Merge tag 'ceph-for-5.14-rc3' of git://github.com/ceph/ceph-client
[linux-2.6-microblaze.git] / drivers / spi / spi-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_platform.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 #include <linux/spi/spi.h>
21
22 #define DRIVER_NAME "spi_stm32"
23
24 /* STM32F4 SPI registers */
25 #define STM32F4_SPI_CR1                 0x00
26 #define STM32F4_SPI_CR2                 0x04
27 #define STM32F4_SPI_SR                  0x08
28 #define STM32F4_SPI_DR                  0x0C
29 #define STM32F4_SPI_I2SCFGR             0x1C
30
31 /* STM32F4_SPI_CR1 bit fields */
32 #define STM32F4_SPI_CR1_CPHA            BIT(0)
33 #define STM32F4_SPI_CR1_CPOL            BIT(1)
34 #define STM32F4_SPI_CR1_MSTR            BIT(2)
35 #define STM32F4_SPI_CR1_BR_SHIFT        3
36 #define STM32F4_SPI_CR1_BR              GENMASK(5, 3)
37 #define STM32F4_SPI_CR1_SPE             BIT(6)
38 #define STM32F4_SPI_CR1_LSBFRST         BIT(7)
39 #define STM32F4_SPI_CR1_SSI             BIT(8)
40 #define STM32F4_SPI_CR1_SSM             BIT(9)
41 #define STM32F4_SPI_CR1_RXONLY          BIT(10)
42 #define STM32F4_SPI_CR1_DFF             BIT(11)
43 #define STM32F4_SPI_CR1_CRCNEXT         BIT(12)
44 #define STM32F4_SPI_CR1_CRCEN           BIT(13)
45 #define STM32F4_SPI_CR1_BIDIOE          BIT(14)
46 #define STM32F4_SPI_CR1_BIDIMODE        BIT(15)
47 #define STM32F4_SPI_CR1_BR_MIN          0
48 #define STM32F4_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
49
50 /* STM32F4_SPI_CR2 bit fields */
51 #define STM32F4_SPI_CR2_RXDMAEN         BIT(0)
52 #define STM32F4_SPI_CR2_TXDMAEN         BIT(1)
53 #define STM32F4_SPI_CR2_SSOE            BIT(2)
54 #define STM32F4_SPI_CR2_FRF             BIT(4)
55 #define STM32F4_SPI_CR2_ERRIE           BIT(5)
56 #define STM32F4_SPI_CR2_RXNEIE          BIT(6)
57 #define STM32F4_SPI_CR2_TXEIE           BIT(7)
58
59 /* STM32F4_SPI_SR bit fields */
60 #define STM32F4_SPI_SR_RXNE             BIT(0)
61 #define STM32F4_SPI_SR_TXE              BIT(1)
62 #define STM32F4_SPI_SR_CHSIDE           BIT(2)
63 #define STM32F4_SPI_SR_UDR              BIT(3)
64 #define STM32F4_SPI_SR_CRCERR           BIT(4)
65 #define STM32F4_SPI_SR_MODF             BIT(5)
66 #define STM32F4_SPI_SR_OVR              BIT(6)
67 #define STM32F4_SPI_SR_BSY              BIT(7)
68 #define STM32F4_SPI_SR_FRE              BIT(8)
69
70 /* STM32F4_SPI_I2SCFGR bit fields */
71 #define STM32F4_SPI_I2SCFGR_I2SMOD      BIT(11)
72
73 /* STM32F4 SPI Baud Rate min/max divisor */
74 #define STM32F4_SPI_BR_DIV_MIN          (2 << STM32F4_SPI_CR1_BR_MIN)
75 #define STM32F4_SPI_BR_DIV_MAX          (2 << STM32F4_SPI_CR1_BR_MAX)
76
77 /* STM32H7 SPI registers */
78 #define STM32H7_SPI_CR1                 0x00
79 #define STM32H7_SPI_CR2                 0x04
80 #define STM32H7_SPI_CFG1                0x08
81 #define STM32H7_SPI_CFG2                0x0C
82 #define STM32H7_SPI_IER                 0x10
83 #define STM32H7_SPI_SR                  0x14
84 #define STM32H7_SPI_IFCR                0x18
85 #define STM32H7_SPI_TXDR                0x20
86 #define STM32H7_SPI_RXDR                0x30
87 #define STM32H7_SPI_I2SCFGR             0x50
88
89 /* STM32H7_SPI_CR1 bit fields */
90 #define STM32H7_SPI_CR1_SPE             BIT(0)
91 #define STM32H7_SPI_CR1_MASRX           BIT(8)
92 #define STM32H7_SPI_CR1_CSTART          BIT(9)
93 #define STM32H7_SPI_CR1_CSUSP           BIT(10)
94 #define STM32H7_SPI_CR1_HDDIR           BIT(11)
95 #define STM32H7_SPI_CR1_SSI             BIT(12)
96
97 /* STM32H7_SPI_CR2 bit fields */
98 #define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
99 #define STM32H7_SPI_TSIZE_MAX           GENMASK(15, 0)
100
101 /* STM32H7_SPI_CFG1 bit fields */
102 #define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
106 #define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT      28
108 #define STM32H7_SPI_CFG1_MBR_MIN        0
109 #define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
110
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
113 #define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
114 #define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
115 #define STM32H7_SPI_CFG2_MASTER         BIT(22)
116 #define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
117 #define STM32H7_SPI_CFG2_CPHA           BIT(24)
118 #define STM32H7_SPI_CFG2_CPOL           BIT(25)
119 #define STM32H7_SPI_CFG2_SSM            BIT(26)
120 #define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
121
122 /* STM32H7_SPI_IER bit fields */
123 #define STM32H7_SPI_IER_RXPIE           BIT(0)
124 #define STM32H7_SPI_IER_TXPIE           BIT(1)
125 #define STM32H7_SPI_IER_DXPIE           BIT(2)
126 #define STM32H7_SPI_IER_EOTIE           BIT(3)
127 #define STM32H7_SPI_IER_TXTFIE          BIT(4)
128 #define STM32H7_SPI_IER_OVRIE           BIT(6)
129 #define STM32H7_SPI_IER_MODFIE          BIT(9)
130 #define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
131
132 /* STM32H7_SPI_SR bit fields */
133 #define STM32H7_SPI_SR_RXP              BIT(0)
134 #define STM32H7_SPI_SR_TXP              BIT(1)
135 #define STM32H7_SPI_SR_EOT              BIT(3)
136 #define STM32H7_SPI_SR_OVR              BIT(6)
137 #define STM32H7_SPI_SR_MODF             BIT(9)
138 #define STM32H7_SPI_SR_SUSP             BIT(11)
139 #define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
140 #define STM32H7_SPI_SR_RXWNE            BIT(15)
141
142 /* STM32H7_SPI_IFCR bit fields */
143 #define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
144
145 /* STM32H7_SPI_I2SCFGR bit fields */
146 #define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
147
148 /* STM32H7 SPI Master Baud Rate min/max divisor */
149 #define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
150 #define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
151
152 /* STM32H7 SPI Communication mode */
153 #define STM32H7_SPI_FULL_DUPLEX         0
154 #define STM32H7_SPI_SIMPLEX_TX          1
155 #define STM32H7_SPI_SIMPLEX_RX          2
156 #define STM32H7_SPI_HALF_DUPLEX         3
157
158 /* SPI Communication type */
159 #define SPI_FULL_DUPLEX         0
160 #define SPI_SIMPLEX_TX          1
161 #define SPI_SIMPLEX_RX          2
162 #define SPI_3WIRE_TX            3
163 #define SPI_3WIRE_RX            4
164
165 /*
166  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
167  * without fifo buffers.
168  */
169 #define SPI_DMA_MIN_BYTES       16
170
171 /**
172  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
173  * @reg:                register offset
174  * @mask:               bitfield mask
175  * @shift:              left shift
176  */
177 struct stm32_spi_reg {
178         int reg;
179         int mask;
180         int shift;
181 };
182
183 /**
184  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
185  * @en: enable register and SPI enable bit
186  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
187  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
188  * @cpol: clock polarity register and polarity bit
189  * @cpha: clock phase register and phase bit
190  * @lsb_first: LSB transmitted first register and bit
191  * @br: baud rate register and bitfields
192  * @rx: SPI RX data register
193  * @tx: SPI TX data register
194  */
195 struct stm32_spi_regspec {
196         const struct stm32_spi_reg en;
197         const struct stm32_spi_reg dma_rx_en;
198         const struct stm32_spi_reg dma_tx_en;
199         const struct stm32_spi_reg cpol;
200         const struct stm32_spi_reg cpha;
201         const struct stm32_spi_reg lsb_first;
202         const struct stm32_spi_reg br;
203         const struct stm32_spi_reg rx;
204         const struct stm32_spi_reg tx;
205 };
206
207 struct stm32_spi;
208
209 /**
210  * struct stm32_spi_cfg - stm32 compatible configuration data
211  * @regs: registers descriptions
212  * @get_fifo_size: routine to get fifo size
213  * @get_bpw_mask: routine to get bits per word mask
214  * @disable: routine to disable controller
215  * @config: routine to configure controller as SPI Master
216  * @set_bpw: routine to configure registers to for bits per word
217  * @set_mode: routine to configure registers to desired mode
218  * @set_data_idleness: optional routine to configure registers to desired idle
219  * time between frames (if driver has this functionality)
220  * @set_number_of_data: optional routine to configure registers to desired
221  * number of data (if driver has this functionality)
222  * @can_dma: routine to determine if the transfer is eligible for DMA use
223  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
224  * using DMA
225  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
226  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
227  * @transfer_one_irq: routine to configure interrupts for driver
228  * @irq_handler_event: Interrupt handler for SPI controller events
229  * @irq_handler_thread: thread of interrupt handler for SPI controller
230  * @baud_rate_div_min: minimum baud rate divisor
231  * @baud_rate_div_max: maximum baud rate divisor
232  * @has_fifo: boolean to know if fifo is used for driver
233  * @has_startbit: boolean to know if start bit is used to start transfer
234  */
235 struct stm32_spi_cfg {
236         const struct stm32_spi_regspec *regs;
237         int (*get_fifo_size)(struct stm32_spi *spi);
238         int (*get_bpw_mask)(struct stm32_spi *spi);
239         void (*disable)(struct stm32_spi *spi);
240         int (*config)(struct stm32_spi *spi);
241         void (*set_bpw)(struct stm32_spi *spi);
242         int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
243         void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
244         int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
245         void (*transfer_one_dma_start)(struct stm32_spi *spi);
246         void (*dma_rx_cb)(void *data);
247         void (*dma_tx_cb)(void *data);
248         int (*transfer_one_irq)(struct stm32_spi *spi);
249         irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
250         irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
251         unsigned int baud_rate_div_min;
252         unsigned int baud_rate_div_max;
253         bool has_fifo;
254 };
255
256 /**
257  * struct stm32_spi - private data of the SPI controller
258  * @dev: driver model representation of the controller
259  * @master: controller master interface
260  * @cfg: compatible configuration data
261  * @base: virtual memory area
262  * @clk: hw kernel clock feeding the SPI clock generator
263  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
264  * @lock: prevent I/O concurrent access
265  * @irq: SPI controller interrupt line
266  * @fifo_size: size of the embedded fifo in bytes
267  * @cur_midi: master inter-data idleness in ns
268  * @cur_speed: speed configured in Hz
269  * @cur_bpw: number of bits in a single SPI data frame
270  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
271  * @cur_comm: SPI communication mode
272  * @cur_xferlen: current transfer length in bytes
273  * @cur_usedma: boolean to know if dma is used in current transfer
274  * @tx_buf: data to be written, or NULL
275  * @rx_buf: data to be read, or NULL
276  * @tx_len: number of data to be written in bytes
277  * @rx_len: number of data to be read in bytes
278  * @dma_tx: dma channel for TX transfer
279  * @dma_rx: dma channel for RX transfer
280  * @phys_addr: SPI registers physical base address
281  */
282 struct stm32_spi {
283         struct device *dev;
284         struct spi_master *master;
285         const struct stm32_spi_cfg *cfg;
286         void __iomem *base;
287         struct clk *clk;
288         u32 clk_rate;
289         spinlock_t lock; /* prevent I/O concurrent access */
290         int irq;
291         unsigned int fifo_size;
292
293         unsigned int cur_midi;
294         unsigned int cur_speed;
295         unsigned int cur_bpw;
296         unsigned int cur_fthlv;
297         unsigned int cur_comm;
298         unsigned int cur_xferlen;
299         bool cur_usedma;
300
301         const void *tx_buf;
302         void *rx_buf;
303         int tx_len;
304         int rx_len;
305         struct dma_chan *dma_tx;
306         struct dma_chan *dma_rx;
307         dma_addr_t phys_addr;
308 };
309
310 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
311         .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
312
313         .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
314         .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
315
316         .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
317         .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
318         .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
319         .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
320
321         .rx = { STM32F4_SPI_DR },
322         .tx = { STM32F4_SPI_DR },
323 };
324
325 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
326         /* SPI data transfer is enabled but spi_ker_ck is idle.
327          * CFG1 and CFG2 registers are write protected when SPE is enabled.
328          */
329         .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
330
331         .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
332         .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
333
334         .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
335         .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
336         .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
337         .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
338                 STM32H7_SPI_CFG1_MBR_SHIFT },
339
340         .rx = { STM32H7_SPI_RXDR },
341         .tx = { STM32H7_SPI_TXDR },
342 };
343
344 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
345                                       u32 offset, u32 bits)
346 {
347         writel_relaxed(readl_relaxed(spi->base + offset) | bits,
348                        spi->base + offset);
349 }
350
351 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
352                                       u32 offset, u32 bits)
353 {
354         writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
355                        spi->base + offset);
356 }
357
358 /**
359  * stm32h7_spi_get_fifo_size - Return fifo size
360  * @spi: pointer to the spi controller data structure
361  */
362 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
363 {
364         unsigned long flags;
365         u32 count = 0;
366
367         spin_lock_irqsave(&spi->lock, flags);
368
369         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
370
371         while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
372                 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
373
374         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
375
376         spin_unlock_irqrestore(&spi->lock, flags);
377
378         dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
379
380         return count;
381 }
382
383 /**
384  * stm32f4_spi_get_bpw_mask - Return bits per word mask
385  * @spi: pointer to the spi controller data structure
386  */
387 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
388 {
389         dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
390         return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
391 }
392
393 /**
394  * stm32h7_spi_get_bpw_mask - Return bits per word mask
395  * @spi: pointer to the spi controller data structure
396  */
397 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
398 {
399         unsigned long flags;
400         u32 cfg1, max_bpw;
401
402         spin_lock_irqsave(&spi->lock, flags);
403
404         /*
405          * The most significant bit at DSIZE bit field is reserved when the
406          * maximum data size of periperal instances is limited to 16-bit
407          */
408         stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
409
410         cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
411         max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
412
413         spin_unlock_irqrestore(&spi->lock, flags);
414
415         dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
416
417         return SPI_BPW_RANGE_MASK(4, max_bpw);
418 }
419
420 /**
421  * stm32_spi_prepare_mbr - Determine baud rate divisor value
422  * @spi: pointer to the spi controller data structure
423  * @speed_hz: requested speed
424  * @min_div: minimum baud rate divisor
425  * @max_div: maximum baud rate divisor
426  *
427  * Return baud rate divisor value in case of success or -EINVAL
428  */
429 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
430                                  u32 min_div, u32 max_div)
431 {
432         u32 div, mbrdiv;
433
434         /* Ensure spi->clk_rate is even */
435         div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
436
437         /*
438          * SPI framework set xfer->speed_hz to master->max_speed_hz if
439          * xfer->speed_hz is greater than master->max_speed_hz, and it returns
440          * an error when xfer->speed_hz is lower than master->min_speed_hz, so
441          * no need to check it there.
442          * However, we need to ensure the following calculations.
443          */
444         if ((div < min_div) || (div > max_div))
445                 return -EINVAL;
446
447         /* Determine the first power of 2 greater than or equal to div */
448         if (div & (div - 1))
449                 mbrdiv = fls(div);
450         else
451                 mbrdiv = fls(div) - 1;
452
453         spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
454
455         return mbrdiv - 1;
456 }
457
458 /**
459  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
460  * @spi: pointer to the spi controller data structure
461  * @xfer_len: length of the message to be transferred
462  */
463 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
464 {
465         u32 packet, bpw;
466
467         /* data packet should not exceed 1/2 of fifo space */
468         packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
469
470         /* align packet size with data registers access */
471         bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
472         return DIV_ROUND_UP(packet, bpw);
473 }
474
475 /**
476  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
477  * @spi: pointer to the spi controller data structure
478  *
479  * Read from tx_buf depends on remaining bytes to avoid to read beyond
480  * tx_buf end.
481  */
482 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
483 {
484         if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
485                                   STM32F4_SPI_SR_TXE)) {
486                 u32 offs = spi->cur_xferlen - spi->tx_len;
487
488                 if (spi->cur_bpw == 16) {
489                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
490
491                         writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
492                         spi->tx_len -= sizeof(u16);
493                 } else {
494                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
495
496                         writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
497                         spi->tx_len -= sizeof(u8);
498                 }
499         }
500
501         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
502 }
503
504 /**
505  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
506  * @spi: pointer to the spi controller data structure
507  *
508  * Read from tx_buf depends on remaining bytes to avoid to read beyond
509  * tx_buf end.
510  */
511 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
512 {
513         while ((spi->tx_len > 0) &&
514                        (readl_relaxed(spi->base + STM32H7_SPI_SR) &
515                         STM32H7_SPI_SR_TXP)) {
516                 u32 offs = spi->cur_xferlen - spi->tx_len;
517
518                 if (spi->tx_len >= sizeof(u32)) {
519                         const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
520
521                         writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
522                         spi->tx_len -= sizeof(u32);
523                 } else if (spi->tx_len >= sizeof(u16)) {
524                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
525
526                         writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
527                         spi->tx_len -= sizeof(u16);
528                 } else {
529                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
530
531                         writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
532                         spi->tx_len -= sizeof(u8);
533                 }
534         }
535
536         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
537 }
538
539 /**
540  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
541  * @spi: pointer to the spi controller data structure
542  *
543  * Write in rx_buf depends on remaining bytes to avoid to write beyond
544  * rx_buf end.
545  */
546 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
547 {
548         if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
549                                   STM32F4_SPI_SR_RXNE)) {
550                 u32 offs = spi->cur_xferlen - spi->rx_len;
551
552                 if (spi->cur_bpw == 16) {
553                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
554
555                         *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
556                         spi->rx_len -= sizeof(u16);
557                 } else {
558                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
559
560                         *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
561                         spi->rx_len -= sizeof(u8);
562                 }
563         }
564
565         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
566 }
567
568 /**
569  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
570  * @spi: pointer to the spi controller data structure
571  * @flush: boolean indicating that FIFO should be flushed
572  *
573  * Write in rx_buf depends on remaining bytes to avoid to write beyond
574  * rx_buf end.
575  */
576 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
577 {
578         u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
579         u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
580
581         while ((spi->rx_len > 0) &&
582                ((sr & STM32H7_SPI_SR_RXP) ||
583                 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
584                 u32 offs = spi->cur_xferlen - spi->rx_len;
585
586                 if ((spi->rx_len >= sizeof(u32)) ||
587                     (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
588                         u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
589
590                         *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
591                         spi->rx_len -= sizeof(u32);
592                 } else if ((spi->rx_len >= sizeof(u16)) ||
593                            (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
594                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
595
596                         *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
597                         spi->rx_len -= sizeof(u16);
598                 } else {
599                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
600
601                         *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
602                         spi->rx_len -= sizeof(u8);
603                 }
604
605                 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
606                 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
607         }
608
609         dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
610                 flush ? "(flush)" : "", spi->rx_len);
611 }
612
613 /**
614  * stm32_spi_enable - Enable SPI controller
615  * @spi: pointer to the spi controller data structure
616  */
617 static void stm32_spi_enable(struct stm32_spi *spi)
618 {
619         dev_dbg(spi->dev, "enable controller\n");
620
621         stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
622                            spi->cfg->regs->en.mask);
623 }
624
625 /**
626  * stm32f4_spi_disable - Disable SPI controller
627  * @spi: pointer to the spi controller data structure
628  */
629 static void stm32f4_spi_disable(struct stm32_spi *spi)
630 {
631         unsigned long flags;
632         u32 sr;
633
634         dev_dbg(spi->dev, "disable controller\n");
635
636         spin_lock_irqsave(&spi->lock, flags);
637
638         if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
639               STM32F4_SPI_CR1_SPE)) {
640                 spin_unlock_irqrestore(&spi->lock, flags);
641                 return;
642         }
643
644         /* Disable interrupts */
645         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
646                                                  STM32F4_SPI_CR2_RXNEIE |
647                                                  STM32F4_SPI_CR2_ERRIE);
648
649         /* Wait until BSY = 0 */
650         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
651                                               sr, !(sr & STM32F4_SPI_SR_BSY),
652                                               10, 100000) < 0) {
653                 dev_warn(spi->dev, "disabling condition timeout\n");
654         }
655
656         if (spi->cur_usedma && spi->dma_tx)
657                 dmaengine_terminate_all(spi->dma_tx);
658         if (spi->cur_usedma && spi->dma_rx)
659                 dmaengine_terminate_all(spi->dma_rx);
660
661         stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
662
663         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
664                                                  STM32F4_SPI_CR2_RXDMAEN);
665
666         /* Sequence to clear OVR flag */
667         readl_relaxed(spi->base + STM32F4_SPI_DR);
668         readl_relaxed(spi->base + STM32F4_SPI_SR);
669
670         spin_unlock_irqrestore(&spi->lock, flags);
671 }
672
673 /**
674  * stm32h7_spi_disable - Disable SPI controller
675  * @spi: pointer to the spi controller data structure
676  *
677  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
678  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
679  * RX-Fifo.
680  * Normally, if TSIZE has been configured, we should relax the hardware at the
681  * reception of the EOT interrupt. But in case of error, EOT will not be
682  * raised. So the subsystem unprepare_message call allows us to properly
683  * complete the transfer from an hardware point of view.
684  */
685 static void stm32h7_spi_disable(struct stm32_spi *spi)
686 {
687         unsigned long flags;
688         u32 cr1, sr;
689
690         dev_dbg(spi->dev, "disable controller\n");
691
692         spin_lock_irqsave(&spi->lock, flags);
693
694         cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
695
696         if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
697                 spin_unlock_irqrestore(&spi->lock, flags);
698                 return;
699         }
700
701         /* Wait on EOT or suspend the flow */
702         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
703                                               sr, !(sr & STM32H7_SPI_SR_EOT),
704                                               10, 100000) < 0) {
705                 if (cr1 & STM32H7_SPI_CR1_CSTART) {
706                         writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
707                                        spi->base + STM32H7_SPI_CR1);
708                         if (readl_relaxed_poll_timeout_atomic(
709                                                 spi->base + STM32H7_SPI_SR,
710                                                 sr, !(sr & STM32H7_SPI_SR_SUSP),
711                                                 10, 100000) < 0)
712                                 dev_warn(spi->dev,
713                                          "Suspend request timeout\n");
714                 }
715         }
716
717         if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
718                 stm32h7_spi_read_rxfifo(spi, true);
719
720         if (spi->cur_usedma && spi->dma_tx)
721                 dmaengine_terminate_all(spi->dma_tx);
722         if (spi->cur_usedma && spi->dma_rx)
723                 dmaengine_terminate_all(spi->dma_rx);
724
725         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
726
727         stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
728                                                 STM32H7_SPI_CFG1_RXDMAEN);
729
730         /* Disable interrupts and clear status flags */
731         writel_relaxed(0, spi->base + STM32H7_SPI_IER);
732         writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
733
734         spin_unlock_irqrestore(&spi->lock, flags);
735 }
736
737 /**
738  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
739  * @master: controller master interface
740  * @spi_dev: pointer to the spi device
741  * @transfer: pointer to spi transfer
742  *
743  * If driver has fifo and the current transfer size is greater than fifo size,
744  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
745  */
746 static bool stm32_spi_can_dma(struct spi_master *master,
747                               struct spi_device *spi_dev,
748                               struct spi_transfer *transfer)
749 {
750         unsigned int dma_size;
751         struct stm32_spi *spi = spi_master_get_devdata(master);
752
753         if (spi->cfg->has_fifo)
754                 dma_size = spi->fifo_size;
755         else
756                 dma_size = SPI_DMA_MIN_BYTES;
757
758         dev_dbg(spi->dev, "%s: %s\n", __func__,
759                 (transfer->len > dma_size) ? "true" : "false");
760
761         return (transfer->len > dma_size);
762 }
763
764 /**
765  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
766  * @irq: interrupt line
767  * @dev_id: SPI controller master interface
768  */
769 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
770 {
771         struct spi_master *master = dev_id;
772         struct stm32_spi *spi = spi_master_get_devdata(master);
773         u32 sr, mask = 0;
774         bool end = false;
775
776         spin_lock(&spi->lock);
777
778         sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
779         /*
780          * BSY flag is not handled in interrupt but it is normal behavior when
781          * this flag is set.
782          */
783         sr &= ~STM32F4_SPI_SR_BSY;
784
785         if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
786                                  spi->cur_comm == SPI_3WIRE_TX)) {
787                 /* OVR flag shouldn't be handled for TX only mode */
788                 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
789                 mask |= STM32F4_SPI_SR_TXE;
790         }
791
792         if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
793                                 spi->cur_comm == SPI_SIMPLEX_RX ||
794                                 spi->cur_comm == SPI_3WIRE_RX)) {
795                 /* TXE flag is set and is handled when RXNE flag occurs */
796                 sr &= ~STM32F4_SPI_SR_TXE;
797                 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
798         }
799
800         if (!(sr & mask)) {
801                 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
802                 spin_unlock(&spi->lock);
803                 return IRQ_NONE;
804         }
805
806         if (sr & STM32F4_SPI_SR_OVR) {
807                 dev_warn(spi->dev, "Overrun: received value discarded\n");
808
809                 /* Sequence to clear OVR flag */
810                 readl_relaxed(spi->base + STM32F4_SPI_DR);
811                 readl_relaxed(spi->base + STM32F4_SPI_SR);
812
813                 /*
814                  * If overrun is detected, it means that something went wrong,
815                  * so stop the current transfer. Transfer can wait for next
816                  * RXNE but DR is already read and end never happens.
817                  */
818                 end = true;
819                 goto end_irq;
820         }
821
822         if (sr & STM32F4_SPI_SR_TXE) {
823                 if (spi->tx_buf)
824                         stm32f4_spi_write_tx(spi);
825                 if (spi->tx_len == 0)
826                         end = true;
827         }
828
829         if (sr & STM32F4_SPI_SR_RXNE) {
830                 stm32f4_spi_read_rx(spi);
831                 if (spi->rx_len == 0)
832                         end = true;
833                 else if (spi->tx_buf)/* Load data for discontinuous mode */
834                         stm32f4_spi_write_tx(spi);
835         }
836
837 end_irq:
838         if (end) {
839                 /* Immediately disable interrupts to do not generate new one */
840                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
841                                         STM32F4_SPI_CR2_TXEIE |
842                                         STM32F4_SPI_CR2_RXNEIE |
843                                         STM32F4_SPI_CR2_ERRIE);
844                 spin_unlock(&spi->lock);
845                 return IRQ_WAKE_THREAD;
846         }
847
848         spin_unlock(&spi->lock);
849         return IRQ_HANDLED;
850 }
851
852 /**
853  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
854  * @irq: interrupt line
855  * @dev_id: SPI controller master interface
856  */
857 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
858 {
859         struct spi_master *master = dev_id;
860         struct stm32_spi *spi = spi_master_get_devdata(master);
861
862         spi_finalize_current_transfer(master);
863         stm32f4_spi_disable(spi);
864
865         return IRQ_HANDLED;
866 }
867
868 /**
869  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
870  * @irq: interrupt line
871  * @dev_id: SPI controller master interface
872  */
873 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
874 {
875         struct spi_master *master = dev_id;
876         struct stm32_spi *spi = spi_master_get_devdata(master);
877         u32 sr, ier, mask;
878         unsigned long flags;
879         bool end = false;
880
881         spin_lock_irqsave(&spi->lock, flags);
882
883         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
884         ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
885
886         mask = ier;
887         /*
888          * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
889          * SUSP to acknowledge it later. TXC is automatically cleared
890          */
891
892         mask |= STM32H7_SPI_SR_SUSP;
893         /*
894          * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
895          * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
896          */
897         if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
898                 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
899
900         if (!(sr & mask)) {
901                 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
902                          sr, ier);
903                 spin_unlock_irqrestore(&spi->lock, flags);
904                 return IRQ_NONE;
905         }
906
907         if (sr & STM32H7_SPI_SR_SUSP) {
908                 static DEFINE_RATELIMIT_STATE(rs,
909                                               DEFAULT_RATELIMIT_INTERVAL * 10,
910                                               1);
911                 if (__ratelimit(&rs))
912                         dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
913                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
914                         stm32h7_spi_read_rxfifo(spi, false);
915                 /*
916                  * If communication is suspended while using DMA, it means
917                  * that something went wrong, so stop the current transfer
918                  */
919                 if (spi->cur_usedma)
920                         end = true;
921         }
922
923         if (sr & STM32H7_SPI_SR_MODF) {
924                 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
925                 end = true;
926         }
927
928         if (sr & STM32H7_SPI_SR_OVR) {
929                 dev_err(spi->dev, "Overrun: RX data lost\n");
930                 end = true;
931         }
932
933         if (sr & STM32H7_SPI_SR_EOT) {
934                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
935                         stm32h7_spi_read_rxfifo(spi, true);
936                 end = true;
937         }
938
939         if (sr & STM32H7_SPI_SR_TXP)
940                 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
941                         stm32h7_spi_write_txfifo(spi);
942
943         if (sr & STM32H7_SPI_SR_RXP)
944                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
945                         stm32h7_spi_read_rxfifo(spi, false);
946
947         writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
948
949         spin_unlock_irqrestore(&spi->lock, flags);
950
951         if (end) {
952                 stm32h7_spi_disable(spi);
953                 spi_finalize_current_transfer(master);
954         }
955
956         return IRQ_HANDLED;
957 }
958
959 /**
960  * stm32_spi_prepare_msg - set up the controller to transfer a single message
961  * @master: controller master interface
962  * @msg: pointer to spi message
963  */
964 static int stm32_spi_prepare_msg(struct spi_master *master,
965                                  struct spi_message *msg)
966 {
967         struct stm32_spi *spi = spi_master_get_devdata(master);
968         struct spi_device *spi_dev = msg->spi;
969         struct device_node *np = spi_dev->dev.of_node;
970         unsigned long flags;
971         u32 clrb = 0, setb = 0;
972
973         /* SPI slave device may need time between data frames */
974         spi->cur_midi = 0;
975         if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
976                 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
977
978         if (spi_dev->mode & SPI_CPOL)
979                 setb |= spi->cfg->regs->cpol.mask;
980         else
981                 clrb |= spi->cfg->regs->cpol.mask;
982
983         if (spi_dev->mode & SPI_CPHA)
984                 setb |= spi->cfg->regs->cpha.mask;
985         else
986                 clrb |= spi->cfg->regs->cpha.mask;
987
988         if (spi_dev->mode & SPI_LSB_FIRST)
989                 setb |= spi->cfg->regs->lsb_first.mask;
990         else
991                 clrb |= spi->cfg->regs->lsb_first.mask;
992
993         dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
994                 !!(spi_dev->mode & SPI_CPOL),
995                 !!(spi_dev->mode & SPI_CPHA),
996                 !!(spi_dev->mode & SPI_LSB_FIRST),
997                 !!(spi_dev->mode & SPI_CS_HIGH));
998
999         /* On STM32H7, messages should not exceed a maximum size setted
1000          * afterward via the set_number_of_data function. In order to
1001          * ensure that, split large messages into several messages
1002          */
1003         if (spi->cfg->set_number_of_data) {
1004                 int ret;
1005
1006                 ret = spi_split_transfers_maxsize(master, msg,
1007                                                   STM32H7_SPI_TSIZE_MAX,
1008                                                   GFP_KERNEL | GFP_DMA);
1009                 if (ret)
1010                         return ret;
1011         }
1012
1013         spin_lock_irqsave(&spi->lock, flags);
1014
1015         /* CPOL, CPHA and LSB FIRST bits have common register */
1016         if (clrb || setb)
1017                 writel_relaxed(
1018                         (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1019                          ~clrb) | setb,
1020                         spi->base + spi->cfg->regs->cpol.reg);
1021
1022         spin_unlock_irqrestore(&spi->lock, flags);
1023
1024         return 0;
1025 }
1026
1027 /**
1028  * stm32f4_spi_dma_tx_cb - dma callback
1029  * @data: pointer to the spi controller data structure
1030  *
1031  * DMA callback is called when the transfer is complete for DMA TX channel.
1032  */
1033 static void stm32f4_spi_dma_tx_cb(void *data)
1034 {
1035         struct stm32_spi *spi = data;
1036
1037         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1038                 spi_finalize_current_transfer(spi->master);
1039                 stm32f4_spi_disable(spi);
1040         }
1041 }
1042
1043 /**
1044  * stm32f4_spi_dma_rx_cb - dma callback
1045  * @data: pointer to the spi controller data structure
1046  *
1047  * DMA callback is called when the transfer is complete for DMA RX channel.
1048  */
1049 static void stm32f4_spi_dma_rx_cb(void *data)
1050 {
1051         struct stm32_spi *spi = data;
1052
1053         spi_finalize_current_transfer(spi->master);
1054         stm32f4_spi_disable(spi);
1055 }
1056
1057 /**
1058  * stm32h7_spi_dma_cb - dma callback
1059  * @data: pointer to the spi controller data structure
1060  *
1061  * DMA callback is called when the transfer is complete or when an error
1062  * occurs. If the transfer is complete, EOT flag is raised.
1063  */
1064 static void stm32h7_spi_dma_cb(void *data)
1065 {
1066         struct stm32_spi *spi = data;
1067         unsigned long flags;
1068         u32 sr;
1069
1070         spin_lock_irqsave(&spi->lock, flags);
1071
1072         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1073
1074         spin_unlock_irqrestore(&spi->lock, flags);
1075
1076         if (!(sr & STM32H7_SPI_SR_EOT))
1077                 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1078
1079         /* Now wait for EOT, or SUSP or OVR in case of error */
1080 }
1081
1082 /**
1083  * stm32_spi_dma_config - configure dma slave channel depending on current
1084  *                        transfer bits_per_word.
1085  * @spi: pointer to the spi controller data structure
1086  * @dma_conf: pointer to the dma_slave_config structure
1087  * @dir: direction of the dma transfer
1088  */
1089 static void stm32_spi_dma_config(struct stm32_spi *spi,
1090                                  struct dma_slave_config *dma_conf,
1091                                  enum dma_transfer_direction dir)
1092 {
1093         enum dma_slave_buswidth buswidth;
1094         u32 maxburst;
1095
1096         if (spi->cur_bpw <= 8)
1097                 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1098         else if (spi->cur_bpw <= 16)
1099                 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1100         else
1101                 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1102
1103         if (spi->cfg->has_fifo) {
1104                 /* Valid for DMA Half or Full Fifo threshold */
1105                 if (spi->cur_fthlv == 2)
1106                         maxburst = 1;
1107                 else
1108                         maxburst = spi->cur_fthlv;
1109         } else {
1110                 maxburst = 1;
1111         }
1112
1113         memset(dma_conf, 0, sizeof(struct dma_slave_config));
1114         dma_conf->direction = dir;
1115         if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1116                 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1117                 dma_conf->src_addr_width = buswidth;
1118                 dma_conf->src_maxburst = maxburst;
1119
1120                 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1121                         buswidth, maxburst);
1122         } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1123                 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1124                 dma_conf->dst_addr_width = buswidth;
1125                 dma_conf->dst_maxburst = maxburst;
1126
1127                 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1128                         buswidth, maxburst);
1129         }
1130 }
1131
1132 /**
1133  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1134  *                                interrupts
1135  * @spi: pointer to the spi controller data structure
1136  *
1137  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1138  * in progress.
1139  */
1140 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1141 {
1142         unsigned long flags;
1143         u32 cr2 = 0;
1144
1145         /* Enable the interrupts relative to the current communication mode */
1146         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1147                 cr2 |= STM32F4_SPI_CR2_TXEIE;
1148         } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1149                                 spi->cur_comm == SPI_SIMPLEX_RX ||
1150                                 spi->cur_comm == SPI_3WIRE_RX) {
1151                 /* In transmit-only mode, the OVR flag is set in the SR register
1152                  * since the received data are never read. Therefore set OVR
1153                  * interrupt only when rx buffer is available.
1154                  */
1155                 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1156         } else {
1157                 return -EINVAL;
1158         }
1159
1160         spin_lock_irqsave(&spi->lock, flags);
1161
1162         stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1163
1164         stm32_spi_enable(spi);
1165
1166         /* starting data transfer when buffer is loaded */
1167         if (spi->tx_buf)
1168                 stm32f4_spi_write_tx(spi);
1169
1170         spin_unlock_irqrestore(&spi->lock, flags);
1171
1172         return 1;
1173 }
1174
1175 /**
1176  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1177  *                                interrupts
1178  * @spi: pointer to the spi controller data structure
1179  *
1180  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1181  * in progress.
1182  */
1183 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1184 {
1185         unsigned long flags;
1186         u32 ier = 0;
1187
1188         /* Enable the interrupts relative to the current communication mode */
1189         if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1190                 ier |= STM32H7_SPI_IER_DXPIE;
1191         else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1192                 ier |= STM32H7_SPI_IER_TXPIE;
1193         else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1194                 ier |= STM32H7_SPI_IER_RXPIE;
1195
1196         /* Enable the interrupts relative to the end of transfer */
1197         ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1198                STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1199
1200         spin_lock_irqsave(&spi->lock, flags);
1201
1202         stm32_spi_enable(spi);
1203
1204         /* Be sure to have data in fifo before starting data transfer */
1205         if (spi->tx_buf)
1206                 stm32h7_spi_write_txfifo(spi);
1207
1208         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1209
1210         writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1211
1212         spin_unlock_irqrestore(&spi->lock, flags);
1213
1214         return 1;
1215 }
1216
1217 /**
1218  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1219  *                                      transfer using DMA
1220  * @spi: pointer to the spi controller data structure
1221  */
1222 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1223 {
1224         /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1225         if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1226             spi->cur_comm == SPI_FULL_DUPLEX) {
1227                 /*
1228                  * In transmit-only mode, the OVR flag is set in the SR register
1229                  * since the received data are never read. Therefore set OVR
1230                  * interrupt only when rx buffer is available.
1231                  */
1232                 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1233         }
1234
1235         stm32_spi_enable(spi);
1236 }
1237
1238 /**
1239  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1240  *                                      transfer using DMA
1241  * @spi: pointer to the spi controller data structure
1242  */
1243 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1244 {
1245         /* Enable the interrupts relative to the end of transfer */
1246         stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1247                                                  STM32H7_SPI_IER_TXTFIE |
1248                                                  STM32H7_SPI_IER_OVRIE |
1249                                                  STM32H7_SPI_IER_MODFIE);
1250
1251         stm32_spi_enable(spi);
1252
1253         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1254 }
1255
1256 /**
1257  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1258  * @spi: pointer to the spi controller data structure
1259  * @xfer: pointer to the spi_transfer structure
1260  *
1261  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1262  * in progress.
1263  */
1264 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1265                                       struct spi_transfer *xfer)
1266 {
1267         struct dma_slave_config tx_dma_conf, rx_dma_conf;
1268         struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1269         unsigned long flags;
1270
1271         spin_lock_irqsave(&spi->lock, flags);
1272
1273         rx_dma_desc = NULL;
1274         if (spi->rx_buf && spi->dma_rx) {
1275                 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1276                 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1277
1278                 /* Enable Rx DMA request */
1279                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1280                                    spi->cfg->regs->dma_rx_en.mask);
1281
1282                 rx_dma_desc = dmaengine_prep_slave_sg(
1283                                         spi->dma_rx, xfer->rx_sg.sgl,
1284                                         xfer->rx_sg.nents,
1285                                         rx_dma_conf.direction,
1286                                         DMA_PREP_INTERRUPT);
1287         }
1288
1289         tx_dma_desc = NULL;
1290         if (spi->tx_buf && spi->dma_tx) {
1291                 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1292                 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1293
1294                 tx_dma_desc = dmaengine_prep_slave_sg(
1295                                         spi->dma_tx, xfer->tx_sg.sgl,
1296                                         xfer->tx_sg.nents,
1297                                         tx_dma_conf.direction,
1298                                         DMA_PREP_INTERRUPT);
1299         }
1300
1301         if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1302             (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1303                 goto dma_desc_error;
1304
1305         if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1306                 goto dma_desc_error;
1307
1308         if (rx_dma_desc) {
1309                 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1310                 rx_dma_desc->callback_param = spi;
1311
1312                 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1313                         dev_err(spi->dev, "Rx DMA submit failed\n");
1314                         goto dma_desc_error;
1315                 }
1316                 /* Enable Rx DMA channel */
1317                 dma_async_issue_pending(spi->dma_rx);
1318         }
1319
1320         if (tx_dma_desc) {
1321                 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1322                     spi->cur_comm == SPI_3WIRE_TX) {
1323                         tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1324                         tx_dma_desc->callback_param = spi;
1325                 }
1326
1327                 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1328                         dev_err(spi->dev, "Tx DMA submit failed\n");
1329                         goto dma_submit_error;
1330                 }
1331                 /* Enable Tx DMA channel */
1332                 dma_async_issue_pending(spi->dma_tx);
1333
1334                 /* Enable Tx DMA request */
1335                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1336                                    spi->cfg->regs->dma_tx_en.mask);
1337         }
1338
1339         spi->cfg->transfer_one_dma_start(spi);
1340
1341         spin_unlock_irqrestore(&spi->lock, flags);
1342
1343         return 1;
1344
1345 dma_submit_error:
1346         if (spi->dma_rx)
1347                 dmaengine_terminate_all(spi->dma_rx);
1348
1349 dma_desc_error:
1350         stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1351                            spi->cfg->regs->dma_rx_en.mask);
1352
1353         spin_unlock_irqrestore(&spi->lock, flags);
1354
1355         dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1356
1357         spi->cur_usedma = false;
1358         return spi->cfg->transfer_one_irq(spi);
1359 }
1360
1361 /**
1362  * stm32f4_spi_set_bpw - Configure bits per word
1363  * @spi: pointer to the spi controller data structure
1364  */
1365 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1366 {
1367         if (spi->cur_bpw == 16)
1368                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1369         else
1370                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1371 }
1372
1373 /**
1374  * stm32h7_spi_set_bpw - configure bits per word
1375  * @spi: pointer to the spi controller data structure
1376  */
1377 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1378 {
1379         u32 bpw, fthlv;
1380         u32 cfg1_clrb = 0, cfg1_setb = 0;
1381
1382         bpw = spi->cur_bpw - 1;
1383
1384         cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1385         cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1386
1387         spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1388         fthlv = spi->cur_fthlv - 1;
1389
1390         cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1391         cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1392
1393         writel_relaxed(
1394                 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1395                  ~cfg1_clrb) | cfg1_setb,
1396                 spi->base + STM32H7_SPI_CFG1);
1397 }
1398
1399 /**
1400  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1401  * @spi: pointer to the spi controller data structure
1402  * @mbrdiv: baud rate divisor value
1403  */
1404 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1405 {
1406         u32 clrb = 0, setb = 0;
1407
1408         clrb |= spi->cfg->regs->br.mask;
1409         setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1410
1411         writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1412                         ~clrb) | setb,
1413                        spi->base + spi->cfg->regs->br.reg);
1414 }
1415
1416 /**
1417  * stm32_spi_communication_type - return transfer communication type
1418  * @spi_dev: pointer to the spi device
1419  * @transfer: pointer to spi transfer
1420  */
1421 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1422                                                  struct spi_transfer *transfer)
1423 {
1424         unsigned int type = SPI_FULL_DUPLEX;
1425
1426         if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1427                 /*
1428                  * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1429                  * is forbidden and unvalidated by SPI subsystem so depending
1430                  * on the valid buffer, we can determine the direction of the
1431                  * transfer.
1432                  */
1433                 if (!transfer->tx_buf)
1434                         type = SPI_3WIRE_RX;
1435                 else
1436                         type = SPI_3WIRE_TX;
1437         } else {
1438                 if (!transfer->tx_buf)
1439                         type = SPI_SIMPLEX_RX;
1440                 else if (!transfer->rx_buf)
1441                         type = SPI_SIMPLEX_TX;
1442         }
1443
1444         return type;
1445 }
1446
1447 /**
1448  * stm32f4_spi_set_mode - configure communication mode
1449  * @spi: pointer to the spi controller data structure
1450  * @comm_type: type of communication to configure
1451  */
1452 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1453 {
1454         if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1455                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1456                                         STM32F4_SPI_CR1_BIDIMODE |
1457                                         STM32F4_SPI_CR1_BIDIOE);
1458         } else if (comm_type == SPI_FULL_DUPLEX ||
1459                                 comm_type == SPI_SIMPLEX_RX) {
1460                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1461                                         STM32F4_SPI_CR1_BIDIMODE |
1462                                         STM32F4_SPI_CR1_BIDIOE);
1463         } else if (comm_type == SPI_3WIRE_RX) {
1464                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1465                                         STM32F4_SPI_CR1_BIDIMODE);
1466                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1467                                         STM32F4_SPI_CR1_BIDIOE);
1468         } else {
1469                 return -EINVAL;
1470         }
1471
1472         return 0;
1473 }
1474
1475 /**
1476  * stm32h7_spi_set_mode - configure communication mode
1477  * @spi: pointer to the spi controller data structure
1478  * @comm_type: type of communication to configure
1479  */
1480 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1481 {
1482         u32 mode;
1483         u32 cfg2_clrb = 0, cfg2_setb = 0;
1484
1485         if (comm_type == SPI_3WIRE_RX) {
1486                 mode = STM32H7_SPI_HALF_DUPLEX;
1487                 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1488         } else if (comm_type == SPI_3WIRE_TX) {
1489                 mode = STM32H7_SPI_HALF_DUPLEX;
1490                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1491         } else if (comm_type == SPI_SIMPLEX_RX) {
1492                 mode = STM32H7_SPI_SIMPLEX_RX;
1493         } else if (comm_type == SPI_SIMPLEX_TX) {
1494                 mode = STM32H7_SPI_SIMPLEX_TX;
1495         } else {
1496                 mode = STM32H7_SPI_FULL_DUPLEX;
1497         }
1498
1499         cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1500         cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1501
1502         writel_relaxed(
1503                 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1504                  ~cfg2_clrb) | cfg2_setb,
1505                 spi->base + STM32H7_SPI_CFG2);
1506
1507         return 0;
1508 }
1509
1510 /**
1511  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1512  *                             consecutive data frames in master mode
1513  * @spi: pointer to the spi controller data structure
1514  * @len: transfer len
1515  */
1516 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1517 {
1518         u32 cfg2_clrb = 0, cfg2_setb = 0;
1519
1520         cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1521         if ((len > 1) && (spi->cur_midi > 0)) {
1522                 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1523                 u32 midi = min_t(u32,
1524                                  DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1525                                  FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1526                                  STM32H7_SPI_CFG2_MIDI));
1527
1528
1529                 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1530                         sck_period_ns, midi, midi * sck_period_ns);
1531                 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1532         }
1533
1534         writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1535                         ~cfg2_clrb) | cfg2_setb,
1536                        spi->base + STM32H7_SPI_CFG2);
1537 }
1538
1539 /**
1540  * stm32h7_spi_number_of_data - configure number of data at current transfer
1541  * @spi: pointer to the spi controller data structure
1542  * @nb_words: transfer length (in words)
1543  */
1544 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1545 {
1546         if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
1547                 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1548                                spi->base + STM32H7_SPI_CR2);
1549         } else {
1550                 return -EMSGSIZE;
1551         }
1552
1553         return 0;
1554 }
1555
1556 /**
1557  * stm32_spi_transfer_one_setup - common setup to transfer a single
1558  *                                spi_transfer either using DMA or
1559  *                                interrupts.
1560  * @spi: pointer to the spi controller data structure
1561  * @spi_dev: pointer to the spi device
1562  * @transfer: pointer to spi transfer
1563  */
1564 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1565                                         struct spi_device *spi_dev,
1566                                         struct spi_transfer *transfer)
1567 {
1568         unsigned long flags;
1569         unsigned int comm_type;
1570         int nb_words, ret = 0;
1571         int mbr;
1572
1573         spin_lock_irqsave(&spi->lock, flags);
1574
1575         spi->cur_xferlen = transfer->len;
1576
1577         spi->cur_bpw = transfer->bits_per_word;
1578         spi->cfg->set_bpw(spi);
1579
1580         /* Update spi->cur_speed with real clock speed */
1581         mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1582                                     spi->cfg->baud_rate_div_min,
1583                                     spi->cfg->baud_rate_div_max);
1584         if (mbr < 0) {
1585                 ret = mbr;
1586                 goto out;
1587         }
1588
1589         transfer->speed_hz = spi->cur_speed;
1590         stm32_spi_set_mbr(spi, mbr);
1591
1592         comm_type = stm32_spi_communication_type(spi_dev, transfer);
1593         ret = spi->cfg->set_mode(spi, comm_type);
1594         if (ret < 0)
1595                 goto out;
1596
1597         spi->cur_comm = comm_type;
1598
1599         if (spi->cfg->set_data_idleness)
1600                 spi->cfg->set_data_idleness(spi, transfer->len);
1601
1602         if (spi->cur_bpw <= 8)
1603                 nb_words = transfer->len;
1604         else if (spi->cur_bpw <= 16)
1605                 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1606         else
1607                 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1608
1609         if (spi->cfg->set_number_of_data) {
1610                 ret = spi->cfg->set_number_of_data(spi, nb_words);
1611                 if (ret < 0)
1612                         goto out;
1613         }
1614
1615         dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1616                 spi->cur_comm);
1617         dev_dbg(spi->dev,
1618                 "data frame of %d-bit, data packet of %d data frames\n",
1619                 spi->cur_bpw, spi->cur_fthlv);
1620         dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1621         dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1622                 spi->cur_xferlen, nb_words);
1623         dev_dbg(spi->dev, "dma %s\n",
1624                 (spi->cur_usedma) ? "enabled" : "disabled");
1625
1626 out:
1627         spin_unlock_irqrestore(&spi->lock, flags);
1628
1629         return ret;
1630 }
1631
1632 /**
1633  * stm32_spi_transfer_one - transfer a single spi_transfer
1634  * @master: controller master interface
1635  * @spi_dev: pointer to the spi device
1636  * @transfer: pointer to spi transfer
1637  *
1638  * It must return 0 if the transfer is finished or 1 if the transfer is still
1639  * in progress.
1640  */
1641 static int stm32_spi_transfer_one(struct spi_master *master,
1642                                   struct spi_device *spi_dev,
1643                                   struct spi_transfer *transfer)
1644 {
1645         struct stm32_spi *spi = spi_master_get_devdata(master);
1646         int ret;
1647
1648         /* Don't do anything on 0 bytes transfers */
1649         if (transfer->len == 0)
1650                 return 0;
1651
1652         spi->tx_buf = transfer->tx_buf;
1653         spi->rx_buf = transfer->rx_buf;
1654         spi->tx_len = spi->tx_buf ? transfer->len : 0;
1655         spi->rx_len = spi->rx_buf ? transfer->len : 0;
1656
1657         spi->cur_usedma = (master->can_dma &&
1658                            master->can_dma(master, spi_dev, transfer));
1659
1660         ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1661         if (ret) {
1662                 dev_err(spi->dev, "SPI transfer setup failed\n");
1663                 return ret;
1664         }
1665
1666         if (spi->cur_usedma)
1667                 return stm32_spi_transfer_one_dma(spi, transfer);
1668         else
1669                 return spi->cfg->transfer_one_irq(spi);
1670 }
1671
1672 /**
1673  * stm32_spi_unprepare_msg - relax the hardware
1674  * @master: controller master interface
1675  * @msg: pointer to the spi message
1676  */
1677 static int stm32_spi_unprepare_msg(struct spi_master *master,
1678                                    struct spi_message *msg)
1679 {
1680         struct stm32_spi *spi = spi_master_get_devdata(master);
1681
1682         spi->cfg->disable(spi);
1683
1684         return 0;
1685 }
1686
1687 /**
1688  * stm32f4_spi_config - Configure SPI controller as SPI master
1689  * @spi: pointer to the spi controller data structure
1690  */
1691 static int stm32f4_spi_config(struct stm32_spi *spi)
1692 {
1693         unsigned long flags;
1694
1695         spin_lock_irqsave(&spi->lock, flags);
1696
1697         /* Ensure I2SMOD bit is kept cleared */
1698         stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1699                            STM32F4_SPI_I2SCFGR_I2SMOD);
1700
1701         /*
1702          * - SS input value high
1703          * - transmitter half duplex direction
1704          * - Set the master mode (default Motorola mode)
1705          * - Consider 1 master/n slaves configuration and
1706          *   SS input value is determined by the SSI bit
1707          */
1708         stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1709                                                  STM32F4_SPI_CR1_BIDIOE |
1710                                                  STM32F4_SPI_CR1_MSTR |
1711                                                  STM32F4_SPI_CR1_SSM);
1712
1713         spin_unlock_irqrestore(&spi->lock, flags);
1714
1715         return 0;
1716 }
1717
1718 /**
1719  * stm32h7_spi_config - Configure SPI controller as SPI master
1720  * @spi: pointer to the spi controller data structure
1721  */
1722 static int stm32h7_spi_config(struct stm32_spi *spi)
1723 {
1724         unsigned long flags;
1725
1726         spin_lock_irqsave(&spi->lock, flags);
1727
1728         /* Ensure I2SMOD bit is kept cleared */
1729         stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1730                            STM32H7_SPI_I2SCFGR_I2SMOD);
1731
1732         /*
1733          * - SS input value high
1734          * - transmitter half duplex direction
1735          * - automatic communication suspend when RX-Fifo is full
1736          */
1737         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1738                                                  STM32H7_SPI_CR1_HDDIR |
1739                                                  STM32H7_SPI_CR1_MASRX);
1740
1741         /*
1742          * - Set the master mode (default Motorola mode)
1743          * - Consider 1 master/n slaves configuration and
1744          *   SS input value is determined by the SSI bit
1745          * - keep control of all associated GPIOs
1746          */
1747         stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1748                                                   STM32H7_SPI_CFG2_SSM |
1749                                                   STM32H7_SPI_CFG2_AFCNTR);
1750
1751         spin_unlock_irqrestore(&spi->lock, flags);
1752
1753         return 0;
1754 }
1755
1756 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1757         .regs = &stm32f4_spi_regspec,
1758         .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1759         .disable = stm32f4_spi_disable,
1760         .config = stm32f4_spi_config,
1761         .set_bpw = stm32f4_spi_set_bpw,
1762         .set_mode = stm32f4_spi_set_mode,
1763         .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1764         .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1765         .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1766         .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1767         .irq_handler_event = stm32f4_spi_irq_event,
1768         .irq_handler_thread = stm32f4_spi_irq_thread,
1769         .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1770         .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1771         .has_fifo = false,
1772 };
1773
1774 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1775         .regs = &stm32h7_spi_regspec,
1776         .get_fifo_size = stm32h7_spi_get_fifo_size,
1777         .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1778         .disable = stm32h7_spi_disable,
1779         .config = stm32h7_spi_config,
1780         .set_bpw = stm32h7_spi_set_bpw,
1781         .set_mode = stm32h7_spi_set_mode,
1782         .set_data_idleness = stm32h7_spi_data_idleness,
1783         .set_number_of_data = stm32h7_spi_number_of_data,
1784         .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1785         .dma_rx_cb = stm32h7_spi_dma_cb,
1786         .dma_tx_cb = stm32h7_spi_dma_cb,
1787         .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1788         .irq_handler_thread = stm32h7_spi_irq_thread,
1789         .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1790         .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1791         .has_fifo = true,
1792 };
1793
1794 static const struct of_device_id stm32_spi_of_match[] = {
1795         { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1796         { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1797         {},
1798 };
1799 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1800
1801 static int stm32_spi_probe(struct platform_device *pdev)
1802 {
1803         struct spi_master *master;
1804         struct stm32_spi *spi;
1805         struct resource *res;
1806         struct reset_control *rst;
1807         int ret;
1808
1809         master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1810         if (!master) {
1811                 dev_err(&pdev->dev, "spi master allocation failed\n");
1812                 return -ENOMEM;
1813         }
1814         platform_set_drvdata(pdev, master);
1815
1816         spi = spi_master_get_devdata(master);
1817         spi->dev = &pdev->dev;
1818         spi->master = master;
1819         spin_lock_init(&spi->lock);
1820
1821         spi->cfg = (const struct stm32_spi_cfg *)
1822                 of_match_device(pdev->dev.driver->of_match_table,
1823                                 &pdev->dev)->data;
1824
1825         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1826         spi->base = devm_ioremap_resource(&pdev->dev, res);
1827         if (IS_ERR(spi->base))
1828                 return PTR_ERR(spi->base);
1829
1830         spi->phys_addr = (dma_addr_t)res->start;
1831
1832         spi->irq = platform_get_irq(pdev, 0);
1833         if (spi->irq <= 0)
1834                 return dev_err_probe(&pdev->dev, spi->irq,
1835                                      "failed to get irq\n");
1836
1837         ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1838                                         spi->cfg->irq_handler_event,
1839                                         spi->cfg->irq_handler_thread,
1840                                         IRQF_ONESHOT, pdev->name, master);
1841         if (ret) {
1842                 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1843                         ret);
1844                 return ret;
1845         }
1846
1847         spi->clk = devm_clk_get(&pdev->dev, NULL);
1848         if (IS_ERR(spi->clk)) {
1849                 ret = PTR_ERR(spi->clk);
1850                 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1851                 return ret;
1852         }
1853
1854         ret = clk_prepare_enable(spi->clk);
1855         if (ret) {
1856                 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1857                 return ret;
1858         }
1859         spi->clk_rate = clk_get_rate(spi->clk);
1860         if (!spi->clk_rate) {
1861                 dev_err(&pdev->dev, "clk rate = 0\n");
1862                 ret = -EINVAL;
1863                 goto err_clk_disable;
1864         }
1865
1866         rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1867         if (rst) {
1868                 if (IS_ERR(rst)) {
1869                         ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
1870                                             "failed to get reset\n");
1871                         goto err_clk_disable;
1872                 }
1873
1874                 reset_control_assert(rst);
1875                 udelay(2);
1876                 reset_control_deassert(rst);
1877         }
1878
1879         if (spi->cfg->has_fifo)
1880                 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1881
1882         ret = spi->cfg->config(spi);
1883         if (ret) {
1884                 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1885                         ret);
1886                 goto err_clk_disable;
1887         }
1888
1889         master->dev.of_node = pdev->dev.of_node;
1890         master->auto_runtime_pm = true;
1891         master->bus_num = pdev->id;
1892         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1893                             SPI_3WIRE;
1894         master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1895         master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1896         master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1897         master->use_gpio_descriptors = true;
1898         master->prepare_message = stm32_spi_prepare_msg;
1899         master->transfer_one = stm32_spi_transfer_one;
1900         master->unprepare_message = stm32_spi_unprepare_msg;
1901         master->flags = SPI_MASTER_MUST_TX;
1902
1903         spi->dma_tx = dma_request_chan(spi->dev, "tx");
1904         if (IS_ERR(spi->dma_tx)) {
1905                 ret = PTR_ERR(spi->dma_tx);
1906                 spi->dma_tx = NULL;
1907                 if (ret == -EPROBE_DEFER)
1908                         goto err_clk_disable;
1909
1910                 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1911         } else {
1912                 master->dma_tx = spi->dma_tx;
1913         }
1914
1915         spi->dma_rx = dma_request_chan(spi->dev, "rx");
1916         if (IS_ERR(spi->dma_rx)) {
1917                 ret = PTR_ERR(spi->dma_rx);
1918                 spi->dma_rx = NULL;
1919                 if (ret == -EPROBE_DEFER)
1920                         goto err_dma_release;
1921
1922                 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1923         } else {
1924                 master->dma_rx = spi->dma_rx;
1925         }
1926
1927         if (spi->dma_tx || spi->dma_rx)
1928                 master->can_dma = stm32_spi_can_dma;
1929
1930         pm_runtime_set_active(&pdev->dev);
1931         pm_runtime_get_noresume(&pdev->dev);
1932         pm_runtime_enable(&pdev->dev);
1933
1934         ret = spi_register_master(master);
1935         if (ret) {
1936                 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1937                         ret);
1938                 goto err_pm_disable;
1939         }
1940
1941         dev_info(&pdev->dev, "driver initialized\n");
1942
1943         return 0;
1944
1945 err_pm_disable:
1946         pm_runtime_disable(&pdev->dev);
1947         pm_runtime_put_noidle(&pdev->dev);
1948         pm_runtime_set_suspended(&pdev->dev);
1949 err_dma_release:
1950         if (spi->dma_tx)
1951                 dma_release_channel(spi->dma_tx);
1952         if (spi->dma_rx)
1953                 dma_release_channel(spi->dma_rx);
1954 err_clk_disable:
1955         clk_disable_unprepare(spi->clk);
1956
1957         return ret;
1958 }
1959
1960 static int stm32_spi_remove(struct platform_device *pdev)
1961 {
1962         struct spi_master *master = platform_get_drvdata(pdev);
1963         struct stm32_spi *spi = spi_master_get_devdata(master);
1964
1965         pm_runtime_get_sync(&pdev->dev);
1966
1967         spi_unregister_master(master);
1968         spi->cfg->disable(spi);
1969
1970         pm_runtime_disable(&pdev->dev);
1971         pm_runtime_put_noidle(&pdev->dev);
1972         pm_runtime_set_suspended(&pdev->dev);
1973         if (master->dma_tx)
1974                 dma_release_channel(master->dma_tx);
1975         if (master->dma_rx)
1976                 dma_release_channel(master->dma_rx);
1977
1978         clk_disable_unprepare(spi->clk);
1979
1980
1981         pinctrl_pm_select_sleep_state(&pdev->dev);
1982
1983         return 0;
1984 }
1985
1986 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
1987 {
1988         struct spi_master *master = dev_get_drvdata(dev);
1989         struct stm32_spi *spi = spi_master_get_devdata(master);
1990
1991         clk_disable_unprepare(spi->clk);
1992
1993         return pinctrl_pm_select_sleep_state(dev);
1994 }
1995
1996 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
1997 {
1998         struct spi_master *master = dev_get_drvdata(dev);
1999         struct stm32_spi *spi = spi_master_get_devdata(master);
2000         int ret;
2001
2002         ret = pinctrl_pm_select_default_state(dev);
2003         if (ret)
2004                 return ret;
2005
2006         return clk_prepare_enable(spi->clk);
2007 }
2008
2009 static int __maybe_unused stm32_spi_suspend(struct device *dev)
2010 {
2011         struct spi_master *master = dev_get_drvdata(dev);
2012         int ret;
2013
2014         ret = spi_master_suspend(master);
2015         if (ret)
2016                 return ret;
2017
2018         return pm_runtime_force_suspend(dev);
2019 }
2020
2021 static int __maybe_unused stm32_spi_resume(struct device *dev)
2022 {
2023         struct spi_master *master = dev_get_drvdata(dev);
2024         struct stm32_spi *spi = spi_master_get_devdata(master);
2025         int ret;
2026
2027         ret = pm_runtime_force_resume(dev);
2028         if (ret)
2029                 return ret;
2030
2031         ret = spi_master_resume(master);
2032         if (ret) {
2033                 clk_disable_unprepare(spi->clk);
2034                 return ret;
2035         }
2036
2037         ret = pm_runtime_get_sync(dev);
2038         if (ret < 0) {
2039                 pm_runtime_put_noidle(dev);
2040                 dev_err(dev, "Unable to power device:%d\n", ret);
2041                 return ret;
2042         }
2043
2044         spi->cfg->config(spi);
2045
2046         pm_runtime_mark_last_busy(dev);
2047         pm_runtime_put_autosuspend(dev);
2048
2049         return 0;
2050 }
2051
2052 static const struct dev_pm_ops stm32_spi_pm_ops = {
2053         SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2054         SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2055                            stm32_spi_runtime_resume, NULL)
2056 };
2057
2058 static struct platform_driver stm32_spi_driver = {
2059         .probe = stm32_spi_probe,
2060         .remove = stm32_spi_remove,
2061         .driver = {
2062                 .name = DRIVER_NAME,
2063                 .pm = &stm32_spi_pm_ops,
2064                 .of_match_table = stm32_spi_of_match,
2065         },
2066 };
2067
2068 module_platform_driver(stm32_spi_driver);
2069
2070 MODULE_ALIAS("platform:" DRIVER_NAME);
2071 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2072 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2073 MODULE_LICENSE("GPL v2");