soundwire: sysfs: add slave status and device number before probe
[linux-2.6-microblaze.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
4  * of PCI-SCSI IO processors.
5  *
6  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
7  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
8  *
9  * This driver is derived from the Linux sym53c8xx driver.
10  * Copyright (C) 1998-2000  Gerard Roudier
11  *
12  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
13  * a port of the FreeBSD ncr driver to Linux-1.2.13.
14  *
15  * The original ncr driver has been written for 386bsd and FreeBSD by
16  *         Wolfgang Stanglmeier        <wolf@cologne.de>
17  *         Stefan Esser                <se@mi.Uni-Koeln.de>
18  * Copyright (C) 1994  Wolfgang Stanglmeier
19  *
20  * Other major contributions:
21  *
22  * NVRAM detection and reading.
23  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
24  *
25  *-----------------------------------------------------------------------------
26  */
27
28 #include <linux/slab.h>
29 #include <asm/param.h>          /* for timeouts in units of HZ */
30
31 #include "sym_glue.h"
32 #include "sym_nvram.h"
33
34 #if 0
35 #define SYM_DEBUG_GENERIC_SUPPORT
36 #endif
37
38 /*
39  *  Needed function prototypes.
40  */
41 static void sym_int_ma (struct sym_hcb *np);
42 static void sym_int_sir(struct sym_hcb *);
43 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
44 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
45 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
46 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
47 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
48 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
49
50 /*
51  *  Print a buffer in hexadecimal format with a ".\n" at end.
52  */
53 static void sym_printl_hex(u_char *p, int n)
54 {
55         while (n-- > 0)
56                 printf (" %x", *p++);
57         printf (".\n");
58 }
59
60 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
61 {
62         sym_print_addr(cp->cmd, "%s: ", label);
63
64         spi_print_msg(msg);
65         printf("\n");
66 }
67
68 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
69 {
70         struct sym_tcb *tp = &np->target[target];
71         dev_info(&tp->starget->dev, "%s: ", label);
72
73         spi_print_msg(msg);
74         printf("\n");
75 }
76
77 /*
78  *  Print something that tells about extended errors.
79  */
80 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
81 {
82         if (x_status & XE_PARITY_ERR) {
83                 sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
84         }
85         if (x_status & XE_EXTRA_DATA) {
86                 sym_print_addr(cmd, "extraneous data discarded.\n");
87         }
88         if (x_status & XE_BAD_PHASE) {
89                 sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
90         }
91         if (x_status & XE_SODL_UNRUN) {
92                 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
93         }
94         if (x_status & XE_SWIDE_OVRUN) {
95                 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
96         }
97 }
98
99 /*
100  *  Return a string for SCSI BUS mode.
101  */
102 static char *sym_scsi_bus_mode(int mode)
103 {
104         switch(mode) {
105         case SMODE_HVD: return "HVD";
106         case SMODE_SE:  return "SE";
107         case SMODE_LVD: return "LVD";
108         }
109         return "??";
110 }
111
112 /*
113  *  Soft reset the chip.
114  *
115  *  Raising SRST when the chip is running may cause 
116  *  problems on dual function chips (see below).
117  *  On the other hand, LVD devices need some delay 
118  *  to settle and report actual BUS mode in STEST4.
119  */
120 static void sym_chip_reset (struct sym_hcb *np)
121 {
122         OUTB(np, nc_istat, SRST);
123         INB(np, nc_mbox1);
124         udelay(10);
125         OUTB(np, nc_istat, 0);
126         INB(np, nc_mbox1);
127         udelay(2000);   /* For BUS MODE to settle */
128 }
129
130 /*
131  *  Really soft reset the chip.:)
132  *
133  *  Some 896 and 876 chip revisions may hang-up if we set 
134  *  the SRST (soft reset) bit at the wrong time when SCRIPTS 
135  *  are running.
136  *  So, we need to abort the current operation prior to 
137  *  soft resetting the chip.
138  */
139 static void sym_soft_reset (struct sym_hcb *np)
140 {
141         u_char istat = 0;
142         int i;
143
144         if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
145                 goto do_chip_reset;
146
147         OUTB(np, nc_istat, CABRT);
148         for (i = 100000 ; i ; --i) {
149                 istat = INB(np, nc_istat);
150                 if (istat & SIP) {
151                         INW(np, nc_sist);
152                 }
153                 else if (istat & DIP) {
154                         if (INB(np, nc_dstat) & ABRT)
155                                 break;
156                 }
157                 udelay(5);
158         }
159         OUTB(np, nc_istat, 0);
160         if (!i)
161                 printf("%s: unable to abort current chip operation, "
162                        "ISTAT=0x%02x.\n", sym_name(np), istat);
163 do_chip_reset:
164         sym_chip_reset(np);
165 }
166
167 /*
168  *  Start reset process.
169  *
170  *  The interrupt handler will reinitialize the chip.
171  */
172 static void sym_start_reset(struct sym_hcb *np)
173 {
174         sym_reset_scsi_bus(np, 1);
175 }
176  
177 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
178 {
179         u32 term;
180         int retv = 0;
181
182         sym_soft_reset(np);     /* Soft reset the chip */
183         if (enab_int)
184                 OUTW(np, nc_sien, RST);
185         /*
186          *  Enable Tolerant, reset IRQD if present and 
187          *  properly set IRQ mode, prior to resetting the bus.
188          */
189         OUTB(np, nc_stest3, TE);
190         OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
191         OUTB(np, nc_scntl1, CRST);
192         INB(np, nc_mbox1);
193         udelay(200);
194
195         if (!SYM_SETUP_SCSI_BUS_CHECK)
196                 goto out;
197         /*
198          *  Check for no terminators or SCSI bus shorts to ground.
199          *  Read SCSI data bus, data parity bits and control signals.
200          *  We are expecting RESET to be TRUE and other signals to be 
201          *  FALSE.
202          */
203         term =  INB(np, nc_sstat0);
204         term =  ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
205         term |= ((INB(np, nc_sstat2) & 0x01) << 26) |   /* sdp1     */
206                 ((INW(np, nc_sbdl) & 0xff)   << 9)  |   /* d7-0     */
207                 ((INW(np, nc_sbdl) & 0xff00) << 10) |   /* d15-8    */
208                 INB(np, nc_sbcl);       /* req ack bsy sel atn msg cd io    */
209
210         if (!np->maxwide)
211                 term &= 0x3ffff;
212
213         if (term != (2<<7)) {
214                 printf("%s: suspicious SCSI data while resetting the BUS.\n",
215                         sym_name(np));
216                 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
217                         "0x%lx, expecting 0x%lx\n",
218                         sym_name(np),
219                         (np->features & FE_WIDE) ? "dp1,d15-8," : "",
220                         (u_long)term, (u_long)(2<<7));
221                 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
222                         retv = 1;
223         }
224 out:
225         OUTB(np, nc_scntl1, 0);
226         return retv;
227 }
228
229 /*
230  *  Select SCSI clock frequency
231  */
232 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
233 {
234         /*
235          *  If multiplier not present or not selected, leave here.
236          */
237         if (np->multiplier <= 1) {
238                 OUTB(np, nc_scntl3, scntl3);
239                 return;
240         }
241
242         if (sym_verbose >= 2)
243                 printf ("%s: enabling clock multiplier\n", sym_name(np));
244
245         OUTB(np, nc_stest1, DBLEN);        /* Enable clock multiplier */
246         /*
247          *  Wait for the LCKFRQ bit to be set if supported by the chip.
248          *  Otherwise wait 50 micro-seconds (at least).
249          */
250         if (np->features & FE_LCKFRQ) {
251                 int i = 20;
252                 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
253                         udelay(20);
254                 if (!i)
255                         printf("%s: the chip cannot lock the frequency\n",
256                                 sym_name(np));
257         } else {
258                 INB(np, nc_mbox1);
259                 udelay(50+10);
260         }
261         OUTB(np, nc_stest3, HSC);               /* Halt the scsi clock  */
262         OUTB(np, nc_scntl3, scntl3);
263         OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier  */
264         OUTB(np, nc_stest3, 0x00);              /* Restart scsi clock   */
265 }
266
267
268 /*
269  *  Determine the chip's clock frequency.
270  *
271  *  This is essential for the negotiation of the synchronous 
272  *  transfer rate.
273  *
274  *  Note: we have to return the correct value.
275  *  THERE IS NO SAFE DEFAULT VALUE.
276  *
277  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
278  *  53C860 and 53C875 rev. 1 support fast20 transfers but 
279  *  do not have a clock doubler and so are provided with a 
280  *  80 MHz clock. All other fast20 boards incorporate a doubler 
281  *  and so should be delivered with a 40 MHz clock.
282  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 
283  *  clock and provide a clock quadrupler (160 Mhz).
284  */
285
286 /*
287  *  calculate SCSI clock frequency (in KHz)
288  */
289 static unsigned getfreq (struct sym_hcb *np, int gen)
290 {
291         unsigned int ms = 0;
292         unsigned int f;
293
294         /*
295          * Measure GEN timer delay in order 
296          * to calculate SCSI clock frequency
297          *
298          * This code will never execute too
299          * many loop iterations (if DELAY is 
300          * reasonably correct). It could get
301          * too low a delay (too high a freq.)
302          * if the CPU is slow executing the 
303          * loop for some reason (an NMI, for
304          * example). For this reason we will
305          * if multiple measurements are to be 
306          * performed trust the higher delay 
307          * (lower frequency returned).
308          */
309         OUTW(np, nc_sien, 0);   /* mask all scsi interrupts */
310         INW(np, nc_sist);       /* clear pending scsi interrupt */
311         OUTB(np, nc_dien, 0);   /* mask all dma interrupts */
312         INW(np, nc_sist);       /* another one, just to be sure :) */
313         /*
314          * The C1010-33 core does not report GEN in SIST,
315          * if this interrupt is masked in SIEN.
316          * I don't know yet if the C1010-66 behaves the same way.
317          */
318         if (np->features & FE_C10) {
319                 OUTW(np, nc_sien, GEN);
320                 OUTB(np, nc_istat1, SIRQD);
321         }
322         OUTB(np, nc_scntl3, 4);    /* set pre-scaler to divide by 3 */
323         OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
324         OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
325         while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
326                 udelay(1000/4);    /* count in 1/4 of ms */
327         OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
328         /*
329          * Undo C1010-33 specific settings.
330          */
331         if (np->features & FE_C10) {
332                 OUTW(np, nc_sien, 0);
333                 OUTB(np, nc_istat1, 0);
334         }
335         /*
336          * set prescaler to divide by whatever 0 means
337          * 0 ought to choose divide by 2, but appears
338          * to set divide by 3.5 mode in my 53c810 ...
339          */
340         OUTB(np, nc_scntl3, 0);
341
342         /*
343          * adjust for prescaler, and convert into KHz 
344          */
345         f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
346
347         /*
348          * The C1010-33 result is biased by a factor 
349          * of 2/3 compared to earlier chips.
350          */
351         if (np->features & FE_C10)
352                 f = (f * 2) / 3;
353
354         if (sym_verbose >= 2)
355                 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
356                         sym_name(np), gen, ms/4, f);
357
358         return f;
359 }
360
361 static unsigned sym_getfreq (struct sym_hcb *np)
362 {
363         u_int f1, f2;
364         int gen = 8;
365
366         getfreq (np, gen);      /* throw away first result */
367         f1 = getfreq (np, gen);
368         f2 = getfreq (np, gen);
369         if (f1 > f2) f1 = f2;           /* trust lower result   */
370         return f1;
371 }
372
373 /*
374  *  Get/probe chip SCSI clock frequency
375  */
376 static void sym_getclock (struct sym_hcb *np, int mult)
377 {
378         unsigned char scntl3 = np->sv_scntl3;
379         unsigned char stest1 = np->sv_stest1;
380         unsigned f1;
381
382         np->multiplier = 1;
383         f1 = 40000;
384         /*
385          *  True with 875/895/896/895A with clock multiplier selected
386          */
387         if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
388                 if (sym_verbose >= 2)
389                         printf ("%s: clock multiplier found\n", sym_name(np));
390                 np->multiplier = mult;
391         }
392
393         /*
394          *  If multiplier not found or scntl3 not 7,5,3,
395          *  reset chip and get frequency from general purpose timer.
396          *  Otherwise trust scntl3 BIOS setting.
397          */
398         if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
399                 OUTB(np, nc_stest1, 0);         /* make sure doubler is OFF */
400                 f1 = sym_getfreq (np);
401
402                 if (sym_verbose)
403                         printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
404
405                 if      (f1 <   45000)          f1 =  40000;
406                 else if (f1 <   55000)          f1 =  50000;
407                 else                            f1 =  80000;
408
409                 if (f1 < 80000 && mult > 1) {
410                         if (sym_verbose >= 2)
411                                 printf ("%s: clock multiplier assumed\n",
412                                         sym_name(np));
413                         np->multiplier  = mult;
414                 }
415         } else {
416                 if      ((scntl3 & 7) == 3)     f1 =  40000;
417                 else if ((scntl3 & 7) == 5)     f1 =  80000;
418                 else                            f1 = 160000;
419
420                 f1 /= np->multiplier;
421         }
422
423         /*
424          *  Compute controller synchronous parameters.
425          */
426         f1              *= np->multiplier;
427         np->clock_khz   = f1;
428 }
429
430 /*
431  *  Get/probe PCI clock frequency
432  */
433 static int sym_getpciclock (struct sym_hcb *np)
434 {
435         int f = 0;
436
437         /*
438          *  For now, we only need to know about the actual 
439          *  PCI BUS clock frequency for C1010-66 chips.
440          */
441 #if 1
442         if (np->features & FE_66MHZ) {
443 #else
444         if (1) {
445 #endif
446                 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
447                 f = sym_getfreq(np);
448                 OUTB(np, nc_stest1, 0);
449         }
450         np->pciclk_khz = f;
451
452         return f;
453 }
454
455 /*
456  *  SYMBIOS chip clock divisor table.
457  *
458  *  Divisors are multiplied by 10,000,000 in order to make 
459  *  calculations more simple.
460  */
461 #define _5M 5000000
462 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
463
464 /*
465  *  Get clock factor and sync divisor for a given 
466  *  synchronous factor period.
467  */
468 static int 
469 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
470 {
471         u32     clk = np->clock_khz;    /* SCSI clock frequency in kHz  */
472         int     div = np->clock_divn;   /* Number of divisors supported */
473         u32     fak;                    /* Sync factor in sxfer         */
474         u32     per;                    /* Period in tenths of ns       */
475         u32     kpc;                    /* (per * clk)                  */
476         int     ret;
477
478         /*
479          *  Compute the synchronous period in tenths of nano-seconds
480          */
481         if (dt && sfac <= 9)    per = 125;
482         else if (sfac <= 10)    per = 250;
483         else if (sfac == 11)    per = 303;
484         else if (sfac == 12)    per = 500;
485         else                    per = 40 * sfac;
486         ret = per;
487
488         kpc = per * clk;
489         if (dt)
490                 kpc <<= 1;
491
492         /*
493          *  For earliest C10 revision 0, we cannot use extra 
494          *  clocks for the setting of the SCSI clocking.
495          *  Note that this limits the lowest sync data transfer 
496          *  to 5 Mega-transfers per second and may result in
497          *  using higher clock divisors.
498          */
499 #if 1
500         if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
501                 /*
502                  *  Look for the lowest clock divisor that allows an 
503                  *  output speed not faster than the period.
504                  */
505                 while (div > 0) {
506                         --div;
507                         if (kpc > (div_10M[div] << 2)) {
508                                 ++div;
509                                 break;
510                         }
511                 }
512                 fak = 0;                        /* No extra clocks */
513                 if (div == np->clock_divn) {    /* Are we too fast ? */
514                         ret = -1;
515                 }
516                 *divp = div;
517                 *fakp = fak;
518                 return ret;
519         }
520 #endif
521
522         /*
523          *  Look for the greatest clock divisor that allows an 
524          *  input speed faster than the period.
525          */
526         while (--div > 0)
527                 if (kpc >= (div_10M[div] << 2)) break;
528
529         /*
530          *  Calculate the lowest clock factor that allows an output 
531          *  speed not faster than the period, and the max output speed.
532          *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
533          *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
534          */
535         if (dt) {
536                 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
537                 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
538         } else {
539                 fak = (kpc - 1) / div_10M[div] + 1 - 4;
540                 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
541         }
542
543         /*
544          *  Check against our hardware limits, or bugs :).
545          */
546         if (fak > 2) {
547                 fak = 2;
548                 ret = -1;
549         }
550
551         /*
552          *  Compute and return sync parameters.
553          */
554         *divp = div;
555         *fakp = fak;
556
557         return ret;
558 }
559
560 /*
561  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
562  *  128 transfers. All chips support at least 16 transfers 
563  *  bursts. The 825A, 875 and 895 chips support bursts of up 
564  *  to 128 transfers and the 895A and 896 support bursts of up
565  *  to 64 transfers. All other chips support up to 16 
566  *  transfers bursts.
567  *
568  *  For PCI 32 bit data transfers each transfer is a DWORD.
569  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
570  *
571  *  We use log base 2 (burst length) as internal code, with 
572  *  value 0 meaning "burst disabled".
573  */
574
575 /*
576  *  Burst length from burst code.
577  */
578 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
579
580 /*
581  *  Burst code from io register bits.
582  */
583 #define burst_code(dmode, ctest4, ctest5) \
584         (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
585
586 /*
587  *  Set initial io register bits from burst code.
588  */
589 static inline void sym_init_burst(struct sym_hcb *np, u_char bc)
590 {
591         np->rv_ctest4   &= ~0x80;
592         np->rv_dmode    &= ~(0x3 << 6);
593         np->rv_ctest5   &= ~0x4;
594
595         if (!bc) {
596                 np->rv_ctest4   |= 0x80;
597         }
598         else {
599                 --bc;
600                 np->rv_dmode    |= ((bc & 0x3) << 6);
601                 np->rv_ctest5   |= (bc & 0x4);
602         }
603 }
604
605 /*
606  *  Save initial settings of some IO registers.
607  *  Assumed to have been set by BIOS.
608  *  We cannot reset the chip prior to reading the 
609  *  IO registers, since informations will be lost.
610  *  Since the SCRIPTS processor may be running, this 
611  *  is not safe on paper, but it seems to work quite 
612  *  well. :)
613  */
614 static void sym_save_initial_setting (struct sym_hcb *np)
615 {
616         np->sv_scntl0   = INB(np, nc_scntl0) & 0x0a;
617         np->sv_scntl3   = INB(np, nc_scntl3) & 0x07;
618         np->sv_dmode    = INB(np, nc_dmode)  & 0xce;
619         np->sv_dcntl    = INB(np, nc_dcntl)  & 0xa8;
620         np->sv_ctest3   = INB(np, nc_ctest3) & 0x01;
621         np->sv_ctest4   = INB(np, nc_ctest4) & 0x80;
622         np->sv_gpcntl   = INB(np, nc_gpcntl);
623         np->sv_stest1   = INB(np, nc_stest1);
624         np->sv_stest2   = INB(np, nc_stest2) & 0x20;
625         np->sv_stest4   = INB(np, nc_stest4);
626         if (np->features & FE_C10) {    /* Always large DMA fifo + ultra3 */
627                 np->sv_scntl4   = INB(np, nc_scntl4);
628                 np->sv_ctest5   = INB(np, nc_ctest5) & 0x04;
629         }
630         else
631                 np->sv_ctest5   = INB(np, nc_ctest5) & 0x24;
632 }
633
634 /*
635  *  Set SCSI BUS mode.
636  *  - LVD capable chips (895/895A/896/1010) report the current BUS mode
637  *    through the STEST4 IO register.
638  *  - For previous generation chips (825/825A/875), the user has to tell us
639  *    how to check against HVD, since a 100% safe algorithm is not possible.
640  */
641 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
642 {
643         if (np->scsi_mode)
644                 return;
645
646         np->scsi_mode = SMODE_SE;
647         if (np->features & (FE_ULTRA2|FE_ULTRA3))
648                 np->scsi_mode = (np->sv_stest4 & SMODE);
649         else if (np->features & FE_DIFF) {
650                 if (SYM_SETUP_SCSI_DIFF == 1) {
651                         if (np->sv_scntl3) {
652                                 if (np->sv_stest2 & 0x20)
653                                         np->scsi_mode = SMODE_HVD;
654                         } else if (nvram->type == SYM_SYMBIOS_NVRAM) {
655                                 if (!(INB(np, nc_gpreg) & 0x08))
656                                         np->scsi_mode = SMODE_HVD;
657                         }
658                 } else if (SYM_SETUP_SCSI_DIFF == 2)
659                         np->scsi_mode = SMODE_HVD;
660         }
661         if (np->scsi_mode == SMODE_HVD)
662                 np->rv_stest2 |= 0x20;
663 }
664
665 /*
666  *  Prepare io register values used by sym_start_up() 
667  *  according to selected and supported features.
668  */
669 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
670 {
671         struct sym_data *sym_data = shost_priv(shost);
672         struct pci_dev *pdev = sym_data->pdev;
673         u_char  burst_max;
674         u32     period;
675         int i;
676
677         np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
678
679         /*
680          *  Guess the frequency of the chip's clock.
681          */
682         if      (np->features & (FE_ULTRA3 | FE_ULTRA2))
683                 np->clock_khz = 160000;
684         else if (np->features & FE_ULTRA)
685                 np->clock_khz = 80000;
686         else
687                 np->clock_khz = 40000;
688
689         /*
690          *  Get the clock multiplier factor.
691          */
692         if      (np->features & FE_QUAD)
693                 np->multiplier  = 4;
694         else if (np->features & FE_DBLR)
695                 np->multiplier  = 2;
696         else
697                 np->multiplier  = 1;
698
699         /*
700          *  Measure SCSI clock frequency for chips 
701          *  it may vary from assumed one.
702          */
703         if (np->features & FE_VARCLK)
704                 sym_getclock(np, np->multiplier);
705
706         /*
707          * Divisor to be used for async (timer pre-scaler).
708          */
709         i = np->clock_divn - 1;
710         while (--i >= 0) {
711                 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
712                         ++i;
713                         break;
714                 }
715         }
716         np->rv_scntl3 = i+1;
717
718         /*
719          * The C1010 uses hardwired divisors for async.
720          * So, we just throw away, the async. divisor.:-)
721          */
722         if (np->features & FE_C10)
723                 np->rv_scntl3 = 0;
724
725         /*
726          * Minimum synchronous period factor supported by the chip.
727          * Btw, 'period' is in tenths of nanoseconds.
728          */
729         period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
730
731         if      (period <= 250)         np->minsync = 10;
732         else if (period <= 303)         np->minsync = 11;
733         else if (period <= 500)         np->minsync = 12;
734         else                            np->minsync = (period + 40 - 1) / 40;
735
736         /*
737          * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
738          */
739         if      (np->minsync < 25 &&
740                  !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
741                 np->minsync = 25;
742         else if (np->minsync < 12 &&
743                  !(np->features & (FE_ULTRA2|FE_ULTRA3)))
744                 np->minsync = 12;
745
746         /*
747          * Maximum synchronous period factor supported by the chip.
748          */
749         period = div64_ul(11 * div_10M[np->clock_divn - 1], 4 * np->clock_khz);
750         np->maxsync = period > 2540 ? 254 : period / 10;
751
752         /*
753          * If chip is a C1010, guess the sync limits in DT mode.
754          */
755         if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
756                 if (np->clock_khz == 160000) {
757                         np->minsync_dt = 9;
758                         np->maxsync_dt = 50;
759                         np->maxoffs_dt = nvram->type ? 62 : 31;
760                 }
761         }
762         
763         /*
764          *  64 bit addressing  (895A/896/1010) ?
765          */
766         if (np->features & FE_DAC) {
767                 if (!use_dac(np))
768                         np->rv_ccntl1 |= (DDAC);
769                 else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
770                         np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
771                 else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
772                         np->rv_ccntl1 |= (0 | EXTIBMV);
773         }
774
775         /*
776          *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
777          */
778         if (np->features & FE_NOPM)
779                 np->rv_ccntl0   |= (ENPMJ);
780
781         /*
782          *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
783          *  In dual channel mode, contention occurs if internal cycles
784          *  are used. Disable internal cycles.
785          */
786         if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
787             pdev->revision < 0x1)
788                 np->rv_ccntl0   |=  DILS;
789
790         /*
791          *  Select burst length (dwords)
792          */
793         burst_max       = SYM_SETUP_BURST_ORDER;
794         if (burst_max == 255)
795                 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
796                                        np->sv_ctest5);
797         if (burst_max > 7)
798                 burst_max = 7;
799         if (burst_max > np->maxburst)
800                 burst_max = np->maxburst;
801
802         /*
803          *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
804          *  This chip and the 860 Rev 1 may wrongly use PCI cache line 
805          *  based transactions on LOAD/STORE instructions. So we have 
806          *  to prevent these chips from using such PCI transactions in 
807          *  this driver. The generic ncr driver that does not use 
808          *  LOAD/STORE instructions does not need this work-around.
809          */
810         if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
811              pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
812             (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
813              pdev->revision <= 0x1))
814                 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
815
816         /*
817          *  Select all supported special features.
818          *  If we are using on-board RAM for scripts, prefetch (PFEN) 
819          *  does not help, but burst op fetch (BOF) does.
820          *  Disabling PFEN makes sure BOF will be used.
821          */
822         if (np->features & FE_ERL)
823                 np->rv_dmode    |= ERL;         /* Enable Read Line */
824         if (np->features & FE_BOF)
825                 np->rv_dmode    |= BOF;         /* Burst Opcode Fetch */
826         if (np->features & FE_ERMP)
827                 np->rv_dmode    |= ERMP;        /* Enable Read Multiple */
828 #if 1
829         if ((np->features & FE_PFEN) && !np->ram_ba)
830 #else
831         if (np->features & FE_PFEN)
832 #endif
833                 np->rv_dcntl    |= PFEN;        /* Prefetch Enable */
834         if (np->features & FE_CLSE)
835                 np->rv_dcntl    |= CLSE;        /* Cache Line Size Enable */
836         if (np->features & FE_WRIE)
837                 np->rv_ctest3   |= WRIE;        /* Write and Invalidate */
838         if (np->features & FE_DFS)
839                 np->rv_ctest5   |= DFS;         /* Dma Fifo Size */
840
841         /*
842          *  Select some other
843          */
844         np->rv_ctest4   |= MPEE; /* Master parity checking */
845         np->rv_scntl0   |= 0x0a; /*  full arb., ena parity, par->ATN  */
846
847         /*
848          *  Get parity checking, host ID and verbose mode from NVRAM
849          */
850         np->myaddr = 255;
851         np->scsi_mode = 0;
852         sym_nvram_setup_host(shost, np, nvram);
853
854         /*
855          *  Get SCSI addr of host adapter (set by bios?).
856          */
857         if (np->myaddr == 255) {
858                 np->myaddr = INB(np, nc_scid) & 0x07;
859                 if (!np->myaddr)
860                         np->myaddr = SYM_SETUP_HOST_ID;
861         }
862
863         /*
864          *  Prepare initial io register bits for burst length
865          */
866         sym_init_burst(np, burst_max);
867
868         sym_set_bus_mode(np, nvram);
869
870         /*
871          *  Set LED support from SCRIPTS.
872          *  Ignore this feature for boards known to use a 
873          *  specific GPIO wiring and for the 895A, 896 
874          *  and 1010 that drive the LED directly.
875          */
876         if ((SYM_SETUP_SCSI_LED || 
877              (nvram->type == SYM_SYMBIOS_NVRAM ||
878               (nvram->type == SYM_TEKRAM_NVRAM &&
879                pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
880             !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
881                 np->features |= FE_LED0;
882
883         /*
884          *  Set irq mode.
885          */
886         switch(SYM_SETUP_IRQ_MODE & 3) {
887         case 2:
888                 np->rv_dcntl    |= IRQM;
889                 break;
890         case 1:
891                 np->rv_dcntl    |= (np->sv_dcntl & IRQM);
892                 break;
893         default:
894                 break;
895         }
896
897         /*
898          *  Configure targets according to driver setup.
899          *  If NVRAM present get targets setup from NVRAM.
900          */
901         for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
902                 struct sym_tcb *tp = &np->target[i];
903
904                 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
905                 tp->usrtags = SYM_SETUP_MAX_TAG;
906                 tp->usr_width = np->maxwide;
907                 tp->usr_period = 9;
908
909                 sym_nvram_setup_target(tp, i, nvram);
910
911                 if (!tp->usrtags)
912                         tp->usrflags &= ~SYM_TAGS_ENABLED;
913         }
914
915         /*
916          *  Let user know about the settings.
917          */
918         printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
919                 sym_nvram_type(nvram), np->myaddr,
920                 (np->features & FE_ULTRA3) ? 80 : 
921                 (np->features & FE_ULTRA2) ? 40 : 
922                 (np->features & FE_ULTRA)  ? 20 : 10,
923                 sym_scsi_bus_mode(np->scsi_mode),
924                 (np->rv_scntl0 & 0xa)   ? "parity checking" : "NO parity");
925         /*
926          *  Tell him more on demand.
927          */
928         if (sym_verbose) {
929                 printf("%s: %s IRQ line driver%s\n",
930                         sym_name(np),
931                         np->rv_dcntl & IRQM ? "totem pole" : "open drain",
932                         np->ram_ba ? ", using on-chip SRAM" : "");
933                 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
934                 if (np->features & FE_NOPM)
935                         printf("%s: handling phase mismatch from SCRIPTS.\n", 
936                                sym_name(np));
937         }
938         /*
939          *  And still more.
940          */
941         if (sym_verbose >= 2) {
942                 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
943                         "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
944                         sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
945                         np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
946
947                 printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
948                         "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
949                         sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
950                         np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
951         }
952
953         return 0;
954 }
955
956 /*
957  *  Test the pci bus snoop logic :-(
958  *
959  *  Has to be called with interrupts disabled.
960  */
961 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
962 static int sym_regtest(struct sym_hcb *np)
963 {
964         register volatile u32 data;
965         /*
966          *  chip registers may NOT be cached.
967          *  write 0xffffffff to a read only register area,
968          *  and try to read it back.
969          */
970         data = 0xffffffff;
971         OUTL(np, nc_dstat, data);
972         data = INL(np, nc_dstat);
973 #if 1
974         if (data == 0xffffffff) {
975 #else
976         if ((data & 0xe2f0fffd) != 0x02000080) {
977 #endif
978                 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
979                         (unsigned) data);
980                 return 0x10;
981         }
982         return 0;
983 }
984 #else
985 static inline int sym_regtest(struct sym_hcb *np)
986 {
987         return 0;
988 }
989 #endif
990
991 static int sym_snooptest(struct sym_hcb *np)
992 {
993         u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
994         int i, err;
995
996         err = sym_regtest(np);
997         if (err)
998                 return err;
999 restart_test:
1000         /*
1001          *  Enable Master Parity Checking as we intend 
1002          *  to enable it for normal operations.
1003          */
1004         OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1005         /*
1006          *  init
1007          */
1008         pc  = SCRIPTZ_BA(np, snooptest);
1009         host_wr = 1;
1010         sym_wr  = 2;
1011         /*
1012          *  Set memory and register.
1013          */
1014         np->scratch = cpu_to_scr(host_wr);
1015         OUTL(np, nc_temp, sym_wr);
1016         /*
1017          *  Start script (exchange values)
1018          */
1019         OUTL(np, nc_dsa, np->hcb_ba);
1020         OUTL_DSP(np, pc);
1021         /*
1022          *  Wait 'til done (with timeout)
1023          */
1024         for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1025                 if (INB(np, nc_istat) & (INTF|SIP|DIP))
1026                         break;
1027         if (i>=SYM_SNOOP_TIMEOUT) {
1028                 printf ("CACHE TEST FAILED: timeout.\n");
1029                 return (0x20);
1030         }
1031         /*
1032          *  Check for fatal DMA errors.
1033          */
1034         dstat = INB(np, nc_dstat);
1035 #if 1   /* Band aiding for broken hardwares that fail PCI parity */
1036         if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1037                 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1038                         "DISABLING MASTER DATA PARITY CHECKING.\n",
1039                         sym_name(np));
1040                 np->rv_ctest4 &= ~MPEE;
1041                 goto restart_test;
1042         }
1043 #endif
1044         if (dstat & (MDPE|BF|IID)) {
1045                 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1046                 return (0x80);
1047         }
1048         /*
1049          *  Save termination position.
1050          */
1051         pc = INL(np, nc_dsp);
1052         /*
1053          *  Read memory and register.
1054          */
1055         host_rd = scr_to_cpu(np->scratch);
1056         sym_rd  = INL(np, nc_scratcha);
1057         sym_bk  = INL(np, nc_temp);
1058         /*
1059          *  Check termination position.
1060          */
1061         if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1062                 printf ("CACHE TEST FAILED: script execution failed.\n");
1063                 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 
1064                         (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1065                         (u_long) SCRIPTZ_BA(np, snoopend) +8);
1066                 return (0x40);
1067         }
1068         /*
1069          *  Show results.
1070          */
1071         if (host_wr != sym_rd) {
1072                 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1073                         (int) host_wr, (int) sym_rd);
1074                 err |= 1;
1075         }
1076         if (host_rd != sym_wr) {
1077                 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1078                         (int) sym_wr, (int) host_rd);
1079                 err |= 2;
1080         }
1081         if (sym_bk != sym_wr) {
1082                 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1083                         (int) sym_wr, (int) sym_bk);
1084                 err |= 4;
1085         }
1086
1087         return err;
1088 }
1089
1090 /*
1091  *  log message for real hard errors
1092  *
1093  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1094  *            reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1095  *
1096  *  exception register:
1097  *      ds:     dstat
1098  *      si:     sist
1099  *
1100  *  SCSI bus lines:
1101  *      so:     control lines as driven by chip.
1102  *      si:     control lines as seen by chip.
1103  *      sd:     scsi data lines as seen by chip.
1104  *
1105  *  wide/fastmode:
1106  *      sx:     sxfer  (see the manual)
1107  *      s3:     scntl3 (see the manual)
1108  *      s4:     scntl4 (see the manual)
1109  *
1110  *  current script command:
1111  *      dsp:    script address (relative to start of script).
1112  *      dbc:    first word of script command.
1113  *
1114  *  First 24 register of the chip:
1115  *      r0..rf
1116  */
1117 static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1118 {
1119         struct sym_hcb *np = sym_get_hcb(shost);
1120         u32     dsp;
1121         int     script_ofs;
1122         int     script_size;
1123         char    *script_name;
1124         u_char  *script_base;
1125         int     i;
1126
1127         dsp     = INL(np, nc_dsp);
1128
1129         if      (dsp > np->scripta_ba &&
1130                  dsp <= np->scripta_ba + np->scripta_sz) {
1131                 script_ofs      = dsp - np->scripta_ba;
1132                 script_size     = np->scripta_sz;
1133                 script_base     = (u_char *) np->scripta0;
1134                 script_name     = "scripta";
1135         }
1136         else if (np->scriptb_ba < dsp && 
1137                  dsp <= np->scriptb_ba + np->scriptb_sz) {
1138                 script_ofs      = dsp - np->scriptb_ba;
1139                 script_size     = np->scriptb_sz;
1140                 script_base     = (u_char *) np->scriptb0;
1141                 script_name     = "scriptb";
1142         } else {
1143                 script_ofs      = dsp;
1144                 script_size     = 0;
1145                 script_base     = NULL;
1146                 script_name     = "mem";
1147         }
1148
1149         printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1150                 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1151                 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1152                 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1153                 (unsigned)INB(np, nc_scntl3),
1154                 (np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1155                 script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1156
1157         if (((script_ofs & 3) == 0) &&
1158             (unsigned)script_ofs < script_size) {
1159                 printf ("%s: script cmd = %08x\n", sym_name(np),
1160                         scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1161         }
1162
1163         printf("%s: regdump:", sym_name(np));
1164         for (i = 0; i < 24; i++)
1165                 printf(" %02x", (unsigned)INB_OFF(np, i));
1166         printf(".\n");
1167
1168         /*
1169          *  PCI BUS error.
1170          */
1171         if (dstat & (MDPE|BF))
1172                 sym_log_bus_error(shost);
1173 }
1174
1175 void sym_dump_registers(struct Scsi_Host *shost)
1176 {
1177         struct sym_hcb *np = sym_get_hcb(shost);
1178         u_short sist;
1179         u_char dstat;
1180
1181         sist = INW(np, nc_sist);
1182         dstat = INB(np, nc_dstat);
1183         sym_log_hard_error(shost, sist, dstat);
1184 }
1185
1186 static struct sym_chip sym_dev_table[] = {
1187  {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1188  FE_ERL}
1189  ,
1190 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1191  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1192  FE_BOF}
1193  ,
1194 #else
1195  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1196  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1197  ,
1198 #endif
1199  {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1200  FE_BOF|FE_ERL}
1201  ,
1202  {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1203  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1204  ,
1205  {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1206  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1207  ,
1208  {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1209  FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1210  ,
1211  {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1212  FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1213  FE_RAM|FE_DIFF|FE_VARCLK}
1214  ,
1215  {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1216  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1217  FE_RAM|FE_DIFF|FE_VARCLK}
1218  ,
1219  {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1220  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1221  FE_RAM|FE_DIFF|FE_VARCLK}
1222  ,
1223  {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1224  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1225  FE_RAM|FE_DIFF|FE_VARCLK}
1226  ,
1227 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1228  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1229  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1230  FE_RAM|FE_LCKFRQ}
1231  ,
1232 #else
1233  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1234  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1235  FE_RAM|FE_LCKFRQ}
1236  ,
1237 #endif
1238  {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1239  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1240  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1241  ,
1242  {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1243  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1244  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1245  ,
1246  {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1247  FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1248  FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1249  ,
1250  {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1251  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1252  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1253  FE_C10}
1254  ,
1255  {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1256  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1257  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1258  FE_C10|FE_U3EN}
1259  ,
1260  {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1261  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1262  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1263  FE_C10|FE_U3EN}
1264  ,
1265  {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1266  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1267  FE_RAM|FE_IO256|FE_LEDC}
1268 };
1269
1270 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1271
1272 /*
1273  *  Look up the chip table.
1274  *
1275  *  Return a pointer to the chip entry if found, 
1276  *  zero otherwise.
1277  */
1278 struct sym_chip *
1279 sym_lookup_chip_table (u_short device_id, u_char revision)
1280 {
1281         struct  sym_chip *chip;
1282         int     i;
1283
1284         for (i = 0; i < sym_num_devs; i++) {
1285                 chip = &sym_dev_table[i];
1286                 if (device_id != chip->device_id)
1287                         continue;
1288                 if (revision > chip->revision_id)
1289                         continue;
1290                 return chip;
1291         }
1292
1293         return NULL;
1294 }
1295
1296 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1297 /*
1298  *  Lookup the 64 bit DMA segments map.
1299  *  This is only used if the direct mapping 
1300  *  has been unsuccessful.
1301  */
1302 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1303 {
1304         int i;
1305
1306         if (!use_dac(np))
1307                 goto weird;
1308
1309         /* Look up existing mappings */
1310         for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1311                 if (h == np->dmap_bah[i])
1312                         return i;
1313         }
1314         /* If direct mapping is free, get it */
1315         if (!np->dmap_bah[s])
1316                 goto new;
1317         /* Collision -> lookup free mappings */
1318         for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1319                 if (!np->dmap_bah[s])
1320                         goto new;
1321         }
1322 weird:
1323         panic("sym: ran out of 64 bit DMA segment registers");
1324         return -1;
1325 new:
1326         np->dmap_bah[s] = h;
1327         np->dmap_dirty = 1;
1328         return s;
1329 }
1330
1331 /*
1332  *  Update IO registers scratch C..R so they will be 
1333  *  in sync. with queued CCB expectations.
1334  */
1335 static void sym_update_dmap_regs(struct sym_hcb *np)
1336 {
1337         int o, i;
1338
1339         if (!np->dmap_dirty)
1340                 return;
1341         o = offsetof(struct sym_reg, nc_scrx[0]);
1342         for (i = 0; i < SYM_DMAP_SIZE; i++) {
1343                 OUTL_OFF(np, o, np->dmap_bah[i]);
1344                 o += 4;
1345         }
1346         np->dmap_dirty = 0;
1347 }
1348 #endif
1349
1350 /* Enforce all the fiddly SPI rules and the chip limitations */
1351 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1352                 struct sym_trans *goal)
1353 {
1354         if (!spi_support_wide(starget))
1355                 goal->width = 0;
1356
1357         if (!spi_support_sync(starget)) {
1358                 goal->iu = 0;
1359                 goal->dt = 0;
1360                 goal->qas = 0;
1361                 goal->offset = 0;
1362                 return;
1363         }
1364
1365         if (spi_support_dt(starget)) {
1366                 if (spi_support_dt_only(starget))
1367                         goal->dt = 1;
1368
1369                 if (goal->offset == 0)
1370                         goal->dt = 0;
1371         } else {
1372                 goal->dt = 0;
1373         }
1374
1375         /* Some targets fail to properly negotiate DT in SE mode */
1376         if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1377                 goal->dt = 0;
1378
1379         if (goal->dt) {
1380                 /* all DT transfers must be wide */
1381                 goal->width = 1;
1382                 if (goal->offset > np->maxoffs_dt)
1383                         goal->offset = np->maxoffs_dt;
1384                 if (goal->period < np->minsync_dt)
1385                         goal->period = np->minsync_dt;
1386                 if (goal->period > np->maxsync_dt)
1387                         goal->period = np->maxsync_dt;
1388         } else {
1389                 goal->iu = goal->qas = 0;
1390                 if (goal->offset > np->maxoffs)
1391                         goal->offset = np->maxoffs;
1392                 if (goal->period < np->minsync)
1393                         goal->period = np->minsync;
1394                 if (goal->period > np->maxsync)
1395                         goal->period = np->maxsync;
1396         }
1397 }
1398
1399 /*
1400  *  Prepare the next negotiation message if needed.
1401  *
1402  *  Fill in the part of message buffer that contains the 
1403  *  negotiation and the nego_status field of the CCB.
1404  *  Returns the size of the message in bytes.
1405  */
1406 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1407 {
1408         struct sym_tcb *tp = &np->target[cp->target];
1409         struct scsi_target *starget = tp->starget;
1410         struct sym_trans *goal = &tp->tgoal;
1411         int msglen = 0;
1412         int nego;
1413
1414         sym_check_goals(np, starget, goal);
1415
1416         /*
1417          * Many devices implement PPR in a buggy way, so only use it if we
1418          * really want to.
1419          */
1420         if (goal->renego == NS_PPR || (goal->offset &&
1421             (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) {
1422                 nego = NS_PPR;
1423         } else if (goal->renego == NS_WIDE || goal->width) {
1424                 nego = NS_WIDE;
1425         } else if (goal->renego == NS_SYNC || goal->offset) {
1426                 nego = NS_SYNC;
1427         } else {
1428                 goal->check_nego = 0;
1429                 nego = 0;
1430         }
1431
1432         switch (nego) {
1433         case NS_SYNC:
1434                 msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1435                                 goal->offset);
1436                 break;
1437         case NS_WIDE:
1438                 msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1439                 break;
1440         case NS_PPR:
1441                 msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1442                                 goal->offset, goal->width,
1443                                 (goal->iu ? PPR_OPT_IU : 0) |
1444                                         (goal->dt ? PPR_OPT_DT : 0) |
1445                                         (goal->qas ? PPR_OPT_QAS : 0));
1446                 break;
1447         }
1448
1449         cp->nego_status = nego;
1450
1451         if (nego) {
1452                 tp->nego_cp = cp; /* Keep track a nego will be performed */
1453                 if (DEBUG_FLAGS & DEBUG_NEGO) {
1454                         sym_print_nego_msg(np, cp->target, 
1455                                           nego == NS_SYNC ? "sync msgout" :
1456                                           nego == NS_WIDE ? "wide msgout" :
1457                                           "ppr msgout", msgptr);
1458                 }
1459         }
1460
1461         return msglen;
1462 }
1463
1464 /*
1465  *  Insert a job into the start queue.
1466  */
1467 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1468 {
1469         u_short qidx;
1470
1471 #ifdef SYM_CONF_IARB_SUPPORT
1472         /*
1473          *  If the previously queued CCB is not yet done, 
1474          *  set the IARB hint. The SCRIPTS will go with IARB 
1475          *  for this job when starting the previous one.
1476          *  We leave devices a chance to win arbitration by 
1477          *  not using more than 'iarb_max' consecutive 
1478          *  immediate arbitrations.
1479          */
1480         if (np->last_cp && np->iarb_count < np->iarb_max) {
1481                 np->last_cp->host_flags |= HF_HINT_IARB;
1482                 ++np->iarb_count;
1483         }
1484         else
1485                 np->iarb_count = 0;
1486         np->last_cp = cp;
1487 #endif
1488
1489 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1490         /*
1491          *  Make SCRIPTS aware of the 64 bit DMA 
1492          *  segment registers not being up-to-date.
1493          */
1494         if (np->dmap_dirty)
1495                 cp->host_xflags |= HX_DMAP_DIRTY;
1496 #endif
1497
1498         /*
1499          *  Insert first the idle task and then our job.
1500          *  The MBs should ensure proper ordering.
1501          */
1502         qidx = np->squeueput + 2;
1503         if (qidx >= MAX_QUEUE*2) qidx = 0;
1504
1505         np->squeue [qidx]          = cpu_to_scr(np->idletask_ba);
1506         MEMORY_WRITE_BARRIER();
1507         np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1508
1509         np->squeueput = qidx;
1510
1511         if (DEBUG_FLAGS & DEBUG_QUEUE)
1512                 scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1513                                                         np->squeueput);
1514
1515         /*
1516          *  Script processor may be waiting for reselect.
1517          *  Wake it up.
1518          */
1519         MEMORY_WRITE_BARRIER();
1520         OUTB(np, nc_istat, SIGP|np->istat_sem);
1521 }
1522
1523 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1524 /*
1525  *  Start next ready-to-start CCBs.
1526  */
1527 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1528 {
1529         SYM_QUEHEAD *qp;
1530         struct sym_ccb *cp;
1531
1532         /* 
1533          *  Paranoia, as usual. :-)
1534          */
1535         assert(!lp->started_tags || !lp->started_no_tag);
1536
1537         /*
1538          *  Try to start as many commands as asked by caller.
1539          *  Prevent from having both tagged and untagged 
1540          *  commands queued to the device at the same time.
1541          */
1542         while (maxn--) {
1543                 qp = sym_remque_head(&lp->waiting_ccbq);
1544                 if (!qp)
1545                         break;
1546                 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1547                 if (cp->tag != NO_TAG) {
1548                         if (lp->started_no_tag ||
1549                             lp->started_tags >= lp->started_max) {
1550                                 sym_insque_head(qp, &lp->waiting_ccbq);
1551                                 break;
1552                         }
1553                         lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1554                         lp->head.resel_sa =
1555                                 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1556                         ++lp->started_tags;
1557                 } else {
1558                         if (lp->started_no_tag || lp->started_tags) {
1559                                 sym_insque_head(qp, &lp->waiting_ccbq);
1560                                 break;
1561                         }
1562                         lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1563                         lp->head.resel_sa =
1564                               cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1565                         ++lp->started_no_tag;
1566                 }
1567                 cp->started = 1;
1568                 sym_insque_tail(qp, &lp->started_ccbq);
1569                 sym_put_start_queue(np, cp);
1570         }
1571 }
1572 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1573
1574 /*
1575  *  The chip may have completed jobs. Look at the DONE QUEUE.
1576  *
1577  *  On paper, memory read barriers may be needed here to 
1578  *  prevent out of order LOADs by the CPU from having 
1579  *  prefetched stale data prior to DMA having occurred.
1580  */
1581 static int sym_wakeup_done (struct sym_hcb *np)
1582 {
1583         struct sym_ccb *cp;
1584         int i, n;
1585         u32 dsa;
1586
1587         n = 0;
1588         i = np->dqueueget;
1589
1590         /* MEMORY_READ_BARRIER(); */
1591         while (1) {
1592                 dsa = scr_to_cpu(np->dqueue[i]);
1593                 if (!dsa)
1594                         break;
1595                 np->dqueue[i] = 0;
1596                 if ((i = i+2) >= MAX_QUEUE*2)
1597                         i = 0;
1598
1599                 cp = sym_ccb_from_dsa(np, dsa);
1600                 if (cp) {
1601                         MEMORY_READ_BARRIER();
1602                         sym_complete_ok (np, cp);
1603                         ++n;
1604                 }
1605                 else
1606                         printf ("%s: bad DSA (%x) in done queue.\n",
1607                                 sym_name(np), (u_int) dsa);
1608         }
1609         np->dqueueget = i;
1610
1611         return n;
1612 }
1613
1614 /*
1615  *  Complete all CCBs queued to the COMP queue.
1616  *
1617  *  These CCBs are assumed:
1618  *  - Not to be referenced either by devices or 
1619  *    SCRIPTS-related queues and datas.
1620  *  - To have to be completed with an error condition 
1621  *    or requeued.
1622  *
1623  *  The device queue freeze count is incremented 
1624  *  for each CCB that does not prevent this.
1625  *  This function is called when all CCBs involved 
1626  *  in error handling/recovery have been reaped.
1627  */
1628 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1629 {
1630         SYM_QUEHEAD *qp;
1631         struct sym_ccb *cp;
1632
1633         while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1634                 struct scsi_cmnd *cmd;
1635                 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1636                 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1637                 /* Leave quiet CCBs waiting for resources */
1638                 if (cp->host_status == HS_WAIT)
1639                         continue;
1640                 cmd = cp->cmd;
1641                 if (cam_status)
1642                         sym_set_cam_status(cmd, cam_status);
1643 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1644                 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1645                         struct sym_tcb *tp = &np->target[cp->target];
1646                         struct sym_lcb *lp = sym_lp(tp, cp->lun);
1647                         if (lp) {
1648                                 sym_remque(&cp->link2_ccbq);
1649                                 sym_insque_tail(&cp->link2_ccbq,
1650                                                 &lp->waiting_ccbq);
1651                                 if (cp->started) {
1652                                         if (cp->tag != NO_TAG)
1653                                                 --lp->started_tags;
1654                                         else
1655                                                 --lp->started_no_tag;
1656                                 }
1657                         }
1658                         cp->started = 0;
1659                         continue;
1660                 }
1661 #endif
1662                 sym_free_ccb(np, cp);
1663                 sym_xpt_done(np, cmd);
1664         }
1665 }
1666
1667 /*
1668  *  Complete all active CCBs with error.
1669  *  Used on CHIP/SCSI RESET.
1670  */
1671 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1672 {
1673         /*
1674          *  Move all active CCBs to the COMP queue 
1675          *  and flush this queue.
1676          */
1677         sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1678         sym_que_init(&np->busy_ccbq);
1679         sym_flush_comp_queue(np, cam_status);
1680 }
1681
1682 /*
1683  *  Start chip.
1684  *
1685  *  'reason' means:
1686  *     0: initialisation.
1687  *     1: SCSI BUS RESET delivered or received.
1688  *     2: SCSI BUS MODE changed.
1689  */
1690 void sym_start_up(struct Scsi_Host *shost, int reason)
1691 {
1692         struct sym_data *sym_data = shost_priv(shost);
1693         struct pci_dev *pdev = sym_data->pdev;
1694         struct sym_hcb *np = sym_data->ncb;
1695         int     i;
1696         u32     phys;
1697
1698         /*
1699          *  Reset chip if asked, otherwise just clear fifos.
1700          */
1701         if (reason == 1)
1702                 sym_soft_reset(np);
1703         else {
1704                 OUTB(np, nc_stest3, TE|CSF);
1705                 OUTONB(np, nc_ctest3, CLF);
1706         }
1707  
1708         /*
1709          *  Clear Start Queue
1710          */
1711         phys = np->squeue_ba;
1712         for (i = 0; i < MAX_QUEUE*2; i += 2) {
1713                 np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1714                 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1715         }
1716         np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1717
1718         /*
1719          *  Start at first entry.
1720          */
1721         np->squeueput = 0;
1722
1723         /*
1724          *  Clear Done Queue
1725          */
1726         phys = np->dqueue_ba;
1727         for (i = 0; i < MAX_QUEUE*2; i += 2) {
1728                 np->dqueue[i]   = 0;
1729                 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1730         }
1731         np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1732
1733         /*
1734          *  Start at first entry.
1735          */
1736         np->dqueueget = 0;
1737
1738         /*
1739          *  Install patches in scripts.
1740          *  This also let point to first position the start 
1741          *  and done queue pointers used from SCRIPTS.
1742          */
1743         np->fw_patch(shost);
1744
1745         /*
1746          *  Wakeup all pending jobs.
1747          */
1748         sym_flush_busy_queue(np, DID_RESET);
1749
1750         /*
1751          *  Init chip.
1752          */
1753         OUTB(np, nc_istat,  0x00);                      /*  Remove Reset, abort */
1754         INB(np, nc_mbox1);
1755         udelay(2000); /* The 895 needs time for the bus mode to settle */
1756
1757         OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1758                                         /*  full arb., ena parity, par->ATN  */
1759         OUTB(np, nc_scntl1, 0x00);              /*  odd parity, and remove CRST!! */
1760
1761         sym_selectclock(np, np->rv_scntl3);     /* Select SCSI clock */
1762
1763         OUTB(np, nc_scid  , RRE|np->myaddr);    /* Adapter SCSI address */
1764         OUTW(np, nc_respid, 1ul<<np->myaddr);   /* Id to respond to */
1765         OUTB(np, nc_istat , SIGP        );              /*  Signal Process */
1766         OUTB(np, nc_dmode , np->rv_dmode);              /* Burst length, dma mode */
1767         OUTB(np, nc_ctest5, np->rv_ctest5);     /* Large fifo + large burst */
1768
1769         OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);        /* Protect SFBR */
1770         OUTB(np, nc_ctest3, np->rv_ctest3);     /* Write and invalidate */
1771         OUTB(np, nc_ctest4, np->rv_ctest4);     /* Master parity checking */
1772
1773         /* Extended Sreq/Sack filtering not supported on the C10 */
1774         if (np->features & FE_C10)
1775                 OUTB(np, nc_stest2, np->rv_stest2);
1776         else
1777                 OUTB(np, nc_stest2, EXT|np->rv_stest2);
1778
1779         OUTB(np, nc_stest3, TE);                        /* TolerANT enable */
1780         OUTB(np, nc_stime0, 0x0c);                      /* HTH disabled  STO 0.25 sec */
1781
1782         /*
1783          *  For now, disable AIP generation on C1010-66.
1784          */
1785         if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1786                 OUTB(np, nc_aipcntl1, DISAIP);
1787
1788         /*
1789          *  C10101 rev. 0 errata.
1790          *  Errant SGE's when in narrow. Write bits 4 & 5 of
1791          *  STEST1 register to disable SGE. We probably should do 
1792          *  that from SCRIPTS for each selection/reselection, but 
1793          *  I just don't want. :)
1794          */
1795         if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1796             pdev->revision < 1)
1797                 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1798
1799         /*
1800          *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1801          *  Disable overlapped arbitration for some dual function devices, 
1802          *  regardless revision id (kind of post-chip-design feature. ;-))
1803          */
1804         if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1805                 OUTB(np, nc_ctest0, (1<<5));
1806         else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1807                 np->rv_ccntl0 |= DPR;
1808
1809         /*
1810          *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 
1811          *  and/or hardware phase mismatch, since only such chips 
1812          *  seem to support those IO registers.
1813          */
1814         if (np->features & (FE_DAC|FE_NOPM)) {
1815                 OUTB(np, nc_ccntl0, np->rv_ccntl0);
1816                 OUTB(np, nc_ccntl1, np->rv_ccntl1);
1817         }
1818
1819 #if     SYM_CONF_DMA_ADDRESSING_MODE == 2
1820         /*
1821          *  Set up scratch C and DRS IO registers to map the 32 bit 
1822          *  DMA address range our data structures are located in.
1823          */
1824         if (use_dac(np)) {
1825                 np->dmap_bah[0] = 0;    /* ??? */
1826                 OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1827                 OUTL(np, nc_drs, np->dmap_bah[0]);
1828         }
1829 #endif
1830
1831         /*
1832          *  If phase mismatch handled by scripts (895A/896/1010),
1833          *  set PM jump addresses.
1834          */
1835         if (np->features & FE_NOPM) {
1836                 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1837                 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1838         }
1839
1840         /*
1841          *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1842          *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1843          */
1844         if (np->features & FE_LED0)
1845                 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1846         else if (np->features & FE_LEDC)
1847                 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1848
1849         /*
1850          *      enable ints
1851          */
1852         OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1853         OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1854
1855         /*
1856          *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1857          *  Try to eat the spurious SBMC interrupt that may occur when 
1858          *  we reset the chip but not the SCSI BUS (at initialization).
1859          */
1860         if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1861                 OUTONW(np, nc_sien, SBMC);
1862                 if (reason == 0) {
1863                         INB(np, nc_mbox1);
1864                         mdelay(100);
1865                         INW(np, nc_sist);
1866                 }
1867                 np->scsi_mode = INB(np, nc_stest4) & SMODE;
1868         }
1869
1870         /*
1871          *  Fill in target structure.
1872          *  Reinitialize usrsync.
1873          *  Reinitialize usrwide.
1874          *  Prepare sync negotiation according to actual SCSI bus mode.
1875          */
1876         for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1877                 struct sym_tcb *tp = &np->target[i];
1878
1879                 tp->to_reset  = 0;
1880                 tp->head.sval = 0;
1881                 tp->head.wval = np->rv_scntl3;
1882                 tp->head.uval = 0;
1883                 if (tp->lun0p)
1884                         tp->lun0p->to_clear = 0;
1885                 if (tp->lunmp) {
1886                         int ln;
1887
1888                         for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++)
1889                                 if (tp->lunmp[ln])
1890                                         tp->lunmp[ln]->to_clear = 0;
1891                 }
1892         }
1893
1894         /*
1895          *  Download SCSI SCRIPTS to on-chip RAM if present,
1896          *  and start script processor.
1897          *  We do the download preferently from the CPU.
1898          *  For platforms that may not support PCI memory mapping,
1899          *  we use simple SCRIPTS that performs MEMORY MOVEs.
1900          */
1901         phys = SCRIPTA_BA(np, init);
1902         if (np->ram_ba) {
1903                 if (sym_verbose >= 2)
1904                         printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1905                 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1906                 if (np->features & FE_RAM8K) {
1907                         memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1908                         phys = scr_to_cpu(np->scr_ram_seg);
1909                         OUTL(np, nc_mmws, phys);
1910                         OUTL(np, nc_mmrs, phys);
1911                         OUTL(np, nc_sfs,  phys);
1912                         phys = SCRIPTB_BA(np, start64);
1913                 }
1914         }
1915
1916         np->istat_sem = 0;
1917
1918         OUTL(np, nc_dsa, np->hcb_ba);
1919         OUTL_DSP(np, phys);
1920
1921         /*
1922          *  Notify the XPT about the RESET condition.
1923          */
1924         if (reason != 0)
1925                 sym_xpt_async_bus_reset(np);
1926 }
1927
1928 /*
1929  *  Switch trans mode for current job and its target.
1930  */
1931 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1932                          u_char per, u_char wide, u_char div, u_char fak)
1933 {
1934         SYM_QUEHEAD *qp;
1935         u_char sval, wval, uval;
1936         struct sym_tcb *tp = &np->target[target];
1937
1938         assert(target == (INB(np, nc_sdid) & 0x0f));
1939
1940         sval = tp->head.sval;
1941         wval = tp->head.wval;
1942         uval = tp->head.uval;
1943
1944 #if 0
1945         printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 
1946                 sval, wval, uval, np->rv_scntl3);
1947 #endif
1948         /*
1949          *  Set the offset.
1950          */
1951         if (!(np->features & FE_C10))
1952                 sval = (sval & ~0x1f) | ofs;
1953         else
1954                 sval = (sval & ~0x3f) | ofs;
1955
1956         /*
1957          *  Set the sync divisor and extra clock factor.
1958          */
1959         if (ofs != 0) {
1960                 wval = (wval & ~0x70) | ((div+1) << 4);
1961                 if (!(np->features & FE_C10))
1962                         sval = (sval & ~0xe0) | (fak << 5);
1963                 else {
1964                         uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1965                         if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1966                         if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1967                 }
1968         }
1969
1970         /*
1971          *  Set the bus width.
1972          */
1973         wval = wval & ~EWS;
1974         if (wide != 0)
1975                 wval |= EWS;
1976
1977         /*
1978          *  Set misc. ultra enable bits.
1979          */
1980         if (np->features & FE_C10) {
1981                 uval = uval & ~(U3EN|AIPCKEN);
1982                 if (opts)       {
1983                         assert(np->features & FE_U3EN);
1984                         uval |= U3EN;
1985                 }
1986         } else {
1987                 wval = wval & ~ULTRA;
1988                 if (per <= 12)  wval |= ULTRA;
1989         }
1990
1991         /*
1992          *   Stop there if sync parameters are unchanged.
1993          */
1994         if (tp->head.sval == sval && 
1995             tp->head.wval == wval &&
1996             tp->head.uval == uval)
1997                 return;
1998         tp->head.sval = sval;
1999         tp->head.wval = wval;
2000         tp->head.uval = uval;
2001
2002         /*
2003          *  Disable extended Sreq/Sack filtering if per < 50.
2004          *  Not supported on the C1010.
2005          */
2006         if (per < 50 && !(np->features & FE_C10))
2007                 OUTOFFB(np, nc_stest2, EXT);
2008
2009         /*
2010          *  set actual value and sync_status
2011          */
2012         OUTB(np, nc_sxfer,  tp->head.sval);
2013         OUTB(np, nc_scntl3, tp->head.wval);
2014
2015         if (np->features & FE_C10) {
2016                 OUTB(np, nc_scntl4, tp->head.uval);
2017         }
2018
2019         /*
2020          *  patch ALL busy ccbs of this target.
2021          */
2022         FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2023                 struct sym_ccb *cp;
2024                 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2025                 if (cp->target != target)
2026                         continue;
2027                 cp->phys.select.sel_scntl3 = tp->head.wval;
2028                 cp->phys.select.sel_sxfer  = tp->head.sval;
2029                 if (np->features & FE_C10) {
2030                         cp->phys.select.sel_scntl4 = tp->head.uval;
2031                 }
2032         }
2033 }
2034
2035 static void sym_announce_transfer_rate(struct sym_tcb *tp)
2036 {
2037         struct scsi_target *starget = tp->starget;
2038
2039         if (tp->tprint.period != spi_period(starget) ||
2040             tp->tprint.offset != spi_offset(starget) ||
2041             tp->tprint.width != spi_width(starget) ||
2042             tp->tprint.iu != spi_iu(starget) ||
2043             tp->tprint.dt != spi_dt(starget) ||
2044             tp->tprint.qas != spi_qas(starget) ||
2045             !tp->tprint.check_nego) {
2046                 tp->tprint.period = spi_period(starget);
2047                 tp->tprint.offset = spi_offset(starget);
2048                 tp->tprint.width = spi_width(starget);
2049                 tp->tprint.iu = spi_iu(starget);
2050                 tp->tprint.dt = spi_dt(starget);
2051                 tp->tprint.qas = spi_qas(starget);
2052                 tp->tprint.check_nego = 1;
2053
2054                 spi_display_xfer_agreement(starget);
2055         }
2056 }
2057
2058 /*
2059  *  We received a WDTR.
2060  *  Let everything be aware of the changes.
2061  */
2062 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2063 {
2064         struct sym_tcb *tp = &np->target[target];
2065         struct scsi_target *starget = tp->starget;
2066
2067         sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2068
2069         if (wide)
2070                 tp->tgoal.renego = NS_WIDE;
2071         else
2072                 tp->tgoal.renego = 0;
2073         tp->tgoal.check_nego = 0;
2074         tp->tgoal.width = wide;
2075         spi_offset(starget) = 0;
2076         spi_period(starget) = 0;
2077         spi_width(starget) = wide;
2078         spi_iu(starget) = 0;
2079         spi_dt(starget) = 0;
2080         spi_qas(starget) = 0;
2081
2082         if (sym_verbose >= 3)
2083                 sym_announce_transfer_rate(tp);
2084 }
2085
2086 /*
2087  *  We received a SDTR.
2088  *  Let everything be aware of the changes.
2089  */
2090 static void
2091 sym_setsync(struct sym_hcb *np, int target,
2092             u_char ofs, u_char per, u_char div, u_char fak)
2093 {
2094         struct sym_tcb *tp = &np->target[target];
2095         struct scsi_target *starget = tp->starget;
2096         u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2097
2098         sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2099
2100         if (wide)
2101                 tp->tgoal.renego = NS_WIDE;
2102         else if (ofs)
2103                 tp->tgoal.renego = NS_SYNC;
2104         else
2105                 tp->tgoal.renego = 0;
2106         spi_period(starget) = per;
2107         spi_offset(starget) = ofs;
2108         spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2109
2110         if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2111                 tp->tgoal.period = per;
2112                 tp->tgoal.offset = ofs;
2113                 tp->tgoal.check_nego = 0;
2114         }
2115
2116         sym_announce_transfer_rate(tp);
2117 }
2118
2119 /*
2120  *  We received a PPR.
2121  *  Let everything be aware of the changes.
2122  */
2123 static void 
2124 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2125              u_char per, u_char wide, u_char div, u_char fak)
2126 {
2127         struct sym_tcb *tp = &np->target[target];
2128         struct scsi_target *starget = tp->starget;
2129
2130         sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2131
2132         if (wide || ofs)
2133                 tp->tgoal.renego = NS_PPR;
2134         else
2135                 tp->tgoal.renego = 0;
2136         spi_width(starget) = tp->tgoal.width = wide;
2137         spi_period(starget) = tp->tgoal.period = per;
2138         spi_offset(starget) = tp->tgoal.offset = ofs;
2139         spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2140         spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2141         spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2142         tp->tgoal.check_nego = 0;
2143
2144         sym_announce_transfer_rate(tp);
2145 }
2146
2147 /*
2148  *  generic recovery from scsi interrupt
2149  *
2150  *  The doc says that when the chip gets an SCSI interrupt,
2151  *  it tries to stop in an orderly fashion, by completing 
2152  *  an instruction fetch that had started or by flushing 
2153  *  the DMA fifo for a write to memory that was executing.
2154  *  Such a fashion is not enough to know if the instruction 
2155  *  that was just before the current DSP value has been 
2156  *  executed or not.
2157  *
2158  *  There are some small SCRIPTS sections that deal with 
2159  *  the start queue and the done queue that may break any 
2160  *  assomption from the C code if we are interrupted 
2161  *  inside, so we reset if this happens. Btw, since these 
2162  *  SCRIPTS sections are executed while the SCRIPTS hasn't 
2163  *  started SCSI operations, it is very unlikely to happen.
2164  *
2165  *  All the driver data structures are supposed to be 
2166  *  allocated from the same 4 GB memory window, so there 
2167  *  is a 1 to 1 relationship between DSA and driver data 
2168  *  structures. Since we are careful :) to invalidate the 
2169  *  DSA when we complete a command or when the SCRIPTS 
2170  *  pushes a DSA into a queue, we can trust it when it 
2171  *  points to a CCB.
2172  */
2173 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2174 {
2175         u32     dsp     = INL(np, nc_dsp);
2176         u32     dsa     = INL(np, nc_dsa);
2177         struct sym_ccb *cp      = sym_ccb_from_dsa(np, dsa);
2178
2179         /*
2180          *  If we haven't been interrupted inside the SCRIPTS 
2181          *  critical pathes, we can safely restart the SCRIPTS 
2182          *  and trust the DSA value if it matches a CCB.
2183          */
2184         if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2185                dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2186             (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2187                dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2188             (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2189                dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2190             (!(dsp > SCRIPTA_BA(np, done) &&
2191                dsp < SCRIPTA_BA(np, done_end) + 1))) {
2192                 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2193                 OUTB(np, nc_stest3, TE|CSF);            /* clear scsi fifo */
2194                 /*
2195                  *  If we have a CCB, let the SCRIPTS call us back for 
2196                  *  the handling of the error with SCRATCHA filled with 
2197                  *  STARTPOS. This way, we will be able to freeze the 
2198                  *  device queue and requeue awaiting IOs.
2199                  */
2200                 if (cp) {
2201                         cp->host_status = hsts;
2202                         OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2203                 }
2204                 /*
2205                  *  Otherwise just restart the SCRIPTS.
2206                  */
2207                 else {
2208                         OUTL(np, nc_dsa, 0xffffff);
2209                         OUTL_DSP(np, SCRIPTA_BA(np, start));
2210                 }
2211         }
2212         else
2213                 goto reset_all;
2214
2215         return;
2216
2217 reset_all:
2218         sym_start_reset(np);
2219 }
2220
2221 /*
2222  *  chip exception handler for selection timeout
2223  */
2224 static void sym_int_sto (struct sym_hcb *np)
2225 {
2226         u32 dsp = INL(np, nc_dsp);
2227
2228         if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2229
2230         if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2231                 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2232         else
2233                 sym_start_reset(np);
2234 }
2235
2236 /*
2237  *  chip exception handler for unexpected disconnect
2238  */
2239 static void sym_int_udc (struct sym_hcb *np)
2240 {
2241         printf ("%s: unexpected disconnect\n", sym_name(np));
2242         sym_recover_scsi_int(np, HS_UNEXPECTED);
2243 }
2244
2245 /*
2246  *  chip exception handler for SCSI bus mode change
2247  *
2248  *  spi2-r12 11.2.3 says a transceiver mode change must 
2249  *  generate a reset event and a device that detects a reset 
2250  *  event shall initiate a hard reset. It says also that a
2251  *  device that detects a mode change shall set data transfer 
2252  *  mode to eight bit asynchronous, etc...
2253  *  So, just reinitializing all except chip should be enough.
2254  */
2255 static void sym_int_sbmc(struct Scsi_Host *shost)
2256 {
2257         struct sym_hcb *np = sym_get_hcb(shost);
2258         u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2259
2260         /*
2261          *  Notify user.
2262          */
2263         printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2264                 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2265
2266         /*
2267          *  Should suspend command processing for a few seconds and 
2268          *  reinitialize all except the chip.
2269          */
2270         sym_start_up(shost, 2);
2271 }
2272
2273 /*
2274  *  chip exception handler for SCSI parity error.
2275  *
2276  *  When the chip detects a SCSI parity error and is 
2277  *  currently executing a (CH)MOV instruction, it does 
2278  *  not interrupt immediately, but tries to finish the 
2279  *  transfer of the current scatter entry before 
2280  *  interrupting. The following situations may occur:
2281  *
2282  *  - The complete scatter entry has been transferred 
2283  *    without the device having changed phase.
2284  *    The chip will then interrupt with the DSP pointing 
2285  *    to the instruction that follows the MOV.
2286  *
2287  *  - A phase mismatch occurs before the MOV finished 
2288  *    and phase errors are to be handled by the C code.
2289  *    The chip will then interrupt with both PAR and MA 
2290  *    conditions set.
2291  *
2292  *  - A phase mismatch occurs before the MOV finished and 
2293  *    phase errors are to be handled by SCRIPTS.
2294  *    The chip will load the DSP with the phase mismatch 
2295  *    JUMP address and interrupt the host processor.
2296  */
2297 static void sym_int_par (struct sym_hcb *np, u_short sist)
2298 {
2299         u_char  hsts    = INB(np, HS_PRT);
2300         u32     dsp     = INL(np, nc_dsp);
2301         u32     dbc     = INL(np, nc_dbc);
2302         u32     dsa     = INL(np, nc_dsa);
2303         u_char  sbcl    = INB(np, nc_sbcl);
2304         u_char  cmd     = dbc >> 24;
2305         int phase       = cmd & 7;
2306         struct sym_ccb *cp      = sym_ccb_from_dsa(np, dsa);
2307
2308         if (printk_ratelimit())
2309                 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2310                         sym_name(np), hsts, dbc, sbcl);
2311
2312         /*
2313          *  Check that the chip is connected to the SCSI BUS.
2314          */
2315         if (!(INB(np, nc_scntl1) & ISCON)) {
2316                 sym_recover_scsi_int(np, HS_UNEXPECTED);
2317                 return;
2318         }
2319
2320         /*
2321          *  If the nexus is not clearly identified, reset the bus.
2322          *  We will try to do better later.
2323          */
2324         if (!cp)
2325                 goto reset_all;
2326
2327         /*
2328          *  Check instruction was a MOV, direction was INPUT and 
2329          *  ATN is asserted.
2330          */
2331         if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2332                 goto reset_all;
2333
2334         /*
2335          *  Keep track of the parity error.
2336          */
2337         OUTONB(np, HF_PRT, HF_EXT_ERR);
2338         cp->xerr_status |= XE_PARITY_ERR;
2339
2340         /*
2341          *  Prepare the message to send to the device.
2342          */
2343         np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2344
2345         /*
2346          *  If the old phase was DATA IN phase, we have to deal with
2347          *  the 3 situations described above.
2348          *  For other input phases (MSG IN and STATUS), the device 
2349          *  must resend the whole thing that failed parity checking 
2350          *  or signal error. So, jumping to dispatcher should be OK.
2351          */
2352         if (phase == 1 || phase == 5) {
2353                 /* Phase mismatch handled by SCRIPTS */
2354                 if (dsp == SCRIPTB_BA(np, pm_handle))
2355                         OUTL_DSP(np, dsp);
2356                 /* Phase mismatch handled by the C code */
2357                 else if (sist & MA)
2358                         sym_int_ma (np);
2359                 /* No phase mismatch occurred */
2360                 else {
2361                         sym_set_script_dp (np, cp, dsp);
2362                         OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2363                 }
2364         }
2365         else if (phase == 7)    /* We definitely cannot handle parity errors */
2366 #if 1                           /* in message-in phase due to the relection  */
2367                 goto reset_all; /* path and various message anticipations.   */
2368 #else
2369                 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2370 #endif
2371         else
2372                 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2373         return;
2374
2375 reset_all:
2376         sym_start_reset(np);
2377         return;
2378 }
2379
2380 /*
2381  *  chip exception handler for phase errors.
2382  *
2383  *  We have to construct a new transfer descriptor,
2384  *  to transfer the rest of the current block.
2385  */
2386 static void sym_int_ma (struct sym_hcb *np)
2387 {
2388         u32     dbc;
2389         u32     rest;
2390         u32     dsp;
2391         u32     dsa;
2392         u32     nxtdsp;
2393         u32     *vdsp;
2394         u32     oadr, olen;
2395         u32     *tblp;
2396         u32     newcmd;
2397         u_int   delta;
2398         u_char  cmd;
2399         u_char  hflags, hflags0;
2400         struct  sym_pmc *pm;
2401         struct sym_ccb *cp;
2402
2403         dsp     = INL(np, nc_dsp);
2404         dbc     = INL(np, nc_dbc);
2405         dsa     = INL(np, nc_dsa);
2406
2407         cmd     = dbc >> 24;
2408         rest    = dbc & 0xffffff;
2409         delta   = 0;
2410
2411         /*
2412          *  locate matching cp if any.
2413          */
2414         cp = sym_ccb_from_dsa(np, dsa);
2415
2416         /*
2417          *  Donnot take into account dma fifo and various buffers in 
2418          *  INPUT phase since the chip flushes everything before 
2419          *  raising the MA interrupt for interrupted INPUT phases.
2420          *  For DATA IN phase, we will check for the SWIDE later.
2421          */
2422         if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2423                 u_char ss0, ss2;
2424
2425                 if (np->features & FE_DFBC)
2426                         delta = INW(np, nc_dfbc);
2427                 else {
2428                         u32 dfifo;
2429
2430                         /*
2431                          * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2432                          */
2433                         dfifo = INL(np, nc_dfifo);
2434
2435                         /*
2436                          *  Calculate remaining bytes in DMA fifo.
2437                          *  (CTEST5 = dfifo >> 16)
2438                          */
2439                         if (dfifo & (DFS << 16))
2440                                 delta = ((((dfifo >> 8) & 0x300) |
2441                                           (dfifo & 0xff)) - rest) & 0x3ff;
2442                         else
2443                                 delta = ((dfifo & 0xff) - rest) & 0x7f;
2444                 }
2445
2446                 /*
2447                  *  The data in the dma fifo has not been transferred to
2448                  *  the target -> add the amount to the rest
2449                  *  and clear the data.
2450                  *  Check the sstat2 register in case of wide transfer.
2451                  */
2452                 rest += delta;
2453                 ss0  = INB(np, nc_sstat0);
2454                 if (ss0 & OLF) rest++;
2455                 if (!(np->features & FE_C10))
2456                         if (ss0 & ORF) rest++;
2457                 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2458                         ss2 = INB(np, nc_sstat2);
2459                         if (ss2 & OLF1) rest++;
2460                         if (!(np->features & FE_C10))
2461                                 if (ss2 & ORF1) rest++;
2462                 }
2463
2464                 /*
2465                  *  Clear fifos.
2466                  */
2467                 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);       /* dma fifo  */
2468                 OUTB(np, nc_stest3, TE|CSF);            /* scsi fifo */
2469         }
2470
2471         /*
2472          *  log the information
2473          */
2474         if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2475                 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2476                         (unsigned) rest, (unsigned) delta);
2477
2478         /*
2479          *  try to find the interrupted script command,
2480          *  and the address at which to continue.
2481          */
2482         vdsp    = NULL;
2483         nxtdsp  = 0;
2484         if      (dsp >  np->scripta_ba &&
2485                  dsp <= np->scripta_ba + np->scripta_sz) {
2486                 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2487                 nxtdsp = dsp;
2488         }
2489         else if (dsp >  np->scriptb_ba &&
2490                  dsp <= np->scriptb_ba + np->scriptb_sz) {
2491                 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2492                 nxtdsp = dsp;
2493         }
2494
2495         /*
2496          *  log the information
2497          */
2498         if (DEBUG_FLAGS & DEBUG_PHASE) {
2499                 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2500                         cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2501         }
2502
2503         if (!vdsp) {
2504                 printf ("%s: interrupted SCRIPT address not found.\n", 
2505                         sym_name (np));
2506                 goto reset_all;
2507         }
2508
2509         if (!cp) {
2510                 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 
2511                         sym_name (np));
2512                 goto reset_all;
2513         }
2514
2515         /*
2516          *  get old startaddress and old length.
2517          */
2518         oadr = scr_to_cpu(vdsp[1]);
2519
2520         if (cmd & 0x10) {       /* Table indirect */
2521                 tblp = (u32 *) ((char*) &cp->phys + oadr);
2522                 olen = scr_to_cpu(tblp[0]);
2523                 oadr = scr_to_cpu(tblp[1]);
2524         } else {
2525                 tblp = (u32 *) 0;
2526                 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2527         }
2528
2529         if (DEBUG_FLAGS & DEBUG_PHASE) {
2530                 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2531                         (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2532                         tblp,
2533                         (unsigned) olen,
2534                         (unsigned) oadr);
2535         }
2536
2537         /*
2538          *  check cmd against assumed interrupted script command.
2539          *  If dt data phase, the MOVE instruction hasn't bit 4 of 
2540          *  the phase.
2541          */
2542         if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2543                 sym_print_addr(cp->cmd,
2544                         "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2545                         cmd, scr_to_cpu(vdsp[0]) >> 24);
2546
2547                 goto reset_all;
2548         }
2549
2550         /*
2551          *  if old phase not dataphase, leave here.
2552          */
2553         if (cmd & 2) {
2554                 sym_print_addr(cp->cmd,
2555                         "phase change %x-%x %d@%08x resid=%d.\n",
2556                         cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2557                         (unsigned)oadr, (unsigned)rest);
2558                 goto unexpected_phase;
2559         }
2560
2561         /*
2562          *  Choose the correct PM save area.
2563          *
2564          *  Look at the PM_SAVE SCRIPT if you want to understand 
2565          *  this stuff. The equivalent code is implemented in 
2566          *  SCRIPTS for the 895A, 896 and 1010 that are able to 
2567          *  handle PM from the SCRIPTS processor.
2568          */
2569         hflags0 = INB(np, HF_PRT);
2570         hflags = hflags0;
2571
2572         if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2573                 if (hflags & HF_IN_PM0)
2574                         nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2575                 else if (hflags & HF_IN_PM1)
2576                         nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2577
2578                 if (hflags & HF_DP_SAVED)
2579                         hflags ^= HF_ACT_PM;
2580         }
2581
2582         if (!(hflags & HF_ACT_PM)) {
2583                 pm = &cp->phys.pm0;
2584                 newcmd = SCRIPTA_BA(np, pm0_data);
2585         }
2586         else {
2587                 pm = &cp->phys.pm1;
2588                 newcmd = SCRIPTA_BA(np, pm1_data);
2589         }
2590
2591         hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2592         if (hflags != hflags0)
2593                 OUTB(np, HF_PRT, hflags);
2594
2595         /*
2596          *  fillin the phase mismatch context
2597          */
2598         pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2599         pm->sg.size = cpu_to_scr(rest);
2600         pm->ret     = cpu_to_scr(nxtdsp);
2601
2602         /*
2603          *  If we have a SWIDE,
2604          *  - prepare the address to write the SWIDE from SCRIPTS,
2605          *  - compute the SCRIPTS address to restart from,
2606          *  - move current data pointer context by one byte.
2607          */
2608         nxtdsp = SCRIPTA_BA(np, dispatch);
2609         if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2610             (INB(np, nc_scntl2) & WSR)) {
2611                 u32 tmp;
2612
2613                 /*
2614                  *  Set up the table indirect for the MOVE
2615                  *  of the residual byte and adjust the data 
2616                  *  pointer context.
2617                  */
2618                 tmp = scr_to_cpu(pm->sg.addr);
2619                 cp->phys.wresid.addr = cpu_to_scr(tmp);
2620                 pm->sg.addr = cpu_to_scr(tmp + 1);
2621                 tmp = scr_to_cpu(pm->sg.size);
2622                 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2623                 pm->sg.size = cpu_to_scr(tmp - 1);
2624
2625                 /*
2626                  *  If only the residual byte is to be moved, 
2627                  *  no PM context is needed.
2628                  */
2629                 if ((tmp&0xffffff) == 1)
2630                         newcmd = pm->ret;
2631
2632                 /*
2633                  *  Prepare the address of SCRIPTS that will 
2634                  *  move the residual byte to memory.
2635                  */
2636                 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2637         }
2638
2639         if (DEBUG_FLAGS & DEBUG_PHASE) {
2640                 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2641                         hflags0, hflags, newcmd,
2642                         (unsigned)scr_to_cpu(pm->sg.addr),
2643                         (unsigned)scr_to_cpu(pm->sg.size),
2644                         (unsigned)scr_to_cpu(pm->ret));
2645         }
2646
2647         /*
2648          *  Restart the SCRIPTS processor.
2649          */
2650         sym_set_script_dp (np, cp, newcmd);
2651         OUTL_DSP(np, nxtdsp);
2652         return;
2653
2654         /*
2655          *  Unexpected phase changes that occurs when the current phase 
2656          *  is not a DATA IN or DATA OUT phase are due to error conditions.
2657          *  Such event may only happen when the SCRIPTS is using a 
2658          *  multibyte SCSI MOVE.
2659          *
2660          *  Phase change                Some possible cause
2661          *
2662          *  COMMAND  --> MSG IN SCSI parity error detected by target.
2663          *  COMMAND  --> STATUS Bad command or refused by target.
2664          *  MSG OUT  --> MSG IN     Message rejected by target.
2665          *  MSG OUT  --> COMMAND    Bogus target that discards extended
2666          *                      negotiation messages.
2667          *
2668          *  The code below does not care of the new phase and so 
2669          *  trusts the target. Why to annoy it ?
2670          *  If the interrupted phase is COMMAND phase, we restart at
2671          *  dispatcher.
2672          *  If a target does not get all the messages after selection, 
2673          *  the code assumes blindly that the target discards extended 
2674          *  messages and clears the negotiation status.
2675          *  If the target does not want all our response to negotiation,
2676          *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 
2677          *  bloat for such a should_not_happen situation).
2678          *  In all other situation, we reset the BUS.
2679          *  Are these assumptions reasonable ? (Wait and see ...)
2680          */
2681 unexpected_phase:
2682         dsp -= 8;
2683         nxtdsp = 0;
2684
2685         switch (cmd & 7) {
2686         case 2: /* COMMAND phase */
2687                 nxtdsp = SCRIPTA_BA(np, dispatch);
2688                 break;
2689 #if 0
2690         case 3: /* STATUS  phase */
2691                 nxtdsp = SCRIPTA_BA(np, dispatch);
2692                 break;
2693 #endif
2694         case 6: /* MSG OUT phase */
2695                 /*
2696                  *  If the device may want to use untagged when we want 
2697                  *  tagged, we prepare an IDENTIFY without disc. granted, 
2698                  *  since we will not be able to handle reselect.
2699                  *  Otherwise, we just don't care.
2700                  */
2701                 if      (dsp == SCRIPTA_BA(np, send_ident)) {
2702                         if (cp->tag != NO_TAG && olen - rest <= 3) {
2703                                 cp->host_status = HS_BUSY;
2704                                 np->msgout[0] = IDENTIFY(0, cp->lun);
2705                                 nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2706                         }
2707                         else
2708                                 nxtdsp = SCRIPTB_BA(np, ident_break);
2709                 }
2710                 else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2711                          dsp == SCRIPTB_BA(np, send_sdtr) ||
2712                          dsp == SCRIPTB_BA(np, send_ppr)) {
2713                         nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2714                         if (dsp == SCRIPTB_BA(np, send_ppr)) {
2715                                 struct scsi_device *dev = cp->cmd->device;
2716                                 dev->ppr = 0;
2717                         }
2718                 }
2719                 break;
2720 #if 0
2721         case 7: /* MSG IN  phase */
2722                 nxtdsp = SCRIPTA_BA(np, clrack);
2723                 break;
2724 #endif
2725         }
2726
2727         if (nxtdsp) {
2728                 OUTL_DSP(np, nxtdsp);
2729                 return;
2730         }
2731
2732 reset_all:
2733         sym_start_reset(np);
2734 }
2735
2736 /*
2737  *  chip interrupt handler
2738  *
2739  *  In normal situations, interrupt conditions occur one at 
2740  *  a time. But when something bad happens on the SCSI BUS, 
2741  *  the chip may raise several interrupt flags before 
2742  *  stopping and interrupting the CPU. The additionnal 
2743  *  interrupt flags are stacked in some extra registers 
2744  *  after the SIP and/or DIP flag has been raised in the 
2745  *  ISTAT. After the CPU has read the interrupt condition 
2746  *  flag from SIST or DSTAT, the chip unstacks the other 
2747  *  interrupt flags and sets the corresponding bits in 
2748  *  SIST or DSTAT. Since the chip starts stacking once the 
2749  *  SIP or DIP flag is set, there is a small window of time 
2750  *  where the stacking does not occur.
2751  *
2752  *  Typically, multiple interrupt conditions may happen in 
2753  *  the following situations:
2754  *
2755  *  - SCSI parity error + Phase mismatch  (PAR|MA)
2756  *    When an parity error is detected in input phase 
2757  *    and the device switches to msg-in phase inside a 
2758  *    block MOV.
2759  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2760  *    When a stupid device does not want to handle the 
2761  *    recovery of an SCSI parity error.
2762  *  - Some combinations of STO, PAR, UDC, ...
2763  *    When using non compliant SCSI stuff, when user is 
2764  *    doing non compliant hot tampering on the BUS, when 
2765  *    something really bad happens to a device, etc ...
2766  *
2767  *  The heuristic suggested by SYMBIOS to handle 
2768  *  multiple interrupts is to try unstacking all 
2769  *  interrupts conditions and to handle them on some 
2770  *  priority based on error severity.
2771  *  This will work when the unstacking has been 
2772  *  successful, but we cannot be 100 % sure of that, 
2773  *  since the CPU may have been faster to unstack than 
2774  *  the chip is able to stack. Hmmm ... But it seems that 
2775  *  such a situation is very unlikely to happen.
2776  *
2777  *  If this happen, for example STO caught by the CPU 
2778  *  then UDC happenning before the CPU have restarted 
2779  *  the SCRIPTS, the driver may wrongly complete the 
2780  *  same command on UDC, since the SCRIPTS didn't restart 
2781  *  and the DSA still points to the same command.
2782  *  We avoid this situation by setting the DSA to an 
2783  *  invalid value when the CCB is completed and before 
2784  *  restarting the SCRIPTS.
2785  *
2786  *  Another issue is that we need some section of our 
2787  *  recovery procedures to be somehow uninterruptible but 
2788  *  the SCRIPTS processor does not provides such a 
2789  *  feature. For this reason, we handle recovery preferently 
2790  *  from the C code and check against some SCRIPTS critical 
2791  *  sections from the C code.
2792  *
2793  *  Hopefully, the interrupt handling of the driver is now 
2794  *  able to resist to weird BUS error conditions, but donnot 
2795  *  ask me for any guarantee that it will never fail. :-)
2796  *  Use at your own decision and risk.
2797  */
2798
2799 irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2800 {
2801         struct sym_data *sym_data = shost_priv(shost);
2802         struct sym_hcb *np = sym_data->ncb;
2803         struct pci_dev *pdev = sym_data->pdev;
2804         u_char  istat, istatc;
2805         u_char  dstat;
2806         u_short sist;
2807
2808         /*
2809          *  interrupt on the fly ?
2810          *  (SCRIPTS may still be running)
2811          *
2812          *  A `dummy read' is needed to ensure that the 
2813          *  clear of the INTF flag reaches the device 
2814          *  and that posted writes are flushed to memory
2815          *  before the scanning of the DONE queue.
2816          *  Note that SCRIPTS also (dummy) read to memory 
2817          *  prior to deliver the INTF interrupt condition.
2818          */
2819         istat = INB(np, nc_istat);
2820         if (istat & INTF) {
2821                 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2822                 istat |= INB(np, nc_istat);             /* DUMMY READ */
2823                 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2824                 sym_wakeup_done(np);
2825         }
2826
2827         if (!(istat & (SIP|DIP)))
2828                 return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2829
2830 #if 0   /* We should never get this one */
2831         if (istat & CABRT)
2832                 OUTB(np, nc_istat, CABRT);
2833 #endif
2834
2835         /*
2836          *  PAR and MA interrupts may occur at the same time,
2837          *  and we need to know of both in order to handle 
2838          *  this situation properly. We try to unstack SCSI 
2839          *  interrupts for that reason. BTW, I dislike a LOT 
2840          *  such a loop inside the interrupt routine.
2841          *  Even if DMA interrupt stacking is very unlikely to 
2842          *  happen, we also try unstacking these ones, since 
2843          *  this has no performance impact.
2844          */
2845         sist    = 0;
2846         dstat   = 0;
2847         istatc  = istat;
2848         do {
2849                 if (istatc & SIP)
2850                         sist  |= INW(np, nc_sist);
2851                 if (istatc & DIP)
2852                         dstat |= INB(np, nc_dstat);
2853                 istatc = INB(np, nc_istat);
2854                 istat |= istatc;
2855
2856                 /* Prevent deadlock waiting on a condition that may
2857                  * never clear. */
2858                 if (unlikely(sist == 0xffff && dstat == 0xff)) {
2859                         if (pci_channel_offline(pdev))
2860                                 return IRQ_NONE;
2861                 }
2862         } while (istatc & (SIP|DIP));
2863
2864         if (DEBUG_FLAGS & DEBUG_TINY)
2865                 printf ("<%d|%x:%x|%x:%x>",
2866                         (int)INB(np, nc_scr0),
2867                         dstat,sist,
2868                         (unsigned)INL(np, nc_dsp),
2869                         (unsigned)INL(np, nc_dbc));
2870         /*
2871          *  On paper, a memory read barrier may be needed here to 
2872          *  prevent out of order LOADs by the CPU from having 
2873          *  prefetched stale data prior to DMA having occurred.
2874          *  And since we are paranoid ... :)
2875          */
2876         MEMORY_READ_BARRIER();
2877
2878         /*
2879          *  First, interrupts we want to service cleanly.
2880          *
2881          *  Phase mismatch (MA) is the most frequent interrupt 
2882          *  for chip earlier than the 896 and so we have to service 
2883          *  it as quickly as possible.
2884          *  A SCSI parity error (PAR) may be combined with a phase 
2885          *  mismatch condition (MA).
2886          *  Programmed interrupts (SIR) are used to call the C code 
2887          *  from SCRIPTS.
2888          *  The single step interrupt (SSI) is not used in this 
2889          *  driver.
2890          */
2891         if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2892             !(dstat & (MDPE|BF|ABRT|IID))) {
2893                 if      (sist & PAR)    sym_int_par (np, sist);
2894                 else if (sist & MA)     sym_int_ma (np);
2895                 else if (dstat & SIR)   sym_int_sir(np);
2896                 else if (dstat & SSI)   OUTONB_STD();
2897                 else                    goto unknown_int;
2898                 return IRQ_HANDLED;
2899         }
2900
2901         /*
2902          *  Now, interrupts that donnot happen in normal 
2903          *  situations and that we may need to recover from.
2904          *
2905          *  On SCSI RESET (RST), we reset everything.
2906          *  On SCSI BUS MODE CHANGE (SBMC), we complete all 
2907          *  active CCBs with RESET status, prepare all devices 
2908          *  for negotiating again and restart the SCRIPTS.
2909          *  On STO and UDC, we complete the CCB with the corres- 
2910          *  ponding status and restart the SCRIPTS.
2911          */
2912         if (sist & RST) {
2913                 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2914                 sym_start_up(shost, 1);
2915                 return IRQ_HANDLED;
2916         }
2917
2918         OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);       /* clear dma fifo  */
2919         OUTB(np, nc_stest3, TE|CSF);            /* clear scsi fifo */
2920
2921         if (!(sist  & (GEN|HTH|SGE)) &&
2922             !(dstat & (MDPE|BF|ABRT|IID))) {
2923                 if      (sist & SBMC)   sym_int_sbmc(shost);
2924                 else if (sist & STO)    sym_int_sto (np);
2925                 else if (sist & UDC)    sym_int_udc (np);
2926                 else                    goto unknown_int;
2927                 return IRQ_HANDLED;
2928         }
2929
2930         /*
2931          *  Now, interrupts we are not able to recover cleanly.
2932          *
2933          *  Log message for hard errors.
2934          *  Reset everything.
2935          */
2936
2937         sym_log_hard_error(shost, sist, dstat);
2938
2939         if ((sist & (GEN|HTH|SGE)) ||
2940                 (dstat & (MDPE|BF|ABRT|IID))) {
2941                 sym_start_reset(np);
2942                 return IRQ_HANDLED;
2943         }
2944
2945 unknown_int:
2946         /*
2947          *  We just miss the cause of the interrupt. :(
2948          *  Print a message. The timeout will do the real work.
2949          */
2950         printf( "%s: unknown interrupt(s) ignored, "
2951                 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2952                 sym_name(np), istat, dstat, sist);
2953         return IRQ_NONE;
2954 }
2955
2956 /*
2957  *  Dequeue from the START queue all CCBs that match 
2958  *  a given target/lun/task condition (-1 means all),
2959  *  and move them from the BUSY queue to the COMP queue 
2960  *  with DID_SOFT_ERROR status condition.
2961  *  This function is used during error handling/recovery.
2962  *  It is called with SCRIPTS not running.
2963  */
2964 static int 
2965 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2966 {
2967         int j;
2968         struct sym_ccb *cp;
2969
2970         /*
2971          *  Make sure the starting index is within range.
2972          */
2973         assert((i >= 0) && (i < 2*MAX_QUEUE));
2974
2975         /*
2976          *  Walk until end of START queue and dequeue every job 
2977          *  that matches the target/lun/task condition.
2978          */
2979         j = i;
2980         while (i != np->squeueput) {
2981                 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2982                 assert(cp);
2983 #ifdef SYM_CONF_IARB_SUPPORT
2984                 /* Forget hints for IARB, they may be no longer relevant */
2985                 cp->host_flags &= ~HF_HINT_IARB;
2986 #endif
2987                 if ((target == -1 || cp->target == target) &&
2988                     (lun    == -1 || cp->lun    == lun)    &&
2989                     (task   == -1 || cp->tag    == task)) {
2990 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
2991                         sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2992 #else
2993                         sym_set_cam_status(cp->cmd, DID_REQUEUE);
2994 #endif
2995                         sym_remque(&cp->link_ccbq);
2996                         sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2997                 }
2998                 else {
2999                         if (i != j)
3000                                 np->squeue[j] = np->squeue[i];
3001                         if ((j += 2) >= MAX_QUEUE*2) j = 0;
3002                 }
3003                 if ((i += 2) >= MAX_QUEUE*2) i = 0;
3004         }
3005         if (i != j)             /* Copy back the idle task if needed */
3006                 np->squeue[j] = np->squeue[i];
3007         np->squeueput = j;      /* Update our current start queue pointer */
3008
3009         return (i - j) / 2;
3010 }
3011
3012 /*
3013  *  chip handler for bad SCSI status condition
3014  *
3015  *  In case of bad SCSI status, we unqueue all the tasks 
3016  *  currently queued to the controller but not yet started 
3017  *  and then restart the SCRIPTS processor immediately.
3018  *
3019  *  QUEUE FULL and BUSY conditions are handled the same way.
3020  *  Basically all the not yet started tasks are requeued in 
3021  *  device queue and the queue is frozen until a completion.
3022  *
3023  *  For CHECK CONDITION and COMMAND TERMINATED status, we use 
3024  *  the CCB of the failed command to prepare a REQUEST SENSE 
3025  *  SCSI command and queue it to the controller queue.
3026  *
3027  *  SCRATCHA is assumed to have been loaded with STARTPOS 
3028  *  before the SCRIPTS called the C code.
3029  */
3030 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3031 {
3032         u32             startp;
3033         u_char          s_status = cp->ssss_status;
3034         u_char          h_flags  = cp->host_flags;
3035         int             msglen;
3036         int             i;
3037
3038         /*
3039          *  Compute the index of the next job to start from SCRIPTS.
3040          */
3041         i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3042
3043         /*
3044          *  The last CCB queued used for IARB hint may be 
3045          *  no longer relevant. Forget it.
3046          */
3047 #ifdef SYM_CONF_IARB_SUPPORT
3048         if (np->last_cp)
3049                 np->last_cp = 0;
3050 #endif
3051
3052         /*
3053          *  Now deal with the SCSI status.
3054          */
3055         switch(s_status) {
3056         case S_BUSY:
3057         case S_QUEUE_FULL:
3058                 if (sym_verbose >= 2) {
3059                         sym_print_addr(cp->cmd, "%s\n",
3060                                 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3061                 }
3062                 /* fall through */
3063         default:        /* S_INT, S_INT_COND_MET, S_CONFLICT */
3064                 sym_complete_error (np, cp);
3065                 break;
3066         case S_TERMINATED:
3067         case S_CHECK_COND:
3068                 /*
3069                  *  If we get an SCSI error when requesting sense, give up.
3070                  */
3071                 if (h_flags & HF_SENSE) {
3072                         sym_complete_error (np, cp);
3073                         break;
3074                 }
3075
3076                 /*
3077                  *  Dequeue all queued CCBs for that device not yet started,
3078                  *  and restart the SCRIPTS processor immediately.
3079                  */
3080                 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3081                 OUTL_DSP(np, SCRIPTA_BA(np, start));
3082
3083                 /*
3084                  *  Save some info of the actual IO.
3085                  *  Compute the data residual.
3086                  */
3087                 cp->sv_scsi_status = cp->ssss_status;
3088                 cp->sv_xerr_status = cp->xerr_status;
3089                 cp->sv_resid = sym_compute_residual(np, cp);
3090
3091                 /*
3092                  *  Prepare all needed data structures for 
3093                  *  requesting sense data.
3094                  */
3095
3096                 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3097                 msglen = 1;
3098
3099                 /*
3100                  *  If we are currently using anything different from 
3101                  *  async. 8 bit data transfers with that target,
3102                  *  start a negotiation, since the device may want 
3103                  *  to report us a UNIT ATTENTION condition due to 
3104                  *  a cause we currently ignore, and we donnot want 
3105                  *  to be stuck with WIDE and/or SYNC data transfer.
3106                  *
3107                  *  cp->nego_status is filled by sym_prepare_nego().
3108                  */
3109                 cp->nego_status = 0;
3110                 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3111                 /*
3112                  *  Message table indirect structure.
3113                  */
3114                 cp->phys.smsg.addr      = CCB_BA(cp, scsi_smsg2);
3115                 cp->phys.smsg.size      = cpu_to_scr(msglen);
3116
3117                 /*
3118                  *  sense command
3119                  */
3120                 cp->phys.cmd.addr       = CCB_BA(cp, sensecmd);
3121                 cp->phys.cmd.size       = cpu_to_scr(6);
3122
3123                 /*
3124                  *  patch requested size into sense command
3125                  */
3126                 cp->sensecmd[0]         = REQUEST_SENSE;
3127                 cp->sensecmd[1]         = 0;
3128                 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3129                         cp->sensecmd[1] = cp->lun << 5;
3130                 cp->sensecmd[4]         = SYM_SNS_BBUF_LEN;
3131                 cp->data_len            = SYM_SNS_BBUF_LEN;
3132
3133                 /*
3134                  *  sense data
3135                  */
3136                 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3137                 cp->phys.sense.addr     = CCB_BA(cp, sns_bbuf);
3138                 cp->phys.sense.size     = cpu_to_scr(SYM_SNS_BBUF_LEN);
3139
3140                 /*
3141                  *  requeue the command.
3142                  */
3143                 startp = SCRIPTB_BA(np, sdata_in);
3144
3145                 cp->phys.head.savep     = cpu_to_scr(startp);
3146                 cp->phys.head.lastp     = cpu_to_scr(startp);
3147                 cp->startp              = cpu_to_scr(startp);
3148                 cp->goalp               = cpu_to_scr(startp + 16);
3149
3150                 cp->host_xflags = 0;
3151                 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3152                 cp->ssss_status = S_ILLEGAL;
3153                 cp->host_flags  = (HF_SENSE|HF_DATA_IN);
3154                 cp->xerr_status = 0;
3155                 cp->extra_bytes = 0;
3156
3157                 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3158
3159                 /*
3160                  *  Requeue the command.
3161                  */
3162                 sym_put_start_queue(np, cp);
3163
3164                 /*
3165                  *  Give back to upper layer everything we have dequeued.
3166                  */
3167                 sym_flush_comp_queue(np, 0);
3168                 break;
3169         }
3170 }
3171
3172 /*
3173  *  After a device has accepted some management message 
3174  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when 
3175  *  a device signals a UNIT ATTENTION condition, some 
3176  *  tasks are thrown away by the device. We are required 
3177  *  to reflect that on our tasks list since the device 
3178  *  will never complete these tasks.
3179  *
3180  *  This function move from the BUSY queue to the COMP 
3181  *  queue all disconnected CCBs for a given target that 
3182  *  match the following criteria:
3183  *  - lun=-1  means any logical UNIT otherwise a given one.
3184  *  - task=-1 means any task, otherwise a given one.
3185  */
3186 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3187 {
3188         SYM_QUEHEAD qtmp, *qp;
3189         int i = 0;
3190         struct sym_ccb *cp;
3191
3192         /*
3193          *  Move the entire BUSY queue to our temporary queue.
3194          */
3195         sym_que_init(&qtmp);
3196         sym_que_splice(&np->busy_ccbq, &qtmp);
3197         sym_que_init(&np->busy_ccbq);
3198
3199         /*
3200          *  Put all CCBs that matches our criteria into 
3201          *  the COMP queue and put back other ones into 
3202          *  the BUSY queue.
3203          */
3204         while ((qp = sym_remque_head(&qtmp)) != NULL) {
3205                 struct scsi_cmnd *cmd;
3206                 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3207                 cmd = cp->cmd;
3208                 if (cp->host_status != HS_DISCONNECT ||
3209                     cp->target != target             ||
3210                     (lun  != -1 && cp->lun != lun)   ||
3211                     (task != -1 && 
3212                         (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3213                         sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3214                         continue;
3215                 }
3216                 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3217
3218                 /* Preserve the software timeout condition */
3219                 if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3220                         sym_set_cam_status(cmd, cam_status);
3221                 ++i;
3222 #if 0
3223 printf("XXXX TASK @%p CLEARED\n", cp);
3224 #endif
3225         }
3226         return i;
3227 }
3228
3229 /*
3230  *  chip handler for TASKS recovery
3231  *
3232  *  We cannot safely abort a command, while the SCRIPTS 
3233  *  processor is running, since we just would be in race 
3234  *  with it.
3235  *
3236  *  As long as we have tasks to abort, we keep the SEM 
3237  *  bit set in the ISTAT. When this bit is set, the 
3238  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 
3239  *  each time it enters the scheduler.
3240  *
3241  *  If we have to reset a target, clear tasks of a unit,
3242  *  or to perform the abort of a disconnected job, we 
3243  *  restart the SCRIPTS for selecting the target. Once 
3244  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3245  *  If it loses arbitration, the SCRIPTS will interrupt again 
3246  *  the next time it will enter its scheduler, and so on ...
3247  *
3248  *  On SIR_TARGET_SELECTED, we scan for the more 
3249  *  appropriate thing to do:
3250  *
3251  *  - If nothing, we just sent a M_ABORT message to the 
3252  *    target to get rid of the useless SCSI bus ownership.
3253  *    According to the specs, no tasks shall be affected.
3254  *  - If the target is to be reset, we send it a M_RESET 
3255  *    message.
3256  *  - If a logical UNIT is to be cleared , we send the 
3257  *    IDENTIFY(lun) + M_ABORT.
3258  *  - If an untagged task is to be aborted, we send the 
3259  *    IDENTIFY(lun) + M_ABORT.
3260  *  - If a tagged task is to be aborted, we send the 
3261  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3262  *
3263  *  Once our 'kiss of death' :) message has been accepted 
3264  *  by the target, the SCRIPTS interrupts again 
3265  *  (SIR_ABORT_SENT). On this interrupt, we complete 
3266  *  all the CCBs that should have been aborted by the 
3267  *  target according to our message.
3268  */
3269 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3270 {
3271         SYM_QUEHEAD *qp;
3272         struct sym_ccb *cp;
3273         struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3274         struct scsi_target *starget;
3275         int target=-1, lun=-1, task;
3276         int i, k;
3277
3278         switch(num) {
3279         /*
3280          *  The SCRIPTS processor stopped before starting
3281          *  the next command in order to allow us to perform 
3282          *  some task recovery.
3283          */
3284         case SIR_SCRIPT_STOPPED:
3285                 /*
3286                  *  Do we have any target to reset or unit to clear ?
3287                  */
3288                 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3289                         tp = &np->target[i];
3290                         if (tp->to_reset || 
3291                             (tp->lun0p && tp->lun0p->to_clear)) {
3292                                 target = i;
3293                                 break;
3294                         }
3295                         if (!tp->lunmp)
3296                                 continue;
3297                         for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3298                                 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3299                                         target  = i;
3300                                         break;
3301                                 }
3302                         }
3303                         if (target != -1)
3304                                 break;
3305                 }
3306
3307                 /*
3308                  *  If not, walk the busy queue for any 
3309                  *  disconnected CCB to be aborted.
3310                  */
3311                 if (target == -1) {
3312                         FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3313                                 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3314                                 if (cp->host_status != HS_DISCONNECT)
3315                                         continue;
3316                                 if (cp->to_abort) {
3317                                         target = cp->target;
3318                                         break;
3319                                 }
3320                         }
3321                 }
3322
3323                 /*
3324                  *  If some target is to be selected, 
3325                  *  prepare and start the selection.
3326                  */
3327                 if (target != -1) {
3328                         tp = &np->target[target];
3329                         np->abrt_sel.sel_id     = target;
3330                         np->abrt_sel.sel_scntl3 = tp->head.wval;
3331                         np->abrt_sel.sel_sxfer  = tp->head.sval;
3332                         OUTL(np, nc_dsa, np->hcb_ba);
3333                         OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3334                         return;
3335                 }
3336
3337                 /*
3338                  *  Now look for a CCB to abort that haven't started yet.
3339                  *  Btw, the SCRIPTS processor is still stopped, so 
3340                  *  we are not in race.
3341                  */
3342                 i = 0;
3343                 cp = NULL;
3344                 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3345                         cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3346                         if (cp->host_status != HS_BUSY &&
3347                             cp->host_status != HS_NEGOTIATE)
3348                                 continue;
3349                         if (!cp->to_abort)
3350                                 continue;
3351 #ifdef SYM_CONF_IARB_SUPPORT
3352                         /*
3353                          *    If we are using IMMEDIATE ARBITRATION, we donnot 
3354                          *    want to cancel the last queued CCB, since the 
3355                          *    SCRIPTS may have anticipated the selection.
3356                          */
3357                         if (cp == np->last_cp) {
3358                                 cp->to_abort = 0;
3359                                 continue;
3360                         }
3361 #endif
3362                         i = 1;  /* Means we have found some */
3363                         break;
3364                 }
3365                 if (!i) {
3366                         /*
3367                          *  We are done, so we donnot need 
3368                          *  to synchronize with the SCRIPTS anylonger.
3369                          *  Remove the SEM flag from the ISTAT.
3370                          */
3371                         np->istat_sem = 0;
3372                         OUTB(np, nc_istat, SIGP);
3373                         break;
3374                 }
3375                 /*
3376                  *  Compute index of next position in the start 
3377                  *  queue the SCRIPTS intends to start and dequeue 
3378                  *  all CCBs for that device that haven't been started.
3379                  */
3380                 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3381                 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3382
3383                 /*
3384                  *  Make sure at least our IO to abort has been dequeued.
3385                  */
3386 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3387                 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3388 #else
3389                 sym_remque(&cp->link_ccbq);
3390                 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3391 #endif
3392                 /*
3393                  *  Keep track in cam status of the reason of the abort.
3394                  */
3395                 if (cp->to_abort == 2)
3396                         sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3397                 else
3398                         sym_set_cam_status(cp->cmd, DID_ABORT);
3399
3400                 /*
3401                  *  Complete with error everything that we have dequeued.
3402                  */
3403                 sym_flush_comp_queue(np, 0);
3404                 break;
3405         /*
3406          *  The SCRIPTS processor has selected a target 
3407          *  we may have some manual recovery to perform for.
3408          */
3409         case SIR_TARGET_SELECTED:
3410                 target = INB(np, nc_sdid) & 0xf;
3411                 tp = &np->target[target];
3412
3413                 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3414
3415                 /*
3416                  *  If the target is to be reset, prepare a 
3417                  *  M_RESET message and clear the to_reset flag 
3418                  *  since we donnot expect this operation to fail.
3419                  */
3420                 if (tp->to_reset) {
3421                         np->abrt_msg[0] = M_RESET;
3422                         np->abrt_tbl.size = 1;
3423                         tp->to_reset = 0;
3424                         break;
3425                 }
3426
3427                 /*
3428                  *  Otherwise, look for some logical unit to be cleared.
3429                  */
3430                 if (tp->lun0p && tp->lun0p->to_clear)
3431                         lun = 0;
3432                 else if (tp->lunmp) {
3433                         for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3434                                 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3435                                         lun = k;
3436                                         break;
3437                                 }
3438                         }
3439                 }
3440
3441                 /*
3442                  *  If a logical unit is to be cleared, prepare 
3443                  *  an IDENTIFY(lun) + ABORT MESSAGE.
3444                  */
3445                 if (lun != -1) {
3446                         struct sym_lcb *lp = sym_lp(tp, lun);
3447                         lp->to_clear = 0; /* We don't expect to fail here */
3448                         np->abrt_msg[0] = IDENTIFY(0, lun);
3449                         np->abrt_msg[1] = M_ABORT;
3450                         np->abrt_tbl.size = 2;
3451                         break;
3452                 }
3453
3454                 /*
3455                  *  Otherwise, look for some disconnected job to 
3456                  *  abort for this target.
3457                  */
3458                 i = 0;
3459                 cp = NULL;
3460                 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3461                         cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3462                         if (cp->host_status != HS_DISCONNECT)
3463                                 continue;
3464                         if (cp->target != target)
3465                                 continue;
3466                         if (!cp->to_abort)
3467                                 continue;
3468                         i = 1;  /* Means we have some */
3469                         break;
3470                 }
3471
3472                 /*
3473                  *  If we have none, probably since the device has 
3474                  *  completed the command before we won abitration,
3475                  *  send a M_ABORT message without IDENTIFY.
3476                  *  According to the specs, the device must just 
3477                  *  disconnect the BUS and not abort any task.
3478                  */
3479                 if (!i) {
3480                         np->abrt_msg[0] = M_ABORT;
3481                         np->abrt_tbl.size = 1;
3482                         break;
3483                 }
3484
3485                 /*
3486                  *  We have some task to abort.
3487                  *  Set the IDENTIFY(lun)
3488                  */
3489                 np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3490
3491                 /*
3492                  *  If we want to abort an untagged command, we 
3493                  *  will send a IDENTIFY + M_ABORT.
3494                  *  Otherwise (tagged command), we will send 
3495                  *  a IDENTITFY + task attributes + ABORT TAG.
3496                  */
3497                 if (cp->tag == NO_TAG) {
3498                         np->abrt_msg[1] = M_ABORT;
3499                         np->abrt_tbl.size = 2;
3500                 } else {
3501                         np->abrt_msg[1] = cp->scsi_smsg[1];
3502                         np->abrt_msg[2] = cp->scsi_smsg[2];
3503                         np->abrt_msg[3] = M_ABORT_TAG;
3504                         np->abrt_tbl.size = 4;
3505                 }
3506                 /*
3507                  *  Keep track of software timeout condition, since the 
3508                  *  peripheral driver may not count retries on abort 
3509                  *  conditions not due to timeout.
3510                  */
3511                 if (cp->to_abort == 2)
3512                         sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3513                 cp->to_abort = 0; /* We donnot expect to fail here */
3514                 break;
3515
3516         /*
3517          *  The target has accepted our message and switched 
3518          *  to BUS FREE phase as we expected.
3519          */
3520         case SIR_ABORT_SENT:
3521                 target = INB(np, nc_sdid) & 0xf;
3522                 tp = &np->target[target];
3523                 starget = tp->starget;
3524                 
3525                 /*
3526                 **  If we didn't abort anything, leave here.
3527                 */
3528                 if (np->abrt_msg[0] == M_ABORT)
3529                         break;
3530
3531                 /*
3532                  *  If we sent a M_RESET, then a hardware reset has 
3533                  *  been performed by the target.
3534                  *  - Reset everything to async 8 bit
3535                  *  - Tell ourself to negotiate next time :-)
3536                  *  - Prepare to clear all disconnected CCBs for 
3537                  *    this target from our task list (lun=task=-1)
3538                  */
3539                 lun = -1;
3540                 task = -1;
3541                 if (np->abrt_msg[0] == M_RESET) {
3542                         tp->head.sval = 0;
3543                         tp->head.wval = np->rv_scntl3;
3544                         tp->head.uval = 0;
3545                         spi_period(starget) = 0;
3546                         spi_offset(starget) = 0;
3547                         spi_width(starget) = 0;
3548                         spi_iu(starget) = 0;
3549                         spi_dt(starget) = 0;
3550                         spi_qas(starget) = 0;
3551                         tp->tgoal.check_nego = 1;
3552                         tp->tgoal.renego = 0;
3553                 }
3554
3555                 /*
3556                  *  Otherwise, check for the LUN and TASK(s) 
3557                  *  concerned by the cancelation.
3558                  *  If it is not ABORT_TAG then it is CLEAR_QUEUE 
3559                  *  or an ABORT message :-)
3560                  */
3561                 else {
3562                         lun = np->abrt_msg[0] & 0x3f;
3563                         if (np->abrt_msg[1] == M_ABORT_TAG)
3564                                 task = np->abrt_msg[2];
3565                 }
3566
3567                 /*
3568                  *  Complete all the CCBs the device should have 
3569                  *  aborted due to our 'kiss of death' message.
3570                  */
3571                 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3572                 sym_dequeue_from_squeue(np, i, target, lun, -1);
3573                 sym_clear_tasks(np, DID_ABORT, target, lun, task);
3574                 sym_flush_comp_queue(np, 0);
3575
3576                 /*
3577                  *  If we sent a BDR, make upper layer aware of that.
3578                  */
3579                 if (np->abrt_msg[0] == M_RESET)
3580                         starget_printk(KERN_NOTICE, starget,
3581                                                         "has been reset\n");
3582                 break;
3583         }
3584
3585         /*
3586          *  Print to the log the message we intend to send.
3587          */
3588         if (num == SIR_TARGET_SELECTED) {
3589                 dev_info(&tp->starget->dev, "control msgout:");
3590                 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3591                 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3592         }
3593
3594         /*
3595          *  Let the SCRIPTS processor continue.
3596          */
3597         OUTONB_STD();
3598 }
3599
3600 /*
3601  *  Gerard's alchemy:) that deals with with the data 
3602  *  pointer for both MDP and the residual calculation.
3603  *
3604  *  I didn't want to bloat the code by more than 200 
3605  *  lines for the handling of both MDP and the residual.
3606  *  This has been achieved by using a data pointer 
3607  *  representation consisting in an index in the data 
3608  *  array (dp_sg) and a negative offset (dp_ofs) that 
3609  *  have the following meaning:
3610  *
3611  *  - dp_sg = SYM_CONF_MAX_SG
3612  *    we are at the end of the data script.
3613  *  - dp_sg < SYM_CONF_MAX_SG
3614  *    dp_sg points to the next entry of the scatter array 
3615  *    we want to transfer.
3616  *  - dp_ofs < 0
3617  *    dp_ofs represents the residual of bytes of the 
3618  *    previous entry scatter entry we will send first.
3619  *  - dp_ofs = 0
3620  *    no residual to send first.
3621  *
3622  *  The function sym_evaluate_dp() accepts an arbitray 
3623  *  offset (basically from the MDP message) and returns 
3624  *  the corresponding values of dp_sg and dp_ofs.
3625  */
3626
3627 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3628 {
3629         u32     dp_scr;
3630         int     dp_ofs, dp_sg, dp_sgmin;
3631         int     tmp;
3632         struct sym_pmc *pm;
3633
3634         /*
3635          *  Compute the resulted data pointer in term of a script 
3636          *  address within some DATA script and a signed byte offset.
3637          */
3638         dp_scr = scr;
3639         dp_ofs = *ofs;
3640         if      (dp_scr == SCRIPTA_BA(np, pm0_data))
3641                 pm = &cp->phys.pm0;
3642         else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3643                 pm = &cp->phys.pm1;
3644         else
3645                 pm = NULL;
3646
3647         if (pm) {
3648                 dp_scr  = scr_to_cpu(pm->ret);
3649                 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3650         }
3651
3652         /*
3653          *  If we are auto-sensing, then we are done.
3654          */
3655         if (cp->host_flags & HF_SENSE) {
3656                 *ofs = dp_ofs;
3657                 return 0;
3658         }
3659
3660         /*
3661          *  Deduce the index of the sg entry.
3662          *  Keep track of the index of the first valid entry.
3663          *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 
3664          *  end of the data.
3665          */
3666         tmp = scr_to_cpu(cp->goalp);
3667         dp_sg = SYM_CONF_MAX_SG;
3668         if (dp_scr != tmp)
3669                 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3670         dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3671
3672         /*
3673          *  Move to the sg entry the data pointer belongs to.
3674          *
3675          *  If we are inside the data area, we expect result to be:
3676          *
3677          *  Either,
3678          *      dp_ofs = 0 and dp_sg is the index of the sg entry
3679          *      the data pointer belongs to (or the end of the data)
3680          *  Or,
3681          *      dp_ofs < 0 and dp_sg is the index of the sg entry 
3682          *      the data pointer belongs to + 1.
3683          */
3684         if (dp_ofs < 0) {
3685                 int n;
3686                 while (dp_sg > dp_sgmin) {
3687                         --dp_sg;
3688                         tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3689                         n = dp_ofs + (tmp & 0xffffff);
3690                         if (n > 0) {
3691                                 ++dp_sg;
3692                                 break;
3693                         }
3694                         dp_ofs = n;
3695                 }
3696         }
3697         else if (dp_ofs > 0) {
3698                 while (dp_sg < SYM_CONF_MAX_SG) {
3699                         tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3700                         dp_ofs -= (tmp & 0xffffff);
3701                         ++dp_sg;
3702                         if (dp_ofs <= 0)
3703                                 break;
3704                 }
3705         }
3706
3707         /*
3708          *  Make sure the data pointer is inside the data area.
3709          *  If not, return some error.
3710          */
3711         if      (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3712                 goto out_err;
3713         else if (dp_sg > SYM_CONF_MAX_SG ||
3714                  (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3715                 goto out_err;
3716
3717         /*
3718          *  Save the extreme pointer if needed.
3719          */
3720         if (dp_sg > cp->ext_sg ||
3721             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3722                 cp->ext_sg  = dp_sg;
3723                 cp->ext_ofs = dp_ofs;
3724         }
3725
3726         /*
3727          *  Return data.
3728          */
3729         *ofs = dp_ofs;
3730         return dp_sg;
3731
3732 out_err:
3733         return -1;
3734 }
3735
3736 /*
3737  *  chip handler for MODIFY DATA POINTER MESSAGE
3738  *
3739  *  We also call this function on IGNORE WIDE RESIDUE 
3740  *  messages that do not match a SWIDE full condition.
3741  *  Btw, we assume in that situation that such a message 
3742  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3743  */
3744
3745 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3746 {
3747         int dp_ofs      = ofs;
3748         u32     dp_scr  = sym_get_script_dp (np, cp);
3749         u32     dp_ret;
3750         u32     tmp;
3751         u_char  hflags;
3752         int     dp_sg;
3753         struct  sym_pmc *pm;
3754
3755         /*
3756          *  Not supported for auto-sense.
3757          */
3758         if (cp->host_flags & HF_SENSE)
3759                 goto out_reject;
3760
3761         /*
3762          *  Apply our alchemy:) (see comments in sym_evaluate_dp()), 
3763          *  to the resulted data pointer.
3764          */
3765         dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3766         if (dp_sg < 0)
3767                 goto out_reject;
3768
3769         /*
3770          *  And our alchemy:) allows to easily calculate the data 
3771          *  script address we want to return for the next data phase.
3772          */
3773         dp_ret = cpu_to_scr(cp->goalp);
3774         dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3775
3776         /*
3777          *  If offset / scatter entry is zero we donnot need 
3778          *  a context for the new current data pointer.
3779          */
3780         if (dp_ofs == 0) {
3781                 dp_scr = dp_ret;
3782                 goto out_ok;
3783         }
3784
3785         /*
3786          *  Get a context for the new current data pointer.
3787          */
3788         hflags = INB(np, HF_PRT);
3789
3790         if (hflags & HF_DP_SAVED)
3791                 hflags ^= HF_ACT_PM;
3792
3793         if (!(hflags & HF_ACT_PM)) {
3794                 pm  = &cp->phys.pm0;
3795                 dp_scr = SCRIPTA_BA(np, pm0_data);
3796         }
3797         else {
3798                 pm = &cp->phys.pm1;
3799                 dp_scr = SCRIPTA_BA(np, pm1_data);
3800         }
3801
3802         hflags &= ~(HF_DP_SAVED);
3803
3804         OUTB(np, HF_PRT, hflags);
3805
3806         /*
3807          *  Set up the new current data pointer.
3808          *  ofs < 0 there, and for the next data phase, we 
3809          *  want to transfer part of the data of the sg entry 
3810          *  corresponding to index dp_sg-1 prior to returning 
3811          *  to the main data script.
3812          */
3813         pm->ret = cpu_to_scr(dp_ret);
3814         tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3815         tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3816         pm->sg.addr = cpu_to_scr(tmp);
3817         pm->sg.size = cpu_to_scr(-dp_ofs);
3818
3819 out_ok:
3820         sym_set_script_dp (np, cp, dp_scr);
3821         OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3822         return;
3823
3824 out_reject:
3825         OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3826 }
3827
3828
3829 /*
3830  *  chip calculation of the data residual.
3831  *
3832  *  As I used to say, the requirement of data residual 
3833  *  in SCSI is broken, useless and cannot be achieved 
3834  *  without huge complexity.
3835  *  But most OSes and even the official CAM require it.
3836  *  When stupidity happens to be so widely spread inside 
3837  *  a community, it gets hard to convince.
3838  *
3839  *  Anyway, I don't care, since I am not going to use 
3840  *  any software that considers this data residual as 
3841  *  a relevant information. :)
3842  */
3843
3844 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3845 {
3846         int dp_sg, resid = 0;
3847         int dp_ofs = 0;
3848
3849         /*
3850          *  Check for some data lost or just thrown away.
3851          *  We are not required to be quite accurate in this 
3852          *  situation. Btw, if we are odd for output and the 
3853          *  device claims some more data, it may well happen 
3854          *  than our residual be zero. :-)
3855          */
3856         if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3857                 if (cp->xerr_status & XE_EXTRA_DATA)
3858                         resid -= cp->extra_bytes;
3859                 if (cp->xerr_status & XE_SODL_UNRUN)
3860                         ++resid;
3861                 if (cp->xerr_status & XE_SWIDE_OVRUN)
3862                         --resid;
3863         }
3864
3865         /*
3866          *  If all data has been transferred,
3867          *  there is no residual.
3868          */
3869         if (cp->phys.head.lastp == cp->goalp)
3870                 return resid;
3871
3872         /*
3873          *  If no data transfer occurs, or if the data
3874          *  pointer is weird, return full residual.
3875          */
3876         if (cp->startp == cp->phys.head.lastp ||
3877             sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3878                             &dp_ofs) < 0) {
3879                 return cp->data_len - cp->odd_byte_adjustment;
3880         }
3881
3882         /*
3883          *  If we were auto-sensing, then we are done.
3884          */
3885         if (cp->host_flags & HF_SENSE) {
3886                 return -dp_ofs;
3887         }
3888
3889         /*
3890          *  We are now full comfortable in the computation 
3891          *  of the data residual (2's complement).
3892          */
3893         resid = -cp->ext_ofs;
3894         for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3895                 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3896                 resid += (tmp & 0xffffff);
3897         }
3898
3899         resid -= cp->odd_byte_adjustment;
3900
3901         /*
3902          *  Hopefully, the result is not too wrong.
3903          */
3904         return resid;
3905 }
3906
3907 /*
3908  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3909  *
3910  *  When we try to negotiate, we append the negotiation message
3911  *  to the identify and (maybe) simple tag message.
3912  *  The host status field is set to HS_NEGOTIATE to mark this
3913  *  situation.
3914  *
3915  *  If the target doesn't answer this message immediately
3916  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3917  *  will be raised eventually.
3918  *  The handler removes the HS_NEGOTIATE status, and sets the
3919  *  negotiated value to the default (async / nowide).
3920  *
3921  *  If we receive a matching answer immediately, we check it
3922  *  for validity, and set the values.
3923  *
3924  *  If we receive a Reject message immediately, we assume the
3925  *  negotiation has failed, and fall back to standard values.
3926  *
3927  *  If we receive a negotiation message while not in HS_NEGOTIATE
3928  *  state, it's a target initiated negotiation. We prepare a
3929  *  (hopefully) valid answer, set our parameters, and send back 
3930  *  this answer to the target.
3931  *
3932  *  If the target doesn't fetch the answer (no message out phase),
3933  *  we assume the negotiation has failed, and fall back to default
3934  *  settings (SIR_NEGO_PROTO interrupt).
3935  *
3936  *  When we set the values, we adjust them in all ccbs belonging 
3937  *  to this target, in the controller's register, and in the "phys"
3938  *  field of the controller's struct sym_hcb.
3939  */
3940
3941 /*
3942  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3943  */
3944 static int  
3945 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3946 {
3947         int target = cp->target;
3948         u_char  chg, ofs, per, fak, div;
3949
3950         if (DEBUG_FLAGS & DEBUG_NEGO) {
3951                 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3952         }
3953
3954         /*
3955          *  Get requested values.
3956          */
3957         chg = 0;
3958         per = np->msgin[3];
3959         ofs = np->msgin[4];
3960
3961         /*
3962          *  Check values against our limits.
3963          */
3964         if (ofs) {
3965                 if (ofs > np->maxoffs)
3966                         {chg = 1; ofs = np->maxoffs;}
3967         }
3968
3969         if (ofs) {
3970                 if (per < np->minsync)
3971                         {chg = 1; per = np->minsync;}
3972         }
3973
3974         /*
3975          *  Get new chip synchronous parameters value.
3976          */
3977         div = fak = 0;
3978         if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3979                 goto reject_it;
3980
3981         if (DEBUG_FLAGS & DEBUG_NEGO) {
3982                 sym_print_addr(cp->cmd,
3983                                 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3984                                 ofs, per, div, fak, chg);
3985         }
3986
3987         /*
3988          *  If it was an answer we want to change, 
3989          *  then it isn't acceptable. Reject it.
3990          */
3991         if (!req && chg)
3992                 goto reject_it;
3993
3994         /*
3995          *  Apply new values.
3996          */
3997         sym_setsync (np, target, ofs, per, div, fak);
3998
3999         /*
4000          *  It was an answer. We are done.
4001          */
4002         if (!req)
4003                 return 0;
4004
4005         /*
4006          *  It was a request. Prepare an answer message.
4007          */
4008         spi_populate_sync_msg(np->msgout, per, ofs);
4009
4010         if (DEBUG_FLAGS & DEBUG_NEGO) {
4011                 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4012         }
4013
4014         np->msgin [0] = M_NOOP;
4015
4016         return 0;
4017
4018 reject_it:
4019         sym_setsync (np, target, 0, 0, 0, 0);
4020         return -1;
4021 }
4022
4023 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4024 {
4025         int req = 1;
4026         int result;
4027
4028         /*
4029          *  Request or answer ?
4030          */
4031         if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4032                 OUTB(np, HS_PRT, HS_BUSY);
4033                 if (cp->nego_status && cp->nego_status != NS_SYNC)
4034                         goto reject_it;
4035                 req = 0;
4036         }
4037
4038         /*
4039          *  Check and apply new values.
4040          */
4041         result = sym_sync_nego_check(np, req, cp);
4042         if (result)     /* Not acceptable, reject it */
4043                 goto reject_it;
4044         if (req) {      /* Was a request, send response. */
4045                 cp->nego_status = NS_SYNC;
4046                 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4047         }
4048         else            /* Was a response, we are done. */
4049                 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4050         return;
4051
4052 reject_it:
4053         OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4054 }
4055
4056 /*
4057  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4058  */
4059 static int 
4060 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4061 {
4062         struct sym_tcb *tp = &np->target[target];
4063         unsigned char fak, div;
4064         int dt, chg = 0;
4065
4066         unsigned char per = np->msgin[3];
4067         unsigned char ofs = np->msgin[5];
4068         unsigned char wide = np->msgin[6];
4069         unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4070
4071         if (DEBUG_FLAGS & DEBUG_NEGO) {
4072                 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4073         }
4074
4075         /*
4076          *  Check values against our limits.
4077          */
4078         if (wide > np->maxwide) {
4079                 chg = 1;
4080                 wide = np->maxwide;
4081         }
4082         if (!wide || !(np->features & FE_U3EN))
4083                 opts = 0;
4084
4085         if (opts != (np->msgin[7] & PPR_OPT_MASK))
4086                 chg = 1;
4087
4088         dt = opts & PPR_OPT_DT;
4089
4090         if (ofs) {
4091                 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4092                 if (ofs > maxoffs) {
4093                         chg = 1;
4094                         ofs = maxoffs;
4095                 }
4096         }
4097
4098         if (ofs) {
4099                 unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4100                 if (per < minsync) {
4101                         chg = 1;
4102                         per = minsync;
4103                 }
4104         }
4105
4106         /*
4107          *  Get new chip synchronous parameters value.
4108          */
4109         div = fak = 0;
4110         if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4111                 goto reject_it;
4112
4113         /*
4114          *  If it was an answer we want to change, 
4115          *  then it isn't acceptable. Reject it.
4116          */
4117         if (!req && chg)
4118                 goto reject_it;
4119
4120         /*
4121          *  Apply new values.
4122          */
4123         sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4124
4125         /*
4126          *  It was an answer. We are done.
4127          */
4128         if (!req)
4129                 return 0;
4130
4131         /*
4132          *  It was a request. Prepare an answer message.
4133          */
4134         spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4135
4136         if (DEBUG_FLAGS & DEBUG_NEGO) {
4137                 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4138         }
4139
4140         np->msgin [0] = M_NOOP;
4141
4142         return 0;
4143
4144 reject_it:
4145         sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4146         /*
4147          *  If it is a device response that should result in  
4148          *  ST, we may want to try a legacy negotiation later.
4149          */
4150         if (!req && !opts) {
4151                 tp->tgoal.period = per;
4152                 tp->tgoal.offset = ofs;
4153                 tp->tgoal.width = wide;
4154                 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4155                 tp->tgoal.check_nego = 1;
4156         }
4157         return -1;
4158 }
4159
4160 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4161 {
4162         int req = 1;
4163         int result;
4164
4165         /*
4166          *  Request or answer ?
4167          */
4168         if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4169                 OUTB(np, HS_PRT, HS_BUSY);
4170                 if (cp->nego_status && cp->nego_status != NS_PPR)
4171                         goto reject_it;
4172                 req = 0;
4173         }
4174
4175         /*
4176          *  Check and apply new values.
4177          */
4178         result = sym_ppr_nego_check(np, req, cp->target);
4179         if (result)     /* Not acceptable, reject it */
4180                 goto reject_it;
4181         if (req) {      /* Was a request, send response. */
4182                 cp->nego_status = NS_PPR;
4183                 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4184         }
4185         else            /* Was a response, we are done. */
4186                 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4187         return;
4188
4189 reject_it:
4190         OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4191 }
4192
4193 /*
4194  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4195  */
4196 static int  
4197 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4198 {
4199         int target = cp->target;
4200         u_char  chg, wide;
4201
4202         if (DEBUG_FLAGS & DEBUG_NEGO) {
4203                 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4204         }
4205
4206         /*
4207          *  Get requested values.
4208          */
4209         chg  = 0;
4210         wide = np->msgin[3];
4211
4212         /*
4213          *  Check values against our limits.
4214          */
4215         if (wide > np->maxwide) {
4216                 chg = 1;
4217                 wide = np->maxwide;
4218         }
4219
4220         if (DEBUG_FLAGS & DEBUG_NEGO) {
4221                 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4222                                 wide, chg);
4223         }
4224
4225         /*
4226          *  If it was an answer we want to change, 
4227          *  then it isn't acceptable. Reject it.
4228          */
4229         if (!req && chg)
4230                 goto reject_it;
4231
4232         /*
4233          *  Apply new values.
4234          */
4235         sym_setwide (np, target, wide);
4236
4237         /*
4238          *  It was an answer. We are done.
4239          */
4240         if (!req)
4241                 return 0;
4242
4243         /*
4244          *  It was a request. Prepare an answer message.
4245          */
4246         spi_populate_width_msg(np->msgout, wide);
4247
4248         np->msgin [0] = M_NOOP;
4249
4250         if (DEBUG_FLAGS & DEBUG_NEGO) {
4251                 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4252         }
4253
4254         return 0;
4255
4256 reject_it:
4257         return -1;
4258 }
4259
4260 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4261 {
4262         int req = 1;
4263         int result;
4264
4265         /*
4266          *  Request or answer ?
4267          */
4268         if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4269                 OUTB(np, HS_PRT, HS_BUSY);
4270                 if (cp->nego_status && cp->nego_status != NS_WIDE)
4271                         goto reject_it;
4272                 req = 0;
4273         }
4274
4275         /*
4276          *  Check and apply new values.
4277          */
4278         result = sym_wide_nego_check(np, req, cp);
4279         if (result)     /* Not acceptable, reject it */
4280                 goto reject_it;
4281         if (req) {      /* Was a request, send response. */
4282                 cp->nego_status = NS_WIDE;
4283                 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4284         } else {                /* Was a response. */
4285                 /*
4286                  * Negotiate for SYNC immediately after WIDE response.
4287                  * This allows to negotiate for both WIDE and SYNC on 
4288                  * a single SCSI command (Suggested by Justin Gibbs).
4289                  */
4290                 if (tp->tgoal.offset) {
4291                         spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4292                                         tp->tgoal.offset);
4293
4294                         if (DEBUG_FLAGS & DEBUG_NEGO) {
4295                                 sym_print_nego_msg(np, cp->target,
4296                                                    "sync msgout", np->msgout);
4297                         }
4298
4299                         cp->nego_status = NS_SYNC;
4300                         OUTB(np, HS_PRT, HS_NEGOTIATE);
4301                         OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4302                         return;
4303                 } else
4304                         OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4305         }
4306
4307         return;
4308
4309 reject_it:
4310         OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4311 }
4312
4313 /*
4314  *  Reset DT, SYNC or WIDE to default settings.
4315  *
4316  *  Called when a negotiation does not succeed either 
4317  *  on rejection or on protocol error.
4318  *
4319  *  A target that understands a PPR message should never 
4320  *  reject it, and messing with it is very unlikely.
4321  *  So, if a PPR makes problems, we may just want to 
4322  *  try a legacy negotiation later.
4323  */
4324 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4325 {
4326         switch (cp->nego_status) {
4327         case NS_PPR:
4328 #if 0
4329                 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4330 #else
4331                 if (tp->tgoal.period < np->minsync)
4332                         tp->tgoal.period = np->minsync;
4333                 if (tp->tgoal.offset > np->maxoffs)
4334                         tp->tgoal.offset = np->maxoffs;
4335                 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4336                 tp->tgoal.check_nego = 1;
4337 #endif
4338                 break;
4339         case NS_SYNC:
4340                 sym_setsync (np, cp->target, 0, 0, 0, 0);
4341                 break;
4342         case NS_WIDE:
4343                 sym_setwide (np, cp->target, 0);
4344                 break;
4345         }
4346         np->msgin [0] = M_NOOP;
4347         np->msgout[0] = M_NOOP;
4348         cp->nego_status = 0;
4349 }
4350
4351 /*
4352  *  chip handler for MESSAGE REJECT received in response to 
4353  *  PPR, WIDE or SYNCHRONOUS negotiation.
4354  */
4355 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4356 {
4357         sym_nego_default(np, tp, cp);
4358         OUTB(np, HS_PRT, HS_BUSY);
4359 }
4360
4361 #define sym_printk(lvl, tp, cp, fmt, v...) do { \
4362         if (cp)                                                 \
4363                 scmd_printk(lvl, cp->cmd, fmt, ##v);            \
4364         else                                                    \
4365                 starget_printk(lvl, tp->starget, fmt, ##v);     \
4366 } while (0)
4367
4368 /*
4369  *  chip exception handler for programmed interrupts.
4370  */
4371 static void sym_int_sir(struct sym_hcb *np)
4372 {
4373         u_char  num     = INB(np, nc_dsps);
4374         u32     dsa     = INL(np, nc_dsa);
4375         struct sym_ccb *cp      = sym_ccb_from_dsa(np, dsa);
4376         u_char  target  = INB(np, nc_sdid) & 0x0f;
4377         struct sym_tcb *tp      = &np->target[target];
4378         int     tmp;
4379
4380         if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4381
4382         switch (num) {
4383 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4384         /*
4385          *  SCRIPTS tell us that we may have to update 
4386          *  64 bit DMA segment registers.
4387          */
4388         case SIR_DMAP_DIRTY:
4389                 sym_update_dmap_regs(np);
4390                 goto out;
4391 #endif
4392         /*
4393          *  Command has been completed with error condition 
4394          *  or has been auto-sensed.
4395          */
4396         case SIR_COMPLETE_ERROR:
4397                 sym_complete_error(np, cp);
4398                 return;
4399         /*
4400          *  The C code is currently trying to recover from something.
4401          *  Typically, user want to abort some command.
4402          */
4403         case SIR_SCRIPT_STOPPED:
4404         case SIR_TARGET_SELECTED:
4405         case SIR_ABORT_SENT:
4406                 sym_sir_task_recovery(np, num);
4407                 return;
4408         /*
4409          *  The device didn't go to MSG OUT phase after having 
4410          *  been selected with ATN.  We do not want to handle that.
4411          */
4412         case SIR_SEL_ATN_NO_MSG_OUT:
4413                 sym_printk(KERN_WARNING, tp, cp,
4414                                 "No MSG OUT phase after selection with ATN\n");
4415                 goto out_stuck;
4416         /*
4417          *  The device didn't switch to MSG IN phase after 
4418          *  having reselected the initiator.
4419          */
4420         case SIR_RESEL_NO_MSG_IN:
4421                 sym_printk(KERN_WARNING, tp, cp,
4422                                 "No MSG IN phase after reselection\n");
4423                 goto out_stuck;
4424         /*
4425          *  After reselection, the device sent a message that wasn't 
4426          *  an IDENTIFY.
4427          */
4428         case SIR_RESEL_NO_IDENTIFY:
4429                 sym_printk(KERN_WARNING, tp, cp,
4430                                 "No IDENTIFY after reselection\n");
4431                 goto out_stuck;
4432         /*
4433          *  The device reselected a LUN we do not know about.
4434          */
4435         case SIR_RESEL_BAD_LUN:
4436                 np->msgout[0] = M_RESET;
4437                 goto out;
4438         /*
4439          *  The device reselected for an untagged nexus and we 
4440          *  haven't any.
4441          */
4442         case SIR_RESEL_BAD_I_T_L:
4443                 np->msgout[0] = M_ABORT;
4444                 goto out;
4445         /*
4446          * The device reselected for a tagged nexus that we do not have.
4447          */
4448         case SIR_RESEL_BAD_I_T_L_Q:
4449                 np->msgout[0] = M_ABORT_TAG;
4450                 goto out;
4451         /*
4452          *  The SCRIPTS let us know that the device has grabbed 
4453          *  our message and will abort the job.
4454          */
4455         case SIR_RESEL_ABORTED:
4456                 np->lastmsg = np->msgout[0];
4457                 np->msgout[0] = M_NOOP;
4458                 sym_printk(KERN_WARNING, tp, cp,
4459                         "message %x sent on bad reselection\n", np->lastmsg);
4460                 goto out;
4461         /*
4462          *  The SCRIPTS let us know that a message has been 
4463          *  successfully sent to the device.
4464          */
4465         case SIR_MSG_OUT_DONE:
4466                 np->lastmsg = np->msgout[0];
4467                 np->msgout[0] = M_NOOP;
4468                 /* Should we really care of that */
4469                 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4470                         if (cp) {
4471                                 cp->xerr_status &= ~XE_PARITY_ERR;
4472                                 if (!cp->xerr_status)
4473                                         OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4474                         }
4475                 }
4476                 goto out;
4477         /*
4478          *  The device didn't send a GOOD SCSI status.
4479          *  We may have some work to do prior to allow 
4480          *  the SCRIPTS processor to continue.
4481          */
4482         case SIR_BAD_SCSI_STATUS:
4483                 if (!cp)
4484                         goto out;
4485                 sym_sir_bad_scsi_status(np, num, cp);
4486                 return;
4487         /*
4488          *  We are asked by the SCRIPTS to prepare a 
4489          *  REJECT message.
4490          */
4491         case SIR_REJECT_TO_SEND:
4492                 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4493                 np->msgout[0] = M_REJECT;
4494                 goto out;
4495         /*
4496          *  We have been ODD at the end of a DATA IN 
4497          *  transfer and the device didn't send a 
4498          *  IGNORE WIDE RESIDUE message.
4499          *  It is a data overrun condition.
4500          */
4501         case SIR_SWIDE_OVERRUN:
4502                 if (cp) {
4503                         OUTONB(np, HF_PRT, HF_EXT_ERR);
4504                         cp->xerr_status |= XE_SWIDE_OVRUN;
4505                 }
4506                 goto out;
4507         /*
4508          *  We have been ODD at the end of a DATA OUT 
4509          *  transfer.
4510          *  It is a data underrun condition.
4511          */
4512         case SIR_SODL_UNDERRUN:
4513                 if (cp) {
4514                         OUTONB(np, HF_PRT, HF_EXT_ERR);
4515                         cp->xerr_status |= XE_SODL_UNRUN;
4516                 }
4517                 goto out;
4518         /*
4519          *  The device wants us to tranfer more data than 
4520          *  expected or in the wrong direction.
4521          *  The number of extra bytes is in scratcha.
4522          *  It is a data overrun condition.
4523          */
4524         case SIR_DATA_OVERRUN:
4525                 if (cp) {
4526                         OUTONB(np, HF_PRT, HF_EXT_ERR);
4527                         cp->xerr_status |= XE_EXTRA_DATA;
4528                         cp->extra_bytes += INL(np, nc_scratcha);
4529                 }
4530                 goto out;
4531         /*
4532          *  The device switched to an illegal phase (4/5).
4533          */
4534         case SIR_BAD_PHASE:
4535                 if (cp) {
4536                         OUTONB(np, HF_PRT, HF_EXT_ERR);
4537                         cp->xerr_status |= XE_BAD_PHASE;
4538                 }
4539                 goto out;
4540         /*
4541          *  We received a message.
4542          */
4543         case SIR_MSG_RECEIVED:
4544                 if (!cp)
4545                         goto out_stuck;
4546                 switch (np->msgin [0]) {
4547                 /*
4548                  *  We received an extended message.
4549                  *  We handle MODIFY DATA POINTER, SDTR, WDTR 
4550                  *  and reject all other extended messages.
4551                  */
4552                 case M_EXTENDED:
4553                         switch (np->msgin [2]) {
4554                         case M_X_MODIFY_DP:
4555                                 if (DEBUG_FLAGS & DEBUG_POINTER)
4556                                         sym_print_msg(cp, "extended msg ",
4557                                                       np->msgin);
4558                                 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 
4559                                       (np->msgin[5]<<8)  + (np->msgin[6]);
4560                                 sym_modify_dp(np, tp, cp, tmp);
4561                                 return;
4562                         case M_X_SYNC_REQ:
4563                                 sym_sync_nego(np, tp, cp);
4564                                 return;
4565                         case M_X_PPR_REQ:
4566                                 sym_ppr_nego(np, tp, cp);
4567                                 return;
4568                         case M_X_WIDE_REQ:
4569                                 sym_wide_nego(np, tp, cp);
4570                                 return;
4571                         default:
4572                                 goto out_reject;
4573                         }
4574                         break;
4575                 /*
4576                  *  We received a 1/2 byte message not handled from SCRIPTS.
4577                  *  We are only expecting MESSAGE REJECT and IGNORE WIDE 
4578                  *  RESIDUE messages that haven't been anticipated by 
4579                  *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE 
4580                  *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4581                  */
4582                 case M_IGN_RESIDUE:
4583                         if (DEBUG_FLAGS & DEBUG_POINTER)
4584                                 sym_print_msg(cp, "1 or 2 byte ", np->msgin);
4585                         if (cp->host_flags & HF_SENSE)
4586                                 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4587                         else
4588                                 sym_modify_dp(np, tp, cp, -1);
4589                         return;
4590                 case M_REJECT:
4591                         if (INB(np, HS_PRT) == HS_NEGOTIATE)
4592                                 sym_nego_rejected(np, tp, cp);
4593                         else {
4594                                 sym_print_addr(cp->cmd,
4595                                         "M_REJECT received (%x:%x).\n",
4596                                         scr_to_cpu(np->lastmsg), np->msgout[0]);
4597                         }
4598                         goto out_clrack;
4599                         break;
4600                 default:
4601                         goto out_reject;
4602                 }
4603                 break;
4604         /*
4605          *  We received an unknown message.
4606          *  Ignore all MSG IN phases and reject it.
4607          */
4608         case SIR_MSG_WEIRD:
4609                 sym_print_msg(cp, "WEIRD message received", np->msgin);
4610                 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4611                 return;
4612         /*
4613          *  Negotiation failed.
4614          *  Target does not send us the reply.
4615          *  Remove the HS_NEGOTIATE status.
4616          */
4617         case SIR_NEGO_FAILED:
4618                 OUTB(np, HS_PRT, HS_BUSY);
4619         /*
4620          *  Negotiation failed.
4621          *  Target does not want answer message.
4622          */
4623         /* fall through */
4624         case SIR_NEGO_PROTO:
4625                 sym_nego_default(np, tp, cp);
4626                 goto out;
4627         }
4628
4629 out:
4630         OUTONB_STD();
4631         return;
4632 out_reject:
4633         OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4634         return;
4635 out_clrack:
4636         OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4637         return;
4638 out_stuck:
4639         return;
4640 }
4641
4642 /*
4643  *  Acquire a control block
4644  */
4645 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4646 {
4647         u_char tn = cmd->device->id;
4648         u_char ln = cmd->device->lun;
4649         struct sym_tcb *tp = &np->target[tn];
4650         struct sym_lcb *lp = sym_lp(tp, ln);
4651         u_short tag = NO_TAG;
4652         SYM_QUEHEAD *qp;
4653         struct sym_ccb *cp = NULL;
4654
4655         /*
4656          *  Look for a free CCB
4657          */
4658         if (sym_que_empty(&np->free_ccbq))
4659                 sym_alloc_ccb(np);
4660         qp = sym_remque_head(&np->free_ccbq);
4661         if (!qp)
4662                 goto out;
4663         cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4664
4665         {
4666                 /*
4667                  *  If we have been asked for a tagged command.
4668                  */
4669                 if (tag_order) {
4670                         /*
4671                          *  Debugging purpose.
4672                          */
4673 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4674                         if (lp->busy_itl != 0)
4675                                 goto out_free;
4676 #endif
4677                         /*
4678                          *  Allocate resources for tags if not yet.
4679                          */
4680                         if (!lp->cb_tags) {
4681                                 sym_alloc_lcb_tags(np, tn, ln);
4682                                 if (!lp->cb_tags)
4683                                         goto out_free;
4684                         }
4685                         /*
4686                          *  Get a tag for this SCSI IO and set up
4687                          *  the CCB bus address for reselection, 
4688                          *  and count it for this LUN.
4689                          *  Toggle reselect path to tagged.
4690                          */
4691                         if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4692                                 tag = lp->cb_tags[lp->ia_tag];
4693                                 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4694                                         lp->ia_tag = 0;
4695                                 ++lp->busy_itlq;
4696 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4697                                 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4698                                 lp->head.resel_sa =
4699                                         cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4700 #endif
4701 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4702                                 cp->tags_si = lp->tags_si;
4703                                 ++lp->tags_sum[cp->tags_si];
4704                                 ++lp->tags_since;
4705 #endif
4706                         }
4707                         else
4708                                 goto out_free;
4709                 }
4710                 /*
4711                  *  This command will not be tagged.
4712                  *  If we already have either a tagged or untagged 
4713                  *  one, refuse to overlap this untagged one.
4714                  */
4715                 else {
4716                         /*
4717                          *  Debugging purpose.
4718                          */
4719 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4720                         if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4721                                 goto out_free;
4722 #endif
4723                         /*
4724                          *  Count this nexus for this LUN.
4725                          *  Set up the CCB bus address for reselection.
4726                          *  Toggle reselect path to untagged.
4727                          */
4728                         ++lp->busy_itl;
4729 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4730                         if (lp->busy_itl == 1) {
4731                                 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4732                                 lp->head.resel_sa =
4733                                       cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4734                         }
4735                         else
4736                                 goto out_free;
4737 #endif
4738                 }
4739         }
4740         /*
4741          *  Put the CCB into the busy queue.
4742          */
4743         sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4744 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4745         if (lp) {
4746                 sym_remque(&cp->link2_ccbq);
4747                 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4748         }
4749
4750 #endif
4751         cp->to_abort = 0;
4752         cp->odd_byte_adjustment = 0;
4753         cp->tag    = tag;
4754         cp->order  = tag_order;
4755         cp->target = tn;
4756         cp->lun    = ln;
4757
4758         if (DEBUG_FLAGS & DEBUG_TAGS) {
4759                 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4760         }
4761
4762 out:
4763         return cp;
4764 out_free:
4765         sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4766         return NULL;
4767 }
4768
4769 /*
4770  *  Release one control block
4771  */
4772 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4773 {
4774         struct sym_tcb *tp = &np->target[cp->target];
4775         struct sym_lcb *lp = sym_lp(tp, cp->lun);
4776
4777         if (DEBUG_FLAGS & DEBUG_TAGS) {
4778                 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4779                                 cp, cp->tag);
4780         }
4781
4782         /*
4783          *  If LCB available,
4784          */
4785         if (lp) {
4786                 /*
4787                  *  If tagged, release the tag, set the relect path 
4788                  */
4789                 if (cp->tag != NO_TAG) {
4790 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4791                         --lp->tags_sum[cp->tags_si];
4792 #endif
4793                         /*
4794                          *  Free the tag value.
4795                          */
4796                         lp->cb_tags[lp->if_tag] = cp->tag;
4797                         if (++lp->if_tag == SYM_CONF_MAX_TASK)
4798                                 lp->if_tag = 0;
4799                         /*
4800                          *  Make the reselect path invalid, 
4801                          *  and uncount this CCB.
4802                          */
4803                         lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4804                         --lp->busy_itlq;
4805                 } else {        /* Untagged */
4806                         /*
4807                          *  Make the reselect path invalid, 
4808                          *  and uncount this CCB.
4809                          */
4810                         lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4811                         --lp->busy_itl;
4812                 }
4813                 /*
4814                  *  If no JOB active, make the LUN reselect path invalid.
4815                  */
4816                 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4817                         lp->head.resel_sa =
4818                                 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4819         }
4820
4821         /*
4822          *  We donnot queue more than 1 ccb per target 
4823          *  with negotiation at any time. If this ccb was 
4824          *  used for negotiation, clear this info in the tcb.
4825          */
4826         if (cp == tp->nego_cp)
4827                 tp->nego_cp = NULL;
4828
4829 #ifdef SYM_CONF_IARB_SUPPORT
4830         /*
4831          *  If we just complete the last queued CCB,
4832          *  clear this info that is no longer relevant.
4833          */
4834         if (cp == np->last_cp)
4835                 np->last_cp = 0;
4836 #endif
4837
4838         /*
4839          *  Make this CCB available.
4840          */
4841         cp->cmd = NULL;
4842         cp->host_status = HS_IDLE;
4843         sym_remque(&cp->link_ccbq);
4844         sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4845
4846 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4847         if (lp) {
4848                 sym_remque(&cp->link2_ccbq);
4849                 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4850                 if (cp->started) {
4851                         if (cp->tag != NO_TAG)
4852                                 --lp->started_tags;
4853                         else
4854                                 --lp->started_no_tag;
4855                 }
4856         }
4857         cp->started = 0;
4858 #endif
4859 }
4860
4861 /*
4862  *  Allocate a CCB from memory and initialize its fixed part.
4863  */
4864 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4865 {
4866         struct sym_ccb *cp = NULL;
4867         int hcode;
4868
4869         /*
4870          *  Prevent from allocating more CCBs than we can 
4871          *  queue to the controller.
4872          */
4873         if (np->actccbs >= SYM_CONF_MAX_START)
4874                 return NULL;
4875
4876         /*
4877          *  Allocate memory for this CCB.
4878          */
4879         cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4880         if (!cp)
4881                 goto out_free;
4882
4883         /*
4884          *  Count it.
4885          */
4886         np->actccbs++;
4887
4888         /*
4889          *  Compute the bus address of this ccb.
4890          */
4891         cp->ccb_ba = vtobus(cp);
4892
4893         /*
4894          *  Insert this ccb into the hashed list.
4895          */
4896         hcode = CCB_HASH_CODE(cp->ccb_ba);
4897         cp->link_ccbh = np->ccbh[hcode];
4898         np->ccbh[hcode] = cp;
4899
4900         /*
4901          *  Initialyze the start and restart actions.
4902          */
4903         cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4904         cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4905
4906         /*
4907          *  Initilialyze some other fields.
4908          */
4909         cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4910
4911         /*
4912          *  Chain into free ccb queue.
4913          */
4914         sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4915
4916         /*
4917          *  Chain into optionnal lists.
4918          */
4919 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4920         sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4921 #endif
4922         return cp;
4923 out_free:
4924         if (cp)
4925                 sym_mfree_dma(cp, sizeof(*cp), "CCB");
4926         return NULL;
4927 }
4928
4929 /*
4930  *  Look up a CCB from a DSA value.
4931  */
4932 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4933 {
4934         int hcode;
4935         struct sym_ccb *cp;
4936
4937         hcode = CCB_HASH_CODE(dsa);
4938         cp = np->ccbh[hcode];
4939         while (cp) {
4940                 if (cp->ccb_ba == dsa)
4941                         break;
4942                 cp = cp->link_ccbh;
4943         }
4944
4945         return cp;
4946 }
4947
4948 /*
4949  *  Target control block initialisation.
4950  *  Nothing important to do at the moment.
4951  */
4952 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4953 {
4954 #if 0   /*  Hmmm... this checking looks paranoid. */
4955         /*
4956          *  Check some alignments required by the chip.
4957          */     
4958         assert (((offsetof(struct sym_reg, nc_sxfer) ^
4959                 offsetof(struct sym_tcb, head.sval)) &3) == 0);
4960         assert (((offsetof(struct sym_reg, nc_scntl3) ^
4961                 offsetof(struct sym_tcb, head.wval)) &3) == 0);
4962 #endif
4963 }
4964
4965 /*
4966  *  Lun control block allocation and initialization.
4967  */
4968 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4969 {
4970         struct sym_tcb *tp = &np->target[tn];
4971         struct sym_lcb *lp = NULL;
4972
4973         /*
4974          *  Initialize the target control block if not yet.
4975          */
4976         sym_init_tcb (np, tn);
4977
4978         /*
4979          *  Allocate the LCB bus address array.
4980          *  Compute the bus address of this table.
4981          */
4982         if (ln && !tp->luntbl) {
4983                 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4984                 if (!tp->luntbl)
4985                         goto fail;
4986                 memset32(tp->luntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64);
4987                 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4988         }
4989
4990         /*
4991          *  Allocate the table of pointers for LUN(s) > 0, if needed.
4992          */
4993         if (ln && !tp->lunmp) {
4994                 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4995                                 GFP_ATOMIC);
4996                 if (!tp->lunmp)
4997                         goto fail;
4998         }
4999
5000         /*
5001          *  Allocate the lcb.
5002          *  Make it available to the chip.
5003          */
5004         lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5005         if (!lp)
5006                 goto fail;
5007         if (ln) {
5008                 tp->lunmp[ln] = lp;
5009                 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5010         }
5011         else {
5012                 tp->lun0p = lp;
5013                 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5014         }
5015         tp->nlcb++;
5016
5017         /*
5018          *  Let the itl task point to error handling.
5019          */
5020         lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5021
5022         /*
5023          *  Set the reselect pattern to our default. :)
5024          */
5025         lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5026
5027         /*
5028          *  Set user capabilities.
5029          */
5030         lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5031
5032 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5033         /*
5034          *  Initialize device queueing.
5035          */
5036         sym_que_init(&lp->waiting_ccbq);
5037         sym_que_init(&lp->started_ccbq);
5038         lp->started_max   = SYM_CONF_MAX_TASK;
5039         lp->started_limit = SYM_CONF_MAX_TASK;
5040 #endif
5041
5042 fail:
5043         return lp;
5044 }
5045
5046 /*
5047  *  Allocate LCB resources for tagged command queuing.
5048  */
5049 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5050 {
5051         struct sym_tcb *tp = &np->target[tn];
5052         struct sym_lcb *lp = sym_lp(tp, ln);
5053         int i;
5054
5055         /*
5056          *  Allocate the task table and and the tag allocation 
5057          *  circular buffer. We want both or none.
5058          */
5059         lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5060         if (!lp->itlq_tbl)
5061                 goto fail;
5062         lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5063         if (!lp->cb_tags) {
5064                 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5065                 lp->itlq_tbl = NULL;
5066                 goto fail;
5067         }
5068
5069         /*
5070          *  Initialize the task table with invalid entries.
5071          */
5072         memset32(lp->itlq_tbl, cpu_to_scr(np->notask_ba), SYM_CONF_MAX_TASK);
5073
5074         /*
5075          *  Fill up the tag buffer with tag numbers.
5076          */
5077         for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5078                 lp->cb_tags[i] = i;
5079
5080         /*
5081          *  Make the task table available to SCRIPTS, 
5082          *  And accept tagged commands now.
5083          */
5084         lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5085
5086         return;
5087 fail:
5088         return;
5089 }
5090
5091 /*
5092  *  Lun control block deallocation. Returns the number of valid remaining LCBs
5093  *  for the target.
5094  */
5095 int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln)
5096 {
5097         struct sym_tcb *tp = &np->target[tn];
5098         struct sym_lcb *lp = sym_lp(tp, ln);
5099
5100         tp->nlcb--;
5101
5102         if (ln) {
5103                 if (!tp->nlcb) {
5104                         kfree(tp->lunmp);
5105                         sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5106                         tp->lunmp = NULL;
5107                         tp->luntbl = NULL;
5108                         tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
5109                 } else {
5110                         tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa));
5111                         tp->lunmp[ln] = NULL;
5112                 }
5113         } else {
5114                 tp->lun0p = NULL;
5115                 tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
5116         }
5117
5118         if (lp->itlq_tbl) {
5119                 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5120                 kfree(lp->cb_tags);
5121         }
5122
5123         sym_mfree_dma(lp, sizeof(*lp), "LCB");
5124
5125         return tp->nlcb;
5126 }
5127
5128 /*
5129  *  Queue a SCSI IO to the controller.
5130  */
5131 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5132 {
5133         struct scsi_device *sdev = cmd->device;
5134         struct sym_tcb *tp;
5135         struct sym_lcb *lp;
5136         u_char  *msgptr;
5137         u_int   msglen;
5138         int can_disconnect;
5139
5140         /*
5141          *  Keep track of the IO in our CCB.
5142          */
5143         cp->cmd = cmd;
5144
5145         /*
5146          *  Retrieve the target descriptor.
5147          */
5148         tp = &np->target[cp->target];
5149
5150         /*
5151          *  Retrieve the lun descriptor.
5152          */
5153         lp = sym_lp(tp, sdev->lun);
5154
5155         can_disconnect = (cp->tag != NO_TAG) ||
5156                 (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5157
5158         msgptr = cp->scsi_smsg;
5159         msglen = 0;
5160         msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5161
5162         /*
5163          *  Build the tag message if present.
5164          */
5165         if (cp->tag != NO_TAG) {
5166                 u_char order = cp->order;
5167
5168                 switch(order) {
5169                 case M_ORDERED_TAG:
5170                         break;
5171                 case M_HEAD_TAG:
5172                         break;
5173                 default:
5174                         order = M_SIMPLE_TAG;
5175                 }
5176 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5177                 /*
5178                  *  Avoid too much reordering of SCSI commands.
5179                  *  The algorithm tries to prevent completion of any 
5180                  *  tagged command from being delayed against more 
5181                  *  than 3 times the max number of queued commands.
5182                  */
5183                 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5184                         lp->tags_si = !(lp->tags_si);
5185                         if (lp->tags_sum[lp->tags_si]) {
5186                                 order = M_ORDERED_TAG;
5187                                 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5188                                         sym_print_addr(cmd,
5189                                                 "ordered tag forced.\n");
5190                                 }
5191                         }
5192                         lp->tags_since = 0;
5193                 }
5194 #endif
5195                 msgptr[msglen++] = order;
5196
5197                 /*
5198                  *  For less than 128 tags, actual tags are numbered 
5199                  *  1,3,5,..2*MAXTAGS+1,since we may have to deal 
5200                  *  with devices that have problems with #TAG 0 or too 
5201                  *  great #TAG numbers. For more tags (up to 256), 
5202                  *  we use directly our tag number.
5203                  */
5204 #if SYM_CONF_MAX_TASK > (512/4)
5205                 msgptr[msglen++] = cp->tag;
5206 #else
5207                 msgptr[msglen++] = (cp->tag << 1) + 1;
5208 #endif
5209         }
5210
5211         /*
5212          *  Build a negotiation message if needed.
5213          *  (nego_status is filled by sym_prepare_nego())
5214          *
5215          *  Always negotiate on INQUIRY and REQUEST SENSE.
5216          *
5217          */
5218         cp->nego_status = 0;
5219         if ((tp->tgoal.check_nego ||
5220              cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) &&
5221             !tp->nego_cp && lp) {
5222                 msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5223         }
5224
5225         /*
5226          *  Startqueue
5227          */
5228         cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5229         cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5230
5231         /*
5232          *  select
5233          */
5234         cp->phys.select.sel_id          = cp->target;
5235         cp->phys.select.sel_scntl3      = tp->head.wval;
5236         cp->phys.select.sel_sxfer       = tp->head.sval;
5237         cp->phys.select.sel_scntl4      = tp->head.uval;
5238
5239         /*
5240          *  message
5241          */
5242         cp->phys.smsg.addr      = CCB_BA(cp, scsi_smsg);
5243         cp->phys.smsg.size      = cpu_to_scr(msglen);
5244
5245         /*
5246          *  status
5247          */
5248         cp->host_xflags         = 0;
5249         cp->host_status         = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5250         cp->ssss_status         = S_ILLEGAL;
5251         cp->xerr_status         = 0;
5252         cp->host_flags          = 0;
5253         cp->extra_bytes         = 0;
5254
5255         /*
5256          *  extreme data pointer.
5257          *  shall be positive, so -1 is lower than lowest.:)
5258          */
5259         cp->ext_sg  = -1;
5260         cp->ext_ofs = 0;
5261
5262         /*
5263          *  Build the CDB and DATA descriptor block 
5264          *  and start the IO.
5265          */
5266         return sym_setup_data_and_start(np, cmd, cp);
5267 }
5268
5269 /*
5270  *  Reset a SCSI target (all LUNs of this target).
5271  */
5272 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5273 {
5274         struct sym_tcb *tp;
5275
5276         if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5277                 return -1;
5278
5279         tp = &np->target[target];
5280         tp->to_reset = 1;
5281
5282         np->istat_sem = SEM;
5283         OUTB(np, nc_istat, SIGP|SEM);
5284
5285         return 0;
5286 }
5287
5288 /*
5289  *  Abort a SCSI IO.
5290  */
5291 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5292 {
5293         /*
5294          *  Check that the IO is active.
5295          */
5296         if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5297                 return -1;
5298
5299         /*
5300          *  If a previous abort didn't succeed in time,
5301          *  perform a BUS reset.
5302          */
5303         if (cp->to_abort) {
5304                 sym_reset_scsi_bus(np, 1);
5305                 return 0;
5306         }
5307
5308         /*
5309          *  Mark the CCB for abort and allow time for.
5310          */
5311         cp->to_abort = timed_out ? 2 : 1;
5312
5313         /*
5314          *  Tell the SCRIPTS processor to stop and synchronize with us.
5315          */
5316         np->istat_sem = SEM;
5317         OUTB(np, nc_istat, SIGP|SEM);
5318         return 0;
5319 }
5320
5321 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5322 {
5323         struct sym_ccb *cp;
5324         SYM_QUEHEAD *qp;
5325
5326         /*
5327          *  Look up our CCB control block.
5328          */
5329         cp = NULL;
5330         FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5331                 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5332                 if (cp2->cmd == cmd) {
5333                         cp = cp2;
5334                         break;
5335                 }
5336         }
5337
5338         return sym_abort_ccb(np, cp, timed_out);
5339 }
5340
5341 /*
5342  *  Complete execution of a SCSI command with extended 
5343  *  error, SCSI status error, or having been auto-sensed.
5344  *
5345  *  The SCRIPTS processor is not running there, so we 
5346  *  can safely access IO registers and remove JOBs from  
5347  *  the START queue.
5348  *  SCRATCHA is assumed to have been loaded with STARTPOS 
5349  *  before the SCRIPTS called the C code.
5350  */
5351 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5352 {
5353         struct scsi_device *sdev;
5354         struct scsi_cmnd *cmd;
5355 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5356         struct sym_tcb *tp;
5357         struct sym_lcb *lp;
5358 #endif
5359         int resid;
5360         int i;
5361
5362         /*
5363          *  Paranoid check. :)
5364          */
5365         if (!cp || !cp->cmd)
5366                 return;
5367
5368         cmd = cp->cmd;
5369         sdev = cmd->device;
5370         if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5371                 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5372                         cp->host_status, cp->ssss_status, cp->host_flags);
5373         }
5374
5375 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5376         /*
5377          *  Get target and lun pointers.
5378          */
5379         tp = &np->target[cp->target];
5380         lp = sym_lp(tp, sdev->lun);
5381 #endif
5382
5383         /*
5384          *  Check for extended errors.
5385          */
5386         if (cp->xerr_status) {
5387                 if (sym_verbose)
5388                         sym_print_xerr(cmd, cp->xerr_status);
5389                 if (cp->host_status == HS_COMPLETE)
5390                         cp->host_status = HS_COMP_ERR;
5391         }
5392
5393         /*
5394          *  Calculate the residual.
5395          */
5396         resid = sym_compute_residual(np, cp);
5397
5398         if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5399                 resid  = 0;              /* throw them away. :)             */
5400                 cp->sv_resid = 0;
5401         }
5402 #ifdef DEBUG_2_0_X
5403 if (resid)
5404         printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5405 #endif
5406
5407         /*
5408          *  Dequeue all queued CCBs for that device 
5409          *  not yet started by SCRIPTS.
5410          */
5411         i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5412         i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5413
5414         /*
5415          *  Restart the SCRIPTS processor.
5416          */
5417         OUTL_DSP(np, SCRIPTA_BA(np, start));
5418
5419 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5420         if (cp->host_status == HS_COMPLETE &&
5421             cp->ssss_status == S_QUEUE_FULL) {
5422                 if (!lp || lp->started_tags - i < 2)
5423                         goto weirdness;
5424                 /*
5425                  *  Decrease queue depth as needed.
5426                  */
5427                 lp->started_max = lp->started_tags - i - 1;
5428                 lp->num_sgood = 0;
5429
5430                 if (sym_verbose >= 2) {
5431                         sym_print_addr(cmd, " queue depth is now %d\n",
5432                                         lp->started_max);
5433                 }
5434
5435                 /*
5436                  *  Repair the CCB.
5437                  */
5438                 cp->host_status = HS_BUSY;
5439                 cp->ssss_status = S_ILLEGAL;
5440
5441                 /*
5442                  *  Let's requeue it to device.
5443                  */
5444                 sym_set_cam_status(cmd, DID_SOFT_ERROR);
5445                 goto finish;
5446         }
5447 weirdness:
5448 #endif
5449         /*
5450          *  Build result in CAM ccb.
5451          */
5452         sym_set_cam_result_error(np, cp, resid);
5453
5454 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5455 finish:
5456 #endif
5457         /*
5458          *  Add this one to the COMP queue.
5459          */
5460         sym_remque(&cp->link_ccbq);
5461         sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5462
5463         /*
5464          *  Complete all those commands with either error 
5465          *  or requeue condition.
5466          */
5467         sym_flush_comp_queue(np, 0);
5468
5469 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5470         /*
5471          *  Donnot start more than 1 command after an error.
5472          */
5473         sym_start_next_ccbs(np, lp, 1);
5474 #endif
5475 }
5476
5477 /*
5478  *  Complete execution of a successful SCSI command.
5479  *
5480  *  Only successful commands go to the DONE queue, 
5481  *  since we need to have the SCRIPTS processor 
5482  *  stopped on any error condition.
5483  *  The SCRIPTS processor is running while we are 
5484  *  completing successful commands.
5485  */
5486 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5487 {
5488 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5489         struct sym_tcb *tp;
5490         struct sym_lcb *lp;
5491 #endif
5492         struct scsi_cmnd *cmd;
5493         int resid;
5494
5495         /*
5496          *  Paranoid check. :)
5497          */
5498         if (!cp || !cp->cmd)
5499                 return;
5500         assert (cp->host_status == HS_COMPLETE);
5501
5502         /*
5503          *  Get user command.
5504          */
5505         cmd = cp->cmd;
5506
5507 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5508         /*
5509          *  Get target and lun pointers.
5510          */
5511         tp = &np->target[cp->target];
5512         lp = sym_lp(tp, cp->lun);
5513 #endif
5514
5515         /*
5516          *  If all data have been transferred, given than no
5517          *  extended error did occur, there is no residual.
5518          */
5519         resid = 0;
5520         if (cp->phys.head.lastp != cp->goalp)
5521                 resid = sym_compute_residual(np, cp);
5522
5523         /*
5524          *  Wrong transfer residuals may be worse than just always 
5525          *  returning zero. User can disable this feature in 
5526          *  sym53c8xx.h. Residual support is enabled by default.
5527          */
5528         if (!SYM_SETUP_RESIDUAL_SUPPORT)
5529                 resid  = 0;
5530 #ifdef DEBUG_2_0_X
5531 if (resid)
5532         printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5533 #endif
5534
5535         /*
5536          *  Build result in CAM ccb.
5537          */
5538         sym_set_cam_result_ok(cp, cmd, resid);
5539
5540 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5541         /*
5542          *  If max number of started ccbs had been reduced,
5543          *  increase it if 200 good status received.
5544          */
5545         if (lp && lp->started_max < lp->started_limit) {
5546                 ++lp->num_sgood;
5547                 if (lp->num_sgood >= 200) {
5548                         lp->num_sgood = 0;
5549                         ++lp->started_max;
5550                         if (sym_verbose >= 2) {
5551                                 sym_print_addr(cmd, " queue depth is now %d\n",
5552                                        lp->started_max);
5553                         }
5554                 }
5555         }
5556 #endif
5557
5558         /*
5559          *  Free our CCB.
5560          */
5561         sym_free_ccb (np, cp);
5562
5563 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5564         /*
5565          *  Requeue a couple of awaiting scsi commands.
5566          */
5567         if (!sym_que_empty(&lp->waiting_ccbq))
5568                 sym_start_next_ccbs(np, lp, 2);
5569 #endif
5570         /*
5571          *  Complete the command.
5572          */
5573         sym_xpt_done(np, cmd);
5574 }
5575
5576 /*
5577  *  Soft-attach the controller.
5578  */
5579 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5580 {
5581         struct sym_hcb *np = sym_get_hcb(shost);
5582         int i;
5583
5584         /*
5585          *  Get some info about the firmware.
5586          */
5587         np->scripta_sz   = fw->a_size;
5588         np->scriptb_sz   = fw->b_size;
5589         np->scriptz_sz   = fw->z_size;
5590         np->fw_setup     = fw->setup;
5591         np->fw_patch     = fw->patch;
5592         np->fw_name      = fw->name;
5593
5594         /*
5595          *  Save setting of some IO registers, so we will 
5596          *  be able to probe specific implementations.
5597          */
5598         sym_save_initial_setting (np);
5599
5600         /*
5601          *  Reset the chip now, since it has been reported 
5602          *  that SCSI clock calibration may not work properly 
5603          *  if the chip is currently active.
5604          */
5605         sym_chip_reset(np);
5606
5607         /*
5608          *  Prepare controller and devices settings, according 
5609          *  to chip features, user set-up and driver set-up.
5610          */
5611         sym_prepare_setting(shost, np, nvram);
5612
5613         /*
5614          *  Check the PCI clock frequency.
5615          *  Must be performed after prepare_setting since it destroys 
5616          *  STEST1 that is used to probe for the clock doubler.
5617          */
5618         i = sym_getpciclock(np);
5619         if (i > 37000 && !(np->features & FE_66MHZ))
5620                 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5621                         sym_name(np), i);
5622
5623         /*
5624          *  Allocate the start queue.
5625          */
5626         np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5627         if (!np->squeue)
5628                 goto attach_failed;
5629         np->squeue_ba = vtobus(np->squeue);
5630
5631         /*
5632          *  Allocate the done queue.
5633          */
5634         np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5635         if (!np->dqueue)
5636                 goto attach_failed;
5637         np->dqueue_ba = vtobus(np->dqueue);
5638
5639         /*
5640          *  Allocate the target bus address array.
5641          */
5642         np->targtbl = sym_calloc_dma(256, "TARGTBL");
5643         if (!np->targtbl)
5644                 goto attach_failed;
5645         np->targtbl_ba = vtobus(np->targtbl);
5646
5647         /*
5648          *  Allocate SCRIPTS areas.
5649          */
5650         np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5651         np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5652         np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5653         if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5654                 goto attach_failed;
5655
5656         /*
5657          *  Allocate the array of lists of CCBs hashed by DSA.
5658          */
5659         np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5660         if (!np->ccbh)
5661                 goto attach_failed;
5662
5663         /*
5664          *  Initialyze the CCB free and busy queues.
5665          */
5666         sym_que_init(&np->free_ccbq);
5667         sym_que_init(&np->busy_ccbq);
5668         sym_que_init(&np->comp_ccbq);
5669
5670         /*
5671          *  Initialization for optional handling 
5672          *  of device queueing.
5673          */
5674 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5675         sym_que_init(&np->dummy_ccbq);
5676 #endif
5677         /*
5678          *  Allocate some CCB. We need at least ONE.
5679          */
5680         if (!sym_alloc_ccb(np))
5681                 goto attach_failed;
5682
5683         /*
5684          *  Calculate BUS addresses where we are going 
5685          *  to load the SCRIPTS.
5686          */
5687         np->scripta_ba  = vtobus(np->scripta0);
5688         np->scriptb_ba  = vtobus(np->scriptb0);
5689         np->scriptz_ba  = vtobus(np->scriptz0);
5690
5691         if (np->ram_ba) {
5692                 np->scripta_ba = np->ram_ba;
5693                 if (np->features & FE_RAM8K) {
5694                         np->scriptb_ba = np->scripta_ba + 4096;
5695 #if 0   /* May get useful for 64 BIT PCI addressing */
5696                         np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5697 #endif
5698                 }
5699         }
5700
5701         /*
5702          *  Copy scripts to controller instance.
5703          */
5704         memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5705         memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5706         memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5707
5708         /*
5709          *  Setup variable parts in scripts and compute
5710          *  scripts bus addresses used from the C code.
5711          */
5712         np->fw_setup(np, fw);
5713
5714         /*
5715          *  Bind SCRIPTS with physical addresses usable by the 
5716          *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5717          */
5718         sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5719         sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5720         sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5721
5722 #ifdef SYM_CONF_IARB_SUPPORT
5723         /*
5724          *    If user wants IARB to be set when we win arbitration 
5725          *    and have other jobs, compute the max number of consecutive 
5726          *    settings of IARB hints before we leave devices a chance to 
5727          *    arbitrate for reselection.
5728          */
5729 #ifdef  SYM_SETUP_IARB_MAX
5730         np->iarb_max = SYM_SETUP_IARB_MAX;
5731 #else
5732         np->iarb_max = 4;
5733 #endif
5734 #endif
5735
5736         /*
5737          *  Prepare the idle and invalid task actions.
5738          */
5739         np->idletask.start      = cpu_to_scr(SCRIPTA_BA(np, idle));
5740         np->idletask.restart    = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5741         np->idletask_ba         = vtobus(&np->idletask);
5742
5743         np->notask.start        = cpu_to_scr(SCRIPTA_BA(np, idle));
5744         np->notask.restart      = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5745         np->notask_ba           = vtobus(&np->notask);
5746
5747         np->bad_itl.start       = cpu_to_scr(SCRIPTA_BA(np, idle));
5748         np->bad_itl.restart     = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5749         np->bad_itl_ba          = vtobus(&np->bad_itl);
5750
5751         np->bad_itlq.start      = cpu_to_scr(SCRIPTA_BA(np, idle));
5752         np->bad_itlq.restart    = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5753         np->bad_itlq_ba         = vtobus(&np->bad_itlq);
5754
5755         /*
5756          *  Allocate and prepare the lun JUMP table that is used 
5757          *  for a target prior the probing of devices (bad lun table).
5758          *  A private table will be allocated for the target on the 
5759          *  first INQUIRY response received.
5760          */
5761         np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5762         if (!np->badluntbl)
5763                 goto attach_failed;
5764
5765         np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5766         memset32(np->badluntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64);
5767
5768         /*
5769          *  Prepare the bus address array that contains the bus 
5770          *  address of each target control block.
5771          *  For now, assume all logical units are wrong. :)
5772          */
5773         for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5774                 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5775                 np->target[i].head.luntbl_sa =
5776                                 cpu_to_scr(vtobus(np->badluntbl));
5777                 np->target[i].head.lun0_sa =
5778                                 cpu_to_scr(vtobus(&np->badlun_sa));
5779         }
5780
5781         /*
5782          *  Now check the cache handling of the pci chipset.
5783          */
5784         if (sym_snooptest (np)) {
5785                 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5786                 goto attach_failed;
5787         }
5788
5789         /*
5790          *  Sigh! we are done.
5791          */
5792         return 0;
5793
5794 attach_failed:
5795         return -ENXIO;
5796 }
5797
5798 /*
5799  *  Free everything that has been allocated for this device.
5800  */
5801 void sym_hcb_free(struct sym_hcb *np)
5802 {
5803         SYM_QUEHEAD *qp;
5804         struct sym_ccb *cp;
5805         struct sym_tcb *tp;
5806         int target;
5807
5808         if (np->scriptz0)
5809                 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5810         if (np->scriptb0)
5811                 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5812         if (np->scripta0)
5813                 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5814         if (np->squeue)
5815                 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5816         if (np->dqueue)
5817                 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5818
5819         if (np->actccbs) {
5820                 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5821                         cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5822                         sym_mfree_dma(cp, sizeof(*cp), "CCB");
5823                 }
5824         }
5825         kfree(np->ccbh);
5826
5827         if (np->badluntbl)
5828                 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5829
5830         for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5831                 tp = &np->target[target];
5832                 if (tp->luntbl)
5833                         sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5834 #if SYM_CONF_MAX_LUN > 1
5835                 kfree(tp->lunmp);
5836 #endif 
5837         }
5838         if (np->targtbl)
5839                 sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5840 }