tracing: Apply trace filters on all output channels
[linux-2.6-microblaze.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26
27 /* SPI register offsets */
28 #define SPI_CR                                  0x0000
29 #define SPI_MR                                  0x0004
30 #define SPI_RDR                                 0x0008
31 #define SPI_TDR                                 0x000c
32 #define SPI_SR                                  0x0010
33 #define SPI_IER                                 0x0014
34 #define SPI_IDR                                 0x0018
35 #define SPI_IMR                                 0x001c
36 #define SPI_CSR0                                0x0030
37 #define SPI_CSR1                                0x0034
38 #define SPI_CSR2                                0x0038
39 #define SPI_CSR3                                0x003c
40 #define SPI_FMR                                 0x0040
41 #define SPI_FLR                                 0x0044
42 #define SPI_VERSION                             0x00fc
43 #define SPI_RPR                                 0x0100
44 #define SPI_RCR                                 0x0104
45 #define SPI_TPR                                 0x0108
46 #define SPI_TCR                                 0x010c
47 #define SPI_RNPR                                0x0110
48 #define SPI_RNCR                                0x0114
49 #define SPI_TNPR                                0x0118
50 #define SPI_TNCR                                0x011c
51 #define SPI_PTCR                                0x0120
52 #define SPI_PTSR                                0x0124
53
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET                        0
56 #define SPI_SPIEN_SIZE                          1
57 #define SPI_SPIDIS_OFFSET                       1
58 #define SPI_SPIDIS_SIZE                         1
59 #define SPI_SWRST_OFFSET                        7
60 #define SPI_SWRST_SIZE                          1
61 #define SPI_LASTXFER_OFFSET                     24
62 #define SPI_LASTXFER_SIZE                       1
63 #define SPI_TXFCLR_OFFSET                       16
64 #define SPI_TXFCLR_SIZE                         1
65 #define SPI_RXFCLR_OFFSET                       17
66 #define SPI_RXFCLR_SIZE                         1
67 #define SPI_FIFOEN_OFFSET                       30
68 #define SPI_FIFOEN_SIZE                         1
69 #define SPI_FIFODIS_OFFSET                      31
70 #define SPI_FIFODIS_SIZE                        1
71
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET                         0
74 #define SPI_MSTR_SIZE                           1
75 #define SPI_PS_OFFSET                           1
76 #define SPI_PS_SIZE                             1
77 #define SPI_PCSDEC_OFFSET                       2
78 #define SPI_PCSDEC_SIZE                         1
79 #define SPI_FDIV_OFFSET                         3
80 #define SPI_FDIV_SIZE                           1
81 #define SPI_MODFDIS_OFFSET                      4
82 #define SPI_MODFDIS_SIZE                        1
83 #define SPI_WDRBT_OFFSET                        5
84 #define SPI_WDRBT_SIZE                          1
85 #define SPI_LLB_OFFSET                          7
86 #define SPI_LLB_SIZE                            1
87 #define SPI_PCS_OFFSET                          16
88 #define SPI_PCS_SIZE                            4
89 #define SPI_DLYBCS_OFFSET                       24
90 #define SPI_DLYBCS_SIZE                         8
91
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET                           0
94 #define SPI_RD_SIZE                             16
95
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET                           0
98 #define SPI_TD_SIZE                             16
99
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET                         0
102 #define SPI_RDRF_SIZE                           1
103 #define SPI_TDRE_OFFSET                         1
104 #define SPI_TDRE_SIZE                           1
105 #define SPI_MODF_OFFSET                         2
106 #define SPI_MODF_SIZE                           1
107 #define SPI_OVRES_OFFSET                        3
108 #define SPI_OVRES_SIZE                          1
109 #define SPI_ENDRX_OFFSET                        4
110 #define SPI_ENDRX_SIZE                          1
111 #define SPI_ENDTX_OFFSET                        5
112 #define SPI_ENDTX_SIZE                          1
113 #define SPI_RXBUFF_OFFSET                       6
114 #define SPI_RXBUFF_SIZE                         1
115 #define SPI_TXBUFE_OFFSET                       7
116 #define SPI_TXBUFE_SIZE                         1
117 #define SPI_NSSR_OFFSET                         8
118 #define SPI_NSSR_SIZE                           1
119 #define SPI_TXEMPTY_OFFSET                      9
120 #define SPI_TXEMPTY_SIZE                        1
121 #define SPI_SPIENS_OFFSET                       16
122 #define SPI_SPIENS_SIZE                         1
123 #define SPI_TXFEF_OFFSET                        24
124 #define SPI_TXFEF_SIZE                          1
125 #define SPI_TXFFF_OFFSET                        25
126 #define SPI_TXFFF_SIZE                          1
127 #define SPI_TXFTHF_OFFSET                       26
128 #define SPI_TXFTHF_SIZE                         1
129 #define SPI_RXFEF_OFFSET                        27
130 #define SPI_RXFEF_SIZE                          1
131 #define SPI_RXFFF_OFFSET                        28
132 #define SPI_RXFFF_SIZE                          1
133 #define SPI_RXFTHF_OFFSET                       29
134 #define SPI_RXFTHF_SIZE                         1
135 #define SPI_TXFPTEF_OFFSET                      30
136 #define SPI_TXFPTEF_SIZE                        1
137 #define SPI_RXFPTEF_OFFSET                      31
138 #define SPI_RXFPTEF_SIZE                        1
139
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET                         0
142 #define SPI_CPOL_SIZE                           1
143 #define SPI_NCPHA_OFFSET                        1
144 #define SPI_NCPHA_SIZE                          1
145 #define SPI_CSAAT_OFFSET                        3
146 #define SPI_CSAAT_SIZE                          1
147 #define SPI_BITS_OFFSET                         4
148 #define SPI_BITS_SIZE                           4
149 #define SPI_SCBR_OFFSET                         8
150 #define SPI_SCBR_SIZE                           8
151 #define SPI_DLYBS_OFFSET                        16
152 #define SPI_DLYBS_SIZE                          8
153 #define SPI_DLYBCT_OFFSET                       24
154 #define SPI_DLYBCT_SIZE                         8
155
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET                        0
158 #define SPI_RXCTR_SIZE                          16
159
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET                        0
162 #define SPI_TXCTR_SIZE                          16
163
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET                        0
166 #define SPI_RXNCR_SIZE                          16
167
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET                        0
170 #define SPI_TXNCR_SIZE                          16
171
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET                        0
174 #define SPI_RXTEN_SIZE                          1
175 #define SPI_RXTDIS_OFFSET                       1
176 #define SPI_RXTDIS_SIZE                         1
177 #define SPI_TXTEN_OFFSET                        8
178 #define SPI_TXTEN_SIZE                          1
179 #define SPI_TXTDIS_OFFSET                       9
180 #define SPI_TXTDIS_SIZE                         1
181
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET                       0
184 #define SPI_TXRDYM_SIZE                         2
185 #define SPI_RXRDYM_OFFSET                       4
186 #define SPI_RXRDYM_SIZE                         2
187 #define SPI_TXFTHRES_OFFSET                     16
188 #define SPI_TXFTHRES_SIZE                       6
189 #define SPI_RXFTHRES_OFFSET                     24
190 #define SPI_RXFTHRES_SIZE                       6
191
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET                         0
194 #define SPI_TXFL_SIZE                           6
195 #define SPI_RXFL_OFFSET                         16
196 #define SPI_RXFL_SIZE                           6
197
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT                          0
200 #define SPI_BITS_9_BPT                          1
201 #define SPI_BITS_10_BPT                         2
202 #define SPI_BITS_11_BPT                         3
203 #define SPI_BITS_12_BPT                         4
204 #define SPI_BITS_13_BPT                         5
205 #define SPI_BITS_14_BPT                         6
206 #define SPI_BITS_15_BPT                         7
207 #define SPI_BITS_16_BPT                         8
208 #define SPI_ONE_DATA                            0
209 #define SPI_TWO_DATA                            1
210 #define SPI_FOUR_DATA                           2
211
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214         (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221           | SPI_BF(name, value))
222
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225         readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227         writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229         writew_relaxed((value), (port)->regs + SPI_##reg)
230
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232  * cache operations; better heuristics consider wordsize and bitrate.
233  */
234 #define DMA_MIN_BYTES   16
235
236 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
237
238 #define AUTOSUSPEND_TIMEOUT     2000
239
240 struct atmel_spi_caps {
241         bool    is_spi2;
242         bool    has_wdrbt;
243         bool    has_dma_support;
244         bool    has_pdc_support;
245 };
246
247 /*
248  * The core SPI transfer engine just talks to a register bank to set up
249  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
250  * framework provides the base clock, subdivided for each spi_device.
251  */
252 struct atmel_spi {
253         spinlock_t              lock;
254         unsigned long           flags;
255
256         phys_addr_t             phybase;
257         void __iomem            *regs;
258         int                     irq;
259         struct clk              *clk;
260         struct platform_device  *pdev;
261         unsigned long           spi_clk;
262
263         struct spi_transfer     *current_transfer;
264         int                     current_remaining_bytes;
265         int                     done_status;
266         dma_addr_t              dma_addr_rx_bbuf;
267         dma_addr_t              dma_addr_tx_bbuf;
268         void                    *addr_rx_bbuf;
269         void                    *addr_tx_bbuf;
270
271         struct completion       xfer_completion;
272
273         struct atmel_spi_caps   caps;
274
275         bool                    use_dma;
276         bool                    use_pdc;
277
278         bool                    keep_cs;
279
280         u32                     fifo_size;
281         u8                      native_cs_free;
282         u8                      native_cs_for_gpio;
283 };
284
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287         u32                     csr;
288 };
289
290 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS     0xffffffff
292
293 /*
294  * Version 2 of the SPI controller has
295  *  - CR.LASTXFER
296  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298  *  - SPI_CSRx.CSAAT
299  *  - SPI_CSRx.SBCR allows faster clocking
300  */
301 static bool atmel_spi_is_v2(struct atmel_spi *as)
302 {
303         return as->caps.is_spi2;
304 }
305
306 /*
307  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308  * they assume that spi slave device state will not change on deselect, so
309  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
310  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
311  * controllers have CSAAT and friends.
312  *
313  * Even controller newer than ar91rm9200, using GPIOs can make sens as
314  * it lets us support active-high chipselects despite the controller's
315  * belief that only active-low devices/systems exists.
316  *
317  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318  * right when driven with GPIO.  ("Mode Fault does not allow more than one
319  * Master on Chip Select 0.")  No workaround exists for that ... so for
320  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321  * and (c) will trigger that first erratum in some cases.
322  */
323
324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325 {
326         struct atmel_spi_device *asd = spi->controller_state;
327         int chip_select;
328         u32 mr;
329
330         if (spi->cs_gpiod)
331                 chip_select = as->native_cs_for_gpio;
332         else
333                 chip_select = spi->chip_select;
334
335         if (atmel_spi_is_v2(as)) {
336                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337                 /* For the low SPI version, there is a issue that PDC transfer
338                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339                  */
340                 spi_writel(as, CSR0, asd->csr);
341                 if (as->caps.has_wdrbt) {
342                         spi_writel(as, MR,
343                                         SPI_BF(PCS, ~(0x01 << chip_select))
344                                         | SPI_BIT(WDRBT)
345                                         | SPI_BIT(MODFDIS)
346                                         | SPI_BIT(MSTR));
347                 } else {
348                         spi_writel(as, MR,
349                                         SPI_BF(PCS, ~(0x01 << chip_select))
350                                         | SPI_BIT(MODFDIS)
351                                         | SPI_BIT(MSTR));
352                 }
353
354                 mr = spi_readl(as, MR);
355                 if (spi->cs_gpiod)
356                         gpiod_set_value(spi->cs_gpiod, 1);
357         } else {
358                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
359                 int i;
360                 u32 csr;
361
362                 /* Make sure clock polarity is correct */
363                 for (i = 0; i < spi->master->num_chipselect; i++) {
364                         csr = spi_readl(as, CSR0 + 4 * i);
365                         if ((csr ^ cpol) & SPI_BIT(CPOL))
366                                 spi_writel(as, CSR0 + 4 * i,
367                                                 csr ^ SPI_BIT(CPOL));
368                 }
369
370                 mr = spi_readl(as, MR);
371                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
372                 if (spi->cs_gpiod)
373                         gpiod_set_value(spi->cs_gpiod, 1);
374                 spi_writel(as, MR, mr);
375         }
376
377         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
378 }
379
380 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
381 {
382         int chip_select;
383         u32 mr;
384
385         if (spi->cs_gpiod)
386                 chip_select = as->native_cs_for_gpio;
387         else
388                 chip_select = spi->chip_select;
389
390         /* only deactivate *this* device; sometimes transfers to
391          * another device may be active when this routine is called.
392          */
393         mr = spi_readl(as, MR);
394         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
395                 mr = SPI_BFINS(PCS, 0xf, mr);
396                 spi_writel(as, MR, mr);
397         }
398
399         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
400
401         if (!spi->cs_gpiod)
402                 spi_writel(as, CR, SPI_BIT(LASTXFER));
403         else
404                 gpiod_set_value(spi->cs_gpiod, 0);
405 }
406
407 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
408 {
409         spin_lock_irqsave(&as->lock, as->flags);
410 }
411
412 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
413 {
414         spin_unlock_irqrestore(&as->lock, as->flags);
415 }
416
417 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
418 {
419         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
420 }
421
422 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
423                                 struct spi_transfer *xfer)
424 {
425         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
426 }
427
428 static bool atmel_spi_can_dma(struct spi_master *master,
429                               struct spi_device *spi,
430                               struct spi_transfer *xfer)
431 {
432         struct atmel_spi *as = spi_master_get_devdata(master);
433
434         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
435                 return atmel_spi_use_dma(as, xfer) &&
436                         !atmel_spi_is_vmalloc_xfer(xfer);
437         else
438                 return atmel_spi_use_dma(as, xfer);
439
440 }
441
442 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
443                                 struct dma_slave_config *slave_config,
444                                 u8 bits_per_word)
445 {
446         struct spi_master *master = platform_get_drvdata(as->pdev);
447         int err = 0;
448
449         if (bits_per_word > 8) {
450                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
451                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452         } else {
453                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
454                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455         }
456
457         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
458         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
459         slave_config->src_maxburst = 1;
460         slave_config->dst_maxburst = 1;
461         slave_config->device_fc = false;
462
463         /*
464          * This driver uses fixed peripheral select mode (PS bit set to '0' in
465          * the Mode Register).
466          * So according to the datasheet, when FIFOs are available (and
467          * enabled), the Transmit FIFO operates in Multiple Data Mode.
468          * In this mode, up to 2 data, not 4, can be written into the Transmit
469          * Data Register in a single access.
470          * However, the first data has to be written into the lowest 16 bits and
471          * the second data into the highest 16 bits of the Transmit
472          * Data Register. For 8bit data (the most frequent case), it would
473          * require to rework tx_buf so each data would actualy fit 16 bits.
474          * So we'd rather write only one data at the time. Hence the transmit
475          * path works the same whether FIFOs are available (and enabled) or not.
476          */
477         slave_config->direction = DMA_MEM_TO_DEV;
478         if (dmaengine_slave_config(master->dma_tx, slave_config)) {
479                 dev_err(&as->pdev->dev,
480                         "failed to configure tx dma channel\n");
481                 err = -EINVAL;
482         }
483
484         /*
485          * This driver configures the spi controller for master mode (MSTR bit
486          * set to '1' in the Mode Register).
487          * So according to the datasheet, when FIFOs are available (and
488          * enabled), the Receive FIFO operates in Single Data Mode.
489          * So the receive path works the same whether FIFOs are available (and
490          * enabled) or not.
491          */
492         slave_config->direction = DMA_DEV_TO_MEM;
493         if (dmaengine_slave_config(master->dma_rx, slave_config)) {
494                 dev_err(&as->pdev->dev,
495                         "failed to configure rx dma channel\n");
496                 err = -EINVAL;
497         }
498
499         return err;
500 }
501
502 static int atmel_spi_configure_dma(struct spi_master *master,
503                                    struct atmel_spi *as)
504 {
505         struct dma_slave_config slave_config;
506         struct device *dev = &as->pdev->dev;
507         int err;
508
509         master->dma_tx = dma_request_chan(dev, "tx");
510         if (IS_ERR(master->dma_tx)) {
511                 err = PTR_ERR(master->dma_tx);
512                 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
513                 goto error_clear;
514         }
515
516         master->dma_rx = dma_request_chan(dev, "rx");
517         if (IS_ERR(master->dma_rx)) {
518                 err = PTR_ERR(master->dma_rx);
519                 /*
520                  * No reason to check EPROBE_DEFER here since we have already
521                  * requested tx channel.
522                  */
523                 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
524                 goto error;
525         }
526
527         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
528         if (err)
529                 goto error;
530
531         dev_info(&as->pdev->dev,
532                         "Using %s (tx) and %s (rx) for DMA transfers\n",
533                         dma_chan_name(master->dma_tx),
534                         dma_chan_name(master->dma_rx));
535
536         return 0;
537 error:
538         if (!IS_ERR(master->dma_rx))
539                 dma_release_channel(master->dma_rx);
540         if (!IS_ERR(master->dma_tx))
541                 dma_release_channel(master->dma_tx);
542 error_clear:
543         master->dma_tx = master->dma_rx = NULL;
544         return err;
545 }
546
547 static void atmel_spi_stop_dma(struct spi_master *master)
548 {
549         if (master->dma_rx)
550                 dmaengine_terminate_all(master->dma_rx);
551         if (master->dma_tx)
552                 dmaengine_terminate_all(master->dma_tx);
553 }
554
555 static void atmel_spi_release_dma(struct spi_master *master)
556 {
557         if (master->dma_rx) {
558                 dma_release_channel(master->dma_rx);
559                 master->dma_rx = NULL;
560         }
561         if (master->dma_tx) {
562                 dma_release_channel(master->dma_tx);
563                 master->dma_tx = NULL;
564         }
565 }
566
567 /* This function is called by the DMA driver from tasklet context */
568 static void dma_callback(void *data)
569 {
570         struct spi_master       *master = data;
571         struct atmel_spi        *as = spi_master_get_devdata(master);
572
573         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
574             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
575                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
576                        as->current_transfer->len);
577         }
578         complete(&as->xfer_completion);
579 }
580
581 /*
582  * Next transfer using PIO without FIFO.
583  */
584 static void atmel_spi_next_xfer_single(struct spi_master *master,
585                                        struct spi_transfer *xfer)
586 {
587         struct atmel_spi        *as = spi_master_get_devdata(master);
588         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
589
590         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
591
592         /* Make sure data is not remaining in RDR */
593         spi_readl(as, RDR);
594         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
595                 spi_readl(as, RDR);
596                 cpu_relax();
597         }
598
599         if (xfer->bits_per_word > 8)
600                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
601         else
602                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
603
604         dev_dbg(master->dev.parent,
605                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
606                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
607                 xfer->bits_per_word);
608
609         /* Enable relevant interrupts */
610         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
611 }
612
613 /*
614  * Next transfer using PIO with FIFO.
615  */
616 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
617                                      struct spi_transfer *xfer)
618 {
619         struct atmel_spi *as = spi_master_get_devdata(master);
620         u32 current_remaining_data, num_data;
621         u32 offset = xfer->len - as->current_remaining_bytes;
622         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
623         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
624         u16 td0, td1;
625         u32 fifomr;
626
627         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
628
629         /* Compute the number of data to transfer in the current iteration */
630         current_remaining_data = ((xfer->bits_per_word > 8) ?
631                                   ((u32)as->current_remaining_bytes >> 1) :
632                                   (u32)as->current_remaining_bytes);
633         num_data = min(current_remaining_data, as->fifo_size);
634
635         /* Flush RX and TX FIFOs */
636         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
637         while (spi_readl(as, FLR))
638                 cpu_relax();
639
640         /* Set RX FIFO Threshold to the number of data to transfer */
641         fifomr = spi_readl(as, FMR);
642         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
643
644         /* Clear FIFO flags in the Status Register, especially RXFTHF */
645         (void)spi_readl(as, SR);
646
647         /* Fill TX FIFO */
648         while (num_data >= 2) {
649                 if (xfer->bits_per_word > 8) {
650                         td0 = *words++;
651                         td1 = *words++;
652                 } else {
653                         td0 = *bytes++;
654                         td1 = *bytes++;
655                 }
656
657                 spi_writel(as, TDR, (td1 << 16) | td0);
658                 num_data -= 2;
659         }
660
661         if (num_data) {
662                 if (xfer->bits_per_word > 8)
663                         td0 = *words++;
664                 else
665                         td0 = *bytes++;
666
667                 spi_writew(as, TDR, td0);
668                 num_data--;
669         }
670
671         dev_dbg(master->dev.parent,
672                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
673                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
674                 xfer->bits_per_word);
675
676         /*
677          * Enable RX FIFO Threshold Flag interrupt to be notified about
678          * transfer completion.
679          */
680         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
681 }
682
683 /*
684  * Next transfer using PIO.
685  */
686 static void atmel_spi_next_xfer_pio(struct spi_master *master,
687                                     struct spi_transfer *xfer)
688 {
689         struct atmel_spi *as = spi_master_get_devdata(master);
690
691         if (as->fifo_size)
692                 atmel_spi_next_xfer_fifo(master, xfer);
693         else
694                 atmel_spi_next_xfer_single(master, xfer);
695 }
696
697 /*
698  * Submit next transfer for DMA.
699  */
700 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
701                                 struct spi_transfer *xfer,
702                                 u32 *plen)
703 {
704         struct atmel_spi        *as = spi_master_get_devdata(master);
705         struct dma_chan         *rxchan = master->dma_rx;
706         struct dma_chan         *txchan = master->dma_tx;
707         struct dma_async_tx_descriptor *rxdesc;
708         struct dma_async_tx_descriptor *txdesc;
709         struct dma_slave_config slave_config;
710         dma_cookie_t            cookie;
711
712         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
713
714         /* Check that the channels are available */
715         if (!rxchan || !txchan)
716                 return -ENODEV;
717
718
719         *plen = xfer->len;
720
721         if (atmel_spi_dma_slave_config(as, &slave_config,
722                                        xfer->bits_per_word))
723                 goto err_exit;
724
725         /* Send both scatterlists */
726         if (atmel_spi_is_vmalloc_xfer(xfer) &&
727             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
728                 rxdesc = dmaengine_prep_slave_single(rxchan,
729                                                      as->dma_addr_rx_bbuf,
730                                                      xfer->len,
731                                                      DMA_DEV_TO_MEM,
732                                                      DMA_PREP_INTERRUPT |
733                                                      DMA_CTRL_ACK);
734         } else {
735                 rxdesc = dmaengine_prep_slave_sg(rxchan,
736                                                  xfer->rx_sg.sgl,
737                                                  xfer->rx_sg.nents,
738                                                  DMA_DEV_TO_MEM,
739                                                  DMA_PREP_INTERRUPT |
740                                                  DMA_CTRL_ACK);
741         }
742         if (!rxdesc)
743                 goto err_dma;
744
745         if (atmel_spi_is_vmalloc_xfer(xfer) &&
746             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
747                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
748                 txdesc = dmaengine_prep_slave_single(txchan,
749                                                      as->dma_addr_tx_bbuf,
750                                                      xfer->len, DMA_MEM_TO_DEV,
751                                                      DMA_PREP_INTERRUPT |
752                                                      DMA_CTRL_ACK);
753         } else {
754                 txdesc = dmaengine_prep_slave_sg(txchan,
755                                                  xfer->tx_sg.sgl,
756                                                  xfer->tx_sg.nents,
757                                                  DMA_MEM_TO_DEV,
758                                                  DMA_PREP_INTERRUPT |
759                                                  DMA_CTRL_ACK);
760         }
761         if (!txdesc)
762                 goto err_dma;
763
764         dev_dbg(master->dev.parent,
765                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
766                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
767                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
768
769         /* Enable relevant interrupts */
770         spi_writel(as, IER, SPI_BIT(OVRES));
771
772         /* Put the callback on the RX transfer only, that should finish last */
773         rxdesc->callback = dma_callback;
774         rxdesc->callback_param = master;
775
776         /* Submit and fire RX and TX with TX last so we're ready to read! */
777         cookie = rxdesc->tx_submit(rxdesc);
778         if (dma_submit_error(cookie))
779                 goto err_dma;
780         cookie = txdesc->tx_submit(txdesc);
781         if (dma_submit_error(cookie))
782                 goto err_dma;
783         rxchan->device->device_issue_pending(rxchan);
784         txchan->device->device_issue_pending(txchan);
785
786         return 0;
787
788 err_dma:
789         spi_writel(as, IDR, SPI_BIT(OVRES));
790         atmel_spi_stop_dma(master);
791 err_exit:
792         return -ENOMEM;
793 }
794
795 static void atmel_spi_next_xfer_data(struct spi_master *master,
796                                 struct spi_transfer *xfer,
797                                 dma_addr_t *tx_dma,
798                                 dma_addr_t *rx_dma,
799                                 u32 *plen)
800 {
801         *rx_dma = xfer->rx_dma + xfer->len - *plen;
802         *tx_dma = xfer->tx_dma + xfer->len - *plen;
803         if (*plen > master->max_dma_len)
804                 *plen = master->max_dma_len;
805 }
806
807 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
808                                     struct spi_device *spi,
809                                     struct spi_transfer *xfer)
810 {
811         u32                     scbr, csr;
812         unsigned long           bus_hz;
813         int chip_select;
814
815         if (spi->cs_gpiod)
816                 chip_select = as->native_cs_for_gpio;
817         else
818                 chip_select = spi->chip_select;
819
820         /* v1 chips start out at half the peripheral bus speed. */
821         bus_hz = as->spi_clk;
822         if (!atmel_spi_is_v2(as))
823                 bus_hz /= 2;
824
825         /*
826          * Calculate the lowest divider that satisfies the
827          * constraint, assuming div32/fdiv/mbz == 0.
828          */
829         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
830
831         /*
832          * If the resulting divider doesn't fit into the
833          * register bitfield, we can't satisfy the constraint.
834          */
835         if (scbr >= (1 << SPI_SCBR_SIZE)) {
836                 dev_err(&spi->dev,
837                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
838                         xfer->speed_hz, scbr, bus_hz/255);
839                 return -EINVAL;
840         }
841         if (scbr == 0) {
842                 dev_err(&spi->dev,
843                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
844                         xfer->speed_hz, scbr, bus_hz);
845                 return -EINVAL;
846         }
847         csr = spi_readl(as, CSR0 + 4 * chip_select);
848         csr = SPI_BFINS(SCBR, scbr, csr);
849         spi_writel(as, CSR0 + 4 * chip_select, csr);
850         xfer->effective_speed_hz = bus_hz / scbr;
851
852         return 0;
853 }
854
855 /*
856  * Submit next transfer for PDC.
857  * lock is held, spi irq is blocked
858  */
859 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
860                                         struct spi_transfer *xfer)
861 {
862         struct atmel_spi        *as = spi_master_get_devdata(master);
863         u32                     len;
864         dma_addr_t              tx_dma, rx_dma;
865
866         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
867
868         len = as->current_remaining_bytes;
869         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
870         as->current_remaining_bytes -= len;
871
872         spi_writel(as, RPR, rx_dma);
873         spi_writel(as, TPR, tx_dma);
874
875         if (xfer->bits_per_word > 8)
876                 len >>= 1;
877         spi_writel(as, RCR, len);
878         spi_writel(as, TCR, len);
879
880         dev_dbg(&master->dev,
881                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
882                 xfer, xfer->len, xfer->tx_buf,
883                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
884                 (unsigned long long)xfer->rx_dma);
885
886         if (as->current_remaining_bytes) {
887                 len = as->current_remaining_bytes;
888                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
889                 as->current_remaining_bytes -= len;
890
891                 spi_writel(as, RNPR, rx_dma);
892                 spi_writel(as, TNPR, tx_dma);
893
894                 if (xfer->bits_per_word > 8)
895                         len >>= 1;
896                 spi_writel(as, RNCR, len);
897                 spi_writel(as, TNCR, len);
898
899                 dev_dbg(&master->dev,
900                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
901                         xfer, xfer->len, xfer->tx_buf,
902                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
903                         (unsigned long long)xfer->rx_dma);
904         }
905
906         /* REVISIT: We're waiting for RXBUFF before we start the next
907          * transfer because we need to handle some difficult timing
908          * issues otherwise. If we wait for TXBUFE in one transfer and
909          * then starts waiting for RXBUFF in the next, it's difficult
910          * to tell the difference between the RXBUFF interrupt we're
911          * actually waiting for and the RXBUFF interrupt of the
912          * previous transfer.
913          *
914          * It should be doable, though. Just not now...
915          */
916         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
917         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
918 }
919
920 /*
921  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
922  *  - The buffer is either valid for CPU access, else NULL
923  *  - If the buffer is valid, so is its DMA address
924  *
925  * This driver manages the dma address unless message->is_dma_mapped.
926  */
927 static int
928 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
929 {
930         struct device   *dev = &as->pdev->dev;
931
932         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
933         if (xfer->tx_buf) {
934                 /* tx_buf is a const void* where we need a void * for the dma
935                  * mapping */
936                 void *nonconst_tx = (void *)xfer->tx_buf;
937
938                 xfer->tx_dma = dma_map_single(dev,
939                                 nonconst_tx, xfer->len,
940                                 DMA_TO_DEVICE);
941                 if (dma_mapping_error(dev, xfer->tx_dma))
942                         return -ENOMEM;
943         }
944         if (xfer->rx_buf) {
945                 xfer->rx_dma = dma_map_single(dev,
946                                 xfer->rx_buf, xfer->len,
947                                 DMA_FROM_DEVICE);
948                 if (dma_mapping_error(dev, xfer->rx_dma)) {
949                         if (xfer->tx_buf)
950                                 dma_unmap_single(dev,
951                                                 xfer->tx_dma, xfer->len,
952                                                 DMA_TO_DEVICE);
953                         return -ENOMEM;
954                 }
955         }
956         return 0;
957 }
958
959 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
960                                      struct spi_transfer *xfer)
961 {
962         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
963                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
964                                  xfer->len, DMA_TO_DEVICE);
965         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
966                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
967                                  xfer->len, DMA_FROM_DEVICE);
968 }
969
970 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
971 {
972         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
973 }
974
975 static void
976 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
977 {
978         u8              *rxp;
979         u16             *rxp16;
980         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
981
982         if (xfer->bits_per_word > 8) {
983                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
984                 *rxp16 = spi_readl(as, RDR);
985         } else {
986                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
987                 *rxp = spi_readl(as, RDR);
988         }
989         if (xfer->bits_per_word > 8) {
990                 if (as->current_remaining_bytes > 2)
991                         as->current_remaining_bytes -= 2;
992                 else
993                         as->current_remaining_bytes = 0;
994         } else {
995                 as->current_remaining_bytes--;
996         }
997 }
998
999 static void
1000 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1001 {
1002         u32 fifolr = spi_readl(as, FLR);
1003         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1004         u32 offset = xfer->len - as->current_remaining_bytes;
1005         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1006         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1007         u16 rd; /* RD field is the lowest 16 bits of RDR */
1008
1009         /* Update the number of remaining bytes to transfer */
1010         num_bytes = ((xfer->bits_per_word > 8) ?
1011                      (num_data << 1) :
1012                      num_data);
1013
1014         if (as->current_remaining_bytes > num_bytes)
1015                 as->current_remaining_bytes -= num_bytes;
1016         else
1017                 as->current_remaining_bytes = 0;
1018
1019         /* Handle odd number of bytes when data are more than 8bit width */
1020         if (xfer->bits_per_word > 8)
1021                 as->current_remaining_bytes &= ~0x1;
1022
1023         /* Read data */
1024         while (num_data) {
1025                 rd = spi_readl(as, RDR);
1026                 if (xfer->bits_per_word > 8)
1027                         *words++ = rd;
1028                 else
1029                         *bytes++ = rd;
1030                 num_data--;
1031         }
1032 }
1033
1034 /* Called from IRQ
1035  *
1036  * Must update "current_remaining_bytes" to keep track of data
1037  * to transfer.
1038  */
1039 static void
1040 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1041 {
1042         if (as->fifo_size)
1043                 atmel_spi_pump_fifo_data(as, xfer);
1044         else
1045                 atmel_spi_pump_single_data(as, xfer);
1046 }
1047
1048 /* Interrupt
1049  *
1050  */
1051 static irqreturn_t
1052 atmel_spi_pio_interrupt(int irq, void *dev_id)
1053 {
1054         struct spi_master       *master = dev_id;
1055         struct atmel_spi        *as = spi_master_get_devdata(master);
1056         u32                     status, pending, imr;
1057         struct spi_transfer     *xfer;
1058         int                     ret = IRQ_NONE;
1059
1060         imr = spi_readl(as, IMR);
1061         status = spi_readl(as, SR);
1062         pending = status & imr;
1063
1064         if (pending & SPI_BIT(OVRES)) {
1065                 ret = IRQ_HANDLED;
1066                 spi_writel(as, IDR, SPI_BIT(OVRES));
1067                 dev_warn(master->dev.parent, "overrun\n");
1068
1069                 /*
1070                  * When we get an overrun, we disregard the current
1071                  * transfer. Data will not be copied back from any
1072                  * bounce buffer and msg->actual_len will not be
1073                  * updated with the last xfer.
1074                  *
1075                  * We will also not process any remaning transfers in
1076                  * the message.
1077                  */
1078                 as->done_status = -EIO;
1079                 smp_wmb();
1080
1081                 /* Clear any overrun happening while cleaning up */
1082                 spi_readl(as, SR);
1083
1084                 complete(&as->xfer_completion);
1085
1086         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1087                 atmel_spi_lock(as);
1088
1089                 if (as->current_remaining_bytes) {
1090                         ret = IRQ_HANDLED;
1091                         xfer = as->current_transfer;
1092                         atmel_spi_pump_pio_data(as, xfer);
1093                         if (!as->current_remaining_bytes)
1094                                 spi_writel(as, IDR, pending);
1095
1096                         complete(&as->xfer_completion);
1097                 }
1098
1099                 atmel_spi_unlock(as);
1100         } else {
1101                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1102                 ret = IRQ_HANDLED;
1103                 spi_writel(as, IDR, pending);
1104         }
1105
1106         return ret;
1107 }
1108
1109 static irqreturn_t
1110 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1111 {
1112         struct spi_master       *master = dev_id;
1113         struct atmel_spi        *as = spi_master_get_devdata(master);
1114         u32                     status, pending, imr;
1115         int                     ret = IRQ_NONE;
1116
1117         imr = spi_readl(as, IMR);
1118         status = spi_readl(as, SR);
1119         pending = status & imr;
1120
1121         if (pending & SPI_BIT(OVRES)) {
1122
1123                 ret = IRQ_HANDLED;
1124
1125                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1126                                      | SPI_BIT(OVRES)));
1127
1128                 /* Clear any overrun happening while cleaning up */
1129                 spi_readl(as, SR);
1130
1131                 as->done_status = -EIO;
1132
1133                 complete(&as->xfer_completion);
1134
1135         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1136                 ret = IRQ_HANDLED;
1137
1138                 spi_writel(as, IDR, pending);
1139
1140                 complete(&as->xfer_completion);
1141         }
1142
1143         return ret;
1144 }
1145
1146 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1147 {
1148         struct spi_delay *delay = &spi->word_delay;
1149         u32 value = delay->value;
1150
1151         switch (delay->unit) {
1152         case SPI_DELAY_UNIT_NSECS:
1153                 value /= 1000;
1154                 break;
1155         case SPI_DELAY_UNIT_USECS:
1156                 break;
1157         default:
1158                 return -EINVAL;
1159         }
1160
1161         return (as->spi_clk / 1000000 * value) >> 5;
1162 }
1163
1164 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1165 {
1166         int i;
1167         struct spi_master *master = platform_get_drvdata(as->pdev);
1168
1169         if (!as->native_cs_free)
1170                 return; /* already initialized */
1171
1172         if (!master->cs_gpiods)
1173                 return; /* No CS GPIO */
1174
1175         /*
1176          * On the first version of the controller (AT91RM9200), CS0
1177          * can't be used associated with GPIO
1178          */
1179         if (atmel_spi_is_v2(as))
1180                 i = 0;
1181         else
1182                 i = 1;
1183
1184         for (; i < 4; i++)
1185                 if (master->cs_gpiods[i])
1186                         as->native_cs_free |= BIT(i);
1187
1188         if (as->native_cs_free)
1189                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1190 }
1191
1192 static int atmel_spi_setup(struct spi_device *spi)
1193 {
1194         struct atmel_spi        *as;
1195         struct atmel_spi_device *asd;
1196         u32                     csr;
1197         unsigned int            bits = spi->bits_per_word;
1198         int chip_select;
1199         int                     word_delay_csr;
1200
1201         as = spi_master_get_devdata(spi->master);
1202
1203         /* see notes above re chipselect */
1204         if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1205                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1206                 return -EINVAL;
1207         }
1208
1209         /* Setup() is called during spi_register_controller(aka
1210          * spi_register_master) but after all membmers of the cs_gpiod
1211          * array have been filled, so we can looked for which native
1212          * CS will be free for using with GPIO
1213          */
1214         initialize_native_cs_for_gpio(as);
1215
1216         if (spi->cs_gpiod && as->native_cs_free) {
1217                 dev_err(&spi->dev,
1218                         "No native CS available to support this GPIO CS\n");
1219                 return -EBUSY;
1220         }
1221
1222         if (spi->cs_gpiod)
1223                 chip_select = as->native_cs_for_gpio;
1224         else
1225                 chip_select = spi->chip_select;
1226
1227         csr = SPI_BF(BITS, bits - 8);
1228         if (spi->mode & SPI_CPOL)
1229                 csr |= SPI_BIT(CPOL);
1230         if (!(spi->mode & SPI_CPHA))
1231                 csr |= SPI_BIT(NCPHA);
1232
1233         if (!spi->cs_gpiod)
1234                 csr |= SPI_BIT(CSAAT);
1235         csr |= SPI_BF(DLYBS, 0);
1236
1237         word_delay_csr = atmel_word_delay_csr(spi, as);
1238         if (word_delay_csr < 0)
1239                 return word_delay_csr;
1240
1241         /* DLYBCT adds delays between words.  This is useful for slow devices
1242          * that need a bit of time to setup the next transfer.
1243          */
1244         csr |= SPI_BF(DLYBCT, word_delay_csr);
1245
1246         asd = spi->controller_state;
1247         if (!asd) {
1248                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1249                 if (!asd)
1250                         return -ENOMEM;
1251
1252                 spi->controller_state = asd;
1253         }
1254
1255         asd->csr = csr;
1256
1257         dev_dbg(&spi->dev,
1258                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1259                 bits, spi->mode, spi->chip_select, csr);
1260
1261         if (!atmel_spi_is_v2(as))
1262                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1263
1264         return 0;
1265 }
1266
1267 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1268 {
1269         struct atmel_spi *as = spi_master_get_devdata(spi->master);
1270         /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1271          * since we already have routines for activate/deactivate translate
1272          * high/low to active/inactive
1273          */
1274         enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1275
1276         if (enable) {
1277                 cs_activate(as, spi);
1278         } else {
1279                 cs_deactivate(as, spi);
1280         }
1281
1282 }
1283
1284 static int atmel_spi_one_transfer(struct spi_master *master,
1285                                         struct spi_device *spi,
1286                                         struct spi_transfer *xfer)
1287 {
1288         struct atmel_spi        *as;
1289         u8                      bits;
1290         u32                     len;
1291         struct atmel_spi_device *asd;
1292         int                     timeout;
1293         int                     ret;
1294         unsigned long           dma_timeout;
1295
1296         as = spi_master_get_devdata(master);
1297
1298         asd = spi->controller_state;
1299         bits = (asd->csr >> 4) & 0xf;
1300         if (bits != xfer->bits_per_word - 8) {
1301                 dev_dbg(&spi->dev,
1302                         "you can't yet change bits_per_word in transfers\n");
1303                 return -ENOPROTOOPT;
1304         }
1305
1306         /*
1307          * DMA map early, for performance (empties dcache ASAP) and
1308          * better fault reporting.
1309          */
1310         if ((!master->cur_msg_mapped)
1311                 && as->use_pdc) {
1312                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1313                         return -ENOMEM;
1314         }
1315
1316         atmel_spi_set_xfer_speed(as, spi, xfer);
1317
1318         as->done_status = 0;
1319         as->current_transfer = xfer;
1320         as->current_remaining_bytes = xfer->len;
1321         while (as->current_remaining_bytes) {
1322                 reinit_completion(&as->xfer_completion);
1323
1324                 if (as->use_pdc) {
1325                         atmel_spi_lock(as);
1326                         atmel_spi_pdc_next_xfer(master, xfer);
1327                         atmel_spi_unlock(as);
1328                 } else if (atmel_spi_use_dma(as, xfer)) {
1329                         len = as->current_remaining_bytes;
1330                         ret = atmel_spi_next_xfer_dma_submit(master,
1331                                                                 xfer, &len);
1332                         if (ret) {
1333                                 dev_err(&spi->dev,
1334                                         "unable to use DMA, fallback to PIO\n");
1335                                 as->done_status = ret;
1336                                 break;
1337                         } else {
1338                                 as->current_remaining_bytes -= len;
1339                                 if (as->current_remaining_bytes < 0)
1340                                         as->current_remaining_bytes = 0;
1341                         }
1342                 } else {
1343                         atmel_spi_lock(as);
1344                         atmel_spi_next_xfer_pio(master, xfer);
1345                         atmel_spi_unlock(as);
1346                 }
1347
1348                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1349                                                           SPI_DMA_TIMEOUT);
1350                 if (WARN_ON(dma_timeout == 0)) {
1351                         dev_err(&spi->dev, "spi transfer timeout\n");
1352                         as->done_status = -EIO;
1353                 }
1354
1355                 if (as->done_status)
1356                         break;
1357         }
1358
1359         if (as->done_status) {
1360                 if (as->use_pdc) {
1361                         dev_warn(master->dev.parent,
1362                                 "overrun (%u/%u remaining)\n",
1363                                 spi_readl(as, TCR), spi_readl(as, RCR));
1364
1365                         /*
1366                          * Clean up DMA registers and make sure the data
1367                          * registers are empty.
1368                          */
1369                         spi_writel(as, RNCR, 0);
1370                         spi_writel(as, TNCR, 0);
1371                         spi_writel(as, RCR, 0);
1372                         spi_writel(as, TCR, 0);
1373                         for (timeout = 1000; timeout; timeout--)
1374                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1375                                         break;
1376                         if (!timeout)
1377                                 dev_warn(master->dev.parent,
1378                                          "timeout waiting for TXEMPTY");
1379                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1380                                 spi_readl(as, RDR);
1381
1382                         /* Clear any overrun happening while cleaning up */
1383                         spi_readl(as, SR);
1384
1385                 } else if (atmel_spi_use_dma(as, xfer)) {
1386                         atmel_spi_stop_dma(master);
1387                 }
1388         }
1389
1390         if (!master->cur_msg_mapped
1391                 && as->use_pdc)
1392                 atmel_spi_dma_unmap_xfer(master, xfer);
1393
1394         if (as->use_pdc)
1395                 atmel_spi_disable_pdc_transfer(as);
1396
1397         return as->done_status;
1398 }
1399
1400 static void atmel_spi_cleanup(struct spi_device *spi)
1401 {
1402         struct atmel_spi_device *asd = spi->controller_state;
1403
1404         if (!asd)
1405                 return;
1406
1407         spi->controller_state = NULL;
1408         kfree(asd);
1409 }
1410
1411 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1412 {
1413         return spi_readl(as, VERSION) & 0x00000fff;
1414 }
1415
1416 static void atmel_get_caps(struct atmel_spi *as)
1417 {
1418         unsigned int version;
1419
1420         version = atmel_get_version(as);
1421
1422         as->caps.is_spi2 = version > 0x121;
1423         as->caps.has_wdrbt = version >= 0x210;
1424         as->caps.has_dma_support = version >= 0x212;
1425         as->caps.has_pdc_support = version < 0x212;
1426 }
1427
1428 static void atmel_spi_init(struct atmel_spi *as)
1429 {
1430         spi_writel(as, CR, SPI_BIT(SWRST));
1431         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1432
1433         /* It is recommended to enable FIFOs first thing after reset */
1434         if (as->fifo_size)
1435                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1436
1437         if (as->caps.has_wdrbt) {
1438                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1439                                 | SPI_BIT(MSTR));
1440         } else {
1441                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1442         }
1443
1444         if (as->use_pdc)
1445                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1446         spi_writel(as, CR, SPI_BIT(SPIEN));
1447 }
1448
1449 static int atmel_spi_probe(struct platform_device *pdev)
1450 {
1451         struct resource         *regs;
1452         int                     irq;
1453         struct clk              *clk;
1454         int                     ret;
1455         struct spi_master       *master;
1456         struct atmel_spi        *as;
1457
1458         /* Select default pin state */
1459         pinctrl_pm_select_default_state(&pdev->dev);
1460
1461         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1462         if (!regs)
1463                 return -ENXIO;
1464
1465         irq = platform_get_irq(pdev, 0);
1466         if (irq < 0)
1467                 return irq;
1468
1469         clk = devm_clk_get(&pdev->dev, "spi_clk");
1470         if (IS_ERR(clk))
1471                 return PTR_ERR(clk);
1472
1473         /* setup spi core then atmel-specific driver state */
1474         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1475         if (!master)
1476                 return -ENOMEM;
1477
1478         /* the spi->mode bits understood by this driver: */
1479         master->use_gpio_descriptors = true;
1480         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1481         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1482         master->dev.of_node = pdev->dev.of_node;
1483         master->bus_num = pdev->id;
1484         master->num_chipselect = 4;
1485         master->setup = atmel_spi_setup;
1486         master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1487         master->transfer_one = atmel_spi_one_transfer;
1488         master->set_cs = atmel_spi_set_cs;
1489         master->cleanup = atmel_spi_cleanup;
1490         master->auto_runtime_pm = true;
1491         master->max_dma_len = SPI_MAX_DMA_XFER;
1492         master->can_dma = atmel_spi_can_dma;
1493         platform_set_drvdata(pdev, master);
1494
1495         as = spi_master_get_devdata(master);
1496
1497         spin_lock_init(&as->lock);
1498
1499         as->pdev = pdev;
1500         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1501         if (IS_ERR(as->regs)) {
1502                 ret = PTR_ERR(as->regs);
1503                 goto out_unmap_regs;
1504         }
1505         as->phybase = regs->start;
1506         as->irq = irq;
1507         as->clk = clk;
1508
1509         init_completion(&as->xfer_completion);
1510
1511         atmel_get_caps(as);
1512
1513         as->use_dma = false;
1514         as->use_pdc = false;
1515         if (as->caps.has_dma_support) {
1516                 ret = atmel_spi_configure_dma(master, as);
1517                 if (ret == 0) {
1518                         as->use_dma = true;
1519                 } else if (ret == -EPROBE_DEFER) {
1520                         goto out_unmap_regs;
1521                 }
1522         } else if (as->caps.has_pdc_support) {
1523                 as->use_pdc = true;
1524         }
1525
1526         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1527                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1528                                                       SPI_MAX_DMA_XFER,
1529                                                       &as->dma_addr_rx_bbuf,
1530                                                       GFP_KERNEL | GFP_DMA);
1531                 if (!as->addr_rx_bbuf) {
1532                         as->use_dma = false;
1533                 } else {
1534                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1535                                         SPI_MAX_DMA_XFER,
1536                                         &as->dma_addr_tx_bbuf,
1537                                         GFP_KERNEL | GFP_DMA);
1538                         if (!as->addr_tx_bbuf) {
1539                                 as->use_dma = false;
1540                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1541                                                   as->addr_rx_bbuf,
1542                                                   as->dma_addr_rx_bbuf);
1543                         }
1544                 }
1545                 if (!as->use_dma)
1546                         dev_info(master->dev.parent,
1547                                  "  can not allocate dma coherent memory\n");
1548         }
1549
1550         if (as->caps.has_dma_support && !as->use_dma)
1551                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1552
1553         if (as->use_pdc) {
1554                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1555                                         0, dev_name(&pdev->dev), master);
1556         } else {
1557                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1558                                         0, dev_name(&pdev->dev), master);
1559         }
1560         if (ret)
1561                 goto out_unmap_regs;
1562
1563         /* Initialize the hardware */
1564         ret = clk_prepare_enable(clk);
1565         if (ret)
1566                 goto out_free_irq;
1567
1568         as->spi_clk = clk_get_rate(clk);
1569
1570         as->fifo_size = 0;
1571         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1572                                   &as->fifo_size)) {
1573                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1574         }
1575
1576         atmel_spi_init(as);
1577
1578         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1579         pm_runtime_use_autosuspend(&pdev->dev);
1580         pm_runtime_set_active(&pdev->dev);
1581         pm_runtime_enable(&pdev->dev);
1582
1583         ret = devm_spi_register_master(&pdev->dev, master);
1584         if (ret)
1585                 goto out_free_dma;
1586
1587         /* go! */
1588         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1589                         atmel_get_version(as), (unsigned long)regs->start,
1590                         irq);
1591
1592         return 0;
1593
1594 out_free_dma:
1595         pm_runtime_disable(&pdev->dev);
1596         pm_runtime_set_suspended(&pdev->dev);
1597
1598         if (as->use_dma)
1599                 atmel_spi_release_dma(master);
1600
1601         spi_writel(as, CR, SPI_BIT(SWRST));
1602         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1603         clk_disable_unprepare(clk);
1604 out_free_irq:
1605 out_unmap_regs:
1606         spi_master_put(master);
1607         return ret;
1608 }
1609
1610 static int atmel_spi_remove(struct platform_device *pdev)
1611 {
1612         struct spi_master       *master = platform_get_drvdata(pdev);
1613         struct atmel_spi        *as = spi_master_get_devdata(master);
1614
1615         pm_runtime_get_sync(&pdev->dev);
1616
1617         /* reset the hardware and block queue progress */
1618         if (as->use_dma) {
1619                 atmel_spi_stop_dma(master);
1620                 atmel_spi_release_dma(master);
1621                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1622                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1623                                           as->addr_tx_bbuf,
1624                                           as->dma_addr_tx_bbuf);
1625                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1626                                           as->addr_rx_bbuf,
1627                                           as->dma_addr_rx_bbuf);
1628                 }
1629         }
1630
1631         spin_lock_irq(&as->lock);
1632         spi_writel(as, CR, SPI_BIT(SWRST));
1633         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1634         spi_readl(as, SR);
1635         spin_unlock_irq(&as->lock);
1636
1637         clk_disable_unprepare(as->clk);
1638
1639         pm_runtime_put_noidle(&pdev->dev);
1640         pm_runtime_disable(&pdev->dev);
1641
1642         return 0;
1643 }
1644
1645 #ifdef CONFIG_PM
1646 static int atmel_spi_runtime_suspend(struct device *dev)
1647 {
1648         struct spi_master *master = dev_get_drvdata(dev);
1649         struct atmel_spi *as = spi_master_get_devdata(master);
1650
1651         clk_disable_unprepare(as->clk);
1652         pinctrl_pm_select_sleep_state(dev);
1653
1654         return 0;
1655 }
1656
1657 static int atmel_spi_runtime_resume(struct device *dev)
1658 {
1659         struct spi_master *master = dev_get_drvdata(dev);
1660         struct atmel_spi *as = spi_master_get_devdata(master);
1661
1662         pinctrl_pm_select_default_state(dev);
1663
1664         return clk_prepare_enable(as->clk);
1665 }
1666
1667 #ifdef CONFIG_PM_SLEEP
1668 static int atmel_spi_suspend(struct device *dev)
1669 {
1670         struct spi_master *master = dev_get_drvdata(dev);
1671         int ret;
1672
1673         /* Stop the queue running */
1674         ret = spi_master_suspend(master);
1675         if (ret)
1676                 return ret;
1677
1678         if (!pm_runtime_suspended(dev))
1679                 atmel_spi_runtime_suspend(dev);
1680
1681         return 0;
1682 }
1683
1684 static int atmel_spi_resume(struct device *dev)
1685 {
1686         struct spi_master *master = dev_get_drvdata(dev);
1687         struct atmel_spi *as = spi_master_get_devdata(master);
1688         int ret;
1689
1690         ret = clk_prepare_enable(as->clk);
1691         if (ret)
1692                 return ret;
1693
1694         atmel_spi_init(as);
1695
1696         clk_disable_unprepare(as->clk);
1697
1698         if (!pm_runtime_suspended(dev)) {
1699                 ret = atmel_spi_runtime_resume(dev);
1700                 if (ret)
1701                         return ret;
1702         }
1703
1704         /* Start the queue running */
1705         return spi_master_resume(master);
1706 }
1707 #endif
1708
1709 static const struct dev_pm_ops atmel_spi_pm_ops = {
1710         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1711         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1712                            atmel_spi_runtime_resume, NULL)
1713 };
1714 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1715 #else
1716 #define ATMEL_SPI_PM_OPS        NULL
1717 #endif
1718
1719 static const struct of_device_id atmel_spi_dt_ids[] = {
1720         { .compatible = "atmel,at91rm9200-spi" },
1721         { /* sentinel */ }
1722 };
1723
1724 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1725
1726 static struct platform_driver atmel_spi_driver = {
1727         .driver         = {
1728                 .name   = "atmel_spi",
1729                 .pm     = ATMEL_SPI_PM_OPS,
1730                 .of_match_table = atmel_spi_dt_ids,
1731         },
1732         .probe          = atmel_spi_probe,
1733         .remove         = atmel_spi_remove,
1734 };
1735 module_platform_driver(atmel_spi_driver);
1736
1737 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1738 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1739 MODULE_LICENSE("GPL");
1740 MODULE_ALIAS("platform:atmel_spi");