Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[linux-2.6-microblaze.git] / drivers / scsi / sym53c8xx_2 / sym_fw2.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
4  * of PCI-SCSI IO processors.
5  *
6  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  */
26
27 /*
28  *  Scripts for SYMBIOS-Processor
29  *
30  *  We have to know the offsets of all labels before we reach 
31  *  them (for forward jumps). Therefore we declare a struct 
32  *  here. If you make changes inside the script,
33  *
34  *  DONT FORGET TO CHANGE THE LENGTHS HERE!
35  */
36
37 /*
38  *  Script fragments which are loaded into the on-chip RAM 
39  *  of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
40  *  Must not exceed 4K bytes.
41  */
42 struct SYM_FWA_SCR {
43         u32 start               [ 14];
44         u32 getjob_begin        [  4];
45         u32 getjob_end          [  4];
46 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
47         u32 select              [  6];
48 #else
49         u32 select              [  4];
50 #endif
51 #if     SYM_CONF_DMA_ADDRESSING_MODE == 2
52         u32 is_dmap_dirty       [  4];
53 #endif
54         u32 wf_sel_done         [  2];
55         u32 sel_done            [  2];
56         u32 send_ident          [  2];
57 #ifdef SYM_CONF_IARB_SUPPORT
58         u32 select2             [  8];
59 #else
60         u32 select2             [  2];
61 #endif
62         u32 command             [  2];
63         u32 dispatch            [ 28];
64         u32 sel_no_cmd          [ 10];
65         u32 init                [  6];
66         u32 clrack              [  4];
67         u32 datai_done          [ 10];
68         u32 datai_done_wsr      [ 20];
69         u32 datao_done          [ 10];
70         u32 datao_done_wss      [  6];
71         u32 datai_phase         [  4];
72         u32 datao_phase         [  6];
73         u32 msg_in              [  2];
74         u32 msg_in2             [ 10];
75 #ifdef SYM_CONF_IARB_SUPPORT
76         u32 status              [ 14];
77 #else
78         u32 status              [ 10];
79 #endif
80         u32 complete            [  6];
81         u32 complete2           [ 12];
82         u32 done                [ 14];
83         u32 done_end            [  2];
84         u32 complete_error      [  4];
85         u32 save_dp             [ 12];
86         u32 restore_dp          [  8];
87         u32 disconnect          [ 12];
88 #ifdef SYM_CONF_IARB_SUPPORT
89         u32 idle                [  4];
90 #else
91         u32 idle                [  2];
92 #endif
93 #ifdef SYM_CONF_IARB_SUPPORT
94         u32 ungetjob            [  6];
95 #else
96         u32 ungetjob            [  4];
97 #endif
98 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
99         u32 reselect            [  4];
100 #else
101         u32 reselect            [  2];
102 #endif
103         u32 reselected          [ 22];
104         u32 resel_scntl4        [ 20];
105         u32 resel_lun0          [  6];
106 #if   SYM_CONF_MAX_TASK*4 > 512
107         u32 resel_tag           [ 26];
108 #elif SYM_CONF_MAX_TASK*4 > 256
109         u32 resel_tag           [ 20];
110 #else
111         u32 resel_tag           [ 16];
112 #endif
113         u32 resel_dsa           [  2];
114         u32 resel_dsa1          [  4];
115         u32 resel_no_tag        [  6];
116         u32 data_in             [SYM_CONF_MAX_SG * 2];
117         u32 data_in2            [  4];
118         u32 data_out            [SYM_CONF_MAX_SG * 2];
119         u32 data_out2           [  4];
120         u32 pm0_data            [ 12];
121         u32 pm0_data_out        [  6];
122         u32 pm0_data_end        [  6];
123         u32 pm1_data            [ 12];
124         u32 pm1_data_out        [  6];
125         u32 pm1_data_end        [  6];
126 };
127
128 /*
129  *  Script fragments which stay in main memory for all chips 
130  *  except for chips that support 8K on-chip RAM.
131  */
132 struct SYM_FWB_SCR {
133         u32 start64             [  2];
134         u32 no_data             [  2];
135 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
136         u32 sel_for_abort       [ 18];
137 #else
138         u32 sel_for_abort       [ 16];
139 #endif
140         u32 sel_for_abort_1     [  2];
141         u32 msg_in_etc          [ 12];
142         u32 msg_received        [  4];
143         u32 msg_weird_seen      [  4];
144         u32 msg_extended        [ 20];
145         u32 msg_bad             [  6];
146         u32 msg_weird           [  4];
147         u32 msg_weird1          [  8];
148
149         u32 wdtr_resp           [  6];
150         u32 send_wdtr           [  4];
151         u32 sdtr_resp           [  6];
152         u32 send_sdtr           [  4];
153         u32 ppr_resp            [  6];
154         u32 send_ppr            [  4];
155         u32 nego_bad_phase      [  4];
156         u32 msg_out             [  4];
157         u32 msg_out_done        [  4];
158         u32 data_ovrun          [  2];
159         u32 data_ovrun1         [ 22];
160         u32 data_ovrun2         [  8];
161         u32 abort_resel         [ 16];
162         u32 resend_ident        [  4];
163         u32 ident_break         [  4];
164         u32 ident_break_atn     [  4];
165         u32 sdata_in            [  6];
166         u32 resel_bad_lun       [  4];
167         u32 bad_i_t_l           [  4];
168         u32 bad_i_t_l_q         [  4];
169         u32 bad_status          [  6];
170         u32 pm_handle           [ 20];
171         u32 pm_handle1          [  4];
172         u32 pm_save             [  4];
173         u32 pm0_save            [ 12];
174         u32 pm_save_end         [  4];
175         u32 pm1_save            [ 14];
176
177         /* WSR handling */
178         u32 pm_wsr_handle       [ 38];
179         u32 wsr_ma_helper       [  4];
180
181         /* Data area */
182         u32 zero                [  1];
183         u32 scratch             [  1];
184         u32 pm0_data_addr       [  1];
185         u32 pm1_data_addr       [  1];
186         u32 done_pos            [  1];
187         u32 startpos            [  1];
188         u32 targtbl             [  1];
189 };
190
191 /*
192  *  Script fragments used at initialisations.
193  *  Only runs out of main memory.
194  */
195 struct SYM_FWZ_SCR {
196         u32 snooptest           [  6];
197         u32 snoopend            [  2];
198 };
199
200 static struct SYM_FWA_SCR SYM_FWA_SCR = {
201 /*--------------------------< START >----------------------------*/ {
202         /*
203          *  Switch the LED on.
204          *  Will be patched with a NO_OP if LED
205          *  not needed or not desired.
206          */
207         SCR_REG_REG (gpreg, SCR_AND, 0xfe),
208                 0,
209         /*
210          *      Clear SIGP.
211          */
212         SCR_FROM_REG (ctest2),
213                 0,
214         /*
215          *  Stop here if the C code wants to perform 
216          *  some error recovery procedure manually.
217          *  (Indicate this by setting SEM in ISTAT)
218          */
219         SCR_FROM_REG (istat),
220                 0,
221         /*
222          *  Report to the C code the next position in 
223          *  the start queue the SCRIPTS will schedule.
224          *  The C code must not change SCRATCHA.
225          */
226         SCR_LOAD_ABS (scratcha, 4),
227                 PADDR_B (startpos),
228         SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
229                 SIR_SCRIPT_STOPPED,
230         /*
231          *  Start the next job.
232          *
233          *  @DSA     = start point for this job.
234          *  SCRATCHA = address of this job in the start queue.
235          *
236          *  We will restore startpos with SCRATCHA if we fails the 
237          *  arbitration or if it is the idle job.
238          *
239          *  The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS 
240          *  is a critical path. If it is partially executed, it then 
241          *  may happen that the job address is not yet in the DSA 
242          *  and the next queue position points to the next JOB.
243          */
244         SCR_LOAD_ABS (dsa, 4),
245                 PADDR_B (startpos),
246         SCR_LOAD_REL (temp, 4),
247                 4,
248 }/*-------------------------< GETJOB_BEGIN >---------------------*/,{
249         SCR_STORE_ABS (temp, 4),
250                 PADDR_B (startpos),
251         SCR_LOAD_REL (dsa, 4),
252                 0,
253 }/*-------------------------< GETJOB_END >-----------------------*/,{
254         SCR_LOAD_REL (temp, 4),
255                 0,
256         SCR_RETURN,
257                 0,
258 }/*-------------------------< SELECT >---------------------------*/,{
259         /*
260          *  DSA contains the address of a scheduled
261          *      data structure.
262          *
263          *  SCRATCHA contains the address of the start queue  
264          *      entry which points to the next job.
265          *
266          *  Set Initiator mode.
267          *
268          *  (Target mode is left as an exercise for the reader)
269          */
270 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
271         SCR_CLR (SCR_TRG),
272                 0,
273 #endif
274         /*
275          *      And try to select this target.
276          */
277         SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
278                 PADDR_A (ungetjob),
279         /*
280          *  Now there are 4 possibilities:
281          *
282          *  (1) The chip loses arbitration.
283          *  This is ok, because it will try again,
284          *  when the bus becomes idle.
285          *  (But beware of the timeout function!)
286          *
287          *  (2) The chip is reselected.
288          *  Then the script processor takes the jump
289          *  to the RESELECT label.
290          *
291          *  (3) The chip wins arbitration.
292          *  Then it will execute SCRIPTS instruction until 
293          *  the next instruction that checks SCSI phase.
294          *  Then will stop and wait for selection to be 
295          *  complete or selection time-out to occur.
296          *
297          *  After having won arbitration, the SCRIPTS  
298          *  processor is able to execute instructions while 
299          *  the SCSI core is performing SCSI selection.
300          */
301         /*
302          *      Initialize the status registers
303          */
304         SCR_LOAD_REL (scr0, 4),
305                 offsetof (struct sym_ccb, phys.head.status),
306         /*
307          *  We may need help from CPU if the DMA segment 
308          *  registers aren't up-to-date for this IO.
309          *  Patched with NOOP for chips that donnot 
310          *  support DAC addressing.
311          */
312 #if     SYM_CONF_DMA_ADDRESSING_MODE == 2
313 }/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
314         SCR_FROM_REG (HX_REG),
315                 0,
316         SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
317                 SIR_DMAP_DIRTY,
318 #endif
319 }/*-------------------------< WF_SEL_DONE >----------------------*/,{
320         SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
321                 SIR_SEL_ATN_NO_MSG_OUT,
322 }/*-------------------------< SEL_DONE >-------------------------*/,{
323         /*
324          *  C1010-33 errata work-around.
325          *  Due to a race, the SCSI core may not have 
326          *  loaded SCNTL3 on SEL_TBL instruction.
327          *  We reload it once phase is stable.
328          *  Patched with a NOOP for other chips.
329          */
330         SCR_LOAD_REL (scntl3, 1),
331                 offsetof(struct sym_dsb, select.sel_scntl3),
332 }/*-------------------------< SEND_IDENT >-----------------------*/,{
333         /*
334          *  Selection complete.
335          *  Send the IDENTIFY and possibly the TAG message 
336          *  and negotiation message if present.
337          */
338         SCR_MOVE_TBL ^ SCR_MSG_OUT,
339                 offsetof (struct sym_dsb, smsg),
340 }/*-------------------------< SELECT2 >--------------------------*/,{
341 #ifdef SYM_CONF_IARB_SUPPORT
342         /*
343          *  Set IMMEDIATE ARBITRATION if we have been given 
344          *  a hint to do so. (Some job to do after this one).
345          */
346         SCR_FROM_REG (HF_REG),
347                 0,
348         SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
349                 8,
350         SCR_REG_REG (scntl1, SCR_OR, IARB),
351                 0,
352 #endif
353         /*
354          *  Anticipate the COMMAND phase.
355          *  This is the PHASE we expect at this point.
356          */
357         SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
358                 PADDR_A (sel_no_cmd),
359 }/*-------------------------< COMMAND >--------------------------*/,{
360         /*
361          *  ... and send the command
362          */
363         SCR_MOVE_TBL ^ SCR_COMMAND,
364                 offsetof (struct sym_dsb, cmd),
365 }/*-------------------------< DISPATCH >-------------------------*/,{
366         /*
367          *  MSG_IN is the only phase that shall be 
368          *  entered at least once for each (re)selection.
369          *  So we test it first.
370          */
371         SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
372                 PADDR_A (msg_in),
373         SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
374                 PADDR_A (datao_phase),
375         SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
376                 PADDR_A (datai_phase),
377         SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
378                 PADDR_A (status),
379         SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
380                 PADDR_A (command),
381         SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
382                 PADDR_B (msg_out),
383         /*
384          *  Discard as many illegal phases as 
385          *  required and tell the C code about.
386          */
387         SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
388                 16,
389         SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
390                 HADDR_1 (scratch),
391         SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
392                 -16,
393         SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
394                 16,
395         SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
396                 HADDR_1 (scratch),
397         SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
398                 -16,
399         SCR_INT,
400                 SIR_BAD_PHASE,
401         SCR_JUMP,
402                 PADDR_A (dispatch),
403 }/*-------------------------< SEL_NO_CMD >-----------------------*/,{
404         /*
405          *  The target does not switch to command 
406          *  phase after IDENTIFY has been sent.
407          *
408          *  If it stays in MSG OUT phase send it 
409          *  the IDENTIFY again.
410          */
411         SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
412                 PADDR_B (resend_ident),
413         /*
414          *  If target does not switch to MSG IN phase 
415          *  and we sent a negotiation, assert the 
416          *  failure immediately.
417          */
418         SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
419                 PADDR_A (dispatch),
420         SCR_FROM_REG (HS_REG),
421                 0,
422         SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
423                 SIR_NEGO_FAILED,
424         /*
425          *  Jump to dispatcher.
426          */
427         SCR_JUMP,
428                 PADDR_A (dispatch),
429 }/*-------------------------< INIT >-----------------------------*/,{
430         /*
431          *  Wait for the SCSI RESET signal to be 
432          *  inactive before restarting operations, 
433          *  since the chip may hang on SEL_ATN 
434          *  if SCSI RESET is active.
435          */
436         SCR_FROM_REG (sstat0),
437                 0,
438         SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
439                 -16,
440         SCR_JUMP,
441                 PADDR_A (start),
442 }/*-------------------------< CLRACK >---------------------------*/,{
443         /*
444          *  Terminate possible pending message phase.
445          */
446         SCR_CLR (SCR_ACK),
447                 0,
448         SCR_JUMP,
449                 PADDR_A (dispatch),
450 }/*-------------------------< DATAI_DONE >-----------------------*/,{
451         /*
452          *  Save current pointer to LASTP.
453          */
454         SCR_STORE_REL (temp, 4),
455                 offsetof (struct sym_ccb, phys.head.lastp),
456         /*
457          *  If the SWIDE is not full, jump to dispatcher.
458          *  We anticipate a STATUS phase.
459          */
460         SCR_FROM_REG (scntl2),
461                 0,
462         SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
463                 PADDR_A (datai_done_wsr),
464         SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
465                 PADDR_A (status),
466         SCR_JUMP,
467                 PADDR_A (dispatch),
468 }/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
469         /*
470          *  The SWIDE is full.
471          *  Clear this condition.
472          */
473         SCR_REG_REG (scntl2, SCR_OR, WSR),
474                 0,
475         /*
476          *  We are expecting an IGNORE RESIDUE message 
477          *  from the device, otherwise we are in data 
478          *  overrun condition. Check against MSG_IN phase.
479          */
480         SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
481                 SIR_SWIDE_OVERRUN,
482         SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
483                 PADDR_A (dispatch),
484         /*
485          *  We are in MSG_IN phase,
486          *  Read the first byte of the message.
487          *  If it is not an IGNORE RESIDUE message,
488          *  signal overrun and jump to message 
489          *  processing.
490          */
491         SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
492                 HADDR_1 (msgin[0]),
493         SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
494                 SIR_SWIDE_OVERRUN,
495         SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
496                 PADDR_A (msg_in2),
497         /*
498          *  We got the message we expected.
499          *  Read the 2nd byte, and jump to dispatcher.
500          */
501         SCR_CLR (SCR_ACK),
502                 0,
503         SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
504                 HADDR_1 (msgin[1]),
505         SCR_CLR (SCR_ACK),
506                 0,
507         SCR_JUMP,
508                 PADDR_A (dispatch),
509 }/*-------------------------< DATAO_DONE >-----------------------*/,{
510         /*
511          *  Save current pointer to LASTP.
512          */
513         SCR_STORE_REL (temp, 4),
514                 offsetof (struct sym_ccb, phys.head.lastp),
515         /*
516          *  If the SODL is not full jump to dispatcher.
517          *  We anticipate a STATUS phase.
518          */
519         SCR_FROM_REG (scntl2),
520                 0,
521         SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
522                 PADDR_A (datao_done_wss),
523         SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
524                 PADDR_A (status),
525         SCR_JUMP,
526                 PADDR_A (dispatch),
527 }/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
528         /*
529          *  The SODL is full, clear this condition.
530          */
531         SCR_REG_REG (scntl2, SCR_OR, WSS),
532                 0,
533         /*
534          *  And signal a DATA UNDERRUN condition 
535          *  to the C code.
536          */
537         SCR_INT,
538                 SIR_SODL_UNDERRUN,
539         SCR_JUMP,
540                 PADDR_A (dispatch),
541 }/*-------------------------< DATAI_PHASE >----------------------*/,{
542         /*
543          *  Jump to current pointer.
544          */
545         SCR_LOAD_REL (temp, 4),
546                 offsetof (struct sym_ccb, phys.head.lastp),
547         SCR_RETURN,
548                 0,
549 }/*-------------------------< DATAO_PHASE >----------------------*/,{
550         /*
551          *  C1010-66 errata work-around.
552          *  Extra clocks of data hold must be inserted 
553          *  in DATA OUT phase on 33 MHz PCI BUS.
554          *  Patched with a NOOP for other chips.
555          */
556         SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
557                 0,
558         /*
559          *  Jump to current pointer.
560          */
561         SCR_LOAD_REL (temp, 4),
562                 offsetof (struct sym_ccb, phys.head.lastp),
563         SCR_RETURN,
564                 0,
565 }/*-------------------------< MSG_IN >---------------------------*/,{
566         /*
567          *  Get the first byte of the message.
568          *
569          *  The script processor doesn't negate the
570          *  ACK signal after this transfer.
571          */
572         SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
573                 HADDR_1 (msgin[0]),
574 }/*-------------------------< MSG_IN2 >--------------------------*/,{
575         /*
576          *  Check first against 1 byte messages 
577          *  that we handle from SCRIPTS.
578          */
579         SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
580                 PADDR_A (complete),
581         SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
582                 PADDR_A (disconnect),
583         SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
584                 PADDR_A (save_dp),
585         SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
586                 PADDR_A (restore_dp),
587         /*
588          *  We handle all other messages from the 
589          *  C code, so no need to waste on-chip RAM 
590          *  for those ones.
591          */
592         SCR_JUMP,
593                 PADDR_B (msg_in_etc),
594 }/*-------------------------< STATUS >---------------------------*/,{
595         /*
596          *  get the status
597          */
598         SCR_MOVE_ABS (1) ^ SCR_STATUS,
599                 HADDR_1 (scratch),
600 #ifdef SYM_CONF_IARB_SUPPORT
601         /*
602          *  If STATUS is not GOOD, clear IMMEDIATE ARBITRATION, 
603          *  since we may have to tamper the start queue from 
604          *  the C code.
605          */
606         SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
607                 8,
608         SCR_REG_REG (scntl1, SCR_AND, ~IARB),
609                 0,
610 #endif
611         /*
612          *  save status to scsi_status.
613          *  mark as complete.
614          */
615         SCR_TO_REG (SS_REG),
616                 0,
617         SCR_LOAD_REG (HS_REG, HS_COMPLETE),
618                 0,
619         /*
620          *  Anticipate the MESSAGE PHASE for 
621          *  the TASK COMPLETE message.
622          */
623         SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
624                 PADDR_A (msg_in),
625         SCR_JUMP,
626                 PADDR_A (dispatch),
627 }/*-------------------------< COMPLETE >-------------------------*/,{
628         /*
629          *  Complete message.
630          *
631          *  When we terminate the cycle by clearing ACK,
632          *  the target may disconnect immediately.
633          *
634          *  We don't want to be told of an "unexpected disconnect",
635          *  so we disable this feature.
636          */
637         SCR_REG_REG (scntl2, SCR_AND, 0x7f),
638                 0,
639         /*
640          *  Terminate cycle ...
641          */
642         SCR_CLR (SCR_ACK|SCR_ATN),
643                 0,
644         /*
645          *  ... and wait for the disconnect.
646          */
647         SCR_WAIT_DISC,
648                 0,
649 }/*-------------------------< COMPLETE2 >------------------------*/,{
650         /*
651          *  Save host status.
652          */
653         SCR_STORE_REL (scr0, 4),
654                 offsetof (struct sym_ccb, phys.head.status),
655         /*
656          *  Some bridges may reorder DMA writes to memory.
657          *  We donnot want the CPU to deal with completions  
658          *  without all the posted write having been flushed 
659          *  to memory. This DUMMY READ should flush posted 
660          *  buffers prior to the CPU having to deal with 
661          *  completions.
662          */
663         SCR_LOAD_REL (scr0, 4), /* DUMMY READ */
664                 offsetof (struct sym_ccb, phys.head.status),
665
666         /*
667          *  If command resulted in not GOOD status,
668          *  call the C code if needed.
669          */
670         SCR_FROM_REG (SS_REG),
671                 0,
672         SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
673                 PADDR_B (bad_status),
674         /*
675          *  If we performed an auto-sense, call 
676          *  the C code to synchronyze task aborts 
677          *  with UNIT ATTENTION conditions.
678          */
679         SCR_FROM_REG (HF_REG),
680                 0,
681         SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
682                 PADDR_A (complete_error),
683 }/*-------------------------< DONE >-----------------------------*/,{
684         /*
685          *  Copy the DSA to the DONE QUEUE and 
686          *  signal completion to the host.
687          *  If we are interrupted between DONE 
688          *  and DONE_END, we must reset, otherwise 
689          *  the completed CCB may be lost.
690          */
691         SCR_STORE_ABS (dsa, 4),
692                 PADDR_B (scratch),
693         SCR_LOAD_ABS (dsa, 4),
694                 PADDR_B (done_pos),
695         SCR_LOAD_ABS (scratcha, 4),
696                 PADDR_B (scratch),
697         SCR_STORE_REL (scratcha, 4),
698                 0,
699         /*
700          *  The instruction below reads the DONE QUEUE next 
701          *  free position from memory.
702          *  In addition it ensures that all PCI posted writes  
703          *  are flushed and so the DSA value of the done 
704          *  CCB is visible by the CPU before INTFLY is raised.
705          */
706         SCR_LOAD_REL (scratcha, 4),
707                 4,
708         SCR_INT_FLY,
709                 0,
710         SCR_STORE_ABS (scratcha, 4),
711                 PADDR_B (done_pos),
712 }/*-------------------------< DONE_END >-------------------------*/,{
713         SCR_JUMP,
714                 PADDR_A (start),
715 }/*-------------------------< COMPLETE_ERROR >-------------------*/,{
716         SCR_LOAD_ABS (scratcha, 4),
717                 PADDR_B (startpos),
718         SCR_INT,
719                 SIR_COMPLETE_ERROR,
720 }/*-------------------------< SAVE_DP >--------------------------*/,{
721         /*
722          *  Clear ACK immediately.
723          *  No need to delay it.
724          */
725         SCR_CLR (SCR_ACK),
726                 0,
727         /*
728          *  Keep track we received a SAVE DP, so 
729          *  we will switch to the other PM context 
730          *  on the next PM since the DP may point 
731          *  to the current PM context.
732          */
733         SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
734                 0,
735         /*
736          *  SAVE_DP message:
737          *  Copy LASTP to SAVEP.
738          */
739         SCR_LOAD_REL (scratcha, 4),
740                 offsetof (struct sym_ccb, phys.head.lastp),
741         SCR_STORE_REL (scratcha, 4),
742                 offsetof (struct sym_ccb, phys.head.savep),
743         /*
744          *  Anticipate the MESSAGE PHASE for 
745          *  the DISCONNECT message.
746          */
747         SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
748                 PADDR_A (msg_in),
749         SCR_JUMP,
750                 PADDR_A (dispatch),
751 }/*-------------------------< RESTORE_DP >-----------------------*/,{
752         /*
753          *  Clear ACK immediately.
754          *  No need to delay it.
755          */
756         SCR_CLR (SCR_ACK),
757                 0,
758         /*
759          *  Copy SAVEP to LASTP.
760          */
761         SCR_LOAD_REL  (scratcha, 4),
762                 offsetof (struct sym_ccb, phys.head.savep),
763         SCR_STORE_REL (scratcha, 4),
764                 offsetof (struct sym_ccb, phys.head.lastp),
765         SCR_JUMP,
766                 PADDR_A (dispatch),
767 }/*-------------------------< DISCONNECT >-----------------------*/,{
768         /*
769          *  DISCONNECTing  ...
770          *
771          *  disable the "unexpected disconnect" feature,
772          *  and remove the ACK signal.
773          */
774         SCR_REG_REG (scntl2, SCR_AND, 0x7f),
775                 0,
776         SCR_CLR (SCR_ACK|SCR_ATN),
777                 0,
778         /*
779          *  Wait for the disconnect.
780          */
781         SCR_WAIT_DISC,
782                 0,
783         /*
784          *  Status is: DISCONNECTED.
785          */
786         SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
787                 0,
788         /*
789          *  Save host status.
790          */
791         SCR_STORE_REL (scr0, 4),
792                 offsetof (struct sym_ccb, phys.head.status),
793         SCR_JUMP,
794                 PADDR_A (start),
795 }/*-------------------------< IDLE >-----------------------------*/,{
796         /*
797          *  Nothing to do?
798          *  Switch the LED off and wait for reselect.
799          *  Will be patched with a NO_OP if LED
800          *  not needed or not desired.
801          */
802         SCR_REG_REG (gpreg, SCR_OR, 0x01),
803                 0,
804 #ifdef SYM_CONF_IARB_SUPPORT
805         SCR_JUMPR,
806                 8,
807 #endif
808 }/*-------------------------< UNGETJOB >-------------------------*/,{
809 #ifdef SYM_CONF_IARB_SUPPORT
810         /*
811          *  Set IMMEDIATE ARBITRATION, for the next time.
812          *  This will give us better chance to win arbitration 
813          *  for the job we just wanted to do.
814          */
815         SCR_REG_REG (scntl1, SCR_OR, IARB),
816                 0,
817 #endif
818         /*
819          *  We are not able to restart the SCRIPTS if we are 
820          *  interrupted and these instruction haven't been 
821          *  all executed. BTW, this is very unlikely to 
822          *  happen, but we check that from the C code.
823          */
824         SCR_LOAD_REG (dsa, 0xff),
825                 0,
826         SCR_STORE_ABS (scratcha, 4),
827                 PADDR_B (startpos),
828 }/*-------------------------< RESELECT >-------------------------*/,{
829 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
830         /*
831          *  Make sure we are in initiator mode.
832          */
833         SCR_CLR (SCR_TRG),
834                 0,
835 #endif
836         /*
837          *  Sleep waiting for a reselection.
838          */
839         SCR_WAIT_RESEL,
840                 PADDR_A(start),
841 }/*-------------------------< RESELECTED >-----------------------*/,{
842         /*
843          *  Switch the LED on.
844          *  Will be patched with a NO_OP if LED
845          *  not needed or not desired.
846          */
847         SCR_REG_REG (gpreg, SCR_AND, 0xfe),
848                 0,
849         /*
850          *  load the target id into the sdid
851          */
852         SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
853                 0,
854         SCR_TO_REG (sdid),
855                 0,
856         /*
857          *  Load the target control block address
858          */
859         SCR_LOAD_ABS (dsa, 4),
860                 PADDR_B (targtbl),
861         SCR_SFBR_REG (dsa, SCR_SHL, 0),
862                 0,
863         SCR_REG_REG (dsa, SCR_SHL, 0),
864                 0,
865         SCR_REG_REG (dsa, SCR_AND, 0x3c),
866                 0,
867         SCR_LOAD_REL (dsa, 4),
868                 0,
869         /*
870          *  We expect MESSAGE IN phase.
871          *  If not, get help from the C code.
872          */
873         SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
874                 SIR_RESEL_NO_MSG_IN,
875         /*
876          *  Load the legacy synchronous transfer registers.
877          */
878         SCR_LOAD_REL (scntl3, 1),
879                 offsetof(struct sym_tcb, head.wval),
880         SCR_LOAD_REL (sxfer, 1),
881                 offsetof(struct sym_tcb, head.sval),
882 }/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
883         /*
884          *  The C1010 uses a new synchronous timing scheme.
885          *  Will be patched with a NO_OP if not a C1010.
886          */
887         SCR_LOAD_REL (scntl4, 1),
888                 offsetof(struct sym_tcb, head.uval),
889         /*
890          *  Get the IDENTIFY message.
891          */
892         SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
893                 HADDR_1 (msgin),
894         /*
895          *  If IDENTIFY LUN #0, use a faster path 
896          *  to find the LCB structure.
897          */
898         SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
899                 PADDR_A (resel_lun0),
900         /*
901          *  If message isn't an IDENTIFY, 
902          *  tell the C code about.
903          */
904         SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
905                 SIR_RESEL_NO_IDENTIFY,
906         /*
907          *  It is an IDENTIFY message,
908          *  Load the LUN control block address.
909          */
910         SCR_LOAD_REL (dsa, 4),
911                 offsetof(struct sym_tcb, head.luntbl_sa),
912         SCR_SFBR_REG (dsa, SCR_SHL, 0),
913                 0,
914         SCR_REG_REG (dsa, SCR_SHL, 0),
915                 0,
916         SCR_REG_REG (dsa, SCR_AND, 0xfc),
917                 0,
918         SCR_LOAD_REL (dsa, 4),
919                 0,
920         SCR_JUMPR,
921                 8,
922 }/*-------------------------< RESEL_LUN0 >-----------------------*/,{
923         /*
924          *  LUN 0 special case (but usual one :))
925          */
926         SCR_LOAD_REL (dsa, 4),
927                 offsetof(struct sym_tcb, head.lun0_sa),
928         /*
929          *  Jump indirectly to the reselect action for this LUN.
930          */
931         SCR_LOAD_REL (temp, 4),
932                 offsetof(struct sym_lcb, head.resel_sa),
933         SCR_RETURN,
934                 0,
935         /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
936 }/*-------------------------< RESEL_TAG >------------------------*/,{
937         /*
938          *  ACK the IDENTIFY previously received.
939          */
940         SCR_CLR (SCR_ACK),
941                 0,
942         /*
943          *  It shall be a tagged command.
944          *  Read SIMPLE+TAG.
945          *  The C code will deal with errors.
946          *  Aggressive optimization, isn't it? :)
947          */
948         SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
949                 HADDR_1 (msgin),
950         /*
951          *  Load the pointer to the tagged task 
952          *  table for this LUN.
953          */
954         SCR_LOAD_REL (dsa, 4),
955                 offsetof(struct sym_lcb, head.itlq_tbl_sa),
956         /*
957          *  The SIDL still contains the TAG value.
958          *  Aggressive optimization, isn't it? :):)
959          */
960         SCR_REG_SFBR (sidl, SCR_SHL, 0),
961                 0,
962 #if SYM_CONF_MAX_TASK*4 > 512
963         SCR_JUMPR ^ IFFALSE (CARRYSET),
964                 8,
965         SCR_REG_REG (dsa1, SCR_OR, 2),
966                 0,
967         SCR_REG_REG (sfbr, SCR_SHL, 0),
968                 0,
969         SCR_JUMPR ^ IFFALSE (CARRYSET),
970                 8,
971         SCR_REG_REG (dsa1, SCR_OR, 1),
972                 0,
973 #elif SYM_CONF_MAX_TASK*4 > 256
974         SCR_JUMPR ^ IFFALSE (CARRYSET),
975                 8,
976         SCR_REG_REG (dsa1, SCR_OR, 1),
977                 0,
978 #endif
979         /*
980          *  Retrieve the DSA of this task.
981          *  JUMP indirectly to the restart point of the CCB.
982          */
983         SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
984                 0,
985         SCR_LOAD_REL (dsa, 4),
986                 0,
987         SCR_LOAD_REL (temp, 4),
988                 offsetof(struct sym_ccb, phys.head.go.restart),
989         SCR_RETURN,
990                 0,
991         /* In normal situations we branch to RESEL_DSA */
992 }/*-------------------------< RESEL_DSA >------------------------*/,{
993         /*
994          *  ACK the IDENTIFY or TAG previously received.
995          */
996         SCR_CLR (SCR_ACK),
997                 0,
998 }/*-------------------------< RESEL_DSA1 >-----------------------*/,{
999         /*
1000          *      Initialize the status registers
1001          */
1002         SCR_LOAD_REL (scr0, 4),
1003                 offsetof (struct sym_ccb, phys.head.status),
1004         /*
1005          *  Jump to dispatcher.
1006          */
1007         SCR_JUMP,
1008                 PADDR_A (dispatch),
1009 }/*-------------------------< RESEL_NO_TAG >---------------------*/,{
1010         /*
1011          *  Load the DSA with the unique ITL task.
1012          */
1013         SCR_LOAD_REL (dsa, 4),
1014                 offsetof(struct sym_lcb, head.itl_task_sa),
1015         /*
1016          *  JUMP indirectly to the restart point of the CCB.
1017          */
1018         SCR_LOAD_REL (temp, 4),
1019                 offsetof(struct sym_ccb, phys.head.go.restart),
1020         SCR_RETURN,
1021                 0,
1022         /* In normal situations we branch to RESEL_DSA */
1023 }/*-------------------------< DATA_IN >--------------------------*/,{
1024 /*
1025  *  Because the size depends on the
1026  *  #define SYM_CONF_MAX_SG parameter,
1027  *  it is filled in at runtime.
1028  *
1029  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1030  *  ||  SCR_CHMOV_TBL ^ SCR_DATA_IN,
1031  *  ||          offsetof (struct sym_dsb, data[ i]),
1032  *  ##==========================================
1033  */
1034 0
1035 }/*-------------------------< DATA_IN2 >-------------------------*/,{
1036         SCR_CALL,
1037                 PADDR_A (datai_done),
1038         SCR_JUMP,
1039                 PADDR_B (data_ovrun),
1040 }/*-------------------------< DATA_OUT >-------------------------*/,{
1041 /*
1042  *  Because the size depends on the
1043  *  #define SYM_CONF_MAX_SG parameter,
1044  *  it is filled in at runtime.
1045  *
1046  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1047  *  ||  SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1048  *  ||          offsetof (struct sym_dsb, data[ i]),
1049  *  ##==========================================
1050  */
1051 0
1052 }/*-------------------------< DATA_OUT2 >------------------------*/,{
1053         SCR_CALL,
1054                 PADDR_A (datao_done),
1055         SCR_JUMP,
1056                 PADDR_B (data_ovrun),
1057 }/*-------------------------< PM0_DATA >-------------------------*/,{
1058         /*
1059          *  Read our host flags to SFBR, so we will be able 
1060          *  to check against the data direction we expect.
1061          */
1062         SCR_FROM_REG (HF_REG),
1063                 0,
1064         /*
1065          *  Check against actual DATA PHASE.
1066          */
1067         SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1068                 PADDR_A (pm0_data_out),
1069         /*
1070          *  Actual phase is DATA IN.
1071          *  Check against expected direction.
1072          */
1073         SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1074                 PADDR_B (data_ovrun),
1075         /*
1076          *  Keep track we are moving data from the 
1077          *  PM0 DATA mini-script.
1078          */
1079         SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1080                 0,
1081         /*
1082          *  Move the data to memory.
1083          */
1084         SCR_CHMOV_TBL ^ SCR_DATA_IN,
1085                 offsetof (struct sym_ccb, phys.pm0.sg),
1086         SCR_JUMP,
1087                 PADDR_A (pm0_data_end),
1088 }/*-------------------------< PM0_DATA_OUT >---------------------*/,{
1089         /*
1090          *  Actual phase is DATA OUT.
1091          *  Check against expected direction.
1092          */
1093         SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1094                 PADDR_B (data_ovrun),
1095         /*
1096          *  Keep track we are moving data from the 
1097          *  PM0 DATA mini-script.
1098          */
1099         SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1100                 0,
1101         /*
1102          *  Move the data from memory.
1103          */
1104         SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1105                 offsetof (struct sym_ccb, phys.pm0.sg),
1106 }/*-------------------------< PM0_DATA_END >---------------------*/,{
1107         /*
1108          *  Clear the flag that told we were moving  
1109          *  data from the PM0 DATA mini-script.
1110          */
1111         SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
1112                 0,
1113         /*
1114          *  Return to the previous DATA script which 
1115          *  is guaranteed by design (if no bug) to be 
1116          *  the main DATA script for this transfer.
1117          */
1118         SCR_LOAD_REL (temp, 4),
1119                 offsetof (struct sym_ccb, phys.pm0.ret),
1120         SCR_RETURN,
1121                 0,
1122 }/*-------------------------< PM1_DATA >-------------------------*/,{
1123         /*
1124          *  Read our host flags to SFBR, so we will be able 
1125          *  to check against the data direction we expect.
1126          */
1127         SCR_FROM_REG (HF_REG),
1128                 0,
1129         /*
1130          *  Check against actual DATA PHASE.
1131          */
1132         SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1133                 PADDR_A (pm1_data_out),
1134         /*
1135          *  Actual phase is DATA IN.
1136          *  Check against expected direction.
1137          */
1138         SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1139                 PADDR_B (data_ovrun),
1140         /*
1141          *  Keep track we are moving data from the 
1142          *  PM1 DATA mini-script.
1143          */
1144         SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1145                 0,
1146         /*
1147          *  Move the data to memory.
1148          */
1149         SCR_CHMOV_TBL ^ SCR_DATA_IN,
1150                 offsetof (struct sym_ccb, phys.pm1.sg),
1151         SCR_JUMP,
1152                 PADDR_A (pm1_data_end),
1153 }/*-------------------------< PM1_DATA_OUT >---------------------*/,{
1154         /*
1155          *  Actual phase is DATA OUT.
1156          *  Check against expected direction.
1157          */
1158         SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1159                 PADDR_B (data_ovrun),
1160         /*
1161          *  Keep track we are moving data from the 
1162          *  PM1 DATA mini-script.
1163          */
1164         SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1165                 0,
1166         /*
1167          *  Move the data from memory.
1168          */
1169         SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1170                 offsetof (struct sym_ccb, phys.pm1.sg),
1171 }/*-------------------------< PM1_DATA_END >---------------------*/,{
1172         /*
1173          *  Clear the flag that told we were moving  
1174          *  data from the PM1 DATA mini-script.
1175          */
1176         SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
1177                 0,
1178         /*
1179          *  Return to the previous DATA script which 
1180          *  is guaranteed by design (if no bug) to be 
1181          *  the main DATA script for this transfer.
1182          */
1183         SCR_LOAD_REL (temp, 4),
1184                 offsetof (struct sym_ccb, phys.pm1.ret),
1185         SCR_RETURN,
1186                 0,
1187 }/*-------------------------<>-----------------------------------*/
1188 };
1189
1190 static struct SYM_FWB_SCR SYM_FWB_SCR = {
1191 /*--------------------------< START64 >--------------------------*/ {
1192         /*
1193          *  SCRIPT entry point for the 895A, 896 and 1010.
1194          *  For now, there is no specific stuff for those 
1195          *  chips at this point, but this may come.
1196          */
1197         SCR_JUMP,
1198                 PADDR_A (init),
1199 }/*-------------------------< NO_DATA >--------------------------*/,{
1200         SCR_JUMP,
1201                 PADDR_B (data_ovrun),
1202 }/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
1203         /*
1204          *  We are jumped here by the C code, if we have 
1205          *  some target to reset or some disconnected 
1206          *  job to abort. Since error recovery is a serious 
1207          *  busyness, we will really reset the SCSI BUS, if 
1208          *  case of a SCSI interrupt occurring in this path.
1209          */
1210 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
1211         /*
1212          *  Set initiator mode.
1213          */
1214         SCR_CLR (SCR_TRG),
1215                 0,
1216 #endif
1217         /*
1218          *      And try to select this target.
1219          */
1220         SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
1221                 PADDR_A (reselect),
1222         /*
1223          *  Wait for the selection to complete or 
1224          *  the selection to time out.
1225          */
1226         SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1227                 -8,
1228         /*
1229          *  Call the C code.
1230          */
1231         SCR_INT,
1232                 SIR_TARGET_SELECTED,
1233         /*
1234          *  The C code should let us continue here. 
1235          *  Send the 'kiss of death' message.
1236          *  We expect an immediate disconnect once 
1237          *  the target has eaten the message.
1238          */
1239         SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1240                 0,
1241         SCR_MOVE_TBL ^ SCR_MSG_OUT,
1242                 offsetof (struct sym_hcb, abrt_tbl),
1243         SCR_CLR (SCR_ACK|SCR_ATN),
1244                 0,
1245         SCR_WAIT_DISC,
1246                 0,
1247         /*
1248          *  Tell the C code that we are done.
1249          */
1250         SCR_INT,
1251                 SIR_ABORT_SENT,
1252 }/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
1253         /*
1254          *  Jump at scheduler.
1255          */
1256         SCR_JUMP,
1257                 PADDR_A (start),
1258 }/*-------------------------< MSG_IN_ETC >-----------------------*/,{
1259         /*
1260          *  If it is an EXTENDED (variable size message)
1261          *  Handle it.
1262          */
1263         SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
1264                 PADDR_B (msg_extended),
1265         /*
1266          *  Let the C code handle any other 
1267          *  1 byte message.
1268          */
1269         SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
1270                 PADDR_B (msg_received),
1271         SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
1272                 PADDR_B (msg_received),
1273         /*
1274          *  We donnot handle 2 bytes messages from SCRIPTS.
1275          *  So, let the C code deal with these ones too.
1276          */
1277         SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
1278                 PADDR_B (msg_weird_seen),
1279         SCR_CLR (SCR_ACK),
1280                 0,
1281         SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1282                 HADDR_1 (msgin[1]),
1283 }/*-------------------------< MSG_RECEIVED >---------------------*/,{
1284         SCR_LOAD_REL (scratcha, 4),     /* DUMMY READ */
1285                 0,
1286         SCR_INT,
1287                 SIR_MSG_RECEIVED,
1288 }/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
1289         SCR_LOAD_REL (scratcha, 4),     /* DUMMY READ */
1290                 0,
1291         SCR_INT,
1292                 SIR_MSG_WEIRD,
1293 }/*-------------------------< MSG_EXTENDED >---------------------*/,{
1294         /*
1295          *  Clear ACK and get the next byte 
1296          *  assumed to be the message length.
1297          */
1298         SCR_CLR (SCR_ACK),
1299                 0,
1300         SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1301                 HADDR_1 (msgin[1]),
1302         /*
1303          *  Try to catch some unlikely situations as 0 length 
1304          *  or too large the length.
1305          */
1306         SCR_JUMP ^ IFTRUE (DATA (0)),
1307                 PADDR_B (msg_weird_seen),
1308         SCR_TO_REG (scratcha),
1309                 0,
1310         SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
1311                 0,
1312         SCR_JUMP ^ IFTRUE (CARRYSET),
1313                 PADDR_B (msg_weird_seen),
1314         /*
1315          *  We donnot handle extended messages from SCRIPTS.
1316          *  Read the amount of data corresponding to the 
1317          *  message length and call the C code.
1318          */
1319         SCR_STORE_REL (scratcha, 1),
1320                 offsetof (struct sym_dsb, smsg_ext.size),
1321         SCR_CLR (SCR_ACK),
1322                 0,
1323         SCR_MOVE_TBL ^ SCR_MSG_IN,
1324                 offsetof (struct sym_dsb, smsg_ext),
1325         SCR_JUMP,
1326                 PADDR_B (msg_received),
1327 }/*-------------------------< MSG_BAD >--------------------------*/,{
1328         /*
1329          *  unimplemented message - reject it.
1330          */
1331         SCR_INT,
1332                 SIR_REJECT_TO_SEND,
1333         SCR_SET (SCR_ATN),
1334                 0,
1335         SCR_JUMP,
1336                 PADDR_A (clrack),
1337 }/*-------------------------< MSG_WEIRD >------------------------*/,{
1338         /*
1339          *  weird message received
1340          *  ignore all MSG IN phases and reject it.
1341          */
1342         SCR_INT,
1343                 SIR_REJECT_TO_SEND,
1344         SCR_SET (SCR_ATN),
1345                 0,
1346 }/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
1347         SCR_CLR (SCR_ACK),
1348                 0,
1349         SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
1350                 PADDR_A (dispatch),
1351         SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1352                 HADDR_1 (scratch),
1353         SCR_JUMP,
1354                 PADDR_B (msg_weird1),
1355 }/*-------------------------< WDTR_RESP >------------------------*/,{
1356         /*
1357          *  let the target fetch our answer.
1358          */
1359         SCR_SET (SCR_ATN),
1360                 0,
1361         SCR_CLR (SCR_ACK),
1362                 0,
1363         SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1364                 PADDR_B (nego_bad_phase),
1365 }/*-------------------------< SEND_WDTR >------------------------*/,{
1366         /*
1367          *  Send the M_X_WIDE_REQ
1368          */
1369         SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
1370                 HADDR_1 (msgout),
1371         SCR_JUMP,
1372                 PADDR_B (msg_out_done),
1373 }/*-------------------------< SDTR_RESP >------------------------*/,{
1374         /*
1375          *  let the target fetch our answer.
1376          */
1377         SCR_SET (SCR_ATN),
1378                 0,
1379         SCR_CLR (SCR_ACK),
1380                 0,
1381         SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1382                 PADDR_B (nego_bad_phase),
1383 }/*-------------------------< SEND_SDTR >------------------------*/,{
1384         /*
1385          *  Send the M_X_SYNC_REQ
1386          */
1387         SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
1388                 HADDR_1 (msgout),
1389         SCR_JUMP,
1390                 PADDR_B (msg_out_done),
1391 }/*-------------------------< PPR_RESP >-------------------------*/,{
1392         /*
1393          *  let the target fetch our answer.
1394          */
1395         SCR_SET (SCR_ATN),
1396                 0,
1397         SCR_CLR (SCR_ACK),
1398                 0,
1399         SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1400                 PADDR_B (nego_bad_phase),
1401 }/*-------------------------< SEND_PPR >-------------------------*/,{
1402         /*
1403          *  Send the M_X_PPR_REQ
1404          */
1405         SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
1406                 HADDR_1 (msgout),
1407         SCR_JUMP,
1408                 PADDR_B (msg_out_done),
1409 }/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
1410         SCR_INT,
1411                 SIR_NEGO_PROTO,
1412         SCR_JUMP,
1413                 PADDR_A (dispatch),
1414 }/*-------------------------< MSG_OUT >--------------------------*/,{
1415         /*
1416          *  The target requests a message.
1417          *  We donnot send messages that may 
1418          *  require the device to go to bus free.
1419          */
1420         SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1421                 HADDR_1 (msgout),
1422         /*
1423          *  ... wait for the next phase
1424          *  if it's a message out, send it again, ...
1425          */
1426         SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1427                 PADDR_B (msg_out),
1428 }/*-------------------------< MSG_OUT_DONE >---------------------*/,{
1429         /*
1430          *  Let the C code be aware of the 
1431          *  sent message and clear the message.
1432          */
1433         SCR_INT,
1434                 SIR_MSG_OUT_DONE,
1435         /*
1436          *  ... and process the next phase
1437          */
1438         SCR_JUMP,
1439                 PADDR_A (dispatch),
1440 }/*-------------------------< DATA_OVRUN >-----------------------*/,{
1441         /*
1442          *  Use scratcha to count the extra bytes.
1443          */
1444         SCR_LOAD_ABS (scratcha, 4),
1445                 PADDR_B (zero),
1446 }/*-------------------------< DATA_OVRUN1 >----------------------*/,{
1447         /*
1448          *  The target may want to transfer too much data.
1449          *
1450          *  If phase is DATA OUT write 1 byte and count it.
1451          */
1452         SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
1453                 16,
1454         SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
1455                 HADDR_1 (scratch),
1456         SCR_JUMP,
1457                 PADDR_B (data_ovrun2),
1458         /*
1459          *  If WSR is set, clear this condition, and 
1460          *  count this byte.
1461          */
1462         SCR_FROM_REG (scntl2),
1463                 0,
1464         SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
1465                 16,
1466         SCR_REG_REG (scntl2, SCR_OR, WSR),
1467                 0,
1468         SCR_JUMP,
1469                 PADDR_B (data_ovrun2),
1470         /*
1471          *  Finally check against DATA IN phase.
1472          *  Signal data overrun to the C code 
1473          *  and jump to dispatcher if not so.
1474          *  Read 1 byte otherwise and count it.
1475          */
1476         SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
1477                 16,
1478         SCR_INT,
1479                 SIR_DATA_OVERRUN,
1480         SCR_JUMP,
1481                 PADDR_A (dispatch),
1482         SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
1483                 HADDR_1 (scratch),
1484 }/*-------------------------< DATA_OVRUN2 >----------------------*/,{
1485         /*
1486          *  Count this byte.
1487          *  This will allow to return a negative 
1488          *  residual to user.
1489          */
1490         SCR_REG_REG (scratcha,  SCR_ADD,  0x01),
1491                 0,
1492         SCR_REG_REG (scratcha1, SCR_ADDC, 0),
1493                 0,
1494         SCR_REG_REG (scratcha2, SCR_ADDC, 0),
1495                 0,
1496         /*
1497          *  .. and repeat as required.
1498          */
1499         SCR_JUMP,
1500                 PADDR_B (data_ovrun1),
1501 }/*-------------------------< ABORT_RESEL >----------------------*/,{
1502         SCR_SET (SCR_ATN),
1503                 0,
1504         SCR_CLR (SCR_ACK),
1505                 0,
1506         /*
1507          *  send the abort/abortag/reset message
1508          *  we expect an immediate disconnect
1509          */
1510         SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1511                 0,
1512         SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1513                 HADDR_1 (msgout),
1514         SCR_CLR (SCR_ACK|SCR_ATN),
1515                 0,
1516         SCR_WAIT_DISC,
1517                 0,
1518         SCR_INT,
1519                 SIR_RESEL_ABORTED,
1520         SCR_JUMP,
1521                 PADDR_A (start),
1522 }/*-------------------------< RESEND_IDENT >---------------------*/,{
1523         /*
1524          *  The target stays in MSG OUT phase after having acked 
1525          *  Identify [+ Tag [+ Extended message ]]. Targets shall
1526          *  behave this way on parity error.
1527          *  We must send it again all the messages.
1528          */
1529         SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
1530                 0,         /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
1531         SCR_JUMP,
1532                 PADDR_A (send_ident),
1533 }/*-------------------------< IDENT_BREAK >----------------------*/,{
1534         SCR_CLR (SCR_ATN),
1535                 0,
1536         SCR_JUMP,
1537                 PADDR_A (select2),
1538 }/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
1539         SCR_SET (SCR_ATN),
1540                 0,
1541         SCR_JUMP,
1542                 PADDR_A (select2),
1543 }/*-------------------------< SDATA_IN >-------------------------*/,{
1544         SCR_CHMOV_TBL ^ SCR_DATA_IN,
1545                 offsetof (struct sym_dsb, sense),
1546         SCR_CALL,
1547                 PADDR_A (datai_done),
1548         SCR_JUMP,
1549                 PADDR_B (data_ovrun),
1550 }/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
1551         /*
1552          *  Message is an IDENTIFY, but lun is unknown.
1553          *  Signal problem to C code for logging the event.
1554          *  Send a M_ABORT to clear all pending tasks.
1555          */
1556         SCR_INT,
1557                 SIR_RESEL_BAD_LUN,
1558         SCR_JUMP,
1559                 PADDR_B (abort_resel),
1560 }/*-------------------------< BAD_I_T_L >------------------------*/,{
1561         /*
1562          *  We donnot have a task for that I_T_L.
1563          *  Signal problem to C code for logging the event.
1564          *  Send a M_ABORT message.
1565          */
1566         SCR_INT,
1567                 SIR_RESEL_BAD_I_T_L,
1568         SCR_JUMP,
1569                 PADDR_B (abort_resel),
1570 }/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
1571         /*
1572          *  We donnot have a task that matches the tag.
1573          *  Signal problem to C code for logging the event.
1574          *  Send a M_ABORTTAG message.
1575          */
1576         SCR_INT,
1577                 SIR_RESEL_BAD_I_T_L_Q,
1578         SCR_JUMP,
1579                 PADDR_B (abort_resel),
1580 }/*-------------------------< BAD_STATUS >-----------------------*/,{
1581         /*
1582          *  Anything different from INTERMEDIATE 
1583          *  CONDITION MET should be a bad SCSI status, 
1584          *  given that GOOD status has already been tested.
1585          *  Call the C code.
1586          */
1587         SCR_LOAD_ABS (scratcha, 4),
1588                 PADDR_B (startpos),
1589         SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
1590                 SIR_BAD_SCSI_STATUS,
1591         SCR_RETURN,
1592                 0,
1593 }/*-------------------------< PM_HANDLE >------------------------*/,{
1594         /*
1595          *  Phase mismatch handling.
1596          *
1597          *  Since we have to deal with 2 SCSI data pointers  
1598          *  (current and saved), we need at least 2 contexts.
1599          *  Each context (pm0 and pm1) has a saved area, a 
1600          *  SAVE mini-script and a DATA phase mini-script.
1601          */
1602         /*
1603          *  Get the PM handling flags.
1604          */
1605         SCR_FROM_REG (HF_REG),
1606                 0,
1607         /*
1608          *  If no flags (1rst PM for example), avoid 
1609          *  all the below heavy flags testing.
1610          *  This makes the normal case a bit faster.
1611          */
1612         SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
1613                 PADDR_B (pm_handle1),
1614         /*
1615          *  If we received a SAVE DP, switch to the 
1616          *  other PM context since the savep may point 
1617          *  to the current PM context.
1618          */
1619         SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
1620                 8,
1621         SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
1622                 0,
1623         /*
1624          *  If we have been interrupt in a PM DATA mini-script,
1625          *  we take the return address from the corresponding 
1626          *  saved area.
1627          *  This ensure the return address always points to the 
1628          *  main DATA script for this transfer.
1629          */
1630         SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
1631                 PADDR_B (pm_handle1),
1632         SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
1633                 16,
1634         SCR_LOAD_REL (ia, 4),
1635                 offsetof(struct sym_ccb, phys.pm0.ret),
1636         SCR_JUMP,
1637                 PADDR_B (pm_save),
1638         SCR_LOAD_REL (ia, 4),
1639                 offsetof(struct sym_ccb, phys.pm1.ret),
1640         SCR_JUMP,
1641                 PADDR_B (pm_save),
1642 }/*-------------------------< PM_HANDLE1 >-----------------------*/,{
1643         /*
1644          *  Normal case.
1645          *  Update the return address so that it 
1646          *  will point after the interrupted MOVE.
1647          */
1648         SCR_REG_REG (ia, SCR_ADD, 8),
1649                 0,
1650         SCR_REG_REG (ia1, SCR_ADDC, 0),
1651                 0,
1652 }/*-------------------------< PM_SAVE >--------------------------*/,{
1653         /*
1654          *  Clear all the flags that told us if we were 
1655          *  interrupted in a PM DATA mini-script and/or 
1656          *  we received a SAVE DP.
1657          */
1658         SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
1659                 0,
1660         /*
1661          *  Choose the current PM context.
1662          */
1663         SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
1664                 PADDR_B (pm1_save),
1665 }/*-------------------------< PM0_SAVE >-------------------------*/,{
1666         SCR_STORE_REL (ia, 4),
1667                 offsetof(struct sym_ccb, phys.pm0.ret),
1668         /*
1669          *  If WSR bit is set, either UA and RBC may 
1670          *  have to be changed whether the device wants 
1671          *  to ignore this residue or not.
1672          */
1673         SCR_FROM_REG (scntl2),
1674                 0,
1675         SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1676                 PADDR_B (pm_wsr_handle),
1677         /*
1678          *  Save the remaining byte count, the updated 
1679          *  address and the return address.
1680          */
1681         SCR_STORE_REL (rbc, 4),
1682                 offsetof(struct sym_ccb, phys.pm0.sg.size),
1683         SCR_STORE_REL (ua, 4),
1684                 offsetof(struct sym_ccb, phys.pm0.sg.addr),
1685         /*
1686          *  Set the current pointer at the PM0 DATA mini-script.
1687          */
1688         SCR_LOAD_ABS (ia, 4),
1689                 PADDR_B (pm0_data_addr),
1690 }/*-------------------------< PM_SAVE_END >----------------------*/,{
1691         SCR_STORE_REL (ia, 4),
1692                 offsetof(struct sym_ccb, phys.head.lastp),
1693         SCR_JUMP,
1694                 PADDR_A (dispatch),
1695 }/*-------------------------< PM1_SAVE >-------------------------*/,{
1696         SCR_STORE_REL (ia, 4),
1697                 offsetof(struct sym_ccb, phys.pm1.ret),
1698         /*
1699          *  If WSR bit is set, either UA and RBC may 
1700          *  have to be changed whether the device wants 
1701          *  to ignore this residue or not.
1702          */
1703         SCR_FROM_REG (scntl2),
1704                 0,
1705         SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1706                 PADDR_B (pm_wsr_handle),
1707         /*
1708          *  Save the remaining byte count, the updated 
1709          *  address and the return address.
1710          */
1711         SCR_STORE_REL (rbc, 4),
1712                 offsetof(struct sym_ccb, phys.pm1.sg.size),
1713         SCR_STORE_REL (ua, 4),
1714                 offsetof(struct sym_ccb, phys.pm1.sg.addr),
1715         /*
1716          *  Set the current pointer at the PM1 DATA mini-script.
1717          */
1718         SCR_LOAD_ABS (ia, 4),
1719                 PADDR_B (pm1_data_addr),
1720         SCR_JUMP,
1721                 PADDR_B (pm_save_end),
1722 }/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
1723         /*
1724          *  Phase mismatch handling from SCRIPT with WSR set.
1725          *  Such a condition can occur if the chip wants to 
1726          *  execute a CHMOV(size > 1) when the WSR bit is 
1727          *  set and the target changes PHASE.
1728          *
1729          *  We must move the residual byte to memory.
1730          *
1731          *  UA contains bit 0..31 of the address to 
1732          *  move the residual byte.
1733          *  Move it to the table indirect.
1734          */
1735         SCR_STORE_REL (ua, 4),
1736                 offsetof (struct sym_ccb, phys.wresid.addr),
1737         /*
1738          *  Increment UA (move address to next position).
1739          */
1740         SCR_REG_REG (ua, SCR_ADD, 1),
1741                 0,
1742         SCR_REG_REG (ua1, SCR_ADDC, 0),
1743                 0,
1744         SCR_REG_REG (ua2, SCR_ADDC, 0),
1745                 0,
1746         SCR_REG_REG (ua3, SCR_ADDC, 0),
1747                 0,
1748         /*
1749          *  Compute SCRATCHA as:
1750          *  - size to transfer = 1 byte.
1751          *  - bit 24..31 = high address bit [32...39].
1752          */
1753         SCR_LOAD_ABS (scratcha, 4),
1754                 PADDR_B (zero),
1755         SCR_REG_REG (scratcha, SCR_OR, 1),
1756                 0,
1757         SCR_FROM_REG (rbc3),
1758                 0,
1759         SCR_TO_REG (scratcha3),
1760                 0,
1761         /*
1762          *  Move this value to the table indirect.
1763          */
1764         SCR_STORE_REL (scratcha, 4),
1765                 offsetof (struct sym_ccb, phys.wresid.size),
1766         /*
1767          *  Wait for a valid phase.
1768          *  While testing with bogus QUANTUM drives, the C1010 
1769          *  sometimes raised a spurious phase mismatch with 
1770          *  WSR and the CHMOV(1) triggered another PM.
1771          *  Waiting explicitly for the PHASE seemed to avoid
1772          *  the nested phase mismatch. Btw, this didn't happen 
1773          *  using my IBM drives.
1774          */
1775         SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
1776                 0,
1777         /*
1778          *  Perform the move of the residual byte.
1779          */
1780         SCR_CHMOV_TBL ^ SCR_DATA_IN,
1781                 offsetof (struct sym_ccb, phys.wresid),
1782         /*
1783          *  We can now handle the phase mismatch with UA fixed.
1784          *  RBC[0..23]=0 is a special case that does not require 
1785          *  a PM context. The C code also checks against this.
1786          */
1787         SCR_FROM_REG (rbc),
1788                 0,
1789         SCR_RETURN ^ IFFALSE (DATA (0)),
1790                 0,
1791         SCR_FROM_REG (rbc1),
1792                 0,
1793         SCR_RETURN ^ IFFALSE (DATA (0)),
1794                 0,
1795         SCR_FROM_REG (rbc2),
1796                 0,
1797         SCR_RETURN ^ IFFALSE (DATA (0)),
1798                 0,
1799         /*
1800          *  RBC[0..23]=0.
1801          *  Not only we donnot need a PM context, but this would 
1802          *  lead to a bogus CHMOV(0). This condition means that 
1803          *  the residual was the last byte to move from this CHMOV.
1804          *  So, we just have to move the current data script pointer 
1805          *  (i.e. TEMP) to the SCRIPTS address following the 
1806          *  interrupted CHMOV and jump to dispatcher.
1807          *  IA contains the data pointer to save.
1808          */
1809         SCR_JUMP,
1810                 PADDR_B (pm_save_end),
1811 }/*-------------------------< WSR_MA_HELPER >--------------------*/,{
1812         /*
1813          *  Helper for the C code when WSR bit is set.
1814          *  Perform the move of the residual byte.
1815          */
1816         SCR_CHMOV_TBL ^ SCR_DATA_IN,
1817                 offsetof (struct sym_ccb, phys.wresid),
1818         SCR_JUMP,
1819                 PADDR_A (dispatch),
1820
1821 }/*-------------------------< ZERO >-----------------------------*/,{
1822         SCR_DATA_ZERO,
1823 }/*-------------------------< SCRATCH >--------------------------*/,{
1824         SCR_DATA_ZERO,
1825 }/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
1826         SCR_DATA_ZERO,
1827 }/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
1828         SCR_DATA_ZERO,
1829 }/*-------------------------< DONE_POS >-------------------------*/,{
1830         SCR_DATA_ZERO,
1831 }/*-------------------------< STARTPOS >-------------------------*/,{
1832         SCR_DATA_ZERO,
1833 }/*-------------------------< TARGTBL >--------------------------*/,{
1834         SCR_DATA_ZERO,
1835 }/*-------------------------<>-----------------------------------*/
1836 };
1837
1838 static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
1839  /*-------------------------< SNOOPTEST >------------------------*/{
1840         /*
1841          *  Read the variable from memory.
1842          */
1843         SCR_LOAD_REL (scratcha, 4),
1844                 offsetof(struct sym_hcb, scratch),
1845         /*
1846          *  Write the variable to memory.
1847          */
1848         SCR_STORE_REL (temp, 4),
1849                 offsetof(struct sym_hcb, scratch),
1850         /*
1851          *  Read back the variable from memory.
1852          */
1853         SCR_LOAD_REL (temp, 4),
1854                 offsetof(struct sym_hcb, scratch),
1855 }/*-------------------------< SNOOPEND >-------------------------*/,{
1856         /*
1857          *  And stop.
1858          */
1859         SCR_INT,
1860                 99,
1861 }/*-------------------------<>-----------------------------------*/
1862 };