1 // SPDX-License-Identifier: GPL-2.0+
3 // Copyright 2013 Freescale Semiconductor, Inc.
6 // Freescale DSPI driver
7 // This file contains a driver for the Freescale DSPI
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of_device.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/regmap.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-fsl-dspi.h>
22 #define DRIVER_NAME "fsl-dspi"
25 #define SPI_MCR_MASTER BIT(31)
26 #define SPI_MCR_PCSIS(x) ((x) << 16)
27 #define SPI_MCR_CLR_TXF BIT(11)
28 #define SPI_MCR_CLR_RXF BIT(10)
29 #define SPI_MCR_XSPI BIT(3)
30 #define SPI_MCR_DIS_TXF BIT(13)
31 #define SPI_MCR_DIS_RXF BIT(12)
32 #define SPI_MCR_HALT BIT(0)
35 #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16)
37 #define SPI_CTAR(x) (0x0c + (((x) & GENMASK(1, 0)) * 4))
38 #define SPI_CTAR_FMSZ(x) (((x) << 27) & GENMASK(30, 27))
39 #define SPI_CTAR_CPOL BIT(26)
40 #define SPI_CTAR_CPHA BIT(25)
41 #define SPI_CTAR_LSBFE BIT(24)
42 #define SPI_CTAR_PCSSCK(x) (((x) << 22) & GENMASK(23, 22))
43 #define SPI_CTAR_PASC(x) (((x) << 20) & GENMASK(21, 20))
44 #define SPI_CTAR_PDT(x) (((x) << 18) & GENMASK(19, 18))
45 #define SPI_CTAR_PBR(x) (((x) << 16) & GENMASK(17, 16))
46 #define SPI_CTAR_CSSCK(x) (((x) << 12) & GENMASK(15, 12))
47 #define SPI_CTAR_ASC(x) (((x) << 8) & GENMASK(11, 8))
48 #define SPI_CTAR_DT(x) (((x) << 4) & GENMASK(7, 4))
49 #define SPI_CTAR_BR(x) ((x) & GENMASK(3, 0))
50 #define SPI_CTAR_SCALE_BITS 0xf
52 #define SPI_CTAR0_SLAVE 0x0c
55 #define SPI_SR_TCFQF BIT(31)
56 #define SPI_SR_EOQF BIT(28)
57 #define SPI_SR_TFUF BIT(27)
58 #define SPI_SR_TFFF BIT(25)
59 #define SPI_SR_CMDTCF BIT(23)
60 #define SPI_SR_SPEF BIT(21)
61 #define SPI_SR_RFOF BIT(19)
62 #define SPI_SR_TFIWF BIT(18)
63 #define SPI_SR_RFDF BIT(17)
64 #define SPI_SR_CMDFFF BIT(16)
65 #define SPI_SR_CLEAR (SPI_SR_TCFQF | SPI_SR_EOQF | \
66 SPI_SR_TFUF | SPI_SR_TFFF | \
67 SPI_SR_CMDTCF | SPI_SR_SPEF | \
68 SPI_SR_RFOF | SPI_SR_TFIWF | \
69 SPI_SR_RFDF | SPI_SR_CMDFFF)
71 #define SPI_RSER_TFFFE BIT(25)
72 #define SPI_RSER_TFFFD BIT(24)
73 #define SPI_RSER_RFDFE BIT(17)
74 #define SPI_RSER_RFDFD BIT(16)
77 #define SPI_RSER_TCFQE BIT(31)
78 #define SPI_RSER_EOQFE BIT(28)
79 #define SPI_RSER_CMDTCFE BIT(23)
81 #define SPI_PUSHR 0x34
82 #define SPI_PUSHR_CMD_CONT BIT(15)
83 #define SPI_PUSHR_CMD_CTAS(x) (((x) << 12 & GENMASK(14, 12)))
84 #define SPI_PUSHR_CMD_EOQ BIT(11)
85 #define SPI_PUSHR_CMD_CTCNT BIT(10)
86 #define SPI_PUSHR_CMD_PCS(x) (BIT(x) & GENMASK(5, 0))
88 #define SPI_PUSHR_SLAVE 0x34
92 #define SPI_TXFR0 0x3c
93 #define SPI_TXFR1 0x40
94 #define SPI_TXFR2 0x44
95 #define SPI_TXFR3 0x48
96 #define SPI_RXFR0 0x7c
97 #define SPI_RXFR1 0x80
98 #define SPI_RXFR2 0x84
99 #define SPI_RXFR3 0x88
101 #define SPI_CTARE(x) (0x11c + (((x) & GENMASK(1, 0)) * 4))
102 #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
103 #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
105 #define SPI_SREX 0x13c
107 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
108 #define SPI_FRAME_EBITS(bits) SPI_CTARE_FMSZE(((bits) - 1) >> 4)
110 #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
116 enum dspi_trans_mode {
122 struct fsl_dspi_devtype_data {
123 enum dspi_trans_mode trans_mode;
141 static const struct fsl_dspi_devtype_data devtype_data[] = {
143 .trans_mode = DSPI_DMA_MODE,
144 .max_clock_factor = 2,
148 /* Has A-011218 DMA erratum */
149 .trans_mode = DSPI_XSPI_MODE,
150 .max_clock_factor = 8,
154 /* Has A-011218 DMA erratum */
155 .trans_mode = DSPI_XSPI_MODE,
156 .max_clock_factor = 8,
160 .trans_mode = DSPI_XSPI_MODE,
161 .max_clock_factor = 8,
165 /* Has A-011218 DMA erratum */
166 .trans_mode = DSPI_XSPI_MODE,
167 .max_clock_factor = 8,
171 /* Has A-011218 DMA erratum */
172 .trans_mode = DSPI_XSPI_MODE,
173 .max_clock_factor = 8,
177 .trans_mode = DSPI_DMA_MODE,
178 .max_clock_factor = 8,
182 .trans_mode = DSPI_DMA_MODE,
183 .max_clock_factor = 8,
187 .trans_mode = DSPI_DMA_MODE,
188 .max_clock_factor = 8,
192 .trans_mode = DSPI_EOQ_MODE,
193 .max_clock_factor = 8,
198 struct fsl_dspi_dma {
200 struct dma_chan *chan_tx;
201 dma_addr_t tx_dma_phys;
202 struct completion cmd_tx_complete;
203 struct dma_async_tx_descriptor *tx_desc;
206 struct dma_chan *chan_rx;
207 dma_addr_t rx_dma_phys;
208 struct completion cmd_rx_complete;
209 struct dma_async_tx_descriptor *rx_desc;
213 struct spi_controller *ctlr;
214 struct platform_device *pdev;
216 struct regmap *regmap;
217 struct regmap *regmap_pushr;
221 struct spi_transfer *cur_transfer;
222 struct spi_message *cur_msg;
223 struct chip_data *cur_chip;
229 const struct fsl_dspi_devtype_data *devtype_data;
231 struct completion xfer_done;
233 struct fsl_dspi_dma *dma;
236 int oper_bits_per_word;
241 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
242 * individually (in XSPI mode)
247 void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
248 void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
251 static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
253 switch (dspi->oper_word_size) {
255 *txdata = *(u8 *)dspi->tx;
258 *txdata = *(u16 *)dspi->tx;
261 *txdata = *(u32 *)dspi->tx;
264 dspi->tx += dspi->oper_word_size;
267 static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
269 switch (dspi->oper_word_size) {
271 *(u8 *)dspi->rx = rxdata;
274 *(u16 *)dspi->rx = rxdata;
277 *(u32 *)dspi->rx = rxdata;
280 dspi->rx += dspi->oper_word_size;
283 static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
285 *txdata = cpu_to_be32(*(u32 *)dspi->tx);
286 dspi->tx += sizeof(u32);
289 static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
291 *(u32 *)dspi->rx = be32_to_cpu(rxdata);
292 dspi->rx += sizeof(u32);
295 static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
297 *txdata = cpu_to_be16(*(u16 *)dspi->tx);
298 dspi->tx += sizeof(u16);
301 static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
303 *(u16 *)dspi->rx = be16_to_cpu(rxdata);
304 dspi->rx += sizeof(u16);
307 static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
309 u16 hi = *(u16 *)dspi->tx;
310 u16 lo = *(u16 *)(dspi->tx + 2);
312 *txdata = (u32)hi << 16 | lo;
313 dspi->tx += sizeof(u32);
316 static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
318 u16 hi = rxdata & 0xffff;
319 u16 lo = rxdata >> 16;
321 *(u16 *)dspi->rx = lo;
322 *(u16 *)(dspi->rx + 2) = hi;
323 dspi->rx += sizeof(u32);
327 * Pop one word from the TX buffer for pushing into the
328 * PUSHR register (TX FIFO)
330 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
335 dspi->host_to_dev(dspi, &txdata);
336 dspi->len -= dspi->oper_word_size;
340 /* Prepare one TX FIFO entry (txdata plus cmd) */
341 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
343 u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
345 if (spi_controller_is_slave(dspi->ctlr))
349 cmd |= SPI_PUSHR_CMD_CONT;
350 return cmd << 16 | data;
353 /* Push one word to the RX buffer from the POPR register (RX FIFO) */
354 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
358 dspi->dev_to_host(dspi, rxdata);
361 static void dspi_tx_dma_callback(void *arg)
363 struct fsl_dspi *dspi = arg;
364 struct fsl_dspi_dma *dma = dspi->dma;
366 complete(&dma->cmd_tx_complete);
369 static void dspi_rx_dma_callback(void *arg)
371 struct fsl_dspi *dspi = arg;
372 struct fsl_dspi_dma *dma = dspi->dma;
376 for (i = 0; i < dspi->words_in_flight; i++)
377 dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
380 complete(&dma->cmd_rx_complete);
383 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
385 struct device *dev = &dspi->pdev->dev;
386 struct fsl_dspi_dma *dma = dspi->dma;
390 for (i = 0; i < dspi->words_in_flight; i++)
391 dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
393 dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
395 dspi->words_in_flight *
396 DMA_SLAVE_BUSWIDTH_4_BYTES,
398 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
400 dev_err(dev, "Not able to get desc for DMA xfer\n");
404 dma->tx_desc->callback = dspi_tx_dma_callback;
405 dma->tx_desc->callback_param = dspi;
406 if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
407 dev_err(dev, "DMA submit failed\n");
411 dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
413 dspi->words_in_flight *
414 DMA_SLAVE_BUSWIDTH_4_BYTES,
416 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
418 dev_err(dev, "Not able to get desc for DMA xfer\n");
422 dma->rx_desc->callback = dspi_rx_dma_callback;
423 dma->rx_desc->callback_param = dspi;
424 if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
425 dev_err(dev, "DMA submit failed\n");
429 reinit_completion(&dspi->dma->cmd_rx_complete);
430 reinit_completion(&dspi->dma->cmd_tx_complete);
432 dma_async_issue_pending(dma->chan_rx);
433 dma_async_issue_pending(dma->chan_tx);
435 if (spi_controller_is_slave(dspi->ctlr)) {
436 wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
440 time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
441 DMA_COMPLETION_TIMEOUT);
442 if (time_left == 0) {
443 dev_err(dev, "DMA tx timeout\n");
444 dmaengine_terminate_all(dma->chan_tx);
445 dmaengine_terminate_all(dma->chan_rx);
449 time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
450 DMA_COMPLETION_TIMEOUT);
451 if (time_left == 0) {
452 dev_err(dev, "DMA rx timeout\n");
453 dmaengine_terminate_all(dma->chan_tx);
454 dmaengine_terminate_all(dma->chan_rx);
461 static void dspi_setup_accel(struct fsl_dspi *dspi);
463 static int dspi_dma_xfer(struct fsl_dspi *dspi)
465 struct spi_message *message = dspi->cur_msg;
466 struct device *dev = &dspi->pdev->dev;
470 * dspi->len gets decremented by dspi_pop_tx_pushr in
471 * dspi_next_xfer_dma_submit
474 /* Figure out operational bits-per-word for this chunk */
475 dspi_setup_accel(dspi);
477 dspi->words_in_flight = dspi->len / dspi->oper_word_size;
478 if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
479 dspi->words_in_flight = dspi->devtype_data->fifo_size;
481 message->actual_length += dspi->words_in_flight *
482 dspi->oper_word_size;
484 ret = dspi_next_xfer_dma_submit(dspi);
486 dev_err(dev, "DMA transfer failed\n");
494 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
496 int dma_bufsize = dspi->devtype_data->fifo_size * 2;
497 struct device *dev = &dspi->pdev->dev;
498 struct dma_slave_config cfg;
499 struct fsl_dspi_dma *dma;
502 dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
506 dma->chan_rx = dma_request_chan(dev, "rx");
507 if (IS_ERR(dma->chan_rx)) {
508 dev_err(dev, "rx dma channel not available\n");
509 ret = PTR_ERR(dma->chan_rx);
513 dma->chan_tx = dma_request_chan(dev, "tx");
514 if (IS_ERR(dma->chan_tx)) {
515 dev_err(dev, "tx dma channel not available\n");
516 ret = PTR_ERR(dma->chan_tx);
520 dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
521 dma_bufsize, &dma->tx_dma_phys,
523 if (!dma->tx_dma_buf) {
528 dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
529 dma_bufsize, &dma->rx_dma_phys,
531 if (!dma->rx_dma_buf) {
536 cfg.src_addr = phy_addr + SPI_POPR;
537 cfg.dst_addr = phy_addr + SPI_PUSHR;
538 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
539 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
540 cfg.src_maxburst = 1;
541 cfg.dst_maxburst = 1;
543 cfg.direction = DMA_DEV_TO_MEM;
544 ret = dmaengine_slave_config(dma->chan_rx, &cfg);
546 dev_err(dev, "can't configure rx dma channel\n");
548 goto err_slave_config;
551 cfg.direction = DMA_MEM_TO_DEV;
552 ret = dmaengine_slave_config(dma->chan_tx, &cfg);
554 dev_err(dev, "can't configure tx dma channel\n");
556 goto err_slave_config;
560 init_completion(&dma->cmd_tx_complete);
561 init_completion(&dma->cmd_rx_complete);
566 dma_free_coherent(dma->chan_rx->device->dev,
567 dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
569 dma_free_coherent(dma->chan_tx->device->dev,
570 dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
572 dma_release_channel(dma->chan_tx);
574 dma_release_channel(dma->chan_rx);
576 devm_kfree(dev, dma);
582 static void dspi_release_dma(struct fsl_dspi *dspi)
584 int dma_bufsize = dspi->devtype_data->fifo_size * 2;
585 struct fsl_dspi_dma *dma = dspi->dma;
591 dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
592 dma->tx_dma_buf, dma->tx_dma_phys);
593 dma_release_channel(dma->chan_tx);
597 dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
598 dma->rx_dma_buf, dma->rx_dma_phys);
599 dma_release_channel(dma->chan_rx);
603 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
604 unsigned long clkrate)
606 /* Valid baud rate pre-scaler values */
607 int pbr_tbl[4] = {2, 3, 5, 7};
608 int brs[16] = { 2, 4, 6, 8,
610 256, 512, 1024, 2048,
611 4096, 8192, 16384, 32768 };
612 int scale_needed, scale, minscale = INT_MAX;
615 scale_needed = clkrate / speed_hz;
616 if (clkrate % speed_hz)
619 for (i = 0; i < ARRAY_SIZE(brs); i++)
620 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
621 scale = brs[i] * pbr_tbl[j];
622 if (scale >= scale_needed) {
623 if (scale < minscale) {
632 if (minscale == INT_MAX) {
633 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
635 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
636 *br = ARRAY_SIZE(brs) - 1;
640 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
641 unsigned long clkrate)
643 int scale_needed, scale, minscale = INT_MAX;
644 int pscale_tbl[4] = {1, 3, 5, 7};
648 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
653 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
654 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
655 scale = pscale_tbl[i] * (2 << j);
656 if (scale >= scale_needed) {
657 if (scale < minscale) {
666 if (minscale == INT_MAX) {
667 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
669 *psc = ARRAY_SIZE(pscale_tbl) - 1;
670 *sc = SPI_CTAR_SCALE_BITS;
674 static void dspi_pushr_write(struct fsl_dspi *dspi)
676 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
679 static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
682 * The only time when the PCS doesn't need continuation after this word
683 * is when it's last. We need to look ahead, because we actually call
684 * dspi_pop_tx (the function that decrements dspi->len) _after_
685 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
686 * word is enough. If there's more to transmit than that,
687 * dspi_xspi_write will know to split the FIFO writes in 2, and
688 * generate a new PUSHR command with the final word that will have PCS
689 * deasserted (not continued) here.
691 if (dspi->len > dspi->oper_word_size)
692 cmd |= SPI_PUSHR_CMD_CONT;
693 regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
696 static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
698 regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
701 static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
703 int num_bytes = num_words * dspi->oper_word_size;
704 u16 tx_cmd = dspi->tx_cmd;
707 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
708 * and cs_change does not want the PCS to stay on), then we need a new
709 * PUSHR command, since this one (for the body of the buffer)
710 * necessarily has the CONT bit set.
711 * So send one word less during this go, to force a split and a command
712 * with a single word next time, when CONT will be unset.
714 if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
715 tx_cmd |= SPI_PUSHR_CMD_EOQ;
718 regmap_write(dspi->regmap, SPI_CTARE(0),
719 SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
720 SPI_CTARE_DTCP(num_words));
723 * Write the CMD FIFO entry first, and then the two
724 * corresponding TX FIFO entries (or one...).
726 dspi_pushr_cmd_write(dspi, tx_cmd);
728 /* Fill TX FIFO with as many transfers as possible */
729 while (num_words--) {
730 u32 data = dspi_pop_tx(dspi);
732 dspi_pushr_txdata_write(dspi, data & 0xFFFF);
733 if (dspi->oper_bits_per_word > 16)
734 dspi_pushr_txdata_write(dspi, data >> 16);
738 static void dspi_eoq_fifo_write(struct fsl_dspi *dspi, int num_words)
740 u16 xfer_cmd = dspi->tx_cmd;
742 /* Fill TX FIFO with as many transfers as possible */
743 while (num_words--) {
744 dspi->tx_cmd = xfer_cmd;
745 /* Request EOQF for last transfer in FIFO */
747 dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
748 /* Write combined TX FIFO and CMD FIFO entry */
749 dspi_pushr_write(dspi);
753 static u32 dspi_popr_read(struct fsl_dspi *dspi)
757 regmap_read(dspi->regmap, SPI_POPR, &rxdata);
761 static void dspi_fifo_read(struct fsl_dspi *dspi)
763 int num_fifo_entries = dspi->words_in_flight;
765 /* Read one FIFO entry and push to rx buffer */
766 while (num_fifo_entries--)
767 dspi_push_rx(dspi, dspi_popr_read(dspi));
770 static void dspi_setup_accel(struct fsl_dspi *dspi)
772 struct spi_transfer *xfer = dspi->cur_transfer;
773 bool odd = !!(dspi->len & 1);
775 /* No accel for frames not multiple of 8 bits at the moment */
776 if (xfer->bits_per_word % 8)
779 if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
780 dspi->oper_bits_per_word = 16;
781 } else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
782 dspi->oper_bits_per_word = 8;
784 /* Start off with maximum supported by hardware */
785 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
786 dspi->oper_bits_per_word = 32;
788 dspi->oper_bits_per_word = 16;
791 * And go down only if the buffer can't be sent with
795 if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
798 dspi->oper_bits_per_word /= 2;
799 } while (dspi->oper_bits_per_word > 8);
802 if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
803 dspi->dev_to_host = dspi_8on32_dev_to_host;
804 dspi->host_to_dev = dspi_8on32_host_to_dev;
805 } else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
806 dspi->dev_to_host = dspi_8on16_dev_to_host;
807 dspi->host_to_dev = dspi_8on16_host_to_dev;
808 } else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
809 dspi->dev_to_host = dspi_16on32_dev_to_host;
810 dspi->host_to_dev = dspi_16on32_host_to_dev;
813 dspi->dev_to_host = dspi_native_dev_to_host;
814 dspi->host_to_dev = dspi_native_host_to_dev;
815 dspi->oper_bits_per_word = xfer->bits_per_word;
818 dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
821 * Update CTAR here (code is common for EOQ, XSPI and DMA modes).
822 * We will update CTARE in the portion specific to XSPI, when we
823 * also know the preload value (DTCP).
825 regmap_write(dspi->regmap, SPI_CTAR(0),
826 dspi->cur_chip->ctar_val |
827 SPI_FRAME_BITS(dspi->oper_bits_per_word));
830 static void dspi_fifo_write(struct fsl_dspi *dspi)
832 int num_fifo_entries = dspi->devtype_data->fifo_size;
833 struct spi_transfer *xfer = dspi->cur_transfer;
834 struct spi_message *msg = dspi->cur_msg;
835 int num_words, num_bytes;
837 dspi_setup_accel(dspi);
839 /* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
840 if (dspi->oper_word_size == 4)
841 num_fifo_entries /= 2;
844 * Integer division intentionally trims off odd (or non-multiple of 4)
845 * numbers of bytes at the end of the buffer, which will be sent next
846 * time using a smaller oper_word_size.
848 num_words = dspi->len / dspi->oper_word_size;
849 if (num_words > num_fifo_entries)
850 num_words = num_fifo_entries;
852 /* Update total number of bytes that were transferred */
853 num_bytes = num_words * dspi->oper_word_size;
854 msg->actual_length += num_bytes;
855 dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
858 * Update shared variable for use in the next interrupt (both in
859 * dspi_fifo_read and in dspi_fifo_write).
861 dspi->words_in_flight = num_words;
863 spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
865 if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
866 dspi_eoq_fifo_write(dspi, num_words);
868 dspi_xspi_fifo_write(dspi, num_words);
870 * Everything after this point is in a potential race with the next
871 * interrupt, so we must never use dspi->words_in_flight again since it
872 * might already be modified by the next dspi_fifo_write.
875 spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
876 dspi->progress, !dspi->irq);
879 static int dspi_rxtx(struct fsl_dspi *dspi)
881 dspi_fifo_read(dspi);
887 dspi_fifo_write(dspi);
892 static int dspi_poll(struct fsl_dspi *dspi)
898 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
899 regmap_write(dspi->regmap, SPI_SR, spi_sr);
901 if (spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF))
908 return dspi_rxtx(dspi);
911 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
913 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
916 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
917 regmap_write(dspi->regmap, SPI_SR, spi_sr);
919 if (!(spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF)))
922 if (dspi_rxtx(dspi) == 0)
923 complete(&dspi->xfer_done);
928 static int dspi_transfer_one_message(struct spi_controller *ctlr,
929 struct spi_message *message)
931 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
932 struct spi_device *spi = message->spi;
933 struct spi_transfer *transfer;
936 message->actual_length = 0;
938 list_for_each_entry(transfer, &message->transfers, transfer_list) {
939 dspi->cur_transfer = transfer;
940 dspi->cur_msg = message;
941 dspi->cur_chip = spi_get_ctldata(spi);
942 /* Prepare command word for CMD FIFO */
943 dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
944 SPI_PUSHR_CMD_PCS(spi->chip_select);
945 if (list_is_last(&dspi->cur_transfer->transfer_list,
946 &dspi->cur_msg->transfers)) {
947 /* Leave PCS activated after last transfer when
950 if (transfer->cs_change)
951 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
953 /* Keep PCS active between transfers in same message
954 * when cs_change is not set, and de-activate PCS
955 * between transfers in the same message when
958 if (!transfer->cs_change)
959 dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
962 dspi->tx = transfer->tx_buf;
963 dspi->rx = transfer->rx_buf;
964 dspi->len = transfer->len;
967 regmap_update_bits(dspi->regmap, SPI_MCR,
968 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
969 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
971 spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
972 dspi->progress, !dspi->irq);
974 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
975 status = dspi_dma_xfer(dspi);
977 dspi_fifo_write(dspi);
980 wait_for_completion(&dspi->xfer_done);
981 reinit_completion(&dspi->xfer_done);
984 status = dspi_poll(dspi);
985 } while (status == -EINPROGRESS);
991 spi_transfer_delay_exec(transfer);
994 message->status = status;
995 spi_finalize_current_message(ctlr);
1000 static int dspi_setup(struct spi_device *spi)
1002 struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1003 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
1004 u32 cs_sck_delay = 0, sck_cs_delay = 0;
1005 struct fsl_dspi_platform_data *pdata;
1006 unsigned char pasc = 0, asc = 0;
1007 struct chip_data *chip;
1008 unsigned long clkrate;
1010 /* Only alloc on first setup */
1011 chip = spi_get_ctldata(spi);
1013 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1018 pdata = dev_get_platdata(&dspi->pdev->dev);
1021 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
1024 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1027 cs_sck_delay = pdata->cs_sck_delay;
1028 sck_cs_delay = pdata->sck_cs_delay;
1031 clkrate = clk_get_rate(dspi->clk);
1032 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1034 /* Set PCS to SCK delay scale values */
1035 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1037 /* Set After SCK delay scale values */
1038 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1041 if (spi->mode & SPI_CPOL)
1042 chip->ctar_val |= SPI_CTAR_CPOL;
1043 if (spi->mode & SPI_CPHA)
1044 chip->ctar_val |= SPI_CTAR_CPHA;
1046 if (!spi_controller_is_slave(dspi->ctlr)) {
1047 chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1048 SPI_CTAR_CSSCK(cssck) |
1049 SPI_CTAR_PASC(pasc) |
1054 if (spi->mode & SPI_LSB_FIRST)
1055 chip->ctar_val |= SPI_CTAR_LSBFE;
1058 spi_set_ctldata(spi, chip);
1063 static void dspi_cleanup(struct spi_device *spi)
1065 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1067 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1068 spi->controller->bus_num, spi->chip_select);
1073 static const struct of_device_id fsl_dspi_dt_ids[] = {
1075 .compatible = "fsl,vf610-dspi",
1076 .data = &devtype_data[VF610],
1078 .compatible = "fsl,ls1021a-v1.0-dspi",
1079 .data = &devtype_data[LS1021A],
1081 .compatible = "fsl,ls1012a-dspi",
1082 .data = &devtype_data[LS1012A],
1084 .compatible = "fsl,ls1028a-dspi",
1085 .data = &devtype_data[LS1028A],
1087 .compatible = "fsl,ls1043a-dspi",
1088 .data = &devtype_data[LS1043A],
1090 .compatible = "fsl,ls1046a-dspi",
1091 .data = &devtype_data[LS1046A],
1093 .compatible = "fsl,ls2080a-dspi",
1094 .data = &devtype_data[LS2080A],
1096 .compatible = "fsl,ls2085a-dspi",
1097 .data = &devtype_data[LS2085A],
1099 .compatible = "fsl,lx2160a-dspi",
1100 .data = &devtype_data[LX2160A],
1104 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1106 #ifdef CONFIG_PM_SLEEP
1107 static int dspi_suspend(struct device *dev)
1109 struct spi_controller *ctlr = dev_get_drvdata(dev);
1110 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1113 disable_irq(dspi->irq);
1114 spi_controller_suspend(ctlr);
1115 clk_disable_unprepare(dspi->clk);
1117 pinctrl_pm_select_sleep_state(dev);
1122 static int dspi_resume(struct device *dev)
1124 struct spi_controller *ctlr = dev_get_drvdata(dev);
1125 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1128 pinctrl_pm_select_default_state(dev);
1130 ret = clk_prepare_enable(dspi->clk);
1133 spi_controller_resume(ctlr);
1135 enable_irq(dspi->irq);
1139 #endif /* CONFIG_PM_SLEEP */
1141 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1143 static const struct regmap_range dspi_volatile_ranges[] = {
1144 regmap_reg_range(SPI_MCR, SPI_TCR),
1145 regmap_reg_range(SPI_SR, SPI_SR),
1146 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1149 static const struct regmap_access_table dspi_volatile_table = {
1150 .yes_ranges = dspi_volatile_ranges,
1151 .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
1154 static const struct regmap_config dspi_regmap_config = {
1158 .max_register = 0x88,
1159 .volatile_table = &dspi_volatile_table,
1162 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1163 regmap_reg_range(SPI_MCR, SPI_TCR),
1164 regmap_reg_range(SPI_SR, SPI_SR),
1165 regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1166 regmap_reg_range(SPI_SREX, SPI_SREX),
1169 static const struct regmap_access_table dspi_xspi_volatile_table = {
1170 .yes_ranges = dspi_xspi_volatile_ranges,
1171 .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
1174 static const struct regmap_config dspi_xspi_regmap_config[] = {
1179 .max_register = 0x13c,
1180 .volatile_table = &dspi_xspi_volatile_table,
1187 .max_register = 0x2,
1191 static int dspi_init(struct fsl_dspi *dspi)
1195 /* Set idle states for all chip select signals to high */
1196 mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->num_chipselect - 1, 0));
1198 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1199 mcr |= SPI_MCR_XSPI;
1200 if (!spi_controller_is_slave(dspi->ctlr))
1201 mcr |= SPI_MCR_MASTER;
1203 regmap_write(dspi->regmap, SPI_MCR, mcr);
1204 regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1206 switch (dspi->devtype_data->trans_mode) {
1208 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
1210 case DSPI_XSPI_MODE:
1211 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1214 regmap_write(dspi->regmap, SPI_RSER,
1215 SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1216 SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1219 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1220 dspi->devtype_data->trans_mode);
1227 static int dspi_slave_abort(struct spi_master *master)
1229 struct fsl_dspi *dspi = spi_master_get_devdata(master);
1232 * Terminate all pending DMA transactions for the SPI working
1235 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1236 dmaengine_terminate_sync(dspi->dma->chan_rx);
1237 dmaengine_terminate_sync(dspi->dma->chan_tx);
1240 /* Clear the internal DSPI RX and TX FIFO buffers */
1241 regmap_update_bits(dspi->regmap, SPI_MCR,
1242 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1243 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1249 * EOQ mode will inevitably deassert its PCS signal on last word in a queue
1250 * (hardware limitation), so we need to inform the spi_device that larger
1251 * buffers than the FIFO size are going to have the chip select randomly
1252 * toggling, so it has a chance to adapt its message sizes.
1254 static size_t dspi_max_message_size(struct spi_device *spi)
1256 struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1258 if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
1259 return dspi->devtype_data->fifo_size;
1264 static int dspi_probe(struct platform_device *pdev)
1266 struct device_node *np = pdev->dev.of_node;
1267 const struct regmap_config *regmap_config;
1268 struct fsl_dspi_platform_data *pdata;
1269 struct spi_controller *ctlr;
1270 int ret, cs_num, bus_num = -1;
1271 struct fsl_dspi *dspi;
1272 struct resource *res;
1276 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1280 dspi = spi_controller_get_devdata(ctlr);
1284 ctlr->setup = dspi_setup;
1285 ctlr->transfer_one_message = dspi_transfer_one_message;
1286 ctlr->max_message_size = dspi_max_message_size;
1287 ctlr->dev.of_node = pdev->dev.of_node;
1289 ctlr->cleanup = dspi_cleanup;
1290 ctlr->slave_abort = dspi_slave_abort;
1291 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1293 pdata = dev_get_platdata(&pdev->dev);
1295 ctlr->num_chipselect = pdata->cs_num;
1296 ctlr->bus_num = pdata->bus_num;
1298 /* Only Coldfire uses platform data */
1299 dspi->devtype_data = &devtype_data[MCF5441X];
1303 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1305 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1308 ctlr->num_chipselect = cs_num;
1310 of_property_read_u32(np, "bus-num", &bus_num);
1311 ctlr->bus_num = bus_num;
1313 if (of_property_read_bool(np, "spi-slave"))
1316 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1317 if (!dspi->devtype_data) {
1318 dev_err(&pdev->dev, "can't get devtype_data\n");
1323 big_endian = of_device_is_big_endian(np);
1326 dspi->pushr_cmd = 0;
1329 dspi->pushr_cmd = 2;
1333 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1334 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1336 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1338 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1339 base = devm_ioremap_resource(&pdev->dev, res);
1341 ret = PTR_ERR(base);
1345 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1346 regmap_config = &dspi_xspi_regmap_config[0];
1348 regmap_config = &dspi_regmap_config;
1349 dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1350 if (IS_ERR(dspi->regmap)) {
1351 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1352 PTR_ERR(dspi->regmap));
1353 ret = PTR_ERR(dspi->regmap);
1357 if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1358 dspi->regmap_pushr = devm_regmap_init_mmio(
1359 &pdev->dev, base + SPI_PUSHR,
1360 &dspi_xspi_regmap_config[1]);
1361 if (IS_ERR(dspi->regmap_pushr)) {
1363 "failed to init pushr regmap: %ld\n",
1364 PTR_ERR(dspi->regmap_pushr));
1365 ret = PTR_ERR(dspi->regmap_pushr);
1370 dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1371 if (IS_ERR(dspi->clk)) {
1372 ret = PTR_ERR(dspi->clk);
1373 dev_err(&pdev->dev, "unable to get clock\n");
1376 ret = clk_prepare_enable(dspi->clk);
1380 ret = dspi_init(dspi);
1384 dspi->irq = platform_get_irq(pdev, 0);
1385 if (dspi->irq <= 0) {
1386 dev_info(&pdev->dev,
1387 "can't get platform irq, using poll mode\n");
1392 init_completion(&dspi->xfer_done);
1394 ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1395 IRQF_SHARED, pdev->name, dspi);
1397 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1403 if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1404 ret = dspi_request_dma(dspi, res->start);
1406 dev_err(&pdev->dev, "can't get dma channels\n");
1411 ctlr->max_speed_hz =
1412 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1414 if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1415 ctlr->ptp_sts_supported = true;
1417 platform_set_drvdata(pdev, ctlr);
1419 ret = spi_register_controller(ctlr);
1421 dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1429 free_irq(dspi->irq, dspi);
1431 clk_disable_unprepare(dspi->clk);
1433 spi_controller_put(ctlr);
1438 static int dspi_remove(struct platform_device *pdev)
1440 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1441 struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1443 /* Disconnect from the SPI framework */
1444 spi_unregister_controller(dspi->ctlr);
1446 /* Disable RX and TX */
1447 regmap_update_bits(dspi->regmap, SPI_MCR,
1448 SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1449 SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1452 regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1454 dspi_release_dma(dspi);
1456 free_irq(dspi->irq, dspi);
1457 clk_disable_unprepare(dspi->clk);
1462 static void dspi_shutdown(struct platform_device *pdev)
1467 static struct platform_driver fsl_dspi_driver = {
1468 .driver.name = DRIVER_NAME,
1469 .driver.of_match_table = fsl_dspi_dt_ids,
1470 .driver.owner = THIS_MODULE,
1471 .driver.pm = &dspi_pm,
1472 .probe = dspi_probe,
1473 .remove = dspi_remove,
1474 .shutdown = dspi_shutdown,
1476 module_platform_driver(fsl_dspi_driver);
1478 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1479 MODULE_LICENSE("GPL");
1480 MODULE_ALIAS("platform:" DRIVER_NAME);