Merge patch series "riscv: dma-mapping: unify support for cache flushes"
[linux-2.6-microblaze.git] / drivers / spi / spi-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/dmaengine.h>
22
23 #include <linux/spi/spi.h>
24
25 #define SUN6I_AUTOSUSPEND_TIMEOUT       2000
26
27 #define SUN6I_FIFO_DEPTH                128
28 #define SUN8I_FIFO_DEPTH                64
29
30 #define SUN6I_GBL_CTL_REG               0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE                BIT(0)
32 #define SUN6I_GBL_CTL_MASTER                    BIT(1)
33 #define SUN6I_GBL_CTL_TP                        BIT(7)
34 #define SUN6I_GBL_CTL_RST                       BIT(31)
35
36 #define SUN6I_TFR_CTL_REG               0x08
37 #define SUN6I_TFR_CTL_CPHA                      BIT(0)
38 #define SUN6I_TFR_CTL_CPOL                      BIT(1)
39 #define SUN6I_TFR_CTL_SPOL                      BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK                   0x30
41 #define SUN6I_TFR_CTL_CS(cs)                    (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL                 BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL                  BIT(7)
44 #define SUN6I_TFR_CTL_DHB                       BIT(8)
45 #define SUN6I_TFR_CTL_SDC                       BIT(11)
46 #define SUN6I_TFR_CTL_FBS                       BIT(12)
47 #define SUN6I_TFR_CTL_SDM                       BIT(13)
48 #define SUN6I_TFR_CTL_XCH                       BIT(31)
49
50 #define SUN6I_INT_CTL_REG               0x10
51 #define SUN6I_INT_CTL_RF_RDY                    BIT(0)
52 #define SUN6I_INT_CTL_TF_ERQ                    BIT(4)
53 #define SUN6I_INT_CTL_RF_OVF                    BIT(8)
54 #define SUN6I_INT_CTL_TC                        BIT(12)
55
56 #define SUN6I_INT_STA_REG               0x14
57
58 #define SUN6I_FIFO_CTL_REG              0x18
59 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK   0xff
60 #define SUN6I_FIFO_CTL_RF_DRQ_EN                BIT(8)
61 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS   0
62 #define SUN6I_FIFO_CTL_RF_RST                   BIT(15)
63 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK   0xff
64 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS   16
65 #define SUN6I_FIFO_CTL_TF_DRQ_EN                BIT(24)
66 #define SUN6I_FIFO_CTL_TF_RST                   BIT(31)
67
68 #define SUN6I_FIFO_STA_REG              0x1c
69 #define SUN6I_FIFO_STA_RF_CNT_MASK              GENMASK(7, 0)
70 #define SUN6I_FIFO_STA_TF_CNT_MASK              GENMASK(23, 16)
71
72 #define SUN6I_CLK_CTL_REG               0x24
73 #define SUN6I_CLK_CTL_CDR2_MASK                 0xff
74 #define SUN6I_CLK_CTL_CDR2(div)                 (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
75 #define SUN6I_CLK_CTL_CDR1_MASK                 0xf
76 #define SUN6I_CLK_CTL_CDR1(div)                 (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
77 #define SUN6I_CLK_CTL_DRS                       BIT(12)
78
79 #define SUN6I_MAX_XFER_SIZE             0xffffff
80
81 #define SUN6I_BURST_CNT_REG             0x30
82
83 #define SUN6I_XMIT_CNT_REG              0x34
84
85 #define SUN6I_BURST_CTL_CNT_REG         0x38
86 #define SUN6I_BURST_CTL_CNT_STC_MASK            GENMASK(23, 0)
87 #define SUN6I_BURST_CTL_CNT_DRM                 BIT(28)
88 #define SUN6I_BURST_CTL_CNT_QUAD_EN             BIT(29)
89
90 #define SUN6I_TXDATA_REG                0x200
91 #define SUN6I_RXDATA_REG                0x300
92
93 struct sun6i_spi_cfg {
94         unsigned long           fifo_depth;
95         bool                    has_clk_ctl;
96         u32                     mode_bits;
97 };
98
99 struct sun6i_spi {
100         struct spi_master       *master;
101         void __iomem            *base_addr;
102         dma_addr_t              dma_addr_rx;
103         dma_addr_t              dma_addr_tx;
104         struct clk              *hclk;
105         struct clk              *mclk;
106         struct reset_control    *rstc;
107
108         struct completion       done;
109
110         const u8                *tx_buf;
111         u8                      *rx_buf;
112         int                     len;
113         const struct sun6i_spi_cfg *cfg;
114 };
115
116 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
117 {
118         return readl(sspi->base_addr + reg);
119 }
120
121 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
122 {
123         writel(value, sspi->base_addr + reg);
124 }
125
126 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
127 {
128         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
129
130         return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
131 }
132
133 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
134 {
135         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
136
137         return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
138 }
139
140 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
141 {
142         u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
143
144         reg &= ~mask;
145         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
146 }
147
148 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
149 {
150         u32 len;
151         u8 byte;
152
153         /* See how much data is available */
154         len = sun6i_spi_get_rx_fifo_count(sspi);
155
156         while (len--) {
157                 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
158                 if (sspi->rx_buf)
159                         *sspi->rx_buf++ = byte;
160         }
161 }
162
163 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
164 {
165         u32 cnt;
166         int len;
167         u8 byte;
168
169         /* See how much data we can fit */
170         cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
171
172         len = min((int)cnt, sspi->len);
173
174         while (len--) {
175                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
176                 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
177                 sspi->len--;
178         }
179 }
180
181 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
182 {
183         struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
184         u32 reg;
185
186         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
187         reg &= ~SUN6I_TFR_CTL_CS_MASK;
188         reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0));
189
190         if (enable)
191                 reg |= SUN6I_TFR_CTL_CS_LEVEL;
192         else
193                 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
194
195         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
196 }
197
198 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
199 {
200         return SUN6I_MAX_XFER_SIZE - 1;
201 }
202
203 static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
204                                  struct spi_transfer *tfr)
205 {
206         struct dma_async_tx_descriptor *rxdesc, *txdesc;
207         struct spi_master *master = sspi->master;
208
209         rxdesc = NULL;
210         if (tfr->rx_buf) {
211                 struct dma_slave_config rxconf = {
212                         .direction = DMA_DEV_TO_MEM,
213                         .src_addr = sspi->dma_addr_rx,
214                         .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
215                         .src_maxburst = 8,
216                 };
217
218                 dmaengine_slave_config(master->dma_rx, &rxconf);
219
220                 rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
221                                                  tfr->rx_sg.sgl,
222                                                  tfr->rx_sg.nents,
223                                                  DMA_DEV_TO_MEM,
224                                                  DMA_PREP_INTERRUPT);
225                 if (!rxdesc)
226                         return -EINVAL;
227         }
228
229         txdesc = NULL;
230         if (tfr->tx_buf) {
231                 struct dma_slave_config txconf = {
232                         .direction = DMA_MEM_TO_DEV,
233                         .dst_addr = sspi->dma_addr_tx,
234                         .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
235                         .dst_maxburst = 8,
236                 };
237
238                 dmaengine_slave_config(master->dma_tx, &txconf);
239
240                 txdesc = dmaengine_prep_slave_sg(master->dma_tx,
241                                                  tfr->tx_sg.sgl,
242                                                  tfr->tx_sg.nents,
243                                                  DMA_MEM_TO_DEV,
244                                                  DMA_PREP_INTERRUPT);
245                 if (!txdesc) {
246                         if (rxdesc)
247                                 dmaengine_terminate_sync(master->dma_rx);
248                         return -EINVAL;
249                 }
250         }
251
252         if (tfr->rx_buf) {
253                 dmaengine_submit(rxdesc);
254                 dma_async_issue_pending(master->dma_rx);
255         }
256
257         if (tfr->tx_buf) {
258                 dmaengine_submit(txdesc);
259                 dma_async_issue_pending(master->dma_tx);
260         }
261
262         return 0;
263 }
264
265 static int sun6i_spi_transfer_one(struct spi_master *master,
266                                   struct spi_device *spi,
267                                   struct spi_transfer *tfr)
268 {
269         struct sun6i_spi *sspi = spi_master_get_devdata(master);
270         unsigned int div, div_cdr1, div_cdr2, timeout;
271         unsigned int start, end, tx_time;
272         unsigned int trig_level;
273         unsigned int tx_len = 0, rx_len = 0, nbits = 0;
274         bool use_dma;
275         int ret = 0;
276         u32 reg;
277
278         if (tfr->len > SUN6I_MAX_XFER_SIZE)
279                 return -EINVAL;
280
281         reinit_completion(&sspi->done);
282         sspi->tx_buf = tfr->tx_buf;
283         sspi->rx_buf = tfr->rx_buf;
284         sspi->len = tfr->len;
285         use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
286
287         /* Clear pending interrupts */
288         sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
289
290         /* Reset FIFO */
291         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
292                         SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
293
294         reg = 0;
295
296         if (!use_dma) {
297                 /*
298                  * Setup FIFO interrupt trigger level
299                  * Here we choose 3/4 of the full fifo depth, as it's
300                  * the hardcoded value used in old generation of Allwinner
301                  * SPI controller. (See spi-sun4i.c)
302                  */
303                 trig_level = sspi->cfg->fifo_depth / 4 * 3;
304         } else {
305                 /*
306                  * Setup FIFO DMA request trigger level
307                  * We choose 1/2 of the full fifo depth, that value will
308                  * be used as DMA burst length.
309                  */
310                 trig_level = sspi->cfg->fifo_depth / 2;
311
312                 if (tfr->tx_buf)
313                         reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
314                 if (tfr->rx_buf)
315                         reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
316         }
317
318         reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
319                (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
320
321         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
322
323         /*
324          * Setup the transfer control register: Chip Select,
325          * polarities, etc.
326          */
327         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
328
329         if (spi->mode & SPI_CPOL)
330                 reg |= SUN6I_TFR_CTL_CPOL;
331         else
332                 reg &= ~SUN6I_TFR_CTL_CPOL;
333
334         if (spi->mode & SPI_CPHA)
335                 reg |= SUN6I_TFR_CTL_CPHA;
336         else
337                 reg &= ~SUN6I_TFR_CTL_CPHA;
338
339         if (spi->mode & SPI_LSB_FIRST)
340                 reg |= SUN6I_TFR_CTL_FBS;
341         else
342                 reg &= ~SUN6I_TFR_CTL_FBS;
343
344         /*
345          * If it's a TX only transfer, we don't want to fill the RX
346          * FIFO with bogus data
347          */
348         if (sspi->rx_buf) {
349                 reg &= ~SUN6I_TFR_CTL_DHB;
350                 rx_len = tfr->len;
351         } else {
352                 reg |= SUN6I_TFR_CTL_DHB;
353         }
354
355         /* We want to control the chip select manually */
356         reg |= SUN6I_TFR_CTL_CS_MANUAL;
357
358         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
359
360         if (sspi->cfg->has_clk_ctl) {
361                 unsigned int mclk_rate = clk_get_rate(sspi->mclk);
362
363                 /* Ensure that we have a parent clock fast enough */
364                 if (mclk_rate < (2 * tfr->speed_hz)) {
365                         clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
366                         mclk_rate = clk_get_rate(sspi->mclk);
367                 }
368
369                 /*
370                  * Setup clock divider.
371                  *
372                  * We have two choices there. Either we can use the clock
373                  * divide rate 1, which is calculated thanks to this formula:
374                  * SPI_CLK = MOD_CLK / (2 ^ cdr)
375                  * Or we can use CDR2, which is calculated with the formula:
376                  * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
377                  * Wether we use the former or the latter is set through the
378                  * DRS bit.
379                  *
380                  * First try CDR2, and if we can't reach the expected
381                  * frequency, fall back to CDR1.
382                  */
383                 div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
384                 div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
385                 if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
386                         reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
387                         tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
388                 } else {
389                         div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
390                         reg = SUN6I_CLK_CTL_CDR1(div);
391                         tfr->effective_speed_hz = mclk_rate / (1 << div);
392                 }
393
394                 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
395         } else {
396                 clk_set_rate(sspi->mclk, tfr->speed_hz);
397                 tfr->effective_speed_hz = clk_get_rate(sspi->mclk);
398
399                 /*
400                  * Configure work mode.
401                  *
402                  * There are three work modes depending on the controller clock
403                  * frequency:
404                  * - normal sample mode           : CLK <= 24MHz SDM=1 SDC=0
405                  * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0
406                  * - delay one-cycle sample mode  : CLK >= 80MHz SDM=0 SDC=1
407                  */
408                 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
409                 reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC);
410
411                 if (tfr->effective_speed_hz <= 24000000)
412                         reg |= SUN6I_TFR_CTL_SDM;
413                 else if (tfr->effective_speed_hz >= 80000000)
414                         reg |= SUN6I_TFR_CTL_SDC;
415
416                 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
417         }
418
419         /* Finally enable the bus - doing so before might raise SCK to HIGH */
420         reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
421         reg |= SUN6I_GBL_CTL_BUS_ENABLE;
422         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
423
424         /* Setup the transfer now... */
425         if (sspi->tx_buf) {
426                 tx_len = tfr->len;
427                 nbits = tfr->tx_nbits;
428         } else if (tfr->rx_buf) {
429                 nbits = tfr->rx_nbits;
430         }
431
432         switch (nbits) {
433         case SPI_NBITS_DUAL:
434                 reg = SUN6I_BURST_CTL_CNT_DRM;
435                 break;
436         case SPI_NBITS_QUAD:
437                 reg = SUN6I_BURST_CTL_CNT_QUAD_EN;
438                 break;
439         case SPI_NBITS_SINGLE:
440         default:
441                 reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len);
442         }
443
444         /* Setup the counters */
445         sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg);
446         sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
447         sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
448
449         if (!use_dma) {
450                 /* Fill the TX FIFO */
451                 sun6i_spi_fill_fifo(sspi);
452         } else {
453                 ret = sun6i_spi_prepare_dma(sspi, tfr);
454                 if (ret) {
455                         dev_warn(&master->dev,
456                                  "%s: prepare DMA failed, ret=%d",
457                                  dev_name(&spi->dev), ret);
458                         return ret;
459                 }
460         }
461
462         /* Enable the interrupts */
463         reg = SUN6I_INT_CTL_TC;
464
465         if (!use_dma) {
466                 if (rx_len > sspi->cfg->fifo_depth)
467                         reg |= SUN6I_INT_CTL_RF_RDY;
468                 if (tx_len > sspi->cfg->fifo_depth)
469                         reg |= SUN6I_INT_CTL_TF_ERQ;
470         }
471
472         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
473
474         /* Start the transfer */
475         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
476         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
477
478         tx_time = spi_controller_xfer_timeout(master, tfr);
479         start = jiffies;
480         timeout = wait_for_completion_timeout(&sspi->done,
481                                               msecs_to_jiffies(tx_time));
482         end = jiffies;
483         if (!timeout) {
484                 dev_warn(&master->dev,
485                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
486                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
487                          jiffies_to_msecs(end - start), tx_time);
488                 ret = -ETIMEDOUT;
489         }
490
491         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
492
493         if (ret && use_dma) {
494                 dmaengine_terminate_sync(master->dma_rx);
495                 dmaengine_terminate_sync(master->dma_tx);
496         }
497
498         return ret;
499 }
500
501 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
502 {
503         struct sun6i_spi *sspi = dev_id;
504         u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
505
506         /* Transfer complete */
507         if (status & SUN6I_INT_CTL_TC) {
508                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
509                 sun6i_spi_drain_fifo(sspi);
510                 complete(&sspi->done);
511                 return IRQ_HANDLED;
512         }
513
514         /* Receive FIFO 3/4 full */
515         if (status & SUN6I_INT_CTL_RF_RDY) {
516                 sun6i_spi_drain_fifo(sspi);
517                 /* Only clear the interrupt _after_ draining the FIFO */
518                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
519                 return IRQ_HANDLED;
520         }
521
522         /* Transmit FIFO 3/4 empty */
523         if (status & SUN6I_INT_CTL_TF_ERQ) {
524                 sun6i_spi_fill_fifo(sspi);
525
526                 if (!sspi->len)
527                         /* nothing left to transmit */
528                         sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
529
530                 /* Only clear the interrupt _after_ re-seeding the FIFO */
531                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
532
533                 return IRQ_HANDLED;
534         }
535
536         return IRQ_NONE;
537 }
538
539 static int sun6i_spi_runtime_resume(struct device *dev)
540 {
541         struct spi_master *master = dev_get_drvdata(dev);
542         struct sun6i_spi *sspi = spi_master_get_devdata(master);
543         int ret;
544
545         ret = clk_prepare_enable(sspi->hclk);
546         if (ret) {
547                 dev_err(dev, "Couldn't enable AHB clock\n");
548                 goto out;
549         }
550
551         ret = clk_prepare_enable(sspi->mclk);
552         if (ret) {
553                 dev_err(dev, "Couldn't enable module clock\n");
554                 goto err;
555         }
556
557         ret = reset_control_deassert(sspi->rstc);
558         if (ret) {
559                 dev_err(dev, "Couldn't deassert the device from reset\n");
560                 goto err2;
561         }
562
563         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
564                         SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
565
566         return 0;
567
568 err2:
569         clk_disable_unprepare(sspi->mclk);
570 err:
571         clk_disable_unprepare(sspi->hclk);
572 out:
573         return ret;
574 }
575
576 static int sun6i_spi_runtime_suspend(struct device *dev)
577 {
578         struct spi_master *master = dev_get_drvdata(dev);
579         struct sun6i_spi *sspi = spi_master_get_devdata(master);
580
581         reset_control_assert(sspi->rstc);
582         clk_disable_unprepare(sspi->mclk);
583         clk_disable_unprepare(sspi->hclk);
584
585         return 0;
586 }
587
588 static bool sun6i_spi_can_dma(struct spi_master *master,
589                               struct spi_device *spi,
590                               struct spi_transfer *xfer)
591 {
592         struct sun6i_spi *sspi = spi_master_get_devdata(master);
593
594         /*
595          * If the number of spi words to transfer is less or equal than
596          * the fifo length we can just fill the fifo and wait for a single
597          * irq, so don't bother setting up dma
598          */
599         return xfer->len > sspi->cfg->fifo_depth;
600 }
601
602 static int sun6i_spi_probe(struct platform_device *pdev)
603 {
604         struct spi_master *master;
605         struct sun6i_spi *sspi;
606         struct resource *mem;
607         int ret = 0, irq;
608
609         master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
610         if (!master) {
611                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
612                 return -ENOMEM;
613         }
614
615         platform_set_drvdata(pdev, master);
616         sspi = spi_master_get_devdata(master);
617
618         sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
619         if (IS_ERR(sspi->base_addr)) {
620                 ret = PTR_ERR(sspi->base_addr);
621                 goto err_free_master;
622         }
623
624         irq = platform_get_irq(pdev, 0);
625         if (irq < 0) {
626                 ret = -ENXIO;
627                 goto err_free_master;
628         }
629
630         ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
631                                0, "sun6i-spi", sspi);
632         if (ret) {
633                 dev_err(&pdev->dev, "Cannot request IRQ\n");
634                 goto err_free_master;
635         }
636
637         sspi->master = master;
638         sspi->cfg = of_device_get_match_data(&pdev->dev);
639
640         master->max_speed_hz = 100 * 1000 * 1000;
641         master->min_speed_hz = 3 * 1000;
642         master->use_gpio_descriptors = true;
643         master->set_cs = sun6i_spi_set_cs;
644         master->transfer_one = sun6i_spi_transfer_one;
645         master->num_chipselect = 4;
646         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
647                             sspi->cfg->mode_bits;
648         master->bits_per_word_mask = SPI_BPW_MASK(8);
649         master->dev.of_node = pdev->dev.of_node;
650         master->auto_runtime_pm = true;
651         master->max_transfer_size = sun6i_spi_max_transfer_size;
652
653         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
654         if (IS_ERR(sspi->hclk)) {
655                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
656                 ret = PTR_ERR(sspi->hclk);
657                 goto err_free_master;
658         }
659
660         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
661         if (IS_ERR(sspi->mclk)) {
662                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
663                 ret = PTR_ERR(sspi->mclk);
664                 goto err_free_master;
665         }
666
667         init_completion(&sspi->done);
668
669         sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
670         if (IS_ERR(sspi->rstc)) {
671                 dev_err(&pdev->dev, "Couldn't get reset controller\n");
672                 ret = PTR_ERR(sspi->rstc);
673                 goto err_free_master;
674         }
675
676         master->dma_tx = dma_request_chan(&pdev->dev, "tx");
677         if (IS_ERR(master->dma_tx)) {
678                 /* Check tx to see if we need defer probing driver */
679                 if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
680                         ret = -EPROBE_DEFER;
681                         goto err_free_master;
682                 }
683                 dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
684                 master->dma_tx = NULL;
685         }
686
687         master->dma_rx = dma_request_chan(&pdev->dev, "rx");
688         if (IS_ERR(master->dma_rx)) {
689                 if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
690                         ret = -EPROBE_DEFER;
691                         goto err_free_dma_tx;
692                 }
693                 dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
694                 master->dma_rx = NULL;
695         }
696
697         if (master->dma_tx && master->dma_rx) {
698                 sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
699                 sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
700                 master->can_dma = sun6i_spi_can_dma;
701         }
702
703         /*
704          * This wake-up/shutdown pattern is to be able to have the
705          * device woken up, even if runtime_pm is disabled
706          */
707         ret = sun6i_spi_runtime_resume(&pdev->dev);
708         if (ret) {
709                 dev_err(&pdev->dev, "Couldn't resume the device\n");
710                 goto err_free_dma_rx;
711         }
712
713         pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
714         pm_runtime_use_autosuspend(&pdev->dev);
715         pm_runtime_set_active(&pdev->dev);
716         pm_runtime_enable(&pdev->dev);
717
718         ret = devm_spi_register_master(&pdev->dev, master);
719         if (ret) {
720                 dev_err(&pdev->dev, "cannot register SPI master\n");
721                 goto err_pm_disable;
722         }
723
724         return 0;
725
726 err_pm_disable:
727         pm_runtime_disable(&pdev->dev);
728         sun6i_spi_runtime_suspend(&pdev->dev);
729 err_free_dma_rx:
730         if (master->dma_rx)
731                 dma_release_channel(master->dma_rx);
732 err_free_dma_tx:
733         if (master->dma_tx)
734                 dma_release_channel(master->dma_tx);
735 err_free_master:
736         spi_master_put(master);
737         return ret;
738 }
739
740 static void sun6i_spi_remove(struct platform_device *pdev)
741 {
742         struct spi_master *master = platform_get_drvdata(pdev);
743
744         pm_runtime_force_suspend(&pdev->dev);
745
746         if (master->dma_tx)
747                 dma_release_channel(master->dma_tx);
748         if (master->dma_rx)
749                 dma_release_channel(master->dma_rx);
750 }
751
752 static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = {
753         .fifo_depth     = SUN6I_FIFO_DEPTH,
754         .has_clk_ctl    = true,
755 };
756
757 static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = {
758         .fifo_depth     = SUN8I_FIFO_DEPTH,
759         .has_clk_ctl    = true,
760 };
761
762 static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = {
763         .fifo_depth     = SUN8I_FIFO_DEPTH,
764         .mode_bits      = SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD,
765 };
766
767 static const struct of_device_id sun6i_spi_match[] = {
768         { .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg },
769         { .compatible = "allwinner,sun8i-h3-spi",  .data = &sun8i_h3_spi_cfg },
770         {
771                 .compatible = "allwinner,sun50i-r329-spi",
772                 .data = &sun50i_r329_spi_cfg
773         },
774         {}
775 };
776 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
777
778 static const struct dev_pm_ops sun6i_spi_pm_ops = {
779         .runtime_resume         = sun6i_spi_runtime_resume,
780         .runtime_suspend        = sun6i_spi_runtime_suspend,
781 };
782
783 static struct platform_driver sun6i_spi_driver = {
784         .probe  = sun6i_spi_probe,
785         .remove_new = sun6i_spi_remove,
786         .driver = {
787                 .name           = "sun6i-spi",
788                 .of_match_table = sun6i_spi_match,
789                 .pm             = &sun6i_spi_pm_ops,
790         },
791 };
792 module_platform_driver(sun6i_spi_driver);
793
794 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
795 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
796 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
797 MODULE_LICENSE("GPL");