Merge branch 'resizex' (patches from Maciej)
[linux-2.6-microblaze.git] / drivers / spi / spi-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 #include <linux/spi/spi.h>
21
22 #define DRIVER_NAME "spi_stm32"
23
24 /* STM32F4 SPI registers */
25 #define STM32F4_SPI_CR1                 0x00
26 #define STM32F4_SPI_CR2                 0x04
27 #define STM32F4_SPI_SR                  0x08
28 #define STM32F4_SPI_DR                  0x0C
29 #define STM32F4_SPI_I2SCFGR             0x1C
30
31 /* STM32F4_SPI_CR1 bit fields */
32 #define STM32F4_SPI_CR1_CPHA            BIT(0)
33 #define STM32F4_SPI_CR1_CPOL            BIT(1)
34 #define STM32F4_SPI_CR1_MSTR            BIT(2)
35 #define STM32F4_SPI_CR1_BR_SHIFT        3
36 #define STM32F4_SPI_CR1_BR              GENMASK(5, 3)
37 #define STM32F4_SPI_CR1_SPE             BIT(6)
38 #define STM32F4_SPI_CR1_LSBFRST         BIT(7)
39 #define STM32F4_SPI_CR1_SSI             BIT(8)
40 #define STM32F4_SPI_CR1_SSM             BIT(9)
41 #define STM32F4_SPI_CR1_RXONLY          BIT(10)
42 #define STM32F4_SPI_CR1_DFF             BIT(11)
43 #define STM32F4_SPI_CR1_CRCNEXT         BIT(12)
44 #define STM32F4_SPI_CR1_CRCEN           BIT(13)
45 #define STM32F4_SPI_CR1_BIDIOE          BIT(14)
46 #define STM32F4_SPI_CR1_BIDIMODE        BIT(15)
47 #define STM32F4_SPI_CR1_BR_MIN          0
48 #define STM32F4_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
49
50 /* STM32F4_SPI_CR2 bit fields */
51 #define STM32F4_SPI_CR2_RXDMAEN         BIT(0)
52 #define STM32F4_SPI_CR2_TXDMAEN         BIT(1)
53 #define STM32F4_SPI_CR2_SSOE            BIT(2)
54 #define STM32F4_SPI_CR2_FRF             BIT(4)
55 #define STM32F4_SPI_CR2_ERRIE           BIT(5)
56 #define STM32F4_SPI_CR2_RXNEIE          BIT(6)
57 #define STM32F4_SPI_CR2_TXEIE           BIT(7)
58
59 /* STM32F4_SPI_SR bit fields */
60 #define STM32F4_SPI_SR_RXNE             BIT(0)
61 #define STM32F4_SPI_SR_TXE              BIT(1)
62 #define STM32F4_SPI_SR_CHSIDE           BIT(2)
63 #define STM32F4_SPI_SR_UDR              BIT(3)
64 #define STM32F4_SPI_SR_CRCERR           BIT(4)
65 #define STM32F4_SPI_SR_MODF             BIT(5)
66 #define STM32F4_SPI_SR_OVR              BIT(6)
67 #define STM32F4_SPI_SR_BSY              BIT(7)
68 #define STM32F4_SPI_SR_FRE              BIT(8)
69
70 /* STM32F4_SPI_I2SCFGR bit fields */
71 #define STM32F4_SPI_I2SCFGR_I2SMOD      BIT(11)
72
73 /* STM32F4 SPI Baud Rate min/max divisor */
74 #define STM32F4_SPI_BR_DIV_MIN          (2 << STM32F4_SPI_CR1_BR_MIN)
75 #define STM32F4_SPI_BR_DIV_MAX          (2 << STM32F4_SPI_CR1_BR_MAX)
76
77 /* STM32H7 SPI registers */
78 #define STM32H7_SPI_CR1                 0x00
79 #define STM32H7_SPI_CR2                 0x04
80 #define STM32H7_SPI_CFG1                0x08
81 #define STM32H7_SPI_CFG2                0x0C
82 #define STM32H7_SPI_IER                 0x10
83 #define STM32H7_SPI_SR                  0x14
84 #define STM32H7_SPI_IFCR                0x18
85 #define STM32H7_SPI_TXDR                0x20
86 #define STM32H7_SPI_RXDR                0x30
87 #define STM32H7_SPI_I2SCFGR             0x50
88
89 /* STM32H7_SPI_CR1 bit fields */
90 #define STM32H7_SPI_CR1_SPE             BIT(0)
91 #define STM32H7_SPI_CR1_MASRX           BIT(8)
92 #define STM32H7_SPI_CR1_CSTART          BIT(9)
93 #define STM32H7_SPI_CR1_CSUSP           BIT(10)
94 #define STM32H7_SPI_CR1_HDDIR           BIT(11)
95 #define STM32H7_SPI_CR1_SSI             BIT(12)
96
97 /* STM32H7_SPI_CR2 bit fields */
98 #define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
99 #define STM32H7_SPI_TSIZE_MAX           GENMASK(15, 0)
100
101 /* STM32H7_SPI_CFG1 bit fields */
102 #define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
106 #define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT      28
108 #define STM32H7_SPI_CFG1_MBR_MIN        0
109 #define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
110
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
113 #define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
114 #define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
115 #define STM32H7_SPI_CFG2_MASTER         BIT(22)
116 #define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
117 #define STM32H7_SPI_CFG2_CPHA           BIT(24)
118 #define STM32H7_SPI_CFG2_CPOL           BIT(25)
119 #define STM32H7_SPI_CFG2_SSM            BIT(26)
120 #define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
121
122 /* STM32H7_SPI_IER bit fields */
123 #define STM32H7_SPI_IER_RXPIE           BIT(0)
124 #define STM32H7_SPI_IER_TXPIE           BIT(1)
125 #define STM32H7_SPI_IER_DXPIE           BIT(2)
126 #define STM32H7_SPI_IER_EOTIE           BIT(3)
127 #define STM32H7_SPI_IER_TXTFIE          BIT(4)
128 #define STM32H7_SPI_IER_OVRIE           BIT(6)
129 #define STM32H7_SPI_IER_MODFIE          BIT(9)
130 #define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
131
132 /* STM32H7_SPI_SR bit fields */
133 #define STM32H7_SPI_SR_RXP              BIT(0)
134 #define STM32H7_SPI_SR_TXP              BIT(1)
135 #define STM32H7_SPI_SR_EOT              BIT(3)
136 #define STM32H7_SPI_SR_OVR              BIT(6)
137 #define STM32H7_SPI_SR_MODF             BIT(9)
138 #define STM32H7_SPI_SR_SUSP             BIT(11)
139 #define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
140 #define STM32H7_SPI_SR_RXWNE            BIT(15)
141
142 /* STM32H7_SPI_IFCR bit fields */
143 #define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
144
145 /* STM32H7_SPI_I2SCFGR bit fields */
146 #define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
147
148 /* STM32H7 SPI Master Baud Rate min/max divisor */
149 #define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
150 #define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
151
152 /* STM32H7 SPI Communication mode */
153 #define STM32H7_SPI_FULL_DUPLEX         0
154 #define STM32H7_SPI_SIMPLEX_TX          1
155 #define STM32H7_SPI_SIMPLEX_RX          2
156 #define STM32H7_SPI_HALF_DUPLEX         3
157
158 /* SPI Communication type */
159 #define SPI_FULL_DUPLEX         0
160 #define SPI_SIMPLEX_TX          1
161 #define SPI_SIMPLEX_RX          2
162 #define SPI_3WIRE_TX            3
163 #define SPI_3WIRE_RX            4
164
165 /*
166  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
167  * without fifo buffers.
168  */
169 #define SPI_DMA_MIN_BYTES       16
170
171 /**
172  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
173  * @reg:                register offset
174  * @mask:               bitfield mask
175  * @shift:              left shift
176  */
177 struct stm32_spi_reg {
178         int reg;
179         int mask;
180         int shift;
181 };
182
183 /**
184  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
185  * @en: enable register and SPI enable bit
186  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
187  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
188  * @cpol: clock polarity register and polarity bit
189  * @cpha: clock phase register and phase bit
190  * @lsb_first: LSB transmitted first register and bit
191  * @br: baud rate register and bitfields
192  * @rx: SPI RX data register
193  * @tx: SPI TX data register
194  */
195 struct stm32_spi_regspec {
196         const struct stm32_spi_reg en;
197         const struct stm32_spi_reg dma_rx_en;
198         const struct stm32_spi_reg dma_tx_en;
199         const struct stm32_spi_reg cpol;
200         const struct stm32_spi_reg cpha;
201         const struct stm32_spi_reg lsb_first;
202         const struct stm32_spi_reg br;
203         const struct stm32_spi_reg rx;
204         const struct stm32_spi_reg tx;
205 };
206
207 struct stm32_spi;
208
209 /**
210  * struct stm32_spi_cfg - stm32 compatible configuration data
211  * @regs: registers descriptions
212  * @get_fifo_size: routine to get fifo size
213  * @get_bpw_mask: routine to get bits per word mask
214  * @disable: routine to disable controller
215  * @config: routine to configure controller as SPI Master
216  * @set_bpw: routine to configure registers to for bits per word
217  * @set_mode: routine to configure registers to desired mode
218  * @set_data_idleness: optional routine to configure registers to desired idle
219  * time between frames (if driver has this functionality)
220  * @set_number_of_data: optional routine to configure registers to desired
221  * number of data (if driver has this functionality)
222  * @can_dma: routine to determine if the transfer is eligible for DMA use
223  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
224  * using DMA
225  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
226  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
227  * @transfer_one_irq: routine to configure interrupts for driver
228  * @irq_handler_event: Interrupt handler for SPI controller events
229  * @irq_handler_thread: thread of interrupt handler for SPI controller
230  * @baud_rate_div_min: minimum baud rate divisor
231  * @baud_rate_div_max: maximum baud rate divisor
232  * @has_fifo: boolean to know if fifo is used for driver
233  * @has_startbit: boolean to know if start bit is used to start transfer
234  */
235 struct stm32_spi_cfg {
236         const struct stm32_spi_regspec *regs;
237         int (*get_fifo_size)(struct stm32_spi *spi);
238         int (*get_bpw_mask)(struct stm32_spi *spi);
239         void (*disable)(struct stm32_spi *spi);
240         int (*config)(struct stm32_spi *spi);
241         void (*set_bpw)(struct stm32_spi *spi);
242         int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
243         void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
244         int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
245         void (*transfer_one_dma_start)(struct stm32_spi *spi);
246         void (*dma_rx_cb)(void *data);
247         void (*dma_tx_cb)(void *data);
248         int (*transfer_one_irq)(struct stm32_spi *spi);
249         irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
250         irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
251         unsigned int baud_rate_div_min;
252         unsigned int baud_rate_div_max;
253         bool has_fifo;
254 };
255
256 /**
257  * struct stm32_spi - private data of the SPI controller
258  * @dev: driver model representation of the controller
259  * @master: controller master interface
260  * @cfg: compatible configuration data
261  * @base: virtual memory area
262  * @clk: hw kernel clock feeding the SPI clock generator
263  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
264  * @lock: prevent I/O concurrent access
265  * @irq: SPI controller interrupt line
266  * @fifo_size: size of the embedded fifo in bytes
267  * @cur_midi: master inter-data idleness in ns
268  * @cur_speed: speed configured in Hz
269  * @cur_bpw: number of bits in a single SPI data frame
270  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
271  * @cur_comm: SPI communication mode
272  * @cur_xferlen: current transfer length in bytes
273  * @cur_usedma: boolean to know if dma is used in current transfer
274  * @tx_buf: data to be written, or NULL
275  * @rx_buf: data to be read, or NULL
276  * @tx_len: number of data to be written in bytes
277  * @rx_len: number of data to be read in bytes
278  * @dma_tx: dma channel for TX transfer
279  * @dma_rx: dma channel for RX transfer
280  * @phys_addr: SPI registers physical base address
281  */
282 struct stm32_spi {
283         struct device *dev;
284         struct spi_master *master;
285         const struct stm32_spi_cfg *cfg;
286         void __iomem *base;
287         struct clk *clk;
288         u32 clk_rate;
289         spinlock_t lock; /* prevent I/O concurrent access */
290         int irq;
291         unsigned int fifo_size;
292
293         unsigned int cur_midi;
294         unsigned int cur_speed;
295         unsigned int cur_bpw;
296         unsigned int cur_fthlv;
297         unsigned int cur_comm;
298         unsigned int cur_xferlen;
299         bool cur_usedma;
300
301         const void *tx_buf;
302         void *rx_buf;
303         int tx_len;
304         int rx_len;
305         struct dma_chan *dma_tx;
306         struct dma_chan *dma_rx;
307         dma_addr_t phys_addr;
308 };
309
310 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
311         .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
312
313         .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
314         .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
315
316         .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
317         .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
318         .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
319         .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
320
321         .rx = { STM32F4_SPI_DR },
322         .tx = { STM32F4_SPI_DR },
323 };
324
325 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
326         /* SPI data transfer is enabled but spi_ker_ck is idle.
327          * CFG1 and CFG2 registers are write protected when SPE is enabled.
328          */
329         .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
330
331         .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
332         .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
333
334         .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
335         .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
336         .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
337         .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
338                 STM32H7_SPI_CFG1_MBR_SHIFT },
339
340         .rx = { STM32H7_SPI_RXDR },
341         .tx = { STM32H7_SPI_TXDR },
342 };
343
344 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
345                                       u32 offset, u32 bits)
346 {
347         writel_relaxed(readl_relaxed(spi->base + offset) | bits,
348                        spi->base + offset);
349 }
350
351 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
352                                       u32 offset, u32 bits)
353 {
354         writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
355                        spi->base + offset);
356 }
357
358 /**
359  * stm32h7_spi_get_fifo_size - Return fifo size
360  * @spi: pointer to the spi controller data structure
361  */
362 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
363 {
364         unsigned long flags;
365         u32 count = 0;
366
367         spin_lock_irqsave(&spi->lock, flags);
368
369         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
370
371         while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
372                 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
373
374         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
375
376         spin_unlock_irqrestore(&spi->lock, flags);
377
378         dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
379
380         return count;
381 }
382
383 /**
384  * stm32f4_spi_get_bpw_mask - Return bits per word mask
385  * @spi: pointer to the spi controller data structure
386  */
387 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
388 {
389         dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
390         return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
391 }
392
393 /**
394  * stm32h7_spi_get_bpw_mask - Return bits per word mask
395  * @spi: pointer to the spi controller data structure
396  */
397 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
398 {
399         unsigned long flags;
400         u32 cfg1, max_bpw;
401
402         spin_lock_irqsave(&spi->lock, flags);
403
404         /*
405          * The most significant bit at DSIZE bit field is reserved when the
406          * maximum data size of periperal instances is limited to 16-bit
407          */
408         stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
409
410         cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
411         max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
412
413         spin_unlock_irqrestore(&spi->lock, flags);
414
415         dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
416
417         return SPI_BPW_RANGE_MASK(4, max_bpw);
418 }
419
420 /**
421  * stm32_spi_prepare_mbr - Determine baud rate divisor value
422  * @spi: pointer to the spi controller data structure
423  * @speed_hz: requested speed
424  * @min_div: minimum baud rate divisor
425  * @max_div: maximum baud rate divisor
426  *
427  * Return baud rate divisor value in case of success or -EINVAL
428  */
429 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
430                                  u32 min_div, u32 max_div)
431 {
432         u32 div, mbrdiv;
433
434         /* Ensure spi->clk_rate is even */
435         div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
436
437         /*
438          * SPI framework set xfer->speed_hz to master->max_speed_hz if
439          * xfer->speed_hz is greater than master->max_speed_hz, and it returns
440          * an error when xfer->speed_hz is lower than master->min_speed_hz, so
441          * no need to check it there.
442          * However, we need to ensure the following calculations.
443          */
444         if ((div < min_div) || (div > max_div))
445                 return -EINVAL;
446
447         /* Determine the first power of 2 greater than or equal to div */
448         if (div & (div - 1))
449                 mbrdiv = fls(div);
450         else
451                 mbrdiv = fls(div) - 1;
452
453         spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
454
455         return mbrdiv - 1;
456 }
457
458 /**
459  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
460  * @spi: pointer to the spi controller data structure
461  * @xfer_len: length of the message to be transferred
462  */
463 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
464 {
465         u32 packet, bpw;
466
467         /* data packet should not exceed 1/2 of fifo space */
468         packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
469
470         /* align packet size with data registers access */
471         bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
472         return DIV_ROUND_UP(packet, bpw);
473 }
474
475 /**
476  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
477  * @spi: pointer to the spi controller data structure
478  *
479  * Read from tx_buf depends on remaining bytes to avoid to read beyond
480  * tx_buf end.
481  */
482 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
483 {
484         if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
485                                   STM32F4_SPI_SR_TXE)) {
486                 u32 offs = spi->cur_xferlen - spi->tx_len;
487
488                 if (spi->cur_bpw == 16) {
489                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
490
491                         writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
492                         spi->tx_len -= sizeof(u16);
493                 } else {
494                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
495
496                         writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
497                         spi->tx_len -= sizeof(u8);
498                 }
499         }
500
501         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
502 }
503
504 /**
505  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
506  * @spi: pointer to the spi controller data structure
507  *
508  * Read from tx_buf depends on remaining bytes to avoid to read beyond
509  * tx_buf end.
510  */
511 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
512 {
513         while ((spi->tx_len > 0) &&
514                        (readl_relaxed(spi->base + STM32H7_SPI_SR) &
515                         STM32H7_SPI_SR_TXP)) {
516                 u32 offs = spi->cur_xferlen - spi->tx_len;
517
518                 if (spi->tx_len >= sizeof(u32)) {
519                         const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
520
521                         writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
522                         spi->tx_len -= sizeof(u32);
523                 } else if (spi->tx_len >= sizeof(u16)) {
524                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
525
526                         writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
527                         spi->tx_len -= sizeof(u16);
528                 } else {
529                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
530
531                         writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
532                         spi->tx_len -= sizeof(u8);
533                 }
534         }
535
536         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
537 }
538
539 /**
540  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
541  * @spi: pointer to the spi controller data structure
542  *
543  * Write in rx_buf depends on remaining bytes to avoid to write beyond
544  * rx_buf end.
545  */
546 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
547 {
548         if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
549                                   STM32F4_SPI_SR_RXNE)) {
550                 u32 offs = spi->cur_xferlen - spi->rx_len;
551
552                 if (spi->cur_bpw == 16) {
553                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
554
555                         *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
556                         spi->rx_len -= sizeof(u16);
557                 } else {
558                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
559
560                         *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
561                         spi->rx_len -= sizeof(u8);
562                 }
563         }
564
565         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
566 }
567
568 /**
569  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
570  * @spi: pointer to the spi controller data structure
571  * @flush: boolean indicating that FIFO should be flushed
572  *
573  * Write in rx_buf depends on remaining bytes to avoid to write beyond
574  * rx_buf end.
575  */
576 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
577 {
578         u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
579         u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
580
581         while ((spi->rx_len > 0) &&
582                ((sr & STM32H7_SPI_SR_RXP) ||
583                 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
584                 u32 offs = spi->cur_xferlen - spi->rx_len;
585
586                 if ((spi->rx_len >= sizeof(u32)) ||
587                     (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
588                         u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
589
590                         *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
591                         spi->rx_len -= sizeof(u32);
592                 } else if ((spi->rx_len >= sizeof(u16)) ||
593                            (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
594                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
595
596                         *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
597                         spi->rx_len -= sizeof(u16);
598                 } else {
599                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
600
601                         *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
602                         spi->rx_len -= sizeof(u8);
603                 }
604
605                 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
606                 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
607         }
608
609         dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
610                 flush ? "(flush)" : "", spi->rx_len);
611 }
612
613 /**
614  * stm32_spi_enable - Enable SPI controller
615  * @spi: pointer to the spi controller data structure
616  */
617 static void stm32_spi_enable(struct stm32_spi *spi)
618 {
619         dev_dbg(spi->dev, "enable controller\n");
620
621         stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
622                            spi->cfg->regs->en.mask);
623 }
624
625 /**
626  * stm32f4_spi_disable - Disable SPI controller
627  * @spi: pointer to the spi controller data structure
628  */
629 static void stm32f4_spi_disable(struct stm32_spi *spi)
630 {
631         unsigned long flags;
632         u32 sr;
633
634         dev_dbg(spi->dev, "disable controller\n");
635
636         spin_lock_irqsave(&spi->lock, flags);
637
638         if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
639               STM32F4_SPI_CR1_SPE)) {
640                 spin_unlock_irqrestore(&spi->lock, flags);
641                 return;
642         }
643
644         /* Disable interrupts */
645         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
646                                                  STM32F4_SPI_CR2_RXNEIE |
647                                                  STM32F4_SPI_CR2_ERRIE);
648
649         /* Wait until BSY = 0 */
650         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
651                                               sr, !(sr & STM32F4_SPI_SR_BSY),
652                                               10, 100000) < 0) {
653                 dev_warn(spi->dev, "disabling condition timeout\n");
654         }
655
656         if (spi->cur_usedma && spi->dma_tx)
657                 dmaengine_terminate_all(spi->dma_tx);
658         if (spi->cur_usedma && spi->dma_rx)
659                 dmaengine_terminate_all(spi->dma_rx);
660
661         stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
662
663         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
664                                                  STM32F4_SPI_CR2_RXDMAEN);
665
666         /* Sequence to clear OVR flag */
667         readl_relaxed(spi->base + STM32F4_SPI_DR);
668         readl_relaxed(spi->base + STM32F4_SPI_SR);
669
670         spin_unlock_irqrestore(&spi->lock, flags);
671 }
672
673 /**
674  * stm32h7_spi_disable - Disable SPI controller
675  * @spi: pointer to the spi controller data structure
676  *
677  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
678  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
679  * RX-Fifo.
680  * Normally, if TSIZE has been configured, we should relax the hardware at the
681  * reception of the EOT interrupt. But in case of error, EOT will not be
682  * raised. So the subsystem unprepare_message call allows us to properly
683  * complete the transfer from an hardware point of view.
684  */
685 static void stm32h7_spi_disable(struct stm32_spi *spi)
686 {
687         unsigned long flags;
688         u32 cr1, sr;
689
690         dev_dbg(spi->dev, "disable controller\n");
691
692         spin_lock_irqsave(&spi->lock, flags);
693
694         cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
695
696         if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
697                 spin_unlock_irqrestore(&spi->lock, flags);
698                 return;
699         }
700
701         /* Wait on EOT or suspend the flow */
702         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
703                                               sr, !(sr & STM32H7_SPI_SR_EOT),
704                                               10, 100000) < 0) {
705                 if (cr1 & STM32H7_SPI_CR1_CSTART) {
706                         writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
707                                        spi->base + STM32H7_SPI_CR1);
708                         if (readl_relaxed_poll_timeout_atomic(
709                                                 spi->base + STM32H7_SPI_SR,
710                                                 sr, !(sr & STM32H7_SPI_SR_SUSP),
711                                                 10, 100000) < 0)
712                                 dev_warn(spi->dev,
713                                          "Suspend request timeout\n");
714                 }
715         }
716
717         if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
718                 stm32h7_spi_read_rxfifo(spi, true);
719
720         if (spi->cur_usedma && spi->dma_tx)
721                 dmaengine_terminate_all(spi->dma_tx);
722         if (spi->cur_usedma && spi->dma_rx)
723                 dmaengine_terminate_all(spi->dma_rx);
724
725         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
726
727         stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
728                                                 STM32H7_SPI_CFG1_RXDMAEN);
729
730         /* Disable interrupts and clear status flags */
731         writel_relaxed(0, spi->base + STM32H7_SPI_IER);
732         writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
733
734         spin_unlock_irqrestore(&spi->lock, flags);
735 }
736
737 /**
738  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
739  * @master: controller master interface
740  * @spi_dev: pointer to the spi device
741  * @transfer: pointer to spi transfer
742  *
743  * If driver has fifo and the current transfer size is greater than fifo size,
744  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
745  */
746 static bool stm32_spi_can_dma(struct spi_master *master,
747                               struct spi_device *spi_dev,
748                               struct spi_transfer *transfer)
749 {
750         unsigned int dma_size;
751         struct stm32_spi *spi = spi_master_get_devdata(master);
752
753         if (spi->cfg->has_fifo)
754                 dma_size = spi->fifo_size;
755         else
756                 dma_size = SPI_DMA_MIN_BYTES;
757
758         dev_dbg(spi->dev, "%s: %s\n", __func__,
759                 (transfer->len > dma_size) ? "true" : "false");
760
761         return (transfer->len > dma_size);
762 }
763
764 /**
765  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
766  * @irq: interrupt line
767  * @dev_id: SPI controller master interface
768  */
769 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
770 {
771         struct spi_master *master = dev_id;
772         struct stm32_spi *spi = spi_master_get_devdata(master);
773         u32 sr, mask = 0;
774         bool end = false;
775
776         spin_lock(&spi->lock);
777
778         sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
779         /*
780          * BSY flag is not handled in interrupt but it is normal behavior when
781          * this flag is set.
782          */
783         sr &= ~STM32F4_SPI_SR_BSY;
784
785         if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
786                                  spi->cur_comm == SPI_3WIRE_TX)) {
787                 /* OVR flag shouldn't be handled for TX only mode */
788                 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
789                 mask |= STM32F4_SPI_SR_TXE;
790         }
791
792         if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
793                                 spi->cur_comm == SPI_SIMPLEX_RX ||
794                                 spi->cur_comm == SPI_3WIRE_RX)) {
795                 /* TXE flag is set and is handled when RXNE flag occurs */
796                 sr &= ~STM32F4_SPI_SR_TXE;
797                 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
798         }
799
800         if (!(sr & mask)) {
801                 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
802                 spin_unlock(&spi->lock);
803                 return IRQ_NONE;
804         }
805
806         if (sr & STM32F4_SPI_SR_OVR) {
807                 dev_warn(spi->dev, "Overrun: received value discarded\n");
808
809                 /* Sequence to clear OVR flag */
810                 readl_relaxed(spi->base + STM32F4_SPI_DR);
811                 readl_relaxed(spi->base + STM32F4_SPI_SR);
812
813                 /*
814                  * If overrun is detected, it means that something went wrong,
815                  * so stop the current transfer. Transfer can wait for next
816                  * RXNE but DR is already read and end never happens.
817                  */
818                 end = true;
819                 goto end_irq;
820         }
821
822         if (sr & STM32F4_SPI_SR_TXE) {
823                 if (spi->tx_buf)
824                         stm32f4_spi_write_tx(spi);
825                 if (spi->tx_len == 0)
826                         end = true;
827         }
828
829         if (sr & STM32F4_SPI_SR_RXNE) {
830                 stm32f4_spi_read_rx(spi);
831                 if (spi->rx_len == 0)
832                         end = true;
833                 else if (spi->tx_buf)/* Load data for discontinuous mode */
834                         stm32f4_spi_write_tx(spi);
835         }
836
837 end_irq:
838         if (end) {
839                 /* Immediately disable interrupts to do not generate new one */
840                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
841                                         STM32F4_SPI_CR2_TXEIE |
842                                         STM32F4_SPI_CR2_RXNEIE |
843                                         STM32F4_SPI_CR2_ERRIE);
844                 spin_unlock(&spi->lock);
845                 return IRQ_WAKE_THREAD;
846         }
847
848         spin_unlock(&spi->lock);
849         return IRQ_HANDLED;
850 }
851
852 /**
853  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
854  * @irq: interrupt line
855  * @dev_id: SPI controller master interface
856  */
857 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
858 {
859         struct spi_master *master = dev_id;
860         struct stm32_spi *spi = spi_master_get_devdata(master);
861
862         spi_finalize_current_transfer(master);
863         stm32f4_spi_disable(spi);
864
865         return IRQ_HANDLED;
866 }
867
868 /**
869  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
870  * @irq: interrupt line
871  * @dev_id: SPI controller master interface
872  */
873 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
874 {
875         struct spi_master *master = dev_id;
876         struct stm32_spi *spi = spi_master_get_devdata(master);
877         u32 sr, ier, mask;
878         unsigned long flags;
879         bool end = false;
880
881         spin_lock_irqsave(&spi->lock, flags);
882
883         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
884         ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
885
886         mask = ier;
887         /* EOTIE is triggered on EOT, SUSP and TXC events. */
888         mask |= STM32H7_SPI_SR_SUSP;
889         /*
890          * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
891          * Full-Duplex, need to poll RXP event to know if there are remaining
892          * data, before disabling SPI.
893          */
894         if (spi->rx_buf && !spi->cur_usedma)
895                 mask |= STM32H7_SPI_SR_RXP;
896
897         if (!(sr & mask)) {
898                 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
899                          sr, ier);
900                 spin_unlock_irqrestore(&spi->lock, flags);
901                 return IRQ_NONE;
902         }
903
904         if (sr & STM32H7_SPI_SR_SUSP) {
905                 static DEFINE_RATELIMIT_STATE(rs,
906                                               DEFAULT_RATELIMIT_INTERVAL * 10,
907                                               1);
908                 if (__ratelimit(&rs))
909                         dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
910                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
911                         stm32h7_spi_read_rxfifo(spi, false);
912                 /*
913                  * If communication is suspended while using DMA, it means
914                  * that something went wrong, so stop the current transfer
915                  */
916                 if (spi->cur_usedma)
917                         end = true;
918         }
919
920         if (sr & STM32H7_SPI_SR_MODF) {
921                 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
922                 end = true;
923         }
924
925         if (sr & STM32H7_SPI_SR_OVR) {
926                 dev_err(spi->dev, "Overrun: RX data lost\n");
927                 end = true;
928         }
929
930         if (sr & STM32H7_SPI_SR_EOT) {
931                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
932                         stm32h7_spi_read_rxfifo(spi, true);
933                 end = true;
934         }
935
936         if (sr & STM32H7_SPI_SR_TXP)
937                 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
938                         stm32h7_spi_write_txfifo(spi);
939
940         if (sr & STM32H7_SPI_SR_RXP)
941                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
942                         stm32h7_spi_read_rxfifo(spi, false);
943
944         writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
945
946         spin_unlock_irqrestore(&spi->lock, flags);
947
948         if (end) {
949                 stm32h7_spi_disable(spi);
950                 spi_finalize_current_transfer(master);
951         }
952
953         return IRQ_HANDLED;
954 }
955
956 /**
957  * stm32_spi_prepare_msg - set up the controller to transfer a single message
958  * @master: controller master interface
959  * @msg: pointer to spi message
960  */
961 static int stm32_spi_prepare_msg(struct spi_master *master,
962                                  struct spi_message *msg)
963 {
964         struct stm32_spi *spi = spi_master_get_devdata(master);
965         struct spi_device *spi_dev = msg->spi;
966         struct device_node *np = spi_dev->dev.of_node;
967         unsigned long flags;
968         u32 clrb = 0, setb = 0;
969
970         /* SPI slave device may need time between data frames */
971         spi->cur_midi = 0;
972         if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
973                 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
974
975         if (spi_dev->mode & SPI_CPOL)
976                 setb |= spi->cfg->regs->cpol.mask;
977         else
978                 clrb |= spi->cfg->regs->cpol.mask;
979
980         if (spi_dev->mode & SPI_CPHA)
981                 setb |= spi->cfg->regs->cpha.mask;
982         else
983                 clrb |= spi->cfg->regs->cpha.mask;
984
985         if (spi_dev->mode & SPI_LSB_FIRST)
986                 setb |= spi->cfg->regs->lsb_first.mask;
987         else
988                 clrb |= spi->cfg->regs->lsb_first.mask;
989
990         dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
991                 !!(spi_dev->mode & SPI_CPOL),
992                 !!(spi_dev->mode & SPI_CPHA),
993                 !!(spi_dev->mode & SPI_LSB_FIRST),
994                 !!(spi_dev->mode & SPI_CS_HIGH));
995
996         /* On STM32H7, messages should not exceed a maximum size setted
997          * afterward via the set_number_of_data function. In order to
998          * ensure that, split large messages into several messages
999          */
1000         if (spi->cfg->set_number_of_data) {
1001                 int ret;
1002
1003                 ret = spi_split_transfers_maxsize(master, msg,
1004                                                   STM32H7_SPI_TSIZE_MAX,
1005                                                   GFP_KERNEL | GFP_DMA);
1006                 if (ret)
1007                         return ret;
1008         }
1009
1010         spin_lock_irqsave(&spi->lock, flags);
1011
1012         /* CPOL, CPHA and LSB FIRST bits have common register */
1013         if (clrb || setb)
1014                 writel_relaxed(
1015                         (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1016                          ~clrb) | setb,
1017                         spi->base + spi->cfg->regs->cpol.reg);
1018
1019         spin_unlock_irqrestore(&spi->lock, flags);
1020
1021         return 0;
1022 }
1023
1024 /**
1025  * stm32f4_spi_dma_tx_cb - dma callback
1026  * @data: pointer to the spi controller data structure
1027  *
1028  * DMA callback is called when the transfer is complete for DMA TX channel.
1029  */
1030 static void stm32f4_spi_dma_tx_cb(void *data)
1031 {
1032         struct stm32_spi *spi = data;
1033
1034         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1035                 spi_finalize_current_transfer(spi->master);
1036                 stm32f4_spi_disable(spi);
1037         }
1038 }
1039
1040 /**
1041  * stm32f4_spi_dma_rx_cb - dma callback
1042  * @data: pointer to the spi controller data structure
1043  *
1044  * DMA callback is called when the transfer is complete for DMA RX channel.
1045  */
1046 static void stm32f4_spi_dma_rx_cb(void *data)
1047 {
1048         struct stm32_spi *spi = data;
1049
1050         spi_finalize_current_transfer(spi->master);
1051         stm32f4_spi_disable(spi);
1052 }
1053
1054 /**
1055  * stm32h7_spi_dma_cb - dma callback
1056  * @data: pointer to the spi controller data structure
1057  *
1058  * DMA callback is called when the transfer is complete or when an error
1059  * occurs. If the transfer is complete, EOT flag is raised.
1060  */
1061 static void stm32h7_spi_dma_cb(void *data)
1062 {
1063         struct stm32_spi *spi = data;
1064         unsigned long flags;
1065         u32 sr;
1066
1067         spin_lock_irqsave(&spi->lock, flags);
1068
1069         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1070
1071         spin_unlock_irqrestore(&spi->lock, flags);
1072
1073         if (!(sr & STM32H7_SPI_SR_EOT))
1074                 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1075
1076         /* Now wait for EOT, or SUSP or OVR in case of error */
1077 }
1078
1079 /**
1080  * stm32_spi_dma_config - configure dma slave channel depending on current
1081  *                        transfer bits_per_word.
1082  * @spi: pointer to the spi controller data structure
1083  * @dma_conf: pointer to the dma_slave_config structure
1084  * @dir: direction of the dma transfer
1085  */
1086 static void stm32_spi_dma_config(struct stm32_spi *spi,
1087                                  struct dma_slave_config *dma_conf,
1088                                  enum dma_transfer_direction dir)
1089 {
1090         enum dma_slave_buswidth buswidth;
1091         u32 maxburst;
1092
1093         if (spi->cur_bpw <= 8)
1094                 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1095         else if (spi->cur_bpw <= 16)
1096                 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1097         else
1098                 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1099
1100         if (spi->cfg->has_fifo) {
1101                 /* Valid for DMA Half or Full Fifo threshold */
1102                 if (spi->cur_fthlv == 2)
1103                         maxburst = 1;
1104                 else
1105                         maxburst = spi->cur_fthlv;
1106         } else {
1107                 maxburst = 1;
1108         }
1109
1110         memset(dma_conf, 0, sizeof(struct dma_slave_config));
1111         dma_conf->direction = dir;
1112         if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1113                 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1114                 dma_conf->src_addr_width = buswidth;
1115                 dma_conf->src_maxburst = maxburst;
1116
1117                 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1118                         buswidth, maxburst);
1119         } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1120                 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1121                 dma_conf->dst_addr_width = buswidth;
1122                 dma_conf->dst_maxburst = maxburst;
1123
1124                 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1125                         buswidth, maxburst);
1126         }
1127 }
1128
1129 /**
1130  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1131  *                                interrupts
1132  * @spi: pointer to the spi controller data structure
1133  *
1134  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1135  * in progress.
1136  */
1137 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1138 {
1139         unsigned long flags;
1140         u32 cr2 = 0;
1141
1142         /* Enable the interrupts relative to the current communication mode */
1143         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1144                 cr2 |= STM32F4_SPI_CR2_TXEIE;
1145         } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1146                                 spi->cur_comm == SPI_SIMPLEX_RX ||
1147                                 spi->cur_comm == SPI_3WIRE_RX) {
1148                 /* In transmit-only mode, the OVR flag is set in the SR register
1149                  * since the received data are never read. Therefore set OVR
1150                  * interrupt only when rx buffer is available.
1151                  */
1152                 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1153         } else {
1154                 return -EINVAL;
1155         }
1156
1157         spin_lock_irqsave(&spi->lock, flags);
1158
1159         stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1160
1161         stm32_spi_enable(spi);
1162
1163         /* starting data transfer when buffer is loaded */
1164         if (spi->tx_buf)
1165                 stm32f4_spi_write_tx(spi);
1166
1167         spin_unlock_irqrestore(&spi->lock, flags);
1168
1169         return 1;
1170 }
1171
1172 /**
1173  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1174  *                                interrupts
1175  * @spi: pointer to the spi controller data structure
1176  *
1177  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1178  * in progress.
1179  */
1180 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1181 {
1182         unsigned long flags;
1183         u32 ier = 0;
1184
1185         /* Enable the interrupts relative to the current communication mode */
1186         if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1187                 ier |= STM32H7_SPI_IER_DXPIE;
1188         else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1189                 ier |= STM32H7_SPI_IER_TXPIE;
1190         else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1191                 ier |= STM32H7_SPI_IER_RXPIE;
1192
1193         /* Enable the interrupts relative to the end of transfer */
1194         ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1195                STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1196
1197         spin_lock_irqsave(&spi->lock, flags);
1198
1199         stm32_spi_enable(spi);
1200
1201         /* Be sure to have data in fifo before starting data transfer */
1202         if (spi->tx_buf)
1203                 stm32h7_spi_write_txfifo(spi);
1204
1205         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1206
1207         writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1208
1209         spin_unlock_irqrestore(&spi->lock, flags);
1210
1211         return 1;
1212 }
1213
1214 /**
1215  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1216  *                                      transfer using DMA
1217  * @spi: pointer to the spi controller data structure
1218  */
1219 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1220 {
1221         /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1222         if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1223             spi->cur_comm == SPI_FULL_DUPLEX) {
1224                 /*
1225                  * In transmit-only mode, the OVR flag is set in the SR register
1226                  * since the received data are never read. Therefore set OVR
1227                  * interrupt only when rx buffer is available.
1228                  */
1229                 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1230         }
1231
1232         stm32_spi_enable(spi);
1233 }
1234
1235 /**
1236  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1237  *                                      transfer using DMA
1238  * @spi: pointer to the spi controller data structure
1239  */
1240 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1241 {
1242         /* Enable the interrupts relative to the end of transfer */
1243         stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1244                                                  STM32H7_SPI_IER_TXTFIE |
1245                                                  STM32H7_SPI_IER_OVRIE |
1246                                                  STM32H7_SPI_IER_MODFIE);
1247
1248         stm32_spi_enable(spi);
1249
1250         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1251 }
1252
1253 /**
1254  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1255  * @spi: pointer to the spi controller data structure
1256  * @xfer: pointer to the spi_transfer structure
1257  *
1258  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1259  * in progress.
1260  */
1261 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1262                                       struct spi_transfer *xfer)
1263 {
1264         struct dma_slave_config tx_dma_conf, rx_dma_conf;
1265         struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1266         unsigned long flags;
1267
1268         spin_lock_irqsave(&spi->lock, flags);
1269
1270         rx_dma_desc = NULL;
1271         if (spi->rx_buf && spi->dma_rx) {
1272                 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1273                 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1274
1275                 /* Enable Rx DMA request */
1276                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1277                                    spi->cfg->regs->dma_rx_en.mask);
1278
1279                 rx_dma_desc = dmaengine_prep_slave_sg(
1280                                         spi->dma_rx, xfer->rx_sg.sgl,
1281                                         xfer->rx_sg.nents,
1282                                         rx_dma_conf.direction,
1283                                         DMA_PREP_INTERRUPT);
1284         }
1285
1286         tx_dma_desc = NULL;
1287         if (spi->tx_buf && spi->dma_tx) {
1288                 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1289                 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1290
1291                 tx_dma_desc = dmaengine_prep_slave_sg(
1292                                         spi->dma_tx, xfer->tx_sg.sgl,
1293                                         xfer->tx_sg.nents,
1294                                         tx_dma_conf.direction,
1295                                         DMA_PREP_INTERRUPT);
1296         }
1297
1298         if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1299             (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1300                 goto dma_desc_error;
1301
1302         if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1303                 goto dma_desc_error;
1304
1305         if (rx_dma_desc) {
1306                 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1307                 rx_dma_desc->callback_param = spi;
1308
1309                 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1310                         dev_err(spi->dev, "Rx DMA submit failed\n");
1311                         goto dma_desc_error;
1312                 }
1313                 /* Enable Rx DMA channel */
1314                 dma_async_issue_pending(spi->dma_rx);
1315         }
1316
1317         if (tx_dma_desc) {
1318                 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1319                     spi->cur_comm == SPI_3WIRE_TX) {
1320                         tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1321                         tx_dma_desc->callback_param = spi;
1322                 }
1323
1324                 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1325                         dev_err(spi->dev, "Tx DMA submit failed\n");
1326                         goto dma_submit_error;
1327                 }
1328                 /* Enable Tx DMA channel */
1329                 dma_async_issue_pending(spi->dma_tx);
1330
1331                 /* Enable Tx DMA request */
1332                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1333                                    spi->cfg->regs->dma_tx_en.mask);
1334         }
1335
1336         spi->cfg->transfer_one_dma_start(spi);
1337
1338         spin_unlock_irqrestore(&spi->lock, flags);
1339
1340         return 1;
1341
1342 dma_submit_error:
1343         if (spi->dma_rx)
1344                 dmaengine_terminate_all(spi->dma_rx);
1345
1346 dma_desc_error:
1347         stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1348                            spi->cfg->regs->dma_rx_en.mask);
1349
1350         spin_unlock_irqrestore(&spi->lock, flags);
1351
1352         dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1353
1354         spi->cur_usedma = false;
1355         return spi->cfg->transfer_one_irq(spi);
1356 }
1357
1358 /**
1359  * stm32f4_spi_set_bpw - Configure bits per word
1360  * @spi: pointer to the spi controller data structure
1361  */
1362 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1363 {
1364         if (spi->cur_bpw == 16)
1365                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1366         else
1367                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1368 }
1369
1370 /**
1371  * stm32h7_spi_set_bpw - configure bits per word
1372  * @spi: pointer to the spi controller data structure
1373  */
1374 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1375 {
1376         u32 bpw, fthlv;
1377         u32 cfg1_clrb = 0, cfg1_setb = 0;
1378
1379         bpw = spi->cur_bpw - 1;
1380
1381         cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1382         cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1383
1384         spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1385         fthlv = spi->cur_fthlv - 1;
1386
1387         cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1388         cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1389
1390         writel_relaxed(
1391                 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1392                  ~cfg1_clrb) | cfg1_setb,
1393                 spi->base + STM32H7_SPI_CFG1);
1394 }
1395
1396 /**
1397  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1398  * @spi: pointer to the spi controller data structure
1399  * @mbrdiv: baud rate divisor value
1400  */
1401 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1402 {
1403         u32 clrb = 0, setb = 0;
1404
1405         clrb |= spi->cfg->regs->br.mask;
1406         setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1407
1408         writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1409                         ~clrb) | setb,
1410                        spi->base + spi->cfg->regs->br.reg);
1411 }
1412
1413 /**
1414  * stm32_spi_communication_type - return transfer communication type
1415  * @spi_dev: pointer to the spi device
1416  * @transfer: pointer to spi transfer
1417  */
1418 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1419                                                  struct spi_transfer *transfer)
1420 {
1421         unsigned int type = SPI_FULL_DUPLEX;
1422
1423         if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1424                 /*
1425                  * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1426                  * is forbidden and unvalidated by SPI subsystem so depending
1427                  * on the valid buffer, we can determine the direction of the
1428                  * transfer.
1429                  */
1430                 if (!transfer->tx_buf)
1431                         type = SPI_3WIRE_RX;
1432                 else
1433                         type = SPI_3WIRE_TX;
1434         } else {
1435                 if (!transfer->tx_buf)
1436                         type = SPI_SIMPLEX_RX;
1437                 else if (!transfer->rx_buf)
1438                         type = SPI_SIMPLEX_TX;
1439         }
1440
1441         return type;
1442 }
1443
1444 /**
1445  * stm32f4_spi_set_mode - configure communication mode
1446  * @spi: pointer to the spi controller data structure
1447  * @comm_type: type of communication to configure
1448  */
1449 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1450 {
1451         if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1452                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1453                                         STM32F4_SPI_CR1_BIDIMODE |
1454                                         STM32F4_SPI_CR1_BIDIOE);
1455         } else if (comm_type == SPI_FULL_DUPLEX ||
1456                                 comm_type == SPI_SIMPLEX_RX) {
1457                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1458                                         STM32F4_SPI_CR1_BIDIMODE |
1459                                         STM32F4_SPI_CR1_BIDIOE);
1460         } else if (comm_type == SPI_3WIRE_RX) {
1461                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1462                                         STM32F4_SPI_CR1_BIDIMODE);
1463                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1464                                         STM32F4_SPI_CR1_BIDIOE);
1465         } else {
1466                 return -EINVAL;
1467         }
1468
1469         return 0;
1470 }
1471
1472 /**
1473  * stm32h7_spi_set_mode - configure communication mode
1474  * @spi: pointer to the spi controller data structure
1475  * @comm_type: type of communication to configure
1476  */
1477 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1478 {
1479         u32 mode;
1480         u32 cfg2_clrb = 0, cfg2_setb = 0;
1481
1482         if (comm_type == SPI_3WIRE_RX) {
1483                 mode = STM32H7_SPI_HALF_DUPLEX;
1484                 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1485         } else if (comm_type == SPI_3WIRE_TX) {
1486                 mode = STM32H7_SPI_HALF_DUPLEX;
1487                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1488         } else if (comm_type == SPI_SIMPLEX_RX) {
1489                 mode = STM32H7_SPI_SIMPLEX_RX;
1490         } else if (comm_type == SPI_SIMPLEX_TX) {
1491                 mode = STM32H7_SPI_SIMPLEX_TX;
1492         } else {
1493                 mode = STM32H7_SPI_FULL_DUPLEX;
1494         }
1495
1496         cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1497         cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1498
1499         writel_relaxed(
1500                 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1501                  ~cfg2_clrb) | cfg2_setb,
1502                 spi->base + STM32H7_SPI_CFG2);
1503
1504         return 0;
1505 }
1506
1507 /**
1508  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1509  *                             consecutive data frames in master mode
1510  * @spi: pointer to the spi controller data structure
1511  * @len: transfer len
1512  */
1513 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1514 {
1515         u32 cfg2_clrb = 0, cfg2_setb = 0;
1516
1517         cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1518         if ((len > 1) && (spi->cur_midi > 0)) {
1519                 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1520                 u32 midi = min_t(u32,
1521                                  DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1522                                  FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1523                                  STM32H7_SPI_CFG2_MIDI));
1524
1525
1526                 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1527                         sck_period_ns, midi, midi * sck_period_ns);
1528                 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1529         }
1530
1531         writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1532                         ~cfg2_clrb) | cfg2_setb,
1533                        spi->base + STM32H7_SPI_CFG2);
1534 }
1535
1536 /**
1537  * stm32h7_spi_number_of_data - configure number of data at current transfer
1538  * @spi: pointer to the spi controller data structure
1539  * @nb_words: transfer length (in words)
1540  */
1541 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1542 {
1543         if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1544                 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1545                                spi->base + STM32H7_SPI_CR2);
1546         } else {
1547                 return -EMSGSIZE;
1548         }
1549
1550         return 0;
1551 }
1552
1553 /**
1554  * stm32_spi_transfer_one_setup - common setup to transfer a single
1555  *                                spi_transfer either using DMA or
1556  *                                interrupts.
1557  * @spi: pointer to the spi controller data structure
1558  * @spi_dev: pointer to the spi device
1559  * @transfer: pointer to spi transfer
1560  */
1561 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1562                                         struct spi_device *spi_dev,
1563                                         struct spi_transfer *transfer)
1564 {
1565         unsigned long flags;
1566         unsigned int comm_type;
1567         int nb_words, ret = 0;
1568         int mbr;
1569
1570         spin_lock_irqsave(&spi->lock, flags);
1571
1572         spi->cur_xferlen = transfer->len;
1573
1574         spi->cur_bpw = transfer->bits_per_word;
1575         spi->cfg->set_bpw(spi);
1576
1577         /* Update spi->cur_speed with real clock speed */
1578         mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1579                                     spi->cfg->baud_rate_div_min,
1580                                     spi->cfg->baud_rate_div_max);
1581         if (mbr < 0) {
1582                 ret = mbr;
1583                 goto out;
1584         }
1585
1586         transfer->speed_hz = spi->cur_speed;
1587         stm32_spi_set_mbr(spi, mbr);
1588
1589         comm_type = stm32_spi_communication_type(spi_dev, transfer);
1590         ret = spi->cfg->set_mode(spi, comm_type);
1591         if (ret < 0)
1592                 goto out;
1593
1594         spi->cur_comm = comm_type;
1595
1596         if (spi->cfg->set_data_idleness)
1597                 spi->cfg->set_data_idleness(spi, transfer->len);
1598
1599         if (spi->cur_bpw <= 8)
1600                 nb_words = transfer->len;
1601         else if (spi->cur_bpw <= 16)
1602                 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1603         else
1604                 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1605
1606         if (spi->cfg->set_number_of_data) {
1607                 ret = spi->cfg->set_number_of_data(spi, nb_words);
1608                 if (ret < 0)
1609                         goto out;
1610         }
1611
1612         dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1613                 spi->cur_comm);
1614         dev_dbg(spi->dev,
1615                 "data frame of %d-bit, data packet of %d data frames\n",
1616                 spi->cur_bpw, spi->cur_fthlv);
1617         dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1618         dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1619                 spi->cur_xferlen, nb_words);
1620         dev_dbg(spi->dev, "dma %s\n",
1621                 (spi->cur_usedma) ? "enabled" : "disabled");
1622
1623 out:
1624         spin_unlock_irqrestore(&spi->lock, flags);
1625
1626         return ret;
1627 }
1628
1629 /**
1630  * stm32_spi_transfer_one - transfer a single spi_transfer
1631  * @master: controller master interface
1632  * @spi_dev: pointer to the spi device
1633  * @transfer: pointer to spi transfer
1634  *
1635  * It must return 0 if the transfer is finished or 1 if the transfer is still
1636  * in progress.
1637  */
1638 static int stm32_spi_transfer_one(struct spi_master *master,
1639                                   struct spi_device *spi_dev,
1640                                   struct spi_transfer *transfer)
1641 {
1642         struct stm32_spi *spi = spi_master_get_devdata(master);
1643         int ret;
1644
1645         /* Don't do anything on 0 bytes transfers */
1646         if (transfer->len == 0)
1647                 return 0;
1648
1649         spi->tx_buf = transfer->tx_buf;
1650         spi->rx_buf = transfer->rx_buf;
1651         spi->tx_len = spi->tx_buf ? transfer->len : 0;
1652         spi->rx_len = spi->rx_buf ? transfer->len : 0;
1653
1654         spi->cur_usedma = (master->can_dma &&
1655                            master->can_dma(master, spi_dev, transfer));
1656
1657         ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1658         if (ret) {
1659                 dev_err(spi->dev, "SPI transfer setup failed\n");
1660                 return ret;
1661         }
1662
1663         if (spi->cur_usedma)
1664                 return stm32_spi_transfer_one_dma(spi, transfer);
1665         else
1666                 return spi->cfg->transfer_one_irq(spi);
1667 }
1668
1669 /**
1670  * stm32_spi_unprepare_msg - relax the hardware
1671  * @master: controller master interface
1672  * @msg: pointer to the spi message
1673  */
1674 static int stm32_spi_unprepare_msg(struct spi_master *master,
1675                                    struct spi_message *msg)
1676 {
1677         struct stm32_spi *spi = spi_master_get_devdata(master);
1678
1679         spi->cfg->disable(spi);
1680
1681         return 0;
1682 }
1683
1684 /**
1685  * stm32f4_spi_config - Configure SPI controller as SPI master
1686  * @spi: pointer to the spi controller data structure
1687  */
1688 static int stm32f4_spi_config(struct stm32_spi *spi)
1689 {
1690         unsigned long flags;
1691
1692         spin_lock_irqsave(&spi->lock, flags);
1693
1694         /* Ensure I2SMOD bit is kept cleared */
1695         stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1696                            STM32F4_SPI_I2SCFGR_I2SMOD);
1697
1698         /*
1699          * - SS input value high
1700          * - transmitter half duplex direction
1701          * - Set the master mode (default Motorola mode)
1702          * - Consider 1 master/n slaves configuration and
1703          *   SS input value is determined by the SSI bit
1704          */
1705         stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1706                                                  STM32F4_SPI_CR1_BIDIOE |
1707                                                  STM32F4_SPI_CR1_MSTR |
1708                                                  STM32F4_SPI_CR1_SSM);
1709
1710         spin_unlock_irqrestore(&spi->lock, flags);
1711
1712         return 0;
1713 }
1714
1715 /**
1716  * stm32h7_spi_config - Configure SPI controller as SPI master
1717  * @spi: pointer to the spi controller data structure
1718  */
1719 static int stm32h7_spi_config(struct stm32_spi *spi)
1720 {
1721         unsigned long flags;
1722
1723         spin_lock_irqsave(&spi->lock, flags);
1724
1725         /* Ensure I2SMOD bit is kept cleared */
1726         stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1727                            STM32H7_SPI_I2SCFGR_I2SMOD);
1728
1729         /*
1730          * - SS input value high
1731          * - transmitter half duplex direction
1732          * - automatic communication suspend when RX-Fifo is full
1733          */
1734         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1735                                                  STM32H7_SPI_CR1_HDDIR |
1736                                                  STM32H7_SPI_CR1_MASRX);
1737
1738         /*
1739          * - Set the master mode (default Motorola mode)
1740          * - Consider 1 master/n slaves configuration and
1741          *   SS input value is determined by the SSI bit
1742          * - keep control of all associated GPIOs
1743          */
1744         stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1745                                                   STM32H7_SPI_CFG2_SSM |
1746                                                   STM32H7_SPI_CFG2_AFCNTR);
1747
1748         spin_unlock_irqrestore(&spi->lock, flags);
1749
1750         return 0;
1751 }
1752
1753 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1754         .regs = &stm32f4_spi_regspec,
1755         .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1756         .disable = stm32f4_spi_disable,
1757         .config = stm32f4_spi_config,
1758         .set_bpw = stm32f4_spi_set_bpw,
1759         .set_mode = stm32f4_spi_set_mode,
1760         .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1761         .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1762         .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1763         .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1764         .irq_handler_event = stm32f4_spi_irq_event,
1765         .irq_handler_thread = stm32f4_spi_irq_thread,
1766         .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1767         .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1768         .has_fifo = false,
1769 };
1770
1771 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1772         .regs = &stm32h7_spi_regspec,
1773         .get_fifo_size = stm32h7_spi_get_fifo_size,
1774         .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1775         .disable = stm32h7_spi_disable,
1776         .config = stm32h7_spi_config,
1777         .set_bpw = stm32h7_spi_set_bpw,
1778         .set_mode = stm32h7_spi_set_mode,
1779         .set_data_idleness = stm32h7_spi_data_idleness,
1780         .set_number_of_data = stm32h7_spi_number_of_data,
1781         .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1782         .dma_rx_cb = stm32h7_spi_dma_cb,
1783         .dma_tx_cb = stm32h7_spi_dma_cb,
1784         .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1785         .irq_handler_thread = stm32h7_spi_irq_thread,
1786         .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1787         .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1788         .has_fifo = true,
1789 };
1790
1791 static const struct of_device_id stm32_spi_of_match[] = {
1792         { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1793         { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1794         {},
1795 };
1796 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1797
1798 static int stm32_spi_probe(struct platform_device *pdev)
1799 {
1800         struct spi_master *master;
1801         struct stm32_spi *spi;
1802         struct resource *res;
1803         struct reset_control *rst;
1804         int ret;
1805
1806         master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1807         if (!master) {
1808                 dev_err(&pdev->dev, "spi master allocation failed\n");
1809                 return -ENOMEM;
1810         }
1811         platform_set_drvdata(pdev, master);
1812
1813         spi = spi_master_get_devdata(master);
1814         spi->dev = &pdev->dev;
1815         spi->master = master;
1816         spin_lock_init(&spi->lock);
1817
1818         spi->cfg = (const struct stm32_spi_cfg *)
1819                 of_match_device(pdev->dev.driver->of_match_table,
1820                                 &pdev->dev)->data;
1821
1822         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1823         spi->base = devm_ioremap_resource(&pdev->dev, res);
1824         if (IS_ERR(spi->base))
1825                 return PTR_ERR(spi->base);
1826
1827         spi->phys_addr = (dma_addr_t)res->start;
1828
1829         spi->irq = platform_get_irq(pdev, 0);
1830         if (spi->irq <= 0)
1831                 return dev_err_probe(&pdev->dev, spi->irq,
1832                                      "failed to get irq\n");
1833
1834         ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1835                                         spi->cfg->irq_handler_event,
1836                                         spi->cfg->irq_handler_thread,
1837                                         IRQF_ONESHOT, pdev->name, master);
1838         if (ret) {
1839                 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1840                         ret);
1841                 return ret;
1842         }
1843
1844         spi->clk = devm_clk_get(&pdev->dev, NULL);
1845         if (IS_ERR(spi->clk)) {
1846                 ret = PTR_ERR(spi->clk);
1847                 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1848                 return ret;
1849         }
1850
1851         ret = clk_prepare_enable(spi->clk);
1852         if (ret) {
1853                 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1854                 return ret;
1855         }
1856         spi->clk_rate = clk_get_rate(spi->clk);
1857         if (!spi->clk_rate) {
1858                 dev_err(&pdev->dev, "clk rate = 0\n");
1859                 ret = -EINVAL;
1860                 goto err_clk_disable;
1861         }
1862
1863         rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1864         if (rst) {
1865                 if (IS_ERR(rst)) {
1866                         ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1867                                             "failed to get reset\n");
1868                         goto err_clk_disable;
1869                 }
1870
1871                 reset_control_assert(rst);
1872                 udelay(2);
1873                 reset_control_deassert(rst);
1874         }
1875
1876         if (spi->cfg->has_fifo)
1877                 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1878
1879         ret = spi->cfg->config(spi);
1880         if (ret) {
1881                 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1882                         ret);
1883                 goto err_clk_disable;
1884         }
1885
1886         master->dev.of_node = pdev->dev.of_node;
1887         master->auto_runtime_pm = true;
1888         master->bus_num = pdev->id;
1889         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1890                             SPI_3WIRE;
1891         master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1892         master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1893         master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1894         master->use_gpio_descriptors = true;
1895         master->prepare_message = stm32_spi_prepare_msg;
1896         master->transfer_one = stm32_spi_transfer_one;
1897         master->unprepare_message = stm32_spi_unprepare_msg;
1898         master->flags = SPI_MASTER_MUST_TX;
1899
1900         spi->dma_tx = dma_request_chan(spi->dev, "tx");
1901         if (IS_ERR(spi->dma_tx)) {
1902                 ret = PTR_ERR(spi->dma_tx);
1903                 spi->dma_tx = NULL;
1904                 if (ret == -EPROBE_DEFER)
1905                         goto err_clk_disable;
1906
1907                 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1908         } else {
1909                 master->dma_tx = spi->dma_tx;
1910         }
1911
1912         spi->dma_rx = dma_request_chan(spi->dev, "rx");
1913         if (IS_ERR(spi->dma_rx)) {
1914                 ret = PTR_ERR(spi->dma_rx);
1915                 spi->dma_rx = NULL;
1916                 if (ret == -EPROBE_DEFER)
1917                         goto err_dma_release;
1918
1919                 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1920         } else {
1921                 master->dma_rx = spi->dma_rx;
1922         }
1923
1924         if (spi->dma_tx || spi->dma_rx)
1925                 master->can_dma = stm32_spi_can_dma;
1926
1927         pm_runtime_set_active(&pdev->dev);
1928         pm_runtime_enable(&pdev->dev);
1929
1930         ret = spi_register_master(master);
1931         if (ret) {
1932                 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1933                         ret);
1934                 goto err_pm_disable;
1935         }
1936
1937         dev_info(&pdev->dev, "driver initialized\n");
1938
1939         return 0;
1940
1941 err_pm_disable:
1942         pm_runtime_disable(&pdev->dev);
1943 err_dma_release:
1944         if (spi->dma_tx)
1945                 dma_release_channel(spi->dma_tx);
1946         if (spi->dma_rx)
1947                 dma_release_channel(spi->dma_rx);
1948 err_clk_disable:
1949         clk_disable_unprepare(spi->clk);
1950
1951         return ret;
1952 }
1953
1954 static int stm32_spi_remove(struct platform_device *pdev)
1955 {
1956         struct spi_master *master = platform_get_drvdata(pdev);
1957         struct stm32_spi *spi = spi_master_get_devdata(master);
1958
1959         spi_unregister_master(master);
1960         spi->cfg->disable(spi);
1961
1962         if (master->dma_tx)
1963                 dma_release_channel(master->dma_tx);
1964         if (master->dma_rx)
1965                 dma_release_channel(master->dma_rx);
1966
1967         clk_disable_unprepare(spi->clk);
1968
1969         pm_runtime_disable(&pdev->dev);
1970
1971         pinctrl_pm_select_sleep_state(&pdev->dev);
1972
1973         return 0;
1974 }
1975
1976 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
1977 {
1978         struct spi_master *master = dev_get_drvdata(dev);
1979         struct stm32_spi *spi = spi_master_get_devdata(master);
1980
1981         clk_disable_unprepare(spi->clk);
1982
1983         return pinctrl_pm_select_sleep_state(dev);
1984 }
1985
1986 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
1987 {
1988         struct spi_master *master = dev_get_drvdata(dev);
1989         struct stm32_spi *spi = spi_master_get_devdata(master);
1990         int ret;
1991
1992         ret = pinctrl_pm_select_default_state(dev);
1993         if (ret)
1994                 return ret;
1995
1996         return clk_prepare_enable(spi->clk);
1997 }
1998
1999 static int __maybe_unused stm32_spi_suspend(struct device *dev)
2000 {
2001         struct spi_master *master = dev_get_drvdata(dev);
2002         int ret;
2003
2004         ret = spi_master_suspend(master);
2005         if (ret)
2006                 return ret;
2007
2008         return pm_runtime_force_suspend(dev);
2009 }
2010
2011 static int __maybe_unused stm32_spi_resume(struct device *dev)
2012 {
2013         struct spi_master *master = dev_get_drvdata(dev);
2014         struct stm32_spi *spi = spi_master_get_devdata(master);
2015         int ret;
2016
2017         ret = pm_runtime_force_resume(dev);
2018         if (ret)
2019                 return ret;
2020
2021         ret = spi_master_resume(master);
2022         if (ret) {
2023                 clk_disable_unprepare(spi->clk);
2024                 return ret;
2025         }
2026
2027         ret = pm_runtime_get_sync(dev);
2028         if (ret < 0) {
2029                 pm_runtime_put_noidle(dev);
2030                 dev_err(dev, "Unable to power device:%d\n", ret);
2031                 return ret;
2032         }
2033
2034         spi->cfg->config(spi);
2035
2036         pm_runtime_mark_last_busy(dev);
2037         pm_runtime_put_autosuspend(dev);
2038
2039         return 0;
2040 }
2041
2042 static const struct dev_pm_ops stm32_spi_pm_ops = {
2043         SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2044         SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2045                            stm32_spi_runtime_resume, NULL)
2046 };
2047
2048 static struct platform_driver stm32_spi_driver = {
2049         .probe = stm32_spi_probe,
2050         .remove = stm32_spi_remove,
2051         .driver = {
2052                 .name = DRIVER_NAME,
2053                 .pm = &stm32_spi_pm_ops,
2054                 .of_match_table = stm32_spi_of_match,
2055         },
2056 };
2057
2058 module_platform_driver(stm32_spi_driver);
2059
2060 MODULE_ALIAS("platform:" DRIVER_NAME);
2061 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2062 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2063 MODULE_LICENSE("GPL v2");