2442006c42293d178c0a977a370a2be8fb5af575
[linux-2.6-microblaze.git] / drivers / spi / spi-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21
22 #include <linux/spi/spi.h>
23
24 #define SUN6I_FIFO_DEPTH                128
25 #define SUN8I_FIFO_DEPTH                64
26
27 #define SUN6I_GBL_CTL_REG               0x04
28 #define SUN6I_GBL_CTL_BUS_ENABLE                BIT(0)
29 #define SUN6I_GBL_CTL_MASTER                    BIT(1)
30 #define SUN6I_GBL_CTL_TP                        BIT(7)
31 #define SUN6I_GBL_CTL_RST                       BIT(31)
32
33 #define SUN6I_TFR_CTL_REG               0x08
34 #define SUN6I_TFR_CTL_CPHA                      BIT(0)
35 #define SUN6I_TFR_CTL_CPOL                      BIT(1)
36 #define SUN6I_TFR_CTL_SPOL                      BIT(2)
37 #define SUN6I_TFR_CTL_CS_MASK                   0x30
38 #define SUN6I_TFR_CTL_CS(cs)                    (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
39 #define SUN6I_TFR_CTL_CS_MANUAL                 BIT(6)
40 #define SUN6I_TFR_CTL_CS_LEVEL                  BIT(7)
41 #define SUN6I_TFR_CTL_DHB                       BIT(8)
42 #define SUN6I_TFR_CTL_FBS                       BIT(12)
43 #define SUN6I_TFR_CTL_XCH                       BIT(31)
44
45 #define SUN6I_INT_CTL_REG               0x10
46 #define SUN6I_INT_CTL_RF_RDY                    BIT(0)
47 #define SUN6I_INT_CTL_TF_ERQ                    BIT(4)
48 #define SUN6I_INT_CTL_RF_OVF                    BIT(8)
49 #define SUN6I_INT_CTL_TC                        BIT(12)
50
51 #define SUN6I_INT_STA_REG               0x14
52
53 #define SUN6I_FIFO_CTL_REG              0x18
54 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK   0xff
55 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS   0
56 #define SUN6I_FIFO_CTL_RF_RST                   BIT(15)
57 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK   0xff
58 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS   16
59 #define SUN6I_FIFO_CTL_TF_RST                   BIT(31)
60
61 #define SUN6I_FIFO_STA_REG              0x1c
62 #define SUN6I_FIFO_STA_RF_CNT_MASK              GENMASK(7, 0)
63 #define SUN6I_FIFO_STA_TF_CNT_MASK              GENMASK(23, 16)
64
65 #define SUN6I_CLK_CTL_REG               0x24
66 #define SUN6I_CLK_CTL_CDR2_MASK                 0xff
67 #define SUN6I_CLK_CTL_CDR2(div)                 (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
68 #define SUN6I_CLK_CTL_CDR1_MASK                 0xf
69 #define SUN6I_CLK_CTL_CDR1(div)                 (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
70 #define SUN6I_CLK_CTL_DRS                       BIT(12)
71
72 #define SUN6I_MAX_XFER_SIZE             0xffffff
73
74 #define SUN6I_BURST_CNT_REG             0x30
75
76 #define SUN6I_XMIT_CNT_REG              0x34
77
78 #define SUN6I_BURST_CTL_CNT_REG         0x38
79
80 #define SUN6I_TXDATA_REG                0x200
81 #define SUN6I_RXDATA_REG                0x300
82
83 struct sun6i_spi {
84         struct spi_master       *master;
85         void __iomem            *base_addr;
86         struct clk              *hclk;
87         struct clk              *mclk;
88         struct reset_control    *rstc;
89
90         struct completion       done;
91
92         const u8                *tx_buf;
93         u8                      *rx_buf;
94         int                     len;
95         unsigned long           fifo_depth;
96 };
97
98 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
99 {
100         return readl(sspi->base_addr + reg);
101 }
102
103 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
104 {
105         writel(value, sspi->base_addr + reg);
106 }
107
108 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
109 {
110         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
111
112         return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
113 }
114
115 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
116 {
117         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
118
119         return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
120 }
121
122 static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
123 {
124         u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
125
126         reg |= mask;
127         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
128 }
129
130 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
131 {
132         u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
133
134         reg &= ~mask;
135         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
136 }
137
138 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
139 {
140         u32 len;
141         u8 byte;
142
143         /* See how much data is available */
144         len = sun6i_spi_get_rx_fifo_count(sspi);
145
146         while (len--) {
147                 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
148                 if (sspi->rx_buf)
149                         *sspi->rx_buf++ = byte;
150         }
151 }
152
153 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
154 {
155         u32 cnt;
156         int len;
157         u8 byte;
158
159         /* See how much data we can fit */
160         cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
161
162         len = min((int)cnt, sspi->len);
163
164         while (len--) {
165                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
166                 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
167                 sspi->len--;
168         }
169 }
170
171 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
172 {
173         struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
174         u32 reg;
175
176         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
177         reg &= ~SUN6I_TFR_CTL_CS_MASK;
178         reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
179
180         if (enable)
181                 reg |= SUN6I_TFR_CTL_CS_LEVEL;
182         else
183                 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
184
185         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
186 }
187
188 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
189 {
190         return SUN6I_MAX_XFER_SIZE - 1;
191 }
192
193 static int sun6i_spi_transfer_one(struct spi_master *master,
194                                   struct spi_device *spi,
195                                   struct spi_transfer *tfr)
196 {
197         struct sun6i_spi *sspi = spi_master_get_devdata(master);
198         unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
199         unsigned int start, end, tx_time;
200         unsigned int trig_level;
201         unsigned int tx_len = 0;
202         int ret = 0;
203         u32 reg;
204
205         if (tfr->len > SUN6I_MAX_XFER_SIZE)
206                 return -EINVAL;
207
208         reinit_completion(&sspi->done);
209         sspi->tx_buf = tfr->tx_buf;
210         sspi->rx_buf = tfr->rx_buf;
211         sspi->len = tfr->len;
212
213         /* Clear pending interrupts */
214         sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
215
216         /* Reset FIFO */
217         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
218                         SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
219
220         /*
221          * Setup FIFO interrupt trigger level
222          * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
223          * value used in old generation of Allwinner SPI controller.
224          * (See spi-sun4i.c)
225          */
226         trig_level = sspi->fifo_depth / 4 * 3;
227         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
228                         (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
229                         (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
230
231         /*
232          * Setup the transfer control register: Chip Select,
233          * polarities, etc.
234          */
235         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
236
237         if (spi->mode & SPI_CPOL)
238                 reg |= SUN6I_TFR_CTL_CPOL;
239         else
240                 reg &= ~SUN6I_TFR_CTL_CPOL;
241
242         if (spi->mode & SPI_CPHA)
243                 reg |= SUN6I_TFR_CTL_CPHA;
244         else
245                 reg &= ~SUN6I_TFR_CTL_CPHA;
246
247         if (spi->mode & SPI_LSB_FIRST)
248                 reg |= SUN6I_TFR_CTL_FBS;
249         else
250                 reg &= ~SUN6I_TFR_CTL_FBS;
251
252         /*
253          * If it's a TX only transfer, we don't want to fill the RX
254          * FIFO with bogus data
255          */
256         if (sspi->rx_buf)
257                 reg &= ~SUN6I_TFR_CTL_DHB;
258         else
259                 reg |= SUN6I_TFR_CTL_DHB;
260
261         /* We want to control the chip select manually */
262         reg |= SUN6I_TFR_CTL_CS_MANUAL;
263
264         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
265
266         /* Ensure that we have a parent clock fast enough */
267         mclk_rate = clk_get_rate(sspi->mclk);
268         if (mclk_rate < (2 * tfr->speed_hz)) {
269                 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
270                 mclk_rate = clk_get_rate(sspi->mclk);
271         }
272
273         /*
274          * Setup clock divider.
275          *
276          * We have two choices there. Either we can use the clock
277          * divide rate 1, which is calculated thanks to this formula:
278          * SPI_CLK = MOD_CLK / (2 ^ cdr)
279          * Or we can use CDR2, which is calculated with the formula:
280          * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
281          * Wether we use the former or the latter is set through the
282          * DRS bit.
283          *
284          * First try CDR2, and if we can't reach the expected
285          * frequency, fall back to CDR1.
286          */
287         div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
288         div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
289         if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
290                 reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
291                 tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
292         } else {
293                 div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
294                 reg = SUN6I_CLK_CTL_CDR1(div);
295                 tfr->effective_speed_hz = mclk_rate / (1 << div);
296         }
297
298         sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
299
300         /* Setup the transfer now... */
301         if (sspi->tx_buf)
302                 tx_len = tfr->len;
303
304         /* Setup the counters */
305         sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
306         sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
307         sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
308
309         /* Fill the TX FIFO */
310         sun6i_spi_fill_fifo(sspi);
311
312         /* Enable the interrupts */
313         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
314         sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
315                                          SUN6I_INT_CTL_RF_RDY);
316         if (tx_len > sspi->fifo_depth)
317                 sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
318
319         /* Start the transfer */
320         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
321         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
322
323         tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
324         start = jiffies;
325         timeout = wait_for_completion_timeout(&sspi->done,
326                                               msecs_to_jiffies(tx_time));
327         end = jiffies;
328         if (!timeout) {
329                 dev_warn(&master->dev,
330                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
331                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
332                          jiffies_to_msecs(end - start), tx_time);
333                 ret = -ETIMEDOUT;
334         }
335
336         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
337
338         return ret;
339 }
340
341 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
342 {
343         struct sun6i_spi *sspi = dev_id;
344         u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
345
346         /* Transfer complete */
347         if (status & SUN6I_INT_CTL_TC) {
348                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
349                 sun6i_spi_drain_fifo(sspi);
350                 complete(&sspi->done);
351                 return IRQ_HANDLED;
352         }
353
354         /* Receive FIFO 3/4 full */
355         if (status & SUN6I_INT_CTL_RF_RDY) {
356                 sun6i_spi_drain_fifo(sspi);
357                 /* Only clear the interrupt _after_ draining the FIFO */
358                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
359                 return IRQ_HANDLED;
360         }
361
362         /* Transmit FIFO 3/4 empty */
363         if (status & SUN6I_INT_CTL_TF_ERQ) {
364                 sun6i_spi_fill_fifo(sspi);
365
366                 if (!sspi->len)
367                         /* nothing left to transmit */
368                         sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
369
370                 /* Only clear the interrupt _after_ re-seeding the FIFO */
371                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
372
373                 return IRQ_HANDLED;
374         }
375
376         return IRQ_NONE;
377 }
378
379 static int sun6i_spi_runtime_resume(struct device *dev)
380 {
381         struct spi_master *master = dev_get_drvdata(dev);
382         struct sun6i_spi *sspi = spi_master_get_devdata(master);
383         int ret;
384
385         ret = clk_prepare_enable(sspi->hclk);
386         if (ret) {
387                 dev_err(dev, "Couldn't enable AHB clock\n");
388                 goto out;
389         }
390
391         ret = clk_prepare_enable(sspi->mclk);
392         if (ret) {
393                 dev_err(dev, "Couldn't enable module clock\n");
394                 goto err;
395         }
396
397         ret = reset_control_deassert(sspi->rstc);
398         if (ret) {
399                 dev_err(dev, "Couldn't deassert the device from reset\n");
400                 goto err2;
401         }
402
403         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
404                         SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
405
406         return 0;
407
408 err2:
409         clk_disable_unprepare(sspi->mclk);
410 err:
411         clk_disable_unprepare(sspi->hclk);
412 out:
413         return ret;
414 }
415
416 static int sun6i_spi_runtime_suspend(struct device *dev)
417 {
418         struct spi_master *master = dev_get_drvdata(dev);
419         struct sun6i_spi *sspi = spi_master_get_devdata(master);
420
421         reset_control_assert(sspi->rstc);
422         clk_disable_unprepare(sspi->mclk);
423         clk_disable_unprepare(sspi->hclk);
424
425         return 0;
426 }
427
428 static int sun6i_spi_probe(struct platform_device *pdev)
429 {
430         struct spi_master *master;
431         struct sun6i_spi *sspi;
432         int ret = 0, irq;
433
434         master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
435         if (!master) {
436                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
437                 return -ENOMEM;
438         }
439
440         platform_set_drvdata(pdev, master);
441         sspi = spi_master_get_devdata(master);
442
443         sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
444         if (IS_ERR(sspi->base_addr)) {
445                 ret = PTR_ERR(sspi->base_addr);
446                 goto err_free_master;
447         }
448
449         irq = platform_get_irq(pdev, 0);
450         if (irq < 0) {
451                 ret = -ENXIO;
452                 goto err_free_master;
453         }
454
455         ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
456                                0, "sun6i-spi", sspi);
457         if (ret) {
458                 dev_err(&pdev->dev, "Cannot request IRQ\n");
459                 goto err_free_master;
460         }
461
462         sspi->master = master;
463         sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
464
465         master->max_speed_hz = 100 * 1000 * 1000;
466         master->min_speed_hz = 3 * 1000;
467         master->use_gpio_descriptors = true;
468         master->set_cs = sun6i_spi_set_cs;
469         master->transfer_one = sun6i_spi_transfer_one;
470         master->num_chipselect = 4;
471         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
472         master->bits_per_word_mask = SPI_BPW_MASK(8);
473         master->dev.of_node = pdev->dev.of_node;
474         master->auto_runtime_pm = true;
475         master->max_transfer_size = sun6i_spi_max_transfer_size;
476
477         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
478         if (IS_ERR(sspi->hclk)) {
479                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
480                 ret = PTR_ERR(sspi->hclk);
481                 goto err_free_master;
482         }
483
484         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
485         if (IS_ERR(sspi->mclk)) {
486                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
487                 ret = PTR_ERR(sspi->mclk);
488                 goto err_free_master;
489         }
490
491         init_completion(&sspi->done);
492
493         sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
494         if (IS_ERR(sspi->rstc)) {
495                 dev_err(&pdev->dev, "Couldn't get reset controller\n");
496                 ret = PTR_ERR(sspi->rstc);
497                 goto err_free_master;
498         }
499
500         /*
501          * This wake-up/shutdown pattern is to be able to have the
502          * device woken up, even if runtime_pm is disabled
503          */
504         ret = sun6i_spi_runtime_resume(&pdev->dev);
505         if (ret) {
506                 dev_err(&pdev->dev, "Couldn't resume the device\n");
507                 goto err_free_master;
508         }
509
510         pm_runtime_set_active(&pdev->dev);
511         pm_runtime_enable(&pdev->dev);
512         pm_runtime_idle(&pdev->dev);
513
514         ret = devm_spi_register_master(&pdev->dev, master);
515         if (ret) {
516                 dev_err(&pdev->dev, "cannot register SPI master\n");
517                 goto err_pm_disable;
518         }
519
520         return 0;
521
522 err_pm_disable:
523         pm_runtime_disable(&pdev->dev);
524         sun6i_spi_runtime_suspend(&pdev->dev);
525 err_free_master:
526         spi_master_put(master);
527         return ret;
528 }
529
530 static int sun6i_spi_remove(struct platform_device *pdev)
531 {
532         pm_runtime_force_suspend(&pdev->dev);
533
534         return 0;
535 }
536
537 static const struct of_device_id sun6i_spi_match[] = {
538         { .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
539         { .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
540         {}
541 };
542 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
543
544 static const struct dev_pm_ops sun6i_spi_pm_ops = {
545         .runtime_resume         = sun6i_spi_runtime_resume,
546         .runtime_suspend        = sun6i_spi_runtime_suspend,
547 };
548
549 static struct platform_driver sun6i_spi_driver = {
550         .probe  = sun6i_spi_probe,
551         .remove = sun6i_spi_remove,
552         .driver = {
553                 .name           = "sun6i-spi",
554                 .of_match_table = sun6i_spi_match,
555                 .pm             = &sun6i_spi_pm_ops,
556         },
557 };
558 module_platform_driver(sun6i_spi_driver);
559
560 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
561 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
562 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
563 MODULE_LICENSE("GPL");