Merge tag 'core-urgent-2020-08-23' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/platform_data/dma-atmel.h>
20 #include <linux/of.h>
21
22 #include <linux/io.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <trace/events/spi.h>
27
28 /* SPI register offsets */
29 #define SPI_CR                                  0x0000
30 #define SPI_MR                                  0x0004
31 #define SPI_RDR                                 0x0008
32 #define SPI_TDR                                 0x000c
33 #define SPI_SR                                  0x0010
34 #define SPI_IER                                 0x0014
35 #define SPI_IDR                                 0x0018
36 #define SPI_IMR                                 0x001c
37 #define SPI_CSR0                                0x0030
38 #define SPI_CSR1                                0x0034
39 #define SPI_CSR2                                0x0038
40 #define SPI_CSR3                                0x003c
41 #define SPI_FMR                                 0x0040
42 #define SPI_FLR                                 0x0044
43 #define SPI_VERSION                             0x00fc
44 #define SPI_RPR                                 0x0100
45 #define SPI_RCR                                 0x0104
46 #define SPI_TPR                                 0x0108
47 #define SPI_TCR                                 0x010c
48 #define SPI_RNPR                                0x0110
49 #define SPI_RNCR                                0x0114
50 #define SPI_TNPR                                0x0118
51 #define SPI_TNCR                                0x011c
52 #define SPI_PTCR                                0x0120
53 #define SPI_PTSR                                0x0124
54
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET                        0
57 #define SPI_SPIEN_SIZE                          1
58 #define SPI_SPIDIS_OFFSET                       1
59 #define SPI_SPIDIS_SIZE                         1
60 #define SPI_SWRST_OFFSET                        7
61 #define SPI_SWRST_SIZE                          1
62 #define SPI_LASTXFER_OFFSET                     24
63 #define SPI_LASTXFER_SIZE                       1
64 #define SPI_TXFCLR_OFFSET                       16
65 #define SPI_TXFCLR_SIZE                         1
66 #define SPI_RXFCLR_OFFSET                       17
67 #define SPI_RXFCLR_SIZE                         1
68 #define SPI_FIFOEN_OFFSET                       30
69 #define SPI_FIFOEN_SIZE                         1
70 #define SPI_FIFODIS_OFFSET                      31
71 #define SPI_FIFODIS_SIZE                        1
72
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET                         0
75 #define SPI_MSTR_SIZE                           1
76 #define SPI_PS_OFFSET                           1
77 #define SPI_PS_SIZE                             1
78 #define SPI_PCSDEC_OFFSET                       2
79 #define SPI_PCSDEC_SIZE                         1
80 #define SPI_FDIV_OFFSET                         3
81 #define SPI_FDIV_SIZE                           1
82 #define SPI_MODFDIS_OFFSET                      4
83 #define SPI_MODFDIS_SIZE                        1
84 #define SPI_WDRBT_OFFSET                        5
85 #define SPI_WDRBT_SIZE                          1
86 #define SPI_LLB_OFFSET                          7
87 #define SPI_LLB_SIZE                            1
88 #define SPI_PCS_OFFSET                          16
89 #define SPI_PCS_SIZE                            4
90 #define SPI_DLYBCS_OFFSET                       24
91 #define SPI_DLYBCS_SIZE                         8
92
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET                           0
95 #define SPI_RD_SIZE                             16
96
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET                           0
99 #define SPI_TD_SIZE                             16
100
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET                         0
103 #define SPI_RDRF_SIZE                           1
104 #define SPI_TDRE_OFFSET                         1
105 #define SPI_TDRE_SIZE                           1
106 #define SPI_MODF_OFFSET                         2
107 #define SPI_MODF_SIZE                           1
108 #define SPI_OVRES_OFFSET                        3
109 #define SPI_OVRES_SIZE                          1
110 #define SPI_ENDRX_OFFSET                        4
111 #define SPI_ENDRX_SIZE                          1
112 #define SPI_ENDTX_OFFSET                        5
113 #define SPI_ENDTX_SIZE                          1
114 #define SPI_RXBUFF_OFFSET                       6
115 #define SPI_RXBUFF_SIZE                         1
116 #define SPI_TXBUFE_OFFSET                       7
117 #define SPI_TXBUFE_SIZE                         1
118 #define SPI_NSSR_OFFSET                         8
119 #define SPI_NSSR_SIZE                           1
120 #define SPI_TXEMPTY_OFFSET                      9
121 #define SPI_TXEMPTY_SIZE                        1
122 #define SPI_SPIENS_OFFSET                       16
123 #define SPI_SPIENS_SIZE                         1
124 #define SPI_TXFEF_OFFSET                        24
125 #define SPI_TXFEF_SIZE                          1
126 #define SPI_TXFFF_OFFSET                        25
127 #define SPI_TXFFF_SIZE                          1
128 #define SPI_TXFTHF_OFFSET                       26
129 #define SPI_TXFTHF_SIZE                         1
130 #define SPI_RXFEF_OFFSET                        27
131 #define SPI_RXFEF_SIZE                          1
132 #define SPI_RXFFF_OFFSET                        28
133 #define SPI_RXFFF_SIZE                          1
134 #define SPI_RXFTHF_OFFSET                       29
135 #define SPI_RXFTHF_SIZE                         1
136 #define SPI_TXFPTEF_OFFSET                      30
137 #define SPI_TXFPTEF_SIZE                        1
138 #define SPI_RXFPTEF_OFFSET                      31
139 #define SPI_RXFPTEF_SIZE                        1
140
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET                         0
143 #define SPI_CPOL_SIZE                           1
144 #define SPI_NCPHA_OFFSET                        1
145 #define SPI_NCPHA_SIZE                          1
146 #define SPI_CSAAT_OFFSET                        3
147 #define SPI_CSAAT_SIZE                          1
148 #define SPI_BITS_OFFSET                         4
149 #define SPI_BITS_SIZE                           4
150 #define SPI_SCBR_OFFSET                         8
151 #define SPI_SCBR_SIZE                           8
152 #define SPI_DLYBS_OFFSET                        16
153 #define SPI_DLYBS_SIZE                          8
154 #define SPI_DLYBCT_OFFSET                       24
155 #define SPI_DLYBCT_SIZE                         8
156
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET                        0
159 #define SPI_RXCTR_SIZE                          16
160
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET                        0
163 #define SPI_TXCTR_SIZE                          16
164
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET                        0
167 #define SPI_RXNCR_SIZE                          16
168
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET                        0
171 #define SPI_TXNCR_SIZE                          16
172
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET                        0
175 #define SPI_RXTEN_SIZE                          1
176 #define SPI_RXTDIS_OFFSET                       1
177 #define SPI_RXTDIS_SIZE                         1
178 #define SPI_TXTEN_OFFSET                        8
179 #define SPI_TXTEN_SIZE                          1
180 #define SPI_TXTDIS_OFFSET                       9
181 #define SPI_TXTDIS_SIZE                         1
182
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET                       0
185 #define SPI_TXRDYM_SIZE                         2
186 #define SPI_RXRDYM_OFFSET                       4
187 #define SPI_RXRDYM_SIZE                         2
188 #define SPI_TXFTHRES_OFFSET                     16
189 #define SPI_TXFTHRES_SIZE                       6
190 #define SPI_RXFTHRES_OFFSET                     24
191 #define SPI_RXFTHRES_SIZE                       6
192
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET                         0
195 #define SPI_TXFL_SIZE                           6
196 #define SPI_RXFL_OFFSET                         16
197 #define SPI_RXFL_SIZE                           6
198
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT                          0
201 #define SPI_BITS_9_BPT                          1
202 #define SPI_BITS_10_BPT                         2
203 #define SPI_BITS_11_BPT                         3
204 #define SPI_BITS_12_BPT                         4
205 #define SPI_BITS_13_BPT                         5
206 #define SPI_BITS_14_BPT                         6
207 #define SPI_BITS_15_BPT                         7
208 #define SPI_BITS_16_BPT                         8
209 #define SPI_ONE_DATA                            0
210 #define SPI_TWO_DATA                            1
211 #define SPI_FOUR_DATA                           2
212
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215         (1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222           | SPI_BF(name, value))
223
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226         readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228         writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230         writew_relaxed((value), (port)->regs + SPI_##reg)
231
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233  * cache operations; better heuristics consider wordsize and bitrate.
234  */
235 #define DMA_MIN_BYTES   16
236
237 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
238
239 #define AUTOSUSPEND_TIMEOUT     2000
240
241 struct atmel_spi_caps {
242         bool    is_spi2;
243         bool    has_wdrbt;
244         bool    has_dma_support;
245         bool    has_pdc_support;
246 };
247
248 /*
249  * The core SPI transfer engine just talks to a register bank to set up
250  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
251  * framework provides the base clock, subdivided for each spi_device.
252  */
253 struct atmel_spi {
254         spinlock_t              lock;
255         unsigned long           flags;
256
257         phys_addr_t             phybase;
258         void __iomem            *regs;
259         int                     irq;
260         struct clk              *clk;
261         struct platform_device  *pdev;
262         unsigned long           spi_clk;
263
264         struct spi_transfer     *current_transfer;
265         int                     current_remaining_bytes;
266         int                     done_status;
267         dma_addr_t              dma_addr_rx_bbuf;
268         dma_addr_t              dma_addr_tx_bbuf;
269         void                    *addr_rx_bbuf;
270         void                    *addr_tx_bbuf;
271
272         struct completion       xfer_completion;
273
274         struct atmel_spi_caps   caps;
275
276         bool                    use_dma;
277         bool                    use_pdc;
278
279         bool                    keep_cs;
280
281         u32                     fifo_size;
282         u8                      native_cs_free;
283         u8                      native_cs_for_gpio;
284 };
285
286 /* Controller-specific per-slave state */
287 struct atmel_spi_device {
288         u32                     csr;
289 };
290
291 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
292 #define INVALID_DMA_ADDRESS     0xffffffff
293
294 /*
295  * Version 2 of the SPI controller has
296  *  - CR.LASTXFER
297  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
298  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
299  *  - SPI_CSRx.CSAAT
300  *  - SPI_CSRx.SBCR allows faster clocking
301  */
302 static bool atmel_spi_is_v2(struct atmel_spi *as)
303 {
304         return as->caps.is_spi2;
305 }
306
307 /*
308  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
309  * they assume that spi slave device state will not change on deselect, so
310  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
311  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
312  * controllers have CSAAT and friends.
313  *
314  * Even controller newer than ar91rm9200, using GPIOs can make sens as
315  * it lets us support active-high chipselects despite the controller's
316  * belief that only active-low devices/systems exists.
317  *
318  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
319  * right when driven with GPIO.  ("Mode Fault does not allow more than one
320  * Master on Chip Select 0.")  No workaround exists for that ... so for
321  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
322  * and (c) will trigger that first erratum in some cases.
323  */
324
325 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
326 {
327         struct atmel_spi_device *asd = spi->controller_state;
328         int chip_select;
329         u32 mr;
330
331         if (spi->cs_gpiod)
332                 chip_select = as->native_cs_for_gpio;
333         else
334                 chip_select = spi->chip_select;
335
336         if (atmel_spi_is_v2(as)) {
337                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
338                 /* For the low SPI version, there is a issue that PDC transfer
339                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
340                  */
341                 spi_writel(as, CSR0, asd->csr);
342                 if (as->caps.has_wdrbt) {
343                         spi_writel(as, MR,
344                                         SPI_BF(PCS, ~(0x01 << chip_select))
345                                         | SPI_BIT(WDRBT)
346                                         | SPI_BIT(MODFDIS)
347                                         | SPI_BIT(MSTR));
348                 } else {
349                         spi_writel(as, MR,
350                                         SPI_BF(PCS, ~(0x01 << chip_select))
351                                         | SPI_BIT(MODFDIS)
352                                         | SPI_BIT(MSTR));
353                 }
354
355                 mr = spi_readl(as, MR);
356                 if (spi->cs_gpiod)
357                         gpiod_set_value(spi->cs_gpiod, 1);
358         } else {
359                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
360                 int i;
361                 u32 csr;
362
363                 /* Make sure clock polarity is correct */
364                 for (i = 0; i < spi->master->num_chipselect; i++) {
365                         csr = spi_readl(as, CSR0 + 4 * i);
366                         if ((csr ^ cpol) & SPI_BIT(CPOL))
367                                 spi_writel(as, CSR0 + 4 * i,
368                                                 csr ^ SPI_BIT(CPOL));
369                 }
370
371                 mr = spi_readl(as, MR);
372                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
373                 if (spi->cs_gpiod)
374                         gpiod_set_value(spi->cs_gpiod, 1);
375                 spi_writel(as, MR, mr);
376         }
377
378         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
379 }
380
381 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
382 {
383         int chip_select;
384         u32 mr;
385
386         if (spi->cs_gpiod)
387                 chip_select = as->native_cs_for_gpio;
388         else
389                 chip_select = spi->chip_select;
390
391         /* only deactivate *this* device; sometimes transfers to
392          * another device may be active when this routine is called.
393          */
394         mr = spi_readl(as, MR);
395         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
396                 mr = SPI_BFINS(PCS, 0xf, mr);
397                 spi_writel(as, MR, mr);
398         }
399
400         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
401
402         if (!spi->cs_gpiod)
403                 spi_writel(as, CR, SPI_BIT(LASTXFER));
404         else
405                 gpiod_set_value(spi->cs_gpiod, 0);
406 }
407
408 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
409 {
410         spin_lock_irqsave(&as->lock, as->flags);
411 }
412
413 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
414 {
415         spin_unlock_irqrestore(&as->lock, as->flags);
416 }
417
418 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
419 {
420         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
421 }
422
423 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
424                                 struct spi_transfer *xfer)
425 {
426         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
427 }
428
429 static bool atmel_spi_can_dma(struct spi_master *master,
430                               struct spi_device *spi,
431                               struct spi_transfer *xfer)
432 {
433         struct atmel_spi *as = spi_master_get_devdata(master);
434
435         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
436                 return atmel_spi_use_dma(as, xfer) &&
437                         !atmel_spi_is_vmalloc_xfer(xfer);
438         else
439                 return atmel_spi_use_dma(as, xfer);
440
441 }
442
443 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
444                                 struct dma_slave_config *slave_config,
445                                 u8 bits_per_word)
446 {
447         struct spi_master *master = platform_get_drvdata(as->pdev);
448         int err = 0;
449
450         if (bits_per_word > 8) {
451                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
453         } else {
454                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
456         }
457
458         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
459         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
460         slave_config->src_maxburst = 1;
461         slave_config->dst_maxburst = 1;
462         slave_config->device_fc = false;
463
464         /*
465          * This driver uses fixed peripheral select mode (PS bit set to '0' in
466          * the Mode Register).
467          * So according to the datasheet, when FIFOs are available (and
468          * enabled), the Transmit FIFO operates in Multiple Data Mode.
469          * In this mode, up to 2 data, not 4, can be written into the Transmit
470          * Data Register in a single access.
471          * However, the first data has to be written into the lowest 16 bits and
472          * the second data into the highest 16 bits of the Transmit
473          * Data Register. For 8bit data (the most frequent case), it would
474          * require to rework tx_buf so each data would actualy fit 16 bits.
475          * So we'd rather write only one data at the time. Hence the transmit
476          * path works the same whether FIFOs are available (and enabled) or not.
477          */
478         slave_config->direction = DMA_MEM_TO_DEV;
479         if (dmaengine_slave_config(master->dma_tx, slave_config)) {
480                 dev_err(&as->pdev->dev,
481                         "failed to configure tx dma channel\n");
482                 err = -EINVAL;
483         }
484
485         /*
486          * This driver configures the spi controller for master mode (MSTR bit
487          * set to '1' in the Mode Register).
488          * So according to the datasheet, when FIFOs are available (and
489          * enabled), the Receive FIFO operates in Single Data Mode.
490          * So the receive path works the same whether FIFOs are available (and
491          * enabled) or not.
492          */
493         slave_config->direction = DMA_DEV_TO_MEM;
494         if (dmaengine_slave_config(master->dma_rx, slave_config)) {
495                 dev_err(&as->pdev->dev,
496                         "failed to configure rx dma channel\n");
497                 err = -EINVAL;
498         }
499
500         return err;
501 }
502
503 static int atmel_spi_configure_dma(struct spi_master *master,
504                                    struct atmel_spi *as)
505 {
506         struct dma_slave_config slave_config;
507         struct device *dev = &as->pdev->dev;
508         int err;
509
510         dma_cap_mask_t mask;
511         dma_cap_zero(mask);
512         dma_cap_set(DMA_SLAVE, mask);
513
514         master->dma_tx = dma_request_chan(dev, "tx");
515         if (IS_ERR(master->dma_tx)) {
516                 err = PTR_ERR(master->dma_tx);
517                 if (err != -EPROBE_DEFER)
518                         dev_err(dev, "No TX DMA channel, DMA is disabled\n");
519                 goto error_clear;
520         }
521
522         master->dma_rx = dma_request_chan(dev, "rx");
523         if (IS_ERR(master->dma_rx)) {
524                 err = PTR_ERR(master->dma_rx);
525                 /*
526                  * No reason to check EPROBE_DEFER here since we have already
527                  * requested tx channel.
528                  */
529                 dev_err(dev, "No RX DMA channel, DMA is disabled\n");
530                 goto error;
531         }
532
533         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
534         if (err)
535                 goto error;
536
537         dev_info(&as->pdev->dev,
538                         "Using %s (tx) and %s (rx) for DMA transfers\n",
539                         dma_chan_name(master->dma_tx),
540                         dma_chan_name(master->dma_rx));
541
542         return 0;
543 error:
544         if (!IS_ERR(master->dma_rx))
545                 dma_release_channel(master->dma_rx);
546         if (!IS_ERR(master->dma_tx))
547                 dma_release_channel(master->dma_tx);
548 error_clear:
549         master->dma_tx = master->dma_rx = NULL;
550         return err;
551 }
552
553 static void atmel_spi_stop_dma(struct spi_master *master)
554 {
555         if (master->dma_rx)
556                 dmaengine_terminate_all(master->dma_rx);
557         if (master->dma_tx)
558                 dmaengine_terminate_all(master->dma_tx);
559 }
560
561 static void atmel_spi_release_dma(struct spi_master *master)
562 {
563         if (master->dma_rx) {
564                 dma_release_channel(master->dma_rx);
565                 master->dma_rx = NULL;
566         }
567         if (master->dma_tx) {
568                 dma_release_channel(master->dma_tx);
569                 master->dma_tx = NULL;
570         }
571 }
572
573 /* This function is called by the DMA driver from tasklet context */
574 static void dma_callback(void *data)
575 {
576         struct spi_master       *master = data;
577         struct atmel_spi        *as = spi_master_get_devdata(master);
578
579         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
580             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
581                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
582                        as->current_transfer->len);
583         }
584         complete(&as->xfer_completion);
585 }
586
587 /*
588  * Next transfer using PIO without FIFO.
589  */
590 static void atmel_spi_next_xfer_single(struct spi_master *master,
591                                        struct spi_transfer *xfer)
592 {
593         struct atmel_spi        *as = spi_master_get_devdata(master);
594         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
595
596         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
597
598         /* Make sure data is not remaining in RDR */
599         spi_readl(as, RDR);
600         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
601                 spi_readl(as, RDR);
602                 cpu_relax();
603         }
604
605         if (xfer->bits_per_word > 8)
606                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
607         else
608                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
609
610         dev_dbg(master->dev.parent,
611                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
612                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
613                 xfer->bits_per_word);
614
615         /* Enable relevant interrupts */
616         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
617 }
618
619 /*
620  * Next transfer using PIO with FIFO.
621  */
622 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
623                                      struct spi_transfer *xfer)
624 {
625         struct atmel_spi *as = spi_master_get_devdata(master);
626         u32 current_remaining_data, num_data;
627         u32 offset = xfer->len - as->current_remaining_bytes;
628         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
629         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
630         u16 td0, td1;
631         u32 fifomr;
632
633         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
634
635         /* Compute the number of data to transfer in the current iteration */
636         current_remaining_data = ((xfer->bits_per_word > 8) ?
637                                   ((u32)as->current_remaining_bytes >> 1) :
638                                   (u32)as->current_remaining_bytes);
639         num_data = min(current_remaining_data, as->fifo_size);
640
641         /* Flush RX and TX FIFOs */
642         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
643         while (spi_readl(as, FLR))
644                 cpu_relax();
645
646         /* Set RX FIFO Threshold to the number of data to transfer */
647         fifomr = spi_readl(as, FMR);
648         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
649
650         /* Clear FIFO flags in the Status Register, especially RXFTHF */
651         (void)spi_readl(as, SR);
652
653         /* Fill TX FIFO */
654         while (num_data >= 2) {
655                 if (xfer->bits_per_word > 8) {
656                         td0 = *words++;
657                         td1 = *words++;
658                 } else {
659                         td0 = *bytes++;
660                         td1 = *bytes++;
661                 }
662
663                 spi_writel(as, TDR, (td1 << 16) | td0);
664                 num_data -= 2;
665         }
666
667         if (num_data) {
668                 if (xfer->bits_per_word > 8)
669                         td0 = *words++;
670                 else
671                         td0 = *bytes++;
672
673                 spi_writew(as, TDR, td0);
674                 num_data--;
675         }
676
677         dev_dbg(master->dev.parent,
678                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
679                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
680                 xfer->bits_per_word);
681
682         /*
683          * Enable RX FIFO Threshold Flag interrupt to be notified about
684          * transfer completion.
685          */
686         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
687 }
688
689 /*
690  * Next transfer using PIO.
691  */
692 static void atmel_spi_next_xfer_pio(struct spi_master *master,
693                                     struct spi_transfer *xfer)
694 {
695         struct atmel_spi *as = spi_master_get_devdata(master);
696
697         if (as->fifo_size)
698                 atmel_spi_next_xfer_fifo(master, xfer);
699         else
700                 atmel_spi_next_xfer_single(master, xfer);
701 }
702
703 /*
704  * Submit next transfer for DMA.
705  */
706 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
707                                 struct spi_transfer *xfer,
708                                 u32 *plen)
709         __must_hold(&as->lock)
710 {
711         struct atmel_spi        *as = spi_master_get_devdata(master);
712         struct dma_chan         *rxchan = master->dma_rx;
713         struct dma_chan         *txchan = master->dma_tx;
714         struct dma_async_tx_descriptor *rxdesc;
715         struct dma_async_tx_descriptor *txdesc;
716         struct dma_slave_config slave_config;
717         dma_cookie_t            cookie;
718
719         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
720
721         /* Check that the channels are available */
722         if (!rxchan || !txchan)
723                 return -ENODEV;
724
725         /* release lock for DMA operations */
726         atmel_spi_unlock(as);
727
728         *plen = xfer->len;
729
730         if (atmel_spi_dma_slave_config(as, &slave_config,
731                                        xfer->bits_per_word))
732                 goto err_exit;
733
734         /* Send both scatterlists */
735         if (atmel_spi_is_vmalloc_xfer(xfer) &&
736             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
737                 rxdesc = dmaengine_prep_slave_single(rxchan,
738                                                      as->dma_addr_rx_bbuf,
739                                                      xfer->len,
740                                                      DMA_DEV_TO_MEM,
741                                                      DMA_PREP_INTERRUPT |
742                                                      DMA_CTRL_ACK);
743         } else {
744                 rxdesc = dmaengine_prep_slave_sg(rxchan,
745                                                  xfer->rx_sg.sgl,
746                                                  xfer->rx_sg.nents,
747                                                  DMA_DEV_TO_MEM,
748                                                  DMA_PREP_INTERRUPT |
749                                                  DMA_CTRL_ACK);
750         }
751         if (!rxdesc)
752                 goto err_dma;
753
754         if (atmel_spi_is_vmalloc_xfer(xfer) &&
755             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
756                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
757                 txdesc = dmaengine_prep_slave_single(txchan,
758                                                      as->dma_addr_tx_bbuf,
759                                                      xfer->len, DMA_MEM_TO_DEV,
760                                                      DMA_PREP_INTERRUPT |
761                                                      DMA_CTRL_ACK);
762         } else {
763                 txdesc = dmaengine_prep_slave_sg(txchan,
764                                                  xfer->tx_sg.sgl,
765                                                  xfer->tx_sg.nents,
766                                                  DMA_MEM_TO_DEV,
767                                                  DMA_PREP_INTERRUPT |
768                                                  DMA_CTRL_ACK);
769         }
770         if (!txdesc)
771                 goto err_dma;
772
773         dev_dbg(master->dev.parent,
774                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
775                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
776                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
777
778         /* Enable relevant interrupts */
779         spi_writel(as, IER, SPI_BIT(OVRES));
780
781         /* Put the callback on the RX transfer only, that should finish last */
782         rxdesc->callback = dma_callback;
783         rxdesc->callback_param = master;
784
785         /* Submit and fire RX and TX with TX last so we're ready to read! */
786         cookie = rxdesc->tx_submit(rxdesc);
787         if (dma_submit_error(cookie))
788                 goto err_dma;
789         cookie = txdesc->tx_submit(txdesc);
790         if (dma_submit_error(cookie))
791                 goto err_dma;
792         rxchan->device->device_issue_pending(rxchan);
793         txchan->device->device_issue_pending(txchan);
794
795         /* take back lock */
796         atmel_spi_lock(as);
797         return 0;
798
799 err_dma:
800         spi_writel(as, IDR, SPI_BIT(OVRES));
801         atmel_spi_stop_dma(master);
802 err_exit:
803         atmel_spi_lock(as);
804         return -ENOMEM;
805 }
806
807 static void atmel_spi_next_xfer_data(struct spi_master *master,
808                                 struct spi_transfer *xfer,
809                                 dma_addr_t *tx_dma,
810                                 dma_addr_t *rx_dma,
811                                 u32 *plen)
812 {
813         *rx_dma = xfer->rx_dma + xfer->len - *plen;
814         *tx_dma = xfer->tx_dma + xfer->len - *plen;
815         if (*plen > master->max_dma_len)
816                 *plen = master->max_dma_len;
817 }
818
819 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
820                                     struct spi_device *spi,
821                                     struct spi_transfer *xfer)
822 {
823         u32                     scbr, csr;
824         unsigned long           bus_hz;
825         int chip_select;
826
827         if (spi->cs_gpiod)
828                 chip_select = as->native_cs_for_gpio;
829         else
830                 chip_select = spi->chip_select;
831
832         /* v1 chips start out at half the peripheral bus speed. */
833         bus_hz = as->spi_clk;
834         if (!atmel_spi_is_v2(as))
835                 bus_hz /= 2;
836
837         /*
838          * Calculate the lowest divider that satisfies the
839          * constraint, assuming div32/fdiv/mbz == 0.
840          */
841         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
842
843         /*
844          * If the resulting divider doesn't fit into the
845          * register bitfield, we can't satisfy the constraint.
846          */
847         if (scbr >= (1 << SPI_SCBR_SIZE)) {
848                 dev_err(&spi->dev,
849                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
850                         xfer->speed_hz, scbr, bus_hz/255);
851                 return -EINVAL;
852         }
853         if (scbr == 0) {
854                 dev_err(&spi->dev,
855                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
856                         xfer->speed_hz, scbr, bus_hz);
857                 return -EINVAL;
858         }
859         csr = spi_readl(as, CSR0 + 4 * chip_select);
860         csr = SPI_BFINS(SCBR, scbr, csr);
861         spi_writel(as, CSR0 + 4 * chip_select, csr);
862
863         return 0;
864 }
865
866 /*
867  * Submit next transfer for PDC.
868  * lock is held, spi irq is blocked
869  */
870 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
871                                         struct spi_message *msg,
872                                         struct spi_transfer *xfer)
873 {
874         struct atmel_spi        *as = spi_master_get_devdata(master);
875         u32                     len;
876         dma_addr_t              tx_dma, rx_dma;
877
878         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
879
880         len = as->current_remaining_bytes;
881         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
882         as->current_remaining_bytes -= len;
883
884         spi_writel(as, RPR, rx_dma);
885         spi_writel(as, TPR, tx_dma);
886
887         if (msg->spi->bits_per_word > 8)
888                 len >>= 1;
889         spi_writel(as, RCR, len);
890         spi_writel(as, TCR, len);
891
892         dev_dbg(&msg->spi->dev,
893                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
894                 xfer, xfer->len, xfer->tx_buf,
895                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
896                 (unsigned long long)xfer->rx_dma);
897
898         if (as->current_remaining_bytes) {
899                 len = as->current_remaining_bytes;
900                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
901                 as->current_remaining_bytes -= len;
902
903                 spi_writel(as, RNPR, rx_dma);
904                 spi_writel(as, TNPR, tx_dma);
905
906                 if (msg->spi->bits_per_word > 8)
907                         len >>= 1;
908                 spi_writel(as, RNCR, len);
909                 spi_writel(as, TNCR, len);
910
911                 dev_dbg(&msg->spi->dev,
912                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
913                         xfer, xfer->len, xfer->tx_buf,
914                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
915                         (unsigned long long)xfer->rx_dma);
916         }
917
918         /* REVISIT: We're waiting for RXBUFF before we start the next
919          * transfer because we need to handle some difficult timing
920          * issues otherwise. If we wait for TXBUFE in one transfer and
921          * then starts waiting for RXBUFF in the next, it's difficult
922          * to tell the difference between the RXBUFF interrupt we're
923          * actually waiting for and the RXBUFF interrupt of the
924          * previous transfer.
925          *
926          * It should be doable, though. Just not now...
927          */
928         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
929         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
930 }
931
932 /*
933  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
934  *  - The buffer is either valid for CPU access, else NULL
935  *  - If the buffer is valid, so is its DMA address
936  *
937  * This driver manages the dma address unless message->is_dma_mapped.
938  */
939 static int
940 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
941 {
942         struct device   *dev = &as->pdev->dev;
943
944         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
945         if (xfer->tx_buf) {
946                 /* tx_buf is a const void* where we need a void * for the dma
947                  * mapping */
948                 void *nonconst_tx = (void *)xfer->tx_buf;
949
950                 xfer->tx_dma = dma_map_single(dev,
951                                 nonconst_tx, xfer->len,
952                                 DMA_TO_DEVICE);
953                 if (dma_mapping_error(dev, xfer->tx_dma))
954                         return -ENOMEM;
955         }
956         if (xfer->rx_buf) {
957                 xfer->rx_dma = dma_map_single(dev,
958                                 xfer->rx_buf, xfer->len,
959                                 DMA_FROM_DEVICE);
960                 if (dma_mapping_error(dev, xfer->rx_dma)) {
961                         if (xfer->tx_buf)
962                                 dma_unmap_single(dev,
963                                                 xfer->tx_dma, xfer->len,
964                                                 DMA_TO_DEVICE);
965                         return -ENOMEM;
966                 }
967         }
968         return 0;
969 }
970
971 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
972                                      struct spi_transfer *xfer)
973 {
974         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
975                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
976                                  xfer->len, DMA_TO_DEVICE);
977         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
978                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
979                                  xfer->len, DMA_FROM_DEVICE);
980 }
981
982 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
983 {
984         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
985 }
986
987 static void
988 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
989 {
990         u8              *rxp;
991         u16             *rxp16;
992         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
993
994         if (xfer->bits_per_word > 8) {
995                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
996                 *rxp16 = spi_readl(as, RDR);
997         } else {
998                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
999                 *rxp = spi_readl(as, RDR);
1000         }
1001         if (xfer->bits_per_word > 8) {
1002                 if (as->current_remaining_bytes > 2)
1003                         as->current_remaining_bytes -= 2;
1004                 else
1005                         as->current_remaining_bytes = 0;
1006         } else {
1007                 as->current_remaining_bytes--;
1008         }
1009 }
1010
1011 static void
1012 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1013 {
1014         u32 fifolr = spi_readl(as, FLR);
1015         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1016         u32 offset = xfer->len - as->current_remaining_bytes;
1017         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1018         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1019         u16 rd; /* RD field is the lowest 16 bits of RDR */
1020
1021         /* Update the number of remaining bytes to transfer */
1022         num_bytes = ((xfer->bits_per_word > 8) ?
1023                      (num_data << 1) :
1024                      num_data);
1025
1026         if (as->current_remaining_bytes > num_bytes)
1027                 as->current_remaining_bytes -= num_bytes;
1028         else
1029                 as->current_remaining_bytes = 0;
1030
1031         /* Handle odd number of bytes when data are more than 8bit width */
1032         if (xfer->bits_per_word > 8)
1033                 as->current_remaining_bytes &= ~0x1;
1034
1035         /* Read data */
1036         while (num_data) {
1037                 rd = spi_readl(as, RDR);
1038                 if (xfer->bits_per_word > 8)
1039                         *words++ = rd;
1040                 else
1041                         *bytes++ = rd;
1042                 num_data--;
1043         }
1044 }
1045
1046 /* Called from IRQ
1047  *
1048  * Must update "current_remaining_bytes" to keep track of data
1049  * to transfer.
1050  */
1051 static void
1052 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1053 {
1054         if (as->fifo_size)
1055                 atmel_spi_pump_fifo_data(as, xfer);
1056         else
1057                 atmel_spi_pump_single_data(as, xfer);
1058 }
1059
1060 /* Interrupt
1061  *
1062  * No need for locking in this Interrupt handler: done_status is the
1063  * only information modified.
1064  */
1065 static irqreturn_t
1066 atmel_spi_pio_interrupt(int irq, void *dev_id)
1067 {
1068         struct spi_master       *master = dev_id;
1069         struct atmel_spi        *as = spi_master_get_devdata(master);
1070         u32                     status, pending, imr;
1071         struct spi_transfer     *xfer;
1072         int                     ret = IRQ_NONE;
1073
1074         imr = spi_readl(as, IMR);
1075         status = spi_readl(as, SR);
1076         pending = status & imr;
1077
1078         if (pending & SPI_BIT(OVRES)) {
1079                 ret = IRQ_HANDLED;
1080                 spi_writel(as, IDR, SPI_BIT(OVRES));
1081                 dev_warn(master->dev.parent, "overrun\n");
1082
1083                 /*
1084                  * When we get an overrun, we disregard the current
1085                  * transfer. Data will not be copied back from any
1086                  * bounce buffer and msg->actual_len will not be
1087                  * updated with the last xfer.
1088                  *
1089                  * We will also not process any remaning transfers in
1090                  * the message.
1091                  */
1092                 as->done_status = -EIO;
1093                 smp_wmb();
1094
1095                 /* Clear any overrun happening while cleaning up */
1096                 spi_readl(as, SR);
1097
1098                 complete(&as->xfer_completion);
1099
1100         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1101                 atmel_spi_lock(as);
1102
1103                 if (as->current_remaining_bytes) {
1104                         ret = IRQ_HANDLED;
1105                         xfer = as->current_transfer;
1106                         atmel_spi_pump_pio_data(as, xfer);
1107                         if (!as->current_remaining_bytes)
1108                                 spi_writel(as, IDR, pending);
1109
1110                         complete(&as->xfer_completion);
1111                 }
1112
1113                 atmel_spi_unlock(as);
1114         } else {
1115                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1116                 ret = IRQ_HANDLED;
1117                 spi_writel(as, IDR, pending);
1118         }
1119
1120         return ret;
1121 }
1122
1123 static irqreturn_t
1124 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1125 {
1126         struct spi_master       *master = dev_id;
1127         struct atmel_spi        *as = spi_master_get_devdata(master);
1128         u32                     status, pending, imr;
1129         int                     ret = IRQ_NONE;
1130
1131         imr = spi_readl(as, IMR);
1132         status = spi_readl(as, SR);
1133         pending = status & imr;
1134
1135         if (pending & SPI_BIT(OVRES)) {
1136
1137                 ret = IRQ_HANDLED;
1138
1139                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1140                                      | SPI_BIT(OVRES)));
1141
1142                 /* Clear any overrun happening while cleaning up */
1143                 spi_readl(as, SR);
1144
1145                 as->done_status = -EIO;
1146
1147                 complete(&as->xfer_completion);
1148
1149         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1150                 ret = IRQ_HANDLED;
1151
1152                 spi_writel(as, IDR, pending);
1153
1154                 complete(&as->xfer_completion);
1155         }
1156
1157         return ret;
1158 }
1159
1160 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1161 {
1162         struct spi_delay *delay = &spi->word_delay;
1163         u32 value = delay->value;
1164
1165         switch (delay->unit) {
1166         case SPI_DELAY_UNIT_NSECS:
1167                 value /= 1000;
1168                 break;
1169         case SPI_DELAY_UNIT_USECS:
1170                 break;
1171         default:
1172                 return -EINVAL;
1173         }
1174
1175         return (as->spi_clk / 1000000 * value) >> 5;
1176 }
1177
1178 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1179 {
1180         int i;
1181         struct spi_master *master = platform_get_drvdata(as->pdev);
1182
1183         if (!as->native_cs_free)
1184                 return; /* already initialized */
1185
1186         if (!master->cs_gpiods)
1187                 return; /* No CS GPIO */
1188
1189         /*
1190          * On the first version of the controller (AT91RM9200), CS0
1191          * can't be used associated with GPIO
1192          */
1193         if (atmel_spi_is_v2(as))
1194                 i = 0;
1195         else
1196                 i = 1;
1197
1198         for (; i < 4; i++)
1199                 if (master->cs_gpiods[i])
1200                         as->native_cs_free |= BIT(i);
1201
1202         if (as->native_cs_free)
1203                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1204 }
1205
1206 static int atmel_spi_setup(struct spi_device *spi)
1207 {
1208         struct atmel_spi        *as;
1209         struct atmel_spi_device *asd;
1210         u32                     csr;
1211         unsigned int            bits = spi->bits_per_word;
1212         int chip_select;
1213         int                     word_delay_csr;
1214
1215         as = spi_master_get_devdata(spi->master);
1216
1217         /* see notes above re chipselect */
1218         if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1219                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1220                 return -EINVAL;
1221         }
1222
1223         /* Setup() is called during spi_register_controller(aka
1224          * spi_register_master) but after all membmers of the cs_gpiod
1225          * array have been filled, so we can looked for which native
1226          * CS will be free for using with GPIO
1227          */
1228         initialize_native_cs_for_gpio(as);
1229
1230         if (spi->cs_gpiod && as->native_cs_free) {
1231                 dev_err(&spi->dev,
1232                         "No native CS available to support this GPIO CS\n");
1233                 return -EBUSY;
1234         }
1235
1236         if (spi->cs_gpiod)
1237                 chip_select = as->native_cs_for_gpio;
1238         else
1239                 chip_select = spi->chip_select;
1240
1241         csr = SPI_BF(BITS, bits - 8);
1242         if (spi->mode & SPI_CPOL)
1243                 csr |= SPI_BIT(CPOL);
1244         if (!(spi->mode & SPI_CPHA))
1245                 csr |= SPI_BIT(NCPHA);
1246
1247         if (!spi->cs_gpiod)
1248                 csr |= SPI_BIT(CSAAT);
1249         csr |= SPI_BF(DLYBS, 0);
1250
1251         word_delay_csr = atmel_word_delay_csr(spi, as);
1252         if (word_delay_csr < 0)
1253                 return word_delay_csr;
1254
1255         /* DLYBCT adds delays between words.  This is useful for slow devices
1256          * that need a bit of time to setup the next transfer.
1257          */
1258         csr |= SPI_BF(DLYBCT, word_delay_csr);
1259
1260         asd = spi->controller_state;
1261         if (!asd) {
1262                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1263                 if (!asd)
1264                         return -ENOMEM;
1265
1266                 spi->controller_state = asd;
1267         }
1268
1269         asd->csr = csr;
1270
1271         dev_dbg(&spi->dev,
1272                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1273                 bits, spi->mode, spi->chip_select, csr);
1274
1275         if (!atmel_spi_is_v2(as))
1276                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1277
1278         return 0;
1279 }
1280
1281 static int atmel_spi_one_transfer(struct spi_master *master,
1282                                         struct spi_message *msg,
1283                                         struct spi_transfer *xfer)
1284 {
1285         struct atmel_spi        *as;
1286         struct spi_device       *spi = msg->spi;
1287         u8                      bits;
1288         u32                     len;
1289         struct atmel_spi_device *asd;
1290         int                     timeout;
1291         int                     ret;
1292         unsigned long           dma_timeout;
1293
1294         as = spi_master_get_devdata(master);
1295
1296         if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1297                 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1298                 return -EINVAL;
1299         }
1300
1301         asd = spi->controller_state;
1302         bits = (asd->csr >> 4) & 0xf;
1303         if (bits != xfer->bits_per_word - 8) {
1304                 dev_dbg(&spi->dev,
1305                         "you can't yet change bits_per_word in transfers\n");
1306                 return -ENOPROTOOPT;
1307         }
1308
1309         /*
1310          * DMA map early, for performance (empties dcache ASAP) and
1311          * better fault reporting.
1312          */
1313         if ((!msg->is_dma_mapped)
1314                 && as->use_pdc) {
1315                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1316                         return -ENOMEM;
1317         }
1318
1319         atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1320
1321         as->done_status = 0;
1322         as->current_transfer = xfer;
1323         as->current_remaining_bytes = xfer->len;
1324         while (as->current_remaining_bytes) {
1325                 reinit_completion(&as->xfer_completion);
1326
1327                 if (as->use_pdc) {
1328                         atmel_spi_pdc_next_xfer(master, msg, xfer);
1329                 } else if (atmel_spi_use_dma(as, xfer)) {
1330                         len = as->current_remaining_bytes;
1331                         ret = atmel_spi_next_xfer_dma_submit(master,
1332                                                                 xfer, &len);
1333                         if (ret) {
1334                                 dev_err(&spi->dev,
1335                                         "unable to use DMA, fallback to PIO\n");
1336                                 atmel_spi_next_xfer_pio(master, xfer);
1337                         } else {
1338                                 as->current_remaining_bytes -= len;
1339                                 if (as->current_remaining_bytes < 0)
1340                                         as->current_remaining_bytes = 0;
1341                         }
1342                 } else {
1343                         atmel_spi_next_xfer_pio(master, xfer);
1344                 }
1345
1346                 /* interrupts are disabled, so free the lock for schedule */
1347                 atmel_spi_unlock(as);
1348                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1349                                                           SPI_DMA_TIMEOUT);
1350                 atmel_spi_lock(as);
1351                 if (WARN_ON(dma_timeout == 0)) {
1352                         dev_err(&spi->dev, "spi transfer timeout\n");
1353                         as->done_status = -EIO;
1354                 }
1355
1356                 if (as->done_status)
1357                         break;
1358         }
1359
1360         if (as->done_status) {
1361                 if (as->use_pdc) {
1362                         dev_warn(master->dev.parent,
1363                                 "overrun (%u/%u remaining)\n",
1364                                 spi_readl(as, TCR), spi_readl(as, RCR));
1365
1366                         /*
1367                          * Clean up DMA registers and make sure the data
1368                          * registers are empty.
1369                          */
1370                         spi_writel(as, RNCR, 0);
1371                         spi_writel(as, TNCR, 0);
1372                         spi_writel(as, RCR, 0);
1373                         spi_writel(as, TCR, 0);
1374                         for (timeout = 1000; timeout; timeout--)
1375                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1376                                         break;
1377                         if (!timeout)
1378                                 dev_warn(master->dev.parent,
1379                                          "timeout waiting for TXEMPTY");
1380                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1381                                 spi_readl(as, RDR);
1382
1383                         /* Clear any overrun happening while cleaning up */
1384                         spi_readl(as, SR);
1385
1386                 } else if (atmel_spi_use_dma(as, xfer)) {
1387                         atmel_spi_stop_dma(master);
1388                 }
1389
1390                 if (!msg->is_dma_mapped
1391                         && as->use_pdc)
1392                         atmel_spi_dma_unmap_xfer(master, xfer);
1393
1394                 return 0;
1395
1396         } else {
1397                 /* only update length if no error */
1398                 msg->actual_length += xfer->len;
1399         }
1400
1401         if (!msg->is_dma_mapped
1402                 && as->use_pdc)
1403                 atmel_spi_dma_unmap_xfer(master, xfer);
1404
1405         spi_transfer_delay_exec(xfer);
1406
1407         if (xfer->cs_change) {
1408                 if (list_is_last(&xfer->transfer_list,
1409                                  &msg->transfers)) {
1410                         as->keep_cs = true;
1411                 } else {
1412                         cs_deactivate(as, msg->spi);
1413                         udelay(10);
1414                         cs_activate(as, msg->spi);
1415                 }
1416         }
1417
1418         return 0;
1419 }
1420
1421 static int atmel_spi_transfer_one_message(struct spi_master *master,
1422                                                 struct spi_message *msg)
1423 {
1424         struct atmel_spi *as;
1425         struct spi_transfer *xfer;
1426         struct spi_device *spi = msg->spi;
1427         int ret = 0;
1428
1429         as = spi_master_get_devdata(master);
1430
1431         dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1432                                         msg, dev_name(&spi->dev));
1433
1434         atmel_spi_lock(as);
1435         cs_activate(as, spi);
1436
1437         as->keep_cs = false;
1438
1439         msg->status = 0;
1440         msg->actual_length = 0;
1441
1442         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1443                 trace_spi_transfer_start(msg, xfer);
1444
1445                 ret = atmel_spi_one_transfer(master, msg, xfer);
1446                 if (ret)
1447                         goto msg_done;
1448
1449                 trace_spi_transfer_stop(msg, xfer);
1450         }
1451
1452         if (as->use_pdc)
1453                 atmel_spi_disable_pdc_transfer(as);
1454
1455         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1456                 dev_dbg(&spi->dev,
1457                         "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1458                         xfer, xfer->len,
1459                         xfer->tx_buf, &xfer->tx_dma,
1460                         xfer->rx_buf, &xfer->rx_dma);
1461         }
1462
1463 msg_done:
1464         if (!as->keep_cs)
1465                 cs_deactivate(as, msg->spi);
1466
1467         atmel_spi_unlock(as);
1468
1469         msg->status = as->done_status;
1470         spi_finalize_current_message(spi->master);
1471
1472         return ret;
1473 }
1474
1475 static void atmel_spi_cleanup(struct spi_device *spi)
1476 {
1477         struct atmel_spi_device *asd = spi->controller_state;
1478
1479         if (!asd)
1480                 return;
1481
1482         spi->controller_state = NULL;
1483         kfree(asd);
1484 }
1485
1486 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1487 {
1488         return spi_readl(as, VERSION) & 0x00000fff;
1489 }
1490
1491 static void atmel_get_caps(struct atmel_spi *as)
1492 {
1493         unsigned int version;
1494
1495         version = atmel_get_version(as);
1496
1497         as->caps.is_spi2 = version > 0x121;
1498         as->caps.has_wdrbt = version >= 0x210;
1499         as->caps.has_dma_support = version >= 0x212;
1500         as->caps.has_pdc_support = version < 0x212;
1501 }
1502
1503 static void atmel_spi_init(struct atmel_spi *as)
1504 {
1505         spi_writel(as, CR, SPI_BIT(SWRST));
1506         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1507
1508         /* It is recommended to enable FIFOs first thing after reset */
1509         if (as->fifo_size)
1510                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1511
1512         if (as->caps.has_wdrbt) {
1513                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1514                                 | SPI_BIT(MSTR));
1515         } else {
1516                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1517         }
1518
1519         if (as->use_pdc)
1520                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1521         spi_writel(as, CR, SPI_BIT(SPIEN));
1522 }
1523
1524 static int atmel_spi_probe(struct platform_device *pdev)
1525 {
1526         struct resource         *regs;
1527         int                     irq;
1528         struct clk              *clk;
1529         int                     ret;
1530         struct spi_master       *master;
1531         struct atmel_spi        *as;
1532
1533         /* Select default pin state */
1534         pinctrl_pm_select_default_state(&pdev->dev);
1535
1536         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1537         if (!regs)
1538                 return -ENXIO;
1539
1540         irq = platform_get_irq(pdev, 0);
1541         if (irq < 0)
1542                 return irq;
1543
1544         clk = devm_clk_get(&pdev->dev, "spi_clk");
1545         if (IS_ERR(clk))
1546                 return PTR_ERR(clk);
1547
1548         /* setup spi core then atmel-specific driver state */
1549         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1550         if (!master)
1551                 return -ENOMEM;
1552
1553         /* the spi->mode bits understood by this driver: */
1554         master->use_gpio_descriptors = true;
1555         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1556         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1557         master->dev.of_node = pdev->dev.of_node;
1558         master->bus_num = pdev->id;
1559         master->num_chipselect = 4;
1560         master->setup = atmel_spi_setup;
1561         master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1562         master->transfer_one_message = atmel_spi_transfer_one_message;
1563         master->cleanup = atmel_spi_cleanup;
1564         master->auto_runtime_pm = true;
1565         master->max_dma_len = SPI_MAX_DMA_XFER;
1566         master->can_dma = atmel_spi_can_dma;
1567         platform_set_drvdata(pdev, master);
1568
1569         as = spi_master_get_devdata(master);
1570
1571         spin_lock_init(&as->lock);
1572
1573         as->pdev = pdev;
1574         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1575         if (IS_ERR(as->regs)) {
1576                 ret = PTR_ERR(as->regs);
1577                 goto out_unmap_regs;
1578         }
1579         as->phybase = regs->start;
1580         as->irq = irq;
1581         as->clk = clk;
1582
1583         init_completion(&as->xfer_completion);
1584
1585         atmel_get_caps(as);
1586
1587         as->use_dma = false;
1588         as->use_pdc = false;
1589         if (as->caps.has_dma_support) {
1590                 ret = atmel_spi_configure_dma(master, as);
1591                 if (ret == 0) {
1592                         as->use_dma = true;
1593                 } else if (ret == -EPROBE_DEFER) {
1594                         return ret;
1595                 }
1596         } else if (as->caps.has_pdc_support) {
1597                 as->use_pdc = true;
1598         }
1599
1600         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1601                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1602                                                       SPI_MAX_DMA_XFER,
1603                                                       &as->dma_addr_rx_bbuf,
1604                                                       GFP_KERNEL | GFP_DMA);
1605                 if (!as->addr_rx_bbuf) {
1606                         as->use_dma = false;
1607                 } else {
1608                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1609                                         SPI_MAX_DMA_XFER,
1610                                         &as->dma_addr_tx_bbuf,
1611                                         GFP_KERNEL | GFP_DMA);
1612                         if (!as->addr_tx_bbuf) {
1613                                 as->use_dma = false;
1614                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615                                                   as->addr_rx_bbuf,
1616                                                   as->dma_addr_rx_bbuf);
1617                         }
1618                 }
1619                 if (!as->use_dma)
1620                         dev_info(master->dev.parent,
1621                                  "  can not allocate dma coherent memory\n");
1622         }
1623
1624         if (as->caps.has_dma_support && !as->use_dma)
1625                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1626
1627         if (as->use_pdc) {
1628                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1629                                         0, dev_name(&pdev->dev), master);
1630         } else {
1631                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1632                                         0, dev_name(&pdev->dev), master);
1633         }
1634         if (ret)
1635                 goto out_unmap_regs;
1636
1637         /* Initialize the hardware */
1638         ret = clk_prepare_enable(clk);
1639         if (ret)
1640                 goto out_free_irq;
1641
1642         as->spi_clk = clk_get_rate(clk);
1643
1644         as->fifo_size = 0;
1645         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1646                                   &as->fifo_size)) {
1647                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1648         }
1649
1650         atmel_spi_init(as);
1651
1652         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1653         pm_runtime_use_autosuspend(&pdev->dev);
1654         pm_runtime_set_active(&pdev->dev);
1655         pm_runtime_enable(&pdev->dev);
1656
1657         ret = devm_spi_register_master(&pdev->dev, master);
1658         if (ret)
1659                 goto out_free_dma;
1660
1661         /* go! */
1662         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1663                         atmel_get_version(as), (unsigned long)regs->start,
1664                         irq);
1665
1666         return 0;
1667
1668 out_free_dma:
1669         pm_runtime_disable(&pdev->dev);
1670         pm_runtime_set_suspended(&pdev->dev);
1671
1672         if (as->use_dma)
1673                 atmel_spi_release_dma(master);
1674
1675         spi_writel(as, CR, SPI_BIT(SWRST));
1676         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1677         clk_disable_unprepare(clk);
1678 out_free_irq:
1679 out_unmap_regs:
1680         spi_master_put(master);
1681         return ret;
1682 }
1683
1684 static int atmel_spi_remove(struct platform_device *pdev)
1685 {
1686         struct spi_master       *master = platform_get_drvdata(pdev);
1687         struct atmel_spi        *as = spi_master_get_devdata(master);
1688
1689         pm_runtime_get_sync(&pdev->dev);
1690
1691         /* reset the hardware and block queue progress */
1692         if (as->use_dma) {
1693                 atmel_spi_stop_dma(master);
1694                 atmel_spi_release_dma(master);
1695                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1696                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1697                                           as->addr_tx_bbuf,
1698                                           as->dma_addr_tx_bbuf);
1699                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1700                                           as->addr_rx_bbuf,
1701                                           as->dma_addr_rx_bbuf);
1702                 }
1703         }
1704
1705         spin_lock_irq(&as->lock);
1706         spi_writel(as, CR, SPI_BIT(SWRST));
1707         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1708         spi_readl(as, SR);
1709         spin_unlock_irq(&as->lock);
1710
1711         clk_disable_unprepare(as->clk);
1712
1713         pm_runtime_put_noidle(&pdev->dev);
1714         pm_runtime_disable(&pdev->dev);
1715
1716         return 0;
1717 }
1718
1719 #ifdef CONFIG_PM
1720 static int atmel_spi_runtime_suspend(struct device *dev)
1721 {
1722         struct spi_master *master = dev_get_drvdata(dev);
1723         struct atmel_spi *as = spi_master_get_devdata(master);
1724
1725         clk_disable_unprepare(as->clk);
1726         pinctrl_pm_select_sleep_state(dev);
1727
1728         return 0;
1729 }
1730
1731 static int atmel_spi_runtime_resume(struct device *dev)
1732 {
1733         struct spi_master *master = dev_get_drvdata(dev);
1734         struct atmel_spi *as = spi_master_get_devdata(master);
1735
1736         pinctrl_pm_select_default_state(dev);
1737
1738         return clk_prepare_enable(as->clk);
1739 }
1740
1741 #ifdef CONFIG_PM_SLEEP
1742 static int atmel_spi_suspend(struct device *dev)
1743 {
1744         struct spi_master *master = dev_get_drvdata(dev);
1745         int ret;
1746
1747         /* Stop the queue running */
1748         ret = spi_master_suspend(master);
1749         if (ret)
1750                 return ret;
1751
1752         if (!pm_runtime_suspended(dev))
1753                 atmel_spi_runtime_suspend(dev);
1754
1755         return 0;
1756 }
1757
1758 static int atmel_spi_resume(struct device *dev)
1759 {
1760         struct spi_master *master = dev_get_drvdata(dev);
1761         struct atmel_spi *as = spi_master_get_devdata(master);
1762         int ret;
1763
1764         ret = clk_prepare_enable(as->clk);
1765         if (ret)
1766                 return ret;
1767
1768         atmel_spi_init(as);
1769
1770         clk_disable_unprepare(as->clk);
1771
1772         if (!pm_runtime_suspended(dev)) {
1773                 ret = atmel_spi_runtime_resume(dev);
1774                 if (ret)
1775                         return ret;
1776         }
1777
1778         /* Start the queue running */
1779         return spi_master_resume(master);
1780 }
1781 #endif
1782
1783 static const struct dev_pm_ops atmel_spi_pm_ops = {
1784         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1785         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1786                            atmel_spi_runtime_resume, NULL)
1787 };
1788 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1789 #else
1790 #define ATMEL_SPI_PM_OPS        NULL
1791 #endif
1792
1793 static const struct of_device_id atmel_spi_dt_ids[] = {
1794         { .compatible = "atmel,at91rm9200-spi" },
1795         { /* sentinel */ }
1796 };
1797
1798 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1799
1800 static struct platform_driver atmel_spi_driver = {
1801         .driver         = {
1802                 .name   = "atmel_spi",
1803                 .pm     = ATMEL_SPI_PM_OPS,
1804                 .of_match_table = atmel_spi_dt_ids,
1805         },
1806         .probe          = atmel_spi_probe,
1807         .remove         = atmel_spi_remove,
1808 };
1809 module_platform_driver(atmel_spi_driver);
1810
1811 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1812 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1813 MODULE_LICENSE("GPL");
1814 MODULE_ALIAS("platform:atmel_spi");