Merge remote-tracking branches 'spi/topic/sunxi', 'spi/topic/tegra114', 'spi/topic...
[linux-2.6-microblaze.git] / drivers / spi / spi-rspi.c
1 /*
2  * SH RSPI driver
3  *
4  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
5  * Copyright (C) 2014 Glider bvba
6  *
7  * Based on spi-sh.c:
8  * Copyright (C) 2011 Renesas Solutions Corp.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/platform_device.h>
31 #include <linux/io.h>
32 #include <linux/clk.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/of_device.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/sh_dma.h>
38 #include <linux/spi/spi.h>
39 #include <linux/spi/rspi.h>
40
41 #define RSPI_SPCR               0x00    /* Control Register */
42 #define RSPI_SSLP               0x01    /* Slave Select Polarity Register */
43 #define RSPI_SPPCR              0x02    /* Pin Control Register */
44 #define RSPI_SPSR               0x03    /* Status Register */
45 #define RSPI_SPDR               0x04    /* Data Register */
46 #define RSPI_SPSCR              0x08    /* Sequence Control Register */
47 #define RSPI_SPSSR              0x09    /* Sequence Status Register */
48 #define RSPI_SPBR               0x0a    /* Bit Rate Register */
49 #define RSPI_SPDCR              0x0b    /* Data Control Register */
50 #define RSPI_SPCKD              0x0c    /* Clock Delay Register */
51 #define RSPI_SSLND              0x0d    /* Slave Select Negation Delay Register */
52 #define RSPI_SPND               0x0e    /* Next-Access Delay Register */
53 #define RSPI_SPCR2              0x0f    /* Control Register 2 (SH only) */
54 #define RSPI_SPCMD0             0x10    /* Command Register 0 */
55 #define RSPI_SPCMD1             0x12    /* Command Register 1 */
56 #define RSPI_SPCMD2             0x14    /* Command Register 2 */
57 #define RSPI_SPCMD3             0x16    /* Command Register 3 */
58 #define RSPI_SPCMD4             0x18    /* Command Register 4 */
59 #define RSPI_SPCMD5             0x1a    /* Command Register 5 */
60 #define RSPI_SPCMD6             0x1c    /* Command Register 6 */
61 #define RSPI_SPCMD7             0x1e    /* Command Register 7 */
62 #define RSPI_SPCMD(i)           (RSPI_SPCMD0 + (i) * 2)
63 #define RSPI_NUM_SPCMD          8
64 #define RSPI_RZ_NUM_SPCMD       4
65 #define QSPI_NUM_SPCMD          4
66
67 /* RSPI on RZ only */
68 #define RSPI_SPBFCR             0x20    /* Buffer Control Register */
69 #define RSPI_SPBFDR             0x22    /* Buffer Data Count Setting Register */
70
71 /* QSPI only */
72 #define QSPI_SPBFCR             0x18    /* Buffer Control Register */
73 #define QSPI_SPBDCR             0x1a    /* Buffer Data Count Register */
74 #define QSPI_SPBMUL0            0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
75 #define QSPI_SPBMUL1            0x20    /* Transfer Data Length Multiplier Setting Register 1 */
76 #define QSPI_SPBMUL2            0x24    /* Transfer Data Length Multiplier Setting Register 2 */
77 #define QSPI_SPBMUL3            0x28    /* Transfer Data Length Multiplier Setting Register 3 */
78 #define QSPI_SPBMUL(i)          (QSPI_SPBMUL0 + (i) * 4)
79
80 /* SPCR - Control Register */
81 #define SPCR_SPRIE              0x80    /* Receive Interrupt Enable */
82 #define SPCR_SPE                0x40    /* Function Enable */
83 #define SPCR_SPTIE              0x20    /* Transmit Interrupt Enable */
84 #define SPCR_SPEIE              0x10    /* Error Interrupt Enable */
85 #define SPCR_MSTR               0x08    /* Master/Slave Mode Select */
86 #define SPCR_MODFEN             0x04    /* Mode Fault Error Detection Enable */
87 /* RSPI on SH only */
88 #define SPCR_TXMD               0x02    /* TX Only Mode (vs. Full Duplex) */
89 #define SPCR_SPMS               0x01    /* 3-wire Mode (vs. 4-wire) */
90 /* QSPI on R-Car M2 only */
91 #define SPCR_WSWAP              0x02    /* Word Swap of read-data for DMAC */
92 #define SPCR_BSWAP              0x01    /* Byte Swap of read-data for DMAC */
93
94 /* SSLP - Slave Select Polarity Register */
95 #define SSLP_SSL1P              0x02    /* SSL1 Signal Polarity Setting */
96 #define SSLP_SSL0P              0x01    /* SSL0 Signal Polarity Setting */
97
98 /* SPPCR - Pin Control Register */
99 #define SPPCR_MOIFE             0x20    /* MOSI Idle Value Fixing Enable */
100 #define SPPCR_MOIFV             0x10    /* MOSI Idle Fixed Value */
101 #define SPPCR_SPOM              0x04
102 #define SPPCR_SPLP2             0x02    /* Loopback Mode 2 (non-inverting) */
103 #define SPPCR_SPLP              0x01    /* Loopback Mode (inverting) */
104
105 #define SPPCR_IO3FV             0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
106 #define SPPCR_IO2FV             0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
107
108 /* SPSR - Status Register */
109 #define SPSR_SPRF               0x80    /* Receive Buffer Full Flag */
110 #define SPSR_TEND               0x40    /* Transmit End */
111 #define SPSR_SPTEF              0x20    /* Transmit Buffer Empty Flag */
112 #define SPSR_PERF               0x08    /* Parity Error Flag */
113 #define SPSR_MODF               0x04    /* Mode Fault Error Flag */
114 #define SPSR_IDLNF              0x02    /* RSPI Idle Flag */
115 #define SPSR_OVRF               0x01    /* Overrun Error Flag (RSPI only) */
116
117 /* SPSCR - Sequence Control Register */
118 #define SPSCR_SPSLN_MASK        0x07    /* Sequence Length Specification */
119
120 /* SPSSR - Sequence Status Register */
121 #define SPSSR_SPECM_MASK        0x70    /* Command Error Mask */
122 #define SPSSR_SPCP_MASK         0x07    /* Command Pointer Mask */
123
124 /* SPDCR - Data Control Register */
125 #define SPDCR_TXDMY             0x80    /* Dummy Data Transmission Enable */
126 #define SPDCR_SPLW1             0x40    /* Access Width Specification (RZ) */
127 #define SPDCR_SPLW0             0x20    /* Access Width Specification (RZ) */
128 #define SPDCR_SPLLWORD          (SPDCR_SPLW1 | SPDCR_SPLW0)
129 #define SPDCR_SPLWORD           SPDCR_SPLW1
130 #define SPDCR_SPLBYTE           SPDCR_SPLW0
131 #define SPDCR_SPLW              0x20    /* Access Width Specification (SH) */
132 #define SPDCR_SPRDTD            0x10    /* Receive Transmit Data Select (SH) */
133 #define SPDCR_SLSEL1            0x08
134 #define SPDCR_SLSEL0            0x04
135 #define SPDCR_SLSEL_MASK        0x0c    /* SSL1 Output Select (SH) */
136 #define SPDCR_SPFC1             0x02
137 #define SPDCR_SPFC0             0x01
138 #define SPDCR_SPFC_MASK         0x03    /* Frame Count Setting (1-4) (SH) */
139
140 /* SPCKD - Clock Delay Register */
141 #define SPCKD_SCKDL_MASK        0x07    /* Clock Delay Setting (1-8) */
142
143 /* SSLND - Slave Select Negation Delay Register */
144 #define SSLND_SLNDL_MASK        0x07    /* SSL Negation Delay Setting (1-8) */
145
146 /* SPND - Next-Access Delay Register */
147 #define SPND_SPNDL_MASK         0x07    /* Next-Access Delay Setting (1-8) */
148
149 /* SPCR2 - Control Register 2 */
150 #define SPCR2_PTE               0x08    /* Parity Self-Test Enable */
151 #define SPCR2_SPIE              0x04    /* Idle Interrupt Enable */
152 #define SPCR2_SPOE              0x02    /* Odd Parity Enable (vs. Even) */
153 #define SPCR2_SPPE              0x01    /* Parity Enable */
154
155 /* SPCMDn - Command Registers */
156 #define SPCMD_SCKDEN            0x8000  /* Clock Delay Setting Enable */
157 #define SPCMD_SLNDEN            0x4000  /* SSL Negation Delay Setting Enable */
158 #define SPCMD_SPNDEN            0x2000  /* Next-Access Delay Enable */
159 #define SPCMD_LSBF              0x1000  /* LSB First */
160 #define SPCMD_SPB_MASK          0x0f00  /* Data Length Setting */
161 #define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
162 #define SPCMD_SPB_8BIT          0x0000  /* QSPI only */
163 #define SPCMD_SPB_16BIT         0x0100
164 #define SPCMD_SPB_20BIT         0x0000
165 #define SPCMD_SPB_24BIT         0x0100
166 #define SPCMD_SPB_32BIT         0x0200
167 #define SPCMD_SSLKP             0x0080  /* SSL Signal Level Keeping */
168 #define SPCMD_SPIMOD_MASK       0x0060  /* SPI Operating Mode (QSPI only) */
169 #define SPCMD_SPIMOD1           0x0040
170 #define SPCMD_SPIMOD0           0x0020
171 #define SPCMD_SPIMOD_SINGLE     0
172 #define SPCMD_SPIMOD_DUAL       SPCMD_SPIMOD0
173 #define SPCMD_SPIMOD_QUAD       SPCMD_SPIMOD1
174 #define SPCMD_SPRW              0x0010  /* SPI Read/Write Access (Dual/Quad) */
175 #define SPCMD_SSLA_MASK         0x0030  /* SSL Assert Signal Setting (RSPI) */
176 #define SPCMD_BRDV_MASK         0x000c  /* Bit Rate Division Setting */
177 #define SPCMD_CPOL              0x0002  /* Clock Polarity Setting */
178 #define SPCMD_CPHA              0x0001  /* Clock Phase Setting */
179
180 /* SPBFCR - Buffer Control Register */
181 #define SPBFCR_TXRST            0x80    /* Transmit Buffer Data Reset */
182 #define SPBFCR_RXRST            0x40    /* Receive Buffer Data Reset */
183 #define SPBFCR_TXTRG_MASK       0x30    /* Transmit Buffer Data Triggering Number */
184 #define SPBFCR_RXTRG_MASK       0x07    /* Receive Buffer Data Triggering Number */
185
186 #define DUMMY_DATA              0x00
187
188 struct rspi_data {
189         void __iomem *addr;
190         u32 max_speed_hz;
191         struct spi_master *master;
192         wait_queue_head_t wait;
193         struct clk *clk;
194         u16 spcmd;
195         u8 spsr;
196         u8 sppcr;
197         int rx_irq, tx_irq;
198         const struct spi_ops *ops;
199
200         /* for dmaengine */
201         struct dma_chan *chan_tx;
202         struct dma_chan *chan_rx;
203
204         unsigned dma_width_16bit:1;
205         unsigned dma_callbacked:1;
206         unsigned byte_access:1;
207 };
208
209 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
210 {
211         iowrite8(data, rspi->addr + offset);
212 }
213
214 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
215 {
216         iowrite16(data, rspi->addr + offset);
217 }
218
219 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
220 {
221         iowrite32(data, rspi->addr + offset);
222 }
223
224 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
225 {
226         return ioread8(rspi->addr + offset);
227 }
228
229 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
230 {
231         return ioread16(rspi->addr + offset);
232 }
233
234 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
235 {
236         if (rspi->byte_access)
237                 rspi_write8(rspi, data, RSPI_SPDR);
238         else /* 16 bit */
239                 rspi_write16(rspi, data, RSPI_SPDR);
240 }
241
242 static u16 rspi_read_data(const struct rspi_data *rspi)
243 {
244         if (rspi->byte_access)
245                 return rspi_read8(rspi, RSPI_SPDR);
246         else /* 16 bit */
247                 return rspi_read16(rspi, RSPI_SPDR);
248 }
249
250 /* optional functions */
251 struct spi_ops {
252         int (*set_config_register)(struct rspi_data *rspi, int access_size);
253         int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
254                             struct spi_transfer *xfer);
255         u16 mode_bits;
256 };
257
258 /*
259  * functions for RSPI on legacy SH
260  */
261 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
262 {
263         int spbr;
264
265         /* Sets output mode, MOSI signal, and (optionally) loopback */
266         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
267
268         /* Sets transfer bit rate */
269         spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
270         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
271
272         /* Disable dummy transmission, set 16-bit word access, 1 frame */
273         rspi_write8(rspi, 0, RSPI_SPDCR);
274         rspi->byte_access = 0;
275
276         /* Sets RSPCK, SSL, next-access delay value */
277         rspi_write8(rspi, 0x00, RSPI_SPCKD);
278         rspi_write8(rspi, 0x00, RSPI_SSLND);
279         rspi_write8(rspi, 0x00, RSPI_SPND);
280
281         /* Sets parity, interrupt mask */
282         rspi_write8(rspi, 0x00, RSPI_SPCR2);
283
284         /* Sets SPCMD */
285         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
286         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
287
288         /* Sets RSPI mode */
289         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
290
291         return 0;
292 }
293
294 /*
295  * functions for RSPI on RZ
296  */
297 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
298 {
299         int spbr;
300
301         /* Sets output mode, MOSI signal, and (optionally) loopback */
302         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
303
304         /* Sets transfer bit rate */
305         spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
306         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
307
308         /* Disable dummy transmission, set byte access */
309         rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
310         rspi->byte_access = 1;
311
312         /* Sets RSPCK, SSL, next-access delay value */
313         rspi_write8(rspi, 0x00, RSPI_SPCKD);
314         rspi_write8(rspi, 0x00, RSPI_SSLND);
315         rspi_write8(rspi, 0x00, RSPI_SPND);
316
317         /* Sets SPCMD */
318         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
319         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
320
321         /* Sets RSPI mode */
322         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
323
324         return 0;
325 }
326
327 /*
328  * functions for QSPI
329  */
330 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
331 {
332         int spbr;
333
334         /* Sets output mode, MOSI signal, and (optionally) loopback */
335         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
336
337         /* Sets transfer bit rate */
338         spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
339         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
340
341         /* Disable dummy transmission, set byte access */
342         rspi_write8(rspi, 0, RSPI_SPDCR);
343         rspi->byte_access = 1;
344
345         /* Sets RSPCK, SSL, next-access delay value */
346         rspi_write8(rspi, 0x00, RSPI_SPCKD);
347         rspi_write8(rspi, 0x00, RSPI_SSLND);
348         rspi_write8(rspi, 0x00, RSPI_SPND);
349
350         /* Data Length Setting */
351         if (access_size == 8)
352                 rspi->spcmd |= SPCMD_SPB_8BIT;
353         else if (access_size == 16)
354                 rspi->spcmd |= SPCMD_SPB_16BIT;
355         else
356                 rspi->spcmd |= SPCMD_SPB_32BIT;
357
358         rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
359
360         /* Resets transfer data length */
361         rspi_write32(rspi, 0, QSPI_SPBMUL0);
362
363         /* Resets transmit and receive buffer */
364         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
365         /* Sets buffer to allow normal operation */
366         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
367
368         /* Sets SPCMD */
369         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
370
371         /* Enables SPI function in master mode */
372         rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
373
374         return 0;
375 }
376
377 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
378
379 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
380 {
381         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
382 }
383
384 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
385 {
386         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
387 }
388
389 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
390                                    u8 enable_bit)
391 {
392         int ret;
393
394         rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
395         if (rspi->spsr & wait_mask)
396                 return 0;
397
398         rspi_enable_irq(rspi, enable_bit);
399         ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
400         if (ret == 0 && !(rspi->spsr & wait_mask))
401                 return -ETIMEDOUT;
402
403         return 0;
404 }
405
406 static int rspi_data_out(struct rspi_data *rspi, u8 data)
407 {
408         if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
409                 dev_err(&rspi->master->dev, "transmit timeout\n");
410                 return -ETIMEDOUT;
411         }
412         rspi_write_data(rspi, data);
413         return 0;
414 }
415
416 static int rspi_data_in(struct rspi_data *rspi)
417 {
418         u8 data;
419
420         if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
421                 dev_err(&rspi->master->dev, "receive timeout\n");
422                 return -ETIMEDOUT;
423         }
424         data = rspi_read_data(rspi);
425         return data;
426 }
427
428 static int rspi_data_out_in(struct rspi_data *rspi, u8 data)
429 {
430         int ret;
431
432         ret = rspi_data_out(rspi, data);
433         if (ret < 0)
434                 return ret;
435
436         return rspi_data_in(rspi);
437 }
438
439 static void rspi_dma_complete(void *arg)
440 {
441         struct rspi_data *rspi = arg;
442
443         rspi->dma_callbacked = 1;
444         wake_up_interruptible(&rspi->wait);
445 }
446
447 static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
448                            unsigned len, struct dma_chan *chan,
449                            enum dma_transfer_direction dir)
450 {
451         sg_init_table(sg, 1);
452         sg_set_buf(sg, buf, len);
453         sg_dma_len(sg) = len;
454         return dma_map_sg(chan->device->dev, sg, 1, dir);
455 }
456
457 static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
458                               enum dma_transfer_direction dir)
459 {
460         dma_unmap_sg(chan->device->dev, sg, 1, dir);
461 }
462
463 static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
464 {
465         u16 *dst = buf;
466         const u8 *src = data;
467
468         while (len) {
469                 *dst++ = (u16)(*src++);
470                 len--;
471         }
472 }
473
474 static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
475 {
476         u8 *dst = buf;
477         const u16 *src = data;
478
479         while (len) {
480                 *dst++ = (u8)*src++;
481                 len--;
482         }
483 }
484
485 static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
486 {
487         struct scatterlist sg;
488         const void *buf = NULL;
489         struct dma_async_tx_descriptor *desc;
490         unsigned int len;
491         int ret = 0;
492
493         if (rspi->dma_width_16bit) {
494                 void *tmp;
495                 /*
496                  * If DMAC bus width is 16-bit, the driver allocates a dummy
497                  * buffer. And, the driver converts original data into the
498                  * DMAC data as the following format:
499                  *  original data: 1st byte, 2nd byte ...
500                  *  DMAC data:     1st byte, dummy, 2nd byte, dummy ...
501                  */
502                 len = t->len * 2;
503                 tmp = kmalloc(len, GFP_KERNEL);
504                 if (!tmp)
505                         return -ENOMEM;
506                 rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
507                 buf = tmp;
508         } else {
509                 len = t->len;
510                 buf = t->tx_buf;
511         }
512
513         if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
514                 ret = -EFAULT;
515                 goto end_nomap;
516         }
517         desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
518                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
519         if (!desc) {
520                 ret = -EIO;
521                 goto end;
522         }
523
524         /*
525          * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
526          * called. So, this driver disables the IRQ while DMA transfer.
527          */
528         disable_irq(rspi->tx_irq);
529
530         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
531         rspi_enable_irq(rspi, SPCR_SPTIE);
532         rspi->dma_callbacked = 0;
533
534         desc->callback = rspi_dma_complete;
535         desc->callback_param = rspi;
536         dmaengine_submit(desc);
537         dma_async_issue_pending(rspi->chan_tx);
538
539         ret = wait_event_interruptible_timeout(rspi->wait,
540                                                rspi->dma_callbacked, HZ);
541         if (ret > 0 && rspi->dma_callbacked)
542                 ret = 0;
543         else if (!ret)
544                 ret = -ETIMEDOUT;
545         rspi_disable_irq(rspi, SPCR_SPTIE);
546
547         enable_irq(rspi->tx_irq);
548
549 end:
550         rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
551 end_nomap:
552         if (rspi->dma_width_16bit)
553                 kfree(buf);
554
555         return ret;
556 }
557
558 static void rspi_receive_init(const struct rspi_data *rspi)
559 {
560         u8 spsr;
561
562         spsr = rspi_read8(rspi, RSPI_SPSR);
563         if (spsr & SPSR_SPRF)
564                 rspi_read_data(rspi);   /* dummy read */
565         if (spsr & SPSR_OVRF)
566                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
567                             RSPI_SPSR);
568 }
569
570 static void rspi_rz_receive_init(const struct rspi_data *rspi)
571 {
572         rspi_receive_init(rspi);
573         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
574         rspi_write8(rspi, 0, RSPI_SPBFCR);
575 }
576
577 static void qspi_receive_init(const struct rspi_data *rspi)
578 {
579         u8 spsr;
580
581         spsr = rspi_read8(rspi, RSPI_SPSR);
582         if (spsr & SPSR_SPRF)
583                 rspi_read_data(rspi);   /* dummy read */
584         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
585         rspi_write8(rspi, 0, QSPI_SPBFCR);
586 }
587
588 static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
589 {
590         struct scatterlist sg, sg_dummy;
591         void *dummy = NULL, *rx_buf = NULL;
592         struct dma_async_tx_descriptor *desc, *desc_dummy;
593         unsigned int len;
594         int ret = 0;
595
596         if (rspi->dma_width_16bit) {
597                 /*
598                  * If DMAC bus width is 16-bit, the driver allocates a dummy
599                  * buffer. And, finally the driver converts the DMAC data into
600                  * actual data as the following format:
601                  *  DMAC data:   1st byte, dummy, 2nd byte, dummy ...
602                  *  actual data: 1st byte, 2nd byte ...
603                  */
604                 len = t->len * 2;
605                 rx_buf = kmalloc(len, GFP_KERNEL);
606                 if (!rx_buf)
607                         return -ENOMEM;
608          } else {
609                 len = t->len;
610                 rx_buf = t->rx_buf;
611         }
612
613         /* prepare dummy transfer to generate SPI clocks */
614         dummy = kzalloc(len, GFP_KERNEL);
615         if (!dummy) {
616                 ret = -ENOMEM;
617                 goto end_nomap;
618         }
619         if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
620                              DMA_TO_DEVICE)) {
621                 ret = -EFAULT;
622                 goto end_nomap;
623         }
624         desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
625                         DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
626         if (!desc_dummy) {
627                 ret = -EIO;
628                 goto end_dummy_mapped;
629         }
630
631         /* prepare receive transfer */
632         if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
633                              DMA_FROM_DEVICE)) {
634                 ret = -EFAULT;
635                 goto end_dummy_mapped;
636
637         }
638         desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
639                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
640         if (!desc) {
641                 ret = -EIO;
642                 goto end;
643         }
644
645         rspi_receive_init(rspi);
646
647         /*
648          * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
649          * called. So, this driver disables the IRQ while DMA transfer.
650          */
651         disable_irq(rspi->tx_irq);
652         if (rspi->rx_irq != rspi->tx_irq)
653                 disable_irq(rspi->rx_irq);
654
655         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
656         rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
657         rspi->dma_callbacked = 0;
658
659         desc->callback = rspi_dma_complete;
660         desc->callback_param = rspi;
661         dmaengine_submit(desc);
662         dma_async_issue_pending(rspi->chan_rx);
663
664         desc_dummy->callback = NULL;    /* No callback */
665         dmaengine_submit(desc_dummy);
666         dma_async_issue_pending(rspi->chan_tx);
667
668         ret = wait_event_interruptible_timeout(rspi->wait,
669                                                rspi->dma_callbacked, HZ);
670         if (ret > 0 && rspi->dma_callbacked)
671                 ret = 0;
672         else if (!ret)
673                 ret = -ETIMEDOUT;
674         rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
675
676         enable_irq(rspi->tx_irq);
677         if (rspi->rx_irq != rspi->tx_irq)
678                 enable_irq(rspi->rx_irq);
679
680 end:
681         rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
682 end_dummy_mapped:
683         rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
684 end_nomap:
685         if (rspi->dma_width_16bit) {
686                 if (!ret)
687                         rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
688                 kfree(rx_buf);
689         }
690         kfree(dummy);
691
692         return ret;
693 }
694
695 static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
696 {
697         if (t->tx_buf && rspi->chan_tx)
698                 return 1;
699         /* If the module receives data by DMAC, it also needs TX DMAC */
700         if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
701                 return 1;
702
703         return 0;
704 }
705
706 static int rspi_transfer_out_in(struct rspi_data *rspi,
707                                 struct spi_transfer *xfer)
708 {
709         int remain = xfer->len, ret;
710         const u8 *tx_buf = xfer->tx_buf;
711         u8 *rx_buf = xfer->rx_buf;
712         u8 spcr, data;
713
714         rspi_receive_init(rspi);
715
716         spcr = rspi_read8(rspi, RSPI_SPCR);
717         if (rx_buf)
718                 spcr &= ~SPCR_TXMD;
719         else
720                 spcr |= SPCR_TXMD;
721         rspi_write8(rspi, spcr, RSPI_SPCR);
722
723         while (remain > 0) {
724                 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
725                 ret = rspi_data_out(rspi, data);
726                 if (ret < 0)
727                         return ret;
728                 if (rx_buf) {
729                         ret = rspi_data_in(rspi);
730                         if (ret < 0)
731                                 return ret;
732                         *rx_buf++ = ret;
733                 }
734                 remain--;
735         }
736
737         /* Wait for the last transmission */
738         rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
739
740         return 0;
741 }
742
743 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
744                              struct spi_transfer *xfer)
745 {
746         struct rspi_data *rspi = spi_master_get_devdata(master);
747         int ret;
748
749         if (!rspi_is_dma(rspi, xfer))
750                 return rspi_transfer_out_in(rspi, xfer);
751
752         if (xfer->tx_buf) {
753                 ret = rspi_send_dma(rspi, xfer);
754                 if (ret < 0)
755                         return ret;
756         }
757         if (xfer->rx_buf)
758                 return rspi_receive_dma(rspi, xfer);
759
760         return 0;
761 }
762
763 static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
764                                    struct spi_transfer *xfer)
765 {
766         int remain = xfer->len, ret;
767         const u8 *tx_buf = xfer->tx_buf;
768         u8 *rx_buf = xfer->rx_buf;
769         u8 data;
770
771         rspi_rz_receive_init(rspi);
772
773         while (remain > 0) {
774                 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
775                 ret = rspi_data_out_in(rspi, data);
776                 if (ret < 0)
777                         return ret;
778                 if (rx_buf)
779                         *rx_buf++ = ret;
780                 remain--;
781         }
782
783         /* Wait for the last transmission */
784         rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
785
786         return 0;
787 }
788
789 static int rspi_rz_transfer_one(struct spi_master *master,
790                                 struct spi_device *spi,
791                                 struct spi_transfer *xfer)
792 {
793         struct rspi_data *rspi = spi_master_get_devdata(master);
794
795         return rspi_rz_transfer_out_in(rspi, xfer);
796 }
797
798 static int qspi_transfer_out_in(struct rspi_data *rspi,
799                                 struct spi_transfer *xfer)
800 {
801         int remain = xfer->len, ret;
802         const u8 *tx_buf = xfer->tx_buf;
803         u8 *rx_buf = xfer->rx_buf;
804         u8 data;
805
806         qspi_receive_init(rspi);
807
808         while (remain > 0) {
809                 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
810                 ret = rspi_data_out_in(rspi, data);
811                 if (ret < 0)
812                         return ret;
813                 if (rx_buf)
814                         *rx_buf++ = ret;
815                 remain--;
816         }
817
818         /* Wait for the last transmission */
819         rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
820
821         return 0;
822 }
823
824 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
825 {
826         const u8 *buf = xfer->tx_buf;
827         unsigned int i;
828         int ret;
829
830         for (i = 0; i < xfer->len; i++) {
831                 ret = rspi_data_out(rspi, *buf++);
832                 if (ret < 0)
833                         return ret;
834         }
835
836         /* Wait for the last transmission */
837         rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
838
839         return 0;
840 }
841
842 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
843 {
844         u8 *buf = xfer->rx_buf;
845         unsigned int i;
846         int ret;
847
848         for (i = 0; i < xfer->len; i++) {
849                 ret = rspi_data_in(rspi);
850                 if (ret < 0)
851                         return ret;
852                 *buf++ = ret;
853         }
854
855         return 0;
856 }
857
858 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
859                              struct spi_transfer *xfer)
860 {
861         struct rspi_data *rspi = spi_master_get_devdata(master);
862
863         if (spi->mode & SPI_LOOP) {
864                 return qspi_transfer_out_in(rspi, xfer);
865         } else if (xfer->tx_buf && xfer->tx_nbits > SPI_NBITS_SINGLE) {
866                 /* Quad or Dual SPI Write */
867                 return qspi_transfer_out(rspi, xfer);
868         } else if (xfer->rx_buf && xfer->rx_nbits > SPI_NBITS_SINGLE) {
869                 /* Quad or Dual SPI Read */
870                 return qspi_transfer_in(rspi, xfer);
871         } else {
872                 /* Single SPI Transfer */
873                 return qspi_transfer_out_in(rspi, xfer);
874         }
875 }
876
877 static int rspi_setup(struct spi_device *spi)
878 {
879         struct rspi_data *rspi = spi_master_get_devdata(spi->master);
880
881         rspi->max_speed_hz = spi->max_speed_hz;
882
883         rspi->spcmd = SPCMD_SSLKP;
884         if (spi->mode & SPI_CPOL)
885                 rspi->spcmd |= SPCMD_CPOL;
886         if (spi->mode & SPI_CPHA)
887                 rspi->spcmd |= SPCMD_CPHA;
888
889         /* CMOS output mode and MOSI signal from previous transfer */
890         rspi->sppcr = 0;
891         if (spi->mode & SPI_LOOP)
892                 rspi->sppcr |= SPPCR_SPLP;
893
894         set_config_register(rspi, 8);
895
896         return 0;
897 }
898
899 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
900 {
901         if (xfer->tx_buf)
902                 switch (xfer->tx_nbits) {
903                 case SPI_NBITS_QUAD:
904                         return SPCMD_SPIMOD_QUAD;
905                 case SPI_NBITS_DUAL:
906                         return SPCMD_SPIMOD_DUAL;
907                 default:
908                         return 0;
909                 }
910         if (xfer->rx_buf)
911                 switch (xfer->rx_nbits) {
912                 case SPI_NBITS_QUAD:
913                         return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
914                 case SPI_NBITS_DUAL:
915                         return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
916                 default:
917                         return 0;
918                 }
919
920         return 0;
921 }
922
923 static int qspi_setup_sequencer(struct rspi_data *rspi,
924                                 const struct spi_message *msg)
925 {
926         const struct spi_transfer *xfer;
927         unsigned int i = 0, len = 0;
928         u16 current_mode = 0xffff, mode;
929
930         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
931                 mode = qspi_transfer_mode(xfer);
932                 if (mode == current_mode) {
933                         len += xfer->len;
934                         continue;
935                 }
936
937                 /* Transfer mode change */
938                 if (i) {
939                         /* Set transfer data length of previous transfer */
940                         rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
941                 }
942
943                 if (i >= QSPI_NUM_SPCMD) {
944                         dev_err(&msg->spi->dev,
945                                 "Too many different transfer modes");
946                         return -EINVAL;
947                 }
948
949                 /* Program transfer mode for this transfer */
950                 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
951                 current_mode = mode;
952                 len = xfer->len;
953                 i++;
954         }
955         if (i) {
956                 /* Set final transfer data length and sequence length */
957                 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
958                 rspi_write8(rspi, i - 1, RSPI_SPSCR);
959         }
960
961         return 0;
962 }
963
964 static int rspi_prepare_message(struct spi_master *master,
965                                 struct spi_message *msg)
966 {
967         struct rspi_data *rspi = spi_master_get_devdata(master);
968         int ret;
969
970         if (msg->spi->mode &
971             (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
972                 /* Setup sequencer for messages with multiple transfer modes */
973                 ret = qspi_setup_sequencer(rspi, msg);
974                 if (ret < 0)
975                         return ret;
976         }
977
978         /* Enable SPI function in master mode */
979         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
980         return 0;
981 }
982
983 static int rspi_unprepare_message(struct spi_master *master,
984                                   struct spi_message *msg)
985 {
986         struct rspi_data *rspi = spi_master_get_devdata(master);
987
988         /* Disable SPI function */
989         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
990
991         /* Reset sequencer for Single SPI Transfers */
992         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
993         rspi_write8(rspi, 0, RSPI_SPSCR);
994         return 0;
995 }
996
997 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
998 {
999         struct rspi_data *rspi = _sr;
1000         u8 spsr;
1001         irqreturn_t ret = IRQ_NONE;
1002         u8 disable_irq = 0;
1003
1004         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1005         if (spsr & SPSR_SPRF)
1006                 disable_irq |= SPCR_SPRIE;
1007         if (spsr & SPSR_SPTEF)
1008                 disable_irq |= SPCR_SPTIE;
1009
1010         if (disable_irq) {
1011                 ret = IRQ_HANDLED;
1012                 rspi_disable_irq(rspi, disable_irq);
1013                 wake_up(&rspi->wait);
1014         }
1015
1016         return ret;
1017 }
1018
1019 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1020 {
1021         struct rspi_data *rspi = _sr;
1022         u8 spsr;
1023
1024         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1025         if (spsr & SPSR_SPRF) {
1026                 rspi_disable_irq(rspi, SPCR_SPRIE);
1027                 wake_up(&rspi->wait);
1028                 return IRQ_HANDLED;
1029         }
1030
1031         return 0;
1032 }
1033
1034 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1035 {
1036         struct rspi_data *rspi = _sr;
1037         u8 spsr;
1038
1039         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1040         if (spsr & SPSR_SPTEF) {
1041                 rspi_disable_irq(rspi, SPCR_SPTIE);
1042                 wake_up(&rspi->wait);
1043                 return IRQ_HANDLED;
1044         }
1045
1046         return 0;
1047 }
1048
1049 static int rspi_request_dma(struct rspi_data *rspi,
1050                                       struct platform_device *pdev)
1051 {
1052         const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
1053         struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054         dma_cap_mask_t mask;
1055         struct dma_slave_config cfg;
1056         int ret;
1057
1058         if (!res || !rspi_pd)
1059                 return 0;       /* The driver assumes no error. */
1060
1061         rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
1062
1063         /* If the module receives data by DMAC, it also needs TX DMAC */
1064         if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
1065                 dma_cap_zero(mask);
1066                 dma_cap_set(DMA_SLAVE, mask);
1067                 rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
1068                                                     (void *)rspi_pd->dma_rx_id);
1069                 if (rspi->chan_rx) {
1070                         cfg.slave_id = rspi_pd->dma_rx_id;
1071                         cfg.direction = DMA_DEV_TO_MEM;
1072                         cfg.dst_addr = 0;
1073                         cfg.src_addr = res->start + RSPI_SPDR;
1074                         ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
1075                         if (!ret)
1076                                 dev_info(&pdev->dev, "Use DMA when rx.\n");
1077                         else
1078                                 return ret;
1079                 }
1080         }
1081         if (rspi_pd->dma_tx_id) {
1082                 dma_cap_zero(mask);
1083                 dma_cap_set(DMA_SLAVE, mask);
1084                 rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
1085                                                     (void *)rspi_pd->dma_tx_id);
1086                 if (rspi->chan_tx) {
1087                         cfg.slave_id = rspi_pd->dma_tx_id;
1088                         cfg.direction = DMA_MEM_TO_DEV;
1089                         cfg.dst_addr = res->start + RSPI_SPDR;
1090                         cfg.src_addr = 0;
1091                         ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
1092                         if (!ret)
1093                                 dev_info(&pdev->dev, "Use DMA when tx\n");
1094                         else
1095                                 return ret;
1096                 }
1097         }
1098
1099         return 0;
1100 }
1101
1102 static void rspi_release_dma(struct rspi_data *rspi)
1103 {
1104         if (rspi->chan_tx)
1105                 dma_release_channel(rspi->chan_tx);
1106         if (rspi->chan_rx)
1107                 dma_release_channel(rspi->chan_rx);
1108 }
1109
1110 static int rspi_remove(struct platform_device *pdev)
1111 {
1112         struct rspi_data *rspi = platform_get_drvdata(pdev);
1113
1114         rspi_release_dma(rspi);
1115         pm_runtime_disable(&pdev->dev);
1116
1117         return 0;
1118 }
1119
1120 static const struct spi_ops rspi_ops = {
1121         .set_config_register =          rspi_set_config_register,
1122         .transfer_one =                 rspi_transfer_one,
1123         .mode_bits =                    SPI_CPHA | SPI_CPOL | SPI_LOOP,
1124 };
1125
1126 static const struct spi_ops rspi_rz_ops = {
1127         .set_config_register =          rspi_rz_set_config_register,
1128         .transfer_one =                 rspi_rz_transfer_one,
1129         .mode_bits =                    SPI_CPHA | SPI_CPOL | SPI_LOOP,
1130 };
1131
1132 static const struct spi_ops qspi_ops = {
1133         .set_config_register =          qspi_set_config_register,
1134         .transfer_one =                 qspi_transfer_one,
1135         .mode_bits =                    SPI_CPHA | SPI_CPOL | SPI_LOOP |
1136                                         SPI_TX_DUAL | SPI_TX_QUAD |
1137                                         SPI_RX_DUAL | SPI_RX_QUAD,
1138 };
1139
1140 #ifdef CONFIG_OF
1141 static const struct of_device_id rspi_of_match[] = {
1142         /* RSPI on legacy SH */
1143         { .compatible = "renesas,rspi", .data = &rspi_ops },
1144         /* RSPI on RZ/A1H */
1145         { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1146         /* QSPI on R-Car Gen2 */
1147         { .compatible = "renesas,qspi", .data = &qspi_ops },
1148         { /* sentinel */ }
1149 };
1150
1151 MODULE_DEVICE_TABLE(of, rspi_of_match);
1152
1153 static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1154 {
1155         u32 num_cs;
1156         int error;
1157
1158         /* Parse DT properties */
1159         error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1160         if (error) {
1161                 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1162                 return error;
1163         }
1164
1165         master->num_chipselect = num_cs;
1166         return 0;
1167 }
1168 #else
1169 #define rspi_of_match   NULL
1170 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1171 {
1172         return -EINVAL;
1173 }
1174 #endif /* CONFIG_OF */
1175
1176 static int rspi_request_irq(struct device *dev, unsigned int irq,
1177                             irq_handler_t handler, const char *suffix,
1178                             void *dev_id)
1179 {
1180         const char *base = dev_name(dev);
1181         size_t len = strlen(base) + strlen(suffix) + 2;
1182         char *name = devm_kzalloc(dev, len, GFP_KERNEL);
1183         if (!name)
1184                 return -ENOMEM;
1185         snprintf(name, len, "%s:%s", base, suffix);
1186         return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1187 }
1188
1189 static int rspi_probe(struct platform_device *pdev)
1190 {
1191         struct resource *res;
1192         struct spi_master *master;
1193         struct rspi_data *rspi;
1194         int ret;
1195         const struct of_device_id *of_id;
1196         const struct rspi_plat_data *rspi_pd;
1197         const struct spi_ops *ops;
1198
1199         master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1200         if (master == NULL) {
1201                 dev_err(&pdev->dev, "spi_alloc_master error.\n");
1202                 return -ENOMEM;
1203         }
1204
1205         of_id = of_match_device(rspi_of_match, &pdev->dev);
1206         if (of_id) {
1207                 ops = of_id->data;
1208                 ret = rspi_parse_dt(&pdev->dev, master);
1209                 if (ret)
1210                         goto error1;
1211         } else {
1212                 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1213                 rspi_pd = dev_get_platdata(&pdev->dev);
1214                 if (rspi_pd && rspi_pd->num_chipselect)
1215                         master->num_chipselect = rspi_pd->num_chipselect;
1216                 else
1217                         master->num_chipselect = 2; /* default */
1218         };
1219
1220         /* ops parameter check */
1221         if (!ops->set_config_register) {
1222                 dev_err(&pdev->dev, "there is no set_config_register\n");
1223                 ret = -ENODEV;
1224                 goto error1;
1225         }
1226
1227         rspi = spi_master_get_devdata(master);
1228         platform_set_drvdata(pdev, rspi);
1229         rspi->ops = ops;
1230         rspi->master = master;
1231
1232         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1233         rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1234         if (IS_ERR(rspi->addr)) {
1235                 ret = PTR_ERR(rspi->addr);
1236                 goto error1;
1237         }
1238
1239         rspi->clk = devm_clk_get(&pdev->dev, NULL);
1240         if (IS_ERR(rspi->clk)) {
1241                 dev_err(&pdev->dev, "cannot get clock\n");
1242                 ret = PTR_ERR(rspi->clk);
1243                 goto error1;
1244         }
1245
1246         pm_runtime_enable(&pdev->dev);
1247
1248         init_waitqueue_head(&rspi->wait);
1249
1250         master->bus_num = pdev->id;
1251         master->setup = rspi_setup;
1252         master->auto_runtime_pm = true;
1253         master->transfer_one = ops->transfer_one;
1254         master->prepare_message = rspi_prepare_message;
1255         master->unprepare_message = rspi_unprepare_message;
1256         master->mode_bits = ops->mode_bits;
1257         master->dev.of_node = pdev->dev.of_node;
1258
1259         ret = platform_get_irq_byname(pdev, "rx");
1260         if (ret < 0) {
1261                 ret = platform_get_irq_byname(pdev, "mux");
1262                 if (ret < 0)
1263                         ret = platform_get_irq(pdev, 0);
1264                 if (ret >= 0)
1265                         rspi->rx_irq = rspi->tx_irq = ret;
1266         } else {
1267                 rspi->rx_irq = ret;
1268                 ret = platform_get_irq_byname(pdev, "tx");
1269                 if (ret >= 0)
1270                         rspi->tx_irq = ret;
1271         }
1272         if (ret < 0) {
1273                 dev_err(&pdev->dev, "platform_get_irq error\n");
1274                 goto error2;
1275         }
1276
1277         if (rspi->rx_irq == rspi->tx_irq) {
1278                 /* Single multiplexed interrupt */
1279                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1280                                        "mux", rspi);
1281         } else {
1282                 /* Multi-interrupt mode, only SPRI and SPTI are used */
1283                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1284                                        "rx", rspi);
1285                 if (!ret)
1286                         ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1287                                                rspi_irq_tx, "tx", rspi);
1288         }
1289         if (ret < 0) {
1290                 dev_err(&pdev->dev, "request_irq error\n");
1291                 goto error2;
1292         }
1293
1294         ret = rspi_request_dma(rspi, pdev);
1295         if (ret < 0) {
1296                 dev_err(&pdev->dev, "rspi_request_dma failed.\n");
1297                 goto error3;
1298         }
1299
1300         ret = devm_spi_register_master(&pdev->dev, master);
1301         if (ret < 0) {
1302                 dev_err(&pdev->dev, "spi_register_master error.\n");
1303                 goto error3;
1304         }
1305
1306         dev_info(&pdev->dev, "probed\n");
1307
1308         return 0;
1309
1310 error3:
1311         rspi_release_dma(rspi);
1312 error2:
1313         pm_runtime_disable(&pdev->dev);
1314 error1:
1315         spi_master_put(master);
1316
1317         return ret;
1318 }
1319
1320 static struct platform_device_id spi_driver_ids[] = {
1321         { "rspi",       (kernel_ulong_t)&rspi_ops },
1322         { "rspi-rz",    (kernel_ulong_t)&rspi_rz_ops },
1323         { "qspi",       (kernel_ulong_t)&qspi_ops },
1324         {},
1325 };
1326
1327 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1328
1329 static struct platform_driver rspi_driver = {
1330         .probe =        rspi_probe,
1331         .remove =       rspi_remove,
1332         .id_table =     spi_driver_ids,
1333         .driver         = {
1334                 .name = "renesas_spi",
1335                 .owner  = THIS_MODULE,
1336                 .of_match_table = of_match_ptr(rspi_of_match),
1337         },
1338 };
1339 module_platform_driver(rspi_driver);
1340
1341 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1342 MODULE_LICENSE("GPL v2");
1343 MODULE_AUTHOR("Yoshihiro Shimoda");
1344 MODULE_ALIAS("platform:rspi");