Merge tag 'iommu-fix-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[linux-2.6-microblaze.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26
27 /* SPI register offsets */
28 #define SPI_CR                                  0x0000
29 #define SPI_MR                                  0x0004
30 #define SPI_RDR                                 0x0008
31 #define SPI_TDR                                 0x000c
32 #define SPI_SR                                  0x0010
33 #define SPI_IER                                 0x0014
34 #define SPI_IDR                                 0x0018
35 #define SPI_IMR                                 0x001c
36 #define SPI_CSR0                                0x0030
37 #define SPI_CSR1                                0x0034
38 #define SPI_CSR2                                0x0038
39 #define SPI_CSR3                                0x003c
40 #define SPI_FMR                                 0x0040
41 #define SPI_FLR                                 0x0044
42 #define SPI_VERSION                             0x00fc
43 #define SPI_RPR                                 0x0100
44 #define SPI_RCR                                 0x0104
45 #define SPI_TPR                                 0x0108
46 #define SPI_TCR                                 0x010c
47 #define SPI_RNPR                                0x0110
48 #define SPI_RNCR                                0x0114
49 #define SPI_TNPR                                0x0118
50 #define SPI_TNCR                                0x011c
51 #define SPI_PTCR                                0x0120
52 #define SPI_PTSR                                0x0124
53
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET                        0
56 #define SPI_SPIEN_SIZE                          1
57 #define SPI_SPIDIS_OFFSET                       1
58 #define SPI_SPIDIS_SIZE                         1
59 #define SPI_SWRST_OFFSET                        7
60 #define SPI_SWRST_SIZE                          1
61 #define SPI_LASTXFER_OFFSET                     24
62 #define SPI_LASTXFER_SIZE                       1
63 #define SPI_TXFCLR_OFFSET                       16
64 #define SPI_TXFCLR_SIZE                         1
65 #define SPI_RXFCLR_OFFSET                       17
66 #define SPI_RXFCLR_SIZE                         1
67 #define SPI_FIFOEN_OFFSET                       30
68 #define SPI_FIFOEN_SIZE                         1
69 #define SPI_FIFODIS_OFFSET                      31
70 #define SPI_FIFODIS_SIZE                        1
71
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET                         0
74 #define SPI_MSTR_SIZE                           1
75 #define SPI_PS_OFFSET                           1
76 #define SPI_PS_SIZE                             1
77 #define SPI_PCSDEC_OFFSET                       2
78 #define SPI_PCSDEC_SIZE                         1
79 #define SPI_FDIV_OFFSET                         3
80 #define SPI_FDIV_SIZE                           1
81 #define SPI_MODFDIS_OFFSET                      4
82 #define SPI_MODFDIS_SIZE                        1
83 #define SPI_WDRBT_OFFSET                        5
84 #define SPI_WDRBT_SIZE                          1
85 #define SPI_LLB_OFFSET                          7
86 #define SPI_LLB_SIZE                            1
87 #define SPI_PCS_OFFSET                          16
88 #define SPI_PCS_SIZE                            4
89 #define SPI_DLYBCS_OFFSET                       24
90 #define SPI_DLYBCS_SIZE                         8
91
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET                           0
94 #define SPI_RD_SIZE                             16
95
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET                           0
98 #define SPI_TD_SIZE                             16
99
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET                         0
102 #define SPI_RDRF_SIZE                           1
103 #define SPI_TDRE_OFFSET                         1
104 #define SPI_TDRE_SIZE                           1
105 #define SPI_MODF_OFFSET                         2
106 #define SPI_MODF_SIZE                           1
107 #define SPI_OVRES_OFFSET                        3
108 #define SPI_OVRES_SIZE                          1
109 #define SPI_ENDRX_OFFSET                        4
110 #define SPI_ENDRX_SIZE                          1
111 #define SPI_ENDTX_OFFSET                        5
112 #define SPI_ENDTX_SIZE                          1
113 #define SPI_RXBUFF_OFFSET                       6
114 #define SPI_RXBUFF_SIZE                         1
115 #define SPI_TXBUFE_OFFSET                       7
116 #define SPI_TXBUFE_SIZE                         1
117 #define SPI_NSSR_OFFSET                         8
118 #define SPI_NSSR_SIZE                           1
119 #define SPI_TXEMPTY_OFFSET                      9
120 #define SPI_TXEMPTY_SIZE                        1
121 #define SPI_SPIENS_OFFSET                       16
122 #define SPI_SPIENS_SIZE                         1
123 #define SPI_TXFEF_OFFSET                        24
124 #define SPI_TXFEF_SIZE                          1
125 #define SPI_TXFFF_OFFSET                        25
126 #define SPI_TXFFF_SIZE                          1
127 #define SPI_TXFTHF_OFFSET                       26
128 #define SPI_TXFTHF_SIZE                         1
129 #define SPI_RXFEF_OFFSET                        27
130 #define SPI_RXFEF_SIZE                          1
131 #define SPI_RXFFF_OFFSET                        28
132 #define SPI_RXFFF_SIZE                          1
133 #define SPI_RXFTHF_OFFSET                       29
134 #define SPI_RXFTHF_SIZE                         1
135 #define SPI_TXFPTEF_OFFSET                      30
136 #define SPI_TXFPTEF_SIZE                        1
137 #define SPI_RXFPTEF_OFFSET                      31
138 #define SPI_RXFPTEF_SIZE                        1
139
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET                         0
142 #define SPI_CPOL_SIZE                           1
143 #define SPI_NCPHA_OFFSET                        1
144 #define SPI_NCPHA_SIZE                          1
145 #define SPI_CSAAT_OFFSET                        3
146 #define SPI_CSAAT_SIZE                          1
147 #define SPI_BITS_OFFSET                         4
148 #define SPI_BITS_SIZE                           4
149 #define SPI_SCBR_OFFSET                         8
150 #define SPI_SCBR_SIZE                           8
151 #define SPI_DLYBS_OFFSET                        16
152 #define SPI_DLYBS_SIZE                          8
153 #define SPI_DLYBCT_OFFSET                       24
154 #define SPI_DLYBCT_SIZE                         8
155
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET                        0
158 #define SPI_RXCTR_SIZE                          16
159
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET                        0
162 #define SPI_TXCTR_SIZE                          16
163
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET                        0
166 #define SPI_RXNCR_SIZE                          16
167
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET                        0
170 #define SPI_TXNCR_SIZE                          16
171
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET                        0
174 #define SPI_RXTEN_SIZE                          1
175 #define SPI_RXTDIS_OFFSET                       1
176 #define SPI_RXTDIS_SIZE                         1
177 #define SPI_TXTEN_OFFSET                        8
178 #define SPI_TXTEN_SIZE                          1
179 #define SPI_TXTDIS_OFFSET                       9
180 #define SPI_TXTDIS_SIZE                         1
181
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET                       0
184 #define SPI_TXRDYM_SIZE                         2
185 #define SPI_RXRDYM_OFFSET                       4
186 #define SPI_RXRDYM_SIZE                         2
187 #define SPI_TXFTHRES_OFFSET                     16
188 #define SPI_TXFTHRES_SIZE                       6
189 #define SPI_RXFTHRES_OFFSET                     24
190 #define SPI_RXFTHRES_SIZE                       6
191
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET                         0
194 #define SPI_TXFL_SIZE                           6
195 #define SPI_RXFL_OFFSET                         16
196 #define SPI_RXFL_SIZE                           6
197
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT                          0
200 #define SPI_BITS_9_BPT                          1
201 #define SPI_BITS_10_BPT                         2
202 #define SPI_BITS_11_BPT                         3
203 #define SPI_BITS_12_BPT                         4
204 #define SPI_BITS_13_BPT                         5
205 #define SPI_BITS_14_BPT                         6
206 #define SPI_BITS_15_BPT                         7
207 #define SPI_BITS_16_BPT                         8
208 #define SPI_ONE_DATA                            0
209 #define SPI_TWO_DATA                            1
210 #define SPI_FOUR_DATA                           2
211
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214         (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221           | SPI_BF(name, value))
222
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225         readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227         writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229         writew_relaxed((value), (port)->regs + SPI_##reg)
230
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232  * cache operations; better heuristics consider wordsize and bitrate.
233  */
234 #define DMA_MIN_BYTES   16
235
236 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
237
238 #define AUTOSUSPEND_TIMEOUT     2000
239
240 struct atmel_spi_caps {
241         bool    is_spi2;
242         bool    has_wdrbt;
243         bool    has_dma_support;
244         bool    has_pdc_support;
245 };
246
247 /*
248  * The core SPI transfer engine just talks to a register bank to set up
249  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
250  * framework provides the base clock, subdivided for each spi_device.
251  */
252 struct atmel_spi {
253         spinlock_t              lock;
254         unsigned long           flags;
255
256         phys_addr_t             phybase;
257         void __iomem            *regs;
258         int                     irq;
259         struct clk              *clk;
260         struct platform_device  *pdev;
261         unsigned long           spi_clk;
262
263         struct spi_transfer     *current_transfer;
264         int                     current_remaining_bytes;
265         int                     done_status;
266         dma_addr_t              dma_addr_rx_bbuf;
267         dma_addr_t              dma_addr_tx_bbuf;
268         void                    *addr_rx_bbuf;
269         void                    *addr_tx_bbuf;
270
271         struct completion       xfer_completion;
272
273         struct atmel_spi_caps   caps;
274
275         bool                    use_dma;
276         bool                    use_pdc;
277
278         bool                    keep_cs;
279
280         u32                     fifo_size;
281         u8                      native_cs_free;
282         u8                      native_cs_for_gpio;
283 };
284
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287         u32                     csr;
288 };
289
290 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS     0xffffffff
292
293 /*
294  * Version 2 of the SPI controller has
295  *  - CR.LASTXFER
296  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298  *  - SPI_CSRx.CSAAT
299  *  - SPI_CSRx.SBCR allows faster clocking
300  */
301 static bool atmel_spi_is_v2(struct atmel_spi *as)
302 {
303         return as->caps.is_spi2;
304 }
305
306 /*
307  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308  * they assume that spi slave device state will not change on deselect, so
309  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
310  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
311  * controllers have CSAAT and friends.
312  *
313  * Even controller newer than ar91rm9200, using GPIOs can make sens as
314  * it lets us support active-high chipselects despite the controller's
315  * belief that only active-low devices/systems exists.
316  *
317  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318  * right when driven with GPIO.  ("Mode Fault does not allow more than one
319  * Master on Chip Select 0.")  No workaround exists for that ... so for
320  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321  * and (c) will trigger that first erratum in some cases.
322  */
323
324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325 {
326         struct atmel_spi_device *asd = spi->controller_state;
327         int chip_select;
328         u32 mr;
329
330         if (spi->cs_gpiod)
331                 chip_select = as->native_cs_for_gpio;
332         else
333                 chip_select = spi->chip_select;
334
335         if (atmel_spi_is_v2(as)) {
336                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337                 /* For the low SPI version, there is a issue that PDC transfer
338                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339                  */
340                 spi_writel(as, CSR0, asd->csr);
341                 if (as->caps.has_wdrbt) {
342                         spi_writel(as, MR,
343                                         SPI_BF(PCS, ~(0x01 << chip_select))
344                                         | SPI_BIT(WDRBT)
345                                         | SPI_BIT(MODFDIS)
346                                         | SPI_BIT(MSTR));
347                 } else {
348                         spi_writel(as, MR,
349                                         SPI_BF(PCS, ~(0x01 << chip_select))
350                                         | SPI_BIT(MODFDIS)
351                                         | SPI_BIT(MSTR));
352                 }
353
354                 mr = spi_readl(as, MR);
355                 if (spi->cs_gpiod)
356                         gpiod_set_value(spi->cs_gpiod, 1);
357         } else {
358                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
359                 int i;
360                 u32 csr;
361
362                 /* Make sure clock polarity is correct */
363                 for (i = 0; i < spi->master->num_chipselect; i++) {
364                         csr = spi_readl(as, CSR0 + 4 * i);
365                         if ((csr ^ cpol) & SPI_BIT(CPOL))
366                                 spi_writel(as, CSR0 + 4 * i,
367                                                 csr ^ SPI_BIT(CPOL));
368                 }
369
370                 mr = spi_readl(as, MR);
371                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
372                 if (spi->cs_gpiod)
373                         gpiod_set_value(spi->cs_gpiod, 1);
374                 spi_writel(as, MR, mr);
375         }
376
377         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
378 }
379
380 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
381 {
382         int chip_select;
383         u32 mr;
384
385         if (spi->cs_gpiod)
386                 chip_select = as->native_cs_for_gpio;
387         else
388                 chip_select = spi->chip_select;
389
390         /* only deactivate *this* device; sometimes transfers to
391          * another device may be active when this routine is called.
392          */
393         mr = spi_readl(as, MR);
394         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
395                 mr = SPI_BFINS(PCS, 0xf, mr);
396                 spi_writel(as, MR, mr);
397         }
398
399         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
400
401         if (!spi->cs_gpiod)
402                 spi_writel(as, CR, SPI_BIT(LASTXFER));
403         else
404                 gpiod_set_value(spi->cs_gpiod, 0);
405 }
406
407 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
408 {
409         spin_lock_irqsave(&as->lock, as->flags);
410 }
411
412 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
413 {
414         spin_unlock_irqrestore(&as->lock, as->flags);
415 }
416
417 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
418 {
419         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
420 }
421
422 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
423                                 struct spi_transfer *xfer)
424 {
425         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
426 }
427
428 static bool atmel_spi_can_dma(struct spi_master *master,
429                               struct spi_device *spi,
430                               struct spi_transfer *xfer)
431 {
432         struct atmel_spi *as = spi_master_get_devdata(master);
433
434         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
435                 return atmel_spi_use_dma(as, xfer) &&
436                         !atmel_spi_is_vmalloc_xfer(xfer);
437         else
438                 return atmel_spi_use_dma(as, xfer);
439
440 }
441
442 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
443                                 struct dma_slave_config *slave_config,
444                                 u8 bits_per_word)
445 {
446         struct spi_master *master = platform_get_drvdata(as->pdev);
447         int err = 0;
448
449         if (bits_per_word > 8) {
450                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
451                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452         } else {
453                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
454                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455         }
456
457         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
458         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
459         slave_config->src_maxburst = 1;
460         slave_config->dst_maxburst = 1;
461         slave_config->device_fc = false;
462
463         /*
464          * This driver uses fixed peripheral select mode (PS bit set to '0' in
465          * the Mode Register).
466          * So according to the datasheet, when FIFOs are available (and
467          * enabled), the Transmit FIFO operates in Multiple Data Mode.
468          * In this mode, up to 2 data, not 4, can be written into the Transmit
469          * Data Register in a single access.
470          * However, the first data has to be written into the lowest 16 bits and
471          * the second data into the highest 16 bits of the Transmit
472          * Data Register. For 8bit data (the most frequent case), it would
473          * require to rework tx_buf so each data would actualy fit 16 bits.
474          * So we'd rather write only one data at the time. Hence the transmit
475          * path works the same whether FIFOs are available (and enabled) or not.
476          */
477         slave_config->direction = DMA_MEM_TO_DEV;
478         if (dmaengine_slave_config(master->dma_tx, slave_config)) {
479                 dev_err(&as->pdev->dev,
480                         "failed to configure tx dma channel\n");
481                 err = -EINVAL;
482         }
483
484         /*
485          * This driver configures the spi controller for master mode (MSTR bit
486          * set to '1' in the Mode Register).
487          * So according to the datasheet, when FIFOs are available (and
488          * enabled), the Receive FIFO operates in Single Data Mode.
489          * So the receive path works the same whether FIFOs are available (and
490          * enabled) or not.
491          */
492         slave_config->direction = DMA_DEV_TO_MEM;
493         if (dmaengine_slave_config(master->dma_rx, slave_config)) {
494                 dev_err(&as->pdev->dev,
495                         "failed to configure rx dma channel\n");
496                 err = -EINVAL;
497         }
498
499         return err;
500 }
501
502 static int atmel_spi_configure_dma(struct spi_master *master,
503                                    struct atmel_spi *as)
504 {
505         struct dma_slave_config slave_config;
506         struct device *dev = &as->pdev->dev;
507         int err;
508
509         dma_cap_mask_t mask;
510         dma_cap_zero(mask);
511         dma_cap_set(DMA_SLAVE, mask);
512
513         master->dma_tx = dma_request_chan(dev, "tx");
514         if (IS_ERR(master->dma_tx)) {
515                 err = dev_err_probe(dev, PTR_ERR(master->dma_tx),
516                                     "No TX DMA channel, DMA is disabled\n");
517                 goto error_clear;
518         }
519
520         master->dma_rx = dma_request_chan(dev, "rx");
521         if (IS_ERR(master->dma_rx)) {
522                 err = PTR_ERR(master->dma_rx);
523                 /*
524                  * No reason to check EPROBE_DEFER here since we have already
525                  * requested tx channel.
526                  */
527                 dev_err(dev, "No RX DMA channel, DMA is disabled\n");
528                 goto error;
529         }
530
531         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
532         if (err)
533                 goto error;
534
535         dev_info(&as->pdev->dev,
536                         "Using %s (tx) and %s (rx) for DMA transfers\n",
537                         dma_chan_name(master->dma_tx),
538                         dma_chan_name(master->dma_rx));
539
540         return 0;
541 error:
542         if (!IS_ERR(master->dma_rx))
543                 dma_release_channel(master->dma_rx);
544         if (!IS_ERR(master->dma_tx))
545                 dma_release_channel(master->dma_tx);
546 error_clear:
547         master->dma_tx = master->dma_rx = NULL;
548         return err;
549 }
550
551 static void atmel_spi_stop_dma(struct spi_master *master)
552 {
553         if (master->dma_rx)
554                 dmaengine_terminate_all(master->dma_rx);
555         if (master->dma_tx)
556                 dmaengine_terminate_all(master->dma_tx);
557 }
558
559 static void atmel_spi_release_dma(struct spi_master *master)
560 {
561         if (master->dma_rx) {
562                 dma_release_channel(master->dma_rx);
563                 master->dma_rx = NULL;
564         }
565         if (master->dma_tx) {
566                 dma_release_channel(master->dma_tx);
567                 master->dma_tx = NULL;
568         }
569 }
570
571 /* This function is called by the DMA driver from tasklet context */
572 static void dma_callback(void *data)
573 {
574         struct spi_master       *master = data;
575         struct atmel_spi        *as = spi_master_get_devdata(master);
576
577         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
578             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
579                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
580                        as->current_transfer->len);
581         }
582         complete(&as->xfer_completion);
583 }
584
585 /*
586  * Next transfer using PIO without FIFO.
587  */
588 static void atmel_spi_next_xfer_single(struct spi_master *master,
589                                        struct spi_transfer *xfer)
590 {
591         struct atmel_spi        *as = spi_master_get_devdata(master);
592         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
593
594         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
595
596         /* Make sure data is not remaining in RDR */
597         spi_readl(as, RDR);
598         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
599                 spi_readl(as, RDR);
600                 cpu_relax();
601         }
602
603         if (xfer->bits_per_word > 8)
604                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
605         else
606                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
607
608         dev_dbg(master->dev.parent,
609                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
610                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
611                 xfer->bits_per_word);
612
613         /* Enable relevant interrupts */
614         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
615 }
616
617 /*
618  * Next transfer using PIO with FIFO.
619  */
620 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
621                                      struct spi_transfer *xfer)
622 {
623         struct atmel_spi *as = spi_master_get_devdata(master);
624         u32 current_remaining_data, num_data;
625         u32 offset = xfer->len - as->current_remaining_bytes;
626         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
627         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
628         u16 td0, td1;
629         u32 fifomr;
630
631         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
632
633         /* Compute the number of data to transfer in the current iteration */
634         current_remaining_data = ((xfer->bits_per_word > 8) ?
635                                   ((u32)as->current_remaining_bytes >> 1) :
636                                   (u32)as->current_remaining_bytes);
637         num_data = min(current_remaining_data, as->fifo_size);
638
639         /* Flush RX and TX FIFOs */
640         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
641         while (spi_readl(as, FLR))
642                 cpu_relax();
643
644         /* Set RX FIFO Threshold to the number of data to transfer */
645         fifomr = spi_readl(as, FMR);
646         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
647
648         /* Clear FIFO flags in the Status Register, especially RXFTHF */
649         (void)spi_readl(as, SR);
650
651         /* Fill TX FIFO */
652         while (num_data >= 2) {
653                 if (xfer->bits_per_word > 8) {
654                         td0 = *words++;
655                         td1 = *words++;
656                 } else {
657                         td0 = *bytes++;
658                         td1 = *bytes++;
659                 }
660
661                 spi_writel(as, TDR, (td1 << 16) | td0);
662                 num_data -= 2;
663         }
664
665         if (num_data) {
666                 if (xfer->bits_per_word > 8)
667                         td0 = *words++;
668                 else
669                         td0 = *bytes++;
670
671                 spi_writew(as, TDR, td0);
672                 num_data--;
673         }
674
675         dev_dbg(master->dev.parent,
676                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
677                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
678                 xfer->bits_per_word);
679
680         /*
681          * Enable RX FIFO Threshold Flag interrupt to be notified about
682          * transfer completion.
683          */
684         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
685 }
686
687 /*
688  * Next transfer using PIO.
689  */
690 static void atmel_spi_next_xfer_pio(struct spi_master *master,
691                                     struct spi_transfer *xfer)
692 {
693         struct atmel_spi *as = spi_master_get_devdata(master);
694
695         if (as->fifo_size)
696                 atmel_spi_next_xfer_fifo(master, xfer);
697         else
698                 atmel_spi_next_xfer_single(master, xfer);
699 }
700
701 /*
702  * Submit next transfer for DMA.
703  */
704 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
705                                 struct spi_transfer *xfer,
706                                 u32 *plen)
707         __must_hold(&as->lock)
708 {
709         struct atmel_spi        *as = spi_master_get_devdata(master);
710         struct dma_chan         *rxchan = master->dma_rx;
711         struct dma_chan         *txchan = master->dma_tx;
712         struct dma_async_tx_descriptor *rxdesc;
713         struct dma_async_tx_descriptor *txdesc;
714         struct dma_slave_config slave_config;
715         dma_cookie_t            cookie;
716
717         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
718
719         /* Check that the channels are available */
720         if (!rxchan || !txchan)
721                 return -ENODEV;
722
723         /* release lock for DMA operations */
724         atmel_spi_unlock(as);
725
726         *plen = xfer->len;
727
728         if (atmel_spi_dma_slave_config(as, &slave_config,
729                                        xfer->bits_per_word))
730                 goto err_exit;
731
732         /* Send both scatterlists */
733         if (atmel_spi_is_vmalloc_xfer(xfer) &&
734             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
735                 rxdesc = dmaengine_prep_slave_single(rxchan,
736                                                      as->dma_addr_rx_bbuf,
737                                                      xfer->len,
738                                                      DMA_DEV_TO_MEM,
739                                                      DMA_PREP_INTERRUPT |
740                                                      DMA_CTRL_ACK);
741         } else {
742                 rxdesc = dmaengine_prep_slave_sg(rxchan,
743                                                  xfer->rx_sg.sgl,
744                                                  xfer->rx_sg.nents,
745                                                  DMA_DEV_TO_MEM,
746                                                  DMA_PREP_INTERRUPT |
747                                                  DMA_CTRL_ACK);
748         }
749         if (!rxdesc)
750                 goto err_dma;
751
752         if (atmel_spi_is_vmalloc_xfer(xfer) &&
753             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
754                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
755                 txdesc = dmaengine_prep_slave_single(txchan,
756                                                      as->dma_addr_tx_bbuf,
757                                                      xfer->len, DMA_MEM_TO_DEV,
758                                                      DMA_PREP_INTERRUPT |
759                                                      DMA_CTRL_ACK);
760         } else {
761                 txdesc = dmaengine_prep_slave_sg(txchan,
762                                                  xfer->tx_sg.sgl,
763                                                  xfer->tx_sg.nents,
764                                                  DMA_MEM_TO_DEV,
765                                                  DMA_PREP_INTERRUPT |
766                                                  DMA_CTRL_ACK);
767         }
768         if (!txdesc)
769                 goto err_dma;
770
771         dev_dbg(master->dev.parent,
772                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
773                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
774                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
775
776         /* Enable relevant interrupts */
777         spi_writel(as, IER, SPI_BIT(OVRES));
778
779         /* Put the callback on the RX transfer only, that should finish last */
780         rxdesc->callback = dma_callback;
781         rxdesc->callback_param = master;
782
783         /* Submit and fire RX and TX with TX last so we're ready to read! */
784         cookie = rxdesc->tx_submit(rxdesc);
785         if (dma_submit_error(cookie))
786                 goto err_dma;
787         cookie = txdesc->tx_submit(txdesc);
788         if (dma_submit_error(cookie))
789                 goto err_dma;
790         rxchan->device->device_issue_pending(rxchan);
791         txchan->device->device_issue_pending(txchan);
792
793         /* take back lock */
794         atmel_spi_lock(as);
795         return 0;
796
797 err_dma:
798         spi_writel(as, IDR, SPI_BIT(OVRES));
799         atmel_spi_stop_dma(master);
800 err_exit:
801         atmel_spi_lock(as);
802         return -ENOMEM;
803 }
804
805 static void atmel_spi_next_xfer_data(struct spi_master *master,
806                                 struct spi_transfer *xfer,
807                                 dma_addr_t *tx_dma,
808                                 dma_addr_t *rx_dma,
809                                 u32 *plen)
810 {
811         *rx_dma = xfer->rx_dma + xfer->len - *plen;
812         *tx_dma = xfer->tx_dma + xfer->len - *plen;
813         if (*plen > master->max_dma_len)
814                 *plen = master->max_dma_len;
815 }
816
817 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
818                                     struct spi_device *spi,
819                                     struct spi_transfer *xfer)
820 {
821         u32                     scbr, csr;
822         unsigned long           bus_hz;
823         int chip_select;
824
825         if (spi->cs_gpiod)
826                 chip_select = as->native_cs_for_gpio;
827         else
828                 chip_select = spi->chip_select;
829
830         /* v1 chips start out at half the peripheral bus speed. */
831         bus_hz = as->spi_clk;
832         if (!atmel_spi_is_v2(as))
833                 bus_hz /= 2;
834
835         /*
836          * Calculate the lowest divider that satisfies the
837          * constraint, assuming div32/fdiv/mbz == 0.
838          */
839         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
840
841         /*
842          * If the resulting divider doesn't fit into the
843          * register bitfield, we can't satisfy the constraint.
844          */
845         if (scbr >= (1 << SPI_SCBR_SIZE)) {
846                 dev_err(&spi->dev,
847                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
848                         xfer->speed_hz, scbr, bus_hz/255);
849                 return -EINVAL;
850         }
851         if (scbr == 0) {
852                 dev_err(&spi->dev,
853                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
854                         xfer->speed_hz, scbr, bus_hz);
855                 return -EINVAL;
856         }
857         csr = spi_readl(as, CSR0 + 4 * chip_select);
858         csr = SPI_BFINS(SCBR, scbr, csr);
859         spi_writel(as, CSR0 + 4 * chip_select, csr);
860         xfer->effective_speed_hz = bus_hz / scbr;
861
862         return 0;
863 }
864
865 /*
866  * Submit next transfer for PDC.
867  * lock is held, spi irq is blocked
868  */
869 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
870                                         struct spi_message *msg,
871                                         struct spi_transfer *xfer)
872 {
873         struct atmel_spi        *as = spi_master_get_devdata(master);
874         u32                     len;
875         dma_addr_t              tx_dma, rx_dma;
876
877         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
878
879         len = as->current_remaining_bytes;
880         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
881         as->current_remaining_bytes -= len;
882
883         spi_writel(as, RPR, rx_dma);
884         spi_writel(as, TPR, tx_dma);
885
886         if (msg->spi->bits_per_word > 8)
887                 len >>= 1;
888         spi_writel(as, RCR, len);
889         spi_writel(as, TCR, len);
890
891         dev_dbg(&msg->spi->dev,
892                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
893                 xfer, xfer->len, xfer->tx_buf,
894                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
895                 (unsigned long long)xfer->rx_dma);
896
897         if (as->current_remaining_bytes) {
898                 len = as->current_remaining_bytes;
899                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
900                 as->current_remaining_bytes -= len;
901
902                 spi_writel(as, RNPR, rx_dma);
903                 spi_writel(as, TNPR, tx_dma);
904
905                 if (msg->spi->bits_per_word > 8)
906                         len >>= 1;
907                 spi_writel(as, RNCR, len);
908                 spi_writel(as, TNCR, len);
909
910                 dev_dbg(&msg->spi->dev,
911                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
912                         xfer, xfer->len, xfer->tx_buf,
913                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
914                         (unsigned long long)xfer->rx_dma);
915         }
916
917         /* REVISIT: We're waiting for RXBUFF before we start the next
918          * transfer because we need to handle some difficult timing
919          * issues otherwise. If we wait for TXBUFE in one transfer and
920          * then starts waiting for RXBUFF in the next, it's difficult
921          * to tell the difference between the RXBUFF interrupt we're
922          * actually waiting for and the RXBUFF interrupt of the
923          * previous transfer.
924          *
925          * It should be doable, though. Just not now...
926          */
927         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
928         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
929 }
930
931 /*
932  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
933  *  - The buffer is either valid for CPU access, else NULL
934  *  - If the buffer is valid, so is its DMA address
935  *
936  * This driver manages the dma address unless message->is_dma_mapped.
937  */
938 static int
939 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
940 {
941         struct device   *dev = &as->pdev->dev;
942
943         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
944         if (xfer->tx_buf) {
945                 /* tx_buf is a const void* where we need a void * for the dma
946                  * mapping */
947                 void *nonconst_tx = (void *)xfer->tx_buf;
948
949                 xfer->tx_dma = dma_map_single(dev,
950                                 nonconst_tx, xfer->len,
951                                 DMA_TO_DEVICE);
952                 if (dma_mapping_error(dev, xfer->tx_dma))
953                         return -ENOMEM;
954         }
955         if (xfer->rx_buf) {
956                 xfer->rx_dma = dma_map_single(dev,
957                                 xfer->rx_buf, xfer->len,
958                                 DMA_FROM_DEVICE);
959                 if (dma_mapping_error(dev, xfer->rx_dma)) {
960                         if (xfer->tx_buf)
961                                 dma_unmap_single(dev,
962                                                 xfer->tx_dma, xfer->len,
963                                                 DMA_TO_DEVICE);
964                         return -ENOMEM;
965                 }
966         }
967         return 0;
968 }
969
970 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
971                                      struct spi_transfer *xfer)
972 {
973         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
974                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
975                                  xfer->len, DMA_TO_DEVICE);
976         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
977                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
978                                  xfer->len, DMA_FROM_DEVICE);
979 }
980
981 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
982 {
983         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
984 }
985
986 static void
987 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
988 {
989         u8              *rxp;
990         u16             *rxp16;
991         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
992
993         if (xfer->bits_per_word > 8) {
994                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
995                 *rxp16 = spi_readl(as, RDR);
996         } else {
997                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
998                 *rxp = spi_readl(as, RDR);
999         }
1000         if (xfer->bits_per_word > 8) {
1001                 if (as->current_remaining_bytes > 2)
1002                         as->current_remaining_bytes -= 2;
1003                 else
1004                         as->current_remaining_bytes = 0;
1005         } else {
1006                 as->current_remaining_bytes--;
1007         }
1008 }
1009
1010 static void
1011 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1012 {
1013         u32 fifolr = spi_readl(as, FLR);
1014         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1015         u32 offset = xfer->len - as->current_remaining_bytes;
1016         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1017         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1018         u16 rd; /* RD field is the lowest 16 bits of RDR */
1019
1020         /* Update the number of remaining bytes to transfer */
1021         num_bytes = ((xfer->bits_per_word > 8) ?
1022                      (num_data << 1) :
1023                      num_data);
1024
1025         if (as->current_remaining_bytes > num_bytes)
1026                 as->current_remaining_bytes -= num_bytes;
1027         else
1028                 as->current_remaining_bytes = 0;
1029
1030         /* Handle odd number of bytes when data are more than 8bit width */
1031         if (xfer->bits_per_word > 8)
1032                 as->current_remaining_bytes &= ~0x1;
1033
1034         /* Read data */
1035         while (num_data) {
1036                 rd = spi_readl(as, RDR);
1037                 if (xfer->bits_per_word > 8)
1038                         *words++ = rd;
1039                 else
1040                         *bytes++ = rd;
1041                 num_data--;
1042         }
1043 }
1044
1045 /* Called from IRQ
1046  *
1047  * Must update "current_remaining_bytes" to keep track of data
1048  * to transfer.
1049  */
1050 static void
1051 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1052 {
1053         if (as->fifo_size)
1054                 atmel_spi_pump_fifo_data(as, xfer);
1055         else
1056                 atmel_spi_pump_single_data(as, xfer);
1057 }
1058
1059 /* Interrupt
1060  *
1061  * No need for locking in this Interrupt handler: done_status is the
1062  * only information modified.
1063  */
1064 static irqreturn_t
1065 atmel_spi_pio_interrupt(int irq, void *dev_id)
1066 {
1067         struct spi_master       *master = dev_id;
1068         struct atmel_spi        *as = spi_master_get_devdata(master);
1069         u32                     status, pending, imr;
1070         struct spi_transfer     *xfer;
1071         int                     ret = IRQ_NONE;
1072
1073         imr = spi_readl(as, IMR);
1074         status = spi_readl(as, SR);
1075         pending = status & imr;
1076
1077         if (pending & SPI_BIT(OVRES)) {
1078                 ret = IRQ_HANDLED;
1079                 spi_writel(as, IDR, SPI_BIT(OVRES));
1080                 dev_warn(master->dev.parent, "overrun\n");
1081
1082                 /*
1083                  * When we get an overrun, we disregard the current
1084                  * transfer. Data will not be copied back from any
1085                  * bounce buffer and msg->actual_len will not be
1086                  * updated with the last xfer.
1087                  *
1088                  * We will also not process any remaning transfers in
1089                  * the message.
1090                  */
1091                 as->done_status = -EIO;
1092                 smp_wmb();
1093
1094                 /* Clear any overrun happening while cleaning up */
1095                 spi_readl(as, SR);
1096
1097                 complete(&as->xfer_completion);
1098
1099         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1100                 atmel_spi_lock(as);
1101
1102                 if (as->current_remaining_bytes) {
1103                         ret = IRQ_HANDLED;
1104                         xfer = as->current_transfer;
1105                         atmel_spi_pump_pio_data(as, xfer);
1106                         if (!as->current_remaining_bytes)
1107                                 spi_writel(as, IDR, pending);
1108
1109                         complete(&as->xfer_completion);
1110                 }
1111
1112                 atmel_spi_unlock(as);
1113         } else {
1114                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1115                 ret = IRQ_HANDLED;
1116                 spi_writel(as, IDR, pending);
1117         }
1118
1119         return ret;
1120 }
1121
1122 static irqreturn_t
1123 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1124 {
1125         struct spi_master       *master = dev_id;
1126         struct atmel_spi        *as = spi_master_get_devdata(master);
1127         u32                     status, pending, imr;
1128         int                     ret = IRQ_NONE;
1129
1130         imr = spi_readl(as, IMR);
1131         status = spi_readl(as, SR);
1132         pending = status & imr;
1133
1134         if (pending & SPI_BIT(OVRES)) {
1135
1136                 ret = IRQ_HANDLED;
1137
1138                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1139                                      | SPI_BIT(OVRES)));
1140
1141                 /* Clear any overrun happening while cleaning up */
1142                 spi_readl(as, SR);
1143
1144                 as->done_status = -EIO;
1145
1146                 complete(&as->xfer_completion);
1147
1148         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1149                 ret = IRQ_HANDLED;
1150
1151                 spi_writel(as, IDR, pending);
1152
1153                 complete(&as->xfer_completion);
1154         }
1155
1156         return ret;
1157 }
1158
1159 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1160 {
1161         struct spi_delay *delay = &spi->word_delay;
1162         u32 value = delay->value;
1163
1164         switch (delay->unit) {
1165         case SPI_DELAY_UNIT_NSECS:
1166                 value /= 1000;
1167                 break;
1168         case SPI_DELAY_UNIT_USECS:
1169                 break;
1170         default:
1171                 return -EINVAL;
1172         }
1173
1174         return (as->spi_clk / 1000000 * value) >> 5;
1175 }
1176
1177 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1178 {
1179         int i;
1180         struct spi_master *master = platform_get_drvdata(as->pdev);
1181
1182         if (!as->native_cs_free)
1183                 return; /* already initialized */
1184
1185         if (!master->cs_gpiods)
1186                 return; /* No CS GPIO */
1187
1188         /*
1189          * On the first version of the controller (AT91RM9200), CS0
1190          * can't be used associated with GPIO
1191          */
1192         if (atmel_spi_is_v2(as))
1193                 i = 0;
1194         else
1195                 i = 1;
1196
1197         for (; i < 4; i++)
1198                 if (master->cs_gpiods[i])
1199                         as->native_cs_free |= BIT(i);
1200
1201         if (as->native_cs_free)
1202                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1203 }
1204
1205 static int atmel_spi_setup(struct spi_device *spi)
1206 {
1207         struct atmel_spi        *as;
1208         struct atmel_spi_device *asd;
1209         u32                     csr;
1210         unsigned int            bits = spi->bits_per_word;
1211         int chip_select;
1212         int                     word_delay_csr;
1213
1214         as = spi_master_get_devdata(spi->master);
1215
1216         /* see notes above re chipselect */
1217         if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1218                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1219                 return -EINVAL;
1220         }
1221
1222         /* Setup() is called during spi_register_controller(aka
1223          * spi_register_master) but after all membmers of the cs_gpiod
1224          * array have been filled, so we can looked for which native
1225          * CS will be free for using with GPIO
1226          */
1227         initialize_native_cs_for_gpio(as);
1228
1229         if (spi->cs_gpiod && as->native_cs_free) {
1230                 dev_err(&spi->dev,
1231                         "No native CS available to support this GPIO CS\n");
1232                 return -EBUSY;
1233         }
1234
1235         if (spi->cs_gpiod)
1236                 chip_select = as->native_cs_for_gpio;
1237         else
1238                 chip_select = spi->chip_select;
1239
1240         csr = SPI_BF(BITS, bits - 8);
1241         if (spi->mode & SPI_CPOL)
1242                 csr |= SPI_BIT(CPOL);
1243         if (!(spi->mode & SPI_CPHA))
1244                 csr |= SPI_BIT(NCPHA);
1245
1246         if (!spi->cs_gpiod)
1247                 csr |= SPI_BIT(CSAAT);
1248         csr |= SPI_BF(DLYBS, 0);
1249
1250         word_delay_csr = atmel_word_delay_csr(spi, as);
1251         if (word_delay_csr < 0)
1252                 return word_delay_csr;
1253
1254         /* DLYBCT adds delays between words.  This is useful for slow devices
1255          * that need a bit of time to setup the next transfer.
1256          */
1257         csr |= SPI_BF(DLYBCT, word_delay_csr);
1258
1259         asd = spi->controller_state;
1260         if (!asd) {
1261                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1262                 if (!asd)
1263                         return -ENOMEM;
1264
1265                 spi->controller_state = asd;
1266         }
1267
1268         asd->csr = csr;
1269
1270         dev_dbg(&spi->dev,
1271                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1272                 bits, spi->mode, spi->chip_select, csr);
1273
1274         if (!atmel_spi_is_v2(as))
1275                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1276
1277         return 0;
1278 }
1279
1280 static int atmel_spi_one_transfer(struct spi_master *master,
1281                                         struct spi_message *msg,
1282                                         struct spi_transfer *xfer)
1283 {
1284         struct atmel_spi        *as;
1285         struct spi_device       *spi = msg->spi;
1286         u8                      bits;
1287         u32                     len;
1288         struct atmel_spi_device *asd;
1289         int                     timeout;
1290         int                     ret;
1291         unsigned long           dma_timeout;
1292
1293         as = spi_master_get_devdata(master);
1294
1295         if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1296                 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1297                 return -EINVAL;
1298         }
1299
1300         asd = spi->controller_state;
1301         bits = (asd->csr >> 4) & 0xf;
1302         if (bits != xfer->bits_per_word - 8) {
1303                 dev_dbg(&spi->dev,
1304                         "you can't yet change bits_per_word in transfers\n");
1305                 return -ENOPROTOOPT;
1306         }
1307
1308         /*
1309          * DMA map early, for performance (empties dcache ASAP) and
1310          * better fault reporting.
1311          */
1312         if ((!msg->is_dma_mapped)
1313                 && as->use_pdc) {
1314                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1315                         return -ENOMEM;
1316         }
1317
1318         atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1319
1320         as->done_status = 0;
1321         as->current_transfer = xfer;
1322         as->current_remaining_bytes = xfer->len;
1323         while (as->current_remaining_bytes) {
1324                 reinit_completion(&as->xfer_completion);
1325
1326                 if (as->use_pdc) {
1327                         atmel_spi_pdc_next_xfer(master, msg, xfer);
1328                 } else if (atmel_spi_use_dma(as, xfer)) {
1329                         len = as->current_remaining_bytes;
1330                         ret = atmel_spi_next_xfer_dma_submit(master,
1331                                                                 xfer, &len);
1332                         if (ret) {
1333                                 dev_err(&spi->dev,
1334                                         "unable to use DMA, fallback to PIO\n");
1335                                 atmel_spi_next_xfer_pio(master, xfer);
1336                         } else {
1337                                 as->current_remaining_bytes -= len;
1338                                 if (as->current_remaining_bytes < 0)
1339                                         as->current_remaining_bytes = 0;
1340                         }
1341                 } else {
1342                         atmel_spi_next_xfer_pio(master, xfer);
1343                 }
1344
1345                 /* interrupts are disabled, so free the lock for schedule */
1346                 atmel_spi_unlock(as);
1347                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1348                                                           SPI_DMA_TIMEOUT);
1349                 atmel_spi_lock(as);
1350                 if (WARN_ON(dma_timeout == 0)) {
1351                         dev_err(&spi->dev, "spi transfer timeout\n");
1352                         as->done_status = -EIO;
1353                 }
1354
1355                 if (as->done_status)
1356                         break;
1357         }
1358
1359         if (as->done_status) {
1360                 if (as->use_pdc) {
1361                         dev_warn(master->dev.parent,
1362                                 "overrun (%u/%u remaining)\n",
1363                                 spi_readl(as, TCR), spi_readl(as, RCR));
1364
1365                         /*
1366                          * Clean up DMA registers and make sure the data
1367                          * registers are empty.
1368                          */
1369                         spi_writel(as, RNCR, 0);
1370                         spi_writel(as, TNCR, 0);
1371                         spi_writel(as, RCR, 0);
1372                         spi_writel(as, TCR, 0);
1373                         for (timeout = 1000; timeout; timeout--)
1374                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1375                                         break;
1376                         if (!timeout)
1377                                 dev_warn(master->dev.parent,
1378                                          "timeout waiting for TXEMPTY");
1379                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1380                                 spi_readl(as, RDR);
1381
1382                         /* Clear any overrun happening while cleaning up */
1383                         spi_readl(as, SR);
1384
1385                 } else if (atmel_spi_use_dma(as, xfer)) {
1386                         atmel_spi_stop_dma(master);
1387                 }
1388
1389                 if (!msg->is_dma_mapped
1390                         && as->use_pdc)
1391                         atmel_spi_dma_unmap_xfer(master, xfer);
1392
1393                 return 0;
1394
1395         } else {
1396                 /* only update length if no error */
1397                 msg->actual_length += xfer->len;
1398         }
1399
1400         if (!msg->is_dma_mapped
1401                 && as->use_pdc)
1402                 atmel_spi_dma_unmap_xfer(master, xfer);
1403
1404         spi_transfer_delay_exec(xfer);
1405
1406         if (xfer->cs_change) {
1407                 if (list_is_last(&xfer->transfer_list,
1408                                  &msg->transfers)) {
1409                         as->keep_cs = true;
1410                 } else {
1411                         cs_deactivate(as, msg->spi);
1412                         udelay(10);
1413                         cs_activate(as, msg->spi);
1414                 }
1415         }
1416
1417         return 0;
1418 }
1419
1420 static int atmel_spi_transfer_one_message(struct spi_master *master,
1421                                                 struct spi_message *msg)
1422 {
1423         struct atmel_spi *as;
1424         struct spi_transfer *xfer;
1425         struct spi_device *spi = msg->spi;
1426         int ret = 0;
1427
1428         as = spi_master_get_devdata(master);
1429
1430         dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1431                                         msg, dev_name(&spi->dev));
1432
1433         atmel_spi_lock(as);
1434         cs_activate(as, spi);
1435
1436         as->keep_cs = false;
1437
1438         msg->status = 0;
1439         msg->actual_length = 0;
1440
1441         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1442                 trace_spi_transfer_start(msg, xfer);
1443
1444                 ret = atmel_spi_one_transfer(master, msg, xfer);
1445                 if (ret)
1446                         goto msg_done;
1447
1448                 trace_spi_transfer_stop(msg, xfer);
1449         }
1450
1451         if (as->use_pdc)
1452                 atmel_spi_disable_pdc_transfer(as);
1453
1454         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1455                 dev_dbg(&spi->dev,
1456                         "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1457                         xfer, xfer->len,
1458                         xfer->tx_buf, &xfer->tx_dma,
1459                         xfer->rx_buf, &xfer->rx_dma);
1460         }
1461
1462 msg_done:
1463         if (!as->keep_cs)
1464                 cs_deactivate(as, msg->spi);
1465
1466         atmel_spi_unlock(as);
1467
1468         msg->status = as->done_status;
1469         spi_finalize_current_message(spi->master);
1470
1471         return ret;
1472 }
1473
1474 static void atmel_spi_cleanup(struct spi_device *spi)
1475 {
1476         struct atmel_spi_device *asd = spi->controller_state;
1477
1478         if (!asd)
1479                 return;
1480
1481         spi->controller_state = NULL;
1482         kfree(asd);
1483 }
1484
1485 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1486 {
1487         return spi_readl(as, VERSION) & 0x00000fff;
1488 }
1489
1490 static void atmel_get_caps(struct atmel_spi *as)
1491 {
1492         unsigned int version;
1493
1494         version = atmel_get_version(as);
1495
1496         as->caps.is_spi2 = version > 0x121;
1497         as->caps.has_wdrbt = version >= 0x210;
1498         as->caps.has_dma_support = version >= 0x212;
1499         as->caps.has_pdc_support = version < 0x212;
1500 }
1501
1502 static void atmel_spi_init(struct atmel_spi *as)
1503 {
1504         spi_writel(as, CR, SPI_BIT(SWRST));
1505         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1506
1507         /* It is recommended to enable FIFOs first thing after reset */
1508         if (as->fifo_size)
1509                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1510
1511         if (as->caps.has_wdrbt) {
1512                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1513                                 | SPI_BIT(MSTR));
1514         } else {
1515                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1516         }
1517
1518         if (as->use_pdc)
1519                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1520         spi_writel(as, CR, SPI_BIT(SPIEN));
1521 }
1522
1523 static int atmel_spi_probe(struct platform_device *pdev)
1524 {
1525         struct resource         *regs;
1526         int                     irq;
1527         struct clk              *clk;
1528         int                     ret;
1529         struct spi_master       *master;
1530         struct atmel_spi        *as;
1531
1532         /* Select default pin state */
1533         pinctrl_pm_select_default_state(&pdev->dev);
1534
1535         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1536         if (!regs)
1537                 return -ENXIO;
1538
1539         irq = platform_get_irq(pdev, 0);
1540         if (irq < 0)
1541                 return irq;
1542
1543         clk = devm_clk_get(&pdev->dev, "spi_clk");
1544         if (IS_ERR(clk))
1545                 return PTR_ERR(clk);
1546
1547         /* setup spi core then atmel-specific driver state */
1548         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1549         if (!master)
1550                 return -ENOMEM;
1551
1552         /* the spi->mode bits understood by this driver: */
1553         master->use_gpio_descriptors = true;
1554         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1555         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1556         master->dev.of_node = pdev->dev.of_node;
1557         master->bus_num = pdev->id;
1558         master->num_chipselect = 4;
1559         master->setup = atmel_spi_setup;
1560         master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1561         master->transfer_one_message = atmel_spi_transfer_one_message;
1562         master->cleanup = atmel_spi_cleanup;
1563         master->auto_runtime_pm = true;
1564         master->max_dma_len = SPI_MAX_DMA_XFER;
1565         master->can_dma = atmel_spi_can_dma;
1566         platform_set_drvdata(pdev, master);
1567
1568         as = spi_master_get_devdata(master);
1569
1570         spin_lock_init(&as->lock);
1571
1572         as->pdev = pdev;
1573         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1574         if (IS_ERR(as->regs)) {
1575                 ret = PTR_ERR(as->regs);
1576                 goto out_unmap_regs;
1577         }
1578         as->phybase = regs->start;
1579         as->irq = irq;
1580         as->clk = clk;
1581
1582         init_completion(&as->xfer_completion);
1583
1584         atmel_get_caps(as);
1585
1586         as->use_dma = false;
1587         as->use_pdc = false;
1588         if (as->caps.has_dma_support) {
1589                 ret = atmel_spi_configure_dma(master, as);
1590                 if (ret == 0) {
1591                         as->use_dma = true;
1592                 } else if (ret == -EPROBE_DEFER) {
1593                         return ret;
1594                 }
1595         } else if (as->caps.has_pdc_support) {
1596                 as->use_pdc = true;
1597         }
1598
1599         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1600                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1601                                                       SPI_MAX_DMA_XFER,
1602                                                       &as->dma_addr_rx_bbuf,
1603                                                       GFP_KERNEL | GFP_DMA);
1604                 if (!as->addr_rx_bbuf) {
1605                         as->use_dma = false;
1606                 } else {
1607                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1608                                         SPI_MAX_DMA_XFER,
1609                                         &as->dma_addr_tx_bbuf,
1610                                         GFP_KERNEL | GFP_DMA);
1611                         if (!as->addr_tx_bbuf) {
1612                                 as->use_dma = false;
1613                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1614                                                   as->addr_rx_bbuf,
1615                                                   as->dma_addr_rx_bbuf);
1616                         }
1617                 }
1618                 if (!as->use_dma)
1619                         dev_info(master->dev.parent,
1620                                  "  can not allocate dma coherent memory\n");
1621         }
1622
1623         if (as->caps.has_dma_support && !as->use_dma)
1624                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1625
1626         if (as->use_pdc) {
1627                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1628                                         0, dev_name(&pdev->dev), master);
1629         } else {
1630                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1631                                         0, dev_name(&pdev->dev), master);
1632         }
1633         if (ret)
1634                 goto out_unmap_regs;
1635
1636         /* Initialize the hardware */
1637         ret = clk_prepare_enable(clk);
1638         if (ret)
1639                 goto out_free_irq;
1640
1641         as->spi_clk = clk_get_rate(clk);
1642
1643         as->fifo_size = 0;
1644         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1645                                   &as->fifo_size)) {
1646                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1647         }
1648
1649         atmel_spi_init(as);
1650
1651         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1652         pm_runtime_use_autosuspend(&pdev->dev);
1653         pm_runtime_set_active(&pdev->dev);
1654         pm_runtime_enable(&pdev->dev);
1655
1656         ret = devm_spi_register_master(&pdev->dev, master);
1657         if (ret)
1658                 goto out_free_dma;
1659
1660         /* go! */
1661         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1662                         atmel_get_version(as), (unsigned long)regs->start,
1663                         irq);
1664
1665         return 0;
1666
1667 out_free_dma:
1668         pm_runtime_disable(&pdev->dev);
1669         pm_runtime_set_suspended(&pdev->dev);
1670
1671         if (as->use_dma)
1672                 atmel_spi_release_dma(master);
1673
1674         spi_writel(as, CR, SPI_BIT(SWRST));
1675         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1676         clk_disable_unprepare(clk);
1677 out_free_irq:
1678 out_unmap_regs:
1679         spi_master_put(master);
1680         return ret;
1681 }
1682
1683 static int atmel_spi_remove(struct platform_device *pdev)
1684 {
1685         struct spi_master       *master = platform_get_drvdata(pdev);
1686         struct atmel_spi        *as = spi_master_get_devdata(master);
1687
1688         pm_runtime_get_sync(&pdev->dev);
1689
1690         /* reset the hardware and block queue progress */
1691         if (as->use_dma) {
1692                 atmel_spi_stop_dma(master);
1693                 atmel_spi_release_dma(master);
1694                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1695                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1696                                           as->addr_tx_bbuf,
1697                                           as->dma_addr_tx_bbuf);
1698                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1699                                           as->addr_rx_bbuf,
1700                                           as->dma_addr_rx_bbuf);
1701                 }
1702         }
1703
1704         spin_lock_irq(&as->lock);
1705         spi_writel(as, CR, SPI_BIT(SWRST));
1706         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1707         spi_readl(as, SR);
1708         spin_unlock_irq(&as->lock);
1709
1710         clk_disable_unprepare(as->clk);
1711
1712         pm_runtime_put_noidle(&pdev->dev);
1713         pm_runtime_disable(&pdev->dev);
1714
1715         return 0;
1716 }
1717
1718 #ifdef CONFIG_PM
1719 static int atmel_spi_runtime_suspend(struct device *dev)
1720 {
1721         struct spi_master *master = dev_get_drvdata(dev);
1722         struct atmel_spi *as = spi_master_get_devdata(master);
1723
1724         clk_disable_unprepare(as->clk);
1725         pinctrl_pm_select_sleep_state(dev);
1726
1727         return 0;
1728 }
1729
1730 static int atmel_spi_runtime_resume(struct device *dev)
1731 {
1732         struct spi_master *master = dev_get_drvdata(dev);
1733         struct atmel_spi *as = spi_master_get_devdata(master);
1734
1735         pinctrl_pm_select_default_state(dev);
1736
1737         return clk_prepare_enable(as->clk);
1738 }
1739
1740 #ifdef CONFIG_PM_SLEEP
1741 static int atmel_spi_suspend(struct device *dev)
1742 {
1743         struct spi_master *master = dev_get_drvdata(dev);
1744         int ret;
1745
1746         /* Stop the queue running */
1747         ret = spi_master_suspend(master);
1748         if (ret)
1749                 return ret;
1750
1751         if (!pm_runtime_suspended(dev))
1752                 atmel_spi_runtime_suspend(dev);
1753
1754         return 0;
1755 }
1756
1757 static int atmel_spi_resume(struct device *dev)
1758 {
1759         struct spi_master *master = dev_get_drvdata(dev);
1760         struct atmel_spi *as = spi_master_get_devdata(master);
1761         int ret;
1762
1763         ret = clk_prepare_enable(as->clk);
1764         if (ret)
1765                 return ret;
1766
1767         atmel_spi_init(as);
1768
1769         clk_disable_unprepare(as->clk);
1770
1771         if (!pm_runtime_suspended(dev)) {
1772                 ret = atmel_spi_runtime_resume(dev);
1773                 if (ret)
1774                         return ret;
1775         }
1776
1777         /* Start the queue running */
1778         return spi_master_resume(master);
1779 }
1780 #endif
1781
1782 static const struct dev_pm_ops atmel_spi_pm_ops = {
1783         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1784         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1785                            atmel_spi_runtime_resume, NULL)
1786 };
1787 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1788 #else
1789 #define ATMEL_SPI_PM_OPS        NULL
1790 #endif
1791
1792 static const struct of_device_id atmel_spi_dt_ids[] = {
1793         { .compatible = "atmel,at91rm9200-spi" },
1794         { /* sentinel */ }
1795 };
1796
1797 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1798
1799 static struct platform_driver atmel_spi_driver = {
1800         .driver         = {
1801                 .name   = "atmel_spi",
1802                 .pm     = ATMEL_SPI_PM_OPS,
1803                 .of_match_table = atmel_spi_dt_ids,
1804         },
1805         .probe          = atmel_spi_probe,
1806         .remove         = atmel_spi_remove,
1807 };
1808 module_platform_driver(atmel_spi_driver);
1809
1810 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1811 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1812 MODULE_LICENSE("GPL");
1813 MODULE_ALIAS("platform:atmel_spi");