Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
[linux-2.6-microblaze.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/platform_data/dma-atmel.h>
20 #include <linux/of.h>
21
22 #include <linux/io.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <trace/events/spi.h>
27
28 /* SPI register offsets */
29 #define SPI_CR                                  0x0000
30 #define SPI_MR                                  0x0004
31 #define SPI_RDR                                 0x0008
32 #define SPI_TDR                                 0x000c
33 #define SPI_SR                                  0x0010
34 #define SPI_IER                                 0x0014
35 #define SPI_IDR                                 0x0018
36 #define SPI_IMR                                 0x001c
37 #define SPI_CSR0                                0x0030
38 #define SPI_CSR1                                0x0034
39 #define SPI_CSR2                                0x0038
40 #define SPI_CSR3                                0x003c
41 #define SPI_FMR                                 0x0040
42 #define SPI_FLR                                 0x0044
43 #define SPI_VERSION                             0x00fc
44 #define SPI_RPR                                 0x0100
45 #define SPI_RCR                                 0x0104
46 #define SPI_TPR                                 0x0108
47 #define SPI_TCR                                 0x010c
48 #define SPI_RNPR                                0x0110
49 #define SPI_RNCR                                0x0114
50 #define SPI_TNPR                                0x0118
51 #define SPI_TNCR                                0x011c
52 #define SPI_PTCR                                0x0120
53 #define SPI_PTSR                                0x0124
54
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET                        0
57 #define SPI_SPIEN_SIZE                          1
58 #define SPI_SPIDIS_OFFSET                       1
59 #define SPI_SPIDIS_SIZE                         1
60 #define SPI_SWRST_OFFSET                        7
61 #define SPI_SWRST_SIZE                          1
62 #define SPI_LASTXFER_OFFSET                     24
63 #define SPI_LASTXFER_SIZE                       1
64 #define SPI_TXFCLR_OFFSET                       16
65 #define SPI_TXFCLR_SIZE                         1
66 #define SPI_RXFCLR_OFFSET                       17
67 #define SPI_RXFCLR_SIZE                         1
68 #define SPI_FIFOEN_OFFSET                       30
69 #define SPI_FIFOEN_SIZE                         1
70 #define SPI_FIFODIS_OFFSET                      31
71 #define SPI_FIFODIS_SIZE                        1
72
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET                         0
75 #define SPI_MSTR_SIZE                           1
76 #define SPI_PS_OFFSET                           1
77 #define SPI_PS_SIZE                             1
78 #define SPI_PCSDEC_OFFSET                       2
79 #define SPI_PCSDEC_SIZE                         1
80 #define SPI_FDIV_OFFSET                         3
81 #define SPI_FDIV_SIZE                           1
82 #define SPI_MODFDIS_OFFSET                      4
83 #define SPI_MODFDIS_SIZE                        1
84 #define SPI_WDRBT_OFFSET                        5
85 #define SPI_WDRBT_SIZE                          1
86 #define SPI_LLB_OFFSET                          7
87 #define SPI_LLB_SIZE                            1
88 #define SPI_PCS_OFFSET                          16
89 #define SPI_PCS_SIZE                            4
90 #define SPI_DLYBCS_OFFSET                       24
91 #define SPI_DLYBCS_SIZE                         8
92
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET                           0
95 #define SPI_RD_SIZE                             16
96
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET                           0
99 #define SPI_TD_SIZE                             16
100
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET                         0
103 #define SPI_RDRF_SIZE                           1
104 #define SPI_TDRE_OFFSET                         1
105 #define SPI_TDRE_SIZE                           1
106 #define SPI_MODF_OFFSET                         2
107 #define SPI_MODF_SIZE                           1
108 #define SPI_OVRES_OFFSET                        3
109 #define SPI_OVRES_SIZE                          1
110 #define SPI_ENDRX_OFFSET                        4
111 #define SPI_ENDRX_SIZE                          1
112 #define SPI_ENDTX_OFFSET                        5
113 #define SPI_ENDTX_SIZE                          1
114 #define SPI_RXBUFF_OFFSET                       6
115 #define SPI_RXBUFF_SIZE                         1
116 #define SPI_TXBUFE_OFFSET                       7
117 #define SPI_TXBUFE_SIZE                         1
118 #define SPI_NSSR_OFFSET                         8
119 #define SPI_NSSR_SIZE                           1
120 #define SPI_TXEMPTY_OFFSET                      9
121 #define SPI_TXEMPTY_SIZE                        1
122 #define SPI_SPIENS_OFFSET                       16
123 #define SPI_SPIENS_SIZE                         1
124 #define SPI_TXFEF_OFFSET                        24
125 #define SPI_TXFEF_SIZE                          1
126 #define SPI_TXFFF_OFFSET                        25
127 #define SPI_TXFFF_SIZE                          1
128 #define SPI_TXFTHF_OFFSET                       26
129 #define SPI_TXFTHF_SIZE                         1
130 #define SPI_RXFEF_OFFSET                        27
131 #define SPI_RXFEF_SIZE                          1
132 #define SPI_RXFFF_OFFSET                        28
133 #define SPI_RXFFF_SIZE                          1
134 #define SPI_RXFTHF_OFFSET                       29
135 #define SPI_RXFTHF_SIZE                         1
136 #define SPI_TXFPTEF_OFFSET                      30
137 #define SPI_TXFPTEF_SIZE                        1
138 #define SPI_RXFPTEF_OFFSET                      31
139 #define SPI_RXFPTEF_SIZE                        1
140
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET                         0
143 #define SPI_CPOL_SIZE                           1
144 #define SPI_NCPHA_OFFSET                        1
145 #define SPI_NCPHA_SIZE                          1
146 #define SPI_CSAAT_OFFSET                        3
147 #define SPI_CSAAT_SIZE                          1
148 #define SPI_BITS_OFFSET                         4
149 #define SPI_BITS_SIZE                           4
150 #define SPI_SCBR_OFFSET                         8
151 #define SPI_SCBR_SIZE                           8
152 #define SPI_DLYBS_OFFSET                        16
153 #define SPI_DLYBS_SIZE                          8
154 #define SPI_DLYBCT_OFFSET                       24
155 #define SPI_DLYBCT_SIZE                         8
156
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET                        0
159 #define SPI_RXCTR_SIZE                          16
160
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET                        0
163 #define SPI_TXCTR_SIZE                          16
164
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET                        0
167 #define SPI_RXNCR_SIZE                          16
168
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET                        0
171 #define SPI_TXNCR_SIZE                          16
172
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET                        0
175 #define SPI_RXTEN_SIZE                          1
176 #define SPI_RXTDIS_OFFSET                       1
177 #define SPI_RXTDIS_SIZE                         1
178 #define SPI_TXTEN_OFFSET                        8
179 #define SPI_TXTEN_SIZE                          1
180 #define SPI_TXTDIS_OFFSET                       9
181 #define SPI_TXTDIS_SIZE                         1
182
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET                       0
185 #define SPI_TXRDYM_SIZE                         2
186 #define SPI_RXRDYM_OFFSET                       4
187 #define SPI_RXRDYM_SIZE                         2
188 #define SPI_TXFTHRES_OFFSET                     16
189 #define SPI_TXFTHRES_SIZE                       6
190 #define SPI_RXFTHRES_OFFSET                     24
191 #define SPI_RXFTHRES_SIZE                       6
192
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET                         0
195 #define SPI_TXFL_SIZE                           6
196 #define SPI_RXFL_OFFSET                         16
197 #define SPI_RXFL_SIZE                           6
198
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT                          0
201 #define SPI_BITS_9_BPT                          1
202 #define SPI_BITS_10_BPT                         2
203 #define SPI_BITS_11_BPT                         3
204 #define SPI_BITS_12_BPT                         4
205 #define SPI_BITS_13_BPT                         5
206 #define SPI_BITS_14_BPT                         6
207 #define SPI_BITS_15_BPT                         7
208 #define SPI_BITS_16_BPT                         8
209 #define SPI_ONE_DATA                            0
210 #define SPI_TWO_DATA                            1
211 #define SPI_FOUR_DATA                           2
212
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215         (1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222           | SPI_BF(name, value))
223
224 /* Register access macros */
225 #ifdef CONFIG_AVR32
226 #define spi_readl(port, reg) \
227         __raw_readl((port)->regs + SPI_##reg)
228 #define spi_writel(port, reg, value) \
229         __raw_writel((value), (port)->regs + SPI_##reg)
230
231 #define spi_readw(port, reg) \
232         __raw_readw((port)->regs + SPI_##reg)
233 #define spi_writew(port, reg, value) \
234         __raw_writew((value), (port)->regs + SPI_##reg)
235
236 #define spi_readb(port, reg) \
237         __raw_readb((port)->regs + SPI_##reg)
238 #define spi_writeb(port, reg, value) \
239         __raw_writeb((value), (port)->regs + SPI_##reg)
240 #else
241 #define spi_readl(port, reg) \
242         readl_relaxed((port)->regs + SPI_##reg)
243 #define spi_writel(port, reg, value) \
244         writel_relaxed((value), (port)->regs + SPI_##reg)
245
246 #define spi_readw(port, reg) \
247         readw_relaxed((port)->regs + SPI_##reg)
248 #define spi_writew(port, reg, value) \
249         writew_relaxed((value), (port)->regs + SPI_##reg)
250
251 #define spi_readb(port, reg) \
252         readb_relaxed((port)->regs + SPI_##reg)
253 #define spi_writeb(port, reg, value) \
254         writeb_relaxed((value), (port)->regs + SPI_##reg)
255 #endif
256 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
257  * cache operations; better heuristics consider wordsize and bitrate.
258  */
259 #define DMA_MIN_BYTES   16
260
261 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
262
263 #define AUTOSUSPEND_TIMEOUT     2000
264
265 struct atmel_spi_caps {
266         bool    is_spi2;
267         bool    has_wdrbt;
268         bool    has_dma_support;
269         bool    has_pdc_support;
270 };
271
272 /*
273  * The core SPI transfer engine just talks to a register bank to set up
274  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
275  * framework provides the base clock, subdivided for each spi_device.
276  */
277 struct atmel_spi {
278         spinlock_t              lock;
279         unsigned long           flags;
280
281         phys_addr_t             phybase;
282         void __iomem            *regs;
283         int                     irq;
284         struct clk              *clk;
285         struct platform_device  *pdev;
286         unsigned long           spi_clk;
287
288         struct spi_transfer     *current_transfer;
289         int                     current_remaining_bytes;
290         int                     done_status;
291         dma_addr_t              dma_addr_rx_bbuf;
292         dma_addr_t              dma_addr_tx_bbuf;
293         void                    *addr_rx_bbuf;
294         void                    *addr_tx_bbuf;
295
296         struct completion       xfer_completion;
297
298         struct atmel_spi_caps   caps;
299
300         bool                    use_dma;
301         bool                    use_pdc;
302         bool                    use_cs_gpios;
303
304         bool                    keep_cs;
305         bool                    cs_active;
306
307         u32                     fifo_size;
308 };
309
310 /* Controller-specific per-slave state */
311 struct atmel_spi_device {
312         struct gpio_desc        *npcs_pin;
313         u32                     csr;
314 };
315
316 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
317 #define INVALID_DMA_ADDRESS     0xffffffff
318
319 /*
320  * Version 2 of the SPI controller has
321  *  - CR.LASTXFER
322  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
323  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
324  *  - SPI_CSRx.CSAAT
325  *  - SPI_CSRx.SBCR allows faster clocking
326  */
327 static bool atmel_spi_is_v2(struct atmel_spi *as)
328 {
329         return as->caps.is_spi2;
330 }
331
332 /*
333  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
334  * they assume that spi slave device state will not change on deselect, so
335  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
336  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
337  * controllers have CSAAT and friends.
338  *
339  * Since the CSAAT functionality is a bit weird on newer controllers as
340  * well, we use GPIO to control nCSx pins on all controllers, updating
341  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
342  * support active-high chipselects despite the controller's belief that
343  * only active-low devices/systems exists.
344  *
345  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
346  * right when driven with GPIO.  ("Mode Fault does not allow more than one
347  * Master on Chip Select 0.")  No workaround exists for that ... so for
348  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
349  * and (c) will trigger that first erratum in some cases.
350  */
351
352 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
353 {
354         struct atmel_spi_device *asd = spi->controller_state;
355         u32 mr;
356
357         if (atmel_spi_is_v2(as)) {
358                 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
359                 /* For the low SPI version, there is a issue that PDC transfer
360                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
361                  */
362                 spi_writel(as, CSR0, asd->csr);
363                 if (as->caps.has_wdrbt) {
364                         spi_writel(as, MR,
365                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
366                                         | SPI_BIT(WDRBT)
367                                         | SPI_BIT(MODFDIS)
368                                         | SPI_BIT(MSTR));
369                 } else {
370                         spi_writel(as, MR,
371                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
372                                         | SPI_BIT(MODFDIS)
373                                         | SPI_BIT(MSTR));
374                 }
375
376                 mr = spi_readl(as, MR);
377                 if (as->use_cs_gpios)
378                         gpiod_set_value(asd->npcs_pin, 1);
379         } else {
380                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
381                 int i;
382                 u32 csr;
383
384                 /* Make sure clock polarity is correct */
385                 for (i = 0; i < spi->master->num_chipselect; i++) {
386                         csr = spi_readl(as, CSR0 + 4 * i);
387                         if ((csr ^ cpol) & SPI_BIT(CPOL))
388                                 spi_writel(as, CSR0 + 4 * i,
389                                                 csr ^ SPI_BIT(CPOL));
390                 }
391
392                 mr = spi_readl(as, MR);
393                 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
394                 if (as->use_cs_gpios && spi->chip_select != 0)
395                         gpiod_set_value(asd->npcs_pin, 1);
396                 spi_writel(as, MR, mr);
397         }
398
399         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
400 }
401
402 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
403 {
404         struct atmel_spi_device *asd = spi->controller_state;
405         u32 mr;
406
407         /* only deactivate *this* device; sometimes transfers to
408          * another device may be active when this routine is called.
409          */
410         mr = spi_readl(as, MR);
411         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
412                 mr = SPI_BFINS(PCS, 0xf, mr);
413                 spi_writel(as, MR, mr);
414         }
415
416         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
417
418         if (!as->use_cs_gpios)
419                 spi_writel(as, CR, SPI_BIT(LASTXFER));
420         else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
421                 gpiod_set_value(asd->npcs_pin, 0);
422 }
423
424 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
425 {
426         spin_lock_irqsave(&as->lock, as->flags);
427 }
428
429 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
430 {
431         spin_unlock_irqrestore(&as->lock, as->flags);
432 }
433
434 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
435 {
436         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
437 }
438
439 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
440                                 struct spi_transfer *xfer)
441 {
442         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
443 }
444
445 static bool atmel_spi_can_dma(struct spi_master *master,
446                               struct spi_device *spi,
447                               struct spi_transfer *xfer)
448 {
449         struct atmel_spi *as = spi_master_get_devdata(master);
450
451         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
452                 return atmel_spi_use_dma(as, xfer) &&
453                         !atmel_spi_is_vmalloc_xfer(xfer);
454         else
455                 return atmel_spi_use_dma(as, xfer);
456
457 }
458
459 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
460                                 struct dma_slave_config *slave_config,
461                                 u8 bits_per_word)
462 {
463         struct spi_master *master = platform_get_drvdata(as->pdev);
464         int err = 0;
465
466         if (bits_per_word > 8) {
467                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
469         } else {
470                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
472         }
473
474         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
475         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
476         slave_config->src_maxburst = 1;
477         slave_config->dst_maxburst = 1;
478         slave_config->device_fc = false;
479
480         /*
481          * This driver uses fixed peripheral select mode (PS bit set to '0' in
482          * the Mode Register).
483          * So according to the datasheet, when FIFOs are available (and
484          * enabled), the Transmit FIFO operates in Multiple Data Mode.
485          * In this mode, up to 2 data, not 4, can be written into the Transmit
486          * Data Register in a single access.
487          * However, the first data has to be written into the lowest 16 bits and
488          * the second data into the highest 16 bits of the Transmit
489          * Data Register. For 8bit data (the most frequent case), it would
490          * require to rework tx_buf so each data would actualy fit 16 bits.
491          * So we'd rather write only one data at the time. Hence the transmit
492          * path works the same whether FIFOs are available (and enabled) or not.
493          */
494         slave_config->direction = DMA_MEM_TO_DEV;
495         if (dmaengine_slave_config(master->dma_tx, slave_config)) {
496                 dev_err(&as->pdev->dev,
497                         "failed to configure tx dma channel\n");
498                 err = -EINVAL;
499         }
500
501         /*
502          * This driver configures the spi controller for master mode (MSTR bit
503          * set to '1' in the Mode Register).
504          * So according to the datasheet, when FIFOs are available (and
505          * enabled), the Receive FIFO operates in Single Data Mode.
506          * So the receive path works the same whether FIFOs are available (and
507          * enabled) or not.
508          */
509         slave_config->direction = DMA_DEV_TO_MEM;
510         if (dmaengine_slave_config(master->dma_rx, slave_config)) {
511                 dev_err(&as->pdev->dev,
512                         "failed to configure rx dma channel\n");
513                 err = -EINVAL;
514         }
515
516         return err;
517 }
518
519 static int atmel_spi_configure_dma(struct spi_master *master,
520                                    struct atmel_spi *as)
521 {
522         struct dma_slave_config slave_config;
523         struct device *dev = &as->pdev->dev;
524         int err;
525
526         dma_cap_mask_t mask;
527         dma_cap_zero(mask);
528         dma_cap_set(DMA_SLAVE, mask);
529
530         master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
531         if (IS_ERR(master->dma_tx)) {
532                 err = PTR_ERR(master->dma_tx);
533                 if (err == -EPROBE_DEFER) {
534                         dev_warn(dev, "no DMA channel available at the moment\n");
535                         goto error_clear;
536                 }
537                 dev_err(dev,
538                         "DMA TX channel not available, SPI unable to use DMA\n");
539                 err = -EBUSY;
540                 goto error_clear;
541         }
542
543         /*
544          * No reason to check EPROBE_DEFER here since we have already requested
545          * tx channel. If it fails here, it's for another reason.
546          */
547         master->dma_rx = dma_request_slave_channel(dev, "rx");
548
549         if (!master->dma_rx) {
550                 dev_err(dev,
551                         "DMA RX channel not available, SPI unable to use DMA\n");
552                 err = -EBUSY;
553                 goto error;
554         }
555
556         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
557         if (err)
558                 goto error;
559
560         dev_info(&as->pdev->dev,
561                         "Using %s (tx) and %s (rx) for DMA transfers\n",
562                         dma_chan_name(master->dma_tx),
563                         dma_chan_name(master->dma_rx));
564
565         return 0;
566 error:
567         if (master->dma_rx)
568                 dma_release_channel(master->dma_rx);
569         if (!IS_ERR(master->dma_tx))
570                 dma_release_channel(master->dma_tx);
571 error_clear:
572         master->dma_tx = master->dma_rx = NULL;
573         return err;
574 }
575
576 static void atmel_spi_stop_dma(struct spi_master *master)
577 {
578         if (master->dma_rx)
579                 dmaengine_terminate_all(master->dma_rx);
580         if (master->dma_tx)
581                 dmaengine_terminate_all(master->dma_tx);
582 }
583
584 static void atmel_spi_release_dma(struct spi_master *master)
585 {
586         if (master->dma_rx) {
587                 dma_release_channel(master->dma_rx);
588                 master->dma_rx = NULL;
589         }
590         if (master->dma_tx) {
591                 dma_release_channel(master->dma_tx);
592                 master->dma_tx = NULL;
593         }
594 }
595
596 /* This function is called by the DMA driver from tasklet context */
597 static void dma_callback(void *data)
598 {
599         struct spi_master       *master = data;
600         struct atmel_spi        *as = spi_master_get_devdata(master);
601
602         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
603             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
604                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
605                        as->current_transfer->len);
606         }
607         complete(&as->xfer_completion);
608 }
609
610 /*
611  * Next transfer using PIO without FIFO.
612  */
613 static void atmel_spi_next_xfer_single(struct spi_master *master,
614                                        struct spi_transfer *xfer)
615 {
616         struct atmel_spi        *as = spi_master_get_devdata(master);
617         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
618
619         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
620
621         /* Make sure data is not remaining in RDR */
622         spi_readl(as, RDR);
623         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
624                 spi_readl(as, RDR);
625                 cpu_relax();
626         }
627
628         if (xfer->bits_per_word > 8)
629                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
630         else
631                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
632
633         dev_dbg(master->dev.parent,
634                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
635                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
636                 xfer->bits_per_word);
637
638         /* Enable relevant interrupts */
639         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
640 }
641
642 /*
643  * Next transfer using PIO with FIFO.
644  */
645 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
646                                      struct spi_transfer *xfer)
647 {
648         struct atmel_spi *as = spi_master_get_devdata(master);
649         u32 current_remaining_data, num_data;
650         u32 offset = xfer->len - as->current_remaining_bytes;
651         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
652         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
653         u16 td0, td1;
654         u32 fifomr;
655
656         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
657
658         /* Compute the number of data to transfer in the current iteration */
659         current_remaining_data = ((xfer->bits_per_word > 8) ?
660                                   ((u32)as->current_remaining_bytes >> 1) :
661                                   (u32)as->current_remaining_bytes);
662         num_data = min(current_remaining_data, as->fifo_size);
663
664         /* Flush RX and TX FIFOs */
665         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
666         while (spi_readl(as, FLR))
667                 cpu_relax();
668
669         /* Set RX FIFO Threshold to the number of data to transfer */
670         fifomr = spi_readl(as, FMR);
671         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
672
673         /* Clear FIFO flags in the Status Register, especially RXFTHF */
674         (void)spi_readl(as, SR);
675
676         /* Fill TX FIFO */
677         while (num_data >= 2) {
678                 if (xfer->bits_per_word > 8) {
679                         td0 = *words++;
680                         td1 = *words++;
681                 } else {
682                         td0 = *bytes++;
683                         td1 = *bytes++;
684                 }
685
686                 spi_writel(as, TDR, (td1 << 16) | td0);
687                 num_data -= 2;
688         }
689
690         if (num_data) {
691                 if (xfer->bits_per_word > 8)
692                         td0 = *words++;
693                 else
694                         td0 = *bytes++;
695
696                 spi_writew(as, TDR, td0);
697                 num_data--;
698         }
699
700         dev_dbg(master->dev.parent,
701                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
702                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
703                 xfer->bits_per_word);
704
705         /*
706          * Enable RX FIFO Threshold Flag interrupt to be notified about
707          * transfer completion.
708          */
709         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
710 }
711
712 /*
713  * Next transfer using PIO.
714  */
715 static void atmel_spi_next_xfer_pio(struct spi_master *master,
716                                     struct spi_transfer *xfer)
717 {
718         struct atmel_spi *as = spi_master_get_devdata(master);
719
720         if (as->fifo_size)
721                 atmel_spi_next_xfer_fifo(master, xfer);
722         else
723                 atmel_spi_next_xfer_single(master, xfer);
724 }
725
726 /*
727  * Submit next transfer for DMA.
728  */
729 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
730                                 struct spi_transfer *xfer,
731                                 u32 *plen)
732 {
733         struct atmel_spi        *as = spi_master_get_devdata(master);
734         struct dma_chan         *rxchan = master->dma_rx;
735         struct dma_chan         *txchan = master->dma_tx;
736         struct dma_async_tx_descriptor *rxdesc;
737         struct dma_async_tx_descriptor *txdesc;
738         struct dma_slave_config slave_config;
739         dma_cookie_t            cookie;
740
741         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
742
743         /* Check that the channels are available */
744         if (!rxchan || !txchan)
745                 return -ENODEV;
746
747         /* release lock for DMA operations */
748         atmel_spi_unlock(as);
749
750         *plen = xfer->len;
751
752         if (atmel_spi_dma_slave_config(as, &slave_config,
753                                        xfer->bits_per_word))
754                 goto err_exit;
755
756         /* Send both scatterlists */
757         if (atmel_spi_is_vmalloc_xfer(xfer) &&
758             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
759                 rxdesc = dmaengine_prep_slave_single(rxchan,
760                                                      as->dma_addr_rx_bbuf,
761                                                      xfer->len,
762                                                      DMA_DEV_TO_MEM,
763                                                      DMA_PREP_INTERRUPT |
764                                                      DMA_CTRL_ACK);
765         } else {
766                 rxdesc = dmaengine_prep_slave_sg(rxchan,
767                                                  xfer->rx_sg.sgl,
768                                                  xfer->rx_sg.nents,
769                                                  DMA_DEV_TO_MEM,
770                                                  DMA_PREP_INTERRUPT |
771                                                  DMA_CTRL_ACK);
772         }
773         if (!rxdesc)
774                 goto err_dma;
775
776         if (atmel_spi_is_vmalloc_xfer(xfer) &&
777             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
778                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
779                 txdesc = dmaengine_prep_slave_single(txchan,
780                                                      as->dma_addr_tx_bbuf,
781                                                      xfer->len, DMA_MEM_TO_DEV,
782                                                      DMA_PREP_INTERRUPT |
783                                                      DMA_CTRL_ACK);
784         } else {
785                 txdesc = dmaengine_prep_slave_sg(txchan,
786                                                  xfer->tx_sg.sgl,
787                                                  xfer->tx_sg.nents,
788                                                  DMA_MEM_TO_DEV,
789                                                  DMA_PREP_INTERRUPT |
790                                                  DMA_CTRL_ACK);
791         }
792         if (!txdesc)
793                 goto err_dma;
794
795         dev_dbg(master->dev.parent,
796                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
797                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
798                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
799
800         /* Enable relevant interrupts */
801         spi_writel(as, IER, SPI_BIT(OVRES));
802
803         /* Put the callback on the RX transfer only, that should finish last */
804         rxdesc->callback = dma_callback;
805         rxdesc->callback_param = master;
806
807         /* Submit and fire RX and TX with TX last so we're ready to read! */
808         cookie = rxdesc->tx_submit(rxdesc);
809         if (dma_submit_error(cookie))
810                 goto err_dma;
811         cookie = txdesc->tx_submit(txdesc);
812         if (dma_submit_error(cookie))
813                 goto err_dma;
814         rxchan->device->device_issue_pending(rxchan);
815         txchan->device->device_issue_pending(txchan);
816
817         /* take back lock */
818         atmel_spi_lock(as);
819         return 0;
820
821 err_dma:
822         spi_writel(as, IDR, SPI_BIT(OVRES));
823         atmel_spi_stop_dma(master);
824 err_exit:
825         atmel_spi_lock(as);
826         return -ENOMEM;
827 }
828
829 static void atmel_spi_next_xfer_data(struct spi_master *master,
830                                 struct spi_transfer *xfer,
831                                 dma_addr_t *tx_dma,
832                                 dma_addr_t *rx_dma,
833                                 u32 *plen)
834 {
835         *rx_dma = xfer->rx_dma + xfer->len - *plen;
836         *tx_dma = xfer->tx_dma + xfer->len - *plen;
837         if (*plen > master->max_dma_len)
838                 *plen = master->max_dma_len;
839 }
840
841 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
842                                     struct spi_device *spi,
843                                     struct spi_transfer *xfer)
844 {
845         u32                     scbr, csr;
846         unsigned long           bus_hz;
847
848         /* v1 chips start out at half the peripheral bus speed. */
849         bus_hz = as->spi_clk;
850         if (!atmel_spi_is_v2(as))
851                 bus_hz /= 2;
852
853         /*
854          * Calculate the lowest divider that satisfies the
855          * constraint, assuming div32/fdiv/mbz == 0.
856          */
857         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
858
859         /*
860          * If the resulting divider doesn't fit into the
861          * register bitfield, we can't satisfy the constraint.
862          */
863         if (scbr >= (1 << SPI_SCBR_SIZE)) {
864                 dev_err(&spi->dev,
865                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
866                         xfer->speed_hz, scbr, bus_hz/255);
867                 return -EINVAL;
868         }
869         if (scbr == 0) {
870                 dev_err(&spi->dev,
871                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
872                         xfer->speed_hz, scbr, bus_hz);
873                 return -EINVAL;
874         }
875         csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
876         csr = SPI_BFINS(SCBR, scbr, csr);
877         spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
878
879         return 0;
880 }
881
882 /*
883  * Submit next transfer for PDC.
884  * lock is held, spi irq is blocked
885  */
886 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
887                                         struct spi_message *msg,
888                                         struct spi_transfer *xfer)
889 {
890         struct atmel_spi        *as = spi_master_get_devdata(master);
891         u32                     len;
892         dma_addr_t              tx_dma, rx_dma;
893
894         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
895
896         len = as->current_remaining_bytes;
897         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
898         as->current_remaining_bytes -= len;
899
900         spi_writel(as, RPR, rx_dma);
901         spi_writel(as, TPR, tx_dma);
902
903         if (msg->spi->bits_per_word > 8)
904                 len >>= 1;
905         spi_writel(as, RCR, len);
906         spi_writel(as, TCR, len);
907
908         dev_dbg(&msg->spi->dev,
909                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
910                 xfer, xfer->len, xfer->tx_buf,
911                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
912                 (unsigned long long)xfer->rx_dma);
913
914         if (as->current_remaining_bytes) {
915                 len = as->current_remaining_bytes;
916                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
917                 as->current_remaining_bytes -= len;
918
919                 spi_writel(as, RNPR, rx_dma);
920                 spi_writel(as, TNPR, tx_dma);
921
922                 if (msg->spi->bits_per_word > 8)
923                         len >>= 1;
924                 spi_writel(as, RNCR, len);
925                 spi_writel(as, TNCR, len);
926
927                 dev_dbg(&msg->spi->dev,
928                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
929                         xfer, xfer->len, xfer->tx_buf,
930                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
931                         (unsigned long long)xfer->rx_dma);
932         }
933
934         /* REVISIT: We're waiting for RXBUFF before we start the next
935          * transfer because we need to handle some difficult timing
936          * issues otherwise. If we wait for TXBUFE in one transfer and
937          * then starts waiting for RXBUFF in the next, it's difficult
938          * to tell the difference between the RXBUFF interrupt we're
939          * actually waiting for and the RXBUFF interrupt of the
940          * previous transfer.
941          *
942          * It should be doable, though. Just not now...
943          */
944         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
945         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
946 }
947
948 /*
949  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
950  *  - The buffer is either valid for CPU access, else NULL
951  *  - If the buffer is valid, so is its DMA address
952  *
953  * This driver manages the dma address unless message->is_dma_mapped.
954  */
955 static int
956 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
957 {
958         struct device   *dev = &as->pdev->dev;
959
960         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
961         if (xfer->tx_buf) {
962                 /* tx_buf is a const void* where we need a void * for the dma
963                  * mapping */
964                 void *nonconst_tx = (void *)xfer->tx_buf;
965
966                 xfer->tx_dma = dma_map_single(dev,
967                                 nonconst_tx, xfer->len,
968                                 DMA_TO_DEVICE);
969                 if (dma_mapping_error(dev, xfer->tx_dma))
970                         return -ENOMEM;
971         }
972         if (xfer->rx_buf) {
973                 xfer->rx_dma = dma_map_single(dev,
974                                 xfer->rx_buf, xfer->len,
975                                 DMA_FROM_DEVICE);
976                 if (dma_mapping_error(dev, xfer->rx_dma)) {
977                         if (xfer->tx_buf)
978                                 dma_unmap_single(dev,
979                                                 xfer->tx_dma, xfer->len,
980                                                 DMA_TO_DEVICE);
981                         return -ENOMEM;
982                 }
983         }
984         return 0;
985 }
986
987 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
988                                      struct spi_transfer *xfer)
989 {
990         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
991                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
992                                  xfer->len, DMA_TO_DEVICE);
993         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
994                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
995                                  xfer->len, DMA_FROM_DEVICE);
996 }
997
998 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
999 {
1000         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1001 }
1002
1003 static void
1004 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005 {
1006         u8              *rxp;
1007         u16             *rxp16;
1008         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
1009
1010         if (xfer->bits_per_word > 8) {
1011                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1012                 *rxp16 = spi_readl(as, RDR);
1013         } else {
1014                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1015                 *rxp = spi_readl(as, RDR);
1016         }
1017         if (xfer->bits_per_word > 8) {
1018                 if (as->current_remaining_bytes > 2)
1019                         as->current_remaining_bytes -= 2;
1020                 else
1021                         as->current_remaining_bytes = 0;
1022         } else {
1023                 as->current_remaining_bytes--;
1024         }
1025 }
1026
1027 static void
1028 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029 {
1030         u32 fifolr = spi_readl(as, FLR);
1031         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1032         u32 offset = xfer->len - as->current_remaining_bytes;
1033         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1034         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1035         u16 rd; /* RD field is the lowest 16 bits of RDR */
1036
1037         /* Update the number of remaining bytes to transfer */
1038         num_bytes = ((xfer->bits_per_word > 8) ?
1039                      (num_data << 1) :
1040                      num_data);
1041
1042         if (as->current_remaining_bytes > num_bytes)
1043                 as->current_remaining_bytes -= num_bytes;
1044         else
1045                 as->current_remaining_bytes = 0;
1046
1047         /* Handle odd number of bytes when data are more than 8bit width */
1048         if (xfer->bits_per_word > 8)
1049                 as->current_remaining_bytes &= ~0x1;
1050
1051         /* Read data */
1052         while (num_data) {
1053                 rd = spi_readl(as, RDR);
1054                 if (xfer->bits_per_word > 8)
1055                         *words++ = rd;
1056                 else
1057                         *bytes++ = rd;
1058                 num_data--;
1059         }
1060 }
1061
1062 /* Called from IRQ
1063  *
1064  * Must update "current_remaining_bytes" to keep track of data
1065  * to transfer.
1066  */
1067 static void
1068 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1069 {
1070         if (as->fifo_size)
1071                 atmel_spi_pump_fifo_data(as, xfer);
1072         else
1073                 atmel_spi_pump_single_data(as, xfer);
1074 }
1075
1076 /* Interrupt
1077  *
1078  * No need for locking in this Interrupt handler: done_status is the
1079  * only information modified.
1080  */
1081 static irqreturn_t
1082 atmel_spi_pio_interrupt(int irq, void *dev_id)
1083 {
1084         struct spi_master       *master = dev_id;
1085         struct atmel_spi        *as = spi_master_get_devdata(master);
1086         u32                     status, pending, imr;
1087         struct spi_transfer     *xfer;
1088         int                     ret = IRQ_NONE;
1089
1090         imr = spi_readl(as, IMR);
1091         status = spi_readl(as, SR);
1092         pending = status & imr;
1093
1094         if (pending & SPI_BIT(OVRES)) {
1095                 ret = IRQ_HANDLED;
1096                 spi_writel(as, IDR, SPI_BIT(OVRES));
1097                 dev_warn(master->dev.parent, "overrun\n");
1098
1099                 /*
1100                  * When we get an overrun, we disregard the current
1101                  * transfer. Data will not be copied back from any
1102                  * bounce buffer and msg->actual_len will not be
1103                  * updated with the last xfer.
1104                  *
1105                  * We will also not process any remaning transfers in
1106                  * the message.
1107                  */
1108                 as->done_status = -EIO;
1109                 smp_wmb();
1110
1111                 /* Clear any overrun happening while cleaning up */
1112                 spi_readl(as, SR);
1113
1114                 complete(&as->xfer_completion);
1115
1116         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1117                 atmel_spi_lock(as);
1118
1119                 if (as->current_remaining_bytes) {
1120                         ret = IRQ_HANDLED;
1121                         xfer = as->current_transfer;
1122                         atmel_spi_pump_pio_data(as, xfer);
1123                         if (!as->current_remaining_bytes)
1124                                 spi_writel(as, IDR, pending);
1125
1126                         complete(&as->xfer_completion);
1127                 }
1128
1129                 atmel_spi_unlock(as);
1130         } else {
1131                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1132                 ret = IRQ_HANDLED;
1133                 spi_writel(as, IDR, pending);
1134         }
1135
1136         return ret;
1137 }
1138
1139 static irqreturn_t
1140 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1141 {
1142         struct spi_master       *master = dev_id;
1143         struct atmel_spi        *as = spi_master_get_devdata(master);
1144         u32                     status, pending, imr;
1145         int                     ret = IRQ_NONE;
1146
1147         imr = spi_readl(as, IMR);
1148         status = spi_readl(as, SR);
1149         pending = status & imr;
1150
1151         if (pending & SPI_BIT(OVRES)) {
1152
1153                 ret = IRQ_HANDLED;
1154
1155                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1156                                      | SPI_BIT(OVRES)));
1157
1158                 /* Clear any overrun happening while cleaning up */
1159                 spi_readl(as, SR);
1160
1161                 as->done_status = -EIO;
1162
1163                 complete(&as->xfer_completion);
1164
1165         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1166                 ret = IRQ_HANDLED;
1167
1168                 spi_writel(as, IDR, pending);
1169
1170                 complete(&as->xfer_completion);
1171         }
1172
1173         return ret;
1174 }
1175
1176 static int atmel_spi_setup(struct spi_device *spi)
1177 {
1178         struct atmel_spi        *as;
1179         struct atmel_spi_device *asd;
1180         u32                     csr;
1181         unsigned int            bits = spi->bits_per_word;
1182
1183         as = spi_master_get_devdata(spi->master);
1184
1185         /* see notes above re chipselect */
1186         if (!atmel_spi_is_v2(as)
1187                         && spi->chip_select == 0
1188                         && (spi->mode & SPI_CS_HIGH)) {
1189                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1190                 return -EINVAL;
1191         }
1192
1193         csr = SPI_BF(BITS, bits - 8);
1194         if (spi->mode & SPI_CPOL)
1195                 csr |= SPI_BIT(CPOL);
1196         if (!(spi->mode & SPI_CPHA))
1197                 csr |= SPI_BIT(NCPHA);
1198         if (!as->use_cs_gpios)
1199                 csr |= SPI_BIT(CSAAT);
1200
1201         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1202          */
1203         csr |= SPI_BF(DLYBS, 0);
1204
1205         /* DLYBCT adds delays between words.  This is useful for slow devices
1206          * that need a bit of time to setup the next transfer.
1207          */
1208         csr |= SPI_BF(DLYBCT,
1209                         (as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
1210
1211         asd = spi->controller_state;
1212         if (!asd) {
1213                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1214                 if (!asd)
1215                         return -ENOMEM;
1216
1217                 /*
1218                  * If use_cs_gpios is true this means that we have "cs-gpios"
1219                  * defined in the device tree node so we should have
1220                  * gotten the GPIO lines from the device tree inside the
1221                  * SPI core. Warn if this is not the case but continue since
1222                  * CS GPIOs are after all optional.
1223                  */
1224                 if (as->use_cs_gpios) {
1225                         if (!spi->cs_gpiod) {
1226                                 dev_err(&spi->dev,
1227                                         "host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1228                         }
1229                         asd->npcs_pin = spi->cs_gpiod;
1230                 }
1231
1232                 spi->controller_state = asd;
1233         }
1234
1235         asd->csr = csr;
1236
1237         dev_dbg(&spi->dev,
1238                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1239                 bits, spi->mode, spi->chip_select, csr);
1240
1241         if (!atmel_spi_is_v2(as))
1242                 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1243
1244         return 0;
1245 }
1246
1247 static int atmel_spi_one_transfer(struct spi_master *master,
1248                                         struct spi_message *msg,
1249                                         struct spi_transfer *xfer)
1250 {
1251         struct atmel_spi        *as;
1252         struct spi_device       *spi = msg->spi;
1253         u8                      bits;
1254         u32                     len;
1255         struct atmel_spi_device *asd;
1256         int                     timeout;
1257         int                     ret;
1258         unsigned long           dma_timeout;
1259
1260         as = spi_master_get_devdata(master);
1261
1262         if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1263                 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1264                 return -EINVAL;
1265         }
1266
1267         asd = spi->controller_state;
1268         bits = (asd->csr >> 4) & 0xf;
1269         if (bits != xfer->bits_per_word - 8) {
1270                 dev_dbg(&spi->dev,
1271                         "you can't yet change bits_per_word in transfers\n");
1272                 return -ENOPROTOOPT;
1273         }
1274
1275         /*
1276          * DMA map early, for performance (empties dcache ASAP) and
1277          * better fault reporting.
1278          */
1279         if ((!msg->is_dma_mapped)
1280                 && as->use_pdc) {
1281                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1282                         return -ENOMEM;
1283         }
1284
1285         atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1286
1287         as->done_status = 0;
1288         as->current_transfer = xfer;
1289         as->current_remaining_bytes = xfer->len;
1290         while (as->current_remaining_bytes) {
1291                 reinit_completion(&as->xfer_completion);
1292
1293                 if (as->use_pdc) {
1294                         atmel_spi_pdc_next_xfer(master, msg, xfer);
1295                 } else if (atmel_spi_use_dma(as, xfer)) {
1296                         len = as->current_remaining_bytes;
1297                         ret = atmel_spi_next_xfer_dma_submit(master,
1298                                                                 xfer, &len);
1299                         if (ret) {
1300                                 dev_err(&spi->dev,
1301                                         "unable to use DMA, fallback to PIO\n");
1302                                 atmel_spi_next_xfer_pio(master, xfer);
1303                         } else {
1304                                 as->current_remaining_bytes -= len;
1305                                 if (as->current_remaining_bytes < 0)
1306                                         as->current_remaining_bytes = 0;
1307                         }
1308                 } else {
1309                         atmel_spi_next_xfer_pio(master, xfer);
1310                 }
1311
1312                 /* interrupts are disabled, so free the lock for schedule */
1313                 atmel_spi_unlock(as);
1314                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1315                                                           SPI_DMA_TIMEOUT);
1316                 atmel_spi_lock(as);
1317                 if (WARN_ON(dma_timeout == 0)) {
1318                         dev_err(&spi->dev, "spi transfer timeout\n");
1319                         as->done_status = -EIO;
1320                 }
1321
1322                 if (as->done_status)
1323                         break;
1324         }
1325
1326         if (as->done_status) {
1327                 if (as->use_pdc) {
1328                         dev_warn(master->dev.parent,
1329                                 "overrun (%u/%u remaining)\n",
1330                                 spi_readl(as, TCR), spi_readl(as, RCR));
1331
1332                         /*
1333                          * Clean up DMA registers and make sure the data
1334                          * registers are empty.
1335                          */
1336                         spi_writel(as, RNCR, 0);
1337                         spi_writel(as, TNCR, 0);
1338                         spi_writel(as, RCR, 0);
1339                         spi_writel(as, TCR, 0);
1340                         for (timeout = 1000; timeout; timeout--)
1341                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1342                                         break;
1343                         if (!timeout)
1344                                 dev_warn(master->dev.parent,
1345                                          "timeout waiting for TXEMPTY");
1346                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1347                                 spi_readl(as, RDR);
1348
1349                         /* Clear any overrun happening while cleaning up */
1350                         spi_readl(as, SR);
1351
1352                 } else if (atmel_spi_use_dma(as, xfer)) {
1353                         atmel_spi_stop_dma(master);
1354                 }
1355
1356                 if (!msg->is_dma_mapped
1357                         && as->use_pdc)
1358                         atmel_spi_dma_unmap_xfer(master, xfer);
1359
1360                 return 0;
1361
1362         } else {
1363                 /* only update length if no error */
1364                 msg->actual_length += xfer->len;
1365         }
1366
1367         if (!msg->is_dma_mapped
1368                 && as->use_pdc)
1369                 atmel_spi_dma_unmap_xfer(master, xfer);
1370
1371         if (xfer->delay_usecs)
1372                 udelay(xfer->delay_usecs);
1373
1374         if (xfer->cs_change) {
1375                 if (list_is_last(&xfer->transfer_list,
1376                                  &msg->transfers)) {
1377                         as->keep_cs = true;
1378                 } else {
1379                         as->cs_active = !as->cs_active;
1380                         if (as->cs_active)
1381                                 cs_activate(as, msg->spi);
1382                         else
1383                                 cs_deactivate(as, msg->spi);
1384                 }
1385         }
1386
1387         return 0;
1388 }
1389
1390 static int atmel_spi_transfer_one_message(struct spi_master *master,
1391                                                 struct spi_message *msg)
1392 {
1393         struct atmel_spi *as;
1394         struct spi_transfer *xfer;
1395         struct spi_device *spi = msg->spi;
1396         int ret = 0;
1397
1398         as = spi_master_get_devdata(master);
1399
1400         dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1401                                         msg, dev_name(&spi->dev));
1402
1403         atmel_spi_lock(as);
1404         cs_activate(as, spi);
1405
1406         as->cs_active = true;
1407         as->keep_cs = false;
1408
1409         msg->status = 0;
1410         msg->actual_length = 0;
1411
1412         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1413                 trace_spi_transfer_start(msg, xfer);
1414
1415                 ret = atmel_spi_one_transfer(master, msg, xfer);
1416                 if (ret)
1417                         goto msg_done;
1418
1419                 trace_spi_transfer_stop(msg, xfer);
1420         }
1421
1422         if (as->use_pdc)
1423                 atmel_spi_disable_pdc_transfer(as);
1424
1425         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1426                 dev_dbg(&spi->dev,
1427                         "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1428                         xfer, xfer->len,
1429                         xfer->tx_buf, &xfer->tx_dma,
1430                         xfer->rx_buf, &xfer->rx_dma);
1431         }
1432
1433 msg_done:
1434         if (!as->keep_cs)
1435                 cs_deactivate(as, msg->spi);
1436
1437         atmel_spi_unlock(as);
1438
1439         msg->status = as->done_status;
1440         spi_finalize_current_message(spi->master);
1441
1442         return ret;
1443 }
1444
1445 static void atmel_spi_cleanup(struct spi_device *spi)
1446 {
1447         struct atmel_spi_device *asd = spi->controller_state;
1448
1449         if (!asd)
1450                 return;
1451
1452         spi->controller_state = NULL;
1453         kfree(asd);
1454 }
1455
1456 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1457 {
1458         return spi_readl(as, VERSION) & 0x00000fff;
1459 }
1460
1461 static void atmel_get_caps(struct atmel_spi *as)
1462 {
1463         unsigned int version;
1464
1465         version = atmel_get_version(as);
1466
1467         as->caps.is_spi2 = version > 0x121;
1468         as->caps.has_wdrbt = version >= 0x210;
1469         as->caps.has_dma_support = version >= 0x212;
1470         as->caps.has_pdc_support = version < 0x212;
1471 }
1472
1473 static void atmel_spi_init(struct atmel_spi *as)
1474 {
1475         spi_writel(as, CR, SPI_BIT(SWRST));
1476         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1477
1478         /* It is recommended to enable FIFOs first thing after reset */
1479         if (as->fifo_size)
1480                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1481
1482         if (as->caps.has_wdrbt) {
1483                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1484                                 | SPI_BIT(MSTR));
1485         } else {
1486                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1487         }
1488
1489         if (as->use_pdc)
1490                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1491         spi_writel(as, CR, SPI_BIT(SPIEN));
1492 }
1493
1494 static int atmel_spi_probe(struct platform_device *pdev)
1495 {
1496         struct resource         *regs;
1497         int                     irq;
1498         struct clk              *clk;
1499         int                     ret;
1500         struct spi_master       *master;
1501         struct atmel_spi        *as;
1502
1503         /* Select default pin state */
1504         pinctrl_pm_select_default_state(&pdev->dev);
1505
1506         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1507         if (!regs)
1508                 return -ENXIO;
1509
1510         irq = platform_get_irq(pdev, 0);
1511         if (irq < 0)
1512                 return irq;
1513
1514         clk = devm_clk_get(&pdev->dev, "spi_clk");
1515         if (IS_ERR(clk))
1516                 return PTR_ERR(clk);
1517
1518         /* setup spi core then atmel-specific driver state */
1519         ret = -ENOMEM;
1520         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1521         if (!master)
1522                 goto out_free;
1523
1524         /* the spi->mode bits understood by this driver: */
1525         master->use_gpio_descriptors = true;
1526         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1527         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1528         master->dev.of_node = pdev->dev.of_node;
1529         master->bus_num = pdev->id;
1530         master->num_chipselect = master->dev.of_node ? 0 : 4;
1531         master->setup = atmel_spi_setup;
1532         master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1533         master->transfer_one_message = atmel_spi_transfer_one_message;
1534         master->cleanup = atmel_spi_cleanup;
1535         master->auto_runtime_pm = true;
1536         master->max_dma_len = SPI_MAX_DMA_XFER;
1537         master->can_dma = atmel_spi_can_dma;
1538         platform_set_drvdata(pdev, master);
1539
1540         as = spi_master_get_devdata(master);
1541
1542         spin_lock_init(&as->lock);
1543
1544         as->pdev = pdev;
1545         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1546         if (IS_ERR(as->regs)) {
1547                 ret = PTR_ERR(as->regs);
1548                 goto out_unmap_regs;
1549         }
1550         as->phybase = regs->start;
1551         as->irq = irq;
1552         as->clk = clk;
1553
1554         init_completion(&as->xfer_completion);
1555
1556         atmel_get_caps(as);
1557
1558         /*
1559          * If there are chip selects in the device tree, those will be
1560          * discovered by the SPI core when registering the SPI master
1561          * and assigned to each SPI device.
1562          */
1563         as->use_cs_gpios = true;
1564         if (atmel_spi_is_v2(as) &&
1565             pdev->dev.of_node &&
1566             !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1567                 as->use_cs_gpios = false;
1568                 master->num_chipselect = 4;
1569         }
1570
1571         as->use_dma = false;
1572         as->use_pdc = false;
1573         if (as->caps.has_dma_support) {
1574                 ret = atmel_spi_configure_dma(master, as);
1575                 if (ret == 0) {
1576                         as->use_dma = true;
1577                 } else if (ret == -EPROBE_DEFER) {
1578                         return ret;
1579                 }
1580         } else if (as->caps.has_pdc_support) {
1581                 as->use_pdc = true;
1582         }
1583
1584         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1585                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1586                                                       SPI_MAX_DMA_XFER,
1587                                                       &as->dma_addr_rx_bbuf,
1588                                                       GFP_KERNEL | GFP_DMA);
1589                 if (!as->addr_rx_bbuf) {
1590                         as->use_dma = false;
1591                 } else {
1592                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1593                                         SPI_MAX_DMA_XFER,
1594                                         &as->dma_addr_tx_bbuf,
1595                                         GFP_KERNEL | GFP_DMA);
1596                         if (!as->addr_tx_bbuf) {
1597                                 as->use_dma = false;
1598                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1599                                                   as->addr_rx_bbuf,
1600                                                   as->dma_addr_rx_bbuf);
1601                         }
1602                 }
1603                 if (!as->use_dma)
1604                         dev_info(master->dev.parent,
1605                                  "  can not allocate dma coherent memory\n");
1606         }
1607
1608         if (as->caps.has_dma_support && !as->use_dma)
1609                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1610
1611         if (as->use_pdc) {
1612                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1613                                         0, dev_name(&pdev->dev), master);
1614         } else {
1615                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1616                                         0, dev_name(&pdev->dev), master);
1617         }
1618         if (ret)
1619                 goto out_unmap_regs;
1620
1621         /* Initialize the hardware */
1622         ret = clk_prepare_enable(clk);
1623         if (ret)
1624                 goto out_free_irq;
1625
1626         as->spi_clk = clk_get_rate(clk);
1627
1628         as->fifo_size = 0;
1629         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1630                                   &as->fifo_size)) {
1631                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1632         }
1633
1634         atmel_spi_init(as);
1635
1636         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1637         pm_runtime_use_autosuspend(&pdev->dev);
1638         pm_runtime_set_active(&pdev->dev);
1639         pm_runtime_enable(&pdev->dev);
1640
1641         ret = devm_spi_register_master(&pdev->dev, master);
1642         if (ret)
1643                 goto out_free_dma;
1644
1645         /* go! */
1646         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1647                         atmel_get_version(as), (unsigned long)regs->start,
1648                         irq);
1649
1650         return 0;
1651
1652 out_free_dma:
1653         pm_runtime_disable(&pdev->dev);
1654         pm_runtime_set_suspended(&pdev->dev);
1655
1656         if (as->use_dma)
1657                 atmel_spi_release_dma(master);
1658
1659         spi_writel(as, CR, SPI_BIT(SWRST));
1660         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1661         clk_disable_unprepare(clk);
1662 out_free_irq:
1663 out_unmap_regs:
1664 out_free:
1665         spi_master_put(master);
1666         return ret;
1667 }
1668
1669 static int atmel_spi_remove(struct platform_device *pdev)
1670 {
1671         struct spi_master       *master = platform_get_drvdata(pdev);
1672         struct atmel_spi        *as = spi_master_get_devdata(master);
1673
1674         pm_runtime_get_sync(&pdev->dev);
1675
1676         /* reset the hardware and block queue progress */
1677         if (as->use_dma) {
1678                 atmel_spi_stop_dma(master);
1679                 atmel_spi_release_dma(master);
1680                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1681                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1682                                           as->addr_tx_bbuf,
1683                                           as->dma_addr_tx_bbuf);
1684                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1685                                           as->addr_rx_bbuf,
1686                                           as->dma_addr_rx_bbuf);
1687                 }
1688         }
1689
1690         spin_lock_irq(&as->lock);
1691         spi_writel(as, CR, SPI_BIT(SWRST));
1692         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1693         spi_readl(as, SR);
1694         spin_unlock_irq(&as->lock);
1695
1696         clk_disable_unprepare(as->clk);
1697
1698         pm_runtime_put_noidle(&pdev->dev);
1699         pm_runtime_disable(&pdev->dev);
1700
1701         return 0;
1702 }
1703
1704 #ifdef CONFIG_PM
1705 static int atmel_spi_runtime_suspend(struct device *dev)
1706 {
1707         struct spi_master *master = dev_get_drvdata(dev);
1708         struct atmel_spi *as = spi_master_get_devdata(master);
1709
1710         clk_disable_unprepare(as->clk);
1711         pinctrl_pm_select_sleep_state(dev);
1712
1713         return 0;
1714 }
1715
1716 static int atmel_spi_runtime_resume(struct device *dev)
1717 {
1718         struct spi_master *master = dev_get_drvdata(dev);
1719         struct atmel_spi *as = spi_master_get_devdata(master);
1720
1721         pinctrl_pm_select_default_state(dev);
1722
1723         return clk_prepare_enable(as->clk);
1724 }
1725
1726 #ifdef CONFIG_PM_SLEEP
1727 static int atmel_spi_suspend(struct device *dev)
1728 {
1729         struct spi_master *master = dev_get_drvdata(dev);
1730         int ret;
1731
1732         /* Stop the queue running */
1733         ret = spi_master_suspend(master);
1734         if (ret)
1735                 return ret;
1736
1737         if (!pm_runtime_suspended(dev))
1738                 atmel_spi_runtime_suspend(dev);
1739
1740         return 0;
1741 }
1742
1743 static int atmel_spi_resume(struct device *dev)
1744 {
1745         struct spi_master *master = dev_get_drvdata(dev);
1746         struct atmel_spi *as = spi_master_get_devdata(master);
1747         int ret;
1748
1749         ret = clk_prepare_enable(as->clk);
1750         if (ret)
1751                 return ret;
1752
1753         atmel_spi_init(as);
1754
1755         clk_disable_unprepare(as->clk);
1756
1757         if (!pm_runtime_suspended(dev)) {
1758                 ret = atmel_spi_runtime_resume(dev);
1759                 if (ret)
1760                         return ret;
1761         }
1762
1763         /* Start the queue running */
1764         return spi_master_resume(master);
1765 }
1766 #endif
1767
1768 static const struct dev_pm_ops atmel_spi_pm_ops = {
1769         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1770         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1771                            atmel_spi_runtime_resume, NULL)
1772 };
1773 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1774 #else
1775 #define ATMEL_SPI_PM_OPS        NULL
1776 #endif
1777
1778 #if defined(CONFIG_OF)
1779 static const struct of_device_id atmel_spi_dt_ids[] = {
1780         { .compatible = "atmel,at91rm9200-spi" },
1781         { /* sentinel */ }
1782 };
1783
1784 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1785 #endif
1786
1787 static struct platform_driver atmel_spi_driver = {
1788         .driver         = {
1789                 .name   = "atmel_spi",
1790                 .pm     = ATMEL_SPI_PM_OPS,
1791                 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1792         },
1793         .probe          = atmel_spi_probe,
1794         .remove         = atmel_spi_remove,
1795 };
1796 module_platform_driver(atmel_spi_driver);
1797
1798 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1799 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1800 MODULE_LICENSE("GPL");
1801 MODULE_ALIAS("platform:atmel_spi");