Merge tag 'kvm-arm-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm...
[linux-2.6-microblaze.git] / drivers / soc / ti / knav_qmss_queue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Keystone Queue Manager subsystem driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6  * Authors:     Sandeep Nair <sandeep_n@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
23
24 #include "knav_qmss.h"
25
26 static struct knav_device *kdev;
27 static DEFINE_MUTEX(knav_dev_lock);
28
29 /* Queue manager register indices in DTS */
30 #define KNAV_QUEUE_PEEK_REG_INDEX       0
31 #define KNAV_QUEUE_STATUS_REG_INDEX     1
32 #define KNAV_QUEUE_CONFIG_REG_INDEX     2
33 #define KNAV_QUEUE_REGION_REG_INDEX     3
34 #define KNAV_QUEUE_PUSH_REG_INDEX       4
35 #define KNAV_QUEUE_POP_REG_INDEX        5
36
37 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
38  * There are no status and vbusm push registers on this version
39  * of QMSS. Push registers are same as pop, So all indices above 1
40  * are to be re-defined
41  */
42 #define KNAV_L_QUEUE_CONFIG_REG_INDEX   1
43 #define KNAV_L_QUEUE_REGION_REG_INDEX   2
44 #define KNAV_L_QUEUE_PUSH_REG_INDEX     3
45
46 /* PDSP register indices in DTS */
47 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
48 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
49 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
50 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
51
52 #define knav_queue_idx_to_inst(kdev, idx)                       \
53         (kdev->instances + (idx << kdev->inst_shift))
54
55 #define for_each_handle_rcu(qh, inst)                   \
56         list_for_each_entry_rcu(qh, &inst->handles, list)
57
58 #define for_each_instance(idx, inst, kdev)              \
59         for (idx = 0, inst = kdev->instances;           \
60              idx < (kdev)->num_queues_in_use;                   \
61              idx++, inst = knav_queue_idx_to_inst(kdev, idx))
62
63 /* All firmware file names end up here. List the firmware file names below.
64  * Newest followed by older ones. Search is done from start of the array
65  * until a firmware file is found.
66  */
67 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
68
69 static bool device_ready;
70 bool knav_qmss_device_ready(void)
71 {
72         return device_ready;
73 }
74 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
75
76 /**
77  * knav_queue_notify: qmss queue notfier call
78  *
79  * @inst:               qmss queue instance like accumulator
80  */
81 void knav_queue_notify(struct knav_queue_inst *inst)
82 {
83         struct knav_queue *qh;
84
85         if (!inst)
86                 return;
87
88         rcu_read_lock();
89         for_each_handle_rcu(qh, inst) {
90                 if (atomic_read(&qh->notifier_enabled) <= 0)
91                         continue;
92                 if (WARN_ON(!qh->notifier_fn))
93                         continue;
94                 this_cpu_inc(qh->stats->notifies);
95                 qh->notifier_fn(qh->notifier_fn_arg);
96         }
97         rcu_read_unlock();
98 }
99 EXPORT_SYMBOL_GPL(knav_queue_notify);
100
101 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
102 {
103         struct knav_queue_inst *inst = _instdata;
104
105         knav_queue_notify(inst);
106         return IRQ_HANDLED;
107 }
108
109 static int knav_queue_setup_irq(struct knav_range_info *range,
110                           struct knav_queue_inst *inst)
111 {
112         unsigned queue = inst->id - range->queue_base;
113         int ret = 0, irq;
114
115         if (range->flags & RANGE_HAS_IRQ) {
116                 irq = range->irqs[queue].irq;
117                 ret = request_irq(irq, knav_queue_int_handler, 0,
118                                         inst->irq_name, inst);
119                 if (ret)
120                         return ret;
121                 disable_irq(irq);
122                 if (range->irqs[queue].cpu_mask) {
123                         ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
124                         if (ret) {
125                                 dev_warn(range->kdev->dev,
126                                          "Failed to set IRQ affinity\n");
127                                 return ret;
128                         }
129                 }
130         }
131         return ret;
132 }
133
134 static void knav_queue_free_irq(struct knav_queue_inst *inst)
135 {
136         struct knav_range_info *range = inst->range;
137         unsigned queue = inst->id - inst->range->queue_base;
138         int irq;
139
140         if (range->flags & RANGE_HAS_IRQ) {
141                 irq = range->irqs[queue].irq;
142                 irq_set_affinity_hint(irq, NULL);
143                 free_irq(irq, inst);
144         }
145 }
146
147 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
148 {
149         return !list_empty(&inst->handles);
150 }
151
152 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
153 {
154         return inst->range->flags & RANGE_RESERVED;
155 }
156
157 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
158 {
159         struct knav_queue *tmp;
160
161         rcu_read_lock();
162         for_each_handle_rcu(tmp, inst) {
163                 if (tmp->flags & KNAV_QUEUE_SHARED) {
164                         rcu_read_unlock();
165                         return true;
166                 }
167         }
168         rcu_read_unlock();
169         return false;
170 }
171
172 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
173                                                 unsigned type)
174 {
175         if ((type == KNAV_QUEUE_QPEND) &&
176             (inst->range->flags & RANGE_HAS_IRQ)) {
177                 return true;
178         } else if ((type == KNAV_QUEUE_ACC) &&
179                 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
180                 return true;
181         } else if ((type == KNAV_QUEUE_GP) &&
182                 !(inst->range->flags &
183                         (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
184                 return true;
185         }
186         return false;
187 }
188
189 static inline struct knav_queue_inst *
190 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
191 {
192         struct knav_queue_inst *inst;
193         int idx;
194
195         for_each_instance(idx, inst, kdev) {
196                 if (inst->id == id)
197                         return inst;
198         }
199         return NULL;
200 }
201
202 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
203 {
204         if (kdev->base_id <= id &&
205             kdev->base_id + kdev->num_queues > id) {
206                 id -= kdev->base_id;
207                 return knav_queue_match_id_to_inst(kdev, id);
208         }
209         return NULL;
210 }
211
212 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
213                                       const char *name, unsigned flags)
214 {
215         struct knav_queue *qh;
216         unsigned id;
217         int ret = 0;
218
219         qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
220         if (!qh)
221                 return ERR_PTR(-ENOMEM);
222
223         qh->stats = alloc_percpu(struct knav_queue_stats);
224         if (!qh->stats) {
225                 ret = -ENOMEM;
226                 goto err;
227         }
228
229         qh->flags = flags;
230         qh->inst = inst;
231         id = inst->id - inst->qmgr->start_queue;
232         qh->reg_push = &inst->qmgr->reg_push[id];
233         qh->reg_pop = &inst->qmgr->reg_pop[id];
234         qh->reg_peek = &inst->qmgr->reg_peek[id];
235
236         /* first opener? */
237         if (!knav_queue_is_busy(inst)) {
238                 struct knav_range_info *range = inst->range;
239
240                 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
241                 if (range->ops && range->ops->open_queue)
242                         ret = range->ops->open_queue(range, inst, flags);
243
244                 if (ret)
245                         goto err;
246         }
247         list_add_tail_rcu(&qh->list, &inst->handles);
248         return qh;
249
250 err:
251         if (qh->stats)
252                 free_percpu(qh->stats);
253         devm_kfree(inst->kdev->dev, qh);
254         return ERR_PTR(ret);
255 }
256
257 static struct knav_queue *
258 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
259 {
260         struct knav_queue_inst *inst;
261         struct knav_queue *qh;
262
263         mutex_lock(&knav_dev_lock);
264
265         qh = ERR_PTR(-ENODEV);
266         inst = knav_queue_find_by_id(id);
267         if (!inst)
268                 goto unlock_ret;
269
270         qh = ERR_PTR(-EEXIST);
271         if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
272                 goto unlock_ret;
273
274         qh = ERR_PTR(-EBUSY);
275         if ((flags & KNAV_QUEUE_SHARED) &&
276             (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
277                 goto unlock_ret;
278
279         qh = __knav_queue_open(inst, name, flags);
280
281 unlock_ret:
282         mutex_unlock(&knav_dev_lock);
283
284         return qh;
285 }
286
287 static struct knav_queue *knav_queue_open_by_type(const char *name,
288                                                 unsigned type, unsigned flags)
289 {
290         struct knav_queue_inst *inst;
291         struct knav_queue *qh = ERR_PTR(-EINVAL);
292         int idx;
293
294         mutex_lock(&knav_dev_lock);
295
296         for_each_instance(idx, inst, kdev) {
297                 if (knav_queue_is_reserved(inst))
298                         continue;
299                 if (!knav_queue_match_type(inst, type))
300                         continue;
301                 if (knav_queue_is_busy(inst))
302                         continue;
303                 qh = __knav_queue_open(inst, name, flags);
304                 goto unlock_ret;
305         }
306
307 unlock_ret:
308         mutex_unlock(&knav_dev_lock);
309         return qh;
310 }
311
312 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
313 {
314         struct knav_range_info *range = inst->range;
315
316         if (range->ops && range->ops->set_notify)
317                 range->ops->set_notify(range, inst, enabled);
318 }
319
320 static int knav_queue_enable_notifier(struct knav_queue *qh)
321 {
322         struct knav_queue_inst *inst = qh->inst;
323         bool first;
324
325         if (WARN_ON(!qh->notifier_fn))
326                 return -EINVAL;
327
328         /* Adjust the per handle notifier count */
329         first = (atomic_inc_return(&qh->notifier_enabled) == 1);
330         if (!first)
331                 return 0; /* nothing to do */
332
333         /* Now adjust the per instance notifier count */
334         first = (atomic_inc_return(&inst->num_notifiers) == 1);
335         if (first)
336                 knav_queue_set_notify(inst, true);
337
338         return 0;
339 }
340
341 static int knav_queue_disable_notifier(struct knav_queue *qh)
342 {
343         struct knav_queue_inst *inst = qh->inst;
344         bool last;
345
346         last = (atomic_dec_return(&qh->notifier_enabled) == 0);
347         if (!last)
348                 return 0; /* nothing to do */
349
350         last = (atomic_dec_return(&inst->num_notifiers) == 0);
351         if (last)
352                 knav_queue_set_notify(inst, false);
353
354         return 0;
355 }
356
357 static int knav_queue_set_notifier(struct knav_queue *qh,
358                                 struct knav_queue_notify_config *cfg)
359 {
360         knav_queue_notify_fn old_fn = qh->notifier_fn;
361
362         if (!cfg)
363                 return -EINVAL;
364
365         if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
366                 return -ENOTSUPP;
367
368         if (!cfg->fn && old_fn)
369                 knav_queue_disable_notifier(qh);
370
371         qh->notifier_fn = cfg->fn;
372         qh->notifier_fn_arg = cfg->fn_arg;
373
374         if (cfg->fn && !old_fn)
375                 knav_queue_enable_notifier(qh);
376
377         return 0;
378 }
379
380 static int knav_gp_set_notify(struct knav_range_info *range,
381                                struct knav_queue_inst *inst,
382                                bool enabled)
383 {
384         unsigned queue;
385
386         if (range->flags & RANGE_HAS_IRQ) {
387                 queue = inst->id - range->queue_base;
388                 if (enabled)
389                         enable_irq(range->irqs[queue].irq);
390                 else
391                         disable_irq_nosync(range->irqs[queue].irq);
392         }
393         return 0;
394 }
395
396 static int knav_gp_open_queue(struct knav_range_info *range,
397                                 struct knav_queue_inst *inst, unsigned flags)
398 {
399         return knav_queue_setup_irq(range, inst);
400 }
401
402 static int knav_gp_close_queue(struct knav_range_info *range,
403                                 struct knav_queue_inst *inst)
404 {
405         knav_queue_free_irq(inst);
406         return 0;
407 }
408
409 struct knav_range_ops knav_gp_range_ops = {
410         .set_notify     = knav_gp_set_notify,
411         .open_queue     = knav_gp_open_queue,
412         .close_queue    = knav_gp_close_queue,
413 };
414
415
416 static int knav_queue_get_count(void *qhandle)
417 {
418         struct knav_queue *qh = qhandle;
419         struct knav_queue_inst *inst = qh->inst;
420
421         return readl_relaxed(&qh->reg_peek[0].entry_count) +
422                 atomic_read(&inst->desc_count);
423 }
424
425 static void knav_queue_debug_show_instance(struct seq_file *s,
426                                         struct knav_queue_inst *inst)
427 {
428         struct knav_device *kdev = inst->kdev;
429         struct knav_queue *qh;
430         int cpu = 0;
431         int pushes = 0;
432         int pops = 0;
433         int push_errors = 0;
434         int pop_errors = 0;
435         int notifies = 0;
436
437         if (!knav_queue_is_busy(inst))
438                 return;
439
440         seq_printf(s, "\tqueue id %d (%s)\n",
441                    kdev->base_id + inst->id, inst->name);
442         for_each_handle_rcu(qh, inst) {
443                 for_each_possible_cpu(cpu) {
444                         pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
445                         pops += per_cpu_ptr(qh->stats, cpu)->pops;
446                         push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
447                         pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
448                         notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
449                 }
450
451                 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
452                                 qh,
453                                 pushes,
454                                 pops,
455                                 knav_queue_get_count(qh),
456                                 notifies,
457                                 push_errors,
458                                 pop_errors);
459         }
460 }
461
462 static int knav_queue_debug_show(struct seq_file *s, void *v)
463 {
464         struct knav_queue_inst *inst;
465         int idx;
466
467         mutex_lock(&knav_dev_lock);
468         seq_printf(s, "%s: %u-%u\n",
469                    dev_name(kdev->dev), kdev->base_id,
470                    kdev->base_id + kdev->num_queues - 1);
471         for_each_instance(idx, inst, kdev)
472                 knav_queue_debug_show_instance(s, inst);
473         mutex_unlock(&knav_dev_lock);
474
475         return 0;
476 }
477
478 static int knav_queue_debug_open(struct inode *inode, struct file *file)
479 {
480         return single_open(file, knav_queue_debug_show, NULL);
481 }
482
483 static const struct file_operations knav_queue_debug_ops = {
484         .open           = knav_queue_debug_open,
485         .read           = seq_read,
486         .llseek         = seq_lseek,
487         .release        = single_release,
488 };
489
490 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
491                                         u32 flags)
492 {
493         unsigned long end;
494         u32 val = 0;
495
496         end = jiffies + msecs_to_jiffies(timeout);
497         while (time_after(end, jiffies)) {
498                 val = readl_relaxed(addr);
499                 if (flags)
500                         val &= flags;
501                 if (!val)
502                         break;
503                 cpu_relax();
504         }
505         return val ? -ETIMEDOUT : 0;
506 }
507
508
509 static int knav_queue_flush(struct knav_queue *qh)
510 {
511         struct knav_queue_inst *inst = qh->inst;
512         unsigned id = inst->id - inst->qmgr->start_queue;
513
514         atomic_set(&inst->desc_count, 0);
515         writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
516         return 0;
517 }
518
519 /**
520  * knav_queue_open()    - open a hardware queue
521  * @name                - name to give the queue handle
522  * @id                  - desired queue number if any or specifes the type
523  *                        of queue
524  * @flags               - the following flags are applicable to queues:
525  *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
526  *                           exclusive by default.
527  *                           Subsequent attempts to open a shared queue should
528  *                           also have this flag.
529  *
530  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
531  * to check the returned value for error codes.
532  */
533 void *knav_queue_open(const char *name, unsigned id,
534                                         unsigned flags)
535 {
536         struct knav_queue *qh = ERR_PTR(-EINVAL);
537
538         switch (id) {
539         case KNAV_QUEUE_QPEND:
540         case KNAV_QUEUE_ACC:
541         case KNAV_QUEUE_GP:
542                 qh = knav_queue_open_by_type(name, id, flags);
543                 break;
544
545         default:
546                 qh = knav_queue_open_by_id(name, id, flags);
547                 break;
548         }
549         return qh;
550 }
551 EXPORT_SYMBOL_GPL(knav_queue_open);
552
553 /**
554  * knav_queue_close()   - close a hardware queue handle
555  * @qh                  - handle to close
556  */
557 void knav_queue_close(void *qhandle)
558 {
559         struct knav_queue *qh = qhandle;
560         struct knav_queue_inst *inst = qh->inst;
561
562         while (atomic_read(&qh->notifier_enabled) > 0)
563                 knav_queue_disable_notifier(qh);
564
565         mutex_lock(&knav_dev_lock);
566         list_del_rcu(&qh->list);
567         mutex_unlock(&knav_dev_lock);
568         synchronize_rcu();
569         if (!knav_queue_is_busy(inst)) {
570                 struct knav_range_info *range = inst->range;
571
572                 if (range->ops && range->ops->close_queue)
573                         range->ops->close_queue(range, inst);
574         }
575         free_percpu(qh->stats);
576         devm_kfree(inst->kdev->dev, qh);
577 }
578 EXPORT_SYMBOL_GPL(knav_queue_close);
579
580 /**
581  * knav_queue_device_control()  - Perform control operations on a queue
582  * @qh                          - queue handle
583  * @cmd                         - control commands
584  * @arg                         - command argument
585  *
586  * Returns 0 on success, errno otherwise.
587  */
588 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
589                                 unsigned long arg)
590 {
591         struct knav_queue *qh = qhandle;
592         struct knav_queue_notify_config *cfg;
593         int ret;
594
595         switch ((int)cmd) {
596         case KNAV_QUEUE_GET_ID:
597                 ret = qh->inst->kdev->base_id + qh->inst->id;
598                 break;
599
600         case KNAV_QUEUE_FLUSH:
601                 ret = knav_queue_flush(qh);
602                 break;
603
604         case KNAV_QUEUE_SET_NOTIFIER:
605                 cfg = (void *)arg;
606                 ret = knav_queue_set_notifier(qh, cfg);
607                 break;
608
609         case KNAV_QUEUE_ENABLE_NOTIFY:
610                 ret = knav_queue_enable_notifier(qh);
611                 break;
612
613         case KNAV_QUEUE_DISABLE_NOTIFY:
614                 ret = knav_queue_disable_notifier(qh);
615                 break;
616
617         case KNAV_QUEUE_GET_COUNT:
618                 ret = knav_queue_get_count(qh);
619                 break;
620
621         default:
622                 ret = -ENOTSUPP;
623                 break;
624         }
625         return ret;
626 }
627 EXPORT_SYMBOL_GPL(knav_queue_device_control);
628
629
630
631 /**
632  * knav_queue_push()    - push data (or descriptor) to the tail of a queue
633  * @qh                  - hardware queue handle
634  * @data                - data to push
635  * @size                - size of data to push
636  * @flags               - can be used to pass additional information
637  *
638  * Returns 0 on success, errno otherwise.
639  */
640 int knav_queue_push(void *qhandle, dma_addr_t dma,
641                                         unsigned size, unsigned flags)
642 {
643         struct knav_queue *qh = qhandle;
644         u32 val;
645
646         val = (u32)dma | ((size / 16) - 1);
647         writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
648
649         this_cpu_inc(qh->stats->pushes);
650         return 0;
651 }
652 EXPORT_SYMBOL_GPL(knav_queue_push);
653
654 /**
655  * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
656  * @qh                  - hardware queue handle
657  * @size                - (optional) size of the data pop'ed.
658  *
659  * Returns a DMA address on success, 0 on failure.
660  */
661 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
662 {
663         struct knav_queue *qh = qhandle;
664         struct knav_queue_inst *inst = qh->inst;
665         dma_addr_t dma;
666         u32 val, idx;
667
668         /* are we accumulated? */
669         if (inst->descs) {
670                 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
671                         atomic_inc(&inst->desc_count);
672                         return 0;
673                 }
674                 idx  = atomic_inc_return(&inst->desc_head);
675                 idx &= ACC_DESCS_MASK;
676                 val = inst->descs[idx];
677         } else {
678                 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
679                 if (unlikely(!val))
680                         return 0;
681         }
682
683         dma = val & DESC_PTR_MASK;
684         if (size)
685                 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
686
687         this_cpu_inc(qh->stats->pops);
688         return dma;
689 }
690 EXPORT_SYMBOL_GPL(knav_queue_pop);
691
692 /* carve out descriptors and push into queue */
693 static void kdesc_fill_pool(struct knav_pool *pool)
694 {
695         struct knav_region *region;
696         int i;
697
698         region = pool->region;
699         pool->desc_size = region->desc_size;
700         for (i = 0; i < pool->num_desc; i++) {
701                 int index = pool->region_offset + i;
702                 dma_addr_t dma_addr;
703                 unsigned dma_size;
704                 dma_addr = region->dma_start + (region->desc_size * index);
705                 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
706                 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
707                                            DMA_TO_DEVICE);
708                 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
709         }
710 }
711
712 /* pop out descriptors and close the queue */
713 static void kdesc_empty_pool(struct knav_pool *pool)
714 {
715         dma_addr_t dma;
716         unsigned size;
717         void *desc;
718         int i;
719
720         if (!pool->queue)
721                 return;
722
723         for (i = 0;; i++) {
724                 dma = knav_queue_pop(pool->queue, &size);
725                 if (!dma)
726                         break;
727                 desc = knav_pool_desc_dma_to_virt(pool, dma);
728                 if (!desc) {
729                         dev_dbg(pool->kdev->dev,
730                                 "couldn't unmap desc, continuing\n");
731                         continue;
732                 }
733         }
734         WARN_ON(i != pool->num_desc);
735         knav_queue_close(pool->queue);
736 }
737
738
739 /* Get the DMA address of a descriptor */
740 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
741 {
742         struct knav_pool *pool = ph;
743         return pool->region->dma_start + (virt - pool->region->virt_start);
744 }
745 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
746
747 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
748 {
749         struct knav_pool *pool = ph;
750         return pool->region->virt_start + (dma - pool->region->dma_start);
751 }
752 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
753
754 /**
755  * knav_pool_create()   - Create a pool of descriptors
756  * @name                - name to give the pool handle
757  * @num_desc            - numbers of descriptors in the pool
758  * @region_id           - QMSS region id from which the descriptors are to be
759  *                        allocated.
760  *
761  * Returns a pool handle on success.
762  * Use IS_ERR_OR_NULL() to identify error values on return.
763  */
764 void *knav_pool_create(const char *name,
765                                         int num_desc, int region_id)
766 {
767         struct knav_region *reg_itr, *region = NULL;
768         struct knav_pool *pool, *pi;
769         struct list_head *node;
770         unsigned last_offset;
771         bool slot_found;
772         int ret;
773
774         if (!kdev)
775                 return ERR_PTR(-EPROBE_DEFER);
776
777         if (!kdev->dev)
778                 return ERR_PTR(-ENODEV);
779
780         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
781         if (!pool) {
782                 dev_err(kdev->dev, "out of memory allocating pool\n");
783                 return ERR_PTR(-ENOMEM);
784         }
785
786         for_each_region(kdev, reg_itr) {
787                 if (reg_itr->id != region_id)
788                         continue;
789                 region = reg_itr;
790                 break;
791         }
792
793         if (!region) {
794                 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
795                 ret = -EINVAL;
796                 goto err;
797         }
798
799         pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
800         if (IS_ERR_OR_NULL(pool->queue)) {
801                 dev_err(kdev->dev,
802                         "failed to open queue for pool(%s), error %ld\n",
803                         name, PTR_ERR(pool->queue));
804                 ret = PTR_ERR(pool->queue);
805                 goto err;
806         }
807
808         pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
809         pool->kdev = kdev;
810         pool->dev = kdev->dev;
811
812         mutex_lock(&knav_dev_lock);
813
814         if (num_desc > (region->num_desc - region->used_desc)) {
815                 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
816                         region_id, name);
817                 ret = -ENOMEM;
818                 goto err_unlock;
819         }
820
821         /* Region maintains a sorted (by region offset) list of pools
822          * use the first free slot which is large enough to accomodate
823          * the request
824          */
825         last_offset = 0;
826         slot_found = false;
827         node = &region->pools;
828         list_for_each_entry(pi, &region->pools, region_inst) {
829                 if ((pi->region_offset - last_offset) >= num_desc) {
830                         slot_found = true;
831                         break;
832                 }
833                 last_offset = pi->region_offset + pi->num_desc;
834         }
835         node = &pi->region_inst;
836
837         if (slot_found) {
838                 pool->region = region;
839                 pool->num_desc = num_desc;
840                 pool->region_offset = last_offset;
841                 region->used_desc += num_desc;
842                 list_add_tail(&pool->list, &kdev->pools);
843                 list_add_tail(&pool->region_inst, node);
844         } else {
845                 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
846                         name, region_id);
847                 ret = -ENOMEM;
848                 goto err_unlock;
849         }
850
851         mutex_unlock(&knav_dev_lock);
852         kdesc_fill_pool(pool);
853         return pool;
854
855 err_unlock:
856         mutex_unlock(&knav_dev_lock);
857 err:
858         kfree(pool->name);
859         devm_kfree(kdev->dev, pool);
860         return ERR_PTR(ret);
861 }
862 EXPORT_SYMBOL_GPL(knav_pool_create);
863
864 /**
865  * knav_pool_destroy()  - Free a pool of descriptors
866  * @pool                - pool handle
867  */
868 void knav_pool_destroy(void *ph)
869 {
870         struct knav_pool *pool = ph;
871
872         if (!pool)
873                 return;
874
875         if (!pool->region)
876                 return;
877
878         kdesc_empty_pool(pool);
879         mutex_lock(&knav_dev_lock);
880
881         pool->region->used_desc -= pool->num_desc;
882         list_del(&pool->region_inst);
883         list_del(&pool->list);
884
885         mutex_unlock(&knav_dev_lock);
886         kfree(pool->name);
887         devm_kfree(kdev->dev, pool);
888 }
889 EXPORT_SYMBOL_GPL(knav_pool_destroy);
890
891
892 /**
893  * knav_pool_desc_get() - Get a descriptor from the pool
894  * @pool                        - pool handle
895  *
896  * Returns descriptor from the pool.
897  */
898 void *knav_pool_desc_get(void *ph)
899 {
900         struct knav_pool *pool = ph;
901         dma_addr_t dma;
902         unsigned size;
903         void *data;
904
905         dma = knav_queue_pop(pool->queue, &size);
906         if (unlikely(!dma))
907                 return ERR_PTR(-ENOMEM);
908         data = knav_pool_desc_dma_to_virt(pool, dma);
909         return data;
910 }
911 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
912
913 /**
914  * knav_pool_desc_put() - return a descriptor to the pool
915  * @pool                        - pool handle
916  */
917 void knav_pool_desc_put(void *ph, void *desc)
918 {
919         struct knav_pool *pool = ph;
920         dma_addr_t dma;
921         dma = knav_pool_desc_virt_to_dma(pool, desc);
922         knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
923 }
924 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
925
926 /**
927  * knav_pool_desc_map() - Map descriptor for DMA transfer
928  * @pool                        - pool handle
929  * @desc                        - address of descriptor to map
930  * @size                        - size of descriptor to map
931  * @dma                         - DMA address return pointer
932  * @dma_sz                      - adjusted return pointer
933  *
934  * Returns 0 on success, errno otherwise.
935  */
936 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
937                                         dma_addr_t *dma, unsigned *dma_sz)
938 {
939         struct knav_pool *pool = ph;
940         *dma = knav_pool_desc_virt_to_dma(pool, desc);
941         size = min(size, pool->region->desc_size);
942         size = ALIGN(size, SMP_CACHE_BYTES);
943         *dma_sz = size;
944         dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
945
946         /* Ensure the descriptor reaches to the memory */
947         __iowmb();
948
949         return 0;
950 }
951 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
952
953 /**
954  * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
955  * @pool                        - pool handle
956  * @dma                         - DMA address of descriptor to unmap
957  * @dma_sz                      - size of descriptor to unmap
958  *
959  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
960  * error values on return.
961  */
962 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
963 {
964         struct knav_pool *pool = ph;
965         unsigned desc_sz;
966         void *desc;
967
968         desc_sz = min(dma_sz, pool->region->desc_size);
969         desc = knav_pool_desc_dma_to_virt(pool, dma);
970         dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
971         prefetch(desc);
972         return desc;
973 }
974 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
975
976 /**
977  * knav_pool_count()    - Get the number of descriptors in pool.
978  * @pool                - pool handle
979  * Returns number of elements in the pool.
980  */
981 int knav_pool_count(void *ph)
982 {
983         struct knav_pool *pool = ph;
984         return knav_queue_get_count(pool->queue);
985 }
986 EXPORT_SYMBOL_GPL(knav_pool_count);
987
988 static void knav_queue_setup_region(struct knav_device *kdev,
989                                         struct knav_region *region)
990 {
991         unsigned hw_num_desc, hw_desc_size, size;
992         struct knav_reg_region __iomem  *regs;
993         struct knav_qmgr_info *qmgr;
994         struct knav_pool *pool;
995         int id = region->id;
996         struct page *page;
997
998         /* unused region? */
999         if (!region->num_desc) {
1000                 dev_warn(kdev->dev, "unused region %s\n", region->name);
1001                 return;
1002         }
1003
1004         /* get hardware descriptor value */
1005         hw_num_desc = ilog2(region->num_desc - 1) + 1;
1006
1007         /* did we force fit ourselves into nothingness? */
1008         if (region->num_desc < 32) {
1009                 region->num_desc = 0;
1010                 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1011                          region->name);
1012                 return;
1013         }
1014
1015         size = region->num_desc * region->desc_size;
1016         region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1017                                                 GFP_DMA32);
1018         if (!region->virt_start) {
1019                 region->num_desc = 0;
1020                 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1021                         region->name);
1022                 return;
1023         }
1024         region->virt_end = region->virt_start + size;
1025         page = virt_to_page(region->virt_start);
1026
1027         region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1028                                          DMA_BIDIRECTIONAL);
1029         if (dma_mapping_error(kdev->dev, region->dma_start)) {
1030                 dev_err(kdev->dev, "dma map failed for region %s\n",
1031                         region->name);
1032                 goto fail;
1033         }
1034         region->dma_end = region->dma_start + size;
1035
1036         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1037         if (!pool) {
1038                 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1039                 goto fail;
1040         }
1041         pool->num_desc = 0;
1042         pool->region_offset = region->num_desc;
1043         list_add(&pool->region_inst, &region->pools);
1044
1045         dev_dbg(kdev->dev,
1046                 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1047                 region->name, id, region->desc_size, region->num_desc,
1048                 region->link_index, &region->dma_start, &region->dma_end,
1049                 region->virt_start, region->virt_end);
1050
1051         hw_desc_size = (region->desc_size / 16) - 1;
1052         hw_num_desc -= 5;
1053
1054         for_each_qmgr(kdev, qmgr) {
1055                 regs = qmgr->reg_region + id;
1056                 writel_relaxed((u32)region->dma_start, &regs->base);
1057                 writel_relaxed(region->link_index, &regs->start_index);
1058                 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1059                                &regs->size_count);
1060         }
1061         return;
1062
1063 fail:
1064         if (region->dma_start)
1065                 dma_unmap_page(kdev->dev, region->dma_start, size,
1066                                 DMA_BIDIRECTIONAL);
1067         if (region->virt_start)
1068                 free_pages_exact(region->virt_start, size);
1069         region->num_desc = 0;
1070         return;
1071 }
1072
1073 static const char *knav_queue_find_name(struct device_node *node)
1074 {
1075         const char *name;
1076
1077         if (of_property_read_string(node, "label", &name) < 0)
1078                 name = node->name;
1079         if (!name)
1080                 name = "unknown";
1081         return name;
1082 }
1083
1084 static int knav_queue_setup_regions(struct knav_device *kdev,
1085                                         struct device_node *regions)
1086 {
1087         struct device *dev = kdev->dev;
1088         struct knav_region *region;
1089         struct device_node *child;
1090         u32 temp[2];
1091         int ret;
1092
1093         for_each_child_of_node(regions, child) {
1094                 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1095                 if (!region) {
1096                         dev_err(dev, "out of memory allocating region\n");
1097                         return -ENOMEM;
1098                 }
1099
1100                 region->name = knav_queue_find_name(child);
1101                 of_property_read_u32(child, "id", &region->id);
1102                 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1103                 if (!ret) {
1104                         region->num_desc  = temp[0];
1105                         region->desc_size = temp[1];
1106                 } else {
1107                         dev_err(dev, "invalid region info %s\n", region->name);
1108                         devm_kfree(dev, region);
1109                         continue;
1110                 }
1111
1112                 if (!of_get_property(child, "link-index", NULL)) {
1113                         dev_err(dev, "No link info for %s\n", region->name);
1114                         devm_kfree(dev, region);
1115                         continue;
1116                 }
1117                 ret = of_property_read_u32(child, "link-index",
1118                                            &region->link_index);
1119                 if (ret) {
1120                         dev_err(dev, "link index not found for %s\n",
1121                                 region->name);
1122                         devm_kfree(dev, region);
1123                         continue;
1124                 }
1125
1126                 INIT_LIST_HEAD(&region->pools);
1127                 list_add_tail(&region->list, &kdev->regions);
1128         }
1129         if (list_empty(&kdev->regions)) {
1130                 dev_err(dev, "no valid region information found\n");
1131                 return -ENODEV;
1132         }
1133
1134         /* Next, we run through the regions and set things up */
1135         for_each_region(kdev, region)
1136                 knav_queue_setup_region(kdev, region);
1137
1138         return 0;
1139 }
1140
1141 static int knav_get_link_ram(struct knav_device *kdev,
1142                                        const char *name,
1143                                        struct knav_link_ram_block *block)
1144 {
1145         struct platform_device *pdev = to_platform_device(kdev->dev);
1146         struct device_node *node = pdev->dev.of_node;
1147         u32 temp[2];
1148
1149         /*
1150          * Note: link ram resources are specified in "entry" sized units. In
1151          * reality, although entries are ~40bits in hardware, we treat them as
1152          * 64-bit entities here.
1153          *
1154          * For example, to specify the internal link ram for Keystone-I class
1155          * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1156          *
1157          * This gets a bit weird when other link rams are used.  For example,
1158          * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1159          * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1160          * which accounts for 64-bits per entry, for 16K entries.
1161          */
1162         if (!of_property_read_u32_array(node, name , temp, 2)) {
1163                 if (temp[0]) {
1164                         /*
1165                          * queue_base specified => using internal or onchip
1166                          * link ram WARNING - we do not "reserve" this block
1167                          */
1168                         block->dma = (dma_addr_t)temp[0];
1169                         block->virt = NULL;
1170                         block->size = temp[1];
1171                 } else {
1172                         block->size = temp[1];
1173                         /* queue_base not specific => allocate requested size */
1174                         block->virt = dmam_alloc_coherent(kdev->dev,
1175                                                   8 * block->size, &block->dma,
1176                                                   GFP_KERNEL);
1177                         if (!block->virt) {
1178                                 dev_err(kdev->dev, "failed to alloc linkram\n");
1179                                 return -ENOMEM;
1180                         }
1181                 }
1182         } else {
1183                 return -ENODEV;
1184         }
1185         return 0;
1186 }
1187
1188 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1189 {
1190         struct knav_link_ram_block *block;
1191         struct knav_qmgr_info *qmgr;
1192
1193         for_each_qmgr(kdev, qmgr) {
1194                 block = &kdev->link_rams[0];
1195                 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1196                         &block->dma, block->virt, block->size);
1197                 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1198                 if (kdev->version == QMSS_66AK2G)
1199                         writel_relaxed(block->size,
1200                                        &qmgr->reg_config->link_ram_size0);
1201                 else
1202                         writel_relaxed(block->size - 1,
1203                                        &qmgr->reg_config->link_ram_size0);
1204                 block++;
1205                 if (!block->size)
1206                         continue;
1207
1208                 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1209                         &block->dma, block->virt, block->size);
1210                 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1211         }
1212
1213         return 0;
1214 }
1215
1216 static int knav_setup_queue_range(struct knav_device *kdev,
1217                                         struct device_node *node)
1218 {
1219         struct device *dev = kdev->dev;
1220         struct knav_range_info *range;
1221         struct knav_qmgr_info *qmgr;
1222         u32 temp[2], start, end, id, index;
1223         int ret, i;
1224
1225         range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1226         if (!range) {
1227                 dev_err(dev, "out of memory allocating range\n");
1228                 return -ENOMEM;
1229         }
1230
1231         range->kdev = kdev;
1232         range->name = knav_queue_find_name(node);
1233         ret = of_property_read_u32_array(node, "qrange", temp, 2);
1234         if (!ret) {
1235                 range->queue_base = temp[0] - kdev->base_id;
1236                 range->num_queues = temp[1];
1237         } else {
1238                 dev_err(dev, "invalid queue range %s\n", range->name);
1239                 devm_kfree(dev, range);
1240                 return -EINVAL;
1241         }
1242
1243         for (i = 0; i < RANGE_MAX_IRQS; i++) {
1244                 struct of_phandle_args oirq;
1245
1246                 if (of_irq_parse_one(node, i, &oirq))
1247                         break;
1248
1249                 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1250                 if (range->irqs[i].irq == IRQ_NONE)
1251                         break;
1252
1253                 range->num_irqs++;
1254
1255                 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1256                         unsigned long mask;
1257                         int bit;
1258
1259                         range->irqs[i].cpu_mask = devm_kzalloc(dev,
1260                                                                cpumask_size(), GFP_KERNEL);
1261                         if (!range->irqs[i].cpu_mask)
1262                                 return -ENOMEM;
1263
1264                         mask = (oirq.args[2] & 0x0000ff00) >> 8;
1265                         for_each_set_bit(bit, &mask, BITS_PER_LONG)
1266                                 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1267                 }
1268         }
1269
1270         range->num_irqs = min(range->num_irqs, range->num_queues);
1271         if (range->num_irqs)
1272                 range->flags |= RANGE_HAS_IRQ;
1273
1274         if (of_get_property(node, "qalloc-by-id", NULL))
1275                 range->flags |= RANGE_RESERVED;
1276
1277         if (of_get_property(node, "accumulator", NULL)) {
1278                 ret = knav_init_acc_range(kdev, node, range);
1279                 if (ret < 0) {
1280                         devm_kfree(dev, range);
1281                         return ret;
1282                 }
1283         } else {
1284                 range->ops = &knav_gp_range_ops;
1285         }
1286
1287         /* set threshold to 1, and flush out the queues */
1288         for_each_qmgr(kdev, qmgr) {
1289                 start = max(qmgr->start_queue, range->queue_base);
1290                 end   = min(qmgr->start_queue + qmgr->num_queues,
1291                             range->queue_base + range->num_queues);
1292                 for (id = start; id < end; id++) {
1293                         index = id - qmgr->start_queue;
1294                         writel_relaxed(THRESH_GTE | 1,
1295                                        &qmgr->reg_peek[index].ptr_size_thresh);
1296                         writel_relaxed(0,
1297                                        &qmgr->reg_push[index].ptr_size_thresh);
1298                 }
1299         }
1300
1301         list_add_tail(&range->list, &kdev->queue_ranges);
1302         dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1303                 range->name, range->queue_base,
1304                 range->queue_base + range->num_queues - 1,
1305                 range->num_irqs,
1306                 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1307                 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1308                 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1309         kdev->num_queues_in_use += range->num_queues;
1310         return 0;
1311 }
1312
1313 static int knav_setup_queue_pools(struct knav_device *kdev,
1314                                    struct device_node *queue_pools)
1315 {
1316         struct device_node *type, *range;
1317         int ret;
1318
1319         for_each_child_of_node(queue_pools, type) {
1320                 for_each_child_of_node(type, range) {
1321                         ret = knav_setup_queue_range(kdev, range);
1322                         /* return value ignored, we init the rest... */
1323                 }
1324         }
1325
1326         /* ... and barf if they all failed! */
1327         if (list_empty(&kdev->queue_ranges)) {
1328                 dev_err(kdev->dev, "no valid queue range found\n");
1329                 return -ENODEV;
1330         }
1331         return 0;
1332 }
1333
1334 static void knav_free_queue_range(struct knav_device *kdev,
1335                                   struct knav_range_info *range)
1336 {
1337         if (range->ops && range->ops->free_range)
1338                 range->ops->free_range(range);
1339         list_del(&range->list);
1340         devm_kfree(kdev->dev, range);
1341 }
1342
1343 static void knav_free_queue_ranges(struct knav_device *kdev)
1344 {
1345         struct knav_range_info *range;
1346
1347         for (;;) {
1348                 range = first_queue_range(kdev);
1349                 if (!range)
1350                         break;
1351                 knav_free_queue_range(kdev, range);
1352         }
1353 }
1354
1355 static void knav_queue_free_regions(struct knav_device *kdev)
1356 {
1357         struct knav_region *region;
1358         struct knav_pool *pool, *tmp;
1359         unsigned size;
1360
1361         for (;;) {
1362                 region = first_region(kdev);
1363                 if (!region)
1364                         break;
1365                 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1366                         knav_pool_destroy(pool);
1367
1368                 size = region->virt_end - region->virt_start;
1369                 if (size)
1370                         free_pages_exact(region->virt_start, size);
1371                 list_del(&region->list);
1372                 devm_kfree(kdev->dev, region);
1373         }
1374 }
1375
1376 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1377                                         struct device_node *node, int index)
1378 {
1379         struct resource res;
1380         void __iomem *regs;
1381         int ret;
1382
1383         ret = of_address_to_resource(node, index, &res);
1384         if (ret) {
1385                 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1386                         node, index);
1387                 return ERR_PTR(ret);
1388         }
1389
1390         regs = devm_ioremap_resource(kdev->dev, &res);
1391         if (IS_ERR(regs))
1392                 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1393                         index, node);
1394         return regs;
1395 }
1396
1397 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1398                                         struct device_node *qmgrs)
1399 {
1400         struct device *dev = kdev->dev;
1401         struct knav_qmgr_info *qmgr;
1402         struct device_node *child;
1403         u32 temp[2];
1404         int ret;
1405
1406         for_each_child_of_node(qmgrs, child) {
1407                 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1408                 if (!qmgr) {
1409                         dev_err(dev, "out of memory allocating qmgr\n");
1410                         return -ENOMEM;
1411                 }
1412
1413                 ret = of_property_read_u32_array(child, "managed-queues",
1414                                                  temp, 2);
1415                 if (!ret) {
1416                         qmgr->start_queue = temp[0];
1417                         qmgr->num_queues = temp[1];
1418                 } else {
1419                         dev_err(dev, "invalid qmgr queue range\n");
1420                         devm_kfree(dev, qmgr);
1421                         continue;
1422                 }
1423
1424                 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1425                          qmgr->start_queue, qmgr->num_queues);
1426
1427                 qmgr->reg_peek =
1428                         knav_queue_map_reg(kdev, child,
1429                                            KNAV_QUEUE_PEEK_REG_INDEX);
1430
1431                 if (kdev->version == QMSS) {
1432                         qmgr->reg_status =
1433                                 knav_queue_map_reg(kdev, child,
1434                                                    KNAV_QUEUE_STATUS_REG_INDEX);
1435                 }
1436
1437                 qmgr->reg_config =
1438                         knav_queue_map_reg(kdev, child,
1439                                            (kdev->version == QMSS_66AK2G) ?
1440                                            KNAV_L_QUEUE_CONFIG_REG_INDEX :
1441                                            KNAV_QUEUE_CONFIG_REG_INDEX);
1442                 qmgr->reg_region =
1443                         knav_queue_map_reg(kdev, child,
1444                                            (kdev->version == QMSS_66AK2G) ?
1445                                            KNAV_L_QUEUE_REGION_REG_INDEX :
1446                                            KNAV_QUEUE_REGION_REG_INDEX);
1447
1448                 qmgr->reg_push =
1449                         knav_queue_map_reg(kdev, child,
1450                                            (kdev->version == QMSS_66AK2G) ?
1451                                             KNAV_L_QUEUE_PUSH_REG_INDEX :
1452                                             KNAV_QUEUE_PUSH_REG_INDEX);
1453
1454                 if (kdev->version == QMSS) {
1455                         qmgr->reg_pop =
1456                                 knav_queue_map_reg(kdev, child,
1457                                                    KNAV_QUEUE_POP_REG_INDEX);
1458                 }
1459
1460                 if (IS_ERR(qmgr->reg_peek) ||
1461                     ((kdev->version == QMSS) &&
1462                     (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1463                     IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1464                     IS_ERR(qmgr->reg_push)) {
1465                         dev_err(dev, "failed to map qmgr regs\n");
1466                         if (kdev->version == QMSS) {
1467                                 if (!IS_ERR(qmgr->reg_status))
1468                                         devm_iounmap(dev, qmgr->reg_status);
1469                                 if (!IS_ERR(qmgr->reg_pop))
1470                                         devm_iounmap(dev, qmgr->reg_pop);
1471                         }
1472                         if (!IS_ERR(qmgr->reg_peek))
1473                                 devm_iounmap(dev, qmgr->reg_peek);
1474                         if (!IS_ERR(qmgr->reg_config))
1475                                 devm_iounmap(dev, qmgr->reg_config);
1476                         if (!IS_ERR(qmgr->reg_region))
1477                                 devm_iounmap(dev, qmgr->reg_region);
1478                         if (!IS_ERR(qmgr->reg_push))
1479                                 devm_iounmap(dev, qmgr->reg_push);
1480                         devm_kfree(dev, qmgr);
1481                         continue;
1482                 }
1483
1484                 /* Use same push register for pop as well */
1485                 if (kdev->version == QMSS_66AK2G)
1486                         qmgr->reg_pop = qmgr->reg_push;
1487
1488                 list_add_tail(&qmgr->list, &kdev->qmgrs);
1489                 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1490                          qmgr->start_queue, qmgr->num_queues,
1491                          qmgr->reg_peek, qmgr->reg_status,
1492                          qmgr->reg_config, qmgr->reg_region,
1493                          qmgr->reg_push, qmgr->reg_pop);
1494         }
1495         return 0;
1496 }
1497
1498 static int knav_queue_init_pdsps(struct knav_device *kdev,
1499                                         struct device_node *pdsps)
1500 {
1501         struct device *dev = kdev->dev;
1502         struct knav_pdsp_info *pdsp;
1503         struct device_node *child;
1504
1505         for_each_child_of_node(pdsps, child) {
1506                 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1507                 if (!pdsp) {
1508                         dev_err(dev, "out of memory allocating pdsp\n");
1509                         return -ENOMEM;
1510                 }
1511                 pdsp->name = knav_queue_find_name(child);
1512                 pdsp->iram =
1513                         knav_queue_map_reg(kdev, child,
1514                                            KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1515                 pdsp->regs =
1516                         knav_queue_map_reg(kdev, child,
1517                                            KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1518                 pdsp->intd =
1519                         knav_queue_map_reg(kdev, child,
1520                                            KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1521                 pdsp->command =
1522                         knav_queue_map_reg(kdev, child,
1523                                            KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1524
1525                 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1526                     IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1527                         dev_err(dev, "failed to map pdsp %s regs\n",
1528                                 pdsp->name);
1529                         if (!IS_ERR(pdsp->command))
1530                                 devm_iounmap(dev, pdsp->command);
1531                         if (!IS_ERR(pdsp->iram))
1532                                 devm_iounmap(dev, pdsp->iram);
1533                         if (!IS_ERR(pdsp->regs))
1534                                 devm_iounmap(dev, pdsp->regs);
1535                         if (!IS_ERR(pdsp->intd))
1536                                 devm_iounmap(dev, pdsp->intd);
1537                         devm_kfree(dev, pdsp);
1538                         continue;
1539                 }
1540                 of_property_read_u32(child, "id", &pdsp->id);
1541                 list_add_tail(&pdsp->list, &kdev->pdsps);
1542                 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1543                         pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1544                         pdsp->intd);
1545         }
1546         return 0;
1547 }
1548
1549 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1550                           struct knav_pdsp_info *pdsp)
1551 {
1552         u32 val, timeout = 1000;
1553         int ret;
1554
1555         val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1556         writel_relaxed(val, &pdsp->regs->control);
1557         ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1558                                         PDSP_CTRL_RUNNING);
1559         if (ret < 0) {
1560                 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1561                 return ret;
1562         }
1563         pdsp->loaded = false;
1564         pdsp->started = false;
1565         return 0;
1566 }
1567
1568 static int knav_queue_load_pdsp(struct knav_device *kdev,
1569                           struct knav_pdsp_info *pdsp)
1570 {
1571         int i, ret, fwlen;
1572         const struct firmware *fw;
1573         bool found = false;
1574         u32 *fwdata;
1575
1576         for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1577                 if (knav_acc_firmwares[i]) {
1578                         ret = request_firmware_direct(&fw,
1579                                                       knav_acc_firmwares[i],
1580                                                       kdev->dev);
1581                         if (!ret) {
1582                                 found = true;
1583                                 break;
1584                         }
1585                 }
1586         }
1587
1588         if (!found) {
1589                 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1590                 return -ENODEV;
1591         }
1592
1593         dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1594                  knav_acc_firmwares[i]);
1595
1596         writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1597         /* download the firmware */
1598         fwdata = (u32 *)fw->data;
1599         fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1600         for (i = 0; i < fwlen; i++)
1601                 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1602
1603         release_firmware(fw);
1604         return 0;
1605 }
1606
1607 static int knav_queue_start_pdsp(struct knav_device *kdev,
1608                            struct knav_pdsp_info *pdsp)
1609 {
1610         u32 val, timeout = 1000;
1611         int ret;
1612
1613         /* write a command for sync */
1614         writel_relaxed(0xffffffff, pdsp->command);
1615         while (readl_relaxed(pdsp->command) != 0xffffffff)
1616                 cpu_relax();
1617
1618         /* soft reset the PDSP */
1619         val  = readl_relaxed(&pdsp->regs->control);
1620         val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1621         writel_relaxed(val, &pdsp->regs->control);
1622
1623         /* enable pdsp */
1624         val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1625         writel_relaxed(val, &pdsp->regs->control);
1626
1627         /* wait for command register to clear */
1628         ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1629         if (ret < 0) {
1630                 dev_err(kdev->dev,
1631                         "timed out on pdsp %s command register wait\n",
1632                         pdsp->name);
1633                 return ret;
1634         }
1635         return 0;
1636 }
1637
1638 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1639 {
1640         struct knav_pdsp_info *pdsp;
1641
1642         /* disable all pdsps */
1643         for_each_pdsp(kdev, pdsp)
1644                 knav_queue_stop_pdsp(kdev, pdsp);
1645 }
1646
1647 static int knav_queue_start_pdsps(struct knav_device *kdev)
1648 {
1649         struct knav_pdsp_info *pdsp;
1650         int ret;
1651
1652         knav_queue_stop_pdsps(kdev);
1653         /* now load them all. We return success even if pdsp
1654          * is not loaded as acc channels are optional on having
1655          * firmware availability in the system. We set the loaded
1656          * and stated flag and when initialize the acc range, check
1657          * it and init the range only if pdsp is started.
1658          */
1659         for_each_pdsp(kdev, pdsp) {
1660                 ret = knav_queue_load_pdsp(kdev, pdsp);
1661                 if (!ret)
1662                         pdsp->loaded = true;
1663         }
1664
1665         for_each_pdsp(kdev, pdsp) {
1666                 if (pdsp->loaded) {
1667                         ret = knav_queue_start_pdsp(kdev, pdsp);
1668                         if (!ret)
1669                                 pdsp->started = true;
1670                 }
1671         }
1672         return 0;
1673 }
1674
1675 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1676 {
1677         struct knav_qmgr_info *qmgr;
1678
1679         for_each_qmgr(kdev, qmgr) {
1680                 if ((id >= qmgr->start_queue) &&
1681                     (id < qmgr->start_queue + qmgr->num_queues))
1682                         return qmgr;
1683         }
1684         return NULL;
1685 }
1686
1687 static int knav_queue_init_queue(struct knav_device *kdev,
1688                                         struct knav_range_info *range,
1689                                         struct knav_queue_inst *inst,
1690                                         unsigned id)
1691 {
1692         char irq_name[KNAV_NAME_SIZE];
1693         inst->qmgr = knav_find_qmgr(id);
1694         if (!inst->qmgr)
1695                 return -1;
1696
1697         INIT_LIST_HEAD(&inst->handles);
1698         inst->kdev = kdev;
1699         inst->range = range;
1700         inst->irq_num = -1;
1701         inst->id = id;
1702         scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1703         inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1704
1705         if (range->ops && range->ops->init_queue)
1706                 return range->ops->init_queue(range, inst);
1707         else
1708                 return 0;
1709 }
1710
1711 static int knav_queue_init_queues(struct knav_device *kdev)
1712 {
1713         struct knav_range_info *range;
1714         int size, id, base_idx;
1715         int idx = 0, ret = 0;
1716
1717         /* how much do we need for instance data? */
1718         size = sizeof(struct knav_queue_inst);
1719
1720         /* round this up to a power of 2, keep the index to instance
1721          * arithmetic fast.
1722          * */
1723         kdev->inst_shift = order_base_2(size);
1724         size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1725         kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1726         if (!kdev->instances)
1727                 return -ENOMEM;
1728
1729         for_each_queue_range(kdev, range) {
1730                 if (range->ops && range->ops->init_range)
1731                         range->ops->init_range(range);
1732                 base_idx = idx;
1733                 for (id = range->queue_base;
1734                      id < range->queue_base + range->num_queues; id++, idx++) {
1735                         ret = knav_queue_init_queue(kdev, range,
1736                                         knav_queue_idx_to_inst(kdev, idx), id);
1737                         if (ret < 0)
1738                                 return ret;
1739                 }
1740                 range->queue_base_inst =
1741                         knav_queue_idx_to_inst(kdev, base_idx);
1742         }
1743         return 0;
1744 }
1745
1746 /* Match table for of_platform binding */
1747 static const struct of_device_id keystone_qmss_of_match[] = {
1748         {
1749                 .compatible = "ti,keystone-navigator-qmss",
1750         },
1751         {
1752                 .compatible = "ti,66ak2g-navss-qm",
1753                 .data   = (void *)QMSS_66AK2G,
1754         },
1755         {},
1756 };
1757 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1758
1759 static int knav_queue_probe(struct platform_device *pdev)
1760 {
1761         struct device_node *node = pdev->dev.of_node;
1762         struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1763         const struct of_device_id *match;
1764         struct device *dev = &pdev->dev;
1765         u32 temp[2];
1766         int ret;
1767
1768         if (!node) {
1769                 dev_err(dev, "device tree info unavailable\n");
1770                 return -ENODEV;
1771         }
1772
1773         kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1774         if (!kdev) {
1775                 dev_err(dev, "memory allocation failed\n");
1776                 return -ENOMEM;
1777         }
1778
1779         match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1780         if (match && match->data)
1781                 kdev->version = QMSS_66AK2G;
1782
1783         platform_set_drvdata(pdev, kdev);
1784         kdev->dev = dev;
1785         INIT_LIST_HEAD(&kdev->queue_ranges);
1786         INIT_LIST_HEAD(&kdev->qmgrs);
1787         INIT_LIST_HEAD(&kdev->pools);
1788         INIT_LIST_HEAD(&kdev->regions);
1789         INIT_LIST_HEAD(&kdev->pdsps);
1790
1791         pm_runtime_enable(&pdev->dev);
1792         ret = pm_runtime_get_sync(&pdev->dev);
1793         if (ret < 0) {
1794                 dev_err(dev, "Failed to enable QMSS\n");
1795                 return ret;
1796         }
1797
1798         if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1799                 dev_err(dev, "queue-range not specified\n");
1800                 ret = -ENODEV;
1801                 goto err;
1802         }
1803         kdev->base_id    = temp[0];
1804         kdev->num_queues = temp[1];
1805
1806         /* Initialize queue managers using device tree configuration */
1807         qmgrs =  of_get_child_by_name(node, "qmgrs");
1808         if (!qmgrs) {
1809                 dev_err(dev, "queue manager info not specified\n");
1810                 ret = -ENODEV;
1811                 goto err;
1812         }
1813         ret = knav_queue_init_qmgrs(kdev, qmgrs);
1814         of_node_put(qmgrs);
1815         if (ret)
1816                 goto err;
1817
1818         /* get pdsp configuration values from device tree */
1819         pdsps =  of_get_child_by_name(node, "pdsps");
1820         if (pdsps) {
1821                 ret = knav_queue_init_pdsps(kdev, pdsps);
1822                 if (ret)
1823                         goto err;
1824
1825                 ret = knav_queue_start_pdsps(kdev);
1826                 if (ret)
1827                         goto err;
1828         }
1829         of_node_put(pdsps);
1830
1831         /* get usable queue range values from device tree */
1832         queue_pools = of_get_child_by_name(node, "queue-pools");
1833         if (!queue_pools) {
1834                 dev_err(dev, "queue-pools not specified\n");
1835                 ret = -ENODEV;
1836                 goto err;
1837         }
1838         ret = knav_setup_queue_pools(kdev, queue_pools);
1839         of_node_put(queue_pools);
1840         if (ret)
1841                 goto err;
1842
1843         ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1844         if (ret) {
1845                 dev_err(kdev->dev, "could not setup linking ram\n");
1846                 goto err;
1847         }
1848
1849         ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1850         if (ret) {
1851                 /*
1852                  * nothing really, we have one linking ram already, so we just
1853                  * live within our means
1854                  */
1855         }
1856
1857         ret = knav_queue_setup_link_ram(kdev);
1858         if (ret)
1859                 goto err;
1860
1861         regions =  of_get_child_by_name(node, "descriptor-regions");
1862         if (!regions) {
1863                 dev_err(dev, "descriptor-regions not specified\n");
1864                 goto err;
1865         }
1866         ret = knav_queue_setup_regions(kdev, regions);
1867         of_node_put(regions);
1868         if (ret)
1869                 goto err;
1870
1871         ret = knav_queue_init_queues(kdev);
1872         if (ret < 0) {
1873                 dev_err(dev, "hwqueue initialization failed\n");
1874                 goto err;
1875         }
1876
1877         debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1878                             &knav_queue_debug_ops);
1879         device_ready = true;
1880         return 0;
1881
1882 err:
1883         knav_queue_stop_pdsps(kdev);
1884         knav_queue_free_regions(kdev);
1885         knav_free_queue_ranges(kdev);
1886         pm_runtime_put_sync(&pdev->dev);
1887         pm_runtime_disable(&pdev->dev);
1888         return ret;
1889 }
1890
1891 static int knav_queue_remove(struct platform_device *pdev)
1892 {
1893         /* TODO: Free resources */
1894         pm_runtime_put_sync(&pdev->dev);
1895         pm_runtime_disable(&pdev->dev);
1896         return 0;
1897 }
1898
1899 static struct platform_driver keystone_qmss_driver = {
1900         .probe          = knav_queue_probe,
1901         .remove         = knav_queue_remove,
1902         .driver         = {
1903                 .name   = "keystone-navigator-qmss",
1904                 .of_match_table = keystone_qmss_of_match,
1905         },
1906 };
1907 module_platform_driver(keystone_qmss_driver);
1908
1909 MODULE_LICENSE("GPL v2");
1910 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1911 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1912 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");