Merge tag 'drm-msm-fixes-2022-06-28' of https://gitlab.freedesktop.org/drm/msm into...
[linux-2.6-microblaze.git] / drivers / spi / spi-dw-core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Designware SPI core controller driver (refer pxa2xx_spi.c)
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7
8 #include <linux/bitfield.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/preempt.h>
13 #include <linux/highmem.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18 #include <linux/string.h>
19 #include <linux/of.h>
20
21 #include "spi-dw.h"
22
23 #ifdef CONFIG_DEBUG_FS
24 #include <linux/debugfs.h>
25 #endif
26
27 /* Slave spi_device related */
28 struct dw_spi_chip_data {
29         u32 cr0;
30         u32 rx_sample_dly;      /* RX sample delay */
31 };
32
33 #ifdef CONFIG_DEBUG_FS
34
35 #define DW_SPI_DBGFS_REG(_name, _off)   \
36 {                                       \
37         .name = _name,                  \
38         .offset = _off,                 \
39 }
40
41 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
42         DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
43         DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
44         DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
45         DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
46         DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
47         DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
48         DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
49         DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
50         DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
51         DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
52         DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
53         DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
54         DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
55         DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
56         DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
57         DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
58 };
59
60 static int dw_spi_debugfs_init(struct dw_spi *dws)
61 {
62         char name[32];
63
64         snprintf(name, 32, "dw_spi%d", dws->master->bus_num);
65         dws->debugfs = debugfs_create_dir(name, NULL);
66         if (!dws->debugfs)
67                 return -ENOMEM;
68
69         dws->regset.regs = dw_spi_dbgfs_regs;
70         dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
71         dws->regset.base = dws->regs;
72         debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
73
74         return 0;
75 }
76
77 static void dw_spi_debugfs_remove(struct dw_spi *dws)
78 {
79         debugfs_remove_recursive(dws->debugfs);
80 }
81
82 #else
83 static inline int dw_spi_debugfs_init(struct dw_spi *dws)
84 {
85         return 0;
86 }
87
88 static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
89 {
90 }
91 #endif /* CONFIG_DEBUG_FS */
92
93 void dw_spi_set_cs(struct spi_device *spi, bool enable)
94 {
95         struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
96         bool cs_high = !!(spi->mode & SPI_CS_HIGH);
97
98         /*
99          * DW SPI controller demands any native CS being set in order to
100          * proceed with data transfer. So in order to activate the SPI
101          * communications we must set a corresponding bit in the Slave
102          * Enable register no matter whether the SPI core is configured to
103          * support active-high or active-low CS level.
104          */
105         if (cs_high == enable)
106                 dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
107         else
108                 dw_writel(dws, DW_SPI_SER, 0);
109 }
110 EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE);
111
112 /* Return the max entries we can fill into tx fifo */
113 static inline u32 dw_spi_tx_max(struct dw_spi *dws)
114 {
115         u32 tx_room, rxtx_gap;
116
117         tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
118
119         /*
120          * Another concern is about the tx/rx mismatch, we
121          * though to use (dws->fifo_len - rxflr - txflr) as
122          * one maximum value for tx, but it doesn't cover the
123          * data which is out of tx/rx fifo and inside the
124          * shift registers. So a control from sw point of
125          * view is taken.
126          */
127         rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
128
129         return min3((u32)dws->tx_len, tx_room, rxtx_gap);
130 }
131
132 /* Return the max entries we should read out of rx fifo */
133 static inline u32 dw_spi_rx_max(struct dw_spi *dws)
134 {
135         return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
136 }
137
138 static void dw_writer(struct dw_spi *dws)
139 {
140         u32 max = dw_spi_tx_max(dws);
141         u32 txw = 0;
142
143         while (max--) {
144                 if (dws->tx) {
145                         if (dws->n_bytes == 1)
146                                 txw = *(u8 *)(dws->tx);
147                         else if (dws->n_bytes == 2)
148                                 txw = *(u16 *)(dws->tx);
149                         else
150                                 txw = *(u32 *)(dws->tx);
151
152                         dws->tx += dws->n_bytes;
153                 }
154                 dw_write_io_reg(dws, DW_SPI_DR, txw);
155                 --dws->tx_len;
156         }
157 }
158
159 static void dw_reader(struct dw_spi *dws)
160 {
161         u32 max = dw_spi_rx_max(dws);
162         u32 rxw;
163
164         while (max--) {
165                 rxw = dw_read_io_reg(dws, DW_SPI_DR);
166                 if (dws->rx) {
167                         if (dws->n_bytes == 1)
168                                 *(u8 *)(dws->rx) = rxw;
169                         else if (dws->n_bytes == 2)
170                                 *(u16 *)(dws->rx) = rxw;
171                         else
172                                 *(u32 *)(dws->rx) = rxw;
173
174                         dws->rx += dws->n_bytes;
175                 }
176                 --dws->rx_len;
177         }
178 }
179
180 int dw_spi_check_status(struct dw_spi *dws, bool raw)
181 {
182         u32 irq_status;
183         int ret = 0;
184
185         if (raw)
186                 irq_status = dw_readl(dws, DW_SPI_RISR);
187         else
188                 irq_status = dw_readl(dws, DW_SPI_ISR);
189
190         if (irq_status & DW_SPI_INT_RXOI) {
191                 dev_err(&dws->master->dev, "RX FIFO overflow detected\n");
192                 ret = -EIO;
193         }
194
195         if (irq_status & DW_SPI_INT_RXUI) {
196                 dev_err(&dws->master->dev, "RX FIFO underflow detected\n");
197                 ret = -EIO;
198         }
199
200         if (irq_status & DW_SPI_INT_TXOI) {
201                 dev_err(&dws->master->dev, "TX FIFO overflow detected\n");
202                 ret = -EIO;
203         }
204
205         /* Generically handle the erroneous situation */
206         if (ret) {
207                 dw_spi_reset_chip(dws);
208                 if (dws->master->cur_msg)
209                         dws->master->cur_msg->status = ret;
210         }
211
212         return ret;
213 }
214 EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE);
215
216 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
217 {
218         u16 irq_status = dw_readl(dws, DW_SPI_ISR);
219
220         if (dw_spi_check_status(dws, false)) {
221                 spi_finalize_current_transfer(dws->master);
222                 return IRQ_HANDLED;
223         }
224
225         /*
226          * Read data from the Rx FIFO every time we've got a chance executing
227          * this method. If there is nothing left to receive, terminate the
228          * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
229          * final stage of the transfer. By doing so we'll get the next IRQ
230          * right when the leftover incoming data is received.
231          */
232         dw_reader(dws);
233         if (!dws->rx_len) {
234                 dw_spi_mask_intr(dws, 0xff);
235                 spi_finalize_current_transfer(dws->master);
236         } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
237                 dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
238         }
239
240         /*
241          * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
242          * disabled after the data transmission is finished so not to
243          * have the TXE IRQ flood at the final stage of the transfer.
244          */
245         if (irq_status & DW_SPI_INT_TXEI) {
246                 dw_writer(dws);
247                 if (!dws->tx_len)
248                         dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
249         }
250
251         return IRQ_HANDLED;
252 }
253
254 static irqreturn_t dw_spi_irq(int irq, void *dev_id)
255 {
256         struct spi_controller *master = dev_id;
257         struct dw_spi *dws = spi_controller_get_devdata(master);
258         u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;
259
260         if (!irq_status)
261                 return IRQ_NONE;
262
263         if (!master->cur_msg) {
264                 dw_spi_mask_intr(dws, 0xff);
265                 return IRQ_HANDLED;
266         }
267
268         return dws->transfer_handler(dws);
269 }
270
271 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
272 {
273         u32 cr0 = 0;
274
275         if (dw_spi_ip_is(dws, PSSI)) {
276                 /* CTRLR0[ 5: 4] Frame Format */
277                 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
278
279                 /*
280                  * SPI mode (SCPOL|SCPH)
281                  * CTRLR0[ 6] Serial Clock Phase
282                  * CTRLR0[ 7] Serial Clock Polarity
283                  */
284                 if (spi->mode & SPI_CPOL)
285                         cr0 |= DW_PSSI_CTRLR0_SCPOL;
286                 if (spi->mode & SPI_CPHA)
287                         cr0 |= DW_PSSI_CTRLR0_SCPHA;
288
289                 /* CTRLR0[11] Shift Register Loop */
290                 if (spi->mode & SPI_LOOP)
291                         cr0 |= DW_PSSI_CTRLR0_SRL;
292         } else {
293                 /* CTRLR0[ 7: 6] Frame Format */
294                 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
295
296                 /*
297                  * SPI mode (SCPOL|SCPH)
298                  * CTRLR0[ 8] Serial Clock Phase
299                  * CTRLR0[ 9] Serial Clock Polarity
300                  */
301                 if (spi->mode & SPI_CPOL)
302                         cr0 |= DW_HSSI_CTRLR0_SCPOL;
303                 if (spi->mode & SPI_CPHA)
304                         cr0 |= DW_HSSI_CTRLR0_SCPHA;
305
306                 /* CTRLR0[13] Shift Register Loop */
307                 if (spi->mode & SPI_LOOP)
308                         cr0 |= DW_HSSI_CTRLR0_SRL;
309
310                 if (dws->caps & DW_SPI_CAP_KEEMBAY_MST)
311                         cr0 |= DW_HSSI_CTRLR0_KEEMBAY_MST;
312         }
313
314         return cr0;
315 }
316
317 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
318                           struct dw_spi_cfg *cfg)
319 {
320         struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
321         u32 cr0 = chip->cr0;
322         u32 speed_hz;
323         u16 clk_div;
324
325         /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
326         cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
327
328         if (dw_spi_ip_is(dws, PSSI))
329                 /* CTRLR0[ 9:8] Transfer Mode */
330                 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
331         else
332                 /* CTRLR0[11:10] Transfer Mode */
333                 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);
334
335         dw_writel(dws, DW_SPI_CTRLR0, cr0);
336
337         if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
338             cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
339                 dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
340
341         /* Note DW APB SSI clock divider doesn't support odd numbers */
342         clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
343         speed_hz = dws->max_freq / clk_div;
344
345         if (dws->current_freq != speed_hz) {
346                 dw_spi_set_clk(dws, clk_div);
347                 dws->current_freq = speed_hz;
348         }
349
350         /* Update RX sample delay if required */
351         if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
352                 dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
353                 dws->cur_rx_sample_dly = chip->rx_sample_dly;
354         }
355 }
356 EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE);
357
358 static void dw_spi_irq_setup(struct dw_spi *dws)
359 {
360         u16 level;
361         u8 imask;
362
363         /*
364          * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
365          * will be adjusted at the final stage of the IRQ-based SPI transfer
366          * execution so not to lose the leftover of the incoming data.
367          */
368         level = min_t(u16, dws->fifo_len / 2, dws->tx_len);
369         dw_writel(dws, DW_SPI_TXFTLR, level);
370         dw_writel(dws, DW_SPI_RXFTLR, level - 1);
371
372         dws->transfer_handler = dw_spi_transfer_handler;
373
374         imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
375                 DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
376         dw_spi_umask_intr(dws, imask);
377 }
378
379 /*
380  * The iterative procedure of the poll-based transfer is simple: write as much
381  * as possible to the Tx FIFO, wait until the pending to receive data is ready
382  * to be read, read it from the Rx FIFO and check whether the performed
383  * procedure has been successful.
384  *
385  * Note this method the same way as the IRQ-based transfer won't work well for
386  * the SPI devices connected to the controller with native CS due to the
387  * automatic CS assertion/de-assertion.
388  */
389 static int dw_spi_poll_transfer(struct dw_spi *dws,
390                                 struct spi_transfer *transfer)
391 {
392         struct spi_delay delay;
393         u16 nbits;
394         int ret;
395
396         delay.unit = SPI_DELAY_UNIT_SCK;
397         nbits = dws->n_bytes * BITS_PER_BYTE;
398
399         do {
400                 dw_writer(dws);
401
402                 delay.value = nbits * (dws->rx_len - dws->tx_len);
403                 spi_delay_exec(&delay, transfer);
404
405                 dw_reader(dws);
406
407                 ret = dw_spi_check_status(dws, true);
408                 if (ret)
409                         return ret;
410         } while (dws->rx_len);
411
412         return 0;
413 }
414
415 static int dw_spi_transfer_one(struct spi_controller *master,
416                                struct spi_device *spi,
417                                struct spi_transfer *transfer)
418 {
419         struct dw_spi *dws = spi_controller_get_devdata(master);
420         struct dw_spi_cfg cfg = {
421                 .tmode = DW_SPI_CTRLR0_TMOD_TR,
422                 .dfs = transfer->bits_per_word,
423                 .freq = transfer->speed_hz,
424         };
425         int ret;
426
427         dws->dma_mapped = 0;
428         dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE);
429         dws->tx = (void *)transfer->tx_buf;
430         dws->tx_len = transfer->len / dws->n_bytes;
431         dws->rx = transfer->rx_buf;
432         dws->rx_len = dws->tx_len;
433
434         /* Ensure the data above is visible for all CPUs */
435         smp_mb();
436
437         dw_spi_enable_chip(dws, 0);
438
439         dw_spi_update_config(dws, spi, &cfg);
440
441         transfer->effective_speed_hz = dws->current_freq;
442
443         /* Check if current transfer is a DMA transaction */
444         if (master->can_dma && master->can_dma(master, spi, transfer))
445                 dws->dma_mapped = master->cur_msg_mapped;
446
447         /* For poll mode just disable all interrupts */
448         dw_spi_mask_intr(dws, 0xff);
449
450         if (dws->dma_mapped) {
451                 ret = dws->dma_ops->dma_setup(dws, transfer);
452                 if (ret)
453                         return ret;
454         }
455
456         dw_spi_enable_chip(dws, 1);
457
458         if (dws->dma_mapped)
459                 return dws->dma_ops->dma_transfer(dws, transfer);
460         else if (dws->irq == IRQ_NOTCONNECTED)
461                 return dw_spi_poll_transfer(dws, transfer);
462
463         dw_spi_irq_setup(dws);
464
465         return 1;
466 }
467
468 static void dw_spi_handle_err(struct spi_controller *master,
469                               struct spi_message *msg)
470 {
471         struct dw_spi *dws = spi_controller_get_devdata(master);
472
473         if (dws->dma_mapped)
474                 dws->dma_ops->dma_stop(dws);
475
476         dw_spi_reset_chip(dws);
477 }
478
479 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
480 {
481         if (op->data.dir == SPI_MEM_DATA_IN)
482                 op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);
483
484         return 0;
485 }
486
487 static bool dw_spi_supports_mem_op(struct spi_mem *mem,
488                                    const struct spi_mem_op *op)
489 {
490         if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
491             op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
492                 return false;
493
494         return spi_mem_default_supports_op(mem, op);
495 }
496
497 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
498 {
499         unsigned int i, j, len;
500         u8 *out;
501
502         /*
503          * Calculate the total length of the EEPROM command transfer and
504          * either use the pre-allocated buffer or create a temporary one.
505          */
506         len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
507         if (op->data.dir == SPI_MEM_DATA_OUT)
508                 len += op->data.nbytes;
509
510         if (len <= DW_SPI_BUF_SIZE) {
511                 out = dws->buf;
512         } else {
513                 out = kzalloc(len, GFP_KERNEL);
514                 if (!out)
515                         return -ENOMEM;
516         }
517
518         /*
519          * Collect the operation code, address and dummy bytes into the single
520          * buffer. If it's a transfer with data to be sent, also copy it into the
521          * single buffer in order to speed the data transmission up.
522          */
523         for (i = 0; i < op->cmd.nbytes; ++i)
524                 out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
525         for (j = 0; j < op->addr.nbytes; ++i, ++j)
526                 out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
527         for (j = 0; j < op->dummy.nbytes; ++i, ++j)
528                 out[i] = 0x0;
529
530         if (op->data.dir == SPI_MEM_DATA_OUT)
531                 memcpy(&out[i], op->data.buf.out, op->data.nbytes);
532
533         dws->n_bytes = 1;
534         dws->tx = out;
535         dws->tx_len = len;
536         if (op->data.dir == SPI_MEM_DATA_IN) {
537                 dws->rx = op->data.buf.in;
538                 dws->rx_len = op->data.nbytes;
539         } else {
540                 dws->rx = NULL;
541                 dws->rx_len = 0;
542         }
543
544         return 0;
545 }
546
547 static void dw_spi_free_mem_buf(struct dw_spi *dws)
548 {
549         if (dws->tx != dws->buf)
550                 kfree(dws->tx);
551 }
552
553 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
554 {
555         u32 room, entries, sts;
556         unsigned int len;
557         u8 *buf;
558
559         /*
560          * At initial stage we just pre-fill the Tx FIFO in with no rush,
561          * since native CS hasn't been enabled yet and the automatic data
562          * transmission won't start til we do that.
563          */
564         len = min(dws->fifo_len, dws->tx_len);
565         buf = dws->tx;
566         while (len--)
567                 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
568
569         /*
570          * After setting any bit in the SER register the transmission will
571          * start automatically. We have to keep up with that procedure
572          * otherwise the CS de-assertion will happen whereupon the memory
573          * operation will be pre-terminated.
574          */
575         len = dws->tx_len - ((void *)buf - dws->tx);
576         dw_spi_set_cs(spi, false);
577         while (len) {
578                 entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
579                 if (!entries) {
580                         dev_err(&dws->master->dev, "CS de-assertion on Tx\n");
581                         return -EIO;
582                 }
583                 room = min(dws->fifo_len - entries, len);
584                 for (; room; --room, --len)
585                         dw_write_io_reg(dws, DW_SPI_DR, *buf++);
586         }
587
588         /*
589          * Data fetching will start automatically if the EEPROM-read mode is
590          * activated. We have to keep up with the incoming data pace to
591          * prevent the Rx FIFO overflow causing the inbound data loss.
592          */
593         len = dws->rx_len;
594         buf = dws->rx;
595         while (len) {
596                 entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
597                 if (!entries) {
598                         sts = readl_relaxed(dws->regs + DW_SPI_RISR);
599                         if (sts & DW_SPI_INT_RXOI) {
600                                 dev_err(&dws->master->dev, "FIFO overflow on Rx\n");
601                                 return -EIO;
602                         }
603                         continue;
604                 }
605                 entries = min(entries, len);
606                 for (; entries; --entries, --len)
607                         *buf++ = dw_read_io_reg(dws, DW_SPI_DR);
608         }
609
610         return 0;
611 }
612
613 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
614 {
615         return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
616 }
617
618 static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
619 {
620         int retry = DW_SPI_WAIT_RETRIES;
621         struct spi_delay delay;
622         unsigned long ns, us;
623         u32 nents;
624
625         nents = dw_readl(dws, DW_SPI_TXFLR);
626         ns = NSEC_PER_SEC / dws->current_freq * nents;
627         ns *= dws->n_bytes * BITS_PER_BYTE;
628         if (ns <= NSEC_PER_USEC) {
629                 delay.unit = SPI_DELAY_UNIT_NSECS;
630                 delay.value = ns;
631         } else {
632                 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
633                 delay.unit = SPI_DELAY_UNIT_USECS;
634                 delay.value = clamp_val(us, 0, USHRT_MAX);
635         }
636
637         while (dw_spi_ctlr_busy(dws) && retry--)
638                 spi_delay_exec(&delay, NULL);
639
640         if (retry < 0) {
641                 dev_err(&dws->master->dev, "Mem op hanged up\n");
642                 return -EIO;
643         }
644
645         return 0;
646 }
647
648 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
649 {
650         dw_spi_enable_chip(dws, 0);
651         dw_spi_set_cs(spi, true);
652         dw_spi_enable_chip(dws, 1);
653 }
654
655 /*
656  * The SPI memory operation implementation below is the best choice for the
657  * devices, which are selected by the native chip-select lane. It's
658  * specifically developed to workaround the problem with automatic chip-select
659  * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
660  * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
661  * unavailable.
662  */
663 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
664 {
665         struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
666         struct dw_spi_cfg cfg;
667         unsigned long flags;
668         int ret;
669
670         /*
671          * Collect the outbound data into a single buffer to speed the
672          * transmission up at least on the initial stage.
673          */
674         ret = dw_spi_init_mem_buf(dws, op);
675         if (ret)
676                 return ret;
677
678         /*
679          * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
680          * operation. Transmit-only mode is suitable for the rest of them.
681          */
682         cfg.dfs = 8;
683         cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
684         if (op->data.dir == SPI_MEM_DATA_IN) {
685                 cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
686                 cfg.ndf = op->data.nbytes;
687         } else {
688                 cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
689         }
690
691         dw_spi_enable_chip(dws, 0);
692
693         dw_spi_update_config(dws, mem->spi, &cfg);
694
695         dw_spi_mask_intr(dws, 0xff);
696
697         dw_spi_enable_chip(dws, 1);
698
699         /*
700          * DW APB SSI controller has very nasty peculiarities. First originally
701          * (without any vendor-specific modifications) it doesn't provide a
702          * direct way to set and clear the native chip-select signal. Instead
703          * the controller asserts the CS lane if Tx FIFO isn't empty and a
704          * transmission is going on, and automatically de-asserts it back to
705          * the high level if the Tx FIFO doesn't have anything to be pushed
706          * out. Due to that a multi-tasking or heavy IRQs activity might be
707          * fatal, since the transfer procedure preemption may cause the Tx FIFO
708          * getting empty and sudden CS de-assertion, which in the middle of the
709          * transfer will most likely cause the data loss. Secondly the
710          * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
711          * data being automatically pulled in into the Rx FIFO. So if the
712          * driver software is late in fetching the data from the FIFO before
713          * it's overflown, new incoming data will be lost. In order to make
714          * sure the executed memory operations are CS-atomic and to prevent the
715          * Rx FIFO overflow we have to disable the local interrupts so to block
716          * any preemption during the subsequent IO operations.
717          *
718          * Note. At some circumstances disabling IRQs may not help to prevent
719          * the problems described above. The CS de-assertion and Rx FIFO
720          * overflow may still happen due to the relatively slow system bus or
721          * CPU not working fast enough, so the write-then-read algo implemented
722          * here just won't keep up with the SPI bus data transfer. Such
723          * situation is highly platform specific and is supposed to be fixed by
724          * manually restricting the SPI bus frequency using the
725          * dws->max_mem_freq parameter.
726          */
727         local_irq_save(flags);
728         preempt_disable();
729
730         ret = dw_spi_write_then_read(dws, mem->spi);
731
732         local_irq_restore(flags);
733         preempt_enable();
734
735         /*
736          * Wait for the operation being finished and check the controller
737          * status only if there hasn't been any run-time error detected. In the
738          * former case it's just pointless. In the later one to prevent an
739          * additional error message printing since any hw error flag being set
740          * would be due to an error detected on the data transfer.
741          */
742         if (!ret) {
743                 ret = dw_spi_wait_mem_op_done(dws);
744                 if (!ret)
745                         ret = dw_spi_check_status(dws, true);
746         }
747
748         dw_spi_stop_mem_op(dws, mem->spi);
749
750         dw_spi_free_mem_buf(dws);
751
752         return ret;
753 }
754
755 /*
756  * Initialize the default memory operations if a glue layer hasn't specified
757  * custom ones. Direct mapping operations will be preserved anyway since DW SPI
758  * controller doesn't have an embedded dirmap interface. Note the memory
759  * operations implemented in this driver is the best choice only for the DW APB
760  * SSI controller with standard native CS functionality. If a hardware vendor
761  * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
762  * be safer to use the normal SPI-messages-based transfers implementation.
763  */
764 static void dw_spi_init_mem_ops(struct dw_spi *dws)
765 {
766         if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
767             !dws->set_cs) {
768                 dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
769                 dws->mem_ops.supports_op = dw_spi_supports_mem_op;
770                 dws->mem_ops.exec_op = dw_spi_exec_mem_op;
771                 if (!dws->max_mem_freq)
772                         dws->max_mem_freq = dws->max_freq;
773         }
774 }
775
776 /* This may be called twice for each spi dev */
777 static int dw_spi_setup(struct spi_device *spi)
778 {
779         struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
780         struct dw_spi_chip_data *chip;
781
782         /* Only alloc on first setup */
783         chip = spi_get_ctldata(spi);
784         if (!chip) {
785                 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
786                 u32 rx_sample_dly_ns;
787
788                 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
789                 if (!chip)
790                         return -ENOMEM;
791                 spi_set_ctldata(spi, chip);
792                 /* Get specific / default rx-sample-delay */
793                 if (device_property_read_u32(&spi->dev,
794                                              "rx-sample-delay-ns",
795                                              &rx_sample_dly_ns) != 0)
796                         /* Use default controller value */
797                         rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
798                 chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
799                                                         NSEC_PER_SEC /
800                                                         dws->max_freq);
801         }
802
803         /*
804          * Update CR0 data each time the setup callback is invoked since
805          * the device parameters could have been changed, for instance, by
806          * the MMC SPI driver or something else.
807          */
808         chip->cr0 = dw_spi_prepare_cr0(dws, spi);
809
810         return 0;
811 }
812
813 static void dw_spi_cleanup(struct spi_device *spi)
814 {
815         struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
816
817         kfree(chip);
818         spi_set_ctldata(spi, NULL);
819 }
820
821 /* Restart the controller, disable all interrupts, clean rx fifo */
822 static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
823 {
824         dw_spi_reset_chip(dws);
825
826         /*
827          * Retrieve the Synopsys component version if it hasn't been specified
828          * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
829          * code enclosed with '*' (typical for the most of Synopsys IP-cores).
830          */
831         if (!dws->ver) {
832                 dws->ver = dw_readl(dws, DW_SPI_VERSION);
833
834                 dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
835                         dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
836                         DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
837                         DW_SPI_GET_BYTE(dws->ver, 1));
838         }
839
840         /*
841          * Try to detect the FIFO depth if not set by interface driver,
842          * the depth could be from 2 to 256 from HW spec
843          */
844         if (!dws->fifo_len) {
845                 u32 fifo;
846
847                 for (fifo = 1; fifo < 256; fifo++) {
848                         dw_writel(dws, DW_SPI_TXFTLR, fifo);
849                         if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
850                                 break;
851                 }
852                 dw_writel(dws, DW_SPI_TXFTLR, 0);
853
854                 dws->fifo_len = (fifo == 1) ? 0 : fifo;
855                 dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
856         }
857
858         /*
859          * Detect CTRLR0.DFS field size and offset by testing the lowest bits
860          * writability. Note DWC SSI controller also has the extended DFS, but
861          * with zero offset.
862          */
863         if (dw_spi_ip_is(dws, PSSI)) {
864                 u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
865
866                 dw_spi_enable_chip(dws, 0);
867                 dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
868                 cr0 = dw_readl(dws, DW_SPI_CTRLR0);
869                 dw_writel(dws, DW_SPI_CTRLR0, tmp);
870                 dw_spi_enable_chip(dws, 1);
871
872                 if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
873                         dws->caps |= DW_SPI_CAP_DFS32;
874                         dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
875                         dev_dbg(dev, "Detected 32-bits max data frame size\n");
876                 }
877         } else {
878                 dws->caps |= DW_SPI_CAP_DFS32;
879         }
880
881         /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
882         if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
883                 dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
884 }
885
886 int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
887 {
888         struct spi_controller *master;
889         int ret;
890
891         if (!dws)
892                 return -EINVAL;
893
894         master = spi_alloc_master(dev, 0);
895         if (!master)
896                 return -ENOMEM;
897
898         device_set_node(&master->dev, dev_fwnode(dev));
899
900         dws->master = master;
901         dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
902
903         spi_controller_set_devdata(master, dws);
904
905         /* Basic HW init */
906         dw_spi_hw_init(dev, dws);
907
908         ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
909                           master);
910         if (ret < 0 && ret != -ENOTCONN) {
911                 dev_err(dev, "can not get IRQ\n");
912                 goto err_free_master;
913         }
914
915         dw_spi_init_mem_ops(dws);
916
917         master->use_gpio_descriptors = true;
918         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
919         if (dws->caps & DW_SPI_CAP_DFS32)
920                 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
921         else
922                 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
923         master->bus_num = dws->bus_num;
924         master->num_chipselect = dws->num_cs;
925         master->setup = dw_spi_setup;
926         master->cleanup = dw_spi_cleanup;
927         if (dws->set_cs)
928                 master->set_cs = dws->set_cs;
929         else
930                 master->set_cs = dw_spi_set_cs;
931         master->transfer_one = dw_spi_transfer_one;
932         master->handle_err = dw_spi_handle_err;
933         if (dws->mem_ops.exec_op)
934                 master->mem_ops = &dws->mem_ops;
935         master->max_speed_hz = dws->max_freq;
936         master->flags = SPI_MASTER_GPIO_SS;
937         master->auto_runtime_pm = true;
938
939         /* Get default rx sample delay */
940         device_property_read_u32(dev, "rx-sample-delay-ns",
941                                  &dws->def_rx_sample_dly_ns);
942
943         if (dws->dma_ops && dws->dma_ops->dma_init) {
944                 ret = dws->dma_ops->dma_init(dev, dws);
945                 if (ret) {
946                         dev_warn(dev, "DMA init failed\n");
947                 } else {
948                         master->can_dma = dws->dma_ops->can_dma;
949                         master->flags |= SPI_CONTROLLER_MUST_TX;
950                 }
951         }
952
953         ret = spi_register_controller(master);
954         if (ret) {
955                 dev_err(&master->dev, "problem registering spi master\n");
956                 goto err_dma_exit;
957         }
958
959         dw_spi_debugfs_init(dws);
960         return 0;
961
962 err_dma_exit:
963         if (dws->dma_ops && dws->dma_ops->dma_exit)
964                 dws->dma_ops->dma_exit(dws);
965         dw_spi_enable_chip(dws, 0);
966         free_irq(dws->irq, master);
967 err_free_master:
968         spi_controller_put(master);
969         return ret;
970 }
971 EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE);
972
973 void dw_spi_remove_host(struct dw_spi *dws)
974 {
975         dw_spi_debugfs_remove(dws);
976
977         spi_unregister_controller(dws->master);
978
979         if (dws->dma_ops && dws->dma_ops->dma_exit)
980                 dws->dma_ops->dma_exit(dws);
981
982         dw_spi_shutdown_chip(dws);
983
984         free_irq(dws->irq, dws->master);
985 }
986 EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE);
987
988 int dw_spi_suspend_host(struct dw_spi *dws)
989 {
990         int ret;
991
992         ret = spi_controller_suspend(dws->master);
993         if (ret)
994                 return ret;
995
996         dw_spi_shutdown_chip(dws);
997         return 0;
998 }
999 EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE);
1000
1001 int dw_spi_resume_host(struct dw_spi *dws)
1002 {
1003         dw_spi_hw_init(&dws->master->dev, dws);
1004         return spi_controller_resume(dws->master);
1005 }
1006 EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE);
1007
1008 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
1009 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
1010 MODULE_LICENSE("GPL v2");