Merge tag 'for-5.6-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/platform_data/dma-atmel.h>
20 #include <linux/of.h>
21
22 #include <linux/io.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <trace/events/spi.h>
27
28 /* SPI register offsets */
29 #define SPI_CR                                  0x0000
30 #define SPI_MR                                  0x0004
31 #define SPI_RDR                                 0x0008
32 #define SPI_TDR                                 0x000c
33 #define SPI_SR                                  0x0010
34 #define SPI_IER                                 0x0014
35 #define SPI_IDR                                 0x0018
36 #define SPI_IMR                                 0x001c
37 #define SPI_CSR0                                0x0030
38 #define SPI_CSR1                                0x0034
39 #define SPI_CSR2                                0x0038
40 #define SPI_CSR3                                0x003c
41 #define SPI_FMR                                 0x0040
42 #define SPI_FLR                                 0x0044
43 #define SPI_VERSION                             0x00fc
44 #define SPI_RPR                                 0x0100
45 #define SPI_RCR                                 0x0104
46 #define SPI_TPR                                 0x0108
47 #define SPI_TCR                                 0x010c
48 #define SPI_RNPR                                0x0110
49 #define SPI_RNCR                                0x0114
50 #define SPI_TNPR                                0x0118
51 #define SPI_TNCR                                0x011c
52 #define SPI_PTCR                                0x0120
53 #define SPI_PTSR                                0x0124
54
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET                        0
57 #define SPI_SPIEN_SIZE                          1
58 #define SPI_SPIDIS_OFFSET                       1
59 #define SPI_SPIDIS_SIZE                         1
60 #define SPI_SWRST_OFFSET                        7
61 #define SPI_SWRST_SIZE                          1
62 #define SPI_LASTXFER_OFFSET                     24
63 #define SPI_LASTXFER_SIZE                       1
64 #define SPI_TXFCLR_OFFSET                       16
65 #define SPI_TXFCLR_SIZE                         1
66 #define SPI_RXFCLR_OFFSET                       17
67 #define SPI_RXFCLR_SIZE                         1
68 #define SPI_FIFOEN_OFFSET                       30
69 #define SPI_FIFOEN_SIZE                         1
70 #define SPI_FIFODIS_OFFSET                      31
71 #define SPI_FIFODIS_SIZE                        1
72
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET                         0
75 #define SPI_MSTR_SIZE                           1
76 #define SPI_PS_OFFSET                           1
77 #define SPI_PS_SIZE                             1
78 #define SPI_PCSDEC_OFFSET                       2
79 #define SPI_PCSDEC_SIZE                         1
80 #define SPI_FDIV_OFFSET                         3
81 #define SPI_FDIV_SIZE                           1
82 #define SPI_MODFDIS_OFFSET                      4
83 #define SPI_MODFDIS_SIZE                        1
84 #define SPI_WDRBT_OFFSET                        5
85 #define SPI_WDRBT_SIZE                          1
86 #define SPI_LLB_OFFSET                          7
87 #define SPI_LLB_SIZE                            1
88 #define SPI_PCS_OFFSET                          16
89 #define SPI_PCS_SIZE                            4
90 #define SPI_DLYBCS_OFFSET                       24
91 #define SPI_DLYBCS_SIZE                         8
92
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET                           0
95 #define SPI_RD_SIZE                             16
96
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET                           0
99 #define SPI_TD_SIZE                             16
100
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET                         0
103 #define SPI_RDRF_SIZE                           1
104 #define SPI_TDRE_OFFSET                         1
105 #define SPI_TDRE_SIZE                           1
106 #define SPI_MODF_OFFSET                         2
107 #define SPI_MODF_SIZE                           1
108 #define SPI_OVRES_OFFSET                        3
109 #define SPI_OVRES_SIZE                          1
110 #define SPI_ENDRX_OFFSET                        4
111 #define SPI_ENDRX_SIZE                          1
112 #define SPI_ENDTX_OFFSET                        5
113 #define SPI_ENDTX_SIZE                          1
114 #define SPI_RXBUFF_OFFSET                       6
115 #define SPI_RXBUFF_SIZE                         1
116 #define SPI_TXBUFE_OFFSET                       7
117 #define SPI_TXBUFE_SIZE                         1
118 #define SPI_NSSR_OFFSET                         8
119 #define SPI_NSSR_SIZE                           1
120 #define SPI_TXEMPTY_OFFSET                      9
121 #define SPI_TXEMPTY_SIZE                        1
122 #define SPI_SPIENS_OFFSET                       16
123 #define SPI_SPIENS_SIZE                         1
124 #define SPI_TXFEF_OFFSET                        24
125 #define SPI_TXFEF_SIZE                          1
126 #define SPI_TXFFF_OFFSET                        25
127 #define SPI_TXFFF_SIZE                          1
128 #define SPI_TXFTHF_OFFSET                       26
129 #define SPI_TXFTHF_SIZE                         1
130 #define SPI_RXFEF_OFFSET                        27
131 #define SPI_RXFEF_SIZE                          1
132 #define SPI_RXFFF_OFFSET                        28
133 #define SPI_RXFFF_SIZE                          1
134 #define SPI_RXFTHF_OFFSET                       29
135 #define SPI_RXFTHF_SIZE                         1
136 #define SPI_TXFPTEF_OFFSET                      30
137 #define SPI_TXFPTEF_SIZE                        1
138 #define SPI_RXFPTEF_OFFSET                      31
139 #define SPI_RXFPTEF_SIZE                        1
140
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET                         0
143 #define SPI_CPOL_SIZE                           1
144 #define SPI_NCPHA_OFFSET                        1
145 #define SPI_NCPHA_SIZE                          1
146 #define SPI_CSAAT_OFFSET                        3
147 #define SPI_CSAAT_SIZE                          1
148 #define SPI_BITS_OFFSET                         4
149 #define SPI_BITS_SIZE                           4
150 #define SPI_SCBR_OFFSET                         8
151 #define SPI_SCBR_SIZE                           8
152 #define SPI_DLYBS_OFFSET                        16
153 #define SPI_DLYBS_SIZE                          8
154 #define SPI_DLYBCT_OFFSET                       24
155 #define SPI_DLYBCT_SIZE                         8
156
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET                        0
159 #define SPI_RXCTR_SIZE                          16
160
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET                        0
163 #define SPI_TXCTR_SIZE                          16
164
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET                        0
167 #define SPI_RXNCR_SIZE                          16
168
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET                        0
171 #define SPI_TXNCR_SIZE                          16
172
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET                        0
175 #define SPI_RXTEN_SIZE                          1
176 #define SPI_RXTDIS_OFFSET                       1
177 #define SPI_RXTDIS_SIZE                         1
178 #define SPI_TXTEN_OFFSET                        8
179 #define SPI_TXTEN_SIZE                          1
180 #define SPI_TXTDIS_OFFSET                       9
181 #define SPI_TXTDIS_SIZE                         1
182
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET                       0
185 #define SPI_TXRDYM_SIZE                         2
186 #define SPI_RXRDYM_OFFSET                       4
187 #define SPI_RXRDYM_SIZE                         2
188 #define SPI_TXFTHRES_OFFSET                     16
189 #define SPI_TXFTHRES_SIZE                       6
190 #define SPI_RXFTHRES_OFFSET                     24
191 #define SPI_RXFTHRES_SIZE                       6
192
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET                         0
195 #define SPI_TXFL_SIZE                           6
196 #define SPI_RXFL_OFFSET                         16
197 #define SPI_RXFL_SIZE                           6
198
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT                          0
201 #define SPI_BITS_9_BPT                          1
202 #define SPI_BITS_10_BPT                         2
203 #define SPI_BITS_11_BPT                         3
204 #define SPI_BITS_12_BPT                         4
205 #define SPI_BITS_13_BPT                         5
206 #define SPI_BITS_14_BPT                         6
207 #define SPI_BITS_15_BPT                         7
208 #define SPI_BITS_16_BPT                         8
209 #define SPI_ONE_DATA                            0
210 #define SPI_TWO_DATA                            1
211 #define SPI_FOUR_DATA                           2
212
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215         (1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222           | SPI_BF(name, value))
223
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226         readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228         writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230         writew_relaxed((value), (port)->regs + SPI_##reg)
231
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233  * cache operations; better heuristics consider wordsize and bitrate.
234  */
235 #define DMA_MIN_BYTES   16
236
237 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
238
239 #define AUTOSUSPEND_TIMEOUT     2000
240
241 struct atmel_spi_caps {
242         bool    is_spi2;
243         bool    has_wdrbt;
244         bool    has_dma_support;
245         bool    has_pdc_support;
246 };
247
248 /*
249  * The core SPI transfer engine just talks to a register bank to set up
250  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
251  * framework provides the base clock, subdivided for each spi_device.
252  */
253 struct atmel_spi {
254         spinlock_t              lock;
255         unsigned long           flags;
256
257         phys_addr_t             phybase;
258         void __iomem            *regs;
259         int                     irq;
260         struct clk              *clk;
261         struct platform_device  *pdev;
262         unsigned long           spi_clk;
263
264         struct spi_transfer     *current_transfer;
265         int                     current_remaining_bytes;
266         int                     done_status;
267         dma_addr_t              dma_addr_rx_bbuf;
268         dma_addr_t              dma_addr_tx_bbuf;
269         void                    *addr_rx_bbuf;
270         void                    *addr_tx_bbuf;
271
272         struct completion       xfer_completion;
273
274         struct atmel_spi_caps   caps;
275
276         bool                    use_dma;
277         bool                    use_pdc;
278
279         bool                    keep_cs;
280
281         u32                     fifo_size;
282         u8                      native_cs_free;
283         u8                      native_cs_for_gpio;
284 };
285
286 /* Controller-specific per-slave state */
287 struct atmel_spi_device {
288         u32                     csr;
289 };
290
291 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
292 #define INVALID_DMA_ADDRESS     0xffffffff
293
294 /*
295  * Version 2 of the SPI controller has
296  *  - CR.LASTXFER
297  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
298  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
299  *  - SPI_CSRx.CSAAT
300  *  - SPI_CSRx.SBCR allows faster clocking
301  */
302 static bool atmel_spi_is_v2(struct atmel_spi *as)
303 {
304         return as->caps.is_spi2;
305 }
306
307 /*
308  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
309  * they assume that spi slave device state will not change on deselect, so
310  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
311  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
312  * controllers have CSAAT and friends.
313  *
314  * Even controller newer than ar91rm9200, using GPIOs can make sens as
315  * it lets us support active-high chipselects despite the controller's
316  * belief that only active-low devices/systems exists.
317  *
318  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
319  * right when driven with GPIO.  ("Mode Fault does not allow more than one
320  * Master on Chip Select 0.")  No workaround exists for that ... so for
321  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
322  * and (c) will trigger that first erratum in some cases.
323  */
324
325 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
326 {
327         struct atmel_spi_device *asd = spi->controller_state;
328         int chip_select;
329         u32 mr;
330
331         if (spi->cs_gpiod)
332                 chip_select = as->native_cs_for_gpio;
333         else
334                 chip_select = spi->chip_select;
335
336         if (atmel_spi_is_v2(as)) {
337                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
338                 /* For the low SPI version, there is a issue that PDC transfer
339                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
340                  */
341                 spi_writel(as, CSR0, asd->csr);
342                 if (as->caps.has_wdrbt) {
343                         spi_writel(as, MR,
344                                         SPI_BF(PCS, ~(0x01 << chip_select))
345                                         | SPI_BIT(WDRBT)
346                                         | SPI_BIT(MODFDIS)
347                                         | SPI_BIT(MSTR));
348                 } else {
349                         spi_writel(as, MR,
350                                         SPI_BF(PCS, ~(0x01 << chip_select))
351                                         | SPI_BIT(MODFDIS)
352                                         | SPI_BIT(MSTR));
353                 }
354
355                 mr = spi_readl(as, MR);
356                 if (spi->cs_gpiod)
357                         gpiod_set_value(spi->cs_gpiod, 1);
358         } else {
359                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
360                 int i;
361                 u32 csr;
362
363                 /* Make sure clock polarity is correct */
364                 for (i = 0; i < spi->master->num_chipselect; i++) {
365                         csr = spi_readl(as, CSR0 + 4 * i);
366                         if ((csr ^ cpol) & SPI_BIT(CPOL))
367                                 spi_writel(as, CSR0 + 4 * i,
368                                                 csr ^ SPI_BIT(CPOL));
369                 }
370
371                 mr = spi_readl(as, MR);
372                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
373                 if (spi->cs_gpiod)
374                         gpiod_set_value(spi->cs_gpiod, 1);
375                 spi_writel(as, MR, mr);
376         }
377
378         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
379 }
380
381 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
382 {
383         int chip_select;
384         u32 mr;
385
386         if (spi->cs_gpiod)
387                 chip_select = as->native_cs_for_gpio;
388         else
389                 chip_select = spi->chip_select;
390
391         /* only deactivate *this* device; sometimes transfers to
392          * another device may be active when this routine is called.
393          */
394         mr = spi_readl(as, MR);
395         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
396                 mr = SPI_BFINS(PCS, 0xf, mr);
397                 spi_writel(as, MR, mr);
398         }
399
400         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
401
402         if (!spi->cs_gpiod)
403                 spi_writel(as, CR, SPI_BIT(LASTXFER));
404         else
405                 gpiod_set_value(spi->cs_gpiod, 0);
406 }
407
408 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
409 {
410         spin_lock_irqsave(&as->lock, as->flags);
411 }
412
413 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
414 {
415         spin_unlock_irqrestore(&as->lock, as->flags);
416 }
417
418 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
419 {
420         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
421 }
422
423 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
424                                 struct spi_transfer *xfer)
425 {
426         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
427 }
428
429 static bool atmel_spi_can_dma(struct spi_master *master,
430                               struct spi_device *spi,
431                               struct spi_transfer *xfer)
432 {
433         struct atmel_spi *as = spi_master_get_devdata(master);
434
435         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
436                 return atmel_spi_use_dma(as, xfer) &&
437                         !atmel_spi_is_vmalloc_xfer(xfer);
438         else
439                 return atmel_spi_use_dma(as, xfer);
440
441 }
442
443 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
444                                 struct dma_slave_config *slave_config,
445                                 u8 bits_per_word)
446 {
447         struct spi_master *master = platform_get_drvdata(as->pdev);
448         int err = 0;
449
450         if (bits_per_word > 8) {
451                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
453         } else {
454                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
456         }
457
458         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
459         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
460         slave_config->src_maxburst = 1;
461         slave_config->dst_maxburst = 1;
462         slave_config->device_fc = false;
463
464         /*
465          * This driver uses fixed peripheral select mode (PS bit set to '0' in
466          * the Mode Register).
467          * So according to the datasheet, when FIFOs are available (and
468          * enabled), the Transmit FIFO operates in Multiple Data Mode.
469          * In this mode, up to 2 data, not 4, can be written into the Transmit
470          * Data Register in a single access.
471          * However, the first data has to be written into the lowest 16 bits and
472          * the second data into the highest 16 bits of the Transmit
473          * Data Register. For 8bit data (the most frequent case), it would
474          * require to rework tx_buf so each data would actualy fit 16 bits.
475          * So we'd rather write only one data at the time. Hence the transmit
476          * path works the same whether FIFOs are available (and enabled) or not.
477          */
478         slave_config->direction = DMA_MEM_TO_DEV;
479         if (dmaengine_slave_config(master->dma_tx, slave_config)) {
480                 dev_err(&as->pdev->dev,
481                         "failed to configure tx dma channel\n");
482                 err = -EINVAL;
483         }
484
485         /*
486          * This driver configures the spi controller for master mode (MSTR bit
487          * set to '1' in the Mode Register).
488          * So according to the datasheet, when FIFOs are available (and
489          * enabled), the Receive FIFO operates in Single Data Mode.
490          * So the receive path works the same whether FIFOs are available (and
491          * enabled) or not.
492          */
493         slave_config->direction = DMA_DEV_TO_MEM;
494         if (dmaengine_slave_config(master->dma_rx, slave_config)) {
495                 dev_err(&as->pdev->dev,
496                         "failed to configure rx dma channel\n");
497                 err = -EINVAL;
498         }
499
500         return err;
501 }
502
503 static int atmel_spi_configure_dma(struct spi_master *master,
504                                    struct atmel_spi *as)
505 {
506         struct dma_slave_config slave_config;
507         struct device *dev = &as->pdev->dev;
508         int err;
509
510         dma_cap_mask_t mask;
511         dma_cap_zero(mask);
512         dma_cap_set(DMA_SLAVE, mask);
513
514         master->dma_tx = dma_request_chan(dev, "tx");
515         if (IS_ERR(master->dma_tx)) {
516                 err = PTR_ERR(master->dma_tx);
517                 if (err != -EPROBE_DEFER)
518                         dev_err(dev, "No TX DMA channel, DMA is disabled\n");
519                 goto error_clear;
520         }
521
522         master->dma_rx = dma_request_chan(dev, "rx");
523         if (IS_ERR(master->dma_rx)) {
524                 err = PTR_ERR(master->dma_rx);
525                 /*
526                  * No reason to check EPROBE_DEFER here since we have already
527                  * requested tx channel.
528                  */
529                 dev_err(dev, "No RX DMA channel, DMA is disabled\n");
530                 goto error;
531         }
532
533         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
534         if (err)
535                 goto error;
536
537         dev_info(&as->pdev->dev,
538                         "Using %s (tx) and %s (rx) for DMA transfers\n",
539                         dma_chan_name(master->dma_tx),
540                         dma_chan_name(master->dma_rx));
541
542         return 0;
543 error:
544         if (!IS_ERR(master->dma_rx))
545                 dma_release_channel(master->dma_rx);
546         if (!IS_ERR(master->dma_tx))
547                 dma_release_channel(master->dma_tx);
548 error_clear:
549         master->dma_tx = master->dma_rx = NULL;
550         return err;
551 }
552
553 static void atmel_spi_stop_dma(struct spi_master *master)
554 {
555         if (master->dma_rx)
556                 dmaengine_terminate_all(master->dma_rx);
557         if (master->dma_tx)
558                 dmaengine_terminate_all(master->dma_tx);
559 }
560
561 static void atmel_spi_release_dma(struct spi_master *master)
562 {
563         if (master->dma_rx) {
564                 dma_release_channel(master->dma_rx);
565                 master->dma_rx = NULL;
566         }
567         if (master->dma_tx) {
568                 dma_release_channel(master->dma_tx);
569                 master->dma_tx = NULL;
570         }
571 }
572
573 /* This function is called by the DMA driver from tasklet context */
574 static void dma_callback(void *data)
575 {
576         struct spi_master       *master = data;
577         struct atmel_spi        *as = spi_master_get_devdata(master);
578
579         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
580             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
581                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
582                        as->current_transfer->len);
583         }
584         complete(&as->xfer_completion);
585 }
586
587 /*
588  * Next transfer using PIO without FIFO.
589  */
590 static void atmel_spi_next_xfer_single(struct spi_master *master,
591                                        struct spi_transfer *xfer)
592 {
593         struct atmel_spi        *as = spi_master_get_devdata(master);
594         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
595
596         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
597
598         /* Make sure data is not remaining in RDR */
599         spi_readl(as, RDR);
600         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
601                 spi_readl(as, RDR);
602                 cpu_relax();
603         }
604
605         if (xfer->bits_per_word > 8)
606                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
607         else
608                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
609
610         dev_dbg(master->dev.parent,
611                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
612                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
613                 xfer->bits_per_word);
614
615         /* Enable relevant interrupts */
616         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
617 }
618
619 /*
620  * Next transfer using PIO with FIFO.
621  */
622 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
623                                      struct spi_transfer *xfer)
624 {
625         struct atmel_spi *as = spi_master_get_devdata(master);
626         u32 current_remaining_data, num_data;
627         u32 offset = xfer->len - as->current_remaining_bytes;
628         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
629         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
630         u16 td0, td1;
631         u32 fifomr;
632
633         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
634
635         /* Compute the number of data to transfer in the current iteration */
636         current_remaining_data = ((xfer->bits_per_word > 8) ?
637                                   ((u32)as->current_remaining_bytes >> 1) :
638                                   (u32)as->current_remaining_bytes);
639         num_data = min(current_remaining_data, as->fifo_size);
640
641         /* Flush RX and TX FIFOs */
642         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
643         while (spi_readl(as, FLR))
644                 cpu_relax();
645
646         /* Set RX FIFO Threshold to the number of data to transfer */
647         fifomr = spi_readl(as, FMR);
648         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
649
650         /* Clear FIFO flags in the Status Register, especially RXFTHF */
651         (void)spi_readl(as, SR);
652
653         /* Fill TX FIFO */
654         while (num_data >= 2) {
655                 if (xfer->bits_per_word > 8) {
656                         td0 = *words++;
657                         td1 = *words++;
658                 } else {
659                         td0 = *bytes++;
660                         td1 = *bytes++;
661                 }
662
663                 spi_writel(as, TDR, (td1 << 16) | td0);
664                 num_data -= 2;
665         }
666
667         if (num_data) {
668                 if (xfer->bits_per_word > 8)
669                         td0 = *words++;
670                 else
671                         td0 = *bytes++;
672
673                 spi_writew(as, TDR, td0);
674                 num_data--;
675         }
676
677         dev_dbg(master->dev.parent,
678                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
679                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
680                 xfer->bits_per_word);
681
682         /*
683          * Enable RX FIFO Threshold Flag interrupt to be notified about
684          * transfer completion.
685          */
686         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
687 }
688
689 /*
690  * Next transfer using PIO.
691  */
692 static void atmel_spi_next_xfer_pio(struct spi_master *master,
693                                     struct spi_transfer *xfer)
694 {
695         struct atmel_spi *as = spi_master_get_devdata(master);
696
697         if (as->fifo_size)
698                 atmel_spi_next_xfer_fifo(master, xfer);
699         else
700                 atmel_spi_next_xfer_single(master, xfer);
701 }
702
703 /*
704  * Submit next transfer for DMA.
705  */
706 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
707                                 struct spi_transfer *xfer,
708                                 u32 *plen)
709 {
710         struct atmel_spi        *as = spi_master_get_devdata(master);
711         struct dma_chan         *rxchan = master->dma_rx;
712         struct dma_chan         *txchan = master->dma_tx;
713         struct dma_async_tx_descriptor *rxdesc;
714         struct dma_async_tx_descriptor *txdesc;
715         struct dma_slave_config slave_config;
716         dma_cookie_t            cookie;
717
718         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
719
720         /* Check that the channels are available */
721         if (!rxchan || !txchan)
722                 return -ENODEV;
723
724         /* release lock for DMA operations */
725         atmel_spi_unlock(as);
726
727         *plen = xfer->len;
728
729         if (atmel_spi_dma_slave_config(as, &slave_config,
730                                        xfer->bits_per_word))
731                 goto err_exit;
732
733         /* Send both scatterlists */
734         if (atmel_spi_is_vmalloc_xfer(xfer) &&
735             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
736                 rxdesc = dmaengine_prep_slave_single(rxchan,
737                                                      as->dma_addr_rx_bbuf,
738                                                      xfer->len,
739                                                      DMA_DEV_TO_MEM,
740                                                      DMA_PREP_INTERRUPT |
741                                                      DMA_CTRL_ACK);
742         } else {
743                 rxdesc = dmaengine_prep_slave_sg(rxchan,
744                                                  xfer->rx_sg.sgl,
745                                                  xfer->rx_sg.nents,
746                                                  DMA_DEV_TO_MEM,
747                                                  DMA_PREP_INTERRUPT |
748                                                  DMA_CTRL_ACK);
749         }
750         if (!rxdesc)
751                 goto err_dma;
752
753         if (atmel_spi_is_vmalloc_xfer(xfer) &&
754             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
755                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
756                 txdesc = dmaengine_prep_slave_single(txchan,
757                                                      as->dma_addr_tx_bbuf,
758                                                      xfer->len, DMA_MEM_TO_DEV,
759                                                      DMA_PREP_INTERRUPT |
760                                                      DMA_CTRL_ACK);
761         } else {
762                 txdesc = dmaengine_prep_slave_sg(txchan,
763                                                  xfer->tx_sg.sgl,
764                                                  xfer->tx_sg.nents,
765                                                  DMA_MEM_TO_DEV,
766                                                  DMA_PREP_INTERRUPT |
767                                                  DMA_CTRL_ACK);
768         }
769         if (!txdesc)
770                 goto err_dma;
771
772         dev_dbg(master->dev.parent,
773                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
774                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
775                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
776
777         /* Enable relevant interrupts */
778         spi_writel(as, IER, SPI_BIT(OVRES));
779
780         /* Put the callback on the RX transfer only, that should finish last */
781         rxdesc->callback = dma_callback;
782         rxdesc->callback_param = master;
783
784         /* Submit and fire RX and TX with TX last so we're ready to read! */
785         cookie = rxdesc->tx_submit(rxdesc);
786         if (dma_submit_error(cookie))
787                 goto err_dma;
788         cookie = txdesc->tx_submit(txdesc);
789         if (dma_submit_error(cookie))
790                 goto err_dma;
791         rxchan->device->device_issue_pending(rxchan);
792         txchan->device->device_issue_pending(txchan);
793
794         /* take back lock */
795         atmel_spi_lock(as);
796         return 0;
797
798 err_dma:
799         spi_writel(as, IDR, SPI_BIT(OVRES));
800         atmel_spi_stop_dma(master);
801 err_exit:
802         atmel_spi_lock(as);
803         return -ENOMEM;
804 }
805
806 static void atmel_spi_next_xfer_data(struct spi_master *master,
807                                 struct spi_transfer *xfer,
808                                 dma_addr_t *tx_dma,
809                                 dma_addr_t *rx_dma,
810                                 u32 *plen)
811 {
812         *rx_dma = xfer->rx_dma + xfer->len - *plen;
813         *tx_dma = xfer->tx_dma + xfer->len - *plen;
814         if (*plen > master->max_dma_len)
815                 *plen = master->max_dma_len;
816 }
817
818 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
819                                     struct spi_device *spi,
820                                     struct spi_transfer *xfer)
821 {
822         u32                     scbr, csr;
823         unsigned long           bus_hz;
824         int chip_select;
825
826         if (spi->cs_gpiod)
827                 chip_select = as->native_cs_for_gpio;
828         else
829                 chip_select = spi->chip_select;
830
831         /* v1 chips start out at half the peripheral bus speed. */
832         bus_hz = as->spi_clk;
833         if (!atmel_spi_is_v2(as))
834                 bus_hz /= 2;
835
836         /*
837          * Calculate the lowest divider that satisfies the
838          * constraint, assuming div32/fdiv/mbz == 0.
839          */
840         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
841
842         /*
843          * If the resulting divider doesn't fit into the
844          * register bitfield, we can't satisfy the constraint.
845          */
846         if (scbr >= (1 << SPI_SCBR_SIZE)) {
847                 dev_err(&spi->dev,
848                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
849                         xfer->speed_hz, scbr, bus_hz/255);
850                 return -EINVAL;
851         }
852         if (scbr == 0) {
853                 dev_err(&spi->dev,
854                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
855                         xfer->speed_hz, scbr, bus_hz);
856                 return -EINVAL;
857         }
858         csr = spi_readl(as, CSR0 + 4 * chip_select);
859         csr = SPI_BFINS(SCBR, scbr, csr);
860         spi_writel(as, CSR0 + 4 * chip_select, csr);
861
862         return 0;
863 }
864
865 /*
866  * Submit next transfer for PDC.
867  * lock is held, spi irq is blocked
868  */
869 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
870                                         struct spi_message *msg,
871                                         struct spi_transfer *xfer)
872 {
873         struct atmel_spi        *as = spi_master_get_devdata(master);
874         u32                     len;
875         dma_addr_t              tx_dma, rx_dma;
876
877         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
878
879         len = as->current_remaining_bytes;
880         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
881         as->current_remaining_bytes -= len;
882
883         spi_writel(as, RPR, rx_dma);
884         spi_writel(as, TPR, tx_dma);
885
886         if (msg->spi->bits_per_word > 8)
887                 len >>= 1;
888         spi_writel(as, RCR, len);
889         spi_writel(as, TCR, len);
890
891         dev_dbg(&msg->spi->dev,
892                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
893                 xfer, xfer->len, xfer->tx_buf,
894                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
895                 (unsigned long long)xfer->rx_dma);
896
897         if (as->current_remaining_bytes) {
898                 len = as->current_remaining_bytes;
899                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
900                 as->current_remaining_bytes -= len;
901
902                 spi_writel(as, RNPR, rx_dma);
903                 spi_writel(as, TNPR, tx_dma);
904
905                 if (msg->spi->bits_per_word > 8)
906                         len >>= 1;
907                 spi_writel(as, RNCR, len);
908                 spi_writel(as, TNCR, len);
909
910                 dev_dbg(&msg->spi->dev,
911                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
912                         xfer, xfer->len, xfer->tx_buf,
913                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
914                         (unsigned long long)xfer->rx_dma);
915         }
916
917         /* REVISIT: We're waiting for RXBUFF before we start the next
918          * transfer because we need to handle some difficult timing
919          * issues otherwise. If we wait for TXBUFE in one transfer and
920          * then starts waiting for RXBUFF in the next, it's difficult
921          * to tell the difference between the RXBUFF interrupt we're
922          * actually waiting for and the RXBUFF interrupt of the
923          * previous transfer.
924          *
925          * It should be doable, though. Just not now...
926          */
927         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
928         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
929 }
930
931 /*
932  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
933  *  - The buffer is either valid for CPU access, else NULL
934  *  - If the buffer is valid, so is its DMA address
935  *
936  * This driver manages the dma address unless message->is_dma_mapped.
937  */
938 static int
939 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
940 {
941         struct device   *dev = &as->pdev->dev;
942
943         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
944         if (xfer->tx_buf) {
945                 /* tx_buf is a const void* where we need a void * for the dma
946                  * mapping */
947                 void *nonconst_tx = (void *)xfer->tx_buf;
948
949                 xfer->tx_dma = dma_map_single(dev,
950                                 nonconst_tx, xfer->len,
951                                 DMA_TO_DEVICE);
952                 if (dma_mapping_error(dev, xfer->tx_dma))
953                         return -ENOMEM;
954         }
955         if (xfer->rx_buf) {
956                 xfer->rx_dma = dma_map_single(dev,
957                                 xfer->rx_buf, xfer->len,
958                                 DMA_FROM_DEVICE);
959                 if (dma_mapping_error(dev, xfer->rx_dma)) {
960                         if (xfer->tx_buf)
961                                 dma_unmap_single(dev,
962                                                 xfer->tx_dma, xfer->len,
963                                                 DMA_TO_DEVICE);
964                         return -ENOMEM;
965                 }
966         }
967         return 0;
968 }
969
970 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
971                                      struct spi_transfer *xfer)
972 {
973         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
974                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
975                                  xfer->len, DMA_TO_DEVICE);
976         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
977                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
978                                  xfer->len, DMA_FROM_DEVICE);
979 }
980
981 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
982 {
983         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
984 }
985
986 static void
987 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
988 {
989         u8              *rxp;
990         u16             *rxp16;
991         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
992
993         if (xfer->bits_per_word > 8) {
994                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
995                 *rxp16 = spi_readl(as, RDR);
996         } else {
997                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
998                 *rxp = spi_readl(as, RDR);
999         }
1000         if (xfer->bits_per_word > 8) {
1001                 if (as->current_remaining_bytes > 2)
1002                         as->current_remaining_bytes -= 2;
1003                 else
1004                         as->current_remaining_bytes = 0;
1005         } else {
1006                 as->current_remaining_bytes--;
1007         }
1008 }
1009
1010 static void
1011 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1012 {
1013         u32 fifolr = spi_readl(as, FLR);
1014         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1015         u32 offset = xfer->len - as->current_remaining_bytes;
1016         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1017         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1018         u16 rd; /* RD field is the lowest 16 bits of RDR */
1019
1020         /* Update the number of remaining bytes to transfer */
1021         num_bytes = ((xfer->bits_per_word > 8) ?
1022                      (num_data << 1) :
1023                      num_data);
1024
1025         if (as->current_remaining_bytes > num_bytes)
1026                 as->current_remaining_bytes -= num_bytes;
1027         else
1028                 as->current_remaining_bytes = 0;
1029
1030         /* Handle odd number of bytes when data are more than 8bit width */
1031         if (xfer->bits_per_word > 8)
1032                 as->current_remaining_bytes &= ~0x1;
1033
1034         /* Read data */
1035         while (num_data) {
1036                 rd = spi_readl(as, RDR);
1037                 if (xfer->bits_per_word > 8)
1038                         *words++ = rd;
1039                 else
1040                         *bytes++ = rd;
1041                 num_data--;
1042         }
1043 }
1044
1045 /* Called from IRQ
1046  *
1047  * Must update "current_remaining_bytes" to keep track of data
1048  * to transfer.
1049  */
1050 static void
1051 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1052 {
1053         if (as->fifo_size)
1054                 atmel_spi_pump_fifo_data(as, xfer);
1055         else
1056                 atmel_spi_pump_single_data(as, xfer);
1057 }
1058
1059 /* Interrupt
1060  *
1061  * No need for locking in this Interrupt handler: done_status is the
1062  * only information modified.
1063  */
1064 static irqreturn_t
1065 atmel_spi_pio_interrupt(int irq, void *dev_id)
1066 {
1067         struct spi_master       *master = dev_id;
1068         struct atmel_spi        *as = spi_master_get_devdata(master);
1069         u32                     status, pending, imr;
1070         struct spi_transfer     *xfer;
1071         int                     ret = IRQ_NONE;
1072
1073         imr = spi_readl(as, IMR);
1074         status = spi_readl(as, SR);
1075         pending = status & imr;
1076
1077         if (pending & SPI_BIT(OVRES)) {
1078                 ret = IRQ_HANDLED;
1079                 spi_writel(as, IDR, SPI_BIT(OVRES));
1080                 dev_warn(master->dev.parent, "overrun\n");
1081
1082                 /*
1083                  * When we get an overrun, we disregard the current
1084                  * transfer. Data will not be copied back from any
1085                  * bounce buffer and msg->actual_len will not be
1086                  * updated with the last xfer.
1087                  *
1088                  * We will also not process any remaning transfers in
1089                  * the message.
1090                  */
1091                 as->done_status = -EIO;
1092                 smp_wmb();
1093
1094                 /* Clear any overrun happening while cleaning up */
1095                 spi_readl(as, SR);
1096
1097                 complete(&as->xfer_completion);
1098
1099         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1100                 atmel_spi_lock(as);
1101
1102                 if (as->current_remaining_bytes) {
1103                         ret = IRQ_HANDLED;
1104                         xfer = as->current_transfer;
1105                         atmel_spi_pump_pio_data(as, xfer);
1106                         if (!as->current_remaining_bytes)
1107                                 spi_writel(as, IDR, pending);
1108
1109                         complete(&as->xfer_completion);
1110                 }
1111
1112                 atmel_spi_unlock(as);
1113         } else {
1114                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1115                 ret = IRQ_HANDLED;
1116                 spi_writel(as, IDR, pending);
1117         }
1118
1119         return ret;
1120 }
1121
1122 static irqreturn_t
1123 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1124 {
1125         struct spi_master       *master = dev_id;
1126         struct atmel_spi        *as = spi_master_get_devdata(master);
1127         u32                     status, pending, imr;
1128         int                     ret = IRQ_NONE;
1129
1130         imr = spi_readl(as, IMR);
1131         status = spi_readl(as, SR);
1132         pending = status & imr;
1133
1134         if (pending & SPI_BIT(OVRES)) {
1135
1136                 ret = IRQ_HANDLED;
1137
1138                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1139                                      | SPI_BIT(OVRES)));
1140
1141                 /* Clear any overrun happening while cleaning up */
1142                 spi_readl(as, SR);
1143
1144                 as->done_status = -EIO;
1145
1146                 complete(&as->xfer_completion);
1147
1148         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1149                 ret = IRQ_HANDLED;
1150
1151                 spi_writel(as, IDR, pending);
1152
1153                 complete(&as->xfer_completion);
1154         }
1155
1156         return ret;
1157 }
1158
1159 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1160 {
1161         struct spi_delay *delay = &spi->word_delay;
1162         u32 value = delay->value;
1163
1164         switch (delay->unit) {
1165         case SPI_DELAY_UNIT_NSECS:
1166                 value /= 1000;
1167                 break;
1168         case SPI_DELAY_UNIT_USECS:
1169                 break;
1170         default:
1171                 return -EINVAL;
1172         }
1173
1174         return (as->spi_clk / 1000000 * value) >> 5;
1175 }
1176
1177 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1178 {
1179         int i;
1180         struct spi_master *master = platform_get_drvdata(as->pdev);
1181
1182         if (!as->native_cs_free)
1183                 return; /* already initialized */
1184
1185         if (!master->cs_gpiods)
1186                 return; /* No CS GPIO */
1187
1188         /*
1189          * On the first version of the controller (AT91RM9200), CS0
1190          * can't be used associated with GPIO
1191          */
1192         if (atmel_spi_is_v2(as))
1193                 i = 0;
1194         else
1195                 i = 1;
1196
1197         for (; i < 4; i++)
1198                 if (master->cs_gpiods[i])
1199                         as->native_cs_free |= BIT(i);
1200
1201         if (as->native_cs_free)
1202                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1203 }
1204
1205 static int atmel_spi_setup(struct spi_device *spi)
1206 {
1207         struct atmel_spi        *as;
1208         struct atmel_spi_device *asd;
1209         u32                     csr;
1210         unsigned int            bits = spi->bits_per_word;
1211         int chip_select;
1212         int                     word_delay_csr;
1213
1214         as = spi_master_get_devdata(spi->master);
1215
1216         /* see notes above re chipselect */
1217         if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1218                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1219                 return -EINVAL;
1220         }
1221
1222         /* Setup() is called during spi_register_controller(aka
1223          * spi_register_master) but after all membmers of the cs_gpiod
1224          * array have been filled, so we can looked for which native
1225          * CS will be free for using with GPIO
1226          */
1227         initialize_native_cs_for_gpio(as);
1228
1229         if (spi->cs_gpiod && as->native_cs_free) {
1230                 dev_err(&spi->dev,
1231                         "No native CS available to support this GPIO CS\n");
1232                 return -EBUSY;
1233         }
1234
1235         if (spi->cs_gpiod)
1236                 chip_select = as->native_cs_for_gpio;
1237         else
1238                 chip_select = spi->chip_select;
1239
1240         csr = SPI_BF(BITS, bits - 8);
1241         if (spi->mode & SPI_CPOL)
1242                 csr |= SPI_BIT(CPOL);
1243         if (!(spi->mode & SPI_CPHA))
1244                 csr |= SPI_BIT(NCPHA);
1245
1246         if (!spi->cs_gpiod)
1247                 csr |= SPI_BIT(CSAAT);
1248         csr |= SPI_BF(DLYBS, 0);
1249
1250         word_delay_csr = atmel_word_delay_csr(spi, as);
1251         if (word_delay_csr < 0)
1252                 return word_delay_csr;
1253
1254         /* DLYBCT adds delays between words.  This is useful for slow devices
1255          * that need a bit of time to setup the next transfer.
1256          */
1257         csr |= SPI_BF(DLYBCT, word_delay_csr);
1258
1259         asd = spi->controller_state;
1260         if (!asd) {
1261                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1262                 if (!asd)
1263                         return -ENOMEM;
1264
1265                 spi->controller_state = asd;
1266         }
1267
1268         asd->csr = csr;
1269
1270         dev_dbg(&spi->dev,
1271                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1272                 bits, spi->mode, spi->chip_select, csr);
1273
1274         if (!atmel_spi_is_v2(as))
1275                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1276
1277         return 0;
1278 }
1279
1280 static int atmel_spi_one_transfer(struct spi_master *master,
1281                                         struct spi_message *msg,
1282                                         struct spi_transfer *xfer)
1283 {
1284         struct atmel_spi        *as;
1285         struct spi_device       *spi = msg->spi;
1286         u8                      bits;
1287         u32                     len;
1288         struct atmel_spi_device *asd;
1289         int                     timeout;
1290         int                     ret;
1291         unsigned long           dma_timeout;
1292
1293         as = spi_master_get_devdata(master);
1294
1295         if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1296                 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1297                 return -EINVAL;
1298         }
1299
1300         asd = spi->controller_state;
1301         bits = (asd->csr >> 4) & 0xf;
1302         if (bits != xfer->bits_per_word - 8) {
1303                 dev_dbg(&spi->dev,
1304                         "you can't yet change bits_per_word in transfers\n");
1305                 return -ENOPROTOOPT;
1306         }
1307
1308         /*
1309          * DMA map early, for performance (empties dcache ASAP) and
1310          * better fault reporting.
1311          */
1312         if ((!msg->is_dma_mapped)
1313                 && as->use_pdc) {
1314                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1315                         return -ENOMEM;
1316         }
1317
1318         atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1319
1320         as->done_status = 0;
1321         as->current_transfer = xfer;
1322         as->current_remaining_bytes = xfer->len;
1323         while (as->current_remaining_bytes) {
1324                 reinit_completion(&as->xfer_completion);
1325
1326                 if (as->use_pdc) {
1327                         atmel_spi_pdc_next_xfer(master, msg, xfer);
1328                 } else if (atmel_spi_use_dma(as, xfer)) {
1329                         len = as->current_remaining_bytes;
1330                         ret = atmel_spi_next_xfer_dma_submit(master,
1331                                                                 xfer, &len);
1332                         if (ret) {
1333                                 dev_err(&spi->dev,
1334                                         "unable to use DMA, fallback to PIO\n");
1335                                 atmel_spi_next_xfer_pio(master, xfer);
1336                         } else {
1337                                 as->current_remaining_bytes -= len;
1338                                 if (as->current_remaining_bytes < 0)
1339                                         as->current_remaining_bytes = 0;
1340                         }
1341                 } else {
1342                         atmel_spi_next_xfer_pio(master, xfer);
1343                 }
1344
1345                 /* interrupts are disabled, so free the lock for schedule */
1346                 atmel_spi_unlock(as);
1347                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1348                                                           SPI_DMA_TIMEOUT);
1349                 atmel_spi_lock(as);
1350                 if (WARN_ON(dma_timeout == 0)) {
1351                         dev_err(&spi->dev, "spi transfer timeout\n");
1352                         as->done_status = -EIO;
1353                 }
1354
1355                 if (as->done_status)
1356                         break;
1357         }
1358
1359         if (as->done_status) {
1360                 if (as->use_pdc) {
1361                         dev_warn(master->dev.parent,
1362                                 "overrun (%u/%u remaining)\n",
1363                                 spi_readl(as, TCR), spi_readl(as, RCR));
1364
1365                         /*
1366                          * Clean up DMA registers and make sure the data
1367                          * registers are empty.
1368                          */
1369                         spi_writel(as, RNCR, 0);
1370                         spi_writel(as, TNCR, 0);
1371                         spi_writel(as, RCR, 0);
1372                         spi_writel(as, TCR, 0);
1373                         for (timeout = 1000; timeout; timeout--)
1374                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1375                                         break;
1376                         if (!timeout)
1377                                 dev_warn(master->dev.parent,
1378                                          "timeout waiting for TXEMPTY");
1379                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1380                                 spi_readl(as, RDR);
1381
1382                         /* Clear any overrun happening while cleaning up */
1383                         spi_readl(as, SR);
1384
1385                 } else if (atmel_spi_use_dma(as, xfer)) {
1386                         atmel_spi_stop_dma(master);
1387                 }
1388
1389                 if (!msg->is_dma_mapped
1390                         && as->use_pdc)
1391                         atmel_spi_dma_unmap_xfer(master, xfer);
1392
1393                 return 0;
1394
1395         } else {
1396                 /* only update length if no error */
1397                 msg->actual_length += xfer->len;
1398         }
1399
1400         if (!msg->is_dma_mapped
1401                 && as->use_pdc)
1402                 atmel_spi_dma_unmap_xfer(master, xfer);
1403
1404         spi_transfer_delay_exec(xfer);
1405
1406         if (xfer->cs_change) {
1407                 if (list_is_last(&xfer->transfer_list,
1408                                  &msg->transfers)) {
1409                         as->keep_cs = true;
1410                 } else {
1411                         cs_deactivate(as, msg->spi);
1412                         udelay(10);
1413                         cs_activate(as, msg->spi);
1414                 }
1415         }
1416
1417         return 0;
1418 }
1419
1420 static int atmel_spi_transfer_one_message(struct spi_master *master,
1421                                                 struct spi_message *msg)
1422 {
1423         struct atmel_spi *as;
1424         struct spi_transfer *xfer;
1425         struct spi_device *spi = msg->spi;
1426         int ret = 0;
1427
1428         as = spi_master_get_devdata(master);
1429
1430         dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1431                                         msg, dev_name(&spi->dev));
1432
1433         atmel_spi_lock(as);
1434         cs_activate(as, spi);
1435
1436         as->keep_cs = false;
1437
1438         msg->status = 0;
1439         msg->actual_length = 0;
1440
1441         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1442                 trace_spi_transfer_start(msg, xfer);
1443
1444                 ret = atmel_spi_one_transfer(master, msg, xfer);
1445                 if (ret)
1446                         goto msg_done;
1447
1448                 trace_spi_transfer_stop(msg, xfer);
1449         }
1450
1451         if (as->use_pdc)
1452                 atmel_spi_disable_pdc_transfer(as);
1453
1454         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1455                 dev_dbg(&spi->dev,
1456                         "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1457                         xfer, xfer->len,
1458                         xfer->tx_buf, &xfer->tx_dma,
1459                         xfer->rx_buf, &xfer->rx_dma);
1460         }
1461
1462 msg_done:
1463         if (!as->keep_cs)
1464                 cs_deactivate(as, msg->spi);
1465
1466         atmel_spi_unlock(as);
1467
1468         msg->status = as->done_status;
1469         spi_finalize_current_message(spi->master);
1470
1471         return ret;
1472 }
1473
1474 static void atmel_spi_cleanup(struct spi_device *spi)
1475 {
1476         struct atmel_spi_device *asd = spi->controller_state;
1477
1478         if (!asd)
1479                 return;
1480
1481         spi->controller_state = NULL;
1482         kfree(asd);
1483 }
1484
1485 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1486 {
1487         return spi_readl(as, VERSION) & 0x00000fff;
1488 }
1489
1490 static void atmel_get_caps(struct atmel_spi *as)
1491 {
1492         unsigned int version;
1493
1494         version = atmel_get_version(as);
1495
1496         as->caps.is_spi2 = version > 0x121;
1497         as->caps.has_wdrbt = version >= 0x210;
1498         as->caps.has_dma_support = version >= 0x212;
1499         as->caps.has_pdc_support = version < 0x212;
1500 }
1501
1502 static void atmel_spi_init(struct atmel_spi *as)
1503 {
1504         spi_writel(as, CR, SPI_BIT(SWRST));
1505         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1506
1507         /* It is recommended to enable FIFOs first thing after reset */
1508         if (as->fifo_size)
1509                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1510
1511         if (as->caps.has_wdrbt) {
1512                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1513                                 | SPI_BIT(MSTR));
1514         } else {
1515                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1516         }
1517
1518         if (as->use_pdc)
1519                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1520         spi_writel(as, CR, SPI_BIT(SPIEN));
1521 }
1522
1523 static int atmel_spi_probe(struct platform_device *pdev)
1524 {
1525         struct resource         *regs;
1526         int                     irq;
1527         struct clk              *clk;
1528         int                     ret;
1529         struct spi_master       *master;
1530         struct atmel_spi        *as;
1531
1532         /* Select default pin state */
1533         pinctrl_pm_select_default_state(&pdev->dev);
1534
1535         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1536         if (!regs)
1537                 return -ENXIO;
1538
1539         irq = platform_get_irq(pdev, 0);
1540         if (irq < 0)
1541                 return irq;
1542
1543         clk = devm_clk_get(&pdev->dev, "spi_clk");
1544         if (IS_ERR(clk))
1545                 return PTR_ERR(clk);
1546
1547         /* setup spi core then atmel-specific driver state */
1548         ret = -ENOMEM;
1549         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1550         if (!master)
1551                 goto out_free;
1552
1553         /* the spi->mode bits understood by this driver: */
1554         master->use_gpio_descriptors = true;
1555         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1556         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1557         master->dev.of_node = pdev->dev.of_node;
1558         master->bus_num = pdev->id;
1559         master->num_chipselect = 4;
1560         master->setup = atmel_spi_setup;
1561         master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1562         master->transfer_one_message = atmel_spi_transfer_one_message;
1563         master->cleanup = atmel_spi_cleanup;
1564         master->auto_runtime_pm = true;
1565         master->max_dma_len = SPI_MAX_DMA_XFER;
1566         master->can_dma = atmel_spi_can_dma;
1567         platform_set_drvdata(pdev, master);
1568
1569         as = spi_master_get_devdata(master);
1570
1571         spin_lock_init(&as->lock);
1572
1573         as->pdev = pdev;
1574         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1575         if (IS_ERR(as->regs)) {
1576                 ret = PTR_ERR(as->regs);
1577                 goto out_unmap_regs;
1578         }
1579         as->phybase = regs->start;
1580         as->irq = irq;
1581         as->clk = clk;
1582
1583         init_completion(&as->xfer_completion);
1584
1585         atmel_get_caps(as);
1586
1587         as->use_dma = false;
1588         as->use_pdc = false;
1589         if (as->caps.has_dma_support) {
1590                 ret = atmel_spi_configure_dma(master, as);
1591                 if (ret == 0) {
1592                         as->use_dma = true;
1593                 } else if (ret == -EPROBE_DEFER) {
1594                         return ret;
1595                 }
1596         } else if (as->caps.has_pdc_support) {
1597                 as->use_pdc = true;
1598         }
1599
1600         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1601                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1602                                                       SPI_MAX_DMA_XFER,
1603                                                       &as->dma_addr_rx_bbuf,
1604                                                       GFP_KERNEL | GFP_DMA);
1605                 if (!as->addr_rx_bbuf) {
1606                         as->use_dma = false;
1607                 } else {
1608                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1609                                         SPI_MAX_DMA_XFER,
1610                                         &as->dma_addr_tx_bbuf,
1611                                         GFP_KERNEL | GFP_DMA);
1612                         if (!as->addr_tx_bbuf) {
1613                                 as->use_dma = false;
1614                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615                                                   as->addr_rx_bbuf,
1616                                                   as->dma_addr_rx_bbuf);
1617                         }
1618                 }
1619                 if (!as->use_dma)
1620                         dev_info(master->dev.parent,
1621                                  "  can not allocate dma coherent memory\n");
1622         }
1623
1624         if (as->caps.has_dma_support && !as->use_dma)
1625                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1626
1627         if (as->use_pdc) {
1628                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1629                                         0, dev_name(&pdev->dev), master);
1630         } else {
1631                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1632                                         0, dev_name(&pdev->dev), master);
1633         }
1634         if (ret)
1635                 goto out_unmap_regs;
1636
1637         /* Initialize the hardware */
1638         ret = clk_prepare_enable(clk);
1639         if (ret)
1640                 goto out_free_irq;
1641
1642         as->spi_clk = clk_get_rate(clk);
1643
1644         as->fifo_size = 0;
1645         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1646                                   &as->fifo_size)) {
1647                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1648         }
1649
1650         atmel_spi_init(as);
1651
1652         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1653         pm_runtime_use_autosuspend(&pdev->dev);
1654         pm_runtime_set_active(&pdev->dev);
1655         pm_runtime_enable(&pdev->dev);
1656
1657         ret = devm_spi_register_master(&pdev->dev, master);
1658         if (ret)
1659                 goto out_free_dma;
1660
1661         /* go! */
1662         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1663                         atmel_get_version(as), (unsigned long)regs->start,
1664                         irq);
1665
1666         return 0;
1667
1668 out_free_dma:
1669         pm_runtime_disable(&pdev->dev);
1670         pm_runtime_set_suspended(&pdev->dev);
1671
1672         if (as->use_dma)
1673                 atmel_spi_release_dma(master);
1674
1675         spi_writel(as, CR, SPI_BIT(SWRST));
1676         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1677         clk_disable_unprepare(clk);
1678 out_free_irq:
1679 out_unmap_regs:
1680 out_free:
1681         spi_master_put(master);
1682         return ret;
1683 }
1684
1685 static int atmel_spi_remove(struct platform_device *pdev)
1686 {
1687         struct spi_master       *master = platform_get_drvdata(pdev);
1688         struct atmel_spi        *as = spi_master_get_devdata(master);
1689
1690         pm_runtime_get_sync(&pdev->dev);
1691
1692         /* reset the hardware and block queue progress */
1693         if (as->use_dma) {
1694                 atmel_spi_stop_dma(master);
1695                 atmel_spi_release_dma(master);
1696                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1697                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1698                                           as->addr_tx_bbuf,
1699                                           as->dma_addr_tx_bbuf);
1700                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1701                                           as->addr_rx_bbuf,
1702                                           as->dma_addr_rx_bbuf);
1703                 }
1704         }
1705
1706         spin_lock_irq(&as->lock);
1707         spi_writel(as, CR, SPI_BIT(SWRST));
1708         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1709         spi_readl(as, SR);
1710         spin_unlock_irq(&as->lock);
1711
1712         clk_disable_unprepare(as->clk);
1713
1714         pm_runtime_put_noidle(&pdev->dev);
1715         pm_runtime_disable(&pdev->dev);
1716
1717         return 0;
1718 }
1719
1720 #ifdef CONFIG_PM
1721 static int atmel_spi_runtime_suspend(struct device *dev)
1722 {
1723         struct spi_master *master = dev_get_drvdata(dev);
1724         struct atmel_spi *as = spi_master_get_devdata(master);
1725
1726         clk_disable_unprepare(as->clk);
1727         pinctrl_pm_select_sleep_state(dev);
1728
1729         return 0;
1730 }
1731
1732 static int atmel_spi_runtime_resume(struct device *dev)
1733 {
1734         struct spi_master *master = dev_get_drvdata(dev);
1735         struct atmel_spi *as = spi_master_get_devdata(master);
1736
1737         pinctrl_pm_select_default_state(dev);
1738
1739         return clk_prepare_enable(as->clk);
1740 }
1741
1742 #ifdef CONFIG_PM_SLEEP
1743 static int atmel_spi_suspend(struct device *dev)
1744 {
1745         struct spi_master *master = dev_get_drvdata(dev);
1746         int ret;
1747
1748         /* Stop the queue running */
1749         ret = spi_master_suspend(master);
1750         if (ret)
1751                 return ret;
1752
1753         if (!pm_runtime_suspended(dev))
1754                 atmel_spi_runtime_suspend(dev);
1755
1756         return 0;
1757 }
1758
1759 static int atmel_spi_resume(struct device *dev)
1760 {
1761         struct spi_master *master = dev_get_drvdata(dev);
1762         struct atmel_spi *as = spi_master_get_devdata(master);
1763         int ret;
1764
1765         ret = clk_prepare_enable(as->clk);
1766         if (ret)
1767                 return ret;
1768
1769         atmel_spi_init(as);
1770
1771         clk_disable_unprepare(as->clk);
1772
1773         if (!pm_runtime_suspended(dev)) {
1774                 ret = atmel_spi_runtime_resume(dev);
1775                 if (ret)
1776                         return ret;
1777         }
1778
1779         /* Start the queue running */
1780         return spi_master_resume(master);
1781 }
1782 #endif
1783
1784 static const struct dev_pm_ops atmel_spi_pm_ops = {
1785         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1786         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1787                            atmel_spi_runtime_resume, NULL)
1788 };
1789 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1790 #else
1791 #define ATMEL_SPI_PM_OPS        NULL
1792 #endif
1793
1794 static const struct of_device_id atmel_spi_dt_ids[] = {
1795         { .compatible = "atmel,at91rm9200-spi" },
1796         { /* sentinel */ }
1797 };
1798
1799 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1800
1801 static struct platform_driver atmel_spi_driver = {
1802         .driver         = {
1803                 .name   = "atmel_spi",
1804                 .pm     = ATMEL_SPI_PM_OPS,
1805                 .of_match_table = atmel_spi_dt_ids,
1806         },
1807         .probe          = atmel_spi_probe,
1808         .remove         = atmel_spi_remove,
1809 };
1810 module_platform_driver(atmel_spi_driver);
1811
1812 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1813 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1814 MODULE_LICENSE("GPL");
1815 MODULE_ALIAS("platform:atmel_spi");