Merge series "soundwire/ASoC: abstract platform-dependent bases" from Bard Liao ...
[linux-2.6-microblaze.git] / drivers / soundwire / bus.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include "bus.h"
11 #include "sysfs_local.h"
12
13 static DEFINE_IDA(sdw_ida);
14
15 static int sdw_get_id(struct sdw_bus *bus)
16 {
17         int rc = ida_alloc(&sdw_ida, GFP_KERNEL);
18
19         if (rc < 0)
20                 return rc;
21
22         bus->id = rc;
23         return 0;
24 }
25
26 /**
27  * sdw_bus_master_add() - add a bus Master instance
28  * @bus: bus instance
29  * @parent: parent device
30  * @fwnode: firmware node handle
31  *
32  * Initializes the bus instance, read properties and create child
33  * devices.
34  */
35 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
36                        struct fwnode_handle *fwnode)
37 {
38         struct sdw_master_prop *prop = NULL;
39         int ret;
40
41         if (!parent) {
42                 pr_err("SoundWire parent device is not set\n");
43                 return -ENODEV;
44         }
45
46         ret = sdw_get_id(bus);
47         if (ret < 0) {
48                 dev_err(parent, "Failed to get bus id\n");
49                 return ret;
50         }
51
52         ret = sdw_master_device_add(bus, parent, fwnode);
53         if (ret < 0) {
54                 dev_err(parent, "Failed to add master device at link %d\n",
55                         bus->link_id);
56                 return ret;
57         }
58
59         if (!bus->ops) {
60                 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
61                 return -EINVAL;
62         }
63
64         if (!bus->compute_params) {
65                 dev_err(bus->dev,
66                         "Bandwidth allocation not configured, compute_params no set\n");
67                 return -EINVAL;
68         }
69
70         mutex_init(&bus->msg_lock);
71         mutex_init(&bus->bus_lock);
72         INIT_LIST_HEAD(&bus->slaves);
73         INIT_LIST_HEAD(&bus->m_rt_list);
74
75         /*
76          * Initialize multi_link flag
77          * TODO: populate this flag by reading property from FW node
78          */
79         bus->multi_link = false;
80         if (bus->ops->read_prop) {
81                 ret = bus->ops->read_prop(bus);
82                 if (ret < 0) {
83                         dev_err(bus->dev,
84                                 "Bus read properties failed:%d\n", ret);
85                         return ret;
86                 }
87         }
88
89         sdw_bus_debugfs_init(bus);
90
91         /*
92          * Device numbers in SoundWire are 0 through 15. Enumeration device
93          * number (0), Broadcast device number (15), Group numbers (12 and
94          * 13) and Master device number (14) are not used for assignment so
95          * mask these and other higher bits.
96          */
97
98         /* Set higher order bits */
99         *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
100
101         /* Set enumuration device number and broadcast device number */
102         set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
103         set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
104
105         /* Set group device numbers and master device number */
106         set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
107         set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
108         set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
109
110         /*
111          * SDW is an enumerable bus, but devices can be powered off. So,
112          * they won't be able to report as present.
113          *
114          * Create Slave devices based on Slaves described in
115          * the respective firmware (ACPI/DT)
116          */
117         if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
118                 ret = sdw_acpi_find_slaves(bus);
119         else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
120                 ret = sdw_of_find_slaves(bus);
121         else
122                 ret = -ENOTSUPP; /* No ACPI/DT so error out */
123
124         if (ret < 0) {
125                 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
126                 return ret;
127         }
128
129         /*
130          * Initialize clock values based on Master properties. The max
131          * frequency is read from max_clk_freq property. Current assumption
132          * is that the bus will start at highest clock frequency when
133          * powered on.
134          *
135          * Default active bank will be 0 as out of reset the Slaves have
136          * to start with bank 0 (Table 40 of Spec)
137          */
138         prop = &bus->prop;
139         bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
140         bus->params.curr_dr_freq = bus->params.max_dr_freq;
141         bus->params.curr_bank = SDW_BANK0;
142         bus->params.next_bank = SDW_BANK1;
143
144         return 0;
145 }
146 EXPORT_SYMBOL(sdw_bus_master_add);
147
148 static int sdw_delete_slave(struct device *dev, void *data)
149 {
150         struct sdw_slave *slave = dev_to_sdw_dev(dev);
151         struct sdw_bus *bus = slave->bus;
152
153         pm_runtime_disable(dev);
154
155         sdw_slave_debugfs_exit(slave);
156
157         mutex_lock(&bus->bus_lock);
158
159         if (slave->dev_num) /* clear dev_num if assigned */
160                 clear_bit(slave->dev_num, bus->assigned);
161
162         list_del_init(&slave->node);
163         mutex_unlock(&bus->bus_lock);
164
165         device_unregister(dev);
166         return 0;
167 }
168
169 /**
170  * sdw_bus_master_delete() - delete the bus master instance
171  * @bus: bus to be deleted
172  *
173  * Remove the instance, delete the child devices.
174  */
175 void sdw_bus_master_delete(struct sdw_bus *bus)
176 {
177         device_for_each_child(bus->dev, NULL, sdw_delete_slave);
178         sdw_master_device_del(bus);
179
180         sdw_bus_debugfs_exit(bus);
181         ida_free(&sdw_ida, bus->id);
182 }
183 EXPORT_SYMBOL(sdw_bus_master_delete);
184
185 /*
186  * SDW IO Calls
187  */
188
189 static inline int find_response_code(enum sdw_command_response resp)
190 {
191         switch (resp) {
192         case SDW_CMD_OK:
193                 return 0;
194
195         case SDW_CMD_IGNORED:
196                 return -ENODATA;
197
198         case SDW_CMD_TIMEOUT:
199                 return -ETIMEDOUT;
200
201         default:
202                 return -EIO;
203         }
204 }
205
206 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
207 {
208         int retry = bus->prop.err_threshold;
209         enum sdw_command_response resp;
210         int ret = 0, i;
211
212         for (i = 0; i <= retry; i++) {
213                 resp = bus->ops->xfer_msg(bus, msg);
214                 ret = find_response_code(resp);
215
216                 /* if cmd is ok or ignored return */
217                 if (ret == 0 || ret == -ENODATA)
218                         return ret;
219         }
220
221         return ret;
222 }
223
224 static inline int do_transfer_defer(struct sdw_bus *bus,
225                                     struct sdw_msg *msg,
226                                     struct sdw_defer *defer)
227 {
228         int retry = bus->prop.err_threshold;
229         enum sdw_command_response resp;
230         int ret = 0, i;
231
232         defer->msg = msg;
233         defer->length = msg->len;
234         init_completion(&defer->complete);
235
236         for (i = 0; i <= retry; i++) {
237                 resp = bus->ops->xfer_msg_defer(bus, msg, defer);
238                 ret = find_response_code(resp);
239                 /* if cmd is ok or ignored return */
240                 if (ret == 0 || ret == -ENODATA)
241                         return ret;
242         }
243
244         return ret;
245 }
246
247 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num)
248 {
249         int retry = bus->prop.err_threshold;
250         enum sdw_command_response resp;
251         int ret = 0, i;
252
253         for (i = 0; i <= retry; i++) {
254                 resp = bus->ops->reset_page_addr(bus, dev_num);
255                 ret = find_response_code(resp);
256                 /* if cmd is ok or ignored return */
257                 if (ret == 0 || ret == -ENODATA)
258                         return ret;
259         }
260
261         return ret;
262 }
263
264 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
265 {
266         int ret;
267
268         ret = do_transfer(bus, msg);
269         if (ret != 0 && ret != -ENODATA)
270                 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
271                         msg->dev_num, ret,
272                         (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
273                         msg->addr, msg->len);
274
275         if (msg->page)
276                 sdw_reset_page(bus, msg->dev_num);
277
278         return ret;
279 }
280
281 /**
282  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
283  * @bus: SDW bus
284  * @msg: SDW message to be xfered
285  */
286 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
287 {
288         int ret;
289
290         mutex_lock(&bus->msg_lock);
291
292         ret = sdw_transfer_unlocked(bus, msg);
293
294         mutex_unlock(&bus->msg_lock);
295
296         return ret;
297 }
298
299 /**
300  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
301  * @bus: SDW bus
302  * @msg: SDW message to be xfered
303  * @defer: Defer block for signal completion
304  *
305  * Caller needs to hold the msg_lock lock while calling this
306  */
307 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg,
308                        struct sdw_defer *defer)
309 {
310         int ret;
311
312         if (!bus->ops->xfer_msg_defer)
313                 return -ENOTSUPP;
314
315         ret = do_transfer_defer(bus, msg, defer);
316         if (ret != 0 && ret != -ENODATA)
317                 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
318                         msg->dev_num, ret);
319
320         if (msg->page)
321                 sdw_reset_page(bus, msg->dev_num);
322
323         return ret;
324 }
325
326 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
327                  u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
328 {
329         memset(msg, 0, sizeof(*msg));
330         msg->addr = addr; /* addr is 16 bit and truncated here */
331         msg->len = count;
332         msg->dev_num = dev_num;
333         msg->flags = flags;
334         msg->buf = buf;
335
336         if (addr < SDW_REG_NO_PAGE) /* no paging area */
337                 return 0;
338
339         if (addr >= SDW_REG_MAX) { /* illegal addr */
340                 pr_err("SDW: Invalid address %x passed\n", addr);
341                 return -EINVAL;
342         }
343
344         if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
345                 if (slave && !slave->prop.paging_support)
346                         return 0;
347                 /* no need for else as that will fall-through to paging */
348         }
349
350         /* paging mandatory */
351         if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
352                 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
353                 return -EINVAL;
354         }
355
356         if (!slave) {
357                 pr_err("SDW: No slave for paging addr\n");
358                 return -EINVAL;
359         }
360
361         if (!slave->prop.paging_support) {
362                 dev_err(&slave->dev,
363                         "address %x needs paging but no support\n", addr);
364                 return -EINVAL;
365         }
366
367         msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
368         msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
369         msg->addr |= BIT(15);
370         msg->page = true;
371
372         return 0;
373 }
374
375 /*
376  * Read/Write IO functions.
377  * no_pm versions can only be called by the bus, e.g. while enumerating or
378  * handling suspend-resume sequences.
379  * all clients need to use the pm versions
380  */
381
382 static int
383 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
384 {
385         struct sdw_msg msg;
386         int ret;
387
388         ret = sdw_fill_msg(&msg, slave, addr, count,
389                            slave->dev_num, SDW_MSG_FLAG_READ, val);
390         if (ret < 0)
391                 return ret;
392
393         return sdw_transfer(slave->bus, &msg);
394 }
395
396 static int
397 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
398 {
399         struct sdw_msg msg;
400         int ret;
401
402         ret = sdw_fill_msg(&msg, slave, addr, count,
403                            slave->dev_num, SDW_MSG_FLAG_WRITE, (u8 *)val);
404         if (ret < 0)
405                 return ret;
406
407         return sdw_transfer(slave->bus, &msg);
408 }
409
410 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
411 {
412         return sdw_nwrite_no_pm(slave, addr, 1, &value);
413 }
414 EXPORT_SYMBOL(sdw_write_no_pm);
415
416 static int
417 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
418 {
419         struct sdw_msg msg;
420         u8 buf;
421         int ret;
422
423         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
424                            SDW_MSG_FLAG_READ, &buf);
425         if (ret < 0)
426                 return ret;
427
428         ret = sdw_transfer(bus, &msg);
429         if (ret < 0)
430                 return ret;
431
432         return buf;
433 }
434
435 static int
436 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
437 {
438         struct sdw_msg msg;
439         int ret;
440
441         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
442                            SDW_MSG_FLAG_WRITE, &value);
443         if (ret < 0)
444                 return ret;
445
446         return sdw_transfer(bus, &msg);
447 }
448
449 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
450 {
451         struct sdw_msg msg;
452         u8 buf;
453         int ret;
454
455         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
456                            SDW_MSG_FLAG_READ, &buf);
457         if (ret < 0)
458                 return ret;
459
460         ret = sdw_transfer_unlocked(bus, &msg);
461         if (ret < 0)
462                 return ret;
463
464         return buf;
465 }
466 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
467
468 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
469 {
470         struct sdw_msg msg;
471         int ret;
472
473         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
474                            SDW_MSG_FLAG_WRITE, &value);
475         if (ret < 0)
476                 return ret;
477
478         return sdw_transfer_unlocked(bus, &msg);
479 }
480 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
481
482 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
483 {
484         u8 buf;
485         int ret;
486
487         ret = sdw_nread_no_pm(slave, addr, 1, &buf);
488         if (ret < 0)
489                 return ret;
490         else
491                 return buf;
492 }
493 EXPORT_SYMBOL(sdw_read_no_pm);
494
495 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
496 {
497         int tmp;
498
499         tmp = sdw_read_no_pm(slave, addr);
500         if (tmp < 0)
501                 return tmp;
502
503         tmp = (tmp & ~mask) | val;
504         return sdw_write_no_pm(slave, addr, tmp);
505 }
506 EXPORT_SYMBOL(sdw_update_no_pm);
507
508 /* Read-Modify-Write Slave register */
509 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
510 {
511         int tmp;
512
513         tmp = sdw_read(slave, addr);
514         if (tmp < 0)
515                 return tmp;
516
517         tmp = (tmp & ~mask) | val;
518         return sdw_write(slave, addr, tmp);
519 }
520 EXPORT_SYMBOL(sdw_update);
521
522 /**
523  * sdw_nread() - Read "n" contiguous SDW Slave registers
524  * @slave: SDW Slave
525  * @addr: Register address
526  * @count: length
527  * @val: Buffer for values to be read
528  */
529 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
530 {
531         int ret;
532
533         ret = pm_runtime_get_sync(&slave->dev);
534         if (ret < 0 && ret != -EACCES) {
535                 pm_runtime_put_noidle(&slave->dev);
536                 return ret;
537         }
538
539         ret = sdw_nread_no_pm(slave, addr, count, val);
540
541         pm_runtime_mark_last_busy(&slave->dev);
542         pm_runtime_put(&slave->dev);
543
544         return ret;
545 }
546 EXPORT_SYMBOL(sdw_nread);
547
548 /**
549  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
550  * @slave: SDW Slave
551  * @addr: Register address
552  * @count: length
553  * @val: Buffer for values to be written
554  */
555 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
556 {
557         int ret;
558
559         ret = pm_runtime_get_sync(&slave->dev);
560         if (ret < 0 && ret != -EACCES) {
561                 pm_runtime_put_noidle(&slave->dev);
562                 return ret;
563         }
564
565         ret = sdw_nwrite_no_pm(slave, addr, count, val);
566
567         pm_runtime_mark_last_busy(&slave->dev);
568         pm_runtime_put(&slave->dev);
569
570         return ret;
571 }
572 EXPORT_SYMBOL(sdw_nwrite);
573
574 /**
575  * sdw_read() - Read a SDW Slave register
576  * @slave: SDW Slave
577  * @addr: Register address
578  */
579 int sdw_read(struct sdw_slave *slave, u32 addr)
580 {
581         u8 buf;
582         int ret;
583
584         ret = sdw_nread(slave, addr, 1, &buf);
585         if (ret < 0)
586                 return ret;
587
588         return buf;
589 }
590 EXPORT_SYMBOL(sdw_read);
591
592 /**
593  * sdw_write() - Write a SDW Slave register
594  * @slave: SDW Slave
595  * @addr: Register address
596  * @value: Register value
597  */
598 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
599 {
600         return sdw_nwrite(slave, addr, 1, &value);
601 }
602 EXPORT_SYMBOL(sdw_write);
603
604 /*
605  * SDW alert handling
606  */
607
608 /* called with bus_lock held */
609 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
610 {
611         struct sdw_slave *slave;
612
613         list_for_each_entry(slave, &bus->slaves, node) {
614                 if (slave->dev_num == i)
615                         return slave;
616         }
617
618         return NULL;
619 }
620
621 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
622 {
623         if (slave->id.mfg_id != id.mfg_id ||
624             slave->id.part_id != id.part_id ||
625             slave->id.class_id != id.class_id ||
626             (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
627              slave->id.unique_id != id.unique_id))
628                 return -ENODEV;
629
630         return 0;
631 }
632 EXPORT_SYMBOL(sdw_compare_devid);
633
634 /* called with bus_lock held */
635 static int sdw_get_device_num(struct sdw_slave *slave)
636 {
637         int bit;
638
639         bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
640         if (bit == SDW_MAX_DEVICES) {
641                 bit = -ENODEV;
642                 goto err;
643         }
644
645         /*
646          * Do not update dev_num in Slave data structure here,
647          * Update once program dev_num is successful
648          */
649         set_bit(bit, slave->bus->assigned);
650
651 err:
652         return bit;
653 }
654
655 static int sdw_assign_device_num(struct sdw_slave *slave)
656 {
657         struct sdw_bus *bus = slave->bus;
658         int ret, dev_num;
659         bool new_device = false;
660
661         /* check first if device number is assigned, if so reuse that */
662         if (!slave->dev_num) {
663                 if (!slave->dev_num_sticky) {
664                         mutex_lock(&slave->bus->bus_lock);
665                         dev_num = sdw_get_device_num(slave);
666                         mutex_unlock(&slave->bus->bus_lock);
667                         if (dev_num < 0) {
668                                 dev_err(bus->dev, "Get dev_num failed: %d\n",
669                                         dev_num);
670                                 return dev_num;
671                         }
672                         slave->dev_num = dev_num;
673                         slave->dev_num_sticky = dev_num;
674                         new_device = true;
675                 } else {
676                         slave->dev_num = slave->dev_num_sticky;
677                 }
678         }
679
680         if (!new_device)
681                 dev_dbg(bus->dev,
682                         "Slave already registered, reusing dev_num:%d\n",
683                         slave->dev_num);
684
685         /* Clear the slave->dev_num to transfer message on device 0 */
686         dev_num = slave->dev_num;
687         slave->dev_num = 0;
688
689         ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
690         if (ret < 0) {
691                 dev_err(bus->dev, "Program device_num %d failed: %d\n",
692                         dev_num, ret);
693                 return ret;
694         }
695
696         /* After xfer of msg, restore dev_num */
697         slave->dev_num = slave->dev_num_sticky;
698
699         return 0;
700 }
701
702 void sdw_extract_slave_id(struct sdw_bus *bus,
703                           u64 addr, struct sdw_slave_id *id)
704 {
705         dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
706
707         id->sdw_version = SDW_VERSION(addr);
708         id->unique_id = SDW_UNIQUE_ID(addr);
709         id->mfg_id = SDW_MFG_ID(addr);
710         id->part_id = SDW_PART_ID(addr);
711         id->class_id = SDW_CLASS_ID(addr);
712
713         dev_dbg(bus->dev,
714                 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
715                 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
716 }
717 EXPORT_SYMBOL(sdw_extract_slave_id);
718
719 static int sdw_program_device_num(struct sdw_bus *bus)
720 {
721         u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
722         struct sdw_slave *slave, *_s;
723         struct sdw_slave_id id;
724         struct sdw_msg msg;
725         bool found;
726         int count = 0, ret;
727         u64 addr;
728
729         /* No Slave, so use raw xfer api */
730         ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
731                            SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
732         if (ret < 0)
733                 return ret;
734
735         do {
736                 ret = sdw_transfer(bus, &msg);
737                 if (ret == -ENODATA) { /* end of device id reads */
738                         dev_dbg(bus->dev, "No more devices to enumerate\n");
739                         ret = 0;
740                         break;
741                 }
742                 if (ret < 0) {
743                         dev_err(bus->dev, "DEVID read fail:%d\n", ret);
744                         break;
745                 }
746
747                 /*
748                  * Construct the addr and extract. Cast the higher shift
749                  * bits to avoid truncation due to size limit.
750                  */
751                 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
752                         ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
753                         ((u64)buf[0] << 40);
754
755                 sdw_extract_slave_id(bus, addr, &id);
756
757                 found = false;
758                 /* Now compare with entries */
759                 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
760                         if (sdw_compare_devid(slave, id) == 0) {
761                                 found = true;
762
763                                 /*
764                                  * Assign a new dev_num to this Slave and
765                                  * not mark it present. It will be marked
766                                  * present after it reports ATTACHED on new
767                                  * dev_num
768                                  */
769                                 ret = sdw_assign_device_num(slave);
770                                 if (ret < 0) {
771                                         dev_err(bus->dev,
772                                                 "Assign dev_num failed:%d\n",
773                                                 ret);
774                                         return ret;
775                                 }
776
777                                 break;
778                         }
779                 }
780
781                 if (!found) {
782                         /* TODO: Park this device in Group 13 */
783
784                         /*
785                          * add Slave device even if there is no platform
786                          * firmware description. There will be no driver probe
787                          * but the user/integration will be able to see the
788                          * device, enumeration status and device number in sysfs
789                          */
790                         sdw_slave_add(bus, &id, NULL);
791
792                         dev_err(bus->dev, "Slave Entry not found\n");
793                 }
794
795                 count++;
796
797                 /*
798                  * Check till error out or retry (count) exhausts.
799                  * Device can drop off and rejoin during enumeration
800                  * so count till twice the bound.
801                  */
802
803         } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
804
805         return ret;
806 }
807
808 static void sdw_modify_slave_status(struct sdw_slave *slave,
809                                     enum sdw_slave_status status)
810 {
811         struct sdw_bus *bus = slave->bus;
812
813         mutex_lock(&bus->bus_lock);
814
815         dev_vdbg(bus->dev,
816                  "%s: changing status slave %d status %d new status %d\n",
817                  __func__, slave->dev_num, slave->status, status);
818
819         if (status == SDW_SLAVE_UNATTACHED) {
820                 dev_dbg(&slave->dev,
821                         "%s: initializing enumeration and init completion for Slave %d\n",
822                         __func__, slave->dev_num);
823
824                 init_completion(&slave->enumeration_complete);
825                 init_completion(&slave->initialization_complete);
826
827         } else if ((status == SDW_SLAVE_ATTACHED) &&
828                    (slave->status == SDW_SLAVE_UNATTACHED)) {
829                 dev_dbg(&slave->dev,
830                         "%s: signaling enumeration completion for Slave %d\n",
831                         __func__, slave->dev_num);
832
833                 complete(&slave->enumeration_complete);
834         }
835         slave->status = status;
836         mutex_unlock(&bus->bus_lock);
837 }
838
839 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
840                                        enum sdw_clk_stop_mode mode,
841                                        enum sdw_clk_stop_type type)
842 {
843         int ret;
844
845         if (slave->ops && slave->ops->clk_stop) {
846                 ret = slave->ops->clk_stop(slave, mode, type);
847                 if (ret < 0)
848                         return ret;
849         }
850
851         return 0;
852 }
853
854 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
855                                       enum sdw_clk_stop_mode mode,
856                                       bool prepare)
857 {
858         bool wake_en;
859         u32 val = 0;
860         int ret;
861
862         wake_en = slave->prop.wake_capable;
863
864         if (prepare) {
865                 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
866
867                 if (mode == SDW_CLK_STOP_MODE1)
868                         val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
869
870                 if (wake_en)
871                         val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
872         } else {
873                 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
874                 if (ret < 0) {
875                         if (ret != -ENODATA)
876                                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
877                         return ret;
878                 }
879                 val = ret;
880                 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
881         }
882
883         ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
884
885         if (ret < 0 && ret != -ENODATA)
886                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
887
888         return ret;
889 }
890
891 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
892 {
893         int retry = bus->clk_stop_timeout;
894         int val;
895
896         do {
897                 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
898                 if (val < 0) {
899                         dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
900                         return val;
901                 }
902                 val &= SDW_SCP_STAT_CLK_STP_NF;
903                 if (!val) {
904                         dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
905                                 dev_num);
906                         return 0;
907                 }
908
909                 usleep_range(1000, 1500);
910                 retry--;
911         } while (retry);
912
913         dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
914                 dev_num);
915
916         return -ETIMEDOUT;
917 }
918
919 /**
920  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
921  *
922  * @bus: SDW bus instance
923  *
924  * Query Slave for clock stop mode and prepare for that mode.
925  */
926 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
927 {
928         bool simple_clk_stop = true;
929         struct sdw_slave *slave;
930         bool is_slave = false;
931         int ret = 0;
932
933         /*
934          * In order to save on transition time, prepare
935          * each Slave and then wait for all Slave(s) to be
936          * prepared for clock stop.
937          * If one of the Slave devices has lost sync and
938          * replies with Command Ignored/-ENODATA, we continue
939          * the loop
940          */
941         list_for_each_entry(slave, &bus->slaves, node) {
942                 if (!slave->dev_num)
943                         continue;
944
945                 if (slave->status != SDW_SLAVE_ATTACHED &&
946                     slave->status != SDW_SLAVE_ALERT)
947                         continue;
948
949                 /* Identify if Slave(s) are available on Bus */
950                 is_slave = true;
951
952                 ret = sdw_slave_clk_stop_callback(slave,
953                                                   SDW_CLK_STOP_MODE0,
954                                                   SDW_CLK_PRE_PREPARE);
955                 if (ret < 0 && ret != -ENODATA) {
956                         dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
957                         return ret;
958                 }
959
960                 /* Only prepare a Slave device if needed */
961                 if (!slave->prop.simple_clk_stop_capable) {
962                         simple_clk_stop = false;
963
964                         ret = sdw_slave_clk_stop_prepare(slave,
965                                                          SDW_CLK_STOP_MODE0,
966                                                          true);
967                         if (ret < 0 && ret != -ENODATA) {
968                                 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
969                                 return ret;
970                         }
971                 }
972         }
973
974         /* Skip remaining clock stop preparation if no Slave is attached */
975         if (!is_slave)
976                 return 0;
977
978         /*
979          * Don't wait for all Slaves to be ready if they follow the simple
980          * state machine
981          */
982         if (!simple_clk_stop) {
983                 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
984                                                        SDW_BROADCAST_DEV_NUM);
985                 /*
986                  * if there are no Slave devices present and the reply is
987                  * Command_Ignored/-ENODATA, we don't need to continue with the
988                  * flow and can just return here. The error code is not modified
989                  * and its handling left as an exercise for the caller.
990                  */
991                 if (ret < 0)
992                         return ret;
993         }
994
995         /* Inform slaves that prep is done */
996         list_for_each_entry(slave, &bus->slaves, node) {
997                 if (!slave->dev_num)
998                         continue;
999
1000                 if (slave->status != SDW_SLAVE_ATTACHED &&
1001                     slave->status != SDW_SLAVE_ALERT)
1002                         continue;
1003
1004                 ret = sdw_slave_clk_stop_callback(slave,
1005                                                   SDW_CLK_STOP_MODE0,
1006                                                   SDW_CLK_POST_PREPARE);
1007
1008                 if (ret < 0 && ret != -ENODATA) {
1009                         dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1010                         return ret;
1011                 }
1012         }
1013
1014         return 0;
1015 }
1016 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1017
1018 /**
1019  * sdw_bus_clk_stop: stop bus clock
1020  *
1021  * @bus: SDW bus instance
1022  *
1023  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1024  * write to SCP_CTRL register.
1025  */
1026 int sdw_bus_clk_stop(struct sdw_bus *bus)
1027 {
1028         int ret;
1029
1030         /*
1031          * broadcast clock stop now, attached Slaves will ACK this,
1032          * unattached will ignore
1033          */
1034         ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1035                                SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1036         if (ret < 0) {
1037                 if (ret != -ENODATA)
1038                         dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1039                 return ret;
1040         }
1041
1042         return 0;
1043 }
1044 EXPORT_SYMBOL(sdw_bus_clk_stop);
1045
1046 /**
1047  * sdw_bus_exit_clk_stop: Exit clock stop mode
1048  *
1049  * @bus: SDW bus instance
1050  *
1051  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1052  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1053  * back.
1054  */
1055 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1056 {
1057         bool simple_clk_stop = true;
1058         struct sdw_slave *slave;
1059         bool is_slave = false;
1060         int ret;
1061
1062         /*
1063          * In order to save on transition time, de-prepare
1064          * each Slave and then wait for all Slave(s) to be
1065          * de-prepared after clock resume.
1066          */
1067         list_for_each_entry(slave, &bus->slaves, node) {
1068                 if (!slave->dev_num)
1069                         continue;
1070
1071                 if (slave->status != SDW_SLAVE_ATTACHED &&
1072                     slave->status != SDW_SLAVE_ALERT)
1073                         continue;
1074
1075                 /* Identify if Slave(s) are available on Bus */
1076                 is_slave = true;
1077
1078                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1079                                                   SDW_CLK_PRE_DEPREPARE);
1080                 if (ret < 0)
1081                         dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1082
1083                 /* Only de-prepare a Slave device if needed */
1084                 if (!slave->prop.simple_clk_stop_capable) {
1085                         simple_clk_stop = false;
1086
1087                         ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1088                                                          false);
1089
1090                         if (ret < 0)
1091                                 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1092                 }
1093         }
1094
1095         /* Skip remaining clock stop de-preparation if no Slave is attached */
1096         if (!is_slave)
1097                 return 0;
1098
1099         /*
1100          * Don't wait for all Slaves to be ready if they follow the simple
1101          * state machine
1102          */
1103         if (!simple_clk_stop) {
1104                 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1105                 if (ret < 0)
1106                         dev_warn(&slave->dev, "clock stop deprepare wait failed:%d\n", ret);
1107         }
1108
1109         list_for_each_entry(slave, &bus->slaves, node) {
1110                 if (!slave->dev_num)
1111                         continue;
1112
1113                 if (slave->status != SDW_SLAVE_ATTACHED &&
1114                     slave->status != SDW_SLAVE_ALERT)
1115                         continue;
1116
1117                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1118                                                   SDW_CLK_POST_DEPREPARE);
1119                 if (ret < 0)
1120                         dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1121         }
1122
1123         return 0;
1124 }
1125 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1126
1127 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1128                            int port, bool enable, int mask)
1129 {
1130         u32 addr;
1131         int ret;
1132         u8 val = 0;
1133
1134         if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1135                 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1136                         enable ? "on" : "off");
1137                 mask |= SDW_DPN_INT_TEST_FAIL;
1138         }
1139
1140         addr = SDW_DPN_INTMASK(port);
1141
1142         /* Set/Clear port ready interrupt mask */
1143         if (enable) {
1144                 val |= mask;
1145                 val |= SDW_DPN_INT_PORT_READY;
1146         } else {
1147                 val &= ~(mask);
1148                 val &= ~SDW_DPN_INT_PORT_READY;
1149         }
1150
1151         ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1152         if (ret < 0)
1153                 dev_err(&slave->dev,
1154                         "SDW_DPN_INTMASK write failed:%d\n", val);
1155
1156         return ret;
1157 }
1158
1159 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1160 {
1161         u32 mclk_freq = slave->bus->prop.mclk_freq;
1162         u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1163         unsigned int scale;
1164         u8 scale_index;
1165         u8 base;
1166         int ret;
1167
1168         /*
1169          * frequency base and scale registers are required for SDCA
1170          * devices. They may also be used for 1.2+/non-SDCA devices,
1171          * but we will need a DisCo property to cover this case
1172          */
1173         if (!slave->id.class_id)
1174                 return 0;
1175
1176         if (!mclk_freq) {
1177                 dev_err(&slave->dev,
1178                         "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1179                 return -EINVAL;
1180         }
1181
1182         /*
1183          * map base frequency using Table 89 of SoundWire 1.2 spec.
1184          * The order of the tests just follows the specification, this
1185          * is not a selection between possible values or a search for
1186          * the best value but just a mapping.  Only one case per platform
1187          * is relevant.
1188          * Some BIOS have inconsistent values for mclk_freq but a
1189          * correct root so we force the mclk_freq to avoid variations.
1190          */
1191         if (!(19200000 % mclk_freq)) {
1192                 mclk_freq = 19200000;
1193                 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1194         } else if (!(24000000 % mclk_freq)) {
1195                 mclk_freq = 24000000;
1196                 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1197         } else if (!(24576000 % mclk_freq)) {
1198                 mclk_freq = 24576000;
1199                 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1200         } else if (!(22579200 % mclk_freq)) {
1201                 mclk_freq = 22579200;
1202                 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1203         } else if (!(32000000 % mclk_freq)) {
1204                 mclk_freq = 32000000;
1205                 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1206         } else {
1207                 dev_err(&slave->dev,
1208                         "Unsupported clock base, mclk %d\n",
1209                         mclk_freq);
1210                 return -EINVAL;
1211         }
1212
1213         if (mclk_freq % curr_freq) {
1214                 dev_err(&slave->dev,
1215                         "mclk %d is not multiple of bus curr_freq %d\n",
1216                         mclk_freq, curr_freq);
1217                 return -EINVAL;
1218         }
1219
1220         scale = mclk_freq / curr_freq;
1221
1222         /*
1223          * map scale to Table 90 of SoundWire 1.2 spec - and check
1224          * that the scale is a power of two and maximum 64
1225          */
1226         scale_index = ilog2(scale);
1227
1228         if (BIT(scale_index) != scale || scale_index > 6) {
1229                 dev_err(&slave->dev,
1230                         "No match found for scale %d, bus mclk %d curr_freq %d\n",
1231                         scale, mclk_freq, curr_freq);
1232                 return -EINVAL;
1233         }
1234         scale_index++;
1235
1236         ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1237         if (ret < 0) {
1238                 dev_err(&slave->dev,
1239                         "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1240                 return ret;
1241         }
1242
1243         /* initialize scale for both banks */
1244         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1245         if (ret < 0) {
1246                 dev_err(&slave->dev,
1247                         "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1248                 return ret;
1249         }
1250         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1251         if (ret < 0)
1252                 dev_err(&slave->dev,
1253                         "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1254
1255         dev_dbg(&slave->dev,
1256                 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1257                 base, scale_index, mclk_freq, curr_freq);
1258
1259         return ret;
1260 }
1261
1262 static int sdw_initialize_slave(struct sdw_slave *slave)
1263 {
1264         struct sdw_slave_prop *prop = &slave->prop;
1265         int status;
1266         int ret;
1267         u8 val;
1268
1269         ret = sdw_slave_set_frequency(slave);
1270         if (ret < 0)
1271                 return ret;
1272
1273         if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1274                 /* Clear bus clash interrupt before enabling interrupt mask */
1275                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1276                 if (status < 0) {
1277                         dev_err(&slave->dev,
1278                                 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1279                         return status;
1280                 }
1281                 if (status & SDW_SCP_INT1_BUS_CLASH) {
1282                         dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1283                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1284                         if (ret < 0) {
1285                                 dev_err(&slave->dev,
1286                                         "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1287                                 return ret;
1288                         }
1289                 }
1290         }
1291         if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1292             !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1293                 /* Clear parity interrupt before enabling interrupt mask */
1294                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1295                 if (status < 0) {
1296                         dev_err(&slave->dev,
1297                                 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1298                         return status;
1299                 }
1300                 if (status & SDW_SCP_INT1_PARITY) {
1301                         dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1302                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1303                         if (ret < 0) {
1304                                 dev_err(&slave->dev,
1305                                         "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1306                                 return ret;
1307                         }
1308                 }
1309         }
1310
1311         /*
1312          * Set SCP_INT1_MASK register, typically bus clash and
1313          * implementation-defined interrupt mask. The Parity detection
1314          * may not always be correct on startup so its use is
1315          * device-dependent, it might e.g. only be enabled in
1316          * steady-state after a couple of frames.
1317          */
1318         val = slave->prop.scp_int1_mask;
1319
1320         /* Enable SCP interrupts */
1321         ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1322         if (ret < 0) {
1323                 dev_err(&slave->dev,
1324                         "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1325                 return ret;
1326         }
1327
1328         /* No need to continue if DP0 is not present */
1329         if (!slave->prop.dp0_prop)
1330                 return 0;
1331
1332         /* Enable DP0 interrupts */
1333         val = prop->dp0_prop->imp_def_interrupts;
1334         val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1335
1336         ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1337         if (ret < 0)
1338                 dev_err(&slave->dev,
1339                         "SDW_DP0_INTMASK read failed:%d\n", ret);
1340         return ret;
1341 }
1342
1343 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1344 {
1345         u8 clear, impl_int_mask;
1346         int status, status2, ret, count = 0;
1347
1348         status = sdw_read_no_pm(slave, SDW_DP0_INT);
1349         if (status < 0) {
1350                 dev_err(&slave->dev,
1351                         "SDW_DP0_INT read failed:%d\n", status);
1352                 return status;
1353         }
1354
1355         do {
1356                 clear = status & ~SDW_DP0_INTERRUPTS;
1357
1358                 if (status & SDW_DP0_INT_TEST_FAIL) {
1359                         dev_err(&slave->dev, "Test fail for port 0\n");
1360                         clear |= SDW_DP0_INT_TEST_FAIL;
1361                 }
1362
1363                 /*
1364                  * Assumption: PORT_READY interrupt will be received only for
1365                  * ports implementing Channel Prepare state machine (CP_SM)
1366                  */
1367
1368                 if (status & SDW_DP0_INT_PORT_READY) {
1369                         complete(&slave->port_ready[0]);
1370                         clear |= SDW_DP0_INT_PORT_READY;
1371                 }
1372
1373                 if (status & SDW_DP0_INT_BRA_FAILURE) {
1374                         dev_err(&slave->dev, "BRA failed\n");
1375                         clear |= SDW_DP0_INT_BRA_FAILURE;
1376                 }
1377
1378                 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1379                         SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1380
1381                 if (status & impl_int_mask) {
1382                         clear |= impl_int_mask;
1383                         *slave_status = clear;
1384                 }
1385
1386                 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1387                 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1388                 if (ret < 0) {
1389                         dev_err(&slave->dev,
1390                                 "SDW_DP0_INT write failed:%d\n", ret);
1391                         return ret;
1392                 }
1393
1394                 /* Read DP0 interrupt again */
1395                 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1396                 if (status2 < 0) {
1397                         dev_err(&slave->dev,
1398                                 "SDW_DP0_INT read failed:%d\n", status2);
1399                         return status2;
1400                 }
1401                 /* filter to limit loop to interrupts identified in the first status read */
1402                 status &= status2;
1403
1404                 count++;
1405
1406                 /* we can get alerts while processing so keep retrying */
1407         } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1408
1409         if (count == SDW_READ_INTR_CLEAR_RETRY)
1410                 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1411
1412         return ret;
1413 }
1414
1415 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1416                                      int port, u8 *slave_status)
1417 {
1418         u8 clear, impl_int_mask;
1419         int status, status2, ret, count = 0;
1420         u32 addr;
1421
1422         if (port == 0)
1423                 return sdw_handle_dp0_interrupt(slave, slave_status);
1424
1425         addr = SDW_DPN_INT(port);
1426         status = sdw_read_no_pm(slave, addr);
1427         if (status < 0) {
1428                 dev_err(&slave->dev,
1429                         "SDW_DPN_INT read failed:%d\n", status);
1430
1431                 return status;
1432         }
1433
1434         do {
1435                 clear = status & ~SDW_DPN_INTERRUPTS;
1436
1437                 if (status & SDW_DPN_INT_TEST_FAIL) {
1438                         dev_err(&slave->dev, "Test fail for port:%d\n", port);
1439                         clear |= SDW_DPN_INT_TEST_FAIL;
1440                 }
1441
1442                 /*
1443                  * Assumption: PORT_READY interrupt will be received only
1444                  * for ports implementing CP_SM.
1445                  */
1446                 if (status & SDW_DPN_INT_PORT_READY) {
1447                         complete(&slave->port_ready[port]);
1448                         clear |= SDW_DPN_INT_PORT_READY;
1449                 }
1450
1451                 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1452                         SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1453
1454                 if (status & impl_int_mask) {
1455                         clear |= impl_int_mask;
1456                         *slave_status = clear;
1457                 }
1458
1459                 /* clear the interrupt but don't touch reserved fields */
1460                 ret = sdw_write_no_pm(slave, addr, clear);
1461                 if (ret < 0) {
1462                         dev_err(&slave->dev,
1463                                 "SDW_DPN_INT write failed:%d\n", ret);
1464                         return ret;
1465                 }
1466
1467                 /* Read DPN interrupt again */
1468                 status2 = sdw_read_no_pm(slave, addr);
1469                 if (status2 < 0) {
1470                         dev_err(&slave->dev,
1471                                 "SDW_DPN_INT read failed:%d\n", status2);
1472                         return status2;
1473                 }
1474                 /* filter to limit loop to interrupts identified in the first status read */
1475                 status &= status2;
1476
1477                 count++;
1478
1479                 /* we can get alerts while processing so keep retrying */
1480         } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1481
1482         if (count == SDW_READ_INTR_CLEAR_RETRY)
1483                 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1484
1485         return ret;
1486 }
1487
1488 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1489 {
1490         struct sdw_slave_intr_status slave_intr;
1491         u8 clear = 0, bit, port_status[15] = {0};
1492         int port_num, stat, ret, count = 0;
1493         unsigned long port;
1494         bool slave_notify;
1495         u8 sdca_cascade = 0;
1496         u8 buf, buf2[2], _buf, _buf2[2];
1497         bool parity_check;
1498         bool parity_quirk;
1499
1500         sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1501
1502         ret = pm_runtime_get_sync(&slave->dev);
1503         if (ret < 0 && ret != -EACCES) {
1504                 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1505                 pm_runtime_put_noidle(&slave->dev);
1506                 return ret;
1507         }
1508
1509         /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1510         ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1511         if (ret < 0) {
1512                 dev_err(&slave->dev,
1513                         "SDW_SCP_INT1 read failed:%d\n", ret);
1514                 goto io_err;
1515         }
1516         buf = ret;
1517
1518         ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1519         if (ret < 0) {
1520                 dev_err(&slave->dev,
1521                         "SDW_SCP_INT2/3 read failed:%d\n", ret);
1522                 goto io_err;
1523         }
1524
1525         if (slave->prop.is_sdca) {
1526                 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1527                 if (ret < 0) {
1528                         dev_err(&slave->dev,
1529                                 "SDW_DP0_INT read failed:%d\n", ret);
1530                         goto io_err;
1531                 }
1532                 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1533         }
1534
1535         do {
1536                 slave_notify = false;
1537
1538                 /*
1539                  * Check parity, bus clash and Slave (impl defined)
1540                  * interrupt
1541                  */
1542                 if (buf & SDW_SCP_INT1_PARITY) {
1543                         parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1544                         parity_quirk = !slave->first_interrupt_done &&
1545                                 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1546
1547                         if (parity_check && !parity_quirk)
1548                                 dev_err(&slave->dev, "Parity error detected\n");
1549                         clear |= SDW_SCP_INT1_PARITY;
1550                 }
1551
1552                 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1553                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1554                                 dev_err(&slave->dev, "Bus clash detected\n");
1555                         clear |= SDW_SCP_INT1_BUS_CLASH;
1556                 }
1557
1558                 /*
1559                  * When bus clash or parity errors are detected, such errors
1560                  * are unlikely to be recoverable errors.
1561                  * TODO: In such scenario, reset bus. Make this configurable
1562                  * via sysfs property with bus reset being the default.
1563                  */
1564
1565                 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1566                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1567                                 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1568                                 slave_notify = true;
1569                         }
1570                         clear |= SDW_SCP_INT1_IMPL_DEF;
1571                 }
1572
1573                 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1574                 if (sdca_cascade)
1575                         slave_notify = true;
1576
1577                 /* Check port 0 - 3 interrupts */
1578                 port = buf & SDW_SCP_INT1_PORT0_3;
1579
1580                 /* To get port number corresponding to bits, shift it */
1581                 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1582                 for_each_set_bit(bit, &port, 8) {
1583                         sdw_handle_port_interrupt(slave, bit,
1584                                                   &port_status[bit]);
1585                 }
1586
1587                 /* Check if cascade 2 interrupt is present */
1588                 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1589                         port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1590                         for_each_set_bit(bit, &port, 8) {
1591                                 /* scp2 ports start from 4 */
1592                                 port_num = bit + 3;
1593                                 sdw_handle_port_interrupt(slave,
1594                                                 port_num,
1595                                                 &port_status[port_num]);
1596                         }
1597                 }
1598
1599                 /* now check last cascade */
1600                 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1601                         port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1602                         for_each_set_bit(bit, &port, 8) {
1603                                 /* scp3 ports start from 11 */
1604                                 port_num = bit + 10;
1605                                 sdw_handle_port_interrupt(slave,
1606                                                 port_num,
1607                                                 &port_status[port_num]);
1608                         }
1609                 }
1610
1611                 /* Update the Slave driver */
1612                 if (slave_notify && slave->ops &&
1613                     slave->ops->interrupt_callback) {
1614                         slave_intr.sdca_cascade = sdca_cascade;
1615                         slave_intr.control_port = clear;
1616                         memcpy(slave_intr.port, &port_status,
1617                                sizeof(slave_intr.port));
1618
1619                         slave->ops->interrupt_callback(slave, &slave_intr);
1620                 }
1621
1622                 /* Ack interrupt */
1623                 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1624                 if (ret < 0) {
1625                         dev_err(&slave->dev,
1626                                 "SDW_SCP_INT1 write failed:%d\n", ret);
1627                         goto io_err;
1628                 }
1629
1630                 /* at this point all initial interrupt sources were handled */
1631                 slave->first_interrupt_done = true;
1632
1633                 /*
1634                  * Read status again to ensure no new interrupts arrived
1635                  * while servicing interrupts.
1636                  */
1637                 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1638                 if (ret < 0) {
1639                         dev_err(&slave->dev,
1640                                 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1641                         goto io_err;
1642                 }
1643                 _buf = ret;
1644
1645                 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1646                 if (ret < 0) {
1647                         dev_err(&slave->dev,
1648                                 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1649                         goto io_err;
1650                 }
1651
1652                 if (slave->prop.is_sdca) {
1653                         ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1654                         if (ret < 0) {
1655                                 dev_err(&slave->dev,
1656                                         "SDW_DP0_INT recheck read failed:%d\n", ret);
1657                                 goto io_err;
1658                         }
1659                         sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1660                 }
1661
1662                 /*
1663                  * Make sure no interrupts are pending, but filter to limit loop
1664                  * to interrupts identified in the first status read
1665                  */
1666                 buf &= _buf;
1667                 buf2[0] &= _buf2[0];
1668                 buf2[1] &= _buf2[1];
1669                 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1670
1671                 /*
1672                  * Exit loop if Slave is continuously in ALERT state even
1673                  * after servicing the interrupt multiple times.
1674                  */
1675                 count++;
1676
1677                 /* we can get alerts while processing so keep retrying */
1678         } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1679
1680         if (count == SDW_READ_INTR_CLEAR_RETRY)
1681                 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1682
1683 io_err:
1684         pm_runtime_mark_last_busy(&slave->dev);
1685         pm_runtime_put_autosuspend(&slave->dev);
1686
1687         return ret;
1688 }
1689
1690 static int sdw_update_slave_status(struct sdw_slave *slave,
1691                                    enum sdw_slave_status status)
1692 {
1693         unsigned long time;
1694
1695         if (!slave->probed) {
1696                 /*
1697                  * the slave status update is typically handled in an
1698                  * interrupt thread, which can race with the driver
1699                  * probe, e.g. when a module needs to be loaded.
1700                  *
1701                  * make sure the probe is complete before updating
1702                  * status.
1703                  */
1704                 time = wait_for_completion_timeout(&slave->probe_complete,
1705                                 msecs_to_jiffies(DEFAULT_PROBE_TIMEOUT));
1706                 if (!time) {
1707                         dev_err(&slave->dev, "Probe not complete, timed out\n");
1708                         return -ETIMEDOUT;
1709                 }
1710         }
1711
1712         if (!slave->ops || !slave->ops->update_status)
1713                 return 0;
1714
1715         return slave->ops->update_status(slave, status);
1716 }
1717
1718 /**
1719  * sdw_handle_slave_status() - Handle Slave status
1720  * @bus: SDW bus instance
1721  * @status: Status for all Slave(s)
1722  */
1723 int sdw_handle_slave_status(struct sdw_bus *bus,
1724                             enum sdw_slave_status status[])
1725 {
1726         enum sdw_slave_status prev_status;
1727         struct sdw_slave *slave;
1728         bool attached_initializing;
1729         int i, ret = 0;
1730
1731         /* first check if any Slaves fell off the bus */
1732         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1733                 mutex_lock(&bus->bus_lock);
1734                 if (test_bit(i, bus->assigned) == false) {
1735                         mutex_unlock(&bus->bus_lock);
1736                         continue;
1737                 }
1738                 mutex_unlock(&bus->bus_lock);
1739
1740                 slave = sdw_get_slave(bus, i);
1741                 if (!slave)
1742                         continue;
1743
1744                 if (status[i] == SDW_SLAVE_UNATTACHED &&
1745                     slave->status != SDW_SLAVE_UNATTACHED)
1746                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1747         }
1748
1749         if (status[0] == SDW_SLAVE_ATTACHED) {
1750                 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1751                 ret = sdw_program_device_num(bus);
1752                 if (ret < 0)
1753                         dev_err(bus->dev, "Slave attach failed: %d\n", ret);
1754                 /*
1755                  * programming a device number will have side effects,
1756                  * so we deal with other devices at a later time
1757                  */
1758                 return ret;
1759         }
1760
1761         /* Continue to check other slave statuses */
1762         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1763                 mutex_lock(&bus->bus_lock);
1764                 if (test_bit(i, bus->assigned) == false) {
1765                         mutex_unlock(&bus->bus_lock);
1766                         continue;
1767                 }
1768                 mutex_unlock(&bus->bus_lock);
1769
1770                 slave = sdw_get_slave(bus, i);
1771                 if (!slave)
1772                         continue;
1773
1774                 attached_initializing = false;
1775
1776                 switch (status[i]) {
1777                 case SDW_SLAVE_UNATTACHED:
1778                         if (slave->status == SDW_SLAVE_UNATTACHED)
1779                                 break;
1780
1781                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1782                         break;
1783
1784                 case SDW_SLAVE_ALERT:
1785                         ret = sdw_handle_slave_alerts(slave);
1786                         if (ret < 0)
1787                                 dev_err(&slave->dev,
1788                                         "Slave %d alert handling failed: %d\n",
1789                                         i, ret);
1790                         break;
1791
1792                 case SDW_SLAVE_ATTACHED:
1793                         if (slave->status == SDW_SLAVE_ATTACHED)
1794                                 break;
1795
1796                         prev_status = slave->status;
1797                         sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1798
1799                         if (prev_status == SDW_SLAVE_ALERT)
1800                                 break;
1801
1802                         attached_initializing = true;
1803
1804                         ret = sdw_initialize_slave(slave);
1805                         if (ret < 0)
1806                                 dev_err(&slave->dev,
1807                                         "Slave %d initialization failed: %d\n",
1808                                         i, ret);
1809
1810                         break;
1811
1812                 default:
1813                         dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1814                                 i, status[i]);
1815                         break;
1816                 }
1817
1818                 ret = sdw_update_slave_status(slave, status[i]);
1819                 if (ret < 0)
1820                         dev_err(&slave->dev,
1821                                 "Update Slave status failed:%d\n", ret);
1822                 if (attached_initializing) {
1823                         dev_dbg(&slave->dev,
1824                                 "%s: signaling initialization completion for Slave %d\n",
1825                                 __func__, slave->dev_num);
1826
1827                         complete(&slave->initialization_complete);
1828                 }
1829         }
1830
1831         return ret;
1832 }
1833 EXPORT_SYMBOL(sdw_handle_slave_status);
1834
1835 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1836 {
1837         struct sdw_slave *slave;
1838         int i;
1839
1840         /* Check all non-zero devices */
1841         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1842                 mutex_lock(&bus->bus_lock);
1843                 if (test_bit(i, bus->assigned) == false) {
1844                         mutex_unlock(&bus->bus_lock);
1845                         continue;
1846                 }
1847                 mutex_unlock(&bus->bus_lock);
1848
1849                 slave = sdw_get_slave(bus, i);
1850                 if (!slave)
1851                         continue;
1852
1853                 if (slave->status != SDW_SLAVE_UNATTACHED) {
1854                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1855                         slave->first_interrupt_done = false;
1856                 }
1857
1858                 /* keep track of request, used in pm_runtime resume */
1859                 slave->unattach_request = request;
1860         }
1861 }
1862 EXPORT_SYMBOL(sdw_clear_slave_status);