Merge tag 'usb-5.8-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb...
[linux-2.6-microblaze.git] / drivers / scsi / storvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/completion.h>
15 #include <linux/string.h>
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/hyperv.h>
23 #include <linux/blkdev.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_host.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_tcq.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_devinfo.h>
31 #include <scsi/scsi_dbg.h>
32 #include <scsi/scsi_transport_fc.h>
33 #include <scsi/scsi_transport.h>
34
35 /*
36  * All wire protocol details (storage protocol between the guest and the host)
37  * are consolidated here.
38  *
39  * Begin protocol definitions.
40  */
41
42 /*
43  * Version history:
44  * V1 Beta: 0.1
45  * V1 RC < 2008/1/31: 1.0
46  * V1 RC > 2008/1/31:  2.0
47  * Win7: 4.2
48  * Win8: 5.1
49  * Win8.1: 6.0
50  * Win10: 6.2
51  */
52
53 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_)    ((((MAJOR_) & 0xff) << 8) | \
54                                                 (((MINOR_) & 0xff)))
55
56 #define VMSTOR_PROTO_VERSION_WIN6       VMSTOR_PROTO_VERSION(2, 0)
57 #define VMSTOR_PROTO_VERSION_WIN7       VMSTOR_PROTO_VERSION(4, 2)
58 #define VMSTOR_PROTO_VERSION_WIN8       VMSTOR_PROTO_VERSION(5, 1)
59 #define VMSTOR_PROTO_VERSION_WIN8_1     VMSTOR_PROTO_VERSION(6, 0)
60 #define VMSTOR_PROTO_VERSION_WIN10      VMSTOR_PROTO_VERSION(6, 2)
61
62 /*  Packet structure describing virtual storage requests. */
63 enum vstor_packet_operation {
64         VSTOR_OPERATION_COMPLETE_IO             = 1,
65         VSTOR_OPERATION_REMOVE_DEVICE           = 2,
66         VSTOR_OPERATION_EXECUTE_SRB             = 3,
67         VSTOR_OPERATION_RESET_LUN               = 4,
68         VSTOR_OPERATION_RESET_ADAPTER           = 5,
69         VSTOR_OPERATION_RESET_BUS               = 6,
70         VSTOR_OPERATION_BEGIN_INITIALIZATION    = 7,
71         VSTOR_OPERATION_END_INITIALIZATION      = 8,
72         VSTOR_OPERATION_QUERY_PROTOCOL_VERSION  = 9,
73         VSTOR_OPERATION_QUERY_PROPERTIES        = 10,
74         VSTOR_OPERATION_ENUMERATE_BUS           = 11,
75         VSTOR_OPERATION_FCHBA_DATA              = 12,
76         VSTOR_OPERATION_CREATE_SUB_CHANNELS     = 13,
77         VSTOR_OPERATION_MAXIMUM                 = 13
78 };
79
80 /*
81  * WWN packet for Fibre Channel HBA
82  */
83
84 struct hv_fc_wwn_packet {
85         u8      primary_active;
86         u8      reserved1[3];
87         u8      primary_port_wwn[8];
88         u8      primary_node_wwn[8];
89         u8      secondary_port_wwn[8];
90         u8      secondary_node_wwn[8];
91 };
92
93
94
95 /*
96  * SRB Flag Bits
97  */
98
99 #define SRB_FLAGS_QUEUE_ACTION_ENABLE           0x00000002
100 #define SRB_FLAGS_DISABLE_DISCONNECT            0x00000004
101 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER        0x00000008
102 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE           0x00000010
103 #define SRB_FLAGS_DISABLE_AUTOSENSE             0x00000020
104 #define SRB_FLAGS_DATA_IN                       0x00000040
105 #define SRB_FLAGS_DATA_OUT                      0x00000080
106 #define SRB_FLAGS_NO_DATA_TRANSFER              0x00000000
107 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
108 #define SRB_FLAGS_NO_QUEUE_FREEZE               0x00000100
109 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE          0x00000200
110 #define SRB_FLAGS_FREE_SENSE_BUFFER             0x00000400
111
112 /*
113  * This flag indicates the request is part of the workflow for processing a D3.
114  */
115 #define SRB_FLAGS_D3_PROCESSING                 0x00000800
116 #define SRB_FLAGS_IS_ACTIVE                     0x00010000
117 #define SRB_FLAGS_ALLOCATED_FROM_ZONE           0x00020000
118 #define SRB_FLAGS_SGLIST_FROM_POOL              0x00040000
119 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE           0x00080000
120 #define SRB_FLAGS_NO_KEEP_AWAKE                 0x00100000
121 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE        0x00200000
122 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT      0x00400000
123 #define SRB_FLAGS_DONT_START_NEXT_PACKET        0x00800000
124 #define SRB_FLAGS_PORT_DRIVER_RESERVED          0x0F000000
125 #define SRB_FLAGS_CLASS_DRIVER_RESERVED         0xF0000000
126
127 #define SP_UNTAGGED                     ((unsigned char) ~0)
128 #define SRB_SIMPLE_TAG_REQUEST          0x20
129
130 /*
131  * Platform neutral description of a scsi request -
132  * this remains the same across the write regardless of 32/64 bit
133  * note: it's patterned off the SCSI_PASS_THROUGH structure
134  */
135 #define STORVSC_MAX_CMD_LEN                     0x10
136
137 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE     0x14
138 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE      0x12
139
140 #define STORVSC_SENSE_BUFFER_SIZE               0x14
141 #define STORVSC_MAX_BUF_LEN_WITH_PADDING        0x14
142
143 /*
144  * Sense buffer size changed in win8; have a run-time
145  * variable to track the size we should use.  This value will
146  * likely change during protocol negotiation but it is valid
147  * to start by assuming pre-Win8.
148  */
149 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE;
150
151 /*
152  * The storage protocol version is determined during the
153  * initial exchange with the host.  It will indicate which
154  * storage functionality is available in the host.
155 */
156 static int vmstor_proto_version;
157
158 #define STORVSC_LOGGING_NONE    0
159 #define STORVSC_LOGGING_ERROR   1
160 #define STORVSC_LOGGING_WARN    2
161
162 static int logging_level = STORVSC_LOGGING_ERROR;
163 module_param(logging_level, int, S_IRUGO|S_IWUSR);
164 MODULE_PARM_DESC(logging_level,
165         "Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
166
167 static inline bool do_logging(int level)
168 {
169         return logging_level >= level;
170 }
171
172 #define storvsc_log(dev, level, fmt, ...)                       \
173 do {                                                            \
174         if (do_logging(level))                                  \
175                 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__);   \
176 } while (0)
177
178 struct vmscsi_win8_extension {
179         /*
180          * The following were added in Windows 8
181          */
182         u16 reserve;
183         u8  queue_tag;
184         u8  queue_action;
185         u32 srb_flags;
186         u32 time_out_value;
187         u32 queue_sort_ey;
188 } __packed;
189
190 struct vmscsi_request {
191         u16 length;
192         u8 srb_status;
193         u8 scsi_status;
194
195         u8  port_number;
196         u8  path_id;
197         u8  target_id;
198         u8  lun;
199
200         u8  cdb_length;
201         u8  sense_info_length;
202         u8  data_in;
203         u8  reserved;
204
205         u32 data_transfer_length;
206
207         union {
208                 u8 cdb[STORVSC_MAX_CMD_LEN];
209                 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
210                 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
211         };
212         /*
213          * The following was added in win8.
214          */
215         struct vmscsi_win8_extension win8_extension;
216
217 } __attribute((packed));
218
219
220 /*
221  * The size of the vmscsi_request has changed in win8. The
222  * additional size is because of new elements added to the
223  * structure. These elements are valid only when we are talking
224  * to a win8 host.
225  * Track the correction to size we need to apply. This value
226  * will likely change during protocol negotiation but it is
227  * valid to start by assuming pre-Win8.
228  */
229 static int vmscsi_size_delta = sizeof(struct vmscsi_win8_extension);
230
231 /*
232  * The list of storage protocols in order of preference.
233  */
234 struct vmstor_protocol {
235         int protocol_version;
236         int sense_buffer_size;
237         int vmscsi_size_delta;
238 };
239
240
241 static const struct vmstor_protocol vmstor_protocols[] = {
242         {
243                 VMSTOR_PROTO_VERSION_WIN10,
244                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
245                 0
246         },
247         {
248                 VMSTOR_PROTO_VERSION_WIN8_1,
249                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
250                 0
251         },
252         {
253                 VMSTOR_PROTO_VERSION_WIN8,
254                 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
255                 0
256         },
257         {
258                 VMSTOR_PROTO_VERSION_WIN7,
259                 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
260                 sizeof(struct vmscsi_win8_extension),
261         },
262         {
263                 VMSTOR_PROTO_VERSION_WIN6,
264                 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
265                 sizeof(struct vmscsi_win8_extension),
266         }
267 };
268
269
270 /*
271  * This structure is sent during the initialization phase to get the different
272  * properties of the channel.
273  */
274
275 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL          0x1
276
277 struct vmstorage_channel_properties {
278         u32 reserved;
279         u16 max_channel_cnt;
280         u16 reserved1;
281
282         u32 flags;
283         u32   max_transfer_bytes;
284
285         u64  reserved2;
286 } __packed;
287
288 /*  This structure is sent during the storage protocol negotiations. */
289 struct vmstorage_protocol_version {
290         /* Major (MSW) and minor (LSW) version numbers. */
291         u16 major_minor;
292
293         /*
294          * Revision number is auto-incremented whenever this file is changed
295          * (See FILL_VMSTOR_REVISION macro above).  Mismatch does not
296          * definitely indicate incompatibility--but it does indicate mismatched
297          * builds.
298          * This is only used on the windows side. Just set it to 0.
299          */
300         u16 revision;
301 } __packed;
302
303 /* Channel Property Flags */
304 #define STORAGE_CHANNEL_REMOVABLE_FLAG          0x1
305 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG       0x2
306
307 struct vstor_packet {
308         /* Requested operation type */
309         enum vstor_packet_operation operation;
310
311         /*  Flags - see below for values */
312         u32 flags;
313
314         /* Status of the request returned from the server side. */
315         u32 status;
316
317         /* Data payload area */
318         union {
319                 /*
320                  * Structure used to forward SCSI commands from the
321                  * client to the server.
322                  */
323                 struct vmscsi_request vm_srb;
324
325                 /* Structure used to query channel properties. */
326                 struct vmstorage_channel_properties storage_channel_properties;
327
328                 /* Used during version negotiations. */
329                 struct vmstorage_protocol_version version;
330
331                 /* Fibre channel address packet */
332                 struct hv_fc_wwn_packet wwn_packet;
333
334                 /* Number of sub-channels to create */
335                 u16 sub_channel_count;
336
337                 /* This will be the maximum of the union members */
338                 u8  buffer[0x34];
339         };
340 } __packed;
341
342 /*
343  * Packet Flags:
344  *
345  * This flag indicates that the server should send back a completion for this
346  * packet.
347  */
348
349 #define REQUEST_COMPLETION_FLAG 0x1
350
351 /* Matches Windows-end */
352 enum storvsc_request_type {
353         WRITE_TYPE = 0,
354         READ_TYPE,
355         UNKNOWN_TYPE,
356 };
357
358 /*
359  * SRB status codes and masks; a subset of the codes used here.
360  */
361
362 #define SRB_STATUS_AUTOSENSE_VALID      0x80
363 #define SRB_STATUS_QUEUE_FROZEN         0x40
364 #define SRB_STATUS_INVALID_LUN  0x20
365 #define SRB_STATUS_SUCCESS      0x01
366 #define SRB_STATUS_ABORTED      0x02
367 #define SRB_STATUS_ERROR        0x04
368 #define SRB_STATUS_DATA_OVERRUN 0x12
369
370 #define SRB_STATUS(status) \
371         (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
372 /*
373  * This is the end of Protocol specific defines.
374  */
375
376 static int storvsc_ringbuffer_size = (128 * 1024);
377 static u32 max_outstanding_req_per_channel;
378 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
379
380 static int storvsc_vcpus_per_sub_channel = 4;
381
382 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
383 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
384
385 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
386 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
387
388 static int ring_avail_percent_lowater = 10;
389 module_param(ring_avail_percent_lowater, int, S_IRUGO);
390 MODULE_PARM_DESC(ring_avail_percent_lowater,
391                 "Select a channel if available ring size > this in percent");
392
393 /*
394  * Timeout in seconds for all devices managed by this driver.
395  */
396 static int storvsc_timeout = 180;
397
398 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
399 static struct scsi_transport_template *fc_transport_template;
400 #endif
401
402 static void storvsc_on_channel_callback(void *context);
403
404 #define STORVSC_MAX_LUNS_PER_TARGET                     255
405 #define STORVSC_MAX_TARGETS                             2
406 #define STORVSC_MAX_CHANNELS                            8
407
408 #define STORVSC_FC_MAX_LUNS_PER_TARGET                  255
409 #define STORVSC_FC_MAX_TARGETS                          128
410 #define STORVSC_FC_MAX_CHANNELS                         8
411
412 #define STORVSC_IDE_MAX_LUNS_PER_TARGET                 64
413 #define STORVSC_IDE_MAX_TARGETS                         1
414 #define STORVSC_IDE_MAX_CHANNELS                        1
415
416 struct storvsc_cmd_request {
417         struct scsi_cmnd *cmd;
418
419         struct hv_device *device;
420
421         /* Synchronize the request/response if needed */
422         struct completion wait_event;
423
424         struct vmbus_channel_packet_multipage_buffer mpb;
425         struct vmbus_packet_mpb_array *payload;
426         u32 payload_sz;
427
428         struct vstor_packet vstor_packet;
429 };
430
431
432 /* A storvsc device is a device object that contains a vmbus channel */
433 struct storvsc_device {
434         struct hv_device *device;
435
436         bool     destroy;
437         bool     drain_notify;
438         atomic_t num_outstanding_req;
439         struct Scsi_Host *host;
440
441         wait_queue_head_t waiting_to_drain;
442
443         /*
444          * Each unique Port/Path/Target represents 1 channel ie scsi
445          * controller. In reality, the pathid, targetid is always 0
446          * and the port is set by us
447          */
448         unsigned int port_number;
449         unsigned char path_id;
450         unsigned char target_id;
451
452         /*
453          * Max I/O, the device can support.
454          */
455         u32   max_transfer_bytes;
456         /*
457          * Number of sub-channels we will open.
458          */
459         u16 num_sc;
460         struct vmbus_channel **stor_chns;
461         /*
462          * Mask of CPUs bound to subchannels.
463          */
464         struct cpumask alloced_cpus;
465         /* Used for vsc/vsp channel reset process */
466         struct storvsc_cmd_request init_request;
467         struct storvsc_cmd_request reset_request;
468         /*
469          * Currently active port and node names for FC devices.
470          */
471         u64 node_name;
472         u64 port_name;
473 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
474         struct fc_rport *rport;
475 #endif
476 };
477
478 struct hv_host_device {
479         struct hv_device *dev;
480         unsigned int port;
481         unsigned char path;
482         unsigned char target;
483         struct workqueue_struct *handle_error_wq;
484         struct work_struct host_scan_work;
485         struct Scsi_Host *host;
486 };
487
488 struct storvsc_scan_work {
489         struct work_struct work;
490         struct Scsi_Host *host;
491         u8 lun;
492         u8 tgt_id;
493 };
494
495 static void storvsc_device_scan(struct work_struct *work)
496 {
497         struct storvsc_scan_work *wrk;
498         struct scsi_device *sdev;
499
500         wrk = container_of(work, struct storvsc_scan_work, work);
501
502         sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
503         if (!sdev)
504                 goto done;
505         scsi_rescan_device(&sdev->sdev_gendev);
506         scsi_device_put(sdev);
507
508 done:
509         kfree(wrk);
510 }
511
512 static void storvsc_host_scan(struct work_struct *work)
513 {
514         struct Scsi_Host *host;
515         struct scsi_device *sdev;
516         struct hv_host_device *host_device =
517                 container_of(work, struct hv_host_device, host_scan_work);
518
519         host = host_device->host;
520         /*
521          * Before scanning the host, first check to see if any of the
522          * currrently known devices have been hot removed. We issue a
523          * "unit ready" command against all currently known devices.
524          * This I/O will result in an error for devices that have been
525          * removed. As part of handling the I/O error, we remove the device.
526          *
527          * When a LUN is added or removed, the host sends us a signal to
528          * scan the host. Thus we are forced to discover the LUNs that
529          * may have been removed this way.
530          */
531         mutex_lock(&host->scan_mutex);
532         shost_for_each_device(sdev, host)
533                 scsi_test_unit_ready(sdev, 1, 1, NULL);
534         mutex_unlock(&host->scan_mutex);
535         /*
536          * Now scan the host to discover LUNs that may have been added.
537          */
538         scsi_scan_host(host);
539 }
540
541 static void storvsc_remove_lun(struct work_struct *work)
542 {
543         struct storvsc_scan_work *wrk;
544         struct scsi_device *sdev;
545
546         wrk = container_of(work, struct storvsc_scan_work, work);
547         if (!scsi_host_get(wrk->host))
548                 goto done;
549
550         sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
551
552         if (sdev) {
553                 scsi_remove_device(sdev);
554                 scsi_device_put(sdev);
555         }
556         scsi_host_put(wrk->host);
557
558 done:
559         kfree(wrk);
560 }
561
562
563 /*
564  * We can get incoming messages from the host that are not in response to
565  * messages that we have sent out. An example of this would be messages
566  * received by the guest to notify dynamic addition/removal of LUNs. To
567  * deal with potential race conditions where the driver may be in the
568  * midst of being unloaded when we might receive an unsolicited message
569  * from the host, we have implemented a mechanism to gurantee sequential
570  * consistency:
571  *
572  * 1) Once the device is marked as being destroyed, we will fail all
573  *    outgoing messages.
574  * 2) We permit incoming messages when the device is being destroyed,
575  *    only to properly account for messages already sent out.
576  */
577
578 static inline struct storvsc_device *get_out_stor_device(
579                                         struct hv_device *device)
580 {
581         struct storvsc_device *stor_device;
582
583         stor_device = hv_get_drvdata(device);
584
585         if (stor_device && stor_device->destroy)
586                 stor_device = NULL;
587
588         return stor_device;
589 }
590
591
592 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
593 {
594         dev->drain_notify = true;
595         wait_event(dev->waiting_to_drain,
596                    atomic_read(&dev->num_outstanding_req) == 0);
597         dev->drain_notify = false;
598 }
599
600 static inline struct storvsc_device *get_in_stor_device(
601                                         struct hv_device *device)
602 {
603         struct storvsc_device *stor_device;
604
605         stor_device = hv_get_drvdata(device);
606
607         if (!stor_device)
608                 goto get_in_err;
609
610         /*
611          * If the device is being destroyed; allow incoming
612          * traffic only to cleanup outstanding requests.
613          */
614
615         if (stor_device->destroy  &&
616                 (atomic_read(&stor_device->num_outstanding_req) == 0))
617                 stor_device = NULL;
618
619 get_in_err:
620         return stor_device;
621
622 }
623
624 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
625                                       u32 new)
626 {
627         struct storvsc_device *stor_device;
628         struct vmbus_channel *cur_chn;
629         bool old_is_alloced = false;
630         struct hv_device *device;
631         unsigned long flags;
632         int cpu;
633
634         device = channel->primary_channel ?
635                         channel->primary_channel->device_obj
636                                 : channel->device_obj;
637         stor_device = get_out_stor_device(device);
638         if (!stor_device)
639                 return;
640
641         /* See storvsc_do_io() -> get_og_chn(). */
642         spin_lock_irqsave(&device->channel->lock, flags);
643
644         /*
645          * Determines if the storvsc device has other channels assigned to
646          * the "old" CPU to update the alloced_cpus mask and the stor_chns
647          * array.
648          */
649         if (device->channel != channel && device->channel->target_cpu == old) {
650                 cur_chn = device->channel;
651                 old_is_alloced = true;
652                 goto old_is_alloced;
653         }
654         list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
655                 if (cur_chn == channel)
656                         continue;
657                 if (cur_chn->target_cpu == old) {
658                         old_is_alloced = true;
659                         goto old_is_alloced;
660                 }
661         }
662
663 old_is_alloced:
664         if (old_is_alloced)
665                 WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
666         else
667                 cpumask_clear_cpu(old, &stor_device->alloced_cpus);
668
669         /* "Flush" the stor_chns array. */
670         for_each_possible_cpu(cpu) {
671                 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
672                                         cpu, &stor_device->alloced_cpus))
673                         WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
674         }
675
676         WRITE_ONCE(stor_device->stor_chns[new], channel);
677         cpumask_set_cpu(new, &stor_device->alloced_cpus);
678
679         spin_unlock_irqrestore(&device->channel->lock, flags);
680 }
681
682 static void handle_sc_creation(struct vmbus_channel *new_sc)
683 {
684         struct hv_device *device = new_sc->primary_channel->device_obj;
685         struct device *dev = &device->device;
686         struct storvsc_device *stor_device;
687         struct vmstorage_channel_properties props;
688         int ret;
689
690         stor_device = get_out_stor_device(device);
691         if (!stor_device)
692                 return;
693
694         memset(&props, 0, sizeof(struct vmstorage_channel_properties));
695
696         ret = vmbus_open(new_sc,
697                          storvsc_ringbuffer_size,
698                          storvsc_ringbuffer_size,
699                          (void *)&props,
700                          sizeof(struct vmstorage_channel_properties),
701                          storvsc_on_channel_callback, new_sc);
702
703         /* In case vmbus_open() fails, we don't use the sub-channel. */
704         if (ret != 0) {
705                 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
706                 return;
707         }
708
709         new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
710
711         /* Add the sub-channel to the array of available channels. */
712         stor_device->stor_chns[new_sc->target_cpu] = new_sc;
713         cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
714 }
715
716 static void  handle_multichannel_storage(struct hv_device *device, int max_chns)
717 {
718         struct device *dev = &device->device;
719         struct storvsc_device *stor_device;
720         int num_sc;
721         struct storvsc_cmd_request *request;
722         struct vstor_packet *vstor_packet;
723         int ret, t;
724
725         /*
726          * If the number of CPUs is artificially restricted, such as
727          * with maxcpus=1 on the kernel boot line, Hyper-V could offer
728          * sub-channels >= the number of CPUs. These sub-channels
729          * should not be created. The primary channel is already created
730          * and assigned to one CPU, so check against # CPUs - 1.
731          */
732         num_sc = min((int)(num_online_cpus() - 1), max_chns);
733         if (!num_sc)
734                 return;
735
736         stor_device = get_out_stor_device(device);
737         if (!stor_device)
738                 return;
739
740         stor_device->num_sc = num_sc;
741         request = &stor_device->init_request;
742         vstor_packet = &request->vstor_packet;
743
744         /*
745          * Establish a handler for dealing with subchannels.
746          */
747         vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
748
749         /*
750          * Request the host to create sub-channels.
751          */
752         memset(request, 0, sizeof(struct storvsc_cmd_request));
753         init_completion(&request->wait_event);
754         vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
755         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
756         vstor_packet->sub_channel_count = num_sc;
757
758         ret = vmbus_sendpacket(device->channel, vstor_packet,
759                                (sizeof(struct vstor_packet) -
760                                vmscsi_size_delta),
761                                (unsigned long)request,
762                                VM_PKT_DATA_INBAND,
763                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
764
765         if (ret != 0) {
766                 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
767                 return;
768         }
769
770         t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
771         if (t == 0) {
772                 dev_err(dev, "Failed to create sub-channel: timed out\n");
773                 return;
774         }
775
776         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
777             vstor_packet->status != 0) {
778                 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
779                         vstor_packet->operation, vstor_packet->status);
780                 return;
781         }
782
783         /*
784          * We need to do nothing here, because vmbus_process_offer()
785          * invokes channel->sc_creation_callback, which will open and use
786          * the sub-channel(s).
787          */
788 }
789
790 static void cache_wwn(struct storvsc_device *stor_device,
791                       struct vstor_packet *vstor_packet)
792 {
793         /*
794          * Cache the currently active port and node ww names.
795          */
796         if (vstor_packet->wwn_packet.primary_active) {
797                 stor_device->node_name =
798                         wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
799                 stor_device->port_name =
800                         wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
801         } else {
802                 stor_device->node_name =
803                         wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
804                 stor_device->port_name =
805                         wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
806         }
807 }
808
809
810 static int storvsc_execute_vstor_op(struct hv_device *device,
811                                     struct storvsc_cmd_request *request,
812                                     bool status_check)
813 {
814         struct vstor_packet *vstor_packet;
815         int ret, t;
816
817         vstor_packet = &request->vstor_packet;
818
819         init_completion(&request->wait_event);
820         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
821
822         ret = vmbus_sendpacket(device->channel, vstor_packet,
823                                (sizeof(struct vstor_packet) -
824                                vmscsi_size_delta),
825                                (unsigned long)request,
826                                VM_PKT_DATA_INBAND,
827                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
828         if (ret != 0)
829                 return ret;
830
831         t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
832         if (t == 0)
833                 return -ETIMEDOUT;
834
835         if (!status_check)
836                 return ret;
837
838         if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
839             vstor_packet->status != 0)
840                 return -EINVAL;
841
842         return ret;
843 }
844
845 static int storvsc_channel_init(struct hv_device *device, bool is_fc)
846 {
847         struct storvsc_device *stor_device;
848         struct storvsc_cmd_request *request;
849         struct vstor_packet *vstor_packet;
850         int ret, i;
851         int max_chns;
852         bool process_sub_channels = false;
853
854         stor_device = get_out_stor_device(device);
855         if (!stor_device)
856                 return -ENODEV;
857
858         request = &stor_device->init_request;
859         vstor_packet = &request->vstor_packet;
860
861         /*
862          * Now, initiate the vsc/vsp initialization protocol on the open
863          * channel
864          */
865         memset(request, 0, sizeof(struct storvsc_cmd_request));
866         vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
867         ret = storvsc_execute_vstor_op(device, request, true);
868         if (ret)
869                 return ret;
870         /*
871          * Query host supported protocol version.
872          */
873
874         for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) {
875                 /* reuse the packet for version range supported */
876                 memset(vstor_packet, 0, sizeof(struct vstor_packet));
877                 vstor_packet->operation =
878                         VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
879
880                 vstor_packet->version.major_minor =
881                         vmstor_protocols[i].protocol_version;
882
883                 /*
884                  * The revision number is only used in Windows; set it to 0.
885                  */
886                 vstor_packet->version.revision = 0;
887                 ret = storvsc_execute_vstor_op(device, request, false);
888                 if (ret != 0)
889                         return ret;
890
891                 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
892                         return -EINVAL;
893
894                 if (vstor_packet->status == 0) {
895                         vmstor_proto_version =
896                                 vmstor_protocols[i].protocol_version;
897
898                         sense_buffer_size =
899                                 vmstor_protocols[i].sense_buffer_size;
900
901                         vmscsi_size_delta =
902                                 vmstor_protocols[i].vmscsi_size_delta;
903
904                         break;
905                 }
906         }
907
908         if (vstor_packet->status != 0)
909                 return -EINVAL;
910
911
912         memset(vstor_packet, 0, sizeof(struct vstor_packet));
913         vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
914         ret = storvsc_execute_vstor_op(device, request, true);
915         if (ret != 0)
916                 return ret;
917
918         /*
919          * Check to see if multi-channel support is there.
920          * Hosts that implement protocol version of 5.1 and above
921          * support multi-channel.
922          */
923         max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
924
925         /*
926          * Allocate state to manage the sub-channels.
927          * We allocate an array based on the numbers of possible CPUs
928          * (Hyper-V does not support cpu online/offline).
929          * This Array will be sparseley populated with unique
930          * channels - primary + sub-channels.
931          * We will however populate all the slots to evenly distribute
932          * the load.
933          */
934         stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
935                                          GFP_KERNEL);
936         if (stor_device->stor_chns == NULL)
937                 return -ENOMEM;
938
939         device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
940
941         stor_device->stor_chns[device->channel->target_cpu] = device->channel;
942         cpumask_set_cpu(device->channel->target_cpu,
943                         &stor_device->alloced_cpus);
944
945         if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) {
946                 if (vstor_packet->storage_channel_properties.flags &
947                     STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
948                         process_sub_channels = true;
949         }
950         stor_device->max_transfer_bytes =
951                 vstor_packet->storage_channel_properties.max_transfer_bytes;
952
953         if (!is_fc)
954                 goto done;
955
956         /*
957          * For FC devices retrieve FC HBA data.
958          */
959         memset(vstor_packet, 0, sizeof(struct vstor_packet));
960         vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
961         ret = storvsc_execute_vstor_op(device, request, true);
962         if (ret != 0)
963                 return ret;
964
965         /*
966          * Cache the currently active port and node ww names.
967          */
968         cache_wwn(stor_device, vstor_packet);
969
970 done:
971
972         memset(vstor_packet, 0, sizeof(struct vstor_packet));
973         vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
974         ret = storvsc_execute_vstor_op(device, request, true);
975         if (ret != 0)
976                 return ret;
977
978         if (process_sub_channels)
979                 handle_multichannel_storage(device, max_chns);
980
981         return ret;
982 }
983
984 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
985                                 struct scsi_cmnd *scmnd,
986                                 struct Scsi_Host *host,
987                                 u8 asc, u8 ascq)
988 {
989         struct storvsc_scan_work *wrk;
990         void (*process_err_fn)(struct work_struct *work);
991         struct hv_host_device *host_dev = shost_priv(host);
992         bool do_work = false;
993
994         switch (SRB_STATUS(vm_srb->srb_status)) {
995         case SRB_STATUS_ERROR:
996                 /*
997                  * Let upper layer deal with error when
998                  * sense message is present.
999                  */
1000
1001                 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID)
1002                         break;
1003                 /*
1004                  * If there is an error; offline the device since all
1005                  * error recovery strategies would have already been
1006                  * deployed on the host side. However, if the command
1007                  * were a pass-through command deal with it appropriately.
1008                  */
1009                 switch (scmnd->cmnd[0]) {
1010                 case ATA_16:
1011                 case ATA_12:
1012                         set_host_byte(scmnd, DID_PASSTHROUGH);
1013                         break;
1014                 /*
1015                  * On Some Windows hosts TEST_UNIT_READY command can return
1016                  * SRB_STATUS_ERROR, let the upper level code deal with it
1017                  * based on the sense information.
1018                  */
1019                 case TEST_UNIT_READY:
1020                         break;
1021                 default:
1022                         set_host_byte(scmnd, DID_ERROR);
1023                 }
1024                 break;
1025         case SRB_STATUS_INVALID_LUN:
1026                 set_host_byte(scmnd, DID_NO_CONNECT);
1027                 do_work = true;
1028                 process_err_fn = storvsc_remove_lun;
1029                 break;
1030         case SRB_STATUS_ABORTED:
1031                 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID &&
1032                     (asc == 0x2a) && (ascq == 0x9)) {
1033                         do_work = true;
1034                         process_err_fn = storvsc_device_scan;
1035                         /*
1036                          * Retry the I/O that trigerred this.
1037                          */
1038                         set_host_byte(scmnd, DID_REQUEUE);
1039                 }
1040                 break;
1041         }
1042
1043         if (!do_work)
1044                 return;
1045
1046         /*
1047          * We need to schedule work to process this error; schedule it.
1048          */
1049         wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1050         if (!wrk) {
1051                 set_host_byte(scmnd, DID_TARGET_FAILURE);
1052                 return;
1053         }
1054
1055         wrk->host = host;
1056         wrk->lun = vm_srb->lun;
1057         wrk->tgt_id = vm_srb->target_id;
1058         INIT_WORK(&wrk->work, process_err_fn);
1059         queue_work(host_dev->handle_error_wq, &wrk->work);
1060 }
1061
1062
1063 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1064                                        struct storvsc_device *stor_dev)
1065 {
1066         struct scsi_cmnd *scmnd = cmd_request->cmd;
1067         struct scsi_sense_hdr sense_hdr;
1068         struct vmscsi_request *vm_srb;
1069         u32 data_transfer_length;
1070         struct Scsi_Host *host;
1071         u32 payload_sz = cmd_request->payload_sz;
1072         void *payload = cmd_request->payload;
1073
1074         host = stor_dev->host;
1075
1076         vm_srb = &cmd_request->vstor_packet.vm_srb;
1077         data_transfer_length = vm_srb->data_transfer_length;
1078
1079         scmnd->result = vm_srb->scsi_status;
1080
1081         if (scmnd->result) {
1082                 if (scsi_normalize_sense(scmnd->sense_buffer,
1083                                 SCSI_SENSE_BUFFERSIZE, &sense_hdr) &&
1084                     !(sense_hdr.sense_key == NOT_READY &&
1085                                  sense_hdr.asc == 0x03A) &&
1086                     do_logging(STORVSC_LOGGING_ERROR))
1087                         scsi_print_sense_hdr(scmnd->device, "storvsc",
1088                                              &sense_hdr);
1089         }
1090
1091         if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1092                 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1093                                          sense_hdr.ascq);
1094                 /*
1095                  * The Windows driver set data_transfer_length on
1096                  * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1097                  * is untouched.  In these cases we set it to 0.
1098                  */
1099                 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1100                         data_transfer_length = 0;
1101         }
1102
1103         scsi_set_resid(scmnd,
1104                 cmd_request->payload->range.len - data_transfer_length);
1105
1106         scmnd->scsi_done(scmnd);
1107
1108         if (payload_sz >
1109                 sizeof(struct vmbus_channel_packet_multipage_buffer))
1110                 kfree(payload);
1111 }
1112
1113 static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1114                                   struct vstor_packet *vstor_packet,
1115                                   struct storvsc_cmd_request *request)
1116 {
1117         struct vstor_packet *stor_pkt;
1118         struct hv_device *device = stor_device->device;
1119
1120         stor_pkt = &request->vstor_packet;
1121
1122         /*
1123          * The current SCSI handling on the host side does
1124          * not correctly handle:
1125          * INQUIRY command with page code parameter set to 0x80
1126          * MODE_SENSE command with cmd[2] == 0x1c
1127          *
1128          * Setup srb and scsi status so this won't be fatal.
1129          * We do this so we can distinguish truly fatal failues
1130          * (srb status == 0x4) and off-line the device in that case.
1131          */
1132
1133         if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1134            (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1135                 vstor_packet->vm_srb.scsi_status = 0;
1136                 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1137         }
1138
1139
1140         /* Copy over the status...etc */
1141         stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1142         stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1143         stor_pkt->vm_srb.sense_info_length =
1144         vstor_packet->vm_srb.sense_info_length;
1145
1146         if (vstor_packet->vm_srb.scsi_status != 0 ||
1147             vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS)
1148                 storvsc_log(device, STORVSC_LOGGING_WARN,
1149                         "cmd 0x%x scsi status 0x%x srb status 0x%x\n",
1150                         stor_pkt->vm_srb.cdb[0],
1151                         vstor_packet->vm_srb.scsi_status,
1152                         vstor_packet->vm_srb.srb_status);
1153
1154         if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) {
1155                 /* CHECK_CONDITION */
1156                 if (vstor_packet->vm_srb.srb_status &
1157                         SRB_STATUS_AUTOSENSE_VALID) {
1158                         /* autosense data available */
1159
1160                         storvsc_log(device, STORVSC_LOGGING_WARN,
1161                                 "stor pkt %p autosense data valid - len %d\n",
1162                                 request, vstor_packet->vm_srb.sense_info_length);
1163
1164                         memcpy(request->cmd->sense_buffer,
1165                                vstor_packet->vm_srb.sense_data,
1166                                vstor_packet->vm_srb.sense_info_length);
1167
1168                 }
1169         }
1170
1171         stor_pkt->vm_srb.data_transfer_length =
1172         vstor_packet->vm_srb.data_transfer_length;
1173
1174         storvsc_command_completion(request, stor_device);
1175
1176         if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1177                 stor_device->drain_notify)
1178                 wake_up(&stor_device->waiting_to_drain);
1179
1180
1181 }
1182
1183 static void storvsc_on_receive(struct storvsc_device *stor_device,
1184                              struct vstor_packet *vstor_packet,
1185                              struct storvsc_cmd_request *request)
1186 {
1187         struct hv_host_device *host_dev;
1188         switch (vstor_packet->operation) {
1189         case VSTOR_OPERATION_COMPLETE_IO:
1190                 storvsc_on_io_completion(stor_device, vstor_packet, request);
1191                 break;
1192
1193         case VSTOR_OPERATION_REMOVE_DEVICE:
1194         case VSTOR_OPERATION_ENUMERATE_BUS:
1195                 host_dev = shost_priv(stor_device->host);
1196                 queue_work(
1197                         host_dev->handle_error_wq, &host_dev->host_scan_work);
1198                 break;
1199
1200         case VSTOR_OPERATION_FCHBA_DATA:
1201                 cache_wwn(stor_device, vstor_packet);
1202 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1203                 fc_host_node_name(stor_device->host) = stor_device->node_name;
1204                 fc_host_port_name(stor_device->host) = stor_device->port_name;
1205 #endif
1206                 break;
1207         default:
1208                 break;
1209         }
1210 }
1211
1212 static void storvsc_on_channel_callback(void *context)
1213 {
1214         struct vmbus_channel *channel = (struct vmbus_channel *)context;
1215         const struct vmpacket_descriptor *desc;
1216         struct hv_device *device;
1217         struct storvsc_device *stor_device;
1218
1219         if (channel->primary_channel != NULL)
1220                 device = channel->primary_channel->device_obj;
1221         else
1222                 device = channel->device_obj;
1223
1224         stor_device = get_in_stor_device(device);
1225         if (!stor_device)
1226                 return;
1227
1228         foreach_vmbus_pkt(desc, channel) {
1229                 void *packet = hv_pkt_data(desc);
1230                 struct storvsc_cmd_request *request;
1231
1232                 request = (struct storvsc_cmd_request *)
1233                         ((unsigned long)desc->trans_id);
1234
1235                 if (request == &stor_device->init_request ||
1236                     request == &stor_device->reset_request) {
1237                         memcpy(&request->vstor_packet, packet,
1238                                (sizeof(struct vstor_packet) - vmscsi_size_delta));
1239                         complete(&request->wait_event);
1240                 } else {
1241                         storvsc_on_receive(stor_device, packet, request);
1242                 }
1243         }
1244 }
1245
1246 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1247                                   bool is_fc)
1248 {
1249         struct vmstorage_channel_properties props;
1250         int ret;
1251
1252         memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1253
1254         ret = vmbus_open(device->channel,
1255                          ring_size,
1256                          ring_size,
1257                          (void *)&props,
1258                          sizeof(struct vmstorage_channel_properties),
1259                          storvsc_on_channel_callback, device->channel);
1260
1261         if (ret != 0)
1262                 return ret;
1263
1264         ret = storvsc_channel_init(device, is_fc);
1265
1266         return ret;
1267 }
1268
1269 static int storvsc_dev_remove(struct hv_device *device)
1270 {
1271         struct storvsc_device *stor_device;
1272
1273         stor_device = hv_get_drvdata(device);
1274
1275         stor_device->destroy = true;
1276
1277         /* Make sure flag is set before waiting */
1278         wmb();
1279
1280         /*
1281          * At this point, all outbound traffic should be disable. We
1282          * only allow inbound traffic (responses) to proceed so that
1283          * outstanding requests can be completed.
1284          */
1285
1286         storvsc_wait_to_drain(stor_device);
1287
1288         /*
1289          * Since we have already drained, we don't need to busy wait
1290          * as was done in final_release_stor_device()
1291          * Note that we cannot set the ext pointer to NULL until
1292          * we have drained - to drain the outgoing packets, we need to
1293          * allow incoming packets.
1294          */
1295         hv_set_drvdata(device, NULL);
1296
1297         /* Close the channel */
1298         vmbus_close(device->channel);
1299
1300         kfree(stor_device->stor_chns);
1301         kfree(stor_device);
1302         return 0;
1303 }
1304
1305 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1306                                         u16 q_num)
1307 {
1308         u16 slot = 0;
1309         u16 hash_qnum;
1310         const struct cpumask *node_mask;
1311         int num_channels, tgt_cpu;
1312
1313         if (stor_device->num_sc == 0) {
1314                 stor_device->stor_chns[q_num] = stor_device->device->channel;
1315                 return stor_device->device->channel;
1316         }
1317
1318         /*
1319          * Our channel array is sparsley populated and we
1320          * initiated I/O on a processor/hw-q that does not
1321          * currently have a designated channel. Fix this.
1322          * The strategy is simple:
1323          * I. Ensure NUMA locality
1324          * II. Distribute evenly (best effort)
1325          */
1326
1327         node_mask = cpumask_of_node(cpu_to_node(q_num));
1328
1329         num_channels = 0;
1330         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1331                 if (cpumask_test_cpu(tgt_cpu, node_mask))
1332                         num_channels++;
1333         }
1334         if (num_channels == 0) {
1335                 stor_device->stor_chns[q_num] = stor_device->device->channel;
1336                 return stor_device->device->channel;
1337         }
1338
1339         hash_qnum = q_num;
1340         while (hash_qnum >= num_channels)
1341                 hash_qnum -= num_channels;
1342
1343         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1344                 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1345                         continue;
1346                 if (slot == hash_qnum)
1347                         break;
1348                 slot++;
1349         }
1350
1351         stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1352
1353         return stor_device->stor_chns[q_num];
1354 }
1355
1356
1357 static int storvsc_do_io(struct hv_device *device,
1358                          struct storvsc_cmd_request *request, u16 q_num)
1359 {
1360         struct storvsc_device *stor_device;
1361         struct vstor_packet *vstor_packet;
1362         struct vmbus_channel *outgoing_channel, *channel;
1363         unsigned long flags;
1364         int ret = 0;
1365         const struct cpumask *node_mask;
1366         int tgt_cpu;
1367
1368         vstor_packet = &request->vstor_packet;
1369         stor_device = get_out_stor_device(device);
1370
1371         if (!stor_device)
1372                 return -ENODEV;
1373
1374
1375         request->device  = device;
1376         /*
1377          * Select an appropriate channel to send the request out.
1378          */
1379         /* See storvsc_change_target_cpu(). */
1380         outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1381         if (outgoing_channel != NULL) {
1382                 if (outgoing_channel->target_cpu == q_num) {
1383                         /*
1384                          * Ideally, we want to pick a different channel if
1385                          * available on the same NUMA node.
1386                          */
1387                         node_mask = cpumask_of_node(cpu_to_node(q_num));
1388                         for_each_cpu_wrap(tgt_cpu,
1389                                  &stor_device->alloced_cpus, q_num + 1) {
1390                                 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1391                                         continue;
1392                                 if (tgt_cpu == q_num)
1393                                         continue;
1394                                 channel = READ_ONCE(
1395                                         stor_device->stor_chns[tgt_cpu]);
1396                                 if (channel == NULL)
1397                                         continue;
1398                                 if (hv_get_avail_to_write_percent(
1399                                                         &channel->outbound)
1400                                                 > ring_avail_percent_lowater) {
1401                                         outgoing_channel = channel;
1402                                         goto found_channel;
1403                                 }
1404                         }
1405
1406                         /*
1407                          * All the other channels on the same NUMA node are
1408                          * busy. Try to use the channel on the current CPU
1409                          */
1410                         if (hv_get_avail_to_write_percent(
1411                                                 &outgoing_channel->outbound)
1412                                         > ring_avail_percent_lowater)
1413                                 goto found_channel;
1414
1415                         /*
1416                          * If we reach here, all the channels on the current
1417                          * NUMA node are busy. Try to find a channel in
1418                          * other NUMA nodes
1419                          */
1420                         for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1421                                 if (cpumask_test_cpu(tgt_cpu, node_mask))
1422                                         continue;
1423                                 channel = READ_ONCE(
1424                                         stor_device->stor_chns[tgt_cpu]);
1425                                 if (channel == NULL)
1426                                         continue;
1427                                 if (hv_get_avail_to_write_percent(
1428                                                         &channel->outbound)
1429                                                 > ring_avail_percent_lowater) {
1430                                         outgoing_channel = channel;
1431                                         goto found_channel;
1432                                 }
1433                         }
1434                 }
1435         } else {
1436                 spin_lock_irqsave(&device->channel->lock, flags);
1437                 outgoing_channel = stor_device->stor_chns[q_num];
1438                 if (outgoing_channel != NULL) {
1439                         spin_unlock_irqrestore(&device->channel->lock, flags);
1440                         goto found_channel;
1441                 }
1442                 outgoing_channel = get_og_chn(stor_device, q_num);
1443                 spin_unlock_irqrestore(&device->channel->lock, flags);
1444         }
1445
1446 found_channel:
1447         vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1448
1449         vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) -
1450                                         vmscsi_size_delta);
1451
1452
1453         vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1454
1455
1456         vstor_packet->vm_srb.data_transfer_length =
1457         request->payload->range.len;
1458
1459         vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1460
1461         if (request->payload->range.len) {
1462
1463                 ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1464                                 request->payload, request->payload_sz,
1465                                 vstor_packet,
1466                                 (sizeof(struct vstor_packet) -
1467                                 vmscsi_size_delta),
1468                                 (unsigned long)request);
1469         } else {
1470                 ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1471                                (sizeof(struct vstor_packet) -
1472                                 vmscsi_size_delta),
1473                                (unsigned long)request,
1474                                VM_PKT_DATA_INBAND,
1475                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1476         }
1477
1478         if (ret != 0)
1479                 return ret;
1480
1481         atomic_inc(&stor_device->num_outstanding_req);
1482
1483         return ret;
1484 }
1485
1486 static int storvsc_device_alloc(struct scsi_device *sdevice)
1487 {
1488         /*
1489          * Set blist flag to permit the reading of the VPD pages even when
1490          * the target may claim SPC-2 compliance. MSFT targets currently
1491          * claim SPC-2 compliance while they implement post SPC-2 features.
1492          * With this flag we can correctly handle WRITE_SAME_16 issues.
1493          *
1494          * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1495          * still supports REPORT LUN.
1496          */
1497         sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1498
1499         return 0;
1500 }
1501
1502 static int storvsc_device_configure(struct scsi_device *sdevice)
1503 {
1504         blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1505
1506         sdevice->no_write_same = 1;
1507
1508         /*
1509          * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1510          * if the device is a MSFT virtual device.  If the host is
1511          * WIN10 or newer, allow write_same.
1512          */
1513         if (!strncmp(sdevice->vendor, "Msft", 4)) {
1514                 switch (vmstor_proto_version) {
1515                 case VMSTOR_PROTO_VERSION_WIN8:
1516                 case VMSTOR_PROTO_VERSION_WIN8_1:
1517                         sdevice->scsi_level = SCSI_SPC_3;
1518                         break;
1519                 }
1520
1521                 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1522                         sdevice->no_write_same = 0;
1523         }
1524
1525         return 0;
1526 }
1527
1528 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1529                            sector_t capacity, int *info)
1530 {
1531         sector_t nsect = capacity;
1532         sector_t cylinders = nsect;
1533         int heads, sectors_pt;
1534
1535         /*
1536          * We are making up these values; let us keep it simple.
1537          */
1538         heads = 0xff;
1539         sectors_pt = 0x3f;      /* Sectors per track */
1540         sector_div(cylinders, heads * sectors_pt);
1541         if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1542                 cylinders = 0xffff;
1543
1544         info[0] = heads;
1545         info[1] = sectors_pt;
1546         info[2] = (int)cylinders;
1547
1548         return 0;
1549 }
1550
1551 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1552 {
1553         struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1554         struct hv_device *device = host_dev->dev;
1555
1556         struct storvsc_device *stor_device;
1557         struct storvsc_cmd_request *request;
1558         struct vstor_packet *vstor_packet;
1559         int ret, t;
1560
1561
1562         stor_device = get_out_stor_device(device);
1563         if (!stor_device)
1564                 return FAILED;
1565
1566         request = &stor_device->reset_request;
1567         vstor_packet = &request->vstor_packet;
1568
1569         init_completion(&request->wait_event);
1570
1571         vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1572         vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1573         vstor_packet->vm_srb.path_id = stor_device->path_id;
1574
1575         ret = vmbus_sendpacket(device->channel, vstor_packet,
1576                                (sizeof(struct vstor_packet) -
1577                                 vmscsi_size_delta),
1578                                (unsigned long)&stor_device->reset_request,
1579                                VM_PKT_DATA_INBAND,
1580                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1581         if (ret != 0)
1582                 return FAILED;
1583
1584         t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1585         if (t == 0)
1586                 return TIMEOUT_ERROR;
1587
1588
1589         /*
1590          * At this point, all outstanding requests in the adapter
1591          * should have been flushed out and return to us
1592          * There is a potential race here where the host may be in
1593          * the process of responding when we return from here.
1594          * Just wait for all in-transit packets to be accounted for
1595          * before we return from here.
1596          */
1597         storvsc_wait_to_drain(stor_device);
1598
1599         return SUCCESS;
1600 }
1601
1602 /*
1603  * The host guarantees to respond to each command, although I/O latencies might
1604  * be unbounded on Azure.  Reset the timer unconditionally to give the host a
1605  * chance to perform EH.
1606  */
1607 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1608 {
1609 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1610         if (scmnd->device->host->transportt == fc_transport_template)
1611                 return fc_eh_timed_out(scmnd);
1612 #endif
1613         return BLK_EH_RESET_TIMER;
1614 }
1615
1616 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1617 {
1618         bool allowed = true;
1619         u8 scsi_op = scmnd->cmnd[0];
1620
1621         switch (scsi_op) {
1622         /* the host does not handle WRITE_SAME, log accident usage */
1623         case WRITE_SAME:
1624         /*
1625          * smartd sends this command and the host does not handle
1626          * this. So, don't send it.
1627          */
1628         case SET_WINDOW:
1629                 scmnd->result = ILLEGAL_REQUEST << 16;
1630                 allowed = false;
1631                 break;
1632         default:
1633                 break;
1634         }
1635         return allowed;
1636 }
1637
1638 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1639 {
1640         int ret;
1641         struct hv_host_device *host_dev = shost_priv(host);
1642         struct hv_device *dev = host_dev->dev;
1643         struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1644         int i;
1645         struct scatterlist *sgl;
1646         unsigned int sg_count = 0;
1647         struct vmscsi_request *vm_srb;
1648         struct scatterlist *cur_sgl;
1649         struct vmbus_packet_mpb_array  *payload;
1650         u32 payload_sz;
1651         u32 length;
1652
1653         if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1654                 /*
1655                  * On legacy hosts filter unimplemented commands.
1656                  * Future hosts are expected to correctly handle
1657                  * unsupported commands. Furthermore, it is
1658                  * possible that some of the currently
1659                  * unsupported commands maybe supported in
1660                  * future versions of the host.
1661                  */
1662                 if (!storvsc_scsi_cmd_ok(scmnd)) {
1663                         scmnd->scsi_done(scmnd);
1664                         return 0;
1665                 }
1666         }
1667
1668         /* Setup the cmd request */
1669         cmd_request->cmd = scmnd;
1670
1671         vm_srb = &cmd_request->vstor_packet.vm_srb;
1672         vm_srb->win8_extension.time_out_value = 60;
1673
1674         vm_srb->win8_extension.srb_flags |=
1675                 SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1676
1677         if (scmnd->device->tagged_supported) {
1678                 vm_srb->win8_extension.srb_flags |=
1679                 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1680                 vm_srb->win8_extension.queue_tag = SP_UNTAGGED;
1681                 vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST;
1682         }
1683
1684         /* Build the SRB */
1685         switch (scmnd->sc_data_direction) {
1686         case DMA_TO_DEVICE:
1687                 vm_srb->data_in = WRITE_TYPE;
1688                 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT;
1689                 break;
1690         case DMA_FROM_DEVICE:
1691                 vm_srb->data_in = READ_TYPE;
1692                 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN;
1693                 break;
1694         case DMA_NONE:
1695                 vm_srb->data_in = UNKNOWN_TYPE;
1696                 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1697                 break;
1698         default:
1699                 /*
1700                  * This is DMA_BIDIRECTIONAL or something else we are never
1701                  * supposed to see here.
1702                  */
1703                 WARN(1, "Unexpected data direction: %d\n",
1704                      scmnd->sc_data_direction);
1705                 return -EINVAL;
1706         }
1707
1708
1709         vm_srb->port_number = host_dev->port;
1710         vm_srb->path_id = scmnd->device->channel;
1711         vm_srb->target_id = scmnd->device->id;
1712         vm_srb->lun = scmnd->device->lun;
1713
1714         vm_srb->cdb_length = scmnd->cmd_len;
1715
1716         memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1717
1718         sgl = (struct scatterlist *)scsi_sglist(scmnd);
1719         sg_count = scsi_sg_count(scmnd);
1720
1721         length = scsi_bufflen(scmnd);
1722         payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1723         payload_sz = sizeof(cmd_request->mpb);
1724
1725         if (sg_count) {
1726                 if (sg_count > MAX_PAGE_BUFFER_COUNT) {
1727
1728                         payload_sz = (sg_count * sizeof(u64) +
1729                                       sizeof(struct vmbus_packet_mpb_array));
1730                         payload = kzalloc(payload_sz, GFP_ATOMIC);
1731                         if (!payload)
1732                                 return SCSI_MLQUEUE_DEVICE_BUSY;
1733                 }
1734
1735                 payload->range.len = length;
1736                 payload->range.offset = sgl[0].offset;
1737
1738                 cur_sgl = sgl;
1739                 for (i = 0; i < sg_count; i++) {
1740                         payload->range.pfn_array[i] =
1741                                 page_to_pfn(sg_page((cur_sgl)));
1742                         cur_sgl = sg_next(cur_sgl);
1743                 }
1744         }
1745
1746         cmd_request->payload = payload;
1747         cmd_request->payload_sz = payload_sz;
1748
1749         /* Invokes the vsc to start an IO */
1750         ret = storvsc_do_io(dev, cmd_request, get_cpu());
1751         put_cpu();
1752
1753         if (ret == -EAGAIN) {
1754                 if (payload_sz > sizeof(cmd_request->mpb))
1755                         kfree(payload);
1756                 /* no more space */
1757                 return SCSI_MLQUEUE_DEVICE_BUSY;
1758         }
1759
1760         return 0;
1761 }
1762
1763 static struct scsi_host_template scsi_driver = {
1764         .module =               THIS_MODULE,
1765         .name =                 "storvsc_host_t",
1766         .cmd_size =             sizeof(struct storvsc_cmd_request),
1767         .bios_param =           storvsc_get_chs,
1768         .queuecommand =         storvsc_queuecommand,
1769         .eh_host_reset_handler =        storvsc_host_reset_handler,
1770         .proc_name =            "storvsc_host",
1771         .eh_timed_out =         storvsc_eh_timed_out,
1772         .slave_alloc =          storvsc_device_alloc,
1773         .slave_configure =      storvsc_device_configure,
1774         .cmd_per_lun =          2048,
1775         .this_id =              -1,
1776         /* Make sure we dont get a sg segment crosses a page boundary */
1777         .dma_boundary =         PAGE_SIZE-1,
1778         /* Ensure there are no gaps in presented sgls */
1779         .virt_boundary_mask =   PAGE_SIZE-1,
1780         .no_write_same =        1,
1781         .track_queue_depth =    1,
1782         .change_queue_depth =   storvsc_change_queue_depth,
1783 };
1784
1785 enum {
1786         SCSI_GUID,
1787         IDE_GUID,
1788         SFC_GUID,
1789 };
1790
1791 static const struct hv_vmbus_device_id id_table[] = {
1792         /* SCSI guid */
1793         { HV_SCSI_GUID,
1794           .driver_data = SCSI_GUID
1795         },
1796         /* IDE guid */
1797         { HV_IDE_GUID,
1798           .driver_data = IDE_GUID
1799         },
1800         /* Fibre Channel GUID */
1801         {
1802           HV_SYNTHFC_GUID,
1803           .driver_data = SFC_GUID
1804         },
1805         { },
1806 };
1807
1808 MODULE_DEVICE_TABLE(vmbus, id_table);
1809
1810 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1811
1812 static bool hv_dev_is_fc(struct hv_device *hv_dev)
1813 {
1814         return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1815 }
1816
1817 static int storvsc_probe(struct hv_device *device,
1818                         const struct hv_vmbus_device_id *dev_id)
1819 {
1820         int ret;
1821         int num_cpus = num_online_cpus();
1822         struct Scsi_Host *host;
1823         struct hv_host_device *host_dev;
1824         bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1825         bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1826         int target = 0;
1827         struct storvsc_device *stor_device;
1828         int max_luns_per_target;
1829         int max_targets;
1830         int max_channels;
1831         int max_sub_channels = 0;
1832
1833         /*
1834          * Based on the windows host we are running on,
1835          * set state to properly communicate with the host.
1836          */
1837
1838         if (vmbus_proto_version < VERSION_WIN8) {
1839                 max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1840                 max_targets = STORVSC_IDE_MAX_TARGETS;
1841                 max_channels = STORVSC_IDE_MAX_CHANNELS;
1842         } else {
1843                 max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET;
1844                 max_targets = STORVSC_MAX_TARGETS;
1845                 max_channels = STORVSC_MAX_CHANNELS;
1846                 /*
1847                  * On Windows8 and above, we support sub-channels for storage
1848                  * on SCSI and FC controllers.
1849                  * The number of sub-channels offerred is based on the number of
1850                  * VCPUs in the guest.
1851                  */
1852                 if (!dev_is_ide)
1853                         max_sub_channels =
1854                                 (num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1855         }
1856
1857         scsi_driver.can_queue = max_outstanding_req_per_channel *
1858                                 (max_sub_channels + 1) *
1859                                 (100 - ring_avail_percent_lowater) / 100;
1860
1861         host = scsi_host_alloc(&scsi_driver,
1862                                sizeof(struct hv_host_device));
1863         if (!host)
1864                 return -ENOMEM;
1865
1866         host_dev = shost_priv(host);
1867         memset(host_dev, 0, sizeof(struct hv_host_device));
1868
1869         host_dev->port = host->host_no;
1870         host_dev->dev = device;
1871         host_dev->host = host;
1872
1873
1874         stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1875         if (!stor_device) {
1876                 ret = -ENOMEM;
1877                 goto err_out0;
1878         }
1879
1880         stor_device->destroy = false;
1881         init_waitqueue_head(&stor_device->waiting_to_drain);
1882         stor_device->device = device;
1883         stor_device->host = host;
1884         hv_set_drvdata(device, stor_device);
1885
1886         stor_device->port_number = host->host_no;
1887         ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
1888         if (ret)
1889                 goto err_out1;
1890
1891         host_dev->path = stor_device->path_id;
1892         host_dev->target = stor_device->target_id;
1893
1894         switch (dev_id->driver_data) {
1895         case SFC_GUID:
1896                 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1897                 host->max_id = STORVSC_FC_MAX_TARGETS;
1898                 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1899 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1900                 host->transportt = fc_transport_template;
1901 #endif
1902                 break;
1903
1904         case SCSI_GUID:
1905                 host->max_lun = max_luns_per_target;
1906                 host->max_id = max_targets;
1907                 host->max_channel = max_channels - 1;
1908                 break;
1909
1910         default:
1911                 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1912                 host->max_id = STORVSC_IDE_MAX_TARGETS;
1913                 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
1914                 break;
1915         }
1916         /* max cmd length */
1917         host->max_cmd_len = STORVSC_MAX_CMD_LEN;
1918
1919         /*
1920          * set the table size based on the info we got
1921          * from the host.
1922          */
1923         host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT);
1924         /*
1925          * For non-IDE disks, the host supports multiple channels.
1926          * Set the number of HW queues we are supporting.
1927          */
1928         if (!dev_is_ide)
1929                 host->nr_hw_queues = num_present_cpus();
1930
1931         /*
1932          * Set the error handler work queue.
1933          */
1934         host_dev->handle_error_wq =
1935                         alloc_ordered_workqueue("storvsc_error_wq_%d",
1936                                                 WQ_MEM_RECLAIM,
1937                                                 host->host_no);
1938         if (!host_dev->handle_error_wq)
1939                 goto err_out2;
1940         INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
1941         /* Register the HBA and start the scsi bus scan */
1942         ret = scsi_add_host(host, &device->device);
1943         if (ret != 0)
1944                 goto err_out3;
1945
1946         if (!dev_is_ide) {
1947                 scsi_scan_host(host);
1948         } else {
1949                 target = (device->dev_instance.b[5] << 8 |
1950                          device->dev_instance.b[4]);
1951                 ret = scsi_add_device(host, 0, target, 0);
1952                 if (ret)
1953                         goto err_out4;
1954         }
1955 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1956         if (host->transportt == fc_transport_template) {
1957                 struct fc_rport_identifiers ids = {
1958                         .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
1959                 };
1960
1961                 fc_host_node_name(host) = stor_device->node_name;
1962                 fc_host_port_name(host) = stor_device->port_name;
1963                 stor_device->rport = fc_remote_port_add(host, 0, &ids);
1964                 if (!stor_device->rport) {
1965                         ret = -ENOMEM;
1966                         goto err_out4;
1967                 }
1968         }
1969 #endif
1970         return 0;
1971
1972 err_out4:
1973         scsi_remove_host(host);
1974
1975 err_out3:
1976         destroy_workqueue(host_dev->handle_error_wq);
1977
1978 err_out2:
1979         /*
1980          * Once we have connected with the host, we would need to
1981          * to invoke storvsc_dev_remove() to rollback this state and
1982          * this call also frees up the stor_device; hence the jump around
1983          * err_out1 label.
1984          */
1985         storvsc_dev_remove(device);
1986         goto err_out0;
1987
1988 err_out1:
1989         kfree(stor_device->stor_chns);
1990         kfree(stor_device);
1991
1992 err_out0:
1993         scsi_host_put(host);
1994         return ret;
1995 }
1996
1997 /* Change a scsi target's queue depth */
1998 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
1999 {
2000         if (queue_depth > scsi_driver.can_queue)
2001                 queue_depth = scsi_driver.can_queue;
2002
2003         return scsi_change_queue_depth(sdev, queue_depth);
2004 }
2005
2006 static int storvsc_remove(struct hv_device *dev)
2007 {
2008         struct storvsc_device *stor_device = hv_get_drvdata(dev);
2009         struct Scsi_Host *host = stor_device->host;
2010         struct hv_host_device *host_dev = shost_priv(host);
2011
2012 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2013         if (host->transportt == fc_transport_template) {
2014                 fc_remote_port_delete(stor_device->rport);
2015                 fc_remove_host(host);
2016         }
2017 #endif
2018         destroy_workqueue(host_dev->handle_error_wq);
2019         scsi_remove_host(host);
2020         storvsc_dev_remove(dev);
2021         scsi_host_put(host);
2022
2023         return 0;
2024 }
2025
2026 static int storvsc_suspend(struct hv_device *hv_dev)
2027 {
2028         struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2029         struct Scsi_Host *host = stor_device->host;
2030         struct hv_host_device *host_dev = shost_priv(host);
2031
2032         storvsc_wait_to_drain(stor_device);
2033
2034         drain_workqueue(host_dev->handle_error_wq);
2035
2036         vmbus_close(hv_dev->channel);
2037
2038         kfree(stor_device->stor_chns);
2039         stor_device->stor_chns = NULL;
2040
2041         cpumask_clear(&stor_device->alloced_cpus);
2042
2043         return 0;
2044 }
2045
2046 static int storvsc_resume(struct hv_device *hv_dev)
2047 {
2048         int ret;
2049
2050         ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
2051                                      hv_dev_is_fc(hv_dev));
2052         return ret;
2053 }
2054
2055 static struct hv_driver storvsc_drv = {
2056         .name = KBUILD_MODNAME,
2057         .id_table = id_table,
2058         .probe = storvsc_probe,
2059         .remove = storvsc_remove,
2060         .suspend = storvsc_suspend,
2061         .resume = storvsc_resume,
2062         .driver = {
2063                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2064         },
2065 };
2066
2067 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2068 static struct fc_function_template fc_transport_functions = {
2069         .show_host_node_name = 1,
2070         .show_host_port_name = 1,
2071 };
2072 #endif
2073
2074 static int __init storvsc_drv_init(void)
2075 {
2076         int ret;
2077
2078         /*
2079          * Divide the ring buffer data size (which is 1 page less
2080          * than the ring buffer size since that page is reserved for
2081          * the ring buffer indices) by the max request size (which is
2082          * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2083          */
2084         max_outstanding_req_per_channel =
2085                 ((storvsc_ringbuffer_size - PAGE_SIZE) /
2086                 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2087                 sizeof(struct vstor_packet) + sizeof(u64) -
2088                 vmscsi_size_delta,
2089                 sizeof(u64)));
2090
2091 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2092         fc_transport_template = fc_attach_transport(&fc_transport_functions);
2093         if (!fc_transport_template)
2094                 return -ENODEV;
2095 #endif
2096
2097         ret = vmbus_driver_register(&storvsc_drv);
2098
2099 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2100         if (ret)
2101                 fc_release_transport(fc_transport_template);
2102 #endif
2103
2104         return ret;
2105 }
2106
2107 static void __exit storvsc_drv_exit(void)
2108 {
2109         vmbus_driver_unregister(&storvsc_drv);
2110 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2111         fc_release_transport(fc_transport_template);
2112 #endif
2113 }
2114
2115 MODULE_LICENSE("GPL");
2116 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2117 module_init(storvsc_drv_init);
2118 module_exit(storvsc_drv_exit);