Merge tag 'vfs-5.7-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / drivers / spi / spi-pxa2xx.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, Intel Corporation
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30
31 #include "spi-pxa2xx.h"
32
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
37
38 #define TIMOUT_DFLT             1000
39
40 /*
41  * for testing SSCR1 changes that require SSP restart, basically
42  * everything except the service and interrupt enables, the pxa270 developer
43  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44  * list, but the PXA255 dev man says all bits without really meaning the
45  * service and interrupt enables
46  */
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48                                 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49                                 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50                                 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51                                 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF   \
55                                 | QUARK_X1000_SSCR1_EFWR        \
56                                 | QUARK_X1000_SSCR1_RFT         \
57                                 | QUARK_X1000_SSCR1_TFT         \
58                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61                                 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62                                 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63                                 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64                                 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE   BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE                 BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH                 BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT                   9
71 #define LPSS_CAPS_CS_EN_MASK                    (0xf << LPSS_CAPS_CS_EN_SHIFT)
72
73 #define LPSS_PRIV_CLOCK_GATE 0x38
74 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
76
77 struct lpss_config {
78         /* LPSS offset from drv_data->ioaddr */
79         unsigned offset;
80         /* Register offsets from drv_data->lpss_base or -1 */
81         int reg_general;
82         int reg_ssp;
83         int reg_cs_ctrl;
84         int reg_capabilities;
85         /* FIFO thresholds */
86         u32 rx_threshold;
87         u32 tx_threshold_lo;
88         u32 tx_threshold_hi;
89         /* Chip select control */
90         unsigned cs_sel_shift;
91         unsigned cs_sel_mask;
92         unsigned cs_num;
93         /* Quirks */
94         unsigned cs_clk_stays_gated : 1;
95 };
96
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99         {       /* LPSS_LPT_SSP */
100                 .offset = 0x800,
101                 .reg_general = 0x08,
102                 .reg_ssp = 0x0c,
103                 .reg_cs_ctrl = 0x18,
104                 .reg_capabilities = -1,
105                 .rx_threshold = 64,
106                 .tx_threshold_lo = 160,
107                 .tx_threshold_hi = 224,
108         },
109         {       /* LPSS_BYT_SSP */
110                 .offset = 0x400,
111                 .reg_general = 0x08,
112                 .reg_ssp = 0x0c,
113                 .reg_cs_ctrl = 0x18,
114                 .reg_capabilities = -1,
115                 .rx_threshold = 64,
116                 .tx_threshold_lo = 160,
117                 .tx_threshold_hi = 224,
118         },
119         {       /* LPSS_BSW_SSP */
120                 .offset = 0x400,
121                 .reg_general = 0x08,
122                 .reg_ssp = 0x0c,
123                 .reg_cs_ctrl = 0x18,
124                 .reg_capabilities = -1,
125                 .rx_threshold = 64,
126                 .tx_threshold_lo = 160,
127                 .tx_threshold_hi = 224,
128                 .cs_sel_shift = 2,
129                 .cs_sel_mask = 1 << 2,
130                 .cs_num = 2,
131         },
132         {       /* LPSS_SPT_SSP */
133                 .offset = 0x200,
134                 .reg_general = -1,
135                 .reg_ssp = 0x20,
136                 .reg_cs_ctrl = 0x24,
137                 .reg_capabilities = -1,
138                 .rx_threshold = 1,
139                 .tx_threshold_lo = 32,
140                 .tx_threshold_hi = 56,
141         },
142         {       /* LPSS_BXT_SSP */
143                 .offset = 0x200,
144                 .reg_general = -1,
145                 .reg_ssp = 0x20,
146                 .reg_cs_ctrl = 0x24,
147                 .reg_capabilities = 0xfc,
148                 .rx_threshold = 1,
149                 .tx_threshold_lo = 16,
150                 .tx_threshold_hi = 48,
151                 .cs_sel_shift = 8,
152                 .cs_sel_mask = 3 << 8,
153         },
154         {       /* LPSS_CNL_SSP */
155                 .offset = 0x200,
156                 .reg_general = -1,
157                 .reg_ssp = 0x20,
158                 .reg_cs_ctrl = 0x24,
159                 .reg_capabilities = 0xfc,
160                 .rx_threshold = 1,
161                 .tx_threshold_lo = 32,
162                 .tx_threshold_hi = 56,
163                 .cs_sel_shift = 8,
164                 .cs_sel_mask = 3 << 8,
165                 .cs_clk_stays_gated = true,
166         },
167 };
168
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data *drv_data)
171 {
172         return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
173 }
174
175 static bool is_lpss_ssp(const struct driver_data *drv_data)
176 {
177         switch (drv_data->ssp_type) {
178         case LPSS_LPT_SSP:
179         case LPSS_BYT_SSP:
180         case LPSS_BSW_SSP:
181         case LPSS_SPT_SSP:
182         case LPSS_BXT_SSP:
183         case LPSS_CNL_SSP:
184                 return true;
185         default:
186                 return false;
187         }
188 }
189
190 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
191 {
192         return drv_data->ssp_type == QUARK_X1000_SSP;
193 }
194
195 static bool is_mmp2_ssp(const struct driver_data *drv_data)
196 {
197         return drv_data->ssp_type == MMP2_SSP;
198 }
199
200 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
201 {
202         switch (drv_data->ssp_type) {
203         case QUARK_X1000_SSP:
204                 return QUARK_X1000_SSCR1_CHANGE_MASK;
205         case CE4100_SSP:
206                 return CE4100_SSCR1_CHANGE_MASK;
207         default:
208                 return SSCR1_CHANGE_MASK;
209         }
210 }
211
212 static u32
213 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
214 {
215         switch (drv_data->ssp_type) {
216         case QUARK_X1000_SSP:
217                 return RX_THRESH_QUARK_X1000_DFLT;
218         case CE4100_SSP:
219                 return RX_THRESH_CE4100_DFLT;
220         default:
221                 return RX_THRESH_DFLT;
222         }
223 }
224
225 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
226 {
227         u32 mask;
228
229         switch (drv_data->ssp_type) {
230         case QUARK_X1000_SSP:
231                 mask = QUARK_X1000_SSSR_TFL_MASK;
232                 break;
233         case CE4100_SSP:
234                 mask = CE4100_SSSR_TFL_MASK;
235                 break;
236         default:
237                 mask = SSSR_TFL_MASK;
238                 break;
239         }
240
241         return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
242 }
243
244 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
245                                      u32 *sccr1_reg)
246 {
247         u32 mask;
248
249         switch (drv_data->ssp_type) {
250         case QUARK_X1000_SSP:
251                 mask = QUARK_X1000_SSCR1_RFT;
252                 break;
253         case CE4100_SSP:
254                 mask = CE4100_SSCR1_RFT;
255                 break;
256         default:
257                 mask = SSCR1_RFT;
258                 break;
259         }
260         *sccr1_reg &= ~mask;
261 }
262
263 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
264                                    u32 *sccr1_reg, u32 threshold)
265 {
266         switch (drv_data->ssp_type) {
267         case QUARK_X1000_SSP:
268                 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
269                 break;
270         case CE4100_SSP:
271                 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
272                 break;
273         default:
274                 *sccr1_reg |= SSCR1_RxTresh(threshold);
275                 break;
276         }
277 }
278
279 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
280                                   u32 clk_div, u8 bits)
281 {
282         switch (drv_data->ssp_type) {
283         case QUARK_X1000_SSP:
284                 return clk_div
285                         | QUARK_X1000_SSCR0_Motorola
286                         | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
287                         | SSCR0_SSE;
288         default:
289                 return clk_div
290                         | SSCR0_Motorola
291                         | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
292                         | SSCR0_SSE
293                         | (bits > 16 ? SSCR0_EDSS : 0);
294         }
295 }
296
297 /*
298  * Read and write LPSS SSP private registers. Caller must first check that
299  * is_lpss_ssp() returns true before these can be called.
300  */
301 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
302 {
303         WARN_ON(!drv_data->lpss_base);
304         return readl(drv_data->lpss_base + offset);
305 }
306
307 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
308                                   unsigned offset, u32 value)
309 {
310         WARN_ON(!drv_data->lpss_base);
311         writel(value, drv_data->lpss_base + offset);
312 }
313
314 /*
315  * lpss_ssp_setup - perform LPSS SSP specific setup
316  * @drv_data: pointer to the driver private data
317  *
318  * Perform LPSS SSP specific setup. This function must be called first if
319  * one is going to use LPSS SSP private registers.
320  */
321 static void lpss_ssp_setup(struct driver_data *drv_data)
322 {
323         const struct lpss_config *config;
324         u32 value;
325
326         config = lpss_get_config(drv_data);
327         drv_data->lpss_base = drv_data->ioaddr + config->offset;
328
329         /* Enable software chip select control */
330         value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
331         value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
332         value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
333         __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
334
335         /* Enable multiblock DMA transfers */
336         if (drv_data->controller_info->enable_dma) {
337                 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
338
339                 if (config->reg_general >= 0) {
340                         value = __lpss_ssp_read_priv(drv_data,
341                                                      config->reg_general);
342                         value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
343                         __lpss_ssp_write_priv(drv_data,
344                                               config->reg_general, value);
345                 }
346         }
347 }
348
349 static void lpss_ssp_select_cs(struct spi_device *spi,
350                                const struct lpss_config *config)
351 {
352         struct driver_data *drv_data =
353                 spi_controller_get_devdata(spi->controller);
354         u32 value, cs;
355
356         if (!config->cs_sel_mask)
357                 return;
358
359         value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
360
361         cs = spi->chip_select;
362         cs <<= config->cs_sel_shift;
363         if (cs != (value & config->cs_sel_mask)) {
364                 /*
365                  * When switching another chip select output active the
366                  * output must be selected first and wait 2 ssp_clk cycles
367                  * before changing state to active. Otherwise a short
368                  * glitch will occur on the previous chip select since
369                  * output select is latched but state control is not.
370                  */
371                 value &= ~config->cs_sel_mask;
372                 value |= cs;
373                 __lpss_ssp_write_priv(drv_data,
374                                       config->reg_cs_ctrl, value);
375                 ndelay(1000000000 /
376                        (drv_data->controller->max_speed_hz / 2));
377         }
378 }
379
380 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
381 {
382         struct driver_data *drv_data =
383                 spi_controller_get_devdata(spi->controller);
384         const struct lpss_config *config;
385         u32 value;
386
387         config = lpss_get_config(drv_data);
388
389         if (enable)
390                 lpss_ssp_select_cs(spi, config);
391
392         value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
393         if (enable)
394                 value &= ~LPSS_CS_CONTROL_CS_HIGH;
395         else
396                 value |= LPSS_CS_CONTROL_CS_HIGH;
397         __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
398         if (config->cs_clk_stays_gated) {
399                 u32 clkgate;
400
401                 /*
402                  * Changing CS alone when dynamic clock gating is on won't
403                  * actually flip CS at that time. This ruins SPI transfers
404                  * that specify delays, or have no data. Toggle the clock mode
405                  * to force on briefly to poke the CS pin to move.
406                  */
407                 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
408                 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
409                         LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
410
411                 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
412                 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
413         }
414 }
415
416 static void cs_assert(struct spi_device *spi)
417 {
418         struct chip_data *chip = spi_get_ctldata(spi);
419         struct driver_data *drv_data =
420                 spi_controller_get_devdata(spi->controller);
421
422         if (drv_data->ssp_type == CE4100_SSP) {
423                 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
424                 return;
425         }
426
427         if (chip->cs_control) {
428                 chip->cs_control(PXA2XX_CS_ASSERT);
429                 return;
430         }
431
432         if (chip->gpiod_cs) {
433                 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
434                 return;
435         }
436
437         if (is_lpss_ssp(drv_data))
438                 lpss_ssp_cs_control(spi, true);
439 }
440
441 static void cs_deassert(struct spi_device *spi)
442 {
443         struct chip_data *chip = spi_get_ctldata(spi);
444         struct driver_data *drv_data =
445                 spi_controller_get_devdata(spi->controller);
446         unsigned long timeout;
447
448         if (drv_data->ssp_type == CE4100_SSP)
449                 return;
450
451         /* Wait until SSP becomes idle before deasserting the CS */
452         timeout = jiffies + msecs_to_jiffies(10);
453         while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
454                !time_after(jiffies, timeout))
455                 cpu_relax();
456
457         if (chip->cs_control) {
458                 chip->cs_control(PXA2XX_CS_DEASSERT);
459                 return;
460         }
461
462         if (chip->gpiod_cs) {
463                 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
464                 return;
465         }
466
467         if (is_lpss_ssp(drv_data))
468                 lpss_ssp_cs_control(spi, false);
469 }
470
471 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
472 {
473         if (level)
474                 cs_deassert(spi);
475         else
476                 cs_assert(spi);
477 }
478
479 int pxa2xx_spi_flush(struct driver_data *drv_data)
480 {
481         unsigned long limit = loops_per_jiffy << 1;
482
483         do {
484                 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
485                         pxa2xx_spi_read(drv_data, SSDR);
486         } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
487         write_SSSR_CS(drv_data, SSSR_ROR);
488
489         return limit;
490 }
491
492 static void pxa2xx_spi_off(struct driver_data *drv_data)
493 {
494         /* On MMP, disabling SSE seems to corrupt the Rx FIFO */
495         if (is_mmp2_ssp(drv_data))
496                 return;
497
498         pxa2xx_spi_write(drv_data, SSCR0,
499                          pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
500 }
501
502 static int null_writer(struct driver_data *drv_data)
503 {
504         u8 n_bytes = drv_data->n_bytes;
505
506         if (pxa2xx_spi_txfifo_full(drv_data)
507                 || (drv_data->tx == drv_data->tx_end))
508                 return 0;
509
510         pxa2xx_spi_write(drv_data, SSDR, 0);
511         drv_data->tx += n_bytes;
512
513         return 1;
514 }
515
516 static int null_reader(struct driver_data *drv_data)
517 {
518         u8 n_bytes = drv_data->n_bytes;
519
520         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
521                && (drv_data->rx < drv_data->rx_end)) {
522                 pxa2xx_spi_read(drv_data, SSDR);
523                 drv_data->rx += n_bytes;
524         }
525
526         return drv_data->rx == drv_data->rx_end;
527 }
528
529 static int u8_writer(struct driver_data *drv_data)
530 {
531         if (pxa2xx_spi_txfifo_full(drv_data)
532                 || (drv_data->tx == drv_data->tx_end))
533                 return 0;
534
535         pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
536         ++drv_data->tx;
537
538         return 1;
539 }
540
541 static int u8_reader(struct driver_data *drv_data)
542 {
543         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
544                && (drv_data->rx < drv_data->rx_end)) {
545                 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
546                 ++drv_data->rx;
547         }
548
549         return drv_data->rx == drv_data->rx_end;
550 }
551
552 static int u16_writer(struct driver_data *drv_data)
553 {
554         if (pxa2xx_spi_txfifo_full(drv_data)
555                 || (drv_data->tx == drv_data->tx_end))
556                 return 0;
557
558         pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
559         drv_data->tx += 2;
560
561         return 1;
562 }
563
564 static int u16_reader(struct driver_data *drv_data)
565 {
566         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
567                && (drv_data->rx < drv_data->rx_end)) {
568                 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
569                 drv_data->rx += 2;
570         }
571
572         return drv_data->rx == drv_data->rx_end;
573 }
574
575 static int u32_writer(struct driver_data *drv_data)
576 {
577         if (pxa2xx_spi_txfifo_full(drv_data)
578                 || (drv_data->tx == drv_data->tx_end))
579                 return 0;
580
581         pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
582         drv_data->tx += 4;
583
584         return 1;
585 }
586
587 static int u32_reader(struct driver_data *drv_data)
588 {
589         while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
590                && (drv_data->rx < drv_data->rx_end)) {
591                 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
592                 drv_data->rx += 4;
593         }
594
595         return drv_data->rx == drv_data->rx_end;
596 }
597
598 static void reset_sccr1(struct driver_data *drv_data)
599 {
600         struct chip_data *chip =
601                 spi_get_ctldata(drv_data->controller->cur_msg->spi);
602         u32 sccr1_reg;
603
604         sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
605         switch (drv_data->ssp_type) {
606         case QUARK_X1000_SSP:
607                 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
608                 break;
609         case CE4100_SSP:
610                 sccr1_reg &= ~CE4100_SSCR1_RFT;
611                 break;
612         default:
613                 sccr1_reg &= ~SSCR1_RFT;
614                 break;
615         }
616         sccr1_reg |= chip->threshold;
617         pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
618 }
619
620 static void int_error_stop(struct driver_data *drv_data, const char* msg)
621 {
622         /* Stop and reset SSP */
623         write_SSSR_CS(drv_data, drv_data->clear_sr);
624         reset_sccr1(drv_data);
625         if (!pxa25x_ssp_comp(drv_data))
626                 pxa2xx_spi_write(drv_data, SSTO, 0);
627         pxa2xx_spi_flush(drv_data);
628         pxa2xx_spi_off(drv_data);
629
630         dev_err(&drv_data->pdev->dev, "%s\n", msg);
631
632         drv_data->controller->cur_msg->status = -EIO;
633         spi_finalize_current_transfer(drv_data->controller);
634 }
635
636 static void int_transfer_complete(struct driver_data *drv_data)
637 {
638         /* Clear and disable interrupts */
639         write_SSSR_CS(drv_data, drv_data->clear_sr);
640         reset_sccr1(drv_data);
641         if (!pxa25x_ssp_comp(drv_data))
642                 pxa2xx_spi_write(drv_data, SSTO, 0);
643
644         spi_finalize_current_transfer(drv_data->controller);
645 }
646
647 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
648 {
649         u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
650                        drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
651
652         u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
653
654         if (irq_status & SSSR_ROR) {
655                 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
656                 return IRQ_HANDLED;
657         }
658
659         if (irq_status & SSSR_TUR) {
660                 int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
661                 return IRQ_HANDLED;
662         }
663
664         if (irq_status & SSSR_TINT) {
665                 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
666                 if (drv_data->read(drv_data)) {
667                         int_transfer_complete(drv_data);
668                         return IRQ_HANDLED;
669                 }
670         }
671
672         /* Drain rx fifo, Fill tx fifo and prevent overruns */
673         do {
674                 if (drv_data->read(drv_data)) {
675                         int_transfer_complete(drv_data);
676                         return IRQ_HANDLED;
677                 }
678         } while (drv_data->write(drv_data));
679
680         if (drv_data->read(drv_data)) {
681                 int_transfer_complete(drv_data);
682                 return IRQ_HANDLED;
683         }
684
685         if (drv_data->tx == drv_data->tx_end) {
686                 u32 bytes_left;
687                 u32 sccr1_reg;
688
689                 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
690                 sccr1_reg &= ~SSCR1_TIE;
691
692                 /*
693                  * PXA25x_SSP has no timeout, set up rx threshould for the
694                  * remaining RX bytes.
695                  */
696                 if (pxa25x_ssp_comp(drv_data)) {
697                         u32 rx_thre;
698
699                         pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
700
701                         bytes_left = drv_data->rx_end - drv_data->rx;
702                         switch (drv_data->n_bytes) {
703                         case 4:
704                                 bytes_left >>= 2;
705                                 break;
706                         case 2:
707                                 bytes_left >>= 1;
708                                 break;
709                         }
710
711                         rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
712                         if (rx_thre > bytes_left)
713                                 rx_thre = bytes_left;
714
715                         pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
716                 }
717                 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
718         }
719
720         /* We did something */
721         return IRQ_HANDLED;
722 }
723
724 static void handle_bad_msg(struct driver_data *drv_data)
725 {
726         pxa2xx_spi_off(drv_data);
727         pxa2xx_spi_write(drv_data, SSCR1,
728                          pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
729         if (!pxa25x_ssp_comp(drv_data))
730                 pxa2xx_spi_write(drv_data, SSTO, 0);
731         write_SSSR_CS(drv_data, drv_data->clear_sr);
732
733         dev_err(&drv_data->pdev->dev,
734                 "bad message state in interrupt handler\n");
735 }
736
737 static irqreturn_t ssp_int(int irq, void *dev_id)
738 {
739         struct driver_data *drv_data = dev_id;
740         u32 sccr1_reg;
741         u32 mask = drv_data->mask_sr;
742         u32 status;
743
744         /*
745          * The IRQ might be shared with other peripherals so we must first
746          * check that are we RPM suspended or not. If we are we assume that
747          * the IRQ was not for us (we shouldn't be RPM suspended when the
748          * interrupt is enabled).
749          */
750         if (pm_runtime_suspended(&drv_data->pdev->dev))
751                 return IRQ_NONE;
752
753         /*
754          * If the device is not yet in RPM suspended state and we get an
755          * interrupt that is meant for another device, check if status bits
756          * are all set to one. That means that the device is already
757          * powered off.
758          */
759         status = pxa2xx_spi_read(drv_data, SSSR);
760         if (status == ~0)
761                 return IRQ_NONE;
762
763         sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
764
765         /* Ignore possible writes if we don't need to write */
766         if (!(sccr1_reg & SSCR1_TIE))
767                 mask &= ~SSSR_TFS;
768
769         /* Ignore RX timeout interrupt if it is disabled */
770         if (!(sccr1_reg & SSCR1_TINTE))
771                 mask &= ~SSSR_TINT;
772
773         if (!(status & mask))
774                 return IRQ_NONE;
775
776         pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
777         pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
778
779         if (!drv_data->controller->cur_msg) {
780                 handle_bad_msg(drv_data);
781                 /* Never fail */
782                 return IRQ_HANDLED;
783         }
784
785         return drv_data->transfer_handler(drv_data);
786 }
787
788 /*
789  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
790  * input frequency by fractions of 2^24. It also has a divider by 5.
791  *
792  * There are formulas to get baud rate value for given input frequency and
793  * divider parameters, such as DDS_CLK_RATE and SCR:
794  *
795  * Fsys = 200MHz
796  *
797  * Fssp = Fsys * DDS_CLK_RATE / 2^24                    (1)
798  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))           (2)
799  *
800  * DDS_CLK_RATE either 2^n or 2^n / 5.
801  * SCR is in range 0 .. 255
802  *
803  * Divisor = 5^i * 2^j * 2 * k
804  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
805  *       j = [0, 23]     j = 0 iff i = 1
806  *       k = [1, 256]
807  * Special case: j = 0, i = 1: Divisor = 2 / 5
808  *
809  * Accordingly to the specification the recommended values for DDS_CLK_RATE
810  * are:
811  *      Case 1:         2^n, n = [0, 23]
812  *      Case 2:         2^24 * 2 / 5 (0x666666)
813  *      Case 3:         less than or equal to 2^24 / 5 / 16 (0x33333)
814  *
815  * In all cases the lowest possible value is better.
816  *
817  * The function calculates parameters for all cases and chooses the one closest
818  * to the asked baud rate.
819  */
820 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
821 {
822         unsigned long xtal = 200000000;
823         unsigned long fref = xtal / 2;          /* mandatory division by 2,
824                                                    see (2) */
825                                                 /* case 3 */
826         unsigned long fref1 = fref / 2;         /* case 1 */
827         unsigned long fref2 = fref * 2 / 5;     /* case 2 */
828         unsigned long scale;
829         unsigned long q, q1, q2;
830         long r, r1, r2;
831         u32 mul;
832
833         /* Case 1 */
834
835         /* Set initial value for DDS_CLK_RATE */
836         mul = (1 << 24) >> 1;
837
838         /* Calculate initial quot */
839         q1 = DIV_ROUND_UP(fref1, rate);
840
841         /* Scale q1 if it's too big */
842         if (q1 > 256) {
843                 /* Scale q1 to range [1, 512] */
844                 scale = fls_long(q1 - 1);
845                 if (scale > 9) {
846                         q1 >>= scale - 9;
847                         mul >>= scale - 9;
848                 }
849
850                 /* Round the result if we have a remainder */
851                 q1 += q1 & 1;
852         }
853
854         /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
855         scale = __ffs(q1);
856         q1 >>= scale;
857         mul >>= scale;
858
859         /* Get the remainder */
860         r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
861
862         /* Case 2 */
863
864         q2 = DIV_ROUND_UP(fref2, rate);
865         r2 = abs(fref2 / q2 - rate);
866
867         /*
868          * Choose the best between two: less remainder we have the better. We
869          * can't go case 2 if q2 is greater than 256 since SCR register can
870          * hold only values 0 .. 255.
871          */
872         if (r2 >= r1 || q2 > 256) {
873                 /* case 1 is better */
874                 r = r1;
875                 q = q1;
876         } else {
877                 /* case 2 is better */
878                 r = r2;
879                 q = q2;
880                 mul = (1 << 24) * 2 / 5;
881         }
882
883         /* Check case 3 only if the divisor is big enough */
884         if (fref / rate >= 80) {
885                 u64 fssp;
886                 u32 m;
887
888                 /* Calculate initial quot */
889                 q1 = DIV_ROUND_UP(fref, rate);
890                 m = (1 << 24) / q1;
891
892                 /* Get the remainder */
893                 fssp = (u64)fref * m;
894                 do_div(fssp, 1 << 24);
895                 r1 = abs(fssp - rate);
896
897                 /* Choose this one if it suits better */
898                 if (r1 < r) {
899                         /* case 3 is better */
900                         q = 1;
901                         mul = m;
902                 }
903         }
904
905         *dds = mul;
906         return q - 1;
907 }
908
909 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
910 {
911         unsigned long ssp_clk = drv_data->controller->max_speed_hz;
912         const struct ssp_device *ssp = drv_data->ssp;
913
914         rate = min_t(int, ssp_clk, rate);
915
916         /*
917          * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
918          * that the SSP transmission rate can be greater than the device rate
919          */
920         if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
921                 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
922         else
923                 return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
924 }
925
926 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
927                                            int rate)
928 {
929         struct chip_data *chip =
930                 spi_get_ctldata(drv_data->controller->cur_msg->spi);
931         unsigned int clk_div;
932
933         switch (drv_data->ssp_type) {
934         case QUARK_X1000_SSP:
935                 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
936                 break;
937         default:
938                 clk_div = ssp_get_clk_div(drv_data, rate);
939                 break;
940         }
941         return clk_div << 8;
942 }
943
944 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
945                                struct spi_device *spi,
946                                struct spi_transfer *xfer)
947 {
948         struct chip_data *chip = spi_get_ctldata(spi);
949
950         return chip->enable_dma &&
951                xfer->len <= MAX_DMA_LEN &&
952                xfer->len >= chip->dma_burst_size;
953 }
954
955 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
956                                    struct spi_device *spi,
957                                    struct spi_transfer *transfer)
958 {
959         struct driver_data *drv_data = spi_controller_get_devdata(controller);
960         struct spi_message *message = controller->cur_msg;
961         struct chip_data *chip = spi_get_ctldata(spi);
962         u32 dma_thresh = chip->dma_threshold;
963         u32 dma_burst = chip->dma_burst_size;
964         u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
965         u32 clk_div;
966         u8 bits;
967         u32 speed;
968         u32 cr0;
969         u32 cr1;
970         int err;
971         int dma_mapped;
972
973         /* Check if we can DMA this transfer */
974         if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
975
976                 /* reject already-mapped transfers; PIO won't always work */
977                 if (message->is_dma_mapped
978                                 || transfer->rx_dma || transfer->tx_dma) {
979                         dev_err(&spi->dev,
980                                 "Mapped transfer length of %u is greater than %d\n",
981                                 transfer->len, MAX_DMA_LEN);
982                         return -EINVAL;
983                 }
984
985                 /* warn ... we force this to PIO mode */
986                 dev_warn_ratelimited(&spi->dev,
987                                      "DMA disabled for transfer length %ld greater than %d\n",
988                                      (long)transfer->len, MAX_DMA_LEN);
989         }
990
991         /* Setup the transfer state based on the type of transfer */
992         if (pxa2xx_spi_flush(drv_data) == 0) {
993                 dev_err(&spi->dev, "Flush failed\n");
994                 return -EIO;
995         }
996         drv_data->n_bytes = chip->n_bytes;
997         drv_data->tx = (void *)transfer->tx_buf;
998         drv_data->tx_end = drv_data->tx + transfer->len;
999         drv_data->rx = transfer->rx_buf;
1000         drv_data->rx_end = drv_data->rx + transfer->len;
1001         drv_data->write = drv_data->tx ? chip->write : null_writer;
1002         drv_data->read = drv_data->rx ? chip->read : null_reader;
1003
1004         /* Change speed and bit per word on a per transfer */
1005         bits = transfer->bits_per_word;
1006         speed = transfer->speed_hz;
1007
1008         clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1009
1010         if (bits <= 8) {
1011                 drv_data->n_bytes = 1;
1012                 drv_data->read = drv_data->read != null_reader ?
1013                                         u8_reader : null_reader;
1014                 drv_data->write = drv_data->write != null_writer ?
1015                                         u8_writer : null_writer;
1016         } else if (bits <= 16) {
1017                 drv_data->n_bytes = 2;
1018                 drv_data->read = drv_data->read != null_reader ?
1019                                         u16_reader : null_reader;
1020                 drv_data->write = drv_data->write != null_writer ?
1021                                         u16_writer : null_writer;
1022         } else if (bits <= 32) {
1023                 drv_data->n_bytes = 4;
1024                 drv_data->read = drv_data->read != null_reader ?
1025                                         u32_reader : null_reader;
1026                 drv_data->write = drv_data->write != null_writer ?
1027                                         u32_writer : null_writer;
1028         }
1029         /*
1030          * if bits/word is changed in dma mode, then must check the
1031          * thresholds and burst also
1032          */
1033         if (chip->enable_dma) {
1034                 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1035                                                 spi,
1036                                                 bits, &dma_burst,
1037                                                 &dma_thresh))
1038                         dev_warn_ratelimited(&spi->dev,
1039                                              "DMA burst size reduced to match bits_per_word\n");
1040         }
1041
1042         dma_mapped = controller->can_dma &&
1043                      controller->can_dma(controller, spi, transfer) &&
1044                      controller->cur_msg_mapped;
1045         if (dma_mapped) {
1046
1047                 /* Ensure we have the correct interrupt handler */
1048                 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1049
1050                 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1051                 if (err)
1052                         return err;
1053
1054                 /* Clear status and start DMA engine */
1055                 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1056                 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1057
1058                 pxa2xx_spi_dma_start(drv_data);
1059         } else {
1060                 /* Ensure we have the correct interrupt handler */
1061                 drv_data->transfer_handler = interrupt_transfer;
1062
1063                 /* Clear status  */
1064                 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1065                 write_SSSR_CS(drv_data, drv_data->clear_sr);
1066         }
1067
1068         /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1069         cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1070         if (!pxa25x_ssp_comp(drv_data))
1071                 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1072                         controller->max_speed_hz
1073                                 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1074                         dma_mapped ? "DMA" : "PIO");
1075         else
1076                 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1077                         controller->max_speed_hz / 2
1078                                 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1079                         dma_mapped ? "DMA" : "PIO");
1080
1081         if (is_lpss_ssp(drv_data)) {
1082                 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1083                     != chip->lpss_rx_threshold)
1084                         pxa2xx_spi_write(drv_data, SSIRF,
1085                                          chip->lpss_rx_threshold);
1086                 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1087                     != chip->lpss_tx_threshold)
1088                         pxa2xx_spi_write(drv_data, SSITF,
1089                                          chip->lpss_tx_threshold);
1090         }
1091
1092         if (is_quark_x1000_ssp(drv_data) &&
1093             (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1094                 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1095
1096         /* see if we need to reload the config registers */
1097         if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1098             || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1099             != (cr1 & change_mask)) {
1100                 /* stop the SSP, and update the other bits */
1101                 if (!is_mmp2_ssp(drv_data))
1102                         pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1103                 if (!pxa25x_ssp_comp(drv_data))
1104                         pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1105                 /* first set CR1 without interrupt and service enables */
1106                 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1107                 /* restart the SSP */
1108                 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1109
1110         } else {
1111                 if (!pxa25x_ssp_comp(drv_data))
1112                         pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1113         }
1114
1115         if (is_mmp2_ssp(drv_data)) {
1116                 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1117                                         & SSSR_TFL_MASK) >> 8;
1118
1119                 if (tx_level) {
1120                         /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1121                         dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1122                                                                 tx_level);
1123                         if (tx_level > transfer->len)
1124                                 tx_level = transfer->len;
1125                         drv_data->tx += tx_level;
1126                 }
1127         }
1128
1129         if (spi_controller_is_slave(controller)) {
1130                 while (drv_data->write(drv_data))
1131                         ;
1132                 if (drv_data->gpiod_ready) {
1133                         gpiod_set_value(drv_data->gpiod_ready, 1);
1134                         udelay(1);
1135                         gpiod_set_value(drv_data->gpiod_ready, 0);
1136                 }
1137         }
1138
1139         /*
1140          * Release the data by enabling service requests and interrupts,
1141          * without changing any mode bits
1142          */
1143         pxa2xx_spi_write(drv_data, SSCR1, cr1);
1144
1145         return 1;
1146 }
1147
1148 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1149 {
1150         struct driver_data *drv_data = spi_controller_get_devdata(controller);
1151
1152         /* Stop and reset SSP */
1153         write_SSSR_CS(drv_data, drv_data->clear_sr);
1154         reset_sccr1(drv_data);
1155         if (!pxa25x_ssp_comp(drv_data))
1156                 pxa2xx_spi_write(drv_data, SSTO, 0);
1157         pxa2xx_spi_flush(drv_data);
1158         pxa2xx_spi_off(drv_data);
1159
1160         dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1161
1162         drv_data->controller->cur_msg->status = -EINTR;
1163         spi_finalize_current_transfer(drv_data->controller);
1164
1165         return 0;
1166 }
1167
1168 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1169                                  struct spi_message *msg)
1170 {
1171         struct driver_data *drv_data = spi_controller_get_devdata(controller);
1172
1173         /* Disable the SSP */
1174         pxa2xx_spi_off(drv_data);
1175         /* Clear and disable interrupts and service requests */
1176         write_SSSR_CS(drv_data, drv_data->clear_sr);
1177         pxa2xx_spi_write(drv_data, SSCR1,
1178                          pxa2xx_spi_read(drv_data, SSCR1)
1179                          & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1180         if (!pxa25x_ssp_comp(drv_data))
1181                 pxa2xx_spi_write(drv_data, SSTO, 0);
1182
1183         /*
1184          * Stop the DMA if running. Note DMA callback handler may have unset
1185          * the dma_running already, which is fine as stopping is not needed
1186          * then but we shouldn't rely this flag for anything else than
1187          * stopping. For instance to differentiate between PIO and DMA
1188          * transfers.
1189          */
1190         if (atomic_read(&drv_data->dma_running))
1191                 pxa2xx_spi_dma_stop(drv_data);
1192 }
1193
1194 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1195 {
1196         struct driver_data *drv_data = spi_controller_get_devdata(controller);
1197
1198         /* Disable the SSP now */
1199         pxa2xx_spi_off(drv_data);
1200
1201         return 0;
1202 }
1203
1204 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1205                     struct pxa2xx_spi_chip *chip_info)
1206 {
1207         struct driver_data *drv_data =
1208                 spi_controller_get_devdata(spi->controller);
1209         struct gpio_desc *gpiod;
1210         int err = 0;
1211
1212         if (chip == NULL)
1213                 return 0;
1214
1215         if (drv_data->cs_gpiods) {
1216                 gpiod = drv_data->cs_gpiods[spi->chip_select];
1217                 if (gpiod) {
1218                         chip->gpiod_cs = gpiod;
1219                         chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1220                         gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1221                 }
1222
1223                 return 0;
1224         }
1225
1226         if (chip_info == NULL)
1227                 return 0;
1228
1229         /* NOTE: setup() can be called multiple times, possibly with
1230          * different chip_info, release previously requested GPIO
1231          */
1232         if (chip->gpiod_cs) {
1233                 gpiod_put(chip->gpiod_cs);
1234                 chip->gpiod_cs = NULL;
1235         }
1236
1237         /* If (*cs_control) is provided, ignore GPIO chip select */
1238         if (chip_info->cs_control) {
1239                 chip->cs_control = chip_info->cs_control;
1240                 return 0;
1241         }
1242
1243         if (gpio_is_valid(chip_info->gpio_cs)) {
1244                 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1245                 if (err) {
1246                         dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1247                                 chip_info->gpio_cs);
1248                         return err;
1249                 }
1250
1251                 gpiod = gpio_to_desc(chip_info->gpio_cs);
1252                 chip->gpiod_cs = gpiod;
1253                 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1254
1255                 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1256         }
1257
1258         return err;
1259 }
1260
1261 static int setup(struct spi_device *spi)
1262 {
1263         struct pxa2xx_spi_chip *chip_info;
1264         struct chip_data *chip;
1265         const struct lpss_config *config;
1266         struct driver_data *drv_data =
1267                 spi_controller_get_devdata(spi->controller);
1268         uint tx_thres, tx_hi_thres, rx_thres;
1269
1270         switch (drv_data->ssp_type) {
1271         case QUARK_X1000_SSP:
1272                 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1273                 tx_hi_thres = 0;
1274                 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1275                 break;
1276         case CE4100_SSP:
1277                 tx_thres = TX_THRESH_CE4100_DFLT;
1278                 tx_hi_thres = 0;
1279                 rx_thres = RX_THRESH_CE4100_DFLT;
1280                 break;
1281         case LPSS_LPT_SSP:
1282         case LPSS_BYT_SSP:
1283         case LPSS_BSW_SSP:
1284         case LPSS_SPT_SSP:
1285         case LPSS_BXT_SSP:
1286         case LPSS_CNL_SSP:
1287                 config = lpss_get_config(drv_data);
1288                 tx_thres = config->tx_threshold_lo;
1289                 tx_hi_thres = config->tx_threshold_hi;
1290                 rx_thres = config->rx_threshold;
1291                 break;
1292         default:
1293                 tx_hi_thres = 0;
1294                 if (spi_controller_is_slave(drv_data->controller)) {
1295                         tx_thres = 1;
1296                         rx_thres = 2;
1297                 } else {
1298                         tx_thres = TX_THRESH_DFLT;
1299                         rx_thres = RX_THRESH_DFLT;
1300                 }
1301                 break;
1302         }
1303
1304         /* Only alloc on first setup */
1305         chip = spi_get_ctldata(spi);
1306         if (!chip) {
1307                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1308                 if (!chip)
1309                         return -ENOMEM;
1310
1311                 if (drv_data->ssp_type == CE4100_SSP) {
1312                         if (spi->chip_select > 4) {
1313                                 dev_err(&spi->dev,
1314                                         "failed setup: cs number must not be > 4.\n");
1315                                 kfree(chip);
1316                                 return -EINVAL;
1317                         }
1318
1319                         chip->frm = spi->chip_select;
1320                 }
1321                 chip->enable_dma = drv_data->controller_info->enable_dma;
1322                 chip->timeout = TIMOUT_DFLT;
1323         }
1324
1325         /* protocol drivers may change the chip settings, so...
1326          * if chip_info exists, use it */
1327         chip_info = spi->controller_data;
1328
1329         /* chip_info isn't always needed */
1330         chip->cr1 = 0;
1331         if (chip_info) {
1332                 if (chip_info->timeout)
1333                         chip->timeout = chip_info->timeout;
1334                 if (chip_info->tx_threshold)
1335                         tx_thres = chip_info->tx_threshold;
1336                 if (chip_info->tx_hi_threshold)
1337                         tx_hi_thres = chip_info->tx_hi_threshold;
1338                 if (chip_info->rx_threshold)
1339                         rx_thres = chip_info->rx_threshold;
1340                 chip->dma_threshold = 0;
1341                 if (chip_info->enable_loopback)
1342                         chip->cr1 = SSCR1_LBM;
1343         }
1344         if (spi_controller_is_slave(drv_data->controller)) {
1345                 chip->cr1 |= SSCR1_SCFR;
1346                 chip->cr1 |= SSCR1_SCLKDIR;
1347                 chip->cr1 |= SSCR1_SFRMDIR;
1348                 chip->cr1 |= SSCR1_SPH;
1349         }
1350
1351         chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1352         chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1353                                 | SSITF_TxHiThresh(tx_hi_thres);
1354
1355         /* set dma burst and threshold outside of chip_info path so that if
1356          * chip_info goes away after setting chip->enable_dma, the
1357          * burst and threshold can still respond to changes in bits_per_word */
1358         if (chip->enable_dma) {
1359                 /* set up legal burst and threshold for dma */
1360                 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1361                                                 spi->bits_per_word,
1362                                                 &chip->dma_burst_size,
1363                                                 &chip->dma_threshold)) {
1364                         dev_warn(&spi->dev,
1365                                  "in setup: DMA burst size reduced to match bits_per_word\n");
1366                 }
1367                 dev_dbg(&spi->dev,
1368                         "in setup: DMA burst size set to %u\n",
1369                         chip->dma_burst_size);
1370         }
1371
1372         switch (drv_data->ssp_type) {
1373         case QUARK_X1000_SSP:
1374                 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1375                                    & QUARK_X1000_SSCR1_RFT)
1376                                    | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1377                                    & QUARK_X1000_SSCR1_TFT);
1378                 break;
1379         case CE4100_SSP:
1380                 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1381                         (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1382                 break;
1383         default:
1384                 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1385                         (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1386                 break;
1387         }
1388
1389         chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1390         chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1391                         | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1392
1393         if (spi->mode & SPI_LOOP)
1394                 chip->cr1 |= SSCR1_LBM;
1395
1396         if (spi->bits_per_word <= 8) {
1397                 chip->n_bytes = 1;
1398                 chip->read = u8_reader;
1399                 chip->write = u8_writer;
1400         } else if (spi->bits_per_word <= 16) {
1401                 chip->n_bytes = 2;
1402                 chip->read = u16_reader;
1403                 chip->write = u16_writer;
1404         } else if (spi->bits_per_word <= 32) {
1405                 chip->n_bytes = 4;
1406                 chip->read = u32_reader;
1407                 chip->write = u32_writer;
1408         }
1409
1410         spi_set_ctldata(spi, chip);
1411
1412         if (drv_data->ssp_type == CE4100_SSP)
1413                 return 0;
1414
1415         return setup_cs(spi, chip, chip_info);
1416 }
1417
1418 static void cleanup(struct spi_device *spi)
1419 {
1420         struct chip_data *chip = spi_get_ctldata(spi);
1421         struct driver_data *drv_data =
1422                 spi_controller_get_devdata(spi->controller);
1423
1424         if (!chip)
1425                 return;
1426
1427         if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1428             chip->gpiod_cs)
1429                 gpiod_put(chip->gpiod_cs);
1430
1431         kfree(chip);
1432 }
1433
1434 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1435         { "INT33C0", LPSS_LPT_SSP },
1436         { "INT33C1", LPSS_LPT_SSP },
1437         { "INT3430", LPSS_LPT_SSP },
1438         { "INT3431", LPSS_LPT_SSP },
1439         { "80860F0E", LPSS_BYT_SSP },
1440         { "8086228E", LPSS_BSW_SSP },
1441         { },
1442 };
1443 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1444
1445 /*
1446  * PCI IDs of compound devices that integrate both host controller and private
1447  * integrated DMA engine. Please note these are not used in module
1448  * autoloading and probing in this module but matching the LPSS SSP type.
1449  */
1450 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1451         /* SPT-LP */
1452         { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1453         { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1454         /* SPT-H */
1455         { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1456         { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1457         /* KBL-H */
1458         { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1459         { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1460         /* CML-V */
1461         { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1462         { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1463         /* BXT A-Step */
1464         { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1465         { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1466         { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1467         /* BXT B-Step */
1468         { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1469         { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1470         { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1471         /* GLK */
1472         { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1473         { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1474         { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1475         /* ICL-LP */
1476         { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1477         { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1478         { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1479         /* EHL */
1480         { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1481         { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1482         { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1483         /* JSL */
1484         { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1485         { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1486         { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1487         /* APL */
1488         { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1489         { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1490         { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1491         /* CNL-LP */
1492         { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1493         { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1494         { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1495         /* CNL-H */
1496         { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1497         { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1498         { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1499         /* CML-LP */
1500         { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1501         { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1502         { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1503         /* CML-H */
1504         { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1505         { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1506         { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1507         /* TGL-LP */
1508         { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1509         { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1510         { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1511         { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1512         { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1513         { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1514         { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1515         { },
1516 };
1517
1518 static const struct of_device_id pxa2xx_spi_of_match[] = {
1519         { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1520         {},
1521 };
1522 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1523
1524 #ifdef CONFIG_ACPI
1525
1526 static int pxa2xx_spi_get_port_id(struct device *dev)
1527 {
1528         struct acpi_device *adev;
1529         unsigned int devid;
1530         int port_id = -1;
1531
1532         adev = ACPI_COMPANION(dev);
1533         if (adev && adev->pnp.unique_id &&
1534             !kstrtouint(adev->pnp.unique_id, 0, &devid))
1535                 port_id = devid;
1536         return port_id;
1537 }
1538
1539 #else /* !CONFIG_ACPI */
1540
1541 static int pxa2xx_spi_get_port_id(struct device *dev)
1542 {
1543         return -1;
1544 }
1545
1546 #endif /* CONFIG_ACPI */
1547
1548
1549 #ifdef CONFIG_PCI
1550
1551 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1552 {
1553         return param == chan->device->dev;
1554 }
1555
1556 #endif /* CONFIG_PCI */
1557
1558 static struct pxa2xx_spi_controller *
1559 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1560 {
1561         struct pxa2xx_spi_controller *pdata;
1562         struct ssp_device *ssp;
1563         struct resource *res;
1564         struct device *parent = pdev->dev.parent;
1565         struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1566         const struct pci_device_id *pcidev_id = NULL;
1567         enum pxa_ssp_type type;
1568         const void *match;
1569
1570         if (pcidev)
1571                 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1572
1573         match = device_get_match_data(&pdev->dev);
1574         if (match)
1575                 type = (enum pxa_ssp_type)match;
1576         else if (pcidev_id)
1577                 type = (enum pxa_ssp_type)pcidev_id->driver_data;
1578         else
1579                 return ERR_PTR(-EINVAL);
1580
1581         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1582         if (!pdata)
1583                 return ERR_PTR(-ENOMEM);
1584
1585         ssp = &pdata->ssp;
1586
1587         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1588         ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1589         if (IS_ERR(ssp->mmio_base))
1590                 return ERR_CAST(ssp->mmio_base);
1591
1592         ssp->phys_base = res->start;
1593
1594 #ifdef CONFIG_PCI
1595         if (pcidev_id) {
1596                 pdata->tx_param = parent;
1597                 pdata->rx_param = parent;
1598                 pdata->dma_filter = pxa2xx_spi_idma_filter;
1599         }
1600 #endif
1601
1602         ssp->clk = devm_clk_get(&pdev->dev, NULL);
1603         if (IS_ERR(ssp->clk))
1604                 return ERR_CAST(ssp->clk);
1605
1606         ssp->irq = platform_get_irq(pdev, 0);
1607         if (ssp->irq < 0)
1608                 return ERR_PTR(ssp->irq);
1609
1610         ssp->type = type;
1611         ssp->dev = &pdev->dev;
1612         ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1613
1614         pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1615         pdata->num_chipselect = 1;
1616         pdata->enable_dma = true;
1617         pdata->dma_burst_size = 1;
1618
1619         return pdata;
1620 }
1621
1622 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1623                                       unsigned int cs)
1624 {
1625         struct driver_data *drv_data = spi_controller_get_devdata(controller);
1626
1627         if (has_acpi_companion(&drv_data->pdev->dev)) {
1628                 switch (drv_data->ssp_type) {
1629                 /*
1630                  * For Atoms the ACPI DeviceSelection used by the Windows
1631                  * driver starts from 1 instead of 0 so translate it here
1632                  * to match what Linux expects.
1633                  */
1634                 case LPSS_BYT_SSP:
1635                 case LPSS_BSW_SSP:
1636                         return cs - 1;
1637
1638                 default:
1639                         break;
1640                 }
1641         }
1642
1643         return cs;
1644 }
1645
1646 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1647 {
1648         return MAX_DMA_LEN;
1649 }
1650
1651 static int pxa2xx_spi_probe(struct platform_device *pdev)
1652 {
1653         struct device *dev = &pdev->dev;
1654         struct pxa2xx_spi_controller *platform_info;
1655         struct spi_controller *controller;
1656         struct driver_data *drv_data;
1657         struct ssp_device *ssp;
1658         const struct lpss_config *config;
1659         int status, count;
1660         u32 tmp;
1661
1662         platform_info = dev_get_platdata(dev);
1663         if (!platform_info) {
1664                 platform_info = pxa2xx_spi_init_pdata(pdev);
1665                 if (IS_ERR(platform_info)) {
1666                         dev_err(&pdev->dev, "missing platform data\n");
1667                         return PTR_ERR(platform_info);
1668                 }
1669         }
1670
1671         ssp = pxa_ssp_request(pdev->id, pdev->name);
1672         if (!ssp)
1673                 ssp = &platform_info->ssp;
1674
1675         if (!ssp->mmio_base) {
1676                 dev_err(&pdev->dev, "failed to get ssp\n");
1677                 return -ENODEV;
1678         }
1679
1680         if (platform_info->is_slave)
1681                 controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1682         else
1683                 controller = spi_alloc_master(dev, sizeof(struct driver_data));
1684
1685         if (!controller) {
1686                 dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1687                 pxa_ssp_free(ssp);
1688                 return -ENOMEM;
1689         }
1690         drv_data = spi_controller_get_devdata(controller);
1691         drv_data->controller = controller;
1692         drv_data->controller_info = platform_info;
1693         drv_data->pdev = pdev;
1694         drv_data->ssp = ssp;
1695
1696         controller->dev.of_node = pdev->dev.of_node;
1697         /* the spi->mode bits understood by this driver: */
1698         controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1699
1700         controller->bus_num = ssp->port_id;
1701         controller->dma_alignment = DMA_ALIGNMENT;
1702         controller->cleanup = cleanup;
1703         controller->setup = setup;
1704         controller->set_cs = pxa2xx_spi_set_cs;
1705         controller->transfer_one = pxa2xx_spi_transfer_one;
1706         controller->slave_abort = pxa2xx_spi_slave_abort;
1707         controller->handle_err = pxa2xx_spi_handle_err;
1708         controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1709         controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1710         controller->auto_runtime_pm = true;
1711         controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1712
1713         drv_data->ssp_type = ssp->type;
1714
1715         drv_data->ioaddr = ssp->mmio_base;
1716         drv_data->ssdr_physical = ssp->phys_base + SSDR;
1717         if (pxa25x_ssp_comp(drv_data)) {
1718                 switch (drv_data->ssp_type) {
1719                 case QUARK_X1000_SSP:
1720                         controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1721                         break;
1722                 default:
1723                         controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1724                         break;
1725                 }
1726
1727                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1728                 drv_data->dma_cr1 = 0;
1729                 drv_data->clear_sr = SSSR_ROR;
1730                 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1731         } else {
1732                 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1733                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1734                 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1735                 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1736                 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1737                                                 | SSSR_ROR | SSSR_TUR;
1738         }
1739
1740         status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1741                         drv_data);
1742         if (status < 0) {
1743                 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1744                 goto out_error_controller_alloc;
1745         }
1746
1747         /* Setup DMA if requested */
1748         if (platform_info->enable_dma) {
1749                 status = pxa2xx_spi_dma_setup(drv_data);
1750                 if (status) {
1751                         dev_warn(dev, "no DMA channels available, using PIO\n");
1752                         platform_info->enable_dma = false;
1753                 } else {
1754                         controller->can_dma = pxa2xx_spi_can_dma;
1755                         controller->max_dma_len = MAX_DMA_LEN;
1756                         controller->max_transfer_size =
1757                                 pxa2xx_spi_max_dma_transfer_size;
1758                 }
1759         }
1760
1761         /* Enable SOC clock */
1762         status = clk_prepare_enable(ssp->clk);
1763         if (status)
1764                 goto out_error_dma_irq_alloc;
1765
1766         controller->max_speed_hz = clk_get_rate(ssp->clk);
1767         /*
1768          * Set minimum speed for all other platforms than Intel Quark which is
1769          * able do under 1 Hz transfers.
1770          */
1771         if (!pxa25x_ssp_comp(drv_data))
1772                 controller->min_speed_hz =
1773                         DIV_ROUND_UP(controller->max_speed_hz, 4096);
1774         else if (!is_quark_x1000_ssp(drv_data))
1775                 controller->min_speed_hz =
1776                         DIV_ROUND_UP(controller->max_speed_hz, 512);
1777
1778         /* Load default SSP configuration */
1779         pxa2xx_spi_write(drv_data, SSCR0, 0);
1780         switch (drv_data->ssp_type) {
1781         case QUARK_X1000_SSP:
1782                 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1783                       QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1784                 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1785
1786                 /* using the Motorola SPI protocol and use 8 bit frame */
1787                 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1788                 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1789                 break;
1790         case CE4100_SSP:
1791                 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1792                       CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1793                 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1794                 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1795                 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1796                 break;
1797         default:
1798
1799                 if (spi_controller_is_slave(controller)) {
1800                         tmp = SSCR1_SCFR |
1801                               SSCR1_SCLKDIR |
1802                               SSCR1_SFRMDIR |
1803                               SSCR1_RxTresh(2) |
1804                               SSCR1_TxTresh(1) |
1805                               SSCR1_SPH;
1806                 } else {
1807                         tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1808                               SSCR1_TxTresh(TX_THRESH_DFLT);
1809                 }
1810                 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1811                 tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1812                 if (!spi_controller_is_slave(controller))
1813                         tmp |= SSCR0_SCR(2);
1814                 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1815                 break;
1816         }
1817
1818         if (!pxa25x_ssp_comp(drv_data))
1819                 pxa2xx_spi_write(drv_data, SSTO, 0);
1820
1821         if (!is_quark_x1000_ssp(drv_data))
1822                 pxa2xx_spi_write(drv_data, SSPSP, 0);
1823
1824         if (is_lpss_ssp(drv_data)) {
1825                 lpss_ssp_setup(drv_data);
1826                 config = lpss_get_config(drv_data);
1827                 if (config->reg_capabilities >= 0) {
1828                         tmp = __lpss_ssp_read_priv(drv_data,
1829                                                    config->reg_capabilities);
1830                         tmp &= LPSS_CAPS_CS_EN_MASK;
1831                         tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1832                         platform_info->num_chipselect = ffz(tmp);
1833                 } else if (config->cs_num) {
1834                         platform_info->num_chipselect = config->cs_num;
1835                 }
1836         }
1837         controller->num_chipselect = platform_info->num_chipselect;
1838
1839         count = gpiod_count(&pdev->dev, "cs");
1840         if (count > 0) {
1841                 int i;
1842
1843                 controller->num_chipselect = max_t(int, count,
1844                         controller->num_chipselect);
1845
1846                 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1847                         controller->num_chipselect, sizeof(struct gpio_desc *),
1848                         GFP_KERNEL);
1849                 if (!drv_data->cs_gpiods) {
1850                         status = -ENOMEM;
1851                         goto out_error_clock_enabled;
1852                 }
1853
1854                 for (i = 0; i < controller->num_chipselect; i++) {
1855                         struct gpio_desc *gpiod;
1856
1857                         gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1858                         if (IS_ERR(gpiod)) {
1859                                 /* Means use native chip select */
1860                                 if (PTR_ERR(gpiod) == -ENOENT)
1861                                         continue;
1862
1863                                 status = PTR_ERR(gpiod);
1864                                 goto out_error_clock_enabled;
1865                         } else {
1866                                 drv_data->cs_gpiods[i] = gpiod;
1867                         }
1868                 }
1869         }
1870
1871         if (platform_info->is_slave) {
1872                 drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1873                                                 "ready", GPIOD_OUT_LOW);
1874                 if (IS_ERR(drv_data->gpiod_ready)) {
1875                         status = PTR_ERR(drv_data->gpiod_ready);
1876                         goto out_error_clock_enabled;
1877                 }
1878         }
1879
1880         pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1881         pm_runtime_use_autosuspend(&pdev->dev);
1882         pm_runtime_set_active(&pdev->dev);
1883         pm_runtime_enable(&pdev->dev);
1884
1885         /* Register with the SPI framework */
1886         platform_set_drvdata(pdev, drv_data);
1887         status = devm_spi_register_controller(&pdev->dev, controller);
1888         if (status != 0) {
1889                 dev_err(&pdev->dev, "problem registering spi controller\n");
1890                 goto out_error_pm_runtime_enabled;
1891         }
1892
1893         return status;
1894
1895 out_error_pm_runtime_enabled:
1896         pm_runtime_put_noidle(&pdev->dev);
1897         pm_runtime_disable(&pdev->dev);
1898
1899 out_error_clock_enabled:
1900         clk_disable_unprepare(ssp->clk);
1901
1902 out_error_dma_irq_alloc:
1903         pxa2xx_spi_dma_release(drv_data);
1904         free_irq(ssp->irq, drv_data);
1905
1906 out_error_controller_alloc:
1907         spi_controller_put(controller);
1908         pxa_ssp_free(ssp);
1909         return status;
1910 }
1911
1912 static int pxa2xx_spi_remove(struct platform_device *pdev)
1913 {
1914         struct driver_data *drv_data = platform_get_drvdata(pdev);
1915         struct ssp_device *ssp = drv_data->ssp;
1916
1917         pm_runtime_get_sync(&pdev->dev);
1918
1919         /* Disable the SSP at the peripheral and SOC level */
1920         pxa2xx_spi_write(drv_data, SSCR0, 0);
1921         clk_disable_unprepare(ssp->clk);
1922
1923         /* Release DMA */
1924         if (drv_data->controller_info->enable_dma)
1925                 pxa2xx_spi_dma_release(drv_data);
1926
1927         pm_runtime_put_noidle(&pdev->dev);
1928         pm_runtime_disable(&pdev->dev);
1929
1930         /* Release IRQ */
1931         free_irq(ssp->irq, drv_data);
1932
1933         /* Release SSP */
1934         pxa_ssp_free(ssp);
1935
1936         return 0;
1937 }
1938
1939 #ifdef CONFIG_PM_SLEEP
1940 static int pxa2xx_spi_suspend(struct device *dev)
1941 {
1942         struct driver_data *drv_data = dev_get_drvdata(dev);
1943         struct ssp_device *ssp = drv_data->ssp;
1944         int status;
1945
1946         status = spi_controller_suspend(drv_data->controller);
1947         if (status != 0)
1948                 return status;
1949         pxa2xx_spi_write(drv_data, SSCR0, 0);
1950
1951         if (!pm_runtime_suspended(dev))
1952                 clk_disable_unprepare(ssp->clk);
1953
1954         return 0;
1955 }
1956
1957 static int pxa2xx_spi_resume(struct device *dev)
1958 {
1959         struct driver_data *drv_data = dev_get_drvdata(dev);
1960         struct ssp_device *ssp = drv_data->ssp;
1961         int status;
1962
1963         /* Enable the SSP clock */
1964         if (!pm_runtime_suspended(dev)) {
1965                 status = clk_prepare_enable(ssp->clk);
1966                 if (status)
1967                         return status;
1968         }
1969
1970         /* Start the queue running */
1971         return spi_controller_resume(drv_data->controller);
1972 }
1973 #endif
1974
1975 #ifdef CONFIG_PM
1976 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1977 {
1978         struct driver_data *drv_data = dev_get_drvdata(dev);
1979
1980         clk_disable_unprepare(drv_data->ssp->clk);
1981         return 0;
1982 }
1983
1984 static int pxa2xx_spi_runtime_resume(struct device *dev)
1985 {
1986         struct driver_data *drv_data = dev_get_drvdata(dev);
1987         int status;
1988
1989         status = clk_prepare_enable(drv_data->ssp->clk);
1990         return status;
1991 }
1992 #endif
1993
1994 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1995         SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1996         SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1997                            pxa2xx_spi_runtime_resume, NULL)
1998 };
1999
2000 static struct platform_driver driver = {
2001         .driver = {
2002                 .name   = "pxa2xx-spi",
2003                 .pm     = &pxa2xx_spi_pm_ops,
2004                 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
2005                 .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
2006         },
2007         .probe = pxa2xx_spi_probe,
2008         .remove = pxa2xx_spi_remove,
2009 };
2010
2011 static int __init pxa2xx_spi_init(void)
2012 {
2013         return platform_driver_register(&driver);
2014 }
2015 subsys_initcall(pxa2xx_spi_init);
2016
2017 static void __exit pxa2xx_spi_exit(void)
2018 {
2019         platform_driver_unregister(&driver);
2020 }
2021 module_exit(pxa2xx_spi_exit);
2022
2023 MODULE_SOFTDEP("pre: dw_dmac");