Merge tag 'ioremap-5.5' of git://git.infradead.org/users/hch/ioremap
[linux-2.6-microblaze.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/platform_data/dma-atmel.h>
20 #include <linux/of.h>
21
22 #include <linux/io.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <trace/events/spi.h>
27
28 /* SPI register offsets */
29 #define SPI_CR                                  0x0000
30 #define SPI_MR                                  0x0004
31 #define SPI_RDR                                 0x0008
32 #define SPI_TDR                                 0x000c
33 #define SPI_SR                                  0x0010
34 #define SPI_IER                                 0x0014
35 #define SPI_IDR                                 0x0018
36 #define SPI_IMR                                 0x001c
37 #define SPI_CSR0                                0x0030
38 #define SPI_CSR1                                0x0034
39 #define SPI_CSR2                                0x0038
40 #define SPI_CSR3                                0x003c
41 #define SPI_FMR                                 0x0040
42 #define SPI_FLR                                 0x0044
43 #define SPI_VERSION                             0x00fc
44 #define SPI_RPR                                 0x0100
45 #define SPI_RCR                                 0x0104
46 #define SPI_TPR                                 0x0108
47 #define SPI_TCR                                 0x010c
48 #define SPI_RNPR                                0x0110
49 #define SPI_RNCR                                0x0114
50 #define SPI_TNPR                                0x0118
51 #define SPI_TNCR                                0x011c
52 #define SPI_PTCR                                0x0120
53 #define SPI_PTSR                                0x0124
54
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET                        0
57 #define SPI_SPIEN_SIZE                          1
58 #define SPI_SPIDIS_OFFSET                       1
59 #define SPI_SPIDIS_SIZE                         1
60 #define SPI_SWRST_OFFSET                        7
61 #define SPI_SWRST_SIZE                          1
62 #define SPI_LASTXFER_OFFSET                     24
63 #define SPI_LASTXFER_SIZE                       1
64 #define SPI_TXFCLR_OFFSET                       16
65 #define SPI_TXFCLR_SIZE                         1
66 #define SPI_RXFCLR_OFFSET                       17
67 #define SPI_RXFCLR_SIZE                         1
68 #define SPI_FIFOEN_OFFSET                       30
69 #define SPI_FIFOEN_SIZE                         1
70 #define SPI_FIFODIS_OFFSET                      31
71 #define SPI_FIFODIS_SIZE                        1
72
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET                         0
75 #define SPI_MSTR_SIZE                           1
76 #define SPI_PS_OFFSET                           1
77 #define SPI_PS_SIZE                             1
78 #define SPI_PCSDEC_OFFSET                       2
79 #define SPI_PCSDEC_SIZE                         1
80 #define SPI_FDIV_OFFSET                         3
81 #define SPI_FDIV_SIZE                           1
82 #define SPI_MODFDIS_OFFSET                      4
83 #define SPI_MODFDIS_SIZE                        1
84 #define SPI_WDRBT_OFFSET                        5
85 #define SPI_WDRBT_SIZE                          1
86 #define SPI_LLB_OFFSET                          7
87 #define SPI_LLB_SIZE                            1
88 #define SPI_PCS_OFFSET                          16
89 #define SPI_PCS_SIZE                            4
90 #define SPI_DLYBCS_OFFSET                       24
91 #define SPI_DLYBCS_SIZE                         8
92
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET                           0
95 #define SPI_RD_SIZE                             16
96
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET                           0
99 #define SPI_TD_SIZE                             16
100
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET                         0
103 #define SPI_RDRF_SIZE                           1
104 #define SPI_TDRE_OFFSET                         1
105 #define SPI_TDRE_SIZE                           1
106 #define SPI_MODF_OFFSET                         2
107 #define SPI_MODF_SIZE                           1
108 #define SPI_OVRES_OFFSET                        3
109 #define SPI_OVRES_SIZE                          1
110 #define SPI_ENDRX_OFFSET                        4
111 #define SPI_ENDRX_SIZE                          1
112 #define SPI_ENDTX_OFFSET                        5
113 #define SPI_ENDTX_SIZE                          1
114 #define SPI_RXBUFF_OFFSET                       6
115 #define SPI_RXBUFF_SIZE                         1
116 #define SPI_TXBUFE_OFFSET                       7
117 #define SPI_TXBUFE_SIZE                         1
118 #define SPI_NSSR_OFFSET                         8
119 #define SPI_NSSR_SIZE                           1
120 #define SPI_TXEMPTY_OFFSET                      9
121 #define SPI_TXEMPTY_SIZE                        1
122 #define SPI_SPIENS_OFFSET                       16
123 #define SPI_SPIENS_SIZE                         1
124 #define SPI_TXFEF_OFFSET                        24
125 #define SPI_TXFEF_SIZE                          1
126 #define SPI_TXFFF_OFFSET                        25
127 #define SPI_TXFFF_SIZE                          1
128 #define SPI_TXFTHF_OFFSET                       26
129 #define SPI_TXFTHF_SIZE                         1
130 #define SPI_RXFEF_OFFSET                        27
131 #define SPI_RXFEF_SIZE                          1
132 #define SPI_RXFFF_OFFSET                        28
133 #define SPI_RXFFF_SIZE                          1
134 #define SPI_RXFTHF_OFFSET                       29
135 #define SPI_RXFTHF_SIZE                         1
136 #define SPI_TXFPTEF_OFFSET                      30
137 #define SPI_TXFPTEF_SIZE                        1
138 #define SPI_RXFPTEF_OFFSET                      31
139 #define SPI_RXFPTEF_SIZE                        1
140
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET                         0
143 #define SPI_CPOL_SIZE                           1
144 #define SPI_NCPHA_OFFSET                        1
145 #define SPI_NCPHA_SIZE                          1
146 #define SPI_CSAAT_OFFSET                        3
147 #define SPI_CSAAT_SIZE                          1
148 #define SPI_BITS_OFFSET                         4
149 #define SPI_BITS_SIZE                           4
150 #define SPI_SCBR_OFFSET                         8
151 #define SPI_SCBR_SIZE                           8
152 #define SPI_DLYBS_OFFSET                        16
153 #define SPI_DLYBS_SIZE                          8
154 #define SPI_DLYBCT_OFFSET                       24
155 #define SPI_DLYBCT_SIZE                         8
156
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET                        0
159 #define SPI_RXCTR_SIZE                          16
160
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET                        0
163 #define SPI_TXCTR_SIZE                          16
164
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET                        0
167 #define SPI_RXNCR_SIZE                          16
168
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET                        0
171 #define SPI_TXNCR_SIZE                          16
172
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET                        0
175 #define SPI_RXTEN_SIZE                          1
176 #define SPI_RXTDIS_OFFSET                       1
177 #define SPI_RXTDIS_SIZE                         1
178 #define SPI_TXTEN_OFFSET                        8
179 #define SPI_TXTEN_SIZE                          1
180 #define SPI_TXTDIS_OFFSET                       9
181 #define SPI_TXTDIS_SIZE                         1
182
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET                       0
185 #define SPI_TXRDYM_SIZE                         2
186 #define SPI_RXRDYM_OFFSET                       4
187 #define SPI_RXRDYM_SIZE                         2
188 #define SPI_TXFTHRES_OFFSET                     16
189 #define SPI_TXFTHRES_SIZE                       6
190 #define SPI_RXFTHRES_OFFSET                     24
191 #define SPI_RXFTHRES_SIZE                       6
192
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET                         0
195 #define SPI_TXFL_SIZE                           6
196 #define SPI_RXFL_OFFSET                         16
197 #define SPI_RXFL_SIZE                           6
198
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT                          0
201 #define SPI_BITS_9_BPT                          1
202 #define SPI_BITS_10_BPT                         2
203 #define SPI_BITS_11_BPT                         3
204 #define SPI_BITS_12_BPT                         4
205 #define SPI_BITS_13_BPT                         5
206 #define SPI_BITS_14_BPT                         6
207 #define SPI_BITS_15_BPT                         7
208 #define SPI_BITS_16_BPT                         8
209 #define SPI_ONE_DATA                            0
210 #define SPI_TWO_DATA                            1
211 #define SPI_FOUR_DATA                           2
212
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215         (1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222           | SPI_BF(name, value))
223
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226         readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228         writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230         writew_relaxed((value), (port)->regs + SPI_##reg)
231
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233  * cache operations; better heuristics consider wordsize and bitrate.
234  */
235 #define DMA_MIN_BYTES   16
236
237 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
238
239 #define AUTOSUSPEND_TIMEOUT     2000
240
241 struct atmel_spi_caps {
242         bool    is_spi2;
243         bool    has_wdrbt;
244         bool    has_dma_support;
245         bool    has_pdc_support;
246 };
247
248 /*
249  * The core SPI transfer engine just talks to a register bank to set up
250  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
251  * framework provides the base clock, subdivided for each spi_device.
252  */
253 struct atmel_spi {
254         spinlock_t              lock;
255         unsigned long           flags;
256
257         phys_addr_t             phybase;
258         void __iomem            *regs;
259         int                     irq;
260         struct clk              *clk;
261         struct platform_device  *pdev;
262         unsigned long           spi_clk;
263
264         struct spi_transfer     *current_transfer;
265         int                     current_remaining_bytes;
266         int                     done_status;
267         dma_addr_t              dma_addr_rx_bbuf;
268         dma_addr_t              dma_addr_tx_bbuf;
269         void                    *addr_rx_bbuf;
270         void                    *addr_tx_bbuf;
271
272         struct completion       xfer_completion;
273
274         struct atmel_spi_caps   caps;
275
276         bool                    use_dma;
277         bool                    use_pdc;
278
279         bool                    keep_cs;
280
281         u32                     fifo_size;
282         u8                      native_cs_free;
283         u8                      native_cs_for_gpio;
284 };
285
286 /* Controller-specific per-slave state */
287 struct atmel_spi_device {
288         u32                     csr;
289 };
290
291 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
292 #define INVALID_DMA_ADDRESS     0xffffffff
293
294 /*
295  * Version 2 of the SPI controller has
296  *  - CR.LASTXFER
297  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
298  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
299  *  - SPI_CSRx.CSAAT
300  *  - SPI_CSRx.SBCR allows faster clocking
301  */
302 static bool atmel_spi_is_v2(struct atmel_spi *as)
303 {
304         return as->caps.is_spi2;
305 }
306
307 /*
308  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
309  * they assume that spi slave device state will not change on deselect, so
310  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
311  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
312  * controllers have CSAAT and friends.
313  *
314  * Even controller newer than ar91rm9200, using GPIOs can make sens as
315  * it lets us support active-high chipselects despite the controller's
316  * belief that only active-low devices/systems exists.
317  *
318  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
319  * right when driven with GPIO.  ("Mode Fault does not allow more than one
320  * Master on Chip Select 0.")  No workaround exists for that ... so for
321  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
322  * and (c) will trigger that first erratum in some cases.
323  */
324
325 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
326 {
327         struct atmel_spi_device *asd = spi->controller_state;
328         int chip_select;
329         u32 mr;
330
331         if (spi->cs_gpiod)
332                 chip_select = as->native_cs_for_gpio;
333         else
334                 chip_select = spi->chip_select;
335
336         if (atmel_spi_is_v2(as)) {
337                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
338                 /* For the low SPI version, there is a issue that PDC transfer
339                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
340                  */
341                 spi_writel(as, CSR0, asd->csr);
342                 if (as->caps.has_wdrbt) {
343                         spi_writel(as, MR,
344                                         SPI_BF(PCS, ~(0x01 << chip_select))
345                                         | SPI_BIT(WDRBT)
346                                         | SPI_BIT(MODFDIS)
347                                         | SPI_BIT(MSTR));
348                 } else {
349                         spi_writel(as, MR,
350                                         SPI_BF(PCS, ~(0x01 << chip_select))
351                                         | SPI_BIT(MODFDIS)
352                                         | SPI_BIT(MSTR));
353                 }
354
355                 mr = spi_readl(as, MR);
356                 if (spi->cs_gpiod)
357                         gpiod_set_value(spi->cs_gpiod, 1);
358         } else {
359                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
360                 int i;
361                 u32 csr;
362
363                 /* Make sure clock polarity is correct */
364                 for (i = 0; i < spi->master->num_chipselect; i++) {
365                         csr = spi_readl(as, CSR0 + 4 * i);
366                         if ((csr ^ cpol) & SPI_BIT(CPOL))
367                                 spi_writel(as, CSR0 + 4 * i,
368                                                 csr ^ SPI_BIT(CPOL));
369                 }
370
371                 mr = spi_readl(as, MR);
372                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
373                 if (spi->cs_gpiod)
374                         gpiod_set_value(spi->cs_gpiod, 1);
375                 spi_writel(as, MR, mr);
376         }
377
378         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
379 }
380
381 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
382 {
383         int chip_select;
384         u32 mr;
385
386         if (spi->cs_gpiod)
387                 chip_select = as->native_cs_for_gpio;
388         else
389                 chip_select = spi->chip_select;
390
391         /* only deactivate *this* device; sometimes transfers to
392          * another device may be active when this routine is called.
393          */
394         mr = spi_readl(as, MR);
395         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
396                 mr = SPI_BFINS(PCS, 0xf, mr);
397                 spi_writel(as, MR, mr);
398         }
399
400         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
401
402         if (!spi->cs_gpiod)
403                 spi_writel(as, CR, SPI_BIT(LASTXFER));
404         else
405                 gpiod_set_value(spi->cs_gpiod, 0);
406 }
407
408 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
409 {
410         spin_lock_irqsave(&as->lock, as->flags);
411 }
412
413 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
414 {
415         spin_unlock_irqrestore(&as->lock, as->flags);
416 }
417
418 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
419 {
420         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
421 }
422
423 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
424                                 struct spi_transfer *xfer)
425 {
426         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
427 }
428
429 static bool atmel_spi_can_dma(struct spi_master *master,
430                               struct spi_device *spi,
431                               struct spi_transfer *xfer)
432 {
433         struct atmel_spi *as = spi_master_get_devdata(master);
434
435         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
436                 return atmel_spi_use_dma(as, xfer) &&
437                         !atmel_spi_is_vmalloc_xfer(xfer);
438         else
439                 return atmel_spi_use_dma(as, xfer);
440
441 }
442
443 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
444                                 struct dma_slave_config *slave_config,
445                                 u8 bits_per_word)
446 {
447         struct spi_master *master = platform_get_drvdata(as->pdev);
448         int err = 0;
449
450         if (bits_per_word > 8) {
451                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
453         } else {
454                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
456         }
457
458         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
459         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
460         slave_config->src_maxburst = 1;
461         slave_config->dst_maxburst = 1;
462         slave_config->device_fc = false;
463
464         /*
465          * This driver uses fixed peripheral select mode (PS bit set to '0' in
466          * the Mode Register).
467          * So according to the datasheet, when FIFOs are available (and
468          * enabled), the Transmit FIFO operates in Multiple Data Mode.
469          * In this mode, up to 2 data, not 4, can be written into the Transmit
470          * Data Register in a single access.
471          * However, the first data has to be written into the lowest 16 bits and
472          * the second data into the highest 16 bits of the Transmit
473          * Data Register. For 8bit data (the most frequent case), it would
474          * require to rework tx_buf so each data would actualy fit 16 bits.
475          * So we'd rather write only one data at the time. Hence the transmit
476          * path works the same whether FIFOs are available (and enabled) or not.
477          */
478         slave_config->direction = DMA_MEM_TO_DEV;
479         if (dmaengine_slave_config(master->dma_tx, slave_config)) {
480                 dev_err(&as->pdev->dev,
481                         "failed to configure tx dma channel\n");
482                 err = -EINVAL;
483         }
484
485         /*
486          * This driver configures the spi controller for master mode (MSTR bit
487          * set to '1' in the Mode Register).
488          * So according to the datasheet, when FIFOs are available (and
489          * enabled), the Receive FIFO operates in Single Data Mode.
490          * So the receive path works the same whether FIFOs are available (and
491          * enabled) or not.
492          */
493         slave_config->direction = DMA_DEV_TO_MEM;
494         if (dmaengine_slave_config(master->dma_rx, slave_config)) {
495                 dev_err(&as->pdev->dev,
496                         "failed to configure rx dma channel\n");
497                 err = -EINVAL;
498         }
499
500         return err;
501 }
502
503 static int atmel_spi_configure_dma(struct spi_master *master,
504                                    struct atmel_spi *as)
505 {
506         struct dma_slave_config slave_config;
507         struct device *dev = &as->pdev->dev;
508         int err;
509
510         dma_cap_mask_t mask;
511         dma_cap_zero(mask);
512         dma_cap_set(DMA_SLAVE, mask);
513
514         master->dma_tx = dma_request_chan(dev, "tx");
515         if (IS_ERR(master->dma_tx)) {
516                 err = PTR_ERR(master->dma_tx);
517                 if (err == -EPROBE_DEFER) {
518                         dev_warn(dev, "no DMA channel available at the moment\n");
519                         goto error_clear;
520                 }
521                 dev_err(dev,
522                         "DMA TX channel not available, SPI unable to use DMA\n");
523                 err = -EBUSY;
524                 goto error_clear;
525         }
526
527         /*
528          * No reason to check EPROBE_DEFER here since we have already requested
529          * tx channel. If it fails here, it's for another reason.
530          */
531         master->dma_rx = dma_request_slave_channel(dev, "rx");
532
533         if (!master->dma_rx) {
534                 dev_err(dev,
535                         "DMA RX channel not available, SPI unable to use DMA\n");
536                 err = -EBUSY;
537                 goto error;
538         }
539
540         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
541         if (err)
542                 goto error;
543
544         dev_info(&as->pdev->dev,
545                         "Using %s (tx) and %s (rx) for DMA transfers\n",
546                         dma_chan_name(master->dma_tx),
547                         dma_chan_name(master->dma_rx));
548
549         return 0;
550 error:
551         if (master->dma_rx)
552                 dma_release_channel(master->dma_rx);
553         if (!IS_ERR(master->dma_tx))
554                 dma_release_channel(master->dma_tx);
555 error_clear:
556         master->dma_tx = master->dma_rx = NULL;
557         return err;
558 }
559
560 static void atmel_spi_stop_dma(struct spi_master *master)
561 {
562         if (master->dma_rx)
563                 dmaengine_terminate_all(master->dma_rx);
564         if (master->dma_tx)
565                 dmaengine_terminate_all(master->dma_tx);
566 }
567
568 static void atmel_spi_release_dma(struct spi_master *master)
569 {
570         if (master->dma_rx) {
571                 dma_release_channel(master->dma_rx);
572                 master->dma_rx = NULL;
573         }
574         if (master->dma_tx) {
575                 dma_release_channel(master->dma_tx);
576                 master->dma_tx = NULL;
577         }
578 }
579
580 /* This function is called by the DMA driver from tasklet context */
581 static void dma_callback(void *data)
582 {
583         struct spi_master       *master = data;
584         struct atmel_spi        *as = spi_master_get_devdata(master);
585
586         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
587             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
588                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
589                        as->current_transfer->len);
590         }
591         complete(&as->xfer_completion);
592 }
593
594 /*
595  * Next transfer using PIO without FIFO.
596  */
597 static void atmel_spi_next_xfer_single(struct spi_master *master,
598                                        struct spi_transfer *xfer)
599 {
600         struct atmel_spi        *as = spi_master_get_devdata(master);
601         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
602
603         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
604
605         /* Make sure data is not remaining in RDR */
606         spi_readl(as, RDR);
607         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
608                 spi_readl(as, RDR);
609                 cpu_relax();
610         }
611
612         if (xfer->bits_per_word > 8)
613                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
614         else
615                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
616
617         dev_dbg(master->dev.parent,
618                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
619                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
620                 xfer->bits_per_word);
621
622         /* Enable relevant interrupts */
623         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
624 }
625
626 /*
627  * Next transfer using PIO with FIFO.
628  */
629 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
630                                      struct spi_transfer *xfer)
631 {
632         struct atmel_spi *as = spi_master_get_devdata(master);
633         u32 current_remaining_data, num_data;
634         u32 offset = xfer->len - as->current_remaining_bytes;
635         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
636         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
637         u16 td0, td1;
638         u32 fifomr;
639
640         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
641
642         /* Compute the number of data to transfer in the current iteration */
643         current_remaining_data = ((xfer->bits_per_word > 8) ?
644                                   ((u32)as->current_remaining_bytes >> 1) :
645                                   (u32)as->current_remaining_bytes);
646         num_data = min(current_remaining_data, as->fifo_size);
647
648         /* Flush RX and TX FIFOs */
649         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
650         while (spi_readl(as, FLR))
651                 cpu_relax();
652
653         /* Set RX FIFO Threshold to the number of data to transfer */
654         fifomr = spi_readl(as, FMR);
655         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
656
657         /* Clear FIFO flags in the Status Register, especially RXFTHF */
658         (void)spi_readl(as, SR);
659
660         /* Fill TX FIFO */
661         while (num_data >= 2) {
662                 if (xfer->bits_per_word > 8) {
663                         td0 = *words++;
664                         td1 = *words++;
665                 } else {
666                         td0 = *bytes++;
667                         td1 = *bytes++;
668                 }
669
670                 spi_writel(as, TDR, (td1 << 16) | td0);
671                 num_data -= 2;
672         }
673
674         if (num_data) {
675                 if (xfer->bits_per_word > 8)
676                         td0 = *words++;
677                 else
678                         td0 = *bytes++;
679
680                 spi_writew(as, TDR, td0);
681                 num_data--;
682         }
683
684         dev_dbg(master->dev.parent,
685                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
686                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
687                 xfer->bits_per_word);
688
689         /*
690          * Enable RX FIFO Threshold Flag interrupt to be notified about
691          * transfer completion.
692          */
693         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
694 }
695
696 /*
697  * Next transfer using PIO.
698  */
699 static void atmel_spi_next_xfer_pio(struct spi_master *master,
700                                     struct spi_transfer *xfer)
701 {
702         struct atmel_spi *as = spi_master_get_devdata(master);
703
704         if (as->fifo_size)
705                 atmel_spi_next_xfer_fifo(master, xfer);
706         else
707                 atmel_spi_next_xfer_single(master, xfer);
708 }
709
710 /*
711  * Submit next transfer for DMA.
712  */
713 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
714                                 struct spi_transfer *xfer,
715                                 u32 *plen)
716 {
717         struct atmel_spi        *as = spi_master_get_devdata(master);
718         struct dma_chan         *rxchan = master->dma_rx;
719         struct dma_chan         *txchan = master->dma_tx;
720         struct dma_async_tx_descriptor *rxdesc;
721         struct dma_async_tx_descriptor *txdesc;
722         struct dma_slave_config slave_config;
723         dma_cookie_t            cookie;
724
725         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
726
727         /* Check that the channels are available */
728         if (!rxchan || !txchan)
729                 return -ENODEV;
730
731         /* release lock for DMA operations */
732         atmel_spi_unlock(as);
733
734         *plen = xfer->len;
735
736         if (atmel_spi_dma_slave_config(as, &slave_config,
737                                        xfer->bits_per_word))
738                 goto err_exit;
739
740         /* Send both scatterlists */
741         if (atmel_spi_is_vmalloc_xfer(xfer) &&
742             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
743                 rxdesc = dmaengine_prep_slave_single(rxchan,
744                                                      as->dma_addr_rx_bbuf,
745                                                      xfer->len,
746                                                      DMA_DEV_TO_MEM,
747                                                      DMA_PREP_INTERRUPT |
748                                                      DMA_CTRL_ACK);
749         } else {
750                 rxdesc = dmaengine_prep_slave_sg(rxchan,
751                                                  xfer->rx_sg.sgl,
752                                                  xfer->rx_sg.nents,
753                                                  DMA_DEV_TO_MEM,
754                                                  DMA_PREP_INTERRUPT |
755                                                  DMA_CTRL_ACK);
756         }
757         if (!rxdesc)
758                 goto err_dma;
759
760         if (atmel_spi_is_vmalloc_xfer(xfer) &&
761             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
762                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
763                 txdesc = dmaengine_prep_slave_single(txchan,
764                                                      as->dma_addr_tx_bbuf,
765                                                      xfer->len, DMA_MEM_TO_DEV,
766                                                      DMA_PREP_INTERRUPT |
767                                                      DMA_CTRL_ACK);
768         } else {
769                 txdesc = dmaengine_prep_slave_sg(txchan,
770                                                  xfer->tx_sg.sgl,
771                                                  xfer->tx_sg.nents,
772                                                  DMA_MEM_TO_DEV,
773                                                  DMA_PREP_INTERRUPT |
774                                                  DMA_CTRL_ACK);
775         }
776         if (!txdesc)
777                 goto err_dma;
778
779         dev_dbg(master->dev.parent,
780                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
781                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
782                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
783
784         /* Enable relevant interrupts */
785         spi_writel(as, IER, SPI_BIT(OVRES));
786
787         /* Put the callback on the RX transfer only, that should finish last */
788         rxdesc->callback = dma_callback;
789         rxdesc->callback_param = master;
790
791         /* Submit and fire RX and TX with TX last so we're ready to read! */
792         cookie = rxdesc->tx_submit(rxdesc);
793         if (dma_submit_error(cookie))
794                 goto err_dma;
795         cookie = txdesc->tx_submit(txdesc);
796         if (dma_submit_error(cookie))
797                 goto err_dma;
798         rxchan->device->device_issue_pending(rxchan);
799         txchan->device->device_issue_pending(txchan);
800
801         /* take back lock */
802         atmel_spi_lock(as);
803         return 0;
804
805 err_dma:
806         spi_writel(as, IDR, SPI_BIT(OVRES));
807         atmel_spi_stop_dma(master);
808 err_exit:
809         atmel_spi_lock(as);
810         return -ENOMEM;
811 }
812
813 static void atmel_spi_next_xfer_data(struct spi_master *master,
814                                 struct spi_transfer *xfer,
815                                 dma_addr_t *tx_dma,
816                                 dma_addr_t *rx_dma,
817                                 u32 *plen)
818 {
819         *rx_dma = xfer->rx_dma + xfer->len - *plen;
820         *tx_dma = xfer->tx_dma + xfer->len - *plen;
821         if (*plen > master->max_dma_len)
822                 *plen = master->max_dma_len;
823 }
824
825 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
826                                     struct spi_device *spi,
827                                     struct spi_transfer *xfer)
828 {
829         u32                     scbr, csr;
830         unsigned long           bus_hz;
831         int chip_select;
832
833         if (spi->cs_gpiod)
834                 chip_select = as->native_cs_for_gpio;
835         else
836                 chip_select = spi->chip_select;
837
838         /* v1 chips start out at half the peripheral bus speed. */
839         bus_hz = as->spi_clk;
840         if (!atmel_spi_is_v2(as))
841                 bus_hz /= 2;
842
843         /*
844          * Calculate the lowest divider that satisfies the
845          * constraint, assuming div32/fdiv/mbz == 0.
846          */
847         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
848
849         /*
850          * If the resulting divider doesn't fit into the
851          * register bitfield, we can't satisfy the constraint.
852          */
853         if (scbr >= (1 << SPI_SCBR_SIZE)) {
854                 dev_err(&spi->dev,
855                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
856                         xfer->speed_hz, scbr, bus_hz/255);
857                 return -EINVAL;
858         }
859         if (scbr == 0) {
860                 dev_err(&spi->dev,
861                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
862                         xfer->speed_hz, scbr, bus_hz);
863                 return -EINVAL;
864         }
865         csr = spi_readl(as, CSR0 + 4 * chip_select);
866         csr = SPI_BFINS(SCBR, scbr, csr);
867         spi_writel(as, CSR0 + 4 * chip_select, csr);
868
869         return 0;
870 }
871
872 /*
873  * Submit next transfer for PDC.
874  * lock is held, spi irq is blocked
875  */
876 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
877                                         struct spi_message *msg,
878                                         struct spi_transfer *xfer)
879 {
880         struct atmel_spi        *as = spi_master_get_devdata(master);
881         u32                     len;
882         dma_addr_t              tx_dma, rx_dma;
883
884         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
885
886         len = as->current_remaining_bytes;
887         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
888         as->current_remaining_bytes -= len;
889
890         spi_writel(as, RPR, rx_dma);
891         spi_writel(as, TPR, tx_dma);
892
893         if (msg->spi->bits_per_word > 8)
894                 len >>= 1;
895         spi_writel(as, RCR, len);
896         spi_writel(as, TCR, len);
897
898         dev_dbg(&msg->spi->dev,
899                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
900                 xfer, xfer->len, xfer->tx_buf,
901                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
902                 (unsigned long long)xfer->rx_dma);
903
904         if (as->current_remaining_bytes) {
905                 len = as->current_remaining_bytes;
906                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
907                 as->current_remaining_bytes -= len;
908
909                 spi_writel(as, RNPR, rx_dma);
910                 spi_writel(as, TNPR, tx_dma);
911
912                 if (msg->spi->bits_per_word > 8)
913                         len >>= 1;
914                 spi_writel(as, RNCR, len);
915                 spi_writel(as, TNCR, len);
916
917                 dev_dbg(&msg->spi->dev,
918                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
919                         xfer, xfer->len, xfer->tx_buf,
920                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
921                         (unsigned long long)xfer->rx_dma);
922         }
923
924         /* REVISIT: We're waiting for RXBUFF before we start the next
925          * transfer because we need to handle some difficult timing
926          * issues otherwise. If we wait for TXBUFE in one transfer and
927          * then starts waiting for RXBUFF in the next, it's difficult
928          * to tell the difference between the RXBUFF interrupt we're
929          * actually waiting for and the RXBUFF interrupt of the
930          * previous transfer.
931          *
932          * It should be doable, though. Just not now...
933          */
934         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
935         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
936 }
937
938 /*
939  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
940  *  - The buffer is either valid for CPU access, else NULL
941  *  - If the buffer is valid, so is its DMA address
942  *
943  * This driver manages the dma address unless message->is_dma_mapped.
944  */
945 static int
946 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
947 {
948         struct device   *dev = &as->pdev->dev;
949
950         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
951         if (xfer->tx_buf) {
952                 /* tx_buf is a const void* where we need a void * for the dma
953                  * mapping */
954                 void *nonconst_tx = (void *)xfer->tx_buf;
955
956                 xfer->tx_dma = dma_map_single(dev,
957                                 nonconst_tx, xfer->len,
958                                 DMA_TO_DEVICE);
959                 if (dma_mapping_error(dev, xfer->tx_dma))
960                         return -ENOMEM;
961         }
962         if (xfer->rx_buf) {
963                 xfer->rx_dma = dma_map_single(dev,
964                                 xfer->rx_buf, xfer->len,
965                                 DMA_FROM_DEVICE);
966                 if (dma_mapping_error(dev, xfer->rx_dma)) {
967                         if (xfer->tx_buf)
968                                 dma_unmap_single(dev,
969                                                 xfer->tx_dma, xfer->len,
970                                                 DMA_TO_DEVICE);
971                         return -ENOMEM;
972                 }
973         }
974         return 0;
975 }
976
977 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
978                                      struct spi_transfer *xfer)
979 {
980         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
981                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
982                                  xfer->len, DMA_TO_DEVICE);
983         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
984                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
985                                  xfer->len, DMA_FROM_DEVICE);
986 }
987
988 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
989 {
990         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
991 }
992
993 static void
994 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
995 {
996         u8              *rxp;
997         u16             *rxp16;
998         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
999
1000         if (xfer->bits_per_word > 8) {
1001                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1002                 *rxp16 = spi_readl(as, RDR);
1003         } else {
1004                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1005                 *rxp = spi_readl(as, RDR);
1006         }
1007         if (xfer->bits_per_word > 8) {
1008                 if (as->current_remaining_bytes > 2)
1009                         as->current_remaining_bytes -= 2;
1010                 else
1011                         as->current_remaining_bytes = 0;
1012         } else {
1013                 as->current_remaining_bytes--;
1014         }
1015 }
1016
1017 static void
1018 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1019 {
1020         u32 fifolr = spi_readl(as, FLR);
1021         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1022         u32 offset = xfer->len - as->current_remaining_bytes;
1023         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1024         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1025         u16 rd; /* RD field is the lowest 16 bits of RDR */
1026
1027         /* Update the number of remaining bytes to transfer */
1028         num_bytes = ((xfer->bits_per_word > 8) ?
1029                      (num_data << 1) :
1030                      num_data);
1031
1032         if (as->current_remaining_bytes > num_bytes)
1033                 as->current_remaining_bytes -= num_bytes;
1034         else
1035                 as->current_remaining_bytes = 0;
1036
1037         /* Handle odd number of bytes when data are more than 8bit width */
1038         if (xfer->bits_per_word > 8)
1039                 as->current_remaining_bytes &= ~0x1;
1040
1041         /* Read data */
1042         while (num_data) {
1043                 rd = spi_readl(as, RDR);
1044                 if (xfer->bits_per_word > 8)
1045                         *words++ = rd;
1046                 else
1047                         *bytes++ = rd;
1048                 num_data--;
1049         }
1050 }
1051
1052 /* Called from IRQ
1053  *
1054  * Must update "current_remaining_bytes" to keep track of data
1055  * to transfer.
1056  */
1057 static void
1058 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1059 {
1060         if (as->fifo_size)
1061                 atmel_spi_pump_fifo_data(as, xfer);
1062         else
1063                 atmel_spi_pump_single_data(as, xfer);
1064 }
1065
1066 /* Interrupt
1067  *
1068  * No need for locking in this Interrupt handler: done_status is the
1069  * only information modified.
1070  */
1071 static irqreturn_t
1072 atmel_spi_pio_interrupt(int irq, void *dev_id)
1073 {
1074         struct spi_master       *master = dev_id;
1075         struct atmel_spi        *as = spi_master_get_devdata(master);
1076         u32                     status, pending, imr;
1077         struct spi_transfer     *xfer;
1078         int                     ret = IRQ_NONE;
1079
1080         imr = spi_readl(as, IMR);
1081         status = spi_readl(as, SR);
1082         pending = status & imr;
1083
1084         if (pending & SPI_BIT(OVRES)) {
1085                 ret = IRQ_HANDLED;
1086                 spi_writel(as, IDR, SPI_BIT(OVRES));
1087                 dev_warn(master->dev.parent, "overrun\n");
1088
1089                 /*
1090                  * When we get an overrun, we disregard the current
1091                  * transfer. Data will not be copied back from any
1092                  * bounce buffer and msg->actual_len will not be
1093                  * updated with the last xfer.
1094                  *
1095                  * We will also not process any remaning transfers in
1096                  * the message.
1097                  */
1098                 as->done_status = -EIO;
1099                 smp_wmb();
1100
1101                 /* Clear any overrun happening while cleaning up */
1102                 spi_readl(as, SR);
1103
1104                 complete(&as->xfer_completion);
1105
1106         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1107                 atmel_spi_lock(as);
1108
1109                 if (as->current_remaining_bytes) {
1110                         ret = IRQ_HANDLED;
1111                         xfer = as->current_transfer;
1112                         atmel_spi_pump_pio_data(as, xfer);
1113                         if (!as->current_remaining_bytes)
1114                                 spi_writel(as, IDR, pending);
1115
1116                         complete(&as->xfer_completion);
1117                 }
1118
1119                 atmel_spi_unlock(as);
1120         } else {
1121                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1122                 ret = IRQ_HANDLED;
1123                 spi_writel(as, IDR, pending);
1124         }
1125
1126         return ret;
1127 }
1128
1129 static irqreturn_t
1130 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1131 {
1132         struct spi_master       *master = dev_id;
1133         struct atmel_spi        *as = spi_master_get_devdata(master);
1134         u32                     status, pending, imr;
1135         int                     ret = IRQ_NONE;
1136
1137         imr = spi_readl(as, IMR);
1138         status = spi_readl(as, SR);
1139         pending = status & imr;
1140
1141         if (pending & SPI_BIT(OVRES)) {
1142
1143                 ret = IRQ_HANDLED;
1144
1145                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1146                                      | SPI_BIT(OVRES)));
1147
1148                 /* Clear any overrun happening while cleaning up */
1149                 spi_readl(as, SR);
1150
1151                 as->done_status = -EIO;
1152
1153                 complete(&as->xfer_completion);
1154
1155         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1156                 ret = IRQ_HANDLED;
1157
1158                 spi_writel(as, IDR, pending);
1159
1160                 complete(&as->xfer_completion);
1161         }
1162
1163         return ret;
1164 }
1165
1166 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1167 {
1168         struct spi_delay *delay = &spi->word_delay;
1169         u32 value = delay->value;
1170
1171         switch (delay->unit) {
1172         case SPI_DELAY_UNIT_NSECS:
1173                 value /= 1000;
1174                 break;
1175         case SPI_DELAY_UNIT_USECS:
1176                 break;
1177         default:
1178                 return -EINVAL;
1179         }
1180
1181         return (as->spi_clk / 1000000 * value) >> 5;
1182 }
1183
1184 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1185 {
1186         int i;
1187         struct spi_master *master = platform_get_drvdata(as->pdev);
1188
1189         if (!as->native_cs_free)
1190                 return; /* already initialized */
1191
1192         if (!master->cs_gpiods)
1193                 return; /* No CS GPIO */
1194
1195         /*
1196          * On the first version of the controller (AT91RM9200), CS0
1197          * can't be used associated with GPIO
1198          */
1199         if (atmel_spi_is_v2(as))
1200                 i = 0;
1201         else
1202                 i = 1;
1203
1204         for (; i < 4; i++)
1205                 if (master->cs_gpiods[i])
1206                         as->native_cs_free |= BIT(i);
1207
1208         if (as->native_cs_free)
1209                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1210 }
1211
1212 static int atmel_spi_setup(struct spi_device *spi)
1213 {
1214         struct atmel_spi        *as;
1215         struct atmel_spi_device *asd;
1216         u32                     csr;
1217         unsigned int            bits = spi->bits_per_word;
1218         int chip_select;
1219         int                     word_delay_csr;
1220
1221         as = spi_master_get_devdata(spi->master);
1222
1223         /* see notes above re chipselect */
1224         if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1225                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1226                 return -EINVAL;
1227         }
1228
1229         /* Setup() is called during spi_register_controller(aka
1230          * spi_register_master) but after all membmers of the cs_gpiod
1231          * array have been filled, so we can looked for which native
1232          * CS will be free for using with GPIO
1233          */
1234         initialize_native_cs_for_gpio(as);
1235
1236         if (spi->cs_gpiod && as->native_cs_free) {
1237                 dev_err(&spi->dev,
1238                         "No native CS available to support this GPIO CS\n");
1239                 return -EBUSY;
1240         }
1241
1242         if (spi->cs_gpiod)
1243                 chip_select = as->native_cs_for_gpio;
1244         else
1245                 chip_select = spi->chip_select;
1246
1247         csr = SPI_BF(BITS, bits - 8);
1248         if (spi->mode & SPI_CPOL)
1249                 csr |= SPI_BIT(CPOL);
1250         if (!(spi->mode & SPI_CPHA))
1251                 csr |= SPI_BIT(NCPHA);
1252
1253         if (!spi->cs_gpiod)
1254                 csr |= SPI_BIT(CSAAT);
1255         csr |= SPI_BF(DLYBS, 0);
1256
1257         word_delay_csr = atmel_word_delay_csr(spi, as);
1258         if (word_delay_csr < 0)
1259                 return word_delay_csr;
1260
1261         /* DLYBCT adds delays between words.  This is useful for slow devices
1262          * that need a bit of time to setup the next transfer.
1263          */
1264         csr |= SPI_BF(DLYBCT, word_delay_csr);
1265
1266         asd = spi->controller_state;
1267         if (!asd) {
1268                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1269                 if (!asd)
1270                         return -ENOMEM;
1271
1272                 spi->controller_state = asd;
1273         }
1274
1275         asd->csr = csr;
1276
1277         dev_dbg(&spi->dev,
1278                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1279                 bits, spi->mode, spi->chip_select, csr);
1280
1281         if (!atmel_spi_is_v2(as))
1282                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1283
1284         return 0;
1285 }
1286
1287 static int atmel_spi_one_transfer(struct spi_master *master,
1288                                         struct spi_message *msg,
1289                                         struct spi_transfer *xfer)
1290 {
1291         struct atmel_spi        *as;
1292         struct spi_device       *spi = msg->spi;
1293         u8                      bits;
1294         u32                     len;
1295         struct atmel_spi_device *asd;
1296         int                     timeout;
1297         int                     ret;
1298         unsigned long           dma_timeout;
1299
1300         as = spi_master_get_devdata(master);
1301
1302         if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1303                 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1304                 return -EINVAL;
1305         }
1306
1307         asd = spi->controller_state;
1308         bits = (asd->csr >> 4) & 0xf;
1309         if (bits != xfer->bits_per_word - 8) {
1310                 dev_dbg(&spi->dev,
1311                         "you can't yet change bits_per_word in transfers\n");
1312                 return -ENOPROTOOPT;
1313         }
1314
1315         /*
1316          * DMA map early, for performance (empties dcache ASAP) and
1317          * better fault reporting.
1318          */
1319         if ((!msg->is_dma_mapped)
1320                 && as->use_pdc) {
1321                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1322                         return -ENOMEM;
1323         }
1324
1325         atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1326
1327         as->done_status = 0;
1328         as->current_transfer = xfer;
1329         as->current_remaining_bytes = xfer->len;
1330         while (as->current_remaining_bytes) {
1331                 reinit_completion(&as->xfer_completion);
1332
1333                 if (as->use_pdc) {
1334                         atmel_spi_pdc_next_xfer(master, msg, xfer);
1335                 } else if (atmel_spi_use_dma(as, xfer)) {
1336                         len = as->current_remaining_bytes;
1337                         ret = atmel_spi_next_xfer_dma_submit(master,
1338                                                                 xfer, &len);
1339                         if (ret) {
1340                                 dev_err(&spi->dev,
1341                                         "unable to use DMA, fallback to PIO\n");
1342                                 atmel_spi_next_xfer_pio(master, xfer);
1343                         } else {
1344                                 as->current_remaining_bytes -= len;
1345                                 if (as->current_remaining_bytes < 0)
1346                                         as->current_remaining_bytes = 0;
1347                         }
1348                 } else {
1349                         atmel_spi_next_xfer_pio(master, xfer);
1350                 }
1351
1352                 /* interrupts are disabled, so free the lock for schedule */
1353                 atmel_spi_unlock(as);
1354                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1355                                                           SPI_DMA_TIMEOUT);
1356                 atmel_spi_lock(as);
1357                 if (WARN_ON(dma_timeout == 0)) {
1358                         dev_err(&spi->dev, "spi transfer timeout\n");
1359                         as->done_status = -EIO;
1360                 }
1361
1362                 if (as->done_status)
1363                         break;
1364         }
1365
1366         if (as->done_status) {
1367                 if (as->use_pdc) {
1368                         dev_warn(master->dev.parent,
1369                                 "overrun (%u/%u remaining)\n",
1370                                 spi_readl(as, TCR), spi_readl(as, RCR));
1371
1372                         /*
1373                          * Clean up DMA registers and make sure the data
1374                          * registers are empty.
1375                          */
1376                         spi_writel(as, RNCR, 0);
1377                         spi_writel(as, TNCR, 0);
1378                         spi_writel(as, RCR, 0);
1379                         spi_writel(as, TCR, 0);
1380                         for (timeout = 1000; timeout; timeout--)
1381                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1382                                         break;
1383                         if (!timeout)
1384                                 dev_warn(master->dev.parent,
1385                                          "timeout waiting for TXEMPTY");
1386                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1387                                 spi_readl(as, RDR);
1388
1389                         /* Clear any overrun happening while cleaning up */
1390                         spi_readl(as, SR);
1391
1392                 } else if (atmel_spi_use_dma(as, xfer)) {
1393                         atmel_spi_stop_dma(master);
1394                 }
1395
1396                 if (!msg->is_dma_mapped
1397                         && as->use_pdc)
1398                         atmel_spi_dma_unmap_xfer(master, xfer);
1399
1400                 return 0;
1401
1402         } else {
1403                 /* only update length if no error */
1404                 msg->actual_length += xfer->len;
1405         }
1406
1407         if (!msg->is_dma_mapped
1408                 && as->use_pdc)
1409                 atmel_spi_dma_unmap_xfer(master, xfer);
1410
1411         spi_transfer_delay_exec(xfer);
1412
1413         if (xfer->cs_change) {
1414                 if (list_is_last(&xfer->transfer_list,
1415                                  &msg->transfers)) {
1416                         as->keep_cs = true;
1417                 } else {
1418                         cs_deactivate(as, msg->spi);
1419                         udelay(10);
1420                         cs_activate(as, msg->spi);
1421                 }
1422         }
1423
1424         return 0;
1425 }
1426
1427 static int atmel_spi_transfer_one_message(struct spi_master *master,
1428                                                 struct spi_message *msg)
1429 {
1430         struct atmel_spi *as;
1431         struct spi_transfer *xfer;
1432         struct spi_device *spi = msg->spi;
1433         int ret = 0;
1434
1435         as = spi_master_get_devdata(master);
1436
1437         dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1438                                         msg, dev_name(&spi->dev));
1439
1440         atmel_spi_lock(as);
1441         cs_activate(as, spi);
1442
1443         as->keep_cs = false;
1444
1445         msg->status = 0;
1446         msg->actual_length = 0;
1447
1448         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1449                 trace_spi_transfer_start(msg, xfer);
1450
1451                 ret = atmel_spi_one_transfer(master, msg, xfer);
1452                 if (ret)
1453                         goto msg_done;
1454
1455                 trace_spi_transfer_stop(msg, xfer);
1456         }
1457
1458         if (as->use_pdc)
1459                 atmel_spi_disable_pdc_transfer(as);
1460
1461         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1462                 dev_dbg(&spi->dev,
1463                         "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1464                         xfer, xfer->len,
1465                         xfer->tx_buf, &xfer->tx_dma,
1466                         xfer->rx_buf, &xfer->rx_dma);
1467         }
1468
1469 msg_done:
1470         if (!as->keep_cs)
1471                 cs_deactivate(as, msg->spi);
1472
1473         atmel_spi_unlock(as);
1474
1475         msg->status = as->done_status;
1476         spi_finalize_current_message(spi->master);
1477
1478         return ret;
1479 }
1480
1481 static void atmel_spi_cleanup(struct spi_device *spi)
1482 {
1483         struct atmel_spi_device *asd = spi->controller_state;
1484
1485         if (!asd)
1486                 return;
1487
1488         spi->controller_state = NULL;
1489         kfree(asd);
1490 }
1491
1492 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1493 {
1494         return spi_readl(as, VERSION) & 0x00000fff;
1495 }
1496
1497 static void atmel_get_caps(struct atmel_spi *as)
1498 {
1499         unsigned int version;
1500
1501         version = atmel_get_version(as);
1502
1503         as->caps.is_spi2 = version > 0x121;
1504         as->caps.has_wdrbt = version >= 0x210;
1505         as->caps.has_dma_support = version >= 0x212;
1506         as->caps.has_pdc_support = version < 0x212;
1507 }
1508
1509 static void atmel_spi_init(struct atmel_spi *as)
1510 {
1511         spi_writel(as, CR, SPI_BIT(SWRST));
1512         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1513
1514         /* It is recommended to enable FIFOs first thing after reset */
1515         if (as->fifo_size)
1516                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1517
1518         if (as->caps.has_wdrbt) {
1519                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1520                                 | SPI_BIT(MSTR));
1521         } else {
1522                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1523         }
1524
1525         if (as->use_pdc)
1526                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1527         spi_writel(as, CR, SPI_BIT(SPIEN));
1528 }
1529
1530 static int atmel_spi_probe(struct platform_device *pdev)
1531 {
1532         struct resource         *regs;
1533         int                     irq;
1534         struct clk              *clk;
1535         int                     ret;
1536         struct spi_master       *master;
1537         struct atmel_spi        *as;
1538
1539         /* Select default pin state */
1540         pinctrl_pm_select_default_state(&pdev->dev);
1541
1542         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1543         if (!regs)
1544                 return -ENXIO;
1545
1546         irq = platform_get_irq(pdev, 0);
1547         if (irq < 0)
1548                 return irq;
1549
1550         clk = devm_clk_get(&pdev->dev, "spi_clk");
1551         if (IS_ERR(clk))
1552                 return PTR_ERR(clk);
1553
1554         /* setup spi core then atmel-specific driver state */
1555         ret = -ENOMEM;
1556         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1557         if (!master)
1558                 goto out_free;
1559
1560         /* the spi->mode bits understood by this driver: */
1561         master->use_gpio_descriptors = true;
1562         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1563         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1564         master->dev.of_node = pdev->dev.of_node;
1565         master->bus_num = pdev->id;
1566         master->num_chipselect = 4;
1567         master->setup = atmel_spi_setup;
1568         master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1569         master->transfer_one_message = atmel_spi_transfer_one_message;
1570         master->cleanup = atmel_spi_cleanup;
1571         master->auto_runtime_pm = true;
1572         master->max_dma_len = SPI_MAX_DMA_XFER;
1573         master->can_dma = atmel_spi_can_dma;
1574         platform_set_drvdata(pdev, master);
1575
1576         as = spi_master_get_devdata(master);
1577
1578         spin_lock_init(&as->lock);
1579
1580         as->pdev = pdev;
1581         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1582         if (IS_ERR(as->regs)) {
1583                 ret = PTR_ERR(as->regs);
1584                 goto out_unmap_regs;
1585         }
1586         as->phybase = regs->start;
1587         as->irq = irq;
1588         as->clk = clk;
1589
1590         init_completion(&as->xfer_completion);
1591
1592         atmel_get_caps(as);
1593
1594         as->use_dma = false;
1595         as->use_pdc = false;
1596         if (as->caps.has_dma_support) {
1597                 ret = atmel_spi_configure_dma(master, as);
1598                 if (ret == 0) {
1599                         as->use_dma = true;
1600                 } else if (ret == -EPROBE_DEFER) {
1601                         return ret;
1602                 }
1603         } else if (as->caps.has_pdc_support) {
1604                 as->use_pdc = true;
1605         }
1606
1607         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1608                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1609                                                       SPI_MAX_DMA_XFER,
1610                                                       &as->dma_addr_rx_bbuf,
1611                                                       GFP_KERNEL | GFP_DMA);
1612                 if (!as->addr_rx_bbuf) {
1613                         as->use_dma = false;
1614                 } else {
1615                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1616                                         SPI_MAX_DMA_XFER,
1617                                         &as->dma_addr_tx_bbuf,
1618                                         GFP_KERNEL | GFP_DMA);
1619                         if (!as->addr_tx_bbuf) {
1620                                 as->use_dma = false;
1621                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1622                                                   as->addr_rx_bbuf,
1623                                                   as->dma_addr_rx_bbuf);
1624                         }
1625                 }
1626                 if (!as->use_dma)
1627                         dev_info(master->dev.parent,
1628                                  "  can not allocate dma coherent memory\n");
1629         }
1630
1631         if (as->caps.has_dma_support && !as->use_dma)
1632                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1633
1634         if (as->use_pdc) {
1635                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1636                                         0, dev_name(&pdev->dev), master);
1637         } else {
1638                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1639                                         0, dev_name(&pdev->dev), master);
1640         }
1641         if (ret)
1642                 goto out_unmap_regs;
1643
1644         /* Initialize the hardware */
1645         ret = clk_prepare_enable(clk);
1646         if (ret)
1647                 goto out_free_irq;
1648
1649         as->spi_clk = clk_get_rate(clk);
1650
1651         as->fifo_size = 0;
1652         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1653                                   &as->fifo_size)) {
1654                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1655         }
1656
1657         atmel_spi_init(as);
1658
1659         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1660         pm_runtime_use_autosuspend(&pdev->dev);
1661         pm_runtime_set_active(&pdev->dev);
1662         pm_runtime_enable(&pdev->dev);
1663
1664         ret = devm_spi_register_master(&pdev->dev, master);
1665         if (ret)
1666                 goto out_free_dma;
1667
1668         /* go! */
1669         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1670                         atmel_get_version(as), (unsigned long)regs->start,
1671                         irq);
1672
1673         return 0;
1674
1675 out_free_dma:
1676         pm_runtime_disable(&pdev->dev);
1677         pm_runtime_set_suspended(&pdev->dev);
1678
1679         if (as->use_dma)
1680                 atmel_spi_release_dma(master);
1681
1682         spi_writel(as, CR, SPI_BIT(SWRST));
1683         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1684         clk_disable_unprepare(clk);
1685 out_free_irq:
1686 out_unmap_regs:
1687 out_free:
1688         spi_master_put(master);
1689         return ret;
1690 }
1691
1692 static int atmel_spi_remove(struct platform_device *pdev)
1693 {
1694         struct spi_master       *master = platform_get_drvdata(pdev);
1695         struct atmel_spi        *as = spi_master_get_devdata(master);
1696
1697         pm_runtime_get_sync(&pdev->dev);
1698
1699         /* reset the hardware and block queue progress */
1700         if (as->use_dma) {
1701                 atmel_spi_stop_dma(master);
1702                 atmel_spi_release_dma(master);
1703                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1704                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1705                                           as->addr_tx_bbuf,
1706                                           as->dma_addr_tx_bbuf);
1707                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1708                                           as->addr_rx_bbuf,
1709                                           as->dma_addr_rx_bbuf);
1710                 }
1711         }
1712
1713         spin_lock_irq(&as->lock);
1714         spi_writel(as, CR, SPI_BIT(SWRST));
1715         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1716         spi_readl(as, SR);
1717         spin_unlock_irq(&as->lock);
1718
1719         clk_disable_unprepare(as->clk);
1720
1721         pm_runtime_put_noidle(&pdev->dev);
1722         pm_runtime_disable(&pdev->dev);
1723
1724         return 0;
1725 }
1726
1727 #ifdef CONFIG_PM
1728 static int atmel_spi_runtime_suspend(struct device *dev)
1729 {
1730         struct spi_master *master = dev_get_drvdata(dev);
1731         struct atmel_spi *as = spi_master_get_devdata(master);
1732
1733         clk_disable_unprepare(as->clk);
1734         pinctrl_pm_select_sleep_state(dev);
1735
1736         return 0;
1737 }
1738
1739 static int atmel_spi_runtime_resume(struct device *dev)
1740 {
1741         struct spi_master *master = dev_get_drvdata(dev);
1742         struct atmel_spi *as = spi_master_get_devdata(master);
1743
1744         pinctrl_pm_select_default_state(dev);
1745
1746         return clk_prepare_enable(as->clk);
1747 }
1748
1749 #ifdef CONFIG_PM_SLEEP
1750 static int atmel_spi_suspend(struct device *dev)
1751 {
1752         struct spi_master *master = dev_get_drvdata(dev);
1753         int ret;
1754
1755         /* Stop the queue running */
1756         ret = spi_master_suspend(master);
1757         if (ret)
1758                 return ret;
1759
1760         if (!pm_runtime_suspended(dev))
1761                 atmel_spi_runtime_suspend(dev);
1762
1763         return 0;
1764 }
1765
1766 static int atmel_spi_resume(struct device *dev)
1767 {
1768         struct spi_master *master = dev_get_drvdata(dev);
1769         struct atmel_spi *as = spi_master_get_devdata(master);
1770         int ret;
1771
1772         ret = clk_prepare_enable(as->clk);
1773         if (ret)
1774                 return ret;
1775
1776         atmel_spi_init(as);
1777
1778         clk_disable_unprepare(as->clk);
1779
1780         if (!pm_runtime_suspended(dev)) {
1781                 ret = atmel_spi_runtime_resume(dev);
1782                 if (ret)
1783                         return ret;
1784         }
1785
1786         /* Start the queue running */
1787         return spi_master_resume(master);
1788 }
1789 #endif
1790
1791 static const struct dev_pm_ops atmel_spi_pm_ops = {
1792         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1793         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1794                            atmel_spi_runtime_resume, NULL)
1795 };
1796 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1797 #else
1798 #define ATMEL_SPI_PM_OPS        NULL
1799 #endif
1800
1801 static const struct of_device_id atmel_spi_dt_ids[] = {
1802         { .compatible = "atmel,at91rm9200-spi" },
1803         { /* sentinel */ }
1804 };
1805
1806 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1807
1808 static struct platform_driver atmel_spi_driver = {
1809         .driver         = {
1810                 .name   = "atmel_spi",
1811                 .pm     = ATMEL_SPI_PM_OPS,
1812                 .of_match_table = atmel_spi_dt_ids,
1813         },
1814         .probe          = atmel_spi_probe,
1815         .remove         = atmel_spi_remove,
1816 };
1817 module_platform_driver(atmel_spi_driver);
1818
1819 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1820 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1821 MODULE_LICENSE("GPL");
1822 MODULE_ALIAS("platform:atmel_spi");