struct spi_message *pmsg, *tmp;
642         dev_dbg(&data->master->dev, "%s called\n", __func__);
643         /* Invoke complete callback
644          * [To the spi core..indicating end of transfer] */
645         data->current_msg->status = 0;
646
647         if (data->current_msg->complete) {
648                 dev_dbg(&data->master->dev,
649                         "%s:Invoking callback of SPI core\n", __func__);
650                 data->current_msg->complete(data->current_msg->context);
651         }
652
653         /* update status in global variable */
654         data->bcurrent_msg_processing = false;
655
656         dev_dbg(&data->master->dev,
657                 "%s:data->bcurrent_msg_processing = false\n", __func__);
658
659         data->current_msg = NULL;
660         data->cur_trans = NULL;
661
662         /* check if we have items in list and not suspending
663          * return 1 if list empty */
664         if ((list_empty(&data->queue) == 0) &&
665             (!data->board_dat->suspend_sts) &&
666             (data->status != STATUS_EXITING)) {
667                 /* We have some more work to do (either there is more tranint
668                  * bpw;sfer requests in the current message or there are
669                  *more messages)
670                  */
671                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
672                 schedule_work(&data->work);
673         } else if (data->board_dat->suspend_sts ||
674                    data->status == STATUS_EXITING) {
675                 dev_dbg(&data->master->dev,
676                         "%s suspend/remove initiated, flushing queue\n",
677                         __func__);
678                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
679                         pmsg->status = -EIO;
680
681                         if (pmsg->complete)
682                                 pmsg->complete(pmsg->context);
683
684                         /* delete from queue */
685                         list_del_init(&pmsg->queue);
686                 }
687         }
688 }
689
690 static void pch_spi_set_ir(struct pch_spi_data *data)
691 {
692         /* enable interrupts, set threshold, enable SPI */
693         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
694                 /* set receive threshold to PCH_RX_THOLD */
695                 pch_spi_setclr_reg(data->master, PCH_SPCR,
696                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
697                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
698                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
699                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
700         else
701                 /* set receive threshold to maximum */
702                 pch_spi_setclr_reg(data->master, PCH_SPCR,
703                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
704                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
705                                    SPCR_SPE_BIT,
706                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
707
708         /* Wait until the transfer completes; go to sleep after
709                                  initiating the transfer. */
710         dev_dbg(&data->master->dev,
711                 "%s:waiting for transfer to get over\n", __func__);
712
713         wait_event_interruptible(data->wait, data->transfer_complete);
714
715         /* clear all interrupts */
716         pch_spi_writereg(data->master, PCH_SPSR,
717                          pch_spi_readreg(data->master, PCH_SPSR));
718         /* Disable interrupts and SPI transfer */
719         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
720         /* clear FIFO */
721         pch_spi_clear_fifo(data->master);
722 }
723
724 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
725 {
726         int j;
727         u8 *rx_buf;
728         u16 *rx_sbuf;
729
730         /* copy Rx Data */
731         if (!data->cur_trans->rx_buf)
732                 return;
733
734         if (bpw == 8) {
735                 rx_buf = data->cur_trans->rx_buf;
736                 for (j = 0; j < data->bpw_len; j++)
737                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
738         } else {
739                 rx_sbuf = data->cur_trans->rx_buf;
740                 for (j = 0; j < data->bpw_len; j++)
741                         *rx_sbuf++ = data->pkt_rx_buff[j];
742         }
743 }
744
745 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
746 {
747         int j;
748         u8 *rx_buf;
749         u16 *rx_sbuf;
750         const u8 *rx_dma_buf;
751         const u16 *rx_dma_sbuf;
752
753         /* copy Rx Data */
754         if (!data->cur_trans->rx_buf)
755                 return;
756
757         if (bpw == 8) {
758                 rx_buf = data->cur_trans->rx_buf;
759                 rx_dma_buf = data->dma.rx_buf_virt;
760                 for (j = 0; j < data->bpw_len; j++)
761                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
762                 data->cur_trans->rx_buf = rx_buf;
763         } else {
764                 rx_sbuf = data->cur_trans->rx_buf;
765                 rx_dma_sbuf = data->dma.rx_buf_virt;
766                 for (j = 0; j < data->bpw_len; j++)
767                         *rx_sbuf++ = *rx_dma_sbuf++;
768                 data->cur_trans->rx_buf = rx_sbuf;
769         }
770 }
771
772 static int pch_spi_start_transfer(struct pch_spi_data *data)
773 {
774         struct pch_spi_dma_ctrl *dma;
775         unsigned long flags;
776         int rtn;
777
778         dma = &data->dma;
779
780         spin_lock_irqsave(&data->lock, flags);
781
782         /* disable interrupts, SPI set enable */
783         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
784
785         spin_unlock_irqrestore(&data->lock, flags);
786
787         /* Wait until the transfer completes; go to sleep after
788                                  initiating the transfer. */
789         dev_dbg(&data->master->dev,
790                 "%s:waiting for transfer to get over\n", __func__);
791         rtn = wait_event_interruptible_timeout(data->wait,
792                                                data->transfer_complete,
793                                                msecs_to_jiffies(2 * HZ));
794         if (!rtn)
795                 dev_err(&data->master->dev,
796                         "%s wait-event timeout\n", __func__);
797
798         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
799                             DMA_FROM_DEVICE);
800
801         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
802                             DMA_FROM_DEVICE);
803         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
804
805         async_tx_ack(dma->desc_rx);
806         async_tx_ack(dma->desc_tx);
807         kfree(dma->sg_tx_p);
808         kfree(dma->sg_rx_p);
809
810         spin_lock_irqsave(&data->lock, flags);
811
812         /* clear fifo threshold, disable interrupts, disable SPI transfer */
813         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
814                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
815                            SPCR_SPE_BIT);
816         /* clear all interrupts */
817         pch_spi_writereg(data->master, PCH_SPSR,
818                          pch_spi_readreg(data->master, PCH_SPSR));
819         /* clear FIFO */
820         pch_spi_clear_fifo(data->master);
821
822         spin_unlock_irqrestore(&data->lock, flags);
823
824         return rtn;
825 }
826
827 static void pch_dma_rx_complete(void *arg)
828 {
829         struct pch_spi_data *data = arg;
830
831         /* transfer is completed;inform pch_spi_process_messages_dma */
832         data->transfer_complete = true;
833         wake_up_interruptible(&data->wait);
834 }
835
836 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
837 {
838         struct pch_dma_slave *param = slave;
839
840         if ((chan->chan_id == param->chan_id) &&
841             (param->dma_dev == chan->device->dev)) {
842                 chan->private = param;
843                 return true;
844         } else {
845                 return false;
846         }
847 }
848
849 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
850 {
851         dma_cap_mask_t mask;
852         struct dma_chan *chan;
853         struct pci_dev *dma_dev;
854         struct pch_dma_slave *param;
855         struct pch_spi_dma_ctrl *dma;
856         unsigned int width;
857
858         if (bpw == 8)
859                 width = PCH_DMA_WIDTH_1_BYTE;
860         else
861                 width = PCH_DMA_WIDTH_2_BYTES;
862
863         dma = &data->dma;
864         dma_cap_zero(mask);
865         dma_cap_set(DMA_SLAVE, mask);
866
867         /* Get DMA's dev information */
868         dma_dev = pci_get_slot(data->board_dat->pdev->bus,
869                         PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
870
871         /* Set Tx DMA */
872         param = &dma->param_tx;
873         param->dma_dev = &dma_dev->dev;
874         param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
875         param->tx_reg = data->io_base_addr + PCH_SPDWR;
876         param->width = width;
877         chan = dma_request_channel(mask, pch_spi_filter, param);
878         if (!chan) {
879                 dev_err(&data->master->dev,
880                         "ERROR: dma_request_channel FAILS(Tx)\n");
881                 data->use_dma = 0;
882                 return;
883         }
884         dma->chan_tx = chan;
885
886         /* Set Rx DMA */
887         param = &dma->param_rx;
888         param->dma_dev = &dma_dev->dev;
889         param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
890         param->rx_reg = data->io_base_addr + PCH_SPDRR;
891         param->width = width;
892         chan = dma_request_channel(mask, pch_spi_filter, param);
893         if (!chan) {
894                 dev_err(&data->master->dev,
895                         "ERROR: dma_request_channel FAILS(Rx)\n");
896                 dma_release_channel(dma->chan_tx);
897                 dma->chan_tx = NULL;
898                 data->use_dma = 0;
899                 return;
900         }
901         dma->chan_rx = chan;
902 }
903
904 static void pch_spi_release_dma(struct pch_spi_data *data)
905 {
906         struct pch_spi_dma_ctrl *dma;
907
908         dma = &data->dma;
909         if (dma->chan_tx) {
910                 dma_release_channel(dma->chan_tx);
911                 dma->chan_tx = NULL;
912         }
913         if (dma->chan_rx) {
914                 dma_release_channel(dma->chan_rx);
915                 dma->chan_rx = NULL;
916         }
917 }
918
919 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
920 {
921         const u8 *tx_buf;
922         const u16 *tx_sbuf;
923         u8 *tx_dma_buf;
924         u16 *tx_dma_sbuf;
925         struct scatterlist *sg;
926         struct dma_async_tx_descriptor *desc_tx;
927         struct dma_async_tx_descriptor *desc_rx;
928         int num;
929         int i;
930         int size;
931         int rem;
932         int head;
933         unsigned long flags;
934         struct pch_spi_dma_ctrl *dma;
935
936         dma = &data->dma;
937
938         /* set baud rate if needed */
939         if (data->cur_trans->speed_hz) {
940                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
941                 spin_lock_irqsave(&data->lock, flags);
942                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
943                 spin_unlock_irqrestore(&data->lock, flags);
944         }
945
946         /* set bits per word if needed */
947         if (data->cur_trans->bits_per_word &&
948             (data->current_msg->spi->bits_per_word !=
949              data->cur_trans->bits_per_word)) {
950                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
951                 spin_lock_irqsave(&data->lock, flags);
952                 pch_spi_set_bits_per_word(data->master,
953                                           data->cur_trans->bits_per_word);
954                 spin_unlock_irqrestore(&data->lock, flags);
955                 *bpw = data->cur_trans->bits_per_word;
956         } else {
957                 *bpw = data->current_msg->spi->bits_per_word;
958         }
959         data->bpw_len = data->cur_trans->len / (*bpw / 8);
960
961         if (data->bpw_len > PCH_BUF_SIZE) {
962                 data->bpw_len = PCH_BUF_SIZE;
963                 data->cur_trans->len -= PCH_BUF_SIZE;
964         }
965
966         /* copy Tx Data */
967         if (data->cur_trans->tx_buf != NULL) {
968                 if (*bpw == 8) {
969                         tx_buf = data->cur_trans->tx_buf;
970                         tx_dma_buf = dma->tx_buf_virt;
971                         for (i = 0; i < data->bpw_len; i++)
972                                 *tx_dma_buf++ = *tx_buf++;
973                 } else {
974                         tx_sbuf = data->cur_trans->tx_buf;
975                         tx_dma_sbuf = dma->tx_buf_virt;
976                         for (i = 0; i < data->bpw_len; i++)
977                                 *tx_dma_sbuf++ = *tx_sbuf++;
978                 }
979         }
980
981         /* Calculate Rx parameter for DMA transmitting */
982         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
983                 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
984                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
985                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
986                 } else {
987                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
988                         rem = PCH_DMA_TRANS_SIZE;
989                 }
990                 size = PCH_DMA_TRANS_SIZE;
991         } else {
992                 num = 1;
993                 size = data->bpw_len;
994                 rem = data->bpw_len;
995         }
996         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
997                 __func__, num, size, rem);
998         spin_lock_irqsave(&data->lock, flags);
999
1000         /* set receive fifo threshold and transmit fifo threshold */
1001         pch_spi_setclr_reg(data->master, PCH_SPCR,
1002                            ((size - 1) << SPCR_RFIC_FIELD) |
1003                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1004                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1005
1006         spin_unlock_irqrestore(&data->lock, flags);
1007
1008         /* RX */
1009         dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1010         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1011         /* offset, length setting */
1012         sg = dma->sg_rx_p;
1013         for (i = 0; i < num; i++, sg++) {
1014                 if (i == (num - 2)) {
1015                         sg->offset = size * i;
1016                         sg->offset = sg->offset * (*bpw / 8);
1017                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1018                                     sg->offset);
1019                         sg_dma_len(sg) = rem;
1020                 } else if (i == (num - 1)) {
1021                         sg->offset = size * (i - 1) + rem;
1022                         sg->offset = sg->offset * (*bpw / 8);
1023                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1024                                     sg->offset);
1025                         sg_dma_len(sg) = size;
1026                 } else {
1027                         sg->offset = size * i;
1028                         sg->offset = sg->offset * (*bpw / 8);
1029                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1030                                     sg->offset);
1031                         sg_dma_len(sg) = size;
1032                 }
1033                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1034         }
1035         sg = dma->sg_rx_p;
1036         desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1037                                         num, DMA_DEV_TO_MEM,
1038                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1039         if (!desc_rx) {
1040                 dev_err(&data->master->dev,
1041                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1042                 return;
1043         }
1044         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1045         desc_rx->callback = pch_dma_rx_complete;
1046         desc_rx->callback_param = data;
1047         dma->nent = num;
1048         dma->desc_rx = desc_rx;
1049
1050         /* Calculate Tx parameter for DMA transmitting */
1051         if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1052                 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1053                 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1054                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1055                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1056                 } else {
1057                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1058                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1059                               PCH_DMA_TRANS_SIZE - head;
1060                 }
1061                 size = PCH_DMA_TRANS_SIZE;
1062         } else {
1063                 num = 1;
1064                 size = data->bpw_len;
1065                 rem = data->bpw_len;
1066                 head = 0;
1067         }
1068
1069         dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1070         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1071         /* offset, length setting */
1072         sg = dma->sg_tx_p;
1073         for (i = 0; i < num; i++, sg++) {
1074                 if (i == 0) {
1075                         sg->offset = 0;
1076                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1077                                     sg->offset);
1078                         sg_dma_len(sg) = size + head;
1079                 } else if (i == (num - 1)) {
1080                         sg->offset = head + size * i;
1081                         sg->offset = sg->offset * (*bpw / 8);
1082                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1083                                     sg->offset);
1084                         sg_dma_len(sg) = rem;
1085                 } else {
1086                         sg->offset = head + size * i;
1087                         sg->offset = sg->offset * (*bpw / 8);
1088                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1089                                     sg->offset);
1090                         sg_dma_len(sg) = size;
1091                 }
1092                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1093         }
1094         sg = dma->sg_tx_p;
1095         desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1096                                         sg, num, DMA_MEM_TO_DEV,
1097                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1098         if (!desc_tx) {
1099                 dev_err(&data->master->dev,
1100                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1101                 return;
1102         }
1103         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1104         desc_tx->callback = NULL;
1105         desc_tx->callback_param = data;
1106         dma->nent = num;
1107         dma->desc_tx = desc_tx;
1108
1109         dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1110
1111         spin_lock_irqsave(&data->lock, flags);
1112         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1113         desc_rx->tx_submit(desc_rx);
1114         desc_tx->tx_submit(desc_tx);
1115         spin_unlock_irqrestore(&data->lock, flags);
1116
1117         /* reset transfer complete flag */
1118         data->transfer_complete = false;
1119 }
1120
1121 static void pch_spi_process_messages(struct work_struct *pwork)
1122 {
1123         struct spi_message *pmsg, *tmp;
1124         struct pch_spi_data *data;
1125         int bpw;
1126
1127         data = container_of(pwork, struct pch_spi_data, work);
1128         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1129
1130         spin_lock(&data->lock);
1131         /* check if suspend has been initiated;if yes flush queue */
1132         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1133                 dev_dbg(&data->master->dev,
1134                         "%s suspend/remove initiated, flushing queue\n", __func__);
1135                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1136                         pmsg->status = -EIO;
1137
1138                         if (pmsg->complete) {
1139                                 spin_unlock(&data->lock);
1140                                 pmsg->complete(pmsg->context);
1141                                 spin_lock(&data->lock);
1142                         }
1143
1144                         /* delete from queue */
1145                         list_del_init(&pmsg->queue);
1146                 }
1147
1148                 spin_unlock(&data->lock);
1149                 return;
1150         }
1151
1152         data->bcurrent_msg_processing = true;
1153         dev_dbg(&data->master->dev,
1154                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1155
1156         /* Get the message from the queue and delete it from there. */
1157         data->current_msg = list_entry(data->queue.next, struct spi_message,
1158                                         queue);
1159
1160         list_del_init(&data->current_msg->queue);
1161
1162         data->current_msg->status = 0;
1163
1164         pch_spi_select_chip(data, data->current_msg->spi);
1165
1166         spin_unlock(&data->lock);
1167
1168         if (data->use_dma)
1169                 pch_spi_request_dma(data,
1170                                     data->current_msg->spi->bits_per_word);
1171         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1172         do {
1173                 int cnt;
1174                 /* If we are already processing a message get the next
1175                 transfer structure from the message otherwise retrieve
1176                 the 1st transfer request from the message. */
1177                 spin_lock(&data->lock);
1178                 if (data->cur_trans == NULL) {
1179                         data->cur_trans =
1180                                 list_entry(data->current_msg->transfers.next,
1181                                            struct spi_transfer, transfer_list);
1182                         dev_dbg(&data->master->dev,
1183                                 "%s :Getting 1st transfer message\n",
1184                                 __func__);
1185                 } else {
1186                         data->cur_trans =
1187                                 list_entry(data->cur_trans->transfer_list.next,
1188                                            struct spi_transfer, transfer_list);
1189                         dev_dbg(&data->master->dev,
1190                                 "%s :Getting next transfer message\n",
1191                                 __func__);
1192                 }
1193                 spin_unlock(&data->lock);
1194
1195                 if (!data->cur_trans->len)
1196                         goto out;
1197                 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1198                 data->save_total_len = data->cur_trans->len;
1199                 if (data->use_dma) {
1200                         int i;
1201                         char *save_rx_buf = data->cur_trans->rx_buf;
1202                         for (i = 0; i < cnt; i ++) {
1203                                 pch_spi_handle_dma(data, &bpw);
1204                                 if (!pch_spi_start_transfer(data)) {
1205                                         data->transfer_complete = true;
1206                                         data->current_msg->status = -EIO;
1207                                         data->current_msg->complete
1208                                                    (data->current_msg->context);
1209                                         data->bcurrent_msg_processing = false;
1210                                         data->current_msg = NULL;
1211                                         data->cur_trans = NULL;
1212                                         goto out;
1213                                 }
1214                                 pch_spi_copy_rx_data_for_dma(data, bpw);
1215                         }
1216                         data->cur_trans->rx_buf = save_rx_buf;
1217                 } else {
1218                         pch_spi_set_tx(data, &bpw);
1219                         pch_spi_set_ir(data);
1220                         pch_spi_copy_rx_data(data, bpw);
1221                         kfree(data->pkt_rx_buff);
1222                         data->pkt_rx_buff = NULL;
1223                         kfree(data->pkt_tx_buff);
1224                         data->pkt_tx_buff = NULL;
1225                 }
1226                 /* increment message count */
1227                 data->cur_trans->len = data->save_total_len;
1228                 data->current_msg->actual_length += data->cur_trans->len;
1229
1230                 dev_dbg(&data->master->dev,
1231                         "%s:data->current_msg->actual_length=%d\n",
1232                         __func__, data->current_msg->actual_length);
1233
1234                 /* check for delay */
1235                 if (data->cur_trans->delay_usecs) {
1236                         dev_dbg(&data->master->dev, "%s:delay in usec=%d\n",
1237                                 __func__, data->cur_trans->delay_usecs);
1238                         udelay(data->cur_trans->delay_usecs);
1239                 }
1240
1241                 spin_lock(&data->lock);
1242
1243                 /* No more transfer in this message. */
1244                 if ((data->cur_trans->transfer_list.next) ==
1245                     &(data->current_msg->transfers)) {
1246                         pch_spi_nomore_transfer(data);
1247                 }
1248
1249                 spin_unlock(&data->lock);
1250
1251         } while (data->cur_trans != NULL);
1252
1253 out:
1254         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1255         if (data->use_dma)
1256                 pch_spi_release_dma(data);
1257 }
1258
1259 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1260                                    struct pch_spi_data *data)
1261 {
1262         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1263
1264         flush_work(&data->work);
1265 }
1266
1267 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1268                                  struct pch_spi_data *data)
1269 {
1270         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1271
1272         /* reset PCH SPI h/w */
1273         pch_spi_reset(data->master);
1274         dev_dbg(&board_dat->pdev->dev,
1275                 "%s pch_spi_reset invoked successfully\n", __func__);
1276
1277         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1278
1279         return 0;
1280 }
1281
1282 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1283                              struct pch_spi_data *data)
1284 {
1285         struct pch_spi_dma_ctrl *dma;
1286
1287         dma = &data->dma;
1288         if (dma->tx_buf_dma)
1289                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1290                                   dma->tx_buf_virt, dma->tx_buf_dma);
1291         if (dma->rx_buf_dma)
1292                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1293                                   dma->rx_buf_virt, dma->rx_buf_dma);
1294 }
1295
1296 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1297                               struct pch_spi_data *data)
1298 {
1299         struct pch_spi_dma_ctrl *dma;
1300
1301         dma = &data->dma;
1302         /* Get Consistent memory for Tx DMA */
1303         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1304                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1305         /* Get Consistent memory for Rx DMA */
1306         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1307                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1308 }
1309
1310 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1311 {
1312         int ret;
1313         struct spi_master *master;
1314         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1315         struct pch_spi_data *data;
1316
1317         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1318
1319         master = spi_alloc_master(&board_dat->pdev->dev,
1320                                   sizeof(struct pch_spi_data));
1321         if (!master) {
1322                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1323                         plat_dev->id);
1324                 return -ENOMEM;
1325         }
1326
1327         data = spi_master_get_devdata(master);
1328         data->master = master;
1329
1330         platform_set_drvdata(plat_dev, data);
1331
1332         /* baseaddress + address offset) */
1333         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1334                                          PCH_ADDRESS_SIZE * plat_dev->id;
1335         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1336         if (!data->io_remap_addr) {
1337                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1338                 ret = -ENOMEM;
1339                 goto err_pci_iomap;
1340         }
1341         data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1342
1343         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1344                 plat_dev->id, data->io_remap_addr);
1345
1346         /* initialize members of SPI master */
1347         master->num_chipselect = PCH_MAX_CS;
1348         master->transfer = pch_spi_transfer;
1349         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1350         master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1351         master->max_speed_hz = PCH_MAX_BAUDRATE;
1352
1353         data->board_dat = board_dat;
1354         data->plat_dev = plat_dev;
1355         data->n_curnt_chip = 255;
1356         data->status = STATUS_RUNNING;
1357         data->ch = plat_dev->id;
1358         data->use_dma = use_dma;
1359
1360         INIT_LIST_HEAD(&data->queue);
1361         spin_lock_init(&data->lock);
1362         INIT_WORK(&data->work, pch_spi_process_messages);
1363         init_waitqueue_head(&data->wait);
1364
1365         ret = pch_spi_get_resources(board_dat, data);
1366         if (ret) {
1367                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1368                 goto err_spi_get_resources;
1369         }
1370
1371         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1372                           IRQF_SHARED, KBUILD_MODNAME, data);
1373         if (ret) {
1374                 dev_err(&plat_dev->dev,
1375                         "%s request_irq failed\n", __func__);
1376                 goto err_request_irq;
1377         }
1378         data->irq_reg_sts = true;
1379
1380         pch_spi_set_master_mode(master);
1381
1382         if (use_dma) {
1383                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1384                 pch_alloc_dma_buf(board_dat, data);
1385         }
1386
1387         ret = spi_register_master(master);
1388         if (ret != 0) {
1389                 dev_err(&plat_dev->dev,
1390                         "%s spi_register_master FAILED\n", __func__);
1391                 goto err_spi_register_master;
1392         }
1393
1394         return 0;
1395
1396 err_spi_register_master:
1397         pch_free_dma_buf(board_dat, data);
1398         free_irq(board_dat->pdev->irq, data);
1399 err_request_irq:
1400         pch_spi_free_resources(board_dat, data);
1401 err_spi_get_resources:
1402         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1403 err_pci_iomap:
1404         spi_master_put(master);
1405
1406         return ret;
1407 }
1408
1409 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1410 {
1411         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1412         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1413         int count;
1414         unsigned long flags;
1415
1416         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1417                 __func__, plat_dev->id, board_dat->pdev->irq);
1418
1419         if (use_dma)
1420                 pch_free_dma_buf(board_dat, data);
1421
1422         /* check for any pending messages; no action is taken if the queue
1423          * is still full; but at least we tried.  Unload anyway */
1424         count = 500;
1425         spin_lock_irqsave(&data->lock, flags);
1426         data->status = STATUS_EXITING;
1427         while ((list_empty(&data->queue) == 0) && --count) {
1428                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1429                         __func__);
1430                 spin_unlock_irqrestore(&data->lock, flags);
1431                 msleep(PCH_SLEEP_TIME);
1432                 spin_lock_irqsave(&data->lock, flags);
1433         }
1434         spin_unlock_irqrestore(&data->lock, flags);
1435
1436         pch_spi_free_resources(board_dat, data);
1437         /* disable interrupts & free IRQ */
1438         if (data->irq_reg_sts) {
1439                 /* disable interrupts */
1440                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1441                 data->irq_reg_sts = false;
1442                 free_irq(board_dat->pdev->irq, data);
1443         }
1444
1445         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1446         spi_unregister_master(data->master);
1447
1448         return 0;
1449 }
1450 #ifdef CONFIG_PM
1451 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1452                               pm_message_t state)
1453 {
1454         u8 count;
1455         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1456         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1457
1458         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1459
1460         if (!board_dat) {
1461                 dev_err(&pd_dev->dev,
1462                         "%s pci_get_drvdata returned NULL\n", __func__);
1463                 return -EFAULT;
1464         }
1465
1466         /* check if the current message is processed:
1467            Only after thats done the transfer will be suspended */
1468         count = 255;
1469         while ((--count) > 0) {
1470                 if (!(data->bcurrent_msg_processing))
1471                         break;
1472                 msleep(PCH_SLEEP_TIME);
1473         }
1474
1475         /* Free IRQ */
1476         if (data->irq_reg_sts) {
1477                 /* disable all interrupts */
1478                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1479                 pch_spi_reset(data->master);
1480                 free_irq(board_dat->pdev->irq, data);
1481
1482                 data->irq_reg_sts = false;
1483                 dev_dbg(&pd_dev->dev,
1484                         "%s free_irq invoked successfully.\n", __func__);
1485         }
1486
1487         return 0;
1488 }
1489
1490 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1491 {
1492         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1493         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1494         int retval;
1495
1496         if (!board_dat) {
1497                 dev_err(&pd_dev->dev,
1498                         "%s pci_get_drvdata returned NULL\n", __func__);
1499                 return -EFAULT;
1500         }
1501
1502         if (!data->irq_reg_sts) {
1503                 /* register IRQ */
1504                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1505                                      IRQF_SHARED, KBUILD_MODNAME, data);
1506                 if (retval < 0) {
1507                         dev_err(&pd_dev->dev,
1508                                 "%s request_irq failed\n", __func__);
1509                         return retval;
1510                 }
1511
1512                 /* reset PCH SPI h/w */
1513                 pch_spi_reset(data->master);
1514                 pch_spi_set_master_mode(data->master);
1515                 data->irq_reg_sts = true;
1516         }
1517         return 0;
1518 }
1519 #else
1520 #define pch_spi_pd_suspend NULL
1521 #define pch_spi_pd_resume NULL
1522 #endif
1523
1524 static struct platform_driver pch_spi_pd_driver = {
1525         .driver = {
1526                 .name = "pch-spi",
1527         },
1528         .probe = pch_spi_pd_probe,
1529         .remove = pch_spi_pd_remove,
1530         .suspend = pch_spi_pd_suspend,
1531         .resume = pch_spi_pd_resume
1532 };
1533
1534 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1535 {
1536         struct pch_spi_board_data *board_dat;
1537         struct platform_device *pd_dev = NULL;
1538         int retval;
1539         int i;
1540         struct pch_pd_dev_save *pd_dev_save;
1541
1542         pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1543         if (!pd_dev_save)
1544                 return -ENOMEM;
1545
1546         board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1547         if (!board_dat) {
1548                 retval = -ENOMEM;
1549                 goto err_no_mem;
1550         }
1551
1552         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1553         if (retval) {
1554                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1555                 goto pci_request_regions;
1556         }
1557
1558         board_dat->pdev = pdev;
1559         board_dat->num = id->driver_data;
1560         pd_dev_save->num = id->driver_data;
1561         pd_dev_save->board_dat = board_dat;
1562
1563         retval = pci_enable_device(pdev);
1564         if (retval) {
1565                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1566                 goto pci_enable_device;
1567         }
1568
1569         for (i = 0; i < board_dat->num; i++) {
1570                 pd_dev = platform_device_alloc("pch-spi", i);
1571                 if (!pd_dev) {
1572                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1573                         retval = -ENOMEM;
1574                         goto err_platform_device;
1575                 }
1576                 pd_dev_save->pd_save[i] = pd_dev;
1577                 pd_dev->dev.parent = &pdev->dev;
1578
1579                 retval = platform_device_add_data(pd_dev, board_dat,
1580                                                   sizeof(*board_dat));
1581                 if (retval) {
1582                         dev_err(&pdev->dev,
1583                                 "platform_device_add_data failed\n");
1584                         platform_device_put(pd_dev);
1585                         goto err_platform_device;
1586                 }
1587
1588                 retval = platform_device_add(pd_dev);
1589                 if (retval) {
1590                         dev_err(&pdev->dev, "platform_device_add failed\n");
1591                         platform_device_put(pd_dev);
1592                         goto err_platform_device;
1593                 }
1594         }
1595
1596         pci_set_drvdata(pdev, pd_dev_save);
1597
1598         return 0;
1599
1600 err_platform_device:
1601         while (--i >= 0)
1602                 platform_device_unregister(pd_dev_save->pd_save[i]);
1603         pci_disable_device(pdev);
1604 pci_enable_device:
1605         pci_release_regions(pdev);
1606 pci_request_regions:
1607         kfree(board_dat);
1608 err_no_mem:
1609         kfree(pd_dev_save);
1610
1611         return retval;
1612 }
1613
1614 static void pch_spi_remove(struct pci_dev *pdev)
1615 {
1616         int i;
1617         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1618
1619         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1620
1621         for (i = 0; i < pd_dev_save->num; i++)
1622                 platform_device_unregister(pd_dev_save->pd_save[i]);
1623
1624         pci_disable_device(pdev);
1625         pci_release_regions(pdev);
1626         kfree(pd_dev_save->board_dat);
1627         kfree(pd_dev_save);
1628 }
1629
1630 #ifdef CONFIG_PM
1631 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1632 {
1633         int retval;
1634         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1635
1636         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1637
1638         pd_dev_save->board_dat->suspend_sts = true;
1639
1640         /* save config space */
1641         retval = pci_save_state(pdev);
1642         if (retval == 0) {
1643                 pci_enable_wake(pdev, PCI_D3hot, 0);
1644                 pci_disable_device(pdev);
1645                 pci_set_power_state(pdev, PCI_D3hot);
1646         } else {
1647                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1648         }
1649
1650         return retval;
1651 }
1652
1653 static int pch_spi_resume(struct pci_dev *pdev)
1654 {
1655         int retval;
1656         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1657         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1658
1659         pci_set_power_state(pdev, PCI_D0);
1660         pci_restore_state(pdev);
1661
1662         retval = pci_enable_device(pdev);
1663         if (retval < 0) {
1664                 dev_err(&pdev->dev,
1665                         "%s pci_enable_device failed\n", __func__);
1666         } else {
1667                 pci_enable_wake(pdev, PCI_D3hot, 0);
1668
1669                 /* set suspend status to false */
1670                 pd_dev_save->board_dat->suspend_sts = false;
1671         }
1672
1673         return retval;
1674 }
1675 #else
1676 #define pch_spi_suspend NULL
1677 #define pch_spi_resume NULL
1678
1679 #endif
1680
1681 static struct pci_driver pch_spi_pcidev_driver = {
1682         .name = "pch_spi",
1683         .id_table = pch_spi_pcidev_id,
1684         .probe = pch_spi_probe,
1685         .remove = pch_spi_remove,
1686         .suspend = pch_spi_suspend,
1687         .resume = pch_spi_resume,
1688 };
1689
1690 static int __init pch_spi_init(void)
1691 {
1692         int ret;
1693         ret = platform_driver_register(&pch_spi_pd_driver);
1694         if (ret)
1695                 return ret;
1696
1697         ret = pci_register_driver(&pch_spi_pcidev_driver);
1698         if (ret) {
1699                 platform_driver_unregister(&pch_spi_pd_driver);
1700                 return ret;
1701         }
1702
1703         return 0;
1704 }
1705 module_init(pch_spi_init);
1706
1707 static void __exit pch_spi_exit(void)
1708 {
1709         pci_unregister_driver(&pch_spi_pcidev_driver);
1710         platform_driver_unregister(&pch_spi_pd_driver);
1711 }
1712 module_exit(pch_spi_exit);
1713
1714 module_param(use_dma, int, 0644);
1715 MODULE_PARM_DESC(use_dma,
1716                  "to use DMA for data transfers pass 1 else 0; default 1");
1717
1718 MODULE_LICENSE("GPL");
1719 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1720 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1721