Merge tag 'for-5.11-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / drivers / soc / qcom / rpmh-rsc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4  */
5
6 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
7
8 #include <linux/atomic.h>
9 #include <linux/cpu_pm.h>
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/wait.h>
24
25 #include <soc/qcom/cmd-db.h>
26 #include <soc/qcom/tcs.h>
27 #include <dt-bindings/soc/qcom,rpmh-rsc.h>
28
29 #include "rpmh-internal.h"
30
31 #define CREATE_TRACE_POINTS
32 #include "trace-rpmh.h"
33
34 #define RSC_DRV_TCS_OFFSET              672
35 #define RSC_DRV_CMD_OFFSET              20
36
37 /* DRV HW Solver Configuration Information Register */
38 #define DRV_SOLVER_CONFIG               0x04
39 #define DRV_HW_SOLVER_MASK              1
40 #define DRV_HW_SOLVER_SHIFT             24
41
42 /* DRV TCS Configuration Information Register */
43 #define DRV_PRNT_CHLD_CONFIG            0x0C
44 #define DRV_NUM_TCS_MASK                0x3F
45 #define DRV_NUM_TCS_SHIFT               6
46 #define DRV_NCPT_MASK                   0x1F
47 #define DRV_NCPT_SHIFT                  27
48
49 /* Offsets for common TCS Registers, one bit per TCS */
50 #define RSC_DRV_IRQ_ENABLE              0x00
51 #define RSC_DRV_IRQ_STATUS              0x04
52 #define RSC_DRV_IRQ_CLEAR               0x08    /* w/o; write 1 to clear */
53
54 /*
55  * Offsets for per TCS Registers.
56  *
57  * TCSes start at 0x10 from tcs_base and are stored one after another.
58  * Multiply tcs_id by RSC_DRV_TCS_OFFSET to find a given TCS and add one
59  * of the below to find a register.
60  */
61 #define RSC_DRV_CMD_WAIT_FOR_CMPL       0x10    /* 1 bit per command */
62 #define RSC_DRV_CONTROL                 0x14
63 #define RSC_DRV_STATUS                  0x18    /* zero if tcs is busy */
64 #define RSC_DRV_CMD_ENABLE              0x1C    /* 1 bit per command */
65
66 /*
67  * Offsets for per command in a TCS.
68  *
69  * Commands (up to 16) start at 0x30 in a TCS; multiply command index
70  * by RSC_DRV_CMD_OFFSET and add one of the below to find a register.
71  */
72 #define RSC_DRV_CMD_MSGID               0x30
73 #define RSC_DRV_CMD_ADDR                0x34
74 #define RSC_DRV_CMD_DATA                0x38
75 #define RSC_DRV_CMD_STATUS              0x3C
76 #define RSC_DRV_CMD_RESP_DATA           0x40
77
78 #define TCS_AMC_MODE_ENABLE             BIT(16)
79 #define TCS_AMC_MODE_TRIGGER            BIT(24)
80
81 /* TCS CMD register bit mask */
82 #define CMD_MSGID_LEN                   8
83 #define CMD_MSGID_RESP_REQ              BIT(8)
84 #define CMD_MSGID_WRITE                 BIT(16)
85 #define CMD_STATUS_ISSUED               BIT(8)
86 #define CMD_STATUS_COMPL                BIT(16)
87
88 /*
89  * Here's a high level overview of how all the registers in RPMH work
90  * together:
91  *
92  * - The main rpmh-rsc address is the base of a register space that can
93  *   be used to find overall configuration of the hardware
94  *   (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
95  *   space are all the TCS blocks. The offset of the TCS blocks is
96  *   specified in the device tree by "qcom,tcs-offset" and used to
97  *   compute tcs_base.
98  * - TCS blocks come one after another. Type, count, and order are
99  *   specified by the device tree as "qcom,tcs-config".
100  * - Each TCS block has some registers, then space for up to 16 commands.
101  *   Note that though address space is reserved for 16 commands, fewer
102  *   might be present. See ncpt (num cmds per TCS).
103  *
104  * Here's a picture:
105  *
106  *  +---------------------------------------------------+
107  *  |RSC                                                |
108  *  | ctrl                                              |
109  *  |                                                   |
110  *  | Drvs:                                             |
111  *  | +-----------------------------------------------+ |
112  *  | |DRV0                                           | |
113  *  | | ctrl/config                                   | |
114  *  | | IRQ                                           | |
115  *  | |                                               | |
116  *  | | TCSes:                                        | |
117  *  | | +------------------------------------------+  | |
118  *  | | |TCS0  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
119  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
120  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
121  *  | | +------------------------------------------+  | |
122  *  | | +------------------------------------------+  | |
123  *  | | |TCS1  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
124  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
125  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
126  *  | | +------------------------------------------+  | |
127  *  | | +------------------------------------------+  | |
128  *  | | |TCS2  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
129  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
130  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
131  *  | | +------------------------------------------+  | |
132  *  | |                    ......                     | |
133  *  | +-----------------------------------------------+ |
134  *  | +-----------------------------------------------+ |
135  *  | |DRV1                                           | |
136  *  | | (same as DRV0)                                | |
137  *  | +-----------------------------------------------+ |
138  *  |                      ......                       |
139  *  +---------------------------------------------------+
140  */
141
142 static inline void __iomem *
143 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
144 {
145         return drv->tcs_base + RSC_DRV_TCS_OFFSET * tcs_id + reg;
146 }
147
148 static inline void __iomem *
149 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
150 {
151         return tcs_reg_addr(drv, reg, tcs_id) + RSC_DRV_CMD_OFFSET * cmd_id;
152 }
153
154 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
155                         int cmd_id)
156 {
157         return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
158 }
159
160 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
161 {
162         return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
163 }
164
165 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
166                           int cmd_id, u32 data)
167 {
168         writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
169 }
170
171 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
172                           u32 data)
173 {
174         writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
175 }
176
177 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
178                                u32 data)
179 {
180         int i;
181
182         writel(data, tcs_reg_addr(drv, reg, tcs_id));
183
184         /*
185          * Wait until we read back the same value.  Use a counter rather than
186          * ktime for timeout since this may be called after timekeeping stops.
187          */
188         for (i = 0; i < USEC_PER_SEC; i++) {
189                 if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
190                         return;
191                 udelay(1);
192         }
193         pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
194                data, tcs_id, reg);
195 }
196
197 /**
198  * tcs_is_free() - Return if a TCS is totally free.
199  * @drv:    The RSC controller.
200  * @tcs_id: The global ID of this TCS.
201  *
202  * Returns true if nobody has claimed this TCS (by setting tcs_in_use).
203  *
204  * Context: Must be called with the drv->lock held.
205  *
206  * Return: true if the given TCS is free.
207  */
208 static bool tcs_is_free(struct rsc_drv *drv, int tcs_id)
209 {
210         return !test_bit(tcs_id, drv->tcs_in_use);
211 }
212
213 /**
214  * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
215  * @drv:  The RSC controller.
216  * @type: SLEEP_TCS or WAKE_TCS
217  *
218  * This will clear the "slots" variable of the given tcs_group and also
219  * tell the hardware to forget about all entries.
220  *
221  * The caller must ensure that no other RPMH actions are happening when this
222  * function is called, since otherwise the device may immediately become
223  * used again even before this function exits.
224  */
225 static void tcs_invalidate(struct rsc_drv *drv, int type)
226 {
227         int m;
228         struct tcs_group *tcs = &drv->tcs[type];
229
230         /* Caller ensures nobody else is running so no lock */
231         if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
232                 return;
233
234         for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
235                 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, m, 0);
236                 write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, m, 0);
237         }
238         bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
239 }
240
241 /**
242  * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
243  * @drv: The RSC controller.
244  *
245  * The caller must ensure that no other RPMH actions are happening when this
246  * function is called, since otherwise the device may immediately become
247  * used again even before this function exits.
248  */
249 void rpmh_rsc_invalidate(struct rsc_drv *drv)
250 {
251         tcs_invalidate(drv, SLEEP_TCS);
252         tcs_invalidate(drv, WAKE_TCS);
253 }
254
255 /**
256  * get_tcs_for_msg() - Get the tcs_group used to send the given message.
257  * @drv: The RSC controller.
258  * @msg: The message we want to send.
259  *
260  * This is normally pretty straightforward except if we are trying to send
261  * an ACTIVE_ONLY message but don't have any active_only TCSes.
262  *
263  * Return: A pointer to a tcs_group or an ERR_PTR.
264  */
265 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
266                                          const struct tcs_request *msg)
267 {
268         int type;
269         struct tcs_group *tcs;
270
271         switch (msg->state) {
272         case RPMH_ACTIVE_ONLY_STATE:
273                 type = ACTIVE_TCS;
274                 break;
275         case RPMH_WAKE_ONLY_STATE:
276                 type = WAKE_TCS;
277                 break;
278         case RPMH_SLEEP_STATE:
279                 type = SLEEP_TCS;
280                 break;
281         default:
282                 return ERR_PTR(-EINVAL);
283         }
284
285         /*
286          * If we are making an active request on a RSC that does not have a
287          * dedicated TCS for active state use, then re-purpose a wake TCS to
288          * send active votes. This is safe because we ensure any active-only
289          * transfers have finished before we use it (maybe by running from
290          * the last CPU in PM code).
291          */
292         tcs = &drv->tcs[type];
293         if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
294                 tcs = &drv->tcs[WAKE_TCS];
295
296         return tcs;
297 }
298
299 /**
300  * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
301  * @drv:    The RSC controller.
302  * @tcs_id: The global ID of this TCS.
303  *
304  * For ACTIVE_ONLY transfers we want to call back into the client when the
305  * transfer finishes. To do this we need the "request" that the client
306  * originally provided us. This function grabs the request that we stashed
307  * when we started the transfer.
308  *
309  * This only makes sense for ACTIVE_ONLY transfers since those are the only
310  * ones we track sending (the only ones we enable interrupts for and the only
311  * ones we call back to the client for).
312  *
313  * Return: The stashed request.
314  */
315 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
316                                                   int tcs_id)
317 {
318         struct tcs_group *tcs;
319         int i;
320
321         for (i = 0; i < TCS_TYPE_NR; i++) {
322                 tcs = &drv->tcs[i];
323                 if (tcs->mask & BIT(tcs_id))
324                         return tcs->req[tcs_id - tcs->offset];
325         }
326
327         return NULL;
328 }
329
330 /**
331  * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
332  * @drv:     The controller.
333  * @tcs_id:  The global ID of this TCS.
334  * @trigger: If true then untrigger/retrigger. If false then just untrigger.
335  *
336  * In the normal case we only ever call with "trigger=true" to start a
337  * transfer. That will un-trigger/disable the TCS from the last transfer
338  * then trigger/enable for this transfer.
339  *
340  * If we borrowed a wake TCS for an active-only transfer we'll also call
341  * this function with "trigger=false" to just do the un-trigger/disable
342  * before using the TCS for wake purposes again.
343  *
344  * Note that the AP is only in charge of triggering active-only transfers.
345  * The AP never triggers sleep/wake values using this function.
346  */
347 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
348 {
349         u32 enable;
350
351         /*
352          * HW req: Clear the DRV_CONTROL and enable TCS again
353          * While clearing ensure that the AMC mode trigger is cleared
354          * and then the mode enable is cleared.
355          */
356         enable = read_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id);
357         enable &= ~TCS_AMC_MODE_TRIGGER;
358         write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
359         enable &= ~TCS_AMC_MODE_ENABLE;
360         write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
361
362         if (trigger) {
363                 /* Enable the AMC mode on the TCS and then trigger the TCS */
364                 enable = TCS_AMC_MODE_ENABLE;
365                 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
366                 enable |= TCS_AMC_MODE_TRIGGER;
367                 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
368         }
369 }
370
371 /**
372  * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
373  * @drv:     The controller.
374  * @tcs_id:  The global ID of this TCS.
375  * @enable:  If true then enable; if false then disable
376  *
377  * We only ever call this when we borrow a wake TCS for an active-only
378  * transfer. For active-only TCSes interrupts are always left enabled.
379  */
380 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
381 {
382         u32 data;
383
384         data = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_ENABLE);
385         if (enable)
386                 data |= BIT(tcs_id);
387         else
388                 data &= ~BIT(tcs_id);
389         writel_relaxed(data, drv->tcs_base + RSC_DRV_IRQ_ENABLE);
390 }
391
392 /**
393  * tcs_tx_done() - TX Done interrupt handler.
394  * @irq: The IRQ number (ignored).
395  * @p:   Pointer to "struct rsc_drv".
396  *
397  * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
398  * IRQ for) when a transfer is done.
399  *
400  * Return: IRQ_HANDLED
401  */
402 static irqreturn_t tcs_tx_done(int irq, void *p)
403 {
404         struct rsc_drv *drv = p;
405         int i, j, err = 0;
406         unsigned long irq_status;
407         const struct tcs_request *req;
408         struct tcs_cmd *cmd;
409
410         irq_status = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_STATUS);
411
412         for_each_set_bit(i, &irq_status, BITS_PER_LONG) {
413                 req = get_req_from_tcs(drv, i);
414                 if (!req) {
415                         WARN_ON(1);
416                         goto skip;
417                 }
418
419                 err = 0;
420                 for (j = 0; j < req->num_cmds; j++) {
421                         u32 sts;
422
423                         cmd = &req->cmds[j];
424                         sts = read_tcs_cmd(drv, RSC_DRV_CMD_STATUS, i, j);
425                         if (!(sts & CMD_STATUS_ISSUED) ||
426                            ((req->wait_for_compl || cmd->wait) &&
427                            !(sts & CMD_STATUS_COMPL))) {
428                                 pr_err("Incomplete request: %s: addr=%#x data=%#x",
429                                        drv->name, cmd->addr, cmd->data);
430                                 err = -EIO;
431                         }
432                 }
433
434                 trace_rpmh_tx_done(drv, i, req, err);
435
436                 /*
437                  * If wake tcs was re-purposed for sending active
438                  * votes, clear AMC trigger & enable modes and
439                  * disable interrupt for this TCS
440                  */
441                 if (!drv->tcs[ACTIVE_TCS].num_tcs)
442                         __tcs_set_trigger(drv, i, false);
443 skip:
444                 /* Reclaim the TCS */
445                 write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i, 0);
446                 write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, i, 0);
447                 writel_relaxed(BIT(i), drv->tcs_base + RSC_DRV_IRQ_CLEAR);
448                 spin_lock(&drv->lock);
449                 clear_bit(i, drv->tcs_in_use);
450                 /*
451                  * Disable interrupt for WAKE TCS to avoid being
452                  * spammed with interrupts coming when the solver
453                  * sends its wake votes.
454                  */
455                 if (!drv->tcs[ACTIVE_TCS].num_tcs)
456                         enable_tcs_irq(drv, i, false);
457                 spin_unlock(&drv->lock);
458                 wake_up(&drv->tcs_wait);
459                 if (req)
460                         rpmh_tx_done(req, err);
461         }
462
463         return IRQ_HANDLED;
464 }
465
466 /**
467  * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
468  * @drv:    The controller.
469  * @tcs_id: The global ID of this TCS.
470  * @cmd_id: The index within the TCS to start writing.
471  * @msg:    The message we want to send, which will contain several addr/data
472  *          pairs to program (but few enough that they all fit in one TCS).
473  *
474  * This is used for all types of transfers (active, sleep, and wake).
475  */
476 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
477                                const struct tcs_request *msg)
478 {
479         u32 msgid, cmd_msgid;
480         u32 cmd_enable = 0;
481         u32 cmd_complete;
482         struct tcs_cmd *cmd;
483         int i, j;
484
485         cmd_msgid = CMD_MSGID_LEN;
486         cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
487         cmd_msgid |= CMD_MSGID_WRITE;
488
489         cmd_complete = read_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id);
490
491         for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
492                 cmd = &msg->cmds[i];
493                 cmd_enable |= BIT(j);
494                 cmd_complete |= cmd->wait << j;
495                 msgid = cmd_msgid;
496                 msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
497
498                 write_tcs_cmd(drv, RSC_DRV_CMD_MSGID, tcs_id, j, msgid);
499                 write_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j, cmd->addr);
500                 write_tcs_cmd(drv, RSC_DRV_CMD_DATA, tcs_id, j, cmd->data);
501                 trace_rpmh_send_msg(drv, tcs_id, j, msgid, cmd);
502         }
503
504         write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, cmd_complete);
505         cmd_enable |= read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
506         write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id, cmd_enable);
507 }
508
509 /**
510  * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
511  * @drv: The controller.
512  * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
513  * @msg: The message we want to send, which will contain several addr/data
514  *       pairs to program (but few enough that they all fit in one TCS).
515  *
516  * This will walk through the TCSes in the group and check if any of them
517  * appear to be sending to addresses referenced in the message. If it finds
518  * one it'll return -EBUSY.
519  *
520  * Only for use for active-only transfers.
521  *
522  * Must be called with the drv->lock held since that protects tcs_in_use.
523  *
524  * Return: 0 if nothing in flight or -EBUSY if we should try again later.
525  *         The caller must re-enable interrupts between tries since that's
526  *         the only way tcs_is_free() will ever return true and the only way
527  *         RSC_DRV_CMD_ENABLE will ever be cleared.
528  */
529 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
530                                   const struct tcs_request *msg)
531 {
532         unsigned long curr_enabled;
533         u32 addr;
534         int i, j, k;
535         int tcs_id = tcs->offset;
536
537         for (i = 0; i < tcs->num_tcs; i++, tcs_id++) {
538                 if (tcs_is_free(drv, tcs_id))
539                         continue;
540
541                 curr_enabled = read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
542
543                 for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
544                         addr = read_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j);
545                         for (k = 0; k < msg->num_cmds; k++) {
546                                 if (addr == msg->cmds[k].addr)
547                                         return -EBUSY;
548                         }
549                 }
550         }
551
552         return 0;
553 }
554
555 /**
556  * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
557  * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
558  *       we borrowed it because there are zero active-only ones).
559  *
560  * Must be called with the drv->lock held since that protects tcs_in_use.
561  *
562  * Return: The first tcs that's free.
563  */
564 static int find_free_tcs(struct tcs_group *tcs)
565 {
566         int i;
567
568         for (i = 0; i < tcs->num_tcs; i++) {
569                 if (tcs_is_free(tcs->drv, tcs->offset + i))
570                         return tcs->offset + i;
571         }
572
573         return -EBUSY;
574 }
575
576 /**
577  * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
578  * @drv: The controller.
579  * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
580  * @msg: The data to be sent.
581  *
582  * Claims a tcs in the given tcs_group while making sure that no existing cmd
583  * is in flight that would conflict with the one in @msg.
584  *
585  * Context: Must be called with the drv->lock held since that protects
586  * tcs_in_use.
587  *
588  * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
589  * or the tcs_group is full.
590  */
591 static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
592                              const struct tcs_request *msg)
593 {
594         int ret;
595
596         /*
597          * The h/w does not like if we send a request to the same address,
598          * when one is already in-flight or being processed.
599          */
600         ret = check_for_req_inflight(drv, tcs, msg);
601         if (ret)
602                 return ret;
603
604         return find_free_tcs(tcs);
605 }
606
607 /**
608  * rpmh_rsc_send_data() - Write / trigger active-only message.
609  * @drv: The controller.
610  * @msg: The data to be sent.
611  *
612  * NOTES:
613  * - This is only used for "ACTIVE_ONLY" since the limitations of this
614  *   function don't make sense for sleep/wake cases.
615  * - To do the transfer, we will grab a whole TCS for ourselves--we don't
616  *   try to share. If there are none available we'll wait indefinitely
617  *   for a free one.
618  * - This function will not wait for the commands to be finished, only for
619  *   data to be programmed into the RPMh. See rpmh_tx_done() which will
620  *   be called when the transfer is fully complete.
621  * - This function must be called with interrupts enabled. If the hardware
622  *   is busy doing someone else's transfer we need that transfer to fully
623  *   finish so that we can have the hardware, and to fully finish it needs
624  *   the interrupt handler to run. If the interrupts is set to run on the
625  *   active CPU this can never happen if interrupts are disabled.
626  *
627  * Return: 0 on success, -EINVAL on error.
628  */
629 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
630 {
631         struct tcs_group *tcs;
632         int tcs_id;
633         unsigned long flags;
634
635         tcs = get_tcs_for_msg(drv, msg);
636         if (IS_ERR(tcs))
637                 return PTR_ERR(tcs);
638
639         spin_lock_irqsave(&drv->lock, flags);
640
641         /* Wait forever for a free tcs. It better be there eventually! */
642         wait_event_lock_irq(drv->tcs_wait,
643                             (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
644                             drv->lock);
645
646         tcs->req[tcs_id - tcs->offset] = msg;
647         set_bit(tcs_id, drv->tcs_in_use);
648         if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
649                 /*
650                  * Clear previously programmed WAKE commands in selected
651                  * repurposed TCS to avoid triggering them. tcs->slots will be
652                  * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
653                  */
654                 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, tcs_id, 0);
655                 write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, 0);
656                 enable_tcs_irq(drv, tcs_id, true);
657         }
658         spin_unlock_irqrestore(&drv->lock, flags);
659
660         /*
661          * These two can be done after the lock is released because:
662          * - We marked "tcs_in_use" under lock.
663          * - Once "tcs_in_use" has been marked nobody else could be writing
664          *   to these registers until the interrupt goes off.
665          * - The interrupt can't go off until we trigger w/ the last line
666          *   of __tcs_set_trigger() below.
667          */
668         __tcs_buffer_write(drv, tcs_id, 0, msg);
669         __tcs_set_trigger(drv, tcs_id, true);
670
671         return 0;
672 }
673
674 /**
675  * find_slots() - Find a place to write the given message.
676  * @tcs:    The tcs group to search.
677  * @msg:    The message we want to find room for.
678  * @tcs_id: If we return 0 from the function, we return the global ID of the
679  *          TCS to write to here.
680  * @cmd_id: If we return 0 from the function, we return the index of
681  *          the command array of the returned TCS where the client should
682  *          start writing the message.
683  *
684  * Only for use on sleep/wake TCSes since those are the only ones we maintain
685  * tcs->slots for.
686  *
687  * Return: -ENOMEM if there was no room, else 0.
688  */
689 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
690                       int *tcs_id, int *cmd_id)
691 {
692         int slot, offset;
693         int i = 0;
694
695         /* Do over, until we can fit the full payload in a single TCS */
696         do {
697                 slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
698                                                   i, msg->num_cmds, 0);
699                 if (slot >= tcs->num_tcs * tcs->ncpt)
700                         return -ENOMEM;
701                 i += tcs->ncpt;
702         } while (slot + msg->num_cmds - 1 >= i);
703
704         bitmap_set(tcs->slots, slot, msg->num_cmds);
705
706         offset = slot / tcs->ncpt;
707         *tcs_id = offset + tcs->offset;
708         *cmd_id = slot % tcs->ncpt;
709
710         return 0;
711 }
712
713 /**
714  * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
715  * @drv: The controller.
716  * @msg: The data to be written to the controller.
717  *
718  * This should only be called for for sleep/wake state, never active-only
719  * state.
720  *
721  * The caller must ensure that no other RPMH actions are happening and the
722  * controller is idle when this function is called since it runs lockless.
723  *
724  * Return: 0 if no error; else -error.
725  */
726 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
727 {
728         struct tcs_group *tcs;
729         int tcs_id = 0, cmd_id = 0;
730         int ret;
731
732         tcs = get_tcs_for_msg(drv, msg);
733         if (IS_ERR(tcs))
734                 return PTR_ERR(tcs);
735
736         /* find the TCS id and the command in the TCS to write to */
737         ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
738         if (!ret)
739                 __tcs_buffer_write(drv, tcs_id, cmd_id, msg);
740
741         return ret;
742 }
743
744 /**
745  * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
746  * @drv: The controller
747  *
748  * Checks if any of the AMCs are busy in handling ACTIVE sets.
749  * This is called from the last cpu powering down before flushing
750  * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
751  * power collapse, so deny from the last cpu's pm notification.
752  *
753  * Context: Must be called with the drv->lock held.
754  *
755  * Return:
756  * * False              - AMCs are idle
757  * * True               - AMCs are busy
758  */
759 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
760 {
761         int m;
762         struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
763
764         /*
765          * If we made an active request on a RSC that does not have a
766          * dedicated TCS for active state use, then re-purposed wake TCSes
767          * should be checked for not busy, because we used wake TCSes for
768          * active requests in this case.
769          */
770         if (!tcs->num_tcs)
771                 tcs = &drv->tcs[WAKE_TCS];
772
773         for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
774                 if (!tcs_is_free(drv, m))
775                         return true;
776         }
777
778         return false;
779 }
780
781 /**
782  * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
783  * @nfb:    Pointer to the notifier block in struct rsc_drv.
784  * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
785  * @v:      Unused
786  *
787  * This function is given to cpu_pm_register_notifier so we can be informed
788  * about when CPUs go down. When all CPUs go down we know no more active
789  * transfers will be started so we write sleep/wake sets. This function gets
790  * called from cpuidle code paths and also at system suspend time.
791  *
792  * If its last CPU going down and AMCs are not busy then writes cached sleep
793  * and wake messages to TCSes. The firmware then takes care of triggering
794  * them when entering deepest low power modes.
795  *
796  * Return: See cpu_pm_register_notifier()
797  */
798 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
799                                     unsigned long action, void *v)
800 {
801         struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
802         int ret = NOTIFY_OK;
803         int cpus_in_pm;
804
805         switch (action) {
806         case CPU_PM_ENTER:
807                 cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
808                 /*
809                  * NOTE: comments for num_online_cpus() point out that it's
810                  * only a snapshot so we need to be careful. It should be OK
811                  * for us to use, though.  It's important for us not to miss
812                  * if we're the last CPU going down so it would only be a
813                  * problem if a CPU went offline right after we did the check
814                  * AND that CPU was not idle AND that CPU was the last non-idle
815                  * CPU. That can't happen. CPUs would have to come out of idle
816                  * before the CPU could go offline.
817                  */
818                 if (cpus_in_pm < num_online_cpus())
819                         return NOTIFY_OK;
820                 break;
821         case CPU_PM_ENTER_FAILED:
822         case CPU_PM_EXIT:
823                 atomic_dec(&drv->cpus_in_pm);
824                 return NOTIFY_OK;
825         default:
826                 return NOTIFY_DONE;
827         }
828
829         /*
830          * It's likely we're on the last CPU. Grab the drv->lock and write
831          * out the sleep/wake commands to RPMH hardware. Grabbing the lock
832          * means that if we race with another CPU coming up we are still
833          * guaranteed to be safe. If another CPU came up just after we checked
834          * and has grabbed the lock or started an active transfer then we'll
835          * notice we're busy and abort. If another CPU comes up after we start
836          * flushing it will be blocked from starting an active transfer until
837          * we're done flushing. If another CPU starts an active transfer after
838          * we release the lock we're still OK because we're no longer the last
839          * CPU.
840          */
841         if (spin_trylock(&drv->lock)) {
842                 if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
843                         ret = NOTIFY_BAD;
844                 spin_unlock(&drv->lock);
845         } else {
846                 /* Another CPU must be up */
847                 return NOTIFY_OK;
848         }
849
850         if (ret == NOTIFY_BAD) {
851                 /* Double-check if we're here because someone else is up */
852                 if (cpus_in_pm < num_online_cpus())
853                         ret = NOTIFY_OK;
854                 else
855                         /* We won't be called w/ CPU_PM_ENTER_FAILED */
856                         atomic_dec(&drv->cpus_in_pm);
857         }
858
859         return ret;
860 }
861
862 static int rpmh_probe_tcs_config(struct platform_device *pdev,
863                                  struct rsc_drv *drv, void __iomem *base)
864 {
865         struct tcs_type_config {
866                 u32 type;
867                 u32 n;
868         } tcs_cfg[TCS_TYPE_NR] = { { 0 } };
869         struct device_node *dn = pdev->dev.of_node;
870         u32 config, max_tcs, ncpt, offset;
871         int i, ret, n, st = 0;
872         struct tcs_group *tcs;
873
874         ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
875         if (ret)
876                 return ret;
877         drv->tcs_base = base + offset;
878
879         config = readl_relaxed(base + DRV_PRNT_CHLD_CONFIG);
880
881         max_tcs = config;
882         max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
883         max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
884
885         ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
886         ncpt = ncpt >> DRV_NCPT_SHIFT;
887
888         n = of_property_count_u32_elems(dn, "qcom,tcs-config");
889         if (n != 2 * TCS_TYPE_NR)
890                 return -EINVAL;
891
892         for (i = 0; i < TCS_TYPE_NR; i++) {
893                 ret = of_property_read_u32_index(dn, "qcom,tcs-config",
894                                                  i * 2, &tcs_cfg[i].type);
895                 if (ret)
896                         return ret;
897                 if (tcs_cfg[i].type >= TCS_TYPE_NR)
898                         return -EINVAL;
899
900                 ret = of_property_read_u32_index(dn, "qcom,tcs-config",
901                                                  i * 2 + 1, &tcs_cfg[i].n);
902                 if (ret)
903                         return ret;
904                 if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
905                         return -EINVAL;
906         }
907
908         for (i = 0; i < TCS_TYPE_NR; i++) {
909                 tcs = &drv->tcs[tcs_cfg[i].type];
910                 if (tcs->drv)
911                         return -EINVAL;
912                 tcs->drv = drv;
913                 tcs->type = tcs_cfg[i].type;
914                 tcs->num_tcs = tcs_cfg[i].n;
915                 tcs->ncpt = ncpt;
916
917                 if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
918                         continue;
919
920                 if (st + tcs->num_tcs > max_tcs ||
921                     st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
922                         return -EINVAL;
923
924                 tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
925                 tcs->offset = st;
926                 st += tcs->num_tcs;
927         }
928
929         drv->num_tcs = st;
930
931         return 0;
932 }
933
934 static int rpmh_rsc_probe(struct platform_device *pdev)
935 {
936         struct device_node *dn = pdev->dev.of_node;
937         struct rsc_drv *drv;
938         struct resource *res;
939         char drv_id[10] = {0};
940         int ret, irq;
941         u32 solver_config;
942         void __iomem *base;
943
944         /*
945          * Even though RPMh doesn't directly use cmd-db, all of its children
946          * do. To avoid adding this check to our children we'll do it now.
947          */
948         ret = cmd_db_ready();
949         if (ret) {
950                 if (ret != -EPROBE_DEFER)
951                         dev_err(&pdev->dev, "Command DB not available (%d)\n",
952                                                                         ret);
953                 return ret;
954         }
955
956         drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
957         if (!drv)
958                 return -ENOMEM;
959
960         ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
961         if (ret)
962                 return ret;
963
964         drv->name = of_get_property(dn, "label", NULL);
965         if (!drv->name)
966                 drv->name = dev_name(&pdev->dev);
967
968         snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
969         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, drv_id);
970         base = devm_ioremap_resource(&pdev->dev, res);
971         if (IS_ERR(base))
972                 return PTR_ERR(base);
973
974         ret = rpmh_probe_tcs_config(pdev, drv, base);
975         if (ret)
976                 return ret;
977
978         spin_lock_init(&drv->lock);
979         init_waitqueue_head(&drv->tcs_wait);
980         bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
981
982         irq = platform_get_irq(pdev, drv->id);
983         if (irq < 0)
984                 return irq;
985
986         ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
987                                IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
988                                drv->name, drv);
989         if (ret)
990                 return ret;
991
992         /*
993          * CPU PM notification are not required for controllers that support
994          * 'HW solver' mode where they can be in autonomous mode executing low
995          * power mode to power down.
996          */
997         solver_config = readl_relaxed(base + DRV_SOLVER_CONFIG);
998         solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
999         solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
1000         if (!solver_config) {
1001                 drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1002                 cpu_pm_register_notifier(&drv->rsc_pm);
1003         }
1004
1005         /* Enable the active TCS to send requests immediately */
1006         writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1007                        drv->tcs_base + RSC_DRV_IRQ_ENABLE);
1008
1009         spin_lock_init(&drv->client.cache_lock);
1010         INIT_LIST_HEAD(&drv->client.cache);
1011         INIT_LIST_HEAD(&drv->client.batch_cache);
1012
1013         dev_set_drvdata(&pdev->dev, drv);
1014
1015         return devm_of_platform_populate(&pdev->dev);
1016 }
1017
1018 static const struct of_device_id rpmh_drv_match[] = {
1019         { .compatible = "qcom,rpmh-rsc", },
1020         { }
1021 };
1022 MODULE_DEVICE_TABLE(of, rpmh_drv_match);
1023
1024 static struct platform_driver rpmh_driver = {
1025         .probe = rpmh_rsc_probe,
1026         .driver = {
1027                   .name = "rpmh",
1028                   .of_match_table = rpmh_drv_match,
1029                   .suppress_bind_attrs = true,
1030         },
1031 };
1032
1033 static int __init rpmh_driver_init(void)
1034 {
1035         return platform_driver_register(&rpmh_driver);
1036 }
1037 arch_initcall(rpmh_driver_init);
1038
1039 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Driver");
1040 MODULE_LICENSE("GPL v2");