Merge tag 'drm-msm-fixes-2022-06-28' of https://gitlab.freedesktop.org/drm/msm into...
[linux-2.6-microblaze.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
33
34 #define CQSPI_NAME                      "cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT            16
36
37 /* Quirks */
38 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA      BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION  BIT(3)
42
43 /* Capabilities */
44 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
45
46 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
47
48 struct cqspi_st;
49
50 struct cqspi_flash_pdata {
51         struct cqspi_st *cqspi;
52         u32             clk_rate;
53         u32             read_delay;
54         u32             tshsl_ns;
55         u32             tsd2d_ns;
56         u32             tchsh_ns;
57         u32             tslch_ns;
58         u8              cs;
59 };
60
61 struct cqspi_st {
62         struct platform_device  *pdev;
63         struct spi_master       *master;
64         struct clk              *clk;
65         unsigned int            sclk;
66
67         void __iomem            *iobase;
68         void __iomem            *ahb_base;
69         resource_size_t         ahb_size;
70         struct completion       transfer_complete;
71
72         struct dma_chan         *rx_chan;
73         struct completion       rx_dma_complete;
74         dma_addr_t              mmap_phys_base;
75
76         int                     current_cs;
77         unsigned long           master_ref_clk_hz;
78         bool                    is_decoded_cs;
79         u32                     fifo_depth;
80         u32                     fifo_width;
81         u32                     num_chipselect;
82         bool                    rclk_en;
83         u32                     trigger_address;
84         u32                     wr_delay;
85         bool                    use_direct_mode;
86         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
87         bool                    use_dma_read;
88         u32                     pd_dev_id;
89         bool                    wr_completion;
90 };
91
92 struct cqspi_driver_platdata {
93         u32 hwcaps_mask;
94         u8 quirks;
95         int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
96                                  u_char *rxbuf, loff_t from_addr, size_t n_rx);
97         u32 (*get_dma_status)(struct cqspi_st *cqspi);
98 };
99
100 /* Operation timeout value */
101 #define CQSPI_TIMEOUT_MS                        500
102 #define CQSPI_READ_TIMEOUT_MS                   10
103
104 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
105 #define CQSPI_DUMMY_BYTES_MAX                   4
106 #define CQSPI_DUMMY_CLKS_MAX                    31
107
108 #define CQSPI_STIG_DATA_LEN_MAX                 8
109
110 /* Register map */
111 #define CQSPI_REG_CONFIG                        0x00
112 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
113 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
114 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
115 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
116 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
117 #define CQSPI_REG_CONFIG_BAUD_LSB               19
118 #define CQSPI_REG_CONFIG_DTR_PROTO              BIT(24)
119 #define CQSPI_REG_CONFIG_DUAL_OPCODE            BIT(30)
120 #define CQSPI_REG_CONFIG_IDLE_LSB               31
121 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
122 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
123
124 #define CQSPI_REG_RD_INSTR                      0x04
125 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
126 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
127 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
128 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
129 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
130 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
131 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
132 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
133 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
134 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
135
136 #define CQSPI_REG_WR_INSTR                      0x08
137 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
138 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
139 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
140
141 #define CQSPI_REG_DELAY                         0x0C
142 #define CQSPI_REG_DELAY_TSLCH_LSB               0
143 #define CQSPI_REG_DELAY_TCHSH_LSB               8
144 #define CQSPI_REG_DELAY_TSD2D_LSB               16
145 #define CQSPI_REG_DELAY_TSHSL_LSB               24
146 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
147 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
148 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
149 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
150
151 #define CQSPI_REG_READCAPTURE                   0x10
152 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
153 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
154 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
155
156 #define CQSPI_REG_SIZE                          0x14
157 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
158 #define CQSPI_REG_SIZE_PAGE_LSB                 4
159 #define CQSPI_REG_SIZE_BLOCK_LSB                16
160 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
161 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
162 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
163
164 #define CQSPI_REG_SRAMPARTITION                 0x18
165 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
166
167 #define CQSPI_REG_DMA                           0x20
168 #define CQSPI_REG_DMA_SINGLE_LSB                0
169 #define CQSPI_REG_DMA_BURST_LSB                 8
170 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
171 #define CQSPI_REG_DMA_BURST_MASK                0xFF
172
173 #define CQSPI_REG_REMAP                         0x24
174 #define CQSPI_REG_MODE_BIT                      0x28
175
176 #define CQSPI_REG_SDRAMLEVEL                    0x2C
177 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
178 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
179 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
180 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
181
182 #define CQSPI_REG_WR_COMPLETION_CTRL            0x38
183 #define CQSPI_REG_WR_DISABLE_AUTO_POLL          BIT(14)
184
185 #define CQSPI_REG_IRQSTATUS                     0x40
186 #define CQSPI_REG_IRQMASK                       0x44
187
188 #define CQSPI_REG_INDIRECTRD                    0x60
189 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
190 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
191 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
192
193 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
194 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
195 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
196
197 #define CQSPI_REG_CMDCTRL                       0x90
198 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
199 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
200 #define CQSPI_REG_CMDCTRL_DUMMY_LSB             7
201 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
202 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
203 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
204 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
205 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
206 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
207 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
208 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
209 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
210 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
211 #define CQSPI_REG_CMDCTRL_DUMMY_MASK            0x1F
212
213 #define CQSPI_REG_INDIRECTWR                    0x70
214 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
215 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
216 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
217
218 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
219 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
220 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
221
222 #define CQSPI_REG_INDTRIG_ADDRRANGE             0x80
223
224 #define CQSPI_REG_CMDADDRESS                    0x94
225 #define CQSPI_REG_CMDREADDATALOWER              0xA0
226 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
227 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
228 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
229
230 #define CQSPI_REG_POLLING_STATUS                0xB0
231 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB      16
232
233 #define CQSPI_REG_OP_EXT_LOWER                  0xE0
234 #define CQSPI_REG_OP_EXT_READ_LSB               24
235 #define CQSPI_REG_OP_EXT_WRITE_LSB              16
236 #define CQSPI_REG_OP_EXT_STIG_LSB               0
237
238 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR           0x1000
239
240 #define CQSPI_REG_VERSAL_DMA_DST_ADDR           0x1800
241 #define CQSPI_REG_VERSAL_DMA_DST_SIZE           0x1804
242
243 #define CQSPI_REG_VERSAL_DMA_DST_CTRL           0x180C
244
245 #define CQSPI_REG_VERSAL_DMA_DST_I_STS          0x1814
246 #define CQSPI_REG_VERSAL_DMA_DST_I_EN           0x1818
247 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS          0x181C
248 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK      BIT(1)
249
250 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB       0x1828
251
252 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL       0xF43FFA00
253 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL    0x6
254
255 /* Interrupt status bits */
256 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
257 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
258 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
259 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
260 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
261 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
262 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
263 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
264
265 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
266                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
267                                          CQSPI_REG_IRQ_IND_COMP)
268
269 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
270                                          CQSPI_REG_IRQ_WATERMARK        | \
271                                          CQSPI_REG_IRQ_UNDERFLOW)
272
273 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
274 #define CQSPI_DMA_UNALIGN               0x3
275
276 #define CQSPI_REG_VERSAL_DMA_VAL                0x602
277
278 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
279 {
280         u32 val;
281
282         return readl_relaxed_poll_timeout(reg, val,
283                                           (((clr ? ~val : val) & mask) == mask),
284                                           10, CQSPI_TIMEOUT_MS * 1000);
285 }
286
287 static bool cqspi_is_idle(struct cqspi_st *cqspi)
288 {
289         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
290
291         return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
292 }
293
294 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
295 {
296         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
297
298         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
299         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
300 }
301
302 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
303 {
304         u32 dma_status;
305
306         dma_status = readl(cqspi->iobase +
307                                            CQSPI_REG_VERSAL_DMA_DST_I_STS);
308         writel(dma_status, cqspi->iobase +
309                    CQSPI_REG_VERSAL_DMA_DST_I_STS);
310
311         return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
312 }
313
314 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
315 {
316         struct cqspi_st *cqspi = dev;
317         unsigned int irq_status;
318         struct device *device = &cqspi->pdev->dev;
319         const struct cqspi_driver_platdata *ddata;
320
321         ddata = of_device_get_match_data(device);
322
323         /* Read interrupt status */
324         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
325
326         /* Clear interrupt */
327         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
328
329         if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
330                 if (ddata->get_dma_status(cqspi)) {
331                         complete(&cqspi->transfer_complete);
332                         return IRQ_HANDLED;
333                 }
334         }
335
336         irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
337
338         if (irq_status)
339                 complete(&cqspi->transfer_complete);
340
341         return IRQ_HANDLED;
342 }
343
344 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
345 {
346         u32 rdreg = 0;
347
348         rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
349         rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
350         rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
351
352         return rdreg;
353 }
354
355 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
356 {
357         unsigned int dummy_clk;
358
359         if (!op->dummy.nbytes)
360                 return 0;
361
362         dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
363         if (op->cmd.dtr)
364                 dummy_clk /= 2;
365
366         return dummy_clk;
367 }
368
369 static int cqspi_wait_idle(struct cqspi_st *cqspi)
370 {
371         const unsigned int poll_idle_retry = 3;
372         unsigned int count = 0;
373         unsigned long timeout;
374
375         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
376         while (1) {
377                 /*
378                  * Read few times in succession to ensure the controller
379                  * is indeed idle, that is, the bit does not transition
380                  * low again.
381                  */
382                 if (cqspi_is_idle(cqspi))
383                         count++;
384                 else
385                         count = 0;
386
387                 if (count >= poll_idle_retry)
388                         return 0;
389
390                 if (time_after(jiffies, timeout)) {
391                         /* Timeout, in busy mode. */
392                         dev_err(&cqspi->pdev->dev,
393                                 "QSPI is still busy after %dms timeout.\n",
394                                 CQSPI_TIMEOUT_MS);
395                         return -ETIMEDOUT;
396                 }
397
398                 cpu_relax();
399         }
400 }
401
402 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
403 {
404         void __iomem *reg_base = cqspi->iobase;
405         int ret;
406
407         /* Write the CMDCTRL without start execution. */
408         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
409         /* Start execute */
410         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
411         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
412
413         /* Polling for completion. */
414         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
415                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
416         if (ret) {
417                 dev_err(&cqspi->pdev->dev,
418                         "Flash command execution timed out.\n");
419                 return ret;
420         }
421
422         /* Polling QSPI idle status. */
423         return cqspi_wait_idle(cqspi);
424 }
425
426 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
427                                   const struct spi_mem_op *op,
428                                   unsigned int shift)
429 {
430         struct cqspi_st *cqspi = f_pdata->cqspi;
431         void __iomem *reg_base = cqspi->iobase;
432         unsigned int reg;
433         u8 ext;
434
435         if (op->cmd.nbytes != 2)
436                 return -EINVAL;
437
438         /* Opcode extension is the LSB. */
439         ext = op->cmd.opcode & 0xff;
440
441         reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
442         reg &= ~(0xff << shift);
443         reg |= ext << shift;
444         writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
445
446         return 0;
447 }
448
449 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
450                             const struct spi_mem_op *op, unsigned int shift)
451 {
452         struct cqspi_st *cqspi = f_pdata->cqspi;
453         void __iomem *reg_base = cqspi->iobase;
454         unsigned int reg;
455         int ret;
456
457         reg = readl(reg_base + CQSPI_REG_CONFIG);
458
459         /*
460          * We enable dual byte opcode here. The callers have to set up the
461          * extension opcode based on which type of operation it is.
462          */
463         if (op->cmd.dtr) {
464                 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
465                 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
466
467                 /* Set up command opcode extension. */
468                 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
469                 if (ret)
470                         return ret;
471         } else {
472                 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
473                 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
474         }
475
476         writel(reg, reg_base + CQSPI_REG_CONFIG);
477
478         return cqspi_wait_idle(cqspi);
479 }
480
481 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
482                               const struct spi_mem_op *op)
483 {
484         struct cqspi_st *cqspi = f_pdata->cqspi;
485         void __iomem *reg_base = cqspi->iobase;
486         u8 *rxbuf = op->data.buf.in;
487         u8 opcode;
488         size_t n_rx = op->data.nbytes;
489         unsigned int rdreg;
490         unsigned int reg;
491         unsigned int dummy_clk;
492         size_t read_len;
493         int status;
494
495         status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
496         if (status)
497                 return status;
498
499         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
500                 dev_err(&cqspi->pdev->dev,
501                         "Invalid input argument, len %zu rxbuf 0x%p\n",
502                         n_rx, rxbuf);
503                 return -EINVAL;
504         }
505
506         if (op->cmd.dtr)
507                 opcode = op->cmd.opcode >> 8;
508         else
509                 opcode = op->cmd.opcode;
510
511         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
512
513         rdreg = cqspi_calc_rdreg(op);
514         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
515
516         dummy_clk = cqspi_calc_dummy(op);
517         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
518                 return -EOPNOTSUPP;
519
520         if (dummy_clk)
521                 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
522                      << CQSPI_REG_CMDCTRL_DUMMY_LSB;
523
524         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
525
526         /* 0 means 1 byte. */
527         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
528                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
529         status = cqspi_exec_flash_cmd(cqspi, reg);
530         if (status)
531                 return status;
532
533         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
534
535         /* Put the read value into rx_buf */
536         read_len = (n_rx > 4) ? 4 : n_rx;
537         memcpy(rxbuf, &reg, read_len);
538         rxbuf += read_len;
539
540         if (n_rx > 4) {
541                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
542
543                 read_len = n_rx - read_len;
544                 memcpy(rxbuf, &reg, read_len);
545         }
546
547         return 0;
548 }
549
550 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
551                                const struct spi_mem_op *op)
552 {
553         struct cqspi_st *cqspi = f_pdata->cqspi;
554         void __iomem *reg_base = cqspi->iobase;
555         u8 opcode;
556         const u8 *txbuf = op->data.buf.out;
557         size_t n_tx = op->data.nbytes;
558         unsigned int reg;
559         unsigned int data;
560         size_t write_len;
561         int ret;
562
563         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
564         if (ret)
565                 return ret;
566
567         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
568                 dev_err(&cqspi->pdev->dev,
569                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
570                         n_tx, txbuf);
571                 return -EINVAL;
572         }
573
574         reg = cqspi_calc_rdreg(op);
575         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
576
577         if (op->cmd.dtr)
578                 opcode = op->cmd.opcode >> 8;
579         else
580                 opcode = op->cmd.opcode;
581
582         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
583
584         if (op->addr.nbytes) {
585                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
586                 reg |= ((op->addr.nbytes - 1) &
587                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
588                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
589
590                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
591         }
592
593         if (n_tx) {
594                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
595                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
596                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
597                 data = 0;
598                 write_len = (n_tx > 4) ? 4 : n_tx;
599                 memcpy(&data, txbuf, write_len);
600                 txbuf += write_len;
601                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
602
603                 if (n_tx > 4) {
604                         data = 0;
605                         write_len = n_tx - 4;
606                         memcpy(&data, txbuf, write_len);
607                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
608                 }
609         }
610
611         return cqspi_exec_flash_cmd(cqspi, reg);
612 }
613
614 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
615                             const struct spi_mem_op *op)
616 {
617         struct cqspi_st *cqspi = f_pdata->cqspi;
618         void __iomem *reg_base = cqspi->iobase;
619         unsigned int dummy_clk = 0;
620         unsigned int reg;
621         int ret;
622         u8 opcode;
623
624         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
625         if (ret)
626                 return ret;
627
628         if (op->cmd.dtr)
629                 opcode = op->cmd.opcode >> 8;
630         else
631                 opcode = op->cmd.opcode;
632
633         reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
634         reg |= cqspi_calc_rdreg(op);
635
636         /* Setup dummy clock cycles */
637         dummy_clk = cqspi_calc_dummy(op);
638
639         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
640                 return -EOPNOTSUPP;
641
642         if (dummy_clk)
643                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
644                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
645
646         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
647
648         /* Set address width */
649         reg = readl(reg_base + CQSPI_REG_SIZE);
650         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
651         reg |= (op->addr.nbytes - 1);
652         writel(reg, reg_base + CQSPI_REG_SIZE);
653         return 0;
654 }
655
656 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
657                                        u8 *rxbuf, loff_t from_addr,
658                                        const size_t n_rx)
659 {
660         struct cqspi_st *cqspi = f_pdata->cqspi;
661         struct device *dev = &cqspi->pdev->dev;
662         void __iomem *reg_base = cqspi->iobase;
663         void __iomem *ahb_base = cqspi->ahb_base;
664         unsigned int remaining = n_rx;
665         unsigned int mod_bytes = n_rx % 4;
666         unsigned int bytes_to_read = 0;
667         u8 *rxbuf_end = rxbuf + n_rx;
668         int ret = 0;
669
670         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
671         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
672
673         /* Clear all interrupts. */
674         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
675
676         writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
677
678         reinit_completion(&cqspi->transfer_complete);
679         writel(CQSPI_REG_INDIRECTRD_START_MASK,
680                reg_base + CQSPI_REG_INDIRECTRD);
681
682         while (remaining > 0) {
683                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
684                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
685                         ret = -ETIMEDOUT;
686
687                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
688
689                 if (ret && bytes_to_read == 0) {
690                         dev_err(dev, "Indirect read timeout, no bytes\n");
691                         goto failrd;
692                 }
693
694                 while (bytes_to_read != 0) {
695                         unsigned int word_remain = round_down(remaining, 4);
696
697                         bytes_to_read *= cqspi->fifo_width;
698                         bytes_to_read = bytes_to_read > remaining ?
699                                         remaining : bytes_to_read;
700                         bytes_to_read = round_down(bytes_to_read, 4);
701                         /* Read 4 byte word chunks then single bytes */
702                         if (bytes_to_read) {
703                                 ioread32_rep(ahb_base, rxbuf,
704                                              (bytes_to_read / 4));
705                         } else if (!word_remain && mod_bytes) {
706                                 unsigned int temp = ioread32(ahb_base);
707
708                                 bytes_to_read = mod_bytes;
709                                 memcpy(rxbuf, &temp, min((unsigned int)
710                                                          (rxbuf_end - rxbuf),
711                                                          bytes_to_read));
712                         }
713                         rxbuf += bytes_to_read;
714                         remaining -= bytes_to_read;
715                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
716                 }
717
718                 if (remaining > 0)
719                         reinit_completion(&cqspi->transfer_complete);
720         }
721
722         /* Check indirect done status */
723         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
724                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
725         if (ret) {
726                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
727                 goto failrd;
728         }
729
730         /* Disable interrupt */
731         writel(0, reg_base + CQSPI_REG_IRQMASK);
732
733         /* Clear indirect completion status */
734         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
735
736         return 0;
737
738 failrd:
739         /* Disable interrupt */
740         writel(0, reg_base + CQSPI_REG_IRQMASK);
741
742         /* Cancel the indirect read */
743         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
744                reg_base + CQSPI_REG_INDIRECTRD);
745         return ret;
746 }
747
748 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
749                                           u_char *rxbuf, loff_t from_addr,
750                                           size_t n_rx)
751 {
752         struct cqspi_st *cqspi = f_pdata->cqspi;
753         struct device *dev = &cqspi->pdev->dev;
754         void __iomem *reg_base = cqspi->iobase;
755         u32 reg, bytes_to_dma;
756         loff_t addr = from_addr;
757         void *buf = rxbuf;
758         dma_addr_t dma_addr;
759         u8 bytes_rem;
760         int ret = 0;
761
762         bytes_rem = n_rx % 4;
763         bytes_to_dma = (n_rx - bytes_rem);
764
765         if (!bytes_to_dma)
766                 goto nondmard;
767
768         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
769         if (ret)
770                 return ret;
771
772         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
773         reg |= CQSPI_REG_CONFIG_DMA_MASK;
774         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
775
776         dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
777         if (dma_mapping_error(dev, dma_addr)) {
778                 dev_err(dev, "dma mapping failed\n");
779                 return -ENOMEM;
780         }
781
782         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
783         writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
784         writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
785                reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
786
787         /* Clear all interrupts. */
788         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
789
790         /* Enable DMA done interrupt */
791         writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
792                reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
793
794         /* Default DMA periph configuration */
795         writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
796
797         /* Configure DMA Dst address */
798         writel(lower_32_bits(dma_addr),
799                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
800         writel(upper_32_bits(dma_addr),
801                reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
802
803         /* Configure DMA Src address */
804         writel(cqspi->trigger_address, reg_base +
805                CQSPI_REG_VERSAL_DMA_SRC_ADDR);
806
807         /* Set DMA destination size */
808         writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
809
810         /* Set DMA destination control */
811         writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
812                reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
813
814         writel(CQSPI_REG_INDIRECTRD_START_MASK,
815                reg_base + CQSPI_REG_INDIRECTRD);
816
817         reinit_completion(&cqspi->transfer_complete);
818
819         if (!wait_for_completion_timeout(&cqspi->transfer_complete,
820                                          msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
821                 ret = -ETIMEDOUT;
822                 goto failrd;
823         }
824
825         /* Disable DMA interrupt */
826         writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
827
828         /* Clear indirect completion status */
829         writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
830                cqspi->iobase + CQSPI_REG_INDIRECTRD);
831         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
832
833         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
834         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
835         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
836
837         ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
838                                         PM_OSPI_MUX_SEL_LINEAR);
839         if (ret)
840                 return ret;
841
842 nondmard:
843         if (bytes_rem) {
844                 addr += bytes_to_dma;
845                 buf += bytes_to_dma;
846                 ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
847                                                   bytes_rem);
848                 if (ret)
849                         return ret;
850         }
851
852         return 0;
853
854 failrd:
855         /* Disable DMA interrupt */
856         writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
857
858         /* Cancel the indirect read */
859         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
860                reg_base + CQSPI_REG_INDIRECTRD);
861
862         dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
863
864         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
865         reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
866         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
867
868         zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
869
870         return ret;
871 }
872
873 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
874                              const struct spi_mem_op *op)
875 {
876         unsigned int reg;
877         int ret;
878         struct cqspi_st *cqspi = f_pdata->cqspi;
879         void __iomem *reg_base = cqspi->iobase;
880         u8 opcode;
881
882         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
883         if (ret)
884                 return ret;
885
886         if (op->cmd.dtr)
887                 opcode = op->cmd.opcode >> 8;
888         else
889                 opcode = op->cmd.opcode;
890
891         /* Set opcode. */
892         reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
893         reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
894         reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
895         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
896         reg = cqspi_calc_rdreg(op);
897         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
898
899         /*
900          * SPI NAND flashes require the address of the status register to be
901          * passed in the Read SR command. Also, some SPI NOR flashes like the
902          * cypress Semper flash expect a 4-byte dummy address in the Read SR
903          * command in DTR mode.
904          *
905          * But this controller does not support address phase in the Read SR
906          * command when doing auto-HW polling. So, disable write completion
907          * polling on the controller's side. spinand and spi-nor will take
908          * care of polling the status register.
909          */
910         if (cqspi->wr_completion) {
911                 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
912                 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
913                 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
914         }
915
916         reg = readl(reg_base + CQSPI_REG_SIZE);
917         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
918         reg |= (op->addr.nbytes - 1);
919         writel(reg, reg_base + CQSPI_REG_SIZE);
920         return 0;
921 }
922
923 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
924                                         loff_t to_addr, const u8 *txbuf,
925                                         const size_t n_tx)
926 {
927         struct cqspi_st *cqspi = f_pdata->cqspi;
928         struct device *dev = &cqspi->pdev->dev;
929         void __iomem *reg_base = cqspi->iobase;
930         unsigned int remaining = n_tx;
931         unsigned int write_bytes;
932         int ret;
933
934         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
935         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
936
937         /* Clear all interrupts. */
938         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
939
940         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
941
942         reinit_completion(&cqspi->transfer_complete);
943         writel(CQSPI_REG_INDIRECTWR_START_MASK,
944                reg_base + CQSPI_REG_INDIRECTWR);
945         /*
946          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
947          * Controller programming sequence, couple of cycles of
948          * QSPI_REF_CLK delay is required for the above bit to
949          * be internally synchronized by the QSPI module. Provide 5
950          * cycles of delay.
951          */
952         if (cqspi->wr_delay)
953                 ndelay(cqspi->wr_delay);
954
955         while (remaining > 0) {
956                 size_t write_words, mod_bytes;
957
958                 write_bytes = remaining;
959                 write_words = write_bytes / 4;
960                 mod_bytes = write_bytes % 4;
961                 /* Write 4 bytes at a time then single bytes. */
962                 if (write_words) {
963                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
964                         txbuf += (write_words * 4);
965                 }
966                 if (mod_bytes) {
967                         unsigned int temp = 0xFFFFFFFF;
968
969                         memcpy(&temp, txbuf, mod_bytes);
970                         iowrite32(temp, cqspi->ahb_base);
971                         txbuf += mod_bytes;
972                 }
973
974                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
975                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
976                         dev_err(dev, "Indirect write timeout\n");
977                         ret = -ETIMEDOUT;
978                         goto failwr;
979                 }
980
981                 remaining -= write_bytes;
982
983                 if (remaining > 0)
984                         reinit_completion(&cqspi->transfer_complete);
985         }
986
987         /* Check indirect done status */
988         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
989                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
990         if (ret) {
991                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
992                 goto failwr;
993         }
994
995         /* Disable interrupt. */
996         writel(0, reg_base + CQSPI_REG_IRQMASK);
997
998         /* Clear indirect completion status */
999         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1000
1001         cqspi_wait_idle(cqspi);
1002
1003         return 0;
1004
1005 failwr:
1006         /* Disable interrupt. */
1007         writel(0, reg_base + CQSPI_REG_IRQMASK);
1008
1009         /* Cancel the indirect write */
1010         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1011                reg_base + CQSPI_REG_INDIRECTWR);
1012         return ret;
1013 }
1014
1015 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1016 {
1017         struct cqspi_st *cqspi = f_pdata->cqspi;
1018         void __iomem *reg_base = cqspi->iobase;
1019         unsigned int chip_select = f_pdata->cs;
1020         unsigned int reg;
1021
1022         reg = readl(reg_base + CQSPI_REG_CONFIG);
1023         if (cqspi->is_decoded_cs) {
1024                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1025         } else {
1026                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1027
1028                 /* Convert CS if without decoder.
1029                  * CS0 to 4b'1110
1030                  * CS1 to 4b'1101
1031                  * CS2 to 4b'1011
1032                  * CS3 to 4b'0111
1033                  */
1034                 chip_select = 0xF & ~(1 << chip_select);
1035         }
1036
1037         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1038                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1039         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1040             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1041         writel(reg, reg_base + CQSPI_REG_CONFIG);
1042 }
1043
1044 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1045                                            const unsigned int ns_val)
1046 {
1047         unsigned int ticks;
1048
1049         ticks = ref_clk_hz / 1000;      /* kHz */
1050         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1051
1052         return ticks;
1053 }
1054
1055 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1056 {
1057         struct cqspi_st *cqspi = f_pdata->cqspi;
1058         void __iomem *iobase = cqspi->iobase;
1059         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1060         unsigned int tshsl, tchsh, tslch, tsd2d;
1061         unsigned int reg;
1062         unsigned int tsclk;
1063
1064         /* calculate the number of ref ticks for one sclk tick */
1065         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1066
1067         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1068         /* this particular value must be at least one sclk */
1069         if (tshsl < tsclk)
1070                 tshsl = tsclk;
1071
1072         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1073         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1074         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1075
1076         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1077                << CQSPI_REG_DELAY_TSHSL_LSB;
1078         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1079                 << CQSPI_REG_DELAY_TCHSH_LSB;
1080         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1081                 << CQSPI_REG_DELAY_TSLCH_LSB;
1082         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1083                 << CQSPI_REG_DELAY_TSD2D_LSB;
1084         writel(reg, iobase + CQSPI_REG_DELAY);
1085 }
1086
1087 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1088 {
1089         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1090         void __iomem *reg_base = cqspi->iobase;
1091         u32 reg, div;
1092
1093         /* Recalculate the baudrate divisor based on QSPI specification. */
1094         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1095
1096         reg = readl(reg_base + CQSPI_REG_CONFIG);
1097         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1098         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1099         writel(reg, reg_base + CQSPI_REG_CONFIG);
1100 }
1101
1102 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1103                                    const bool bypass,
1104                                    const unsigned int delay)
1105 {
1106         void __iomem *reg_base = cqspi->iobase;
1107         unsigned int reg;
1108
1109         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1110
1111         if (bypass)
1112                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1113         else
1114                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1115
1116         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1117                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
1118
1119         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1120                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1121
1122         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1123 }
1124
1125 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1126 {
1127         void __iomem *reg_base = cqspi->iobase;
1128         unsigned int reg;
1129
1130         reg = readl(reg_base + CQSPI_REG_CONFIG);
1131
1132         if (enable)
1133                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1134         else
1135                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1136
1137         writel(reg, reg_base + CQSPI_REG_CONFIG);
1138 }
1139
1140 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1141                             unsigned long sclk)
1142 {
1143         struct cqspi_st *cqspi = f_pdata->cqspi;
1144         int switch_cs = (cqspi->current_cs != f_pdata->cs);
1145         int switch_ck = (cqspi->sclk != sclk);
1146
1147         if (switch_cs || switch_ck)
1148                 cqspi_controller_enable(cqspi, 0);
1149
1150         /* Switch chip select. */
1151         if (switch_cs) {
1152                 cqspi->current_cs = f_pdata->cs;
1153                 cqspi_chipselect(f_pdata);
1154         }
1155
1156         /* Setup baudrate divisor and delays */
1157         if (switch_ck) {
1158                 cqspi->sclk = sclk;
1159                 cqspi_config_baudrate_div(cqspi);
1160                 cqspi_delay(f_pdata);
1161                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1162                                        f_pdata->read_delay);
1163         }
1164
1165         if (switch_cs || switch_ck)
1166                 cqspi_controller_enable(cqspi, 1);
1167 }
1168
1169 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1170                            const struct spi_mem_op *op)
1171 {
1172         struct cqspi_st *cqspi = f_pdata->cqspi;
1173         loff_t to = op->addr.val;
1174         size_t len = op->data.nbytes;
1175         const u_char *buf = op->data.buf.out;
1176         int ret;
1177
1178         ret = cqspi_write_setup(f_pdata, op);
1179         if (ret)
1180                 return ret;
1181
1182         /*
1183          * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1184          * address (all 0s) with the read status register command in DTR mode.
1185          * But this controller does not support sending dummy address bytes to
1186          * the flash when it is polling the write completion register in DTR
1187          * mode. So, we can not use direct mode when in DTR mode for writing
1188          * data.
1189          */
1190         if (!op->cmd.dtr && cqspi->use_direct_mode &&
1191             ((to + len) <= cqspi->ahb_size)) {
1192                 memcpy_toio(cqspi->ahb_base + to, buf, len);
1193                 return cqspi_wait_idle(cqspi);
1194         }
1195
1196         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1197 }
1198
1199 static void cqspi_rx_dma_callback(void *param)
1200 {
1201         struct cqspi_st *cqspi = param;
1202
1203         complete(&cqspi->rx_dma_complete);
1204 }
1205
1206 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1207                                      u_char *buf, loff_t from, size_t len)
1208 {
1209         struct cqspi_st *cqspi = f_pdata->cqspi;
1210         struct device *dev = &cqspi->pdev->dev;
1211         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1212         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1213         int ret = 0;
1214         struct dma_async_tx_descriptor *tx;
1215         dma_cookie_t cookie;
1216         dma_addr_t dma_dst;
1217         struct device *ddev;
1218
1219         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1220                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1221                 return 0;
1222         }
1223
1224         ddev = cqspi->rx_chan->device->dev;
1225         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1226         if (dma_mapping_error(ddev, dma_dst)) {
1227                 dev_err(dev, "dma mapping failed\n");
1228                 return -ENOMEM;
1229         }
1230         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1231                                        len, flags);
1232         if (!tx) {
1233                 dev_err(dev, "device_prep_dma_memcpy error\n");
1234                 ret = -EIO;
1235                 goto err_unmap;
1236         }
1237
1238         tx->callback = cqspi_rx_dma_callback;
1239         tx->callback_param = cqspi;
1240         cookie = tx->tx_submit(tx);
1241         reinit_completion(&cqspi->rx_dma_complete);
1242
1243         ret = dma_submit_error(cookie);
1244         if (ret) {
1245                 dev_err(dev, "dma_submit_error %d\n", cookie);
1246                 ret = -EIO;
1247                 goto err_unmap;
1248         }
1249
1250         dma_async_issue_pending(cqspi->rx_chan);
1251         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1252                                          msecs_to_jiffies(max_t(size_t, len, 500)))) {
1253                 dmaengine_terminate_sync(cqspi->rx_chan);
1254                 dev_err(dev, "DMA wait_for_completion_timeout\n");
1255                 ret = -ETIMEDOUT;
1256                 goto err_unmap;
1257         }
1258
1259 err_unmap:
1260         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1261
1262         return ret;
1263 }
1264
1265 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1266                           const struct spi_mem_op *op)
1267 {
1268         struct cqspi_st *cqspi = f_pdata->cqspi;
1269         struct device *dev = &cqspi->pdev->dev;
1270         const struct cqspi_driver_platdata *ddata;
1271         loff_t from = op->addr.val;
1272         size_t len = op->data.nbytes;
1273         u_char *buf = op->data.buf.in;
1274         u64 dma_align = (u64)(uintptr_t)buf;
1275         int ret;
1276
1277         ddata = of_device_get_match_data(dev);
1278
1279         ret = cqspi_read_setup(f_pdata, op);
1280         if (ret)
1281                 return ret;
1282
1283         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1284                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1285
1286         if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1287             virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1288                 return ddata->indirect_read_dma(f_pdata, buf, from, len);
1289
1290         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1291 }
1292
1293 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1294 {
1295         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1296         struct cqspi_flash_pdata *f_pdata;
1297
1298         f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1299         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1300
1301         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1302                 if (!op->addr.nbytes)
1303                         return cqspi_command_read(f_pdata, op);
1304
1305                 return cqspi_read(f_pdata, op);
1306         }
1307
1308         if (!op->addr.nbytes || !op->data.buf.out)
1309                 return cqspi_command_write(f_pdata, op);
1310
1311         return cqspi_write(f_pdata, op);
1312 }
1313
1314 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1315 {
1316         int ret;
1317
1318         ret = cqspi_mem_process(mem, op);
1319         if (ret)
1320                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1321
1322         return ret;
1323 }
1324
1325 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1326                                   const struct spi_mem_op *op)
1327 {
1328         bool all_true, all_false;
1329
1330         /*
1331          * op->dummy.dtr is required for converting nbytes into ncycles.
1332          * Also, don't check the dtr field of the op phase having zero nbytes.
1333          */
1334         all_true = op->cmd.dtr &&
1335                    (!op->addr.nbytes || op->addr.dtr) &&
1336                    (!op->dummy.nbytes || op->dummy.dtr) &&
1337                    (!op->data.nbytes || op->data.dtr);
1338
1339         all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1340                     !op->data.dtr;
1341
1342         if (all_true) {
1343                 /* Right now we only support 8-8-8 DTR mode. */
1344                 if (op->cmd.nbytes && op->cmd.buswidth != 8)
1345                         return false;
1346                 if (op->addr.nbytes && op->addr.buswidth != 8)
1347                         return false;
1348                 if (op->data.nbytes && op->data.buswidth != 8)
1349                         return false;
1350         } else if (!all_false) {
1351                 /* Mixed DTR modes are not supported. */
1352                 return false;
1353         }
1354
1355         return spi_mem_default_supports_op(mem, op);
1356 }
1357
1358 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1359                                     struct cqspi_flash_pdata *f_pdata,
1360                                     struct device_node *np)
1361 {
1362         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1363                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1364                 return -ENXIO;
1365         }
1366
1367         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1368                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1369                 return -ENXIO;
1370         }
1371
1372         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1373                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1374                 return -ENXIO;
1375         }
1376
1377         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1378                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1379                 return -ENXIO;
1380         }
1381
1382         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1383                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1384                 return -ENXIO;
1385         }
1386
1387         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1388                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1389                 return -ENXIO;
1390         }
1391
1392         return 0;
1393 }
1394
1395 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1396 {
1397         struct device *dev = &cqspi->pdev->dev;
1398         struct device_node *np = dev->of_node;
1399         u32 id[2];
1400
1401         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1402
1403         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1404                 dev_err(dev, "couldn't determine fifo-depth\n");
1405                 return -ENXIO;
1406         }
1407
1408         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1409                 dev_err(dev, "couldn't determine fifo-width\n");
1410                 return -ENXIO;
1411         }
1412
1413         if (of_property_read_u32(np, "cdns,trigger-address",
1414                                  &cqspi->trigger_address)) {
1415                 dev_err(dev, "couldn't determine trigger-address\n");
1416                 return -ENXIO;
1417         }
1418
1419         if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1420                 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1421
1422         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1423
1424         if (!of_property_read_u32_array(np, "power-domains", id,
1425                                         ARRAY_SIZE(id)))
1426                 cqspi->pd_dev_id = id[1];
1427
1428         return 0;
1429 }
1430
1431 static void cqspi_controller_init(struct cqspi_st *cqspi)
1432 {
1433         u32 reg;
1434
1435         cqspi_controller_enable(cqspi, 0);
1436
1437         /* Configure the remap address register, no remap */
1438         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1439
1440         /* Disable all interrupts. */
1441         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1442
1443         /* Configure the SRAM split to 1:1 . */
1444         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1445
1446         /* Load indirect trigger address. */
1447         writel(cqspi->trigger_address,
1448                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1449
1450         /* Program read watermark -- 1/2 of the FIFO. */
1451         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1452                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1453         /* Program write watermark -- 1/8 of the FIFO. */
1454         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1455                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1456
1457         /* Disable direct access controller */
1458         if (!cqspi->use_direct_mode) {
1459                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1460                 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1461                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1462         }
1463
1464         /* Enable DMA interface */
1465         if (cqspi->use_dma_read) {
1466                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1467                 reg |= CQSPI_REG_CONFIG_DMA_MASK;
1468                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1469         }
1470
1471         cqspi_controller_enable(cqspi, 1);
1472 }
1473
1474 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1475 {
1476         dma_cap_mask_t mask;
1477
1478         dma_cap_zero(mask);
1479         dma_cap_set(DMA_MEMCPY, mask);
1480
1481         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1482         if (IS_ERR(cqspi->rx_chan)) {
1483                 int ret = PTR_ERR(cqspi->rx_chan);
1484
1485                 cqspi->rx_chan = NULL;
1486                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1487         }
1488         init_completion(&cqspi->rx_dma_complete);
1489
1490         return 0;
1491 }
1492
1493 static const char *cqspi_get_name(struct spi_mem *mem)
1494 {
1495         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1496         struct device *dev = &cqspi->pdev->dev;
1497
1498         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1499 }
1500
1501 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1502         .exec_op = cqspi_exec_mem_op,
1503         .get_name = cqspi_get_name,
1504         .supports_op = cqspi_supports_mem_op,
1505 };
1506
1507 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1508         .dtr = true,
1509 };
1510
1511 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1512 {
1513         struct platform_device *pdev = cqspi->pdev;
1514         struct device *dev = &pdev->dev;
1515         struct device_node *np = dev->of_node;
1516         struct cqspi_flash_pdata *f_pdata;
1517         unsigned int cs;
1518         int ret;
1519
1520         /* Get flash device data */
1521         for_each_available_child_of_node(dev->of_node, np) {
1522                 ret = of_property_read_u32(np, "reg", &cs);
1523                 if (ret) {
1524                         dev_err(dev, "Couldn't determine chip select.\n");
1525                         of_node_put(np);
1526                         return ret;
1527                 }
1528
1529                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1530                         dev_err(dev, "Chip select %d out of range.\n", cs);
1531                         of_node_put(np);
1532                         return -EINVAL;
1533                 }
1534
1535                 f_pdata = &cqspi->f_pdata[cs];
1536                 f_pdata->cqspi = cqspi;
1537                 f_pdata->cs = cs;
1538
1539                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1540                 if (ret) {
1541                         of_node_put(np);
1542                         return ret;
1543                 }
1544         }
1545
1546         return 0;
1547 }
1548
1549 static int cqspi_probe(struct platform_device *pdev)
1550 {
1551         const struct cqspi_driver_platdata *ddata;
1552         struct reset_control *rstc, *rstc_ocp;
1553         struct device *dev = &pdev->dev;
1554         struct spi_master *master;
1555         struct resource *res_ahb;
1556         struct cqspi_st *cqspi;
1557         struct resource *res;
1558         int ret;
1559         int irq;
1560
1561         master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1562         if (!master) {
1563                 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1564                 return -ENOMEM;
1565         }
1566         master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1567         master->mem_ops = &cqspi_mem_ops;
1568         master->mem_caps = &cqspi_mem_caps;
1569         master->dev.of_node = pdev->dev.of_node;
1570
1571         cqspi = spi_master_get_devdata(master);
1572
1573         cqspi->pdev = pdev;
1574         cqspi->master = master;
1575         platform_set_drvdata(pdev, cqspi);
1576
1577         /* Obtain configuration from OF. */
1578         ret = cqspi_of_get_pdata(cqspi);
1579         if (ret) {
1580                 dev_err(dev, "Cannot get mandatory OF data.\n");
1581                 ret = -ENODEV;
1582                 goto probe_master_put;
1583         }
1584
1585         /* Obtain QSPI clock. */
1586         cqspi->clk = devm_clk_get(dev, NULL);
1587         if (IS_ERR(cqspi->clk)) {
1588                 dev_err(dev, "Cannot claim QSPI clock.\n");
1589                 ret = PTR_ERR(cqspi->clk);
1590                 goto probe_master_put;
1591         }
1592
1593         /* Obtain and remap controller address. */
1594         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1595         cqspi->iobase = devm_ioremap_resource(dev, res);
1596         if (IS_ERR(cqspi->iobase)) {
1597                 dev_err(dev, "Cannot remap controller address.\n");
1598                 ret = PTR_ERR(cqspi->iobase);
1599                 goto probe_master_put;
1600         }
1601
1602         /* Obtain and remap AHB address. */
1603         res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1604         cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1605         if (IS_ERR(cqspi->ahb_base)) {
1606                 dev_err(dev, "Cannot remap AHB address.\n");
1607                 ret = PTR_ERR(cqspi->ahb_base);
1608                 goto probe_master_put;
1609         }
1610         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1611         cqspi->ahb_size = resource_size(res_ahb);
1612
1613         init_completion(&cqspi->transfer_complete);
1614
1615         /* Obtain IRQ line. */
1616         irq = platform_get_irq(pdev, 0);
1617         if (irq < 0) {
1618                 ret = -ENXIO;
1619                 goto probe_master_put;
1620         }
1621
1622         pm_runtime_enable(dev);
1623         ret = pm_runtime_resume_and_get(dev);
1624         if (ret < 0)
1625                 goto probe_master_put;
1626
1627         ret = clk_prepare_enable(cqspi->clk);
1628         if (ret) {
1629                 dev_err(dev, "Cannot enable QSPI clock.\n");
1630                 goto probe_clk_failed;
1631         }
1632
1633         /* Obtain QSPI reset control */
1634         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1635         if (IS_ERR(rstc)) {
1636                 ret = PTR_ERR(rstc);
1637                 dev_err(dev, "Cannot get QSPI reset.\n");
1638                 goto probe_reset_failed;
1639         }
1640
1641         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1642         if (IS_ERR(rstc_ocp)) {
1643                 ret = PTR_ERR(rstc_ocp);
1644                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1645                 goto probe_reset_failed;
1646         }
1647
1648         reset_control_assert(rstc);
1649         reset_control_deassert(rstc);
1650
1651         reset_control_assert(rstc_ocp);
1652         reset_control_deassert(rstc_ocp);
1653
1654         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1655         master->max_speed_hz = cqspi->master_ref_clk_hz;
1656
1657         /* write completion is supported by default */
1658         cqspi->wr_completion = true;
1659
1660         ddata  = of_device_get_match_data(dev);
1661         if (ddata) {
1662                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1663                         cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1664                                                 cqspi->master_ref_clk_hz);
1665                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1666                         master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1667                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1668                         cqspi->use_direct_mode = true;
1669                 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1670                         cqspi->use_dma_read = true;
1671                 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1672                         cqspi->wr_completion = false;
1673
1674                 if (of_device_is_compatible(pdev->dev.of_node,
1675                                             "xlnx,versal-ospi-1.0"))
1676                         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1677         }
1678
1679         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1680                                pdev->name, cqspi);
1681         if (ret) {
1682                 dev_err(dev, "Cannot request IRQ.\n");
1683                 goto probe_reset_failed;
1684         }
1685
1686         cqspi_wait_idle(cqspi);
1687         cqspi_controller_init(cqspi);
1688         cqspi->current_cs = -1;
1689         cqspi->sclk = 0;
1690
1691         master->num_chipselect = cqspi->num_chipselect;
1692
1693         ret = cqspi_setup_flash(cqspi);
1694         if (ret) {
1695                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1696                 goto probe_setup_failed;
1697         }
1698
1699         if (cqspi->use_direct_mode) {
1700                 ret = cqspi_request_mmap_dma(cqspi);
1701                 if (ret == -EPROBE_DEFER)
1702                         goto probe_setup_failed;
1703         }
1704
1705         ret = spi_register_master(master);
1706         if (ret) {
1707                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1708                 goto probe_setup_failed;
1709         }
1710
1711         return 0;
1712 probe_setup_failed:
1713         cqspi_controller_enable(cqspi, 0);
1714 probe_reset_failed:
1715         clk_disable_unprepare(cqspi->clk);
1716 probe_clk_failed:
1717         pm_runtime_put_sync(dev);
1718         pm_runtime_disable(dev);
1719 probe_master_put:
1720         spi_master_put(master);
1721         return ret;
1722 }
1723
1724 static int cqspi_remove(struct platform_device *pdev)
1725 {
1726         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1727
1728         spi_unregister_master(cqspi->master);
1729         cqspi_controller_enable(cqspi, 0);
1730
1731         if (cqspi->rx_chan)
1732                 dma_release_channel(cqspi->rx_chan);
1733
1734         clk_disable_unprepare(cqspi->clk);
1735
1736         pm_runtime_put_sync(&pdev->dev);
1737         pm_runtime_disable(&pdev->dev);
1738
1739         return 0;
1740 }
1741
1742 #ifdef CONFIG_PM_SLEEP
1743 static int cqspi_suspend(struct device *dev)
1744 {
1745         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1746
1747         cqspi_controller_enable(cqspi, 0);
1748         return 0;
1749 }
1750
1751 static int cqspi_resume(struct device *dev)
1752 {
1753         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1754
1755         cqspi_controller_enable(cqspi, 1);
1756         return 0;
1757 }
1758
1759 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1760         .suspend = cqspi_suspend,
1761         .resume = cqspi_resume,
1762 };
1763
1764 #define CQSPI_DEV_PM_OPS        (&cqspi__dev_pm_ops)
1765 #else
1766 #define CQSPI_DEV_PM_OPS        NULL
1767 #endif
1768
1769 static const struct cqspi_driver_platdata cdns_qspi = {
1770         .quirks = CQSPI_DISABLE_DAC_MODE,
1771 };
1772
1773 static const struct cqspi_driver_platdata k2g_qspi = {
1774         .quirks = CQSPI_NEEDS_WR_DELAY,
1775 };
1776
1777 static const struct cqspi_driver_platdata am654_ospi = {
1778         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1779         .quirks = CQSPI_NEEDS_WR_DELAY,
1780 };
1781
1782 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1783         .quirks = CQSPI_DISABLE_DAC_MODE,
1784 };
1785
1786 static const struct cqspi_driver_platdata socfpga_qspi = {
1787         .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION,
1788 };
1789
1790 static const struct cqspi_driver_platdata versal_ospi = {
1791         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1792         .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1793         .indirect_read_dma = cqspi_versal_indirect_read_dma,
1794         .get_dma_status = cqspi_get_versal_dma_status,
1795 };
1796
1797 static const struct of_device_id cqspi_dt_ids[] = {
1798         {
1799                 .compatible = "cdns,qspi-nor",
1800                 .data = &cdns_qspi,
1801         },
1802         {
1803                 .compatible = "ti,k2g-qspi",
1804                 .data = &k2g_qspi,
1805         },
1806         {
1807                 .compatible = "ti,am654-ospi",
1808                 .data = &am654_ospi,
1809         },
1810         {
1811                 .compatible = "intel,lgm-qspi",
1812                 .data = &intel_lgm_qspi,
1813         },
1814         {
1815                 .compatible = "xlnx,versal-ospi-1.0",
1816                 .data = &versal_ospi,
1817         },
1818         {
1819                 .compatible = "intel,socfpga-qspi",
1820                 .data = &socfpga_qspi,
1821         },
1822         { /* end of table */ }
1823 };
1824
1825 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1826
1827 static struct platform_driver cqspi_platform_driver = {
1828         .probe = cqspi_probe,
1829         .remove = cqspi_remove,
1830         .driver = {
1831                 .name = CQSPI_NAME,
1832                 .pm = CQSPI_DEV_PM_OPS,
1833                 .of_match_table = cqspi_dt_ids,
1834         },
1835 };
1836
1837 module_platform_driver(cqspi_platform_driver);
1838
1839 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1840 MODULE_LICENSE("GPL v2");
1841 MODULE_ALIAS("platform:" CQSPI_NAME);
1842 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1843 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1844 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1845 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1846 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");