Merge tag 'zynq-dt-for-v5.15' of https://github.com/Xilinx/linux-xlnx into arm/dt
[linux-2.6-microblaze.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/of.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi-mem.h>
30 #include <linux/timer.h>
31
32 #define CQSPI_NAME                      "cadence-qspi"
33 #define CQSPI_MAX_CHIPSELECT            16
34
35 /* Quirks */
36 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
37 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
38
39 /* Capabilities */
40 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
41
42 struct cqspi_st;
43
44 struct cqspi_flash_pdata {
45         struct cqspi_st *cqspi;
46         u32             clk_rate;
47         u32             read_delay;
48         u32             tshsl_ns;
49         u32             tsd2d_ns;
50         u32             tchsh_ns;
51         u32             tslch_ns;
52         u8              inst_width;
53         u8              addr_width;
54         u8              data_width;
55         bool            dtr;
56         u8              cs;
57 };
58
59 struct cqspi_st {
60         struct platform_device  *pdev;
61
62         struct clk              *clk;
63         unsigned int            sclk;
64
65         void __iomem            *iobase;
66         void __iomem            *ahb_base;
67         resource_size_t         ahb_size;
68         struct completion       transfer_complete;
69
70         struct dma_chan         *rx_chan;
71         struct completion       rx_dma_complete;
72         dma_addr_t              mmap_phys_base;
73
74         int                     current_cs;
75         unsigned long           master_ref_clk_hz;
76         bool                    is_decoded_cs;
77         u32                     fifo_depth;
78         u32                     fifo_width;
79         u32                     num_chipselect;
80         bool                    rclk_en;
81         u32                     trigger_address;
82         u32                     wr_delay;
83         bool                    use_direct_mode;
84         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
85 };
86
87 struct cqspi_driver_platdata {
88         u32 hwcaps_mask;
89         u8 quirks;
90 };
91
92 /* Operation timeout value */
93 #define CQSPI_TIMEOUT_MS                        500
94 #define CQSPI_READ_TIMEOUT_MS                   10
95
96 /* Instruction type */
97 #define CQSPI_INST_TYPE_SINGLE                  0
98 #define CQSPI_INST_TYPE_DUAL                    1
99 #define CQSPI_INST_TYPE_QUAD                    2
100 #define CQSPI_INST_TYPE_OCTAL                   3
101
102 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
103 #define CQSPI_DUMMY_BYTES_MAX                   4
104 #define CQSPI_DUMMY_CLKS_MAX                    31
105
106 #define CQSPI_STIG_DATA_LEN_MAX                 8
107
108 /* Register map */
109 #define CQSPI_REG_CONFIG                        0x00
110 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
111 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
112 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
113 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
114 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
115 #define CQSPI_REG_CONFIG_BAUD_LSB               19
116 #define CQSPI_REG_CONFIG_DTR_PROTO              BIT(24)
117 #define CQSPI_REG_CONFIG_DUAL_OPCODE            BIT(30)
118 #define CQSPI_REG_CONFIG_IDLE_LSB               31
119 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
120 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
121
122 #define CQSPI_REG_RD_INSTR                      0x04
123 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
124 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
125 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
126 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
127 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
128 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
129 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
130 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
131 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
132 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
133
134 #define CQSPI_REG_WR_INSTR                      0x08
135 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
136 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
137 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
138
139 #define CQSPI_REG_DELAY                         0x0C
140 #define CQSPI_REG_DELAY_TSLCH_LSB               0
141 #define CQSPI_REG_DELAY_TCHSH_LSB               8
142 #define CQSPI_REG_DELAY_TSD2D_LSB               16
143 #define CQSPI_REG_DELAY_TSHSL_LSB               24
144 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
145 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
146 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
147 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
148
149 #define CQSPI_REG_READCAPTURE                   0x10
150 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
151 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
152 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
153
154 #define CQSPI_REG_SIZE                          0x14
155 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
156 #define CQSPI_REG_SIZE_PAGE_LSB                 4
157 #define CQSPI_REG_SIZE_BLOCK_LSB                16
158 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
159 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
160 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
161
162 #define CQSPI_REG_SRAMPARTITION                 0x18
163 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
164
165 #define CQSPI_REG_DMA                           0x20
166 #define CQSPI_REG_DMA_SINGLE_LSB                0
167 #define CQSPI_REG_DMA_BURST_LSB                 8
168 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
169 #define CQSPI_REG_DMA_BURST_MASK                0xFF
170
171 #define CQSPI_REG_REMAP                         0x24
172 #define CQSPI_REG_MODE_BIT                      0x28
173
174 #define CQSPI_REG_SDRAMLEVEL                    0x2C
175 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
176 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
177 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
178 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
179
180 #define CQSPI_REG_WR_COMPLETION_CTRL            0x38
181 #define CQSPI_REG_WR_DISABLE_AUTO_POLL          BIT(14)
182
183 #define CQSPI_REG_IRQSTATUS                     0x40
184 #define CQSPI_REG_IRQMASK                       0x44
185
186 #define CQSPI_REG_INDIRECTRD                    0x60
187 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
188 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
189 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
190
191 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
192 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
193 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
194
195 #define CQSPI_REG_CMDCTRL                       0x90
196 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
197 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
198 #define CQSPI_REG_CMDCTRL_DUMMY_LSB             7
199 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
200 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
201 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
202 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
203 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
204 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
205 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
207 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
208 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
209 #define CQSPI_REG_CMDCTRL_DUMMY_MASK            0x1F
210
211 #define CQSPI_REG_INDIRECTWR                    0x70
212 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
213 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
214 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
215
216 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
217 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
218 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
219
220 #define CQSPI_REG_CMDADDRESS                    0x94
221 #define CQSPI_REG_CMDREADDATALOWER              0xA0
222 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
223 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
224 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
225
226 #define CQSPI_REG_POLLING_STATUS                0xB0
227 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB      16
228
229 #define CQSPI_REG_OP_EXT_LOWER                  0xE0
230 #define CQSPI_REG_OP_EXT_READ_LSB               24
231 #define CQSPI_REG_OP_EXT_WRITE_LSB              16
232 #define CQSPI_REG_OP_EXT_STIG_LSB               0
233
234 /* Interrupt status bits */
235 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
236 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
237 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
238 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
239 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
240 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
241 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
242 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
243
244 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
245                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
246                                          CQSPI_REG_IRQ_IND_COMP)
247
248 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
249                                          CQSPI_REG_IRQ_WATERMARK        | \
250                                          CQSPI_REG_IRQ_UNDERFLOW)
251
252 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
253
254 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
255 {
256         u32 val;
257
258         return readl_relaxed_poll_timeout(reg, val,
259                                           (((clr ? ~val : val) & mask) == mask),
260                                           10, CQSPI_TIMEOUT_MS * 1000);
261 }
262
263 static bool cqspi_is_idle(struct cqspi_st *cqspi)
264 {
265         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
266
267         return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
268 }
269
270 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
271 {
272         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
273
274         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
275         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
276 }
277
278 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
279 {
280         struct cqspi_st *cqspi = dev;
281         unsigned int irq_status;
282
283         /* Read interrupt status */
284         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
285
286         /* Clear interrupt */
287         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
288
289         irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
290
291         if (irq_status)
292                 complete(&cqspi->transfer_complete);
293
294         return IRQ_HANDLED;
295 }
296
297 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
298 {
299         u32 rdreg = 0;
300
301         rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
302         rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
303         rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
304
305         return rdreg;
306 }
307
308 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
309 {
310         unsigned int dummy_clk;
311
312         if (!op->dummy.nbytes)
313                 return 0;
314
315         dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
316         if (dtr)
317                 dummy_clk /= 2;
318
319         return dummy_clk;
320 }
321
322 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
323                               const struct spi_mem_op *op)
324 {
325         f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
326         f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
327         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
328         f_pdata->dtr = op->data.dtr && op->cmd.dtr && op->addr.dtr;
329
330         switch (op->data.buswidth) {
331         case 0:
332                 break;
333         case 1:
334                 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
335                 break;
336         case 2:
337                 f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
338                 break;
339         case 4:
340                 f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
341                 break;
342         case 8:
343                 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
344                 break;
345         default:
346                 return -EINVAL;
347         }
348
349         /* Right now we only support 8-8-8 DTR mode. */
350         if (f_pdata->dtr) {
351                 switch (op->cmd.buswidth) {
352                 case 0:
353                         break;
354                 case 8:
355                         f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
356                         break;
357                 default:
358                         return -EINVAL;
359                 }
360
361                 switch (op->addr.buswidth) {
362                 case 0:
363                         break;
364                 case 8:
365                         f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
366                         break;
367                 default:
368                         return -EINVAL;
369                 }
370
371                 switch (op->data.buswidth) {
372                 case 0:
373                         break;
374                 case 8:
375                         f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
376                         break;
377                 default:
378                         return -EINVAL;
379                 }
380         }
381
382         return 0;
383 }
384
385 static int cqspi_wait_idle(struct cqspi_st *cqspi)
386 {
387         const unsigned int poll_idle_retry = 3;
388         unsigned int count = 0;
389         unsigned long timeout;
390
391         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
392         while (1) {
393                 /*
394                  * Read few times in succession to ensure the controller
395                  * is indeed idle, that is, the bit does not transition
396                  * low again.
397                  */
398                 if (cqspi_is_idle(cqspi))
399                         count++;
400                 else
401                         count = 0;
402
403                 if (count >= poll_idle_retry)
404                         return 0;
405
406                 if (time_after(jiffies, timeout)) {
407                         /* Timeout, in busy mode. */
408                         dev_err(&cqspi->pdev->dev,
409                                 "QSPI is still busy after %dms timeout.\n",
410                                 CQSPI_TIMEOUT_MS);
411                         return -ETIMEDOUT;
412                 }
413
414                 cpu_relax();
415         }
416 }
417
418 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
419 {
420         void __iomem *reg_base = cqspi->iobase;
421         int ret;
422
423         /* Write the CMDCTRL without start execution. */
424         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
425         /* Start execute */
426         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
427         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
428
429         /* Polling for completion. */
430         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
431                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
432         if (ret) {
433                 dev_err(&cqspi->pdev->dev,
434                         "Flash command execution timed out.\n");
435                 return ret;
436         }
437
438         /* Polling QSPI idle status. */
439         return cqspi_wait_idle(cqspi);
440 }
441
442 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
443                                   const struct spi_mem_op *op,
444                                   unsigned int shift)
445 {
446         struct cqspi_st *cqspi = f_pdata->cqspi;
447         void __iomem *reg_base = cqspi->iobase;
448         unsigned int reg;
449         u8 ext;
450
451         if (op->cmd.nbytes != 2)
452                 return -EINVAL;
453
454         /* Opcode extension is the LSB. */
455         ext = op->cmd.opcode & 0xff;
456
457         reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
458         reg &= ~(0xff << shift);
459         reg |= ext << shift;
460         writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
461
462         return 0;
463 }
464
465 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
466                             const struct spi_mem_op *op, unsigned int shift,
467                             bool enable)
468 {
469         struct cqspi_st *cqspi = f_pdata->cqspi;
470         void __iomem *reg_base = cqspi->iobase;
471         unsigned int reg;
472         int ret;
473
474         reg = readl(reg_base + CQSPI_REG_CONFIG);
475
476         /*
477          * We enable dual byte opcode here. The callers have to set up the
478          * extension opcode based on which type of operation it is.
479          */
480         if (enable) {
481                 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
482                 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
483
484                 /* Set up command opcode extension. */
485                 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
486                 if (ret)
487                         return ret;
488         } else {
489                 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
490                 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
491         }
492
493         writel(reg, reg_base + CQSPI_REG_CONFIG);
494
495         return cqspi_wait_idle(cqspi);
496 }
497
498 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
499                               const struct spi_mem_op *op)
500 {
501         struct cqspi_st *cqspi = f_pdata->cqspi;
502         void __iomem *reg_base = cqspi->iobase;
503         u8 *rxbuf = op->data.buf.in;
504         u8 opcode;
505         size_t n_rx = op->data.nbytes;
506         unsigned int rdreg;
507         unsigned int reg;
508         unsigned int dummy_clk;
509         size_t read_len;
510         int status;
511
512         status = cqspi_set_protocol(f_pdata, op);
513         if (status)
514                 return status;
515
516         status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
517                                   f_pdata->dtr);
518         if (status)
519                 return status;
520
521         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
522                 dev_err(&cqspi->pdev->dev,
523                         "Invalid input argument, len %zu rxbuf 0x%p\n",
524                         n_rx, rxbuf);
525                 return -EINVAL;
526         }
527
528         if (f_pdata->dtr)
529                 opcode = op->cmd.opcode >> 8;
530         else
531                 opcode = op->cmd.opcode;
532
533         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
534
535         rdreg = cqspi_calc_rdreg(f_pdata);
536         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
537
538         dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
539         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
540                 return -EOPNOTSUPP;
541
542         if (dummy_clk)
543                 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
544                      << CQSPI_REG_CMDCTRL_DUMMY_LSB;
545
546         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
547
548         /* 0 means 1 byte. */
549         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
550                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
551         status = cqspi_exec_flash_cmd(cqspi, reg);
552         if (status)
553                 return status;
554
555         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
556
557         /* Put the read value into rx_buf */
558         read_len = (n_rx > 4) ? 4 : n_rx;
559         memcpy(rxbuf, &reg, read_len);
560         rxbuf += read_len;
561
562         if (n_rx > 4) {
563                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
564
565                 read_len = n_rx - read_len;
566                 memcpy(rxbuf, &reg, read_len);
567         }
568
569         return 0;
570 }
571
572 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
573                                const struct spi_mem_op *op)
574 {
575         struct cqspi_st *cqspi = f_pdata->cqspi;
576         void __iomem *reg_base = cqspi->iobase;
577         u8 opcode;
578         const u8 *txbuf = op->data.buf.out;
579         size_t n_tx = op->data.nbytes;
580         unsigned int reg;
581         unsigned int data;
582         size_t write_len;
583         int ret;
584
585         ret = cqspi_set_protocol(f_pdata, op);
586         if (ret)
587                 return ret;
588
589         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
590                                f_pdata->dtr);
591         if (ret)
592                 return ret;
593
594         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
595                 dev_err(&cqspi->pdev->dev,
596                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
597                         n_tx, txbuf);
598                 return -EINVAL;
599         }
600
601         reg = cqspi_calc_rdreg(f_pdata);
602         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
603
604         if (f_pdata->dtr)
605                 opcode = op->cmd.opcode >> 8;
606         else
607                 opcode = op->cmd.opcode;
608
609         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
610
611         if (op->addr.nbytes) {
612                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
613                 reg |= ((op->addr.nbytes - 1) &
614                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
615                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
616
617                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
618         }
619
620         if (n_tx) {
621                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
622                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
623                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
624                 data = 0;
625                 write_len = (n_tx > 4) ? 4 : n_tx;
626                 memcpy(&data, txbuf, write_len);
627                 txbuf += write_len;
628                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
629
630                 if (n_tx > 4) {
631                         data = 0;
632                         write_len = n_tx - 4;
633                         memcpy(&data, txbuf, write_len);
634                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
635                 }
636         }
637
638         return cqspi_exec_flash_cmd(cqspi, reg);
639 }
640
641 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
642                             const struct spi_mem_op *op)
643 {
644         struct cqspi_st *cqspi = f_pdata->cqspi;
645         void __iomem *reg_base = cqspi->iobase;
646         unsigned int dummy_clk = 0;
647         unsigned int reg;
648         int ret;
649         u8 opcode;
650
651         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
652                                f_pdata->dtr);
653         if (ret)
654                 return ret;
655
656         if (f_pdata->dtr)
657                 opcode = op->cmd.opcode >> 8;
658         else
659                 opcode = op->cmd.opcode;
660
661         reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
662         reg |= cqspi_calc_rdreg(f_pdata);
663
664         /* Setup dummy clock cycles */
665         dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
666
667         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
668                 return -EOPNOTSUPP;
669
670         if (dummy_clk)
671                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
672                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
673
674         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
675
676         /* Set address width */
677         reg = readl(reg_base + CQSPI_REG_SIZE);
678         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
679         reg |= (op->addr.nbytes - 1);
680         writel(reg, reg_base + CQSPI_REG_SIZE);
681         return 0;
682 }
683
684 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
685                                        u8 *rxbuf, loff_t from_addr,
686                                        const size_t n_rx)
687 {
688         struct cqspi_st *cqspi = f_pdata->cqspi;
689         struct device *dev = &cqspi->pdev->dev;
690         void __iomem *reg_base = cqspi->iobase;
691         void __iomem *ahb_base = cqspi->ahb_base;
692         unsigned int remaining = n_rx;
693         unsigned int mod_bytes = n_rx % 4;
694         unsigned int bytes_to_read = 0;
695         u8 *rxbuf_end = rxbuf + n_rx;
696         int ret = 0;
697
698         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
699         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
700
701         /* Clear all interrupts. */
702         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
703
704         writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
705
706         reinit_completion(&cqspi->transfer_complete);
707         writel(CQSPI_REG_INDIRECTRD_START_MASK,
708                reg_base + CQSPI_REG_INDIRECTRD);
709
710         while (remaining > 0) {
711                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
712                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
713                         ret = -ETIMEDOUT;
714
715                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
716
717                 if (ret && bytes_to_read == 0) {
718                         dev_err(dev, "Indirect read timeout, no bytes\n");
719                         goto failrd;
720                 }
721
722                 while (bytes_to_read != 0) {
723                         unsigned int word_remain = round_down(remaining, 4);
724
725                         bytes_to_read *= cqspi->fifo_width;
726                         bytes_to_read = bytes_to_read > remaining ?
727                                         remaining : bytes_to_read;
728                         bytes_to_read = round_down(bytes_to_read, 4);
729                         /* Read 4 byte word chunks then single bytes */
730                         if (bytes_to_read) {
731                                 ioread32_rep(ahb_base, rxbuf,
732                                              (bytes_to_read / 4));
733                         } else if (!word_remain && mod_bytes) {
734                                 unsigned int temp = ioread32(ahb_base);
735
736                                 bytes_to_read = mod_bytes;
737                                 memcpy(rxbuf, &temp, min((unsigned int)
738                                                          (rxbuf_end - rxbuf),
739                                                          bytes_to_read));
740                         }
741                         rxbuf += bytes_to_read;
742                         remaining -= bytes_to_read;
743                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
744                 }
745
746                 if (remaining > 0)
747                         reinit_completion(&cqspi->transfer_complete);
748         }
749
750         /* Check indirect done status */
751         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
752                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
753         if (ret) {
754                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
755                 goto failrd;
756         }
757
758         /* Disable interrupt */
759         writel(0, reg_base + CQSPI_REG_IRQMASK);
760
761         /* Clear indirect completion status */
762         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
763
764         return 0;
765
766 failrd:
767         /* Disable interrupt */
768         writel(0, reg_base + CQSPI_REG_IRQMASK);
769
770         /* Cancel the indirect read */
771         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
772                reg_base + CQSPI_REG_INDIRECTRD);
773         return ret;
774 }
775
776 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
777                              const struct spi_mem_op *op)
778 {
779         unsigned int reg;
780         int ret;
781         struct cqspi_st *cqspi = f_pdata->cqspi;
782         void __iomem *reg_base = cqspi->iobase;
783         u8 opcode;
784
785         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
786                                f_pdata->dtr);
787         if (ret)
788                 return ret;
789
790         if (f_pdata->dtr)
791                 opcode = op->cmd.opcode >> 8;
792         else
793                 opcode = op->cmd.opcode;
794
795         /* Set opcode. */
796         reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
797         reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
798         reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
799         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
800         reg = cqspi_calc_rdreg(f_pdata);
801         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
802
803         /*
804          * SPI NAND flashes require the address of the status register to be
805          * passed in the Read SR command. Also, some SPI NOR flashes like the
806          * cypress Semper flash expect a 4-byte dummy address in the Read SR
807          * command in DTR mode.
808          *
809          * But this controller does not support address phase in the Read SR
810          * command when doing auto-HW polling. So, disable write completion
811          * polling on the controller's side. spinand and spi-nor will take
812          * care of polling the status register.
813          */
814         reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
815         reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
816         writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
817
818         reg = readl(reg_base + CQSPI_REG_SIZE);
819         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
820         reg |= (op->addr.nbytes - 1);
821         writel(reg, reg_base + CQSPI_REG_SIZE);
822         return 0;
823 }
824
825 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
826                                         loff_t to_addr, const u8 *txbuf,
827                                         const size_t n_tx)
828 {
829         struct cqspi_st *cqspi = f_pdata->cqspi;
830         struct device *dev = &cqspi->pdev->dev;
831         void __iomem *reg_base = cqspi->iobase;
832         unsigned int remaining = n_tx;
833         unsigned int write_bytes;
834         int ret;
835
836         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
837         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
838
839         /* Clear all interrupts. */
840         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
841
842         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
843
844         reinit_completion(&cqspi->transfer_complete);
845         writel(CQSPI_REG_INDIRECTWR_START_MASK,
846                reg_base + CQSPI_REG_INDIRECTWR);
847         /*
848          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
849          * Controller programming sequence, couple of cycles of
850          * QSPI_REF_CLK delay is required for the above bit to
851          * be internally synchronized by the QSPI module. Provide 5
852          * cycles of delay.
853          */
854         if (cqspi->wr_delay)
855                 ndelay(cqspi->wr_delay);
856
857         while (remaining > 0) {
858                 size_t write_words, mod_bytes;
859
860                 write_bytes = remaining;
861                 write_words = write_bytes / 4;
862                 mod_bytes = write_bytes % 4;
863                 /* Write 4 bytes at a time then single bytes. */
864                 if (write_words) {
865                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
866                         txbuf += (write_words * 4);
867                 }
868                 if (mod_bytes) {
869                         unsigned int temp = 0xFFFFFFFF;
870
871                         memcpy(&temp, txbuf, mod_bytes);
872                         iowrite32(temp, cqspi->ahb_base);
873                         txbuf += mod_bytes;
874                 }
875
876                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
877                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
878                         dev_err(dev, "Indirect write timeout\n");
879                         ret = -ETIMEDOUT;
880                         goto failwr;
881                 }
882
883                 remaining -= write_bytes;
884
885                 if (remaining > 0)
886                         reinit_completion(&cqspi->transfer_complete);
887         }
888
889         /* Check indirect done status */
890         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
891                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
892         if (ret) {
893                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
894                 goto failwr;
895         }
896
897         /* Disable interrupt. */
898         writel(0, reg_base + CQSPI_REG_IRQMASK);
899
900         /* Clear indirect completion status */
901         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
902
903         cqspi_wait_idle(cqspi);
904
905         return 0;
906
907 failwr:
908         /* Disable interrupt. */
909         writel(0, reg_base + CQSPI_REG_IRQMASK);
910
911         /* Cancel the indirect write */
912         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
913                reg_base + CQSPI_REG_INDIRECTWR);
914         return ret;
915 }
916
917 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
918 {
919         struct cqspi_st *cqspi = f_pdata->cqspi;
920         void __iomem *reg_base = cqspi->iobase;
921         unsigned int chip_select = f_pdata->cs;
922         unsigned int reg;
923
924         reg = readl(reg_base + CQSPI_REG_CONFIG);
925         if (cqspi->is_decoded_cs) {
926                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
927         } else {
928                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
929
930                 /* Convert CS if without decoder.
931                  * CS0 to 4b'1110
932                  * CS1 to 4b'1101
933                  * CS2 to 4b'1011
934                  * CS3 to 4b'0111
935                  */
936                 chip_select = 0xF & ~(1 << chip_select);
937         }
938
939         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
940                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
941         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
942             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
943         writel(reg, reg_base + CQSPI_REG_CONFIG);
944 }
945
946 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
947                                            const unsigned int ns_val)
948 {
949         unsigned int ticks;
950
951         ticks = ref_clk_hz / 1000;      /* kHz */
952         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
953
954         return ticks;
955 }
956
957 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
958 {
959         struct cqspi_st *cqspi = f_pdata->cqspi;
960         void __iomem *iobase = cqspi->iobase;
961         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
962         unsigned int tshsl, tchsh, tslch, tsd2d;
963         unsigned int reg;
964         unsigned int tsclk;
965
966         /* calculate the number of ref ticks for one sclk tick */
967         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
968
969         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
970         /* this particular value must be at least one sclk */
971         if (tshsl < tsclk)
972                 tshsl = tsclk;
973
974         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
975         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
976         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
977
978         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
979                << CQSPI_REG_DELAY_TSHSL_LSB;
980         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
981                 << CQSPI_REG_DELAY_TCHSH_LSB;
982         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
983                 << CQSPI_REG_DELAY_TSLCH_LSB;
984         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
985                 << CQSPI_REG_DELAY_TSD2D_LSB;
986         writel(reg, iobase + CQSPI_REG_DELAY);
987 }
988
989 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
990 {
991         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
992         void __iomem *reg_base = cqspi->iobase;
993         u32 reg, div;
994
995         /* Recalculate the baudrate divisor based on QSPI specification. */
996         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
997
998         reg = readl(reg_base + CQSPI_REG_CONFIG);
999         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1000         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1001         writel(reg, reg_base + CQSPI_REG_CONFIG);
1002 }
1003
1004 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1005                                    const bool bypass,
1006                                    const unsigned int delay)
1007 {
1008         void __iomem *reg_base = cqspi->iobase;
1009         unsigned int reg;
1010
1011         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1012
1013         if (bypass)
1014                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1015         else
1016                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1017
1018         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1019                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
1020
1021         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1022                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1023
1024         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1025 }
1026
1027 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1028 {
1029         void __iomem *reg_base = cqspi->iobase;
1030         unsigned int reg;
1031
1032         reg = readl(reg_base + CQSPI_REG_CONFIG);
1033
1034         if (enable)
1035                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1036         else
1037                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1038
1039         writel(reg, reg_base + CQSPI_REG_CONFIG);
1040 }
1041
1042 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1043                             unsigned long sclk)
1044 {
1045         struct cqspi_st *cqspi = f_pdata->cqspi;
1046         int switch_cs = (cqspi->current_cs != f_pdata->cs);
1047         int switch_ck = (cqspi->sclk != sclk);
1048
1049         if (switch_cs || switch_ck)
1050                 cqspi_controller_enable(cqspi, 0);
1051
1052         /* Switch chip select. */
1053         if (switch_cs) {
1054                 cqspi->current_cs = f_pdata->cs;
1055                 cqspi_chipselect(f_pdata);
1056         }
1057
1058         /* Setup baudrate divisor and delays */
1059         if (switch_ck) {
1060                 cqspi->sclk = sclk;
1061                 cqspi_config_baudrate_div(cqspi);
1062                 cqspi_delay(f_pdata);
1063                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1064                                        f_pdata->read_delay);
1065         }
1066
1067         if (switch_cs || switch_ck)
1068                 cqspi_controller_enable(cqspi, 1);
1069 }
1070
1071 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1072                            const struct spi_mem_op *op)
1073 {
1074         struct cqspi_st *cqspi = f_pdata->cqspi;
1075         loff_t to = op->addr.val;
1076         size_t len = op->data.nbytes;
1077         const u_char *buf = op->data.buf.out;
1078         int ret;
1079
1080         ret = cqspi_set_protocol(f_pdata, op);
1081         if (ret)
1082                 return ret;
1083
1084         ret = cqspi_write_setup(f_pdata, op);
1085         if (ret)
1086                 return ret;
1087
1088         /*
1089          * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1090          * address (all 0s) with the read status register command in DTR mode.
1091          * But this controller does not support sending dummy address bytes to
1092          * the flash when it is polling the write completion register in DTR
1093          * mode. So, we can not use direct mode when in DTR mode for writing
1094          * data.
1095          */
1096         if (!f_pdata->dtr && cqspi->use_direct_mode &&
1097             ((to + len) <= cqspi->ahb_size)) {
1098                 memcpy_toio(cqspi->ahb_base + to, buf, len);
1099                 return cqspi_wait_idle(cqspi);
1100         }
1101
1102         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1103 }
1104
1105 static void cqspi_rx_dma_callback(void *param)
1106 {
1107         struct cqspi_st *cqspi = param;
1108
1109         complete(&cqspi->rx_dma_complete);
1110 }
1111
1112 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1113                                      u_char *buf, loff_t from, size_t len)
1114 {
1115         struct cqspi_st *cqspi = f_pdata->cqspi;
1116         struct device *dev = &cqspi->pdev->dev;
1117         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1118         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1119         int ret = 0;
1120         struct dma_async_tx_descriptor *tx;
1121         dma_cookie_t cookie;
1122         dma_addr_t dma_dst;
1123         struct device *ddev;
1124
1125         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1126                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1127                 return 0;
1128         }
1129
1130         ddev = cqspi->rx_chan->device->dev;
1131         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1132         if (dma_mapping_error(ddev, dma_dst)) {
1133                 dev_err(dev, "dma mapping failed\n");
1134                 return -ENOMEM;
1135         }
1136         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1137                                        len, flags);
1138         if (!tx) {
1139                 dev_err(dev, "device_prep_dma_memcpy error\n");
1140                 ret = -EIO;
1141                 goto err_unmap;
1142         }
1143
1144         tx->callback = cqspi_rx_dma_callback;
1145         tx->callback_param = cqspi;
1146         cookie = tx->tx_submit(tx);
1147         reinit_completion(&cqspi->rx_dma_complete);
1148
1149         ret = dma_submit_error(cookie);
1150         if (ret) {
1151                 dev_err(dev, "dma_submit_error %d\n", cookie);
1152                 ret = -EIO;
1153                 goto err_unmap;
1154         }
1155
1156         dma_async_issue_pending(cqspi->rx_chan);
1157         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1158                                          msecs_to_jiffies(max_t(size_t, len, 500)))) {
1159                 dmaengine_terminate_sync(cqspi->rx_chan);
1160                 dev_err(dev, "DMA wait_for_completion_timeout\n");
1161                 ret = -ETIMEDOUT;
1162                 goto err_unmap;
1163         }
1164
1165 err_unmap:
1166         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1167
1168         return ret;
1169 }
1170
1171 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1172                           const struct spi_mem_op *op)
1173 {
1174         struct cqspi_st *cqspi = f_pdata->cqspi;
1175         loff_t from = op->addr.val;
1176         size_t len = op->data.nbytes;
1177         u_char *buf = op->data.buf.in;
1178         int ret;
1179
1180         ret = cqspi_set_protocol(f_pdata, op);
1181         if (ret)
1182                 return ret;
1183
1184         ret = cqspi_read_setup(f_pdata, op);
1185         if (ret)
1186                 return ret;
1187
1188         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1189                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1190
1191         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1192 }
1193
1194 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1195 {
1196         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1197         struct cqspi_flash_pdata *f_pdata;
1198
1199         f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1200         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1201
1202         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1203                 if (!op->addr.nbytes)
1204                         return cqspi_command_read(f_pdata, op);
1205
1206                 return cqspi_read(f_pdata, op);
1207         }
1208
1209         if (!op->addr.nbytes || !op->data.buf.out)
1210                 return cqspi_command_write(f_pdata, op);
1211
1212         return cqspi_write(f_pdata, op);
1213 }
1214
1215 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1216 {
1217         int ret;
1218
1219         ret = cqspi_mem_process(mem, op);
1220         if (ret)
1221                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1222
1223         return ret;
1224 }
1225
1226 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1227                                   const struct spi_mem_op *op)
1228 {
1229         bool all_true, all_false;
1230
1231         all_true = op->cmd.dtr && op->addr.dtr && op->dummy.dtr &&
1232                    op->data.dtr;
1233         all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1234                     !op->data.dtr;
1235
1236         /* Mixed DTR modes not supported. */
1237         if (!(all_true || all_false))
1238                 return false;
1239
1240         if (all_true)
1241                 return spi_mem_dtr_supports_op(mem, op);
1242         else
1243                 return spi_mem_default_supports_op(mem, op);
1244 }
1245
1246 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1247                                     struct cqspi_flash_pdata *f_pdata,
1248                                     struct device_node *np)
1249 {
1250         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1251                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1252                 return -ENXIO;
1253         }
1254
1255         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1256                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1257                 return -ENXIO;
1258         }
1259
1260         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1261                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1262                 return -ENXIO;
1263         }
1264
1265         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1266                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1267                 return -ENXIO;
1268         }
1269
1270         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1271                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1272                 return -ENXIO;
1273         }
1274
1275         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1276                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1277                 return -ENXIO;
1278         }
1279
1280         return 0;
1281 }
1282
1283 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1284 {
1285         struct device *dev = &cqspi->pdev->dev;
1286         struct device_node *np = dev->of_node;
1287
1288         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1289
1290         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1291                 dev_err(dev, "couldn't determine fifo-depth\n");
1292                 return -ENXIO;
1293         }
1294
1295         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1296                 dev_err(dev, "couldn't determine fifo-width\n");
1297                 return -ENXIO;
1298         }
1299
1300         if (of_property_read_u32(np, "cdns,trigger-address",
1301                                  &cqspi->trigger_address)) {
1302                 dev_err(dev, "couldn't determine trigger-address\n");
1303                 return -ENXIO;
1304         }
1305
1306         if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1307                 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1308
1309         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1310
1311         return 0;
1312 }
1313
1314 static void cqspi_controller_init(struct cqspi_st *cqspi)
1315 {
1316         u32 reg;
1317
1318         cqspi_controller_enable(cqspi, 0);
1319
1320         /* Configure the remap address register, no remap */
1321         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1322
1323         /* Disable all interrupts. */
1324         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1325
1326         /* Configure the SRAM split to 1:1 . */
1327         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1328
1329         /* Load indirect trigger address. */
1330         writel(cqspi->trigger_address,
1331                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1332
1333         /* Program read watermark -- 1/2 of the FIFO. */
1334         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1335                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1336         /* Program write watermark -- 1/8 of the FIFO. */
1337         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1338                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1339
1340         /* Disable direct access controller */
1341         if (!cqspi->use_direct_mode) {
1342                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1343                 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1344                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1345         }
1346
1347         cqspi_controller_enable(cqspi, 1);
1348 }
1349
1350 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1351 {
1352         dma_cap_mask_t mask;
1353
1354         dma_cap_zero(mask);
1355         dma_cap_set(DMA_MEMCPY, mask);
1356
1357         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1358         if (IS_ERR(cqspi->rx_chan)) {
1359                 int ret = PTR_ERR(cqspi->rx_chan);
1360                 cqspi->rx_chan = NULL;
1361                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1362         }
1363         init_completion(&cqspi->rx_dma_complete);
1364
1365         return 0;
1366 }
1367
1368 static const char *cqspi_get_name(struct spi_mem *mem)
1369 {
1370         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1371         struct device *dev = &cqspi->pdev->dev;
1372
1373         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1374 }
1375
1376 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1377         .exec_op = cqspi_exec_mem_op,
1378         .get_name = cqspi_get_name,
1379         .supports_op = cqspi_supports_mem_op,
1380 };
1381
1382 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1383 {
1384         struct platform_device *pdev = cqspi->pdev;
1385         struct device *dev = &pdev->dev;
1386         struct device_node *np = dev->of_node;
1387         struct cqspi_flash_pdata *f_pdata;
1388         unsigned int cs;
1389         int ret;
1390
1391         /* Get flash device data */
1392         for_each_available_child_of_node(dev->of_node, np) {
1393                 ret = of_property_read_u32(np, "reg", &cs);
1394                 if (ret) {
1395                         dev_err(dev, "Couldn't determine chip select.\n");
1396                         of_node_put(np);
1397                         return ret;
1398                 }
1399
1400                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1401                         dev_err(dev, "Chip select %d out of range.\n", cs);
1402                         of_node_put(np);
1403                         return -EINVAL;
1404                 }
1405
1406                 f_pdata = &cqspi->f_pdata[cs];
1407                 f_pdata->cqspi = cqspi;
1408                 f_pdata->cs = cs;
1409
1410                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1411                 if (ret) {
1412                         of_node_put(np);
1413                         return ret;
1414                 }
1415         }
1416
1417         return 0;
1418 }
1419
1420 static int cqspi_probe(struct platform_device *pdev)
1421 {
1422         const struct cqspi_driver_platdata *ddata;
1423         struct reset_control *rstc, *rstc_ocp;
1424         struct device *dev = &pdev->dev;
1425         struct spi_master *master;
1426         struct resource *res_ahb;
1427         struct cqspi_st *cqspi;
1428         struct resource *res;
1429         int ret;
1430         int irq;
1431
1432         master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1433         if (!master) {
1434                 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1435                 return -ENOMEM;
1436         }
1437         master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1438         master->mem_ops = &cqspi_mem_ops;
1439         master->dev.of_node = pdev->dev.of_node;
1440
1441         cqspi = spi_master_get_devdata(master);
1442
1443         cqspi->pdev = pdev;
1444         platform_set_drvdata(pdev, cqspi);
1445
1446         /* Obtain configuration from OF. */
1447         ret = cqspi_of_get_pdata(cqspi);
1448         if (ret) {
1449                 dev_err(dev, "Cannot get mandatory OF data.\n");
1450                 ret = -ENODEV;
1451                 goto probe_master_put;
1452         }
1453
1454         /* Obtain QSPI clock. */
1455         cqspi->clk = devm_clk_get(dev, NULL);
1456         if (IS_ERR(cqspi->clk)) {
1457                 dev_err(dev, "Cannot claim QSPI clock.\n");
1458                 ret = PTR_ERR(cqspi->clk);
1459                 goto probe_master_put;
1460         }
1461
1462         /* Obtain and remap controller address. */
1463         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1464         cqspi->iobase = devm_ioremap_resource(dev, res);
1465         if (IS_ERR(cqspi->iobase)) {
1466                 dev_err(dev, "Cannot remap controller address.\n");
1467                 ret = PTR_ERR(cqspi->iobase);
1468                 goto probe_master_put;
1469         }
1470
1471         /* Obtain and remap AHB address. */
1472         res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1473         cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1474         if (IS_ERR(cqspi->ahb_base)) {
1475                 dev_err(dev, "Cannot remap AHB address.\n");
1476                 ret = PTR_ERR(cqspi->ahb_base);
1477                 goto probe_master_put;
1478         }
1479         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1480         cqspi->ahb_size = resource_size(res_ahb);
1481
1482         init_completion(&cqspi->transfer_complete);
1483
1484         /* Obtain IRQ line. */
1485         irq = platform_get_irq(pdev, 0);
1486         if (irq < 0) {
1487                 ret = -ENXIO;
1488                 goto probe_master_put;
1489         }
1490
1491         pm_runtime_enable(dev);
1492         ret = pm_runtime_get_sync(dev);
1493         if (ret < 0) {
1494                 pm_runtime_put_noidle(dev);
1495                 goto probe_master_put;
1496         }
1497
1498         ret = clk_prepare_enable(cqspi->clk);
1499         if (ret) {
1500                 dev_err(dev, "Cannot enable QSPI clock.\n");
1501                 goto probe_clk_failed;
1502         }
1503
1504         /* Obtain QSPI reset control */
1505         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1506         if (IS_ERR(rstc)) {
1507                 ret = PTR_ERR(rstc);
1508                 dev_err(dev, "Cannot get QSPI reset.\n");
1509                 goto probe_reset_failed;
1510         }
1511
1512         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1513         if (IS_ERR(rstc_ocp)) {
1514                 ret = PTR_ERR(rstc_ocp);
1515                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1516                 goto probe_reset_failed;
1517         }
1518
1519         reset_control_assert(rstc);
1520         reset_control_deassert(rstc);
1521
1522         reset_control_assert(rstc_ocp);
1523         reset_control_deassert(rstc_ocp);
1524
1525         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1526         master->max_speed_hz = cqspi->master_ref_clk_hz;
1527         ddata  = of_device_get_match_data(dev);
1528         if (ddata) {
1529                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1530                         cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1531                                                 cqspi->master_ref_clk_hz);
1532                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1533                         master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1534                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1535                         cqspi->use_direct_mode = true;
1536         }
1537
1538         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1539                                pdev->name, cqspi);
1540         if (ret) {
1541                 dev_err(dev, "Cannot request IRQ.\n");
1542                 goto probe_reset_failed;
1543         }
1544
1545         cqspi_wait_idle(cqspi);
1546         cqspi_controller_init(cqspi);
1547         cqspi->current_cs = -1;
1548         cqspi->sclk = 0;
1549
1550         master->num_chipselect = cqspi->num_chipselect;
1551
1552         ret = cqspi_setup_flash(cqspi);
1553         if (ret) {
1554                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1555                 goto probe_setup_failed;
1556         }
1557
1558         if (cqspi->use_direct_mode) {
1559                 ret = cqspi_request_mmap_dma(cqspi);
1560                 if (ret == -EPROBE_DEFER)
1561                         goto probe_setup_failed;
1562         }
1563
1564         ret = devm_spi_register_master(dev, master);
1565         if (ret) {
1566                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1567                 goto probe_setup_failed;
1568         }
1569
1570         return 0;
1571 probe_setup_failed:
1572         cqspi_controller_enable(cqspi, 0);
1573 probe_reset_failed:
1574         clk_disable_unprepare(cqspi->clk);
1575 probe_clk_failed:
1576         pm_runtime_put_sync(dev);
1577         pm_runtime_disable(dev);
1578 probe_master_put:
1579         spi_master_put(master);
1580         return ret;
1581 }
1582
1583 static int cqspi_remove(struct platform_device *pdev)
1584 {
1585         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1586
1587         cqspi_controller_enable(cqspi, 0);
1588
1589         if (cqspi->rx_chan)
1590                 dma_release_channel(cqspi->rx_chan);
1591
1592         clk_disable_unprepare(cqspi->clk);
1593
1594         pm_runtime_put_sync(&pdev->dev);
1595         pm_runtime_disable(&pdev->dev);
1596
1597         return 0;
1598 }
1599
1600 #ifdef CONFIG_PM_SLEEP
1601 static int cqspi_suspend(struct device *dev)
1602 {
1603         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1604
1605         cqspi_controller_enable(cqspi, 0);
1606         return 0;
1607 }
1608
1609 static int cqspi_resume(struct device *dev)
1610 {
1611         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1612
1613         cqspi_controller_enable(cqspi, 1);
1614         return 0;
1615 }
1616
1617 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1618         .suspend = cqspi_suspend,
1619         .resume = cqspi_resume,
1620 };
1621
1622 #define CQSPI_DEV_PM_OPS        (&cqspi__dev_pm_ops)
1623 #else
1624 #define CQSPI_DEV_PM_OPS        NULL
1625 #endif
1626
1627 static const struct cqspi_driver_platdata cdns_qspi = {
1628         .quirks = CQSPI_DISABLE_DAC_MODE,
1629 };
1630
1631 static const struct cqspi_driver_platdata k2g_qspi = {
1632         .quirks = CQSPI_NEEDS_WR_DELAY,
1633 };
1634
1635 static const struct cqspi_driver_platdata am654_ospi = {
1636         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1637         .quirks = CQSPI_NEEDS_WR_DELAY,
1638 };
1639
1640 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1641         .quirks = CQSPI_DISABLE_DAC_MODE,
1642 };
1643
1644 static const struct of_device_id cqspi_dt_ids[] = {
1645         {
1646                 .compatible = "cdns,qspi-nor",
1647                 .data = &cdns_qspi,
1648         },
1649         {
1650                 .compatible = "ti,k2g-qspi",
1651                 .data = &k2g_qspi,
1652         },
1653         {
1654                 .compatible = "ti,am654-ospi",
1655                 .data = &am654_ospi,
1656         },
1657         {
1658                 .compatible = "intel,lgm-qspi",
1659                 .data = &intel_lgm_qspi,
1660         },
1661         { /* end of table */ }
1662 };
1663
1664 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1665
1666 static struct platform_driver cqspi_platform_driver = {
1667         .probe = cqspi_probe,
1668         .remove = cqspi_remove,
1669         .driver = {
1670                 .name = CQSPI_NAME,
1671                 .pm = CQSPI_DEV_PM_OPS,
1672                 .of_match_table = cqspi_dt_ids,
1673         },
1674 };
1675
1676 module_platform_driver(cqspi_platform_driver);
1677
1678 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1679 MODULE_LICENSE("GPL v2");
1680 MODULE_ALIAS("platform:" CQSPI_NAME);
1681 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1682 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1683 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1684 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1685 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");