Merge tag 'pstore-v5.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux-2.6-microblaze.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99
100 #define SD_MINORS       16
101
102 static void sd_config_discard(struct scsi_disk *, unsigned int);
103 static void sd_config_write_same(struct scsi_disk *);
104 static int  sd_revalidate_disk(struct gendisk *);
105 static void sd_unlock_native_capacity(struct gendisk *disk);
106 static int  sd_probe(struct device *);
107 static int  sd_remove(struct device *);
108 static void sd_shutdown(struct device *);
109 static int sd_suspend_system(struct device *);
110 static int sd_suspend_runtime(struct device *);
111 static int sd_resume_system(struct device *);
112 static int sd_resume_runtime(struct device *);
113 static void sd_rescan(struct device *);
114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
115 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
116 static int sd_done(struct scsi_cmnd *);
117 static void sd_eh_reset(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121
122 static DEFINE_IDA(sd_index_ida);
123
124 static struct kmem_cache *sd_cdb_cache;
125 static mempool_t *sd_cdb_pool;
126 static mempool_t *sd_page_pool;
127 static struct lock_class_key sd_bio_compl_lkclass;
128
129 static const char *sd_cache_types[] = {
130         "write through", "none", "write back",
131         "write back, no read (daft)"
132 };
133
134 static void sd_set_flush_flag(struct scsi_disk *sdkp)
135 {
136         bool wc = false, fua = false;
137
138         if (sdkp->WCE) {
139                 wc = true;
140                 if (sdkp->DPOFUA)
141                         fua = true;
142         }
143
144         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
145 }
146
147 static ssize_t
148 cache_type_store(struct device *dev, struct device_attribute *attr,
149                  const char *buf, size_t count)
150 {
151         int ct, rcd, wce, sp;
152         struct scsi_disk *sdkp = to_scsi_disk(dev);
153         struct scsi_device *sdp = sdkp->device;
154         char buffer[64];
155         char *buffer_data;
156         struct scsi_mode_data data;
157         struct scsi_sense_hdr sshdr;
158         static const char temp[] = "temporary ";
159         int len;
160
161         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
162                 /* no cache control on RBC devices; theoretically they
163                  * can do it, but there's probably so many exceptions
164                  * it's not worth the risk */
165                 return -EINVAL;
166
167         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
168                 buf += sizeof(temp) - 1;
169                 sdkp->cache_override = 1;
170         } else {
171                 sdkp->cache_override = 0;
172         }
173
174         ct = sysfs_match_string(sd_cache_types, buf);
175         if (ct < 0)
176                 return -EINVAL;
177
178         rcd = ct & 0x01 ? 1 : 0;
179         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
180
181         if (sdkp->cache_override) {
182                 sdkp->WCE = wce;
183                 sdkp->RCD = rcd;
184                 sd_set_flush_flag(sdkp);
185                 return count;
186         }
187
188         if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
189                             sdkp->max_retries, &data, NULL))
190                 return -EINVAL;
191         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
192                   data.block_descriptor_length);
193         buffer_data = buffer + data.header_length +
194                 data.block_descriptor_length;
195         buffer_data[2] &= ~0x05;
196         buffer_data[2] |= wce << 2 | rcd;
197         sp = buffer_data[0] & 0x80 ? 1 : 0;
198         buffer_data[0] &= ~0x80;
199
200         /*
201          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
202          * received mode parameter buffer before doing MODE SELECT.
203          */
204         data.device_specific = 0;
205
206         if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
207                              sdkp->max_retries, &data, &sshdr)) {
208                 if (scsi_sense_valid(&sshdr))
209                         sd_print_sense_hdr(sdkp, &sshdr);
210                 return -EINVAL;
211         }
212         sd_revalidate_disk(sdkp->disk);
213         return count;
214 }
215
216 static ssize_t
217 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
218                        char *buf)
219 {
220         struct scsi_disk *sdkp = to_scsi_disk(dev);
221         struct scsi_device *sdp = sdkp->device;
222
223         return sprintf(buf, "%u\n", sdp->manage_start_stop);
224 }
225
226 static ssize_t
227 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
228                         const char *buf, size_t count)
229 {
230         struct scsi_disk *sdkp = to_scsi_disk(dev);
231         struct scsi_device *sdp = sdkp->device;
232         bool v;
233
234         if (!capable(CAP_SYS_ADMIN))
235                 return -EACCES;
236
237         if (kstrtobool(buf, &v))
238                 return -EINVAL;
239
240         sdp->manage_start_stop = v;
241
242         return count;
243 }
244 static DEVICE_ATTR_RW(manage_start_stop);
245
246 static ssize_t
247 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
248 {
249         struct scsi_disk *sdkp = to_scsi_disk(dev);
250
251         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
252 }
253
254 static ssize_t
255 allow_restart_store(struct device *dev, struct device_attribute *attr,
256                     const char *buf, size_t count)
257 {
258         bool v;
259         struct scsi_disk *sdkp = to_scsi_disk(dev);
260         struct scsi_device *sdp = sdkp->device;
261
262         if (!capable(CAP_SYS_ADMIN))
263                 return -EACCES;
264
265         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
266                 return -EINVAL;
267
268         if (kstrtobool(buf, &v))
269                 return -EINVAL;
270
271         sdp->allow_restart = v;
272
273         return count;
274 }
275 static DEVICE_ATTR_RW(allow_restart);
276
277 static ssize_t
278 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
279 {
280         struct scsi_disk *sdkp = to_scsi_disk(dev);
281         int ct = sdkp->RCD + 2*sdkp->WCE;
282
283         return sprintf(buf, "%s\n", sd_cache_types[ct]);
284 }
285 static DEVICE_ATTR_RW(cache_type);
286
287 static ssize_t
288 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
289 {
290         struct scsi_disk *sdkp = to_scsi_disk(dev);
291
292         return sprintf(buf, "%u\n", sdkp->DPOFUA);
293 }
294 static DEVICE_ATTR_RO(FUA);
295
296 static ssize_t
297 protection_type_show(struct device *dev, struct device_attribute *attr,
298                      char *buf)
299 {
300         struct scsi_disk *sdkp = to_scsi_disk(dev);
301
302         return sprintf(buf, "%u\n", sdkp->protection_type);
303 }
304
305 static ssize_t
306 protection_type_store(struct device *dev, struct device_attribute *attr,
307                       const char *buf, size_t count)
308 {
309         struct scsi_disk *sdkp = to_scsi_disk(dev);
310         unsigned int val;
311         int err;
312
313         if (!capable(CAP_SYS_ADMIN))
314                 return -EACCES;
315
316         err = kstrtouint(buf, 10, &val);
317
318         if (err)
319                 return err;
320
321         if (val <= T10_PI_TYPE3_PROTECTION)
322                 sdkp->protection_type = val;
323
324         return count;
325 }
326 static DEVICE_ATTR_RW(protection_type);
327
328 static ssize_t
329 protection_mode_show(struct device *dev, struct device_attribute *attr,
330                      char *buf)
331 {
332         struct scsi_disk *sdkp = to_scsi_disk(dev);
333         struct scsi_device *sdp = sdkp->device;
334         unsigned int dif, dix;
335
336         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
337         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
338
339         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
340                 dif = 0;
341                 dix = 1;
342         }
343
344         if (!dif && !dix)
345                 return sprintf(buf, "none\n");
346
347         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
348 }
349 static DEVICE_ATTR_RO(protection_mode);
350
351 static ssize_t
352 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
353 {
354         struct scsi_disk *sdkp = to_scsi_disk(dev);
355
356         return sprintf(buf, "%u\n", sdkp->ATO);
357 }
358 static DEVICE_ATTR_RO(app_tag_own);
359
360 static ssize_t
361 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
362                        char *buf)
363 {
364         struct scsi_disk *sdkp = to_scsi_disk(dev);
365
366         return sprintf(buf, "%u\n", sdkp->lbpme);
367 }
368 static DEVICE_ATTR_RO(thin_provisioning);
369
370 /* sysfs_match_string() requires dense arrays */
371 static const char *lbp_mode[] = {
372         [SD_LBP_FULL]           = "full",
373         [SD_LBP_UNMAP]          = "unmap",
374         [SD_LBP_WS16]           = "writesame_16",
375         [SD_LBP_WS10]           = "writesame_10",
376         [SD_LBP_ZERO]           = "writesame_zero",
377         [SD_LBP_DISABLE]        = "disabled",
378 };
379
380 static ssize_t
381 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
382                        char *buf)
383 {
384         struct scsi_disk *sdkp = to_scsi_disk(dev);
385
386         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
387 }
388
389 static ssize_t
390 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
391                         const char *buf, size_t count)
392 {
393         struct scsi_disk *sdkp = to_scsi_disk(dev);
394         struct scsi_device *sdp = sdkp->device;
395         int mode;
396
397         if (!capable(CAP_SYS_ADMIN))
398                 return -EACCES;
399
400         if (sd_is_zoned(sdkp)) {
401                 sd_config_discard(sdkp, SD_LBP_DISABLE);
402                 return count;
403         }
404
405         if (sdp->type != TYPE_DISK)
406                 return -EINVAL;
407
408         mode = sysfs_match_string(lbp_mode, buf);
409         if (mode < 0)
410                 return -EINVAL;
411
412         sd_config_discard(sdkp, mode);
413
414         return count;
415 }
416 static DEVICE_ATTR_RW(provisioning_mode);
417
418 /* sysfs_match_string() requires dense arrays */
419 static const char *zeroing_mode[] = {
420         [SD_ZERO_WRITE]         = "write",
421         [SD_ZERO_WS]            = "writesame",
422         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
423         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
424 };
425
426 static ssize_t
427 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
428                   char *buf)
429 {
430         struct scsi_disk *sdkp = to_scsi_disk(dev);
431
432         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
433 }
434
435 static ssize_t
436 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
437                    const char *buf, size_t count)
438 {
439         struct scsi_disk *sdkp = to_scsi_disk(dev);
440         int mode;
441
442         if (!capable(CAP_SYS_ADMIN))
443                 return -EACCES;
444
445         mode = sysfs_match_string(zeroing_mode, buf);
446         if (mode < 0)
447                 return -EINVAL;
448
449         sdkp->zeroing_mode = mode;
450
451         return count;
452 }
453 static DEVICE_ATTR_RW(zeroing_mode);
454
455 static ssize_t
456 max_medium_access_timeouts_show(struct device *dev,
457                                 struct device_attribute *attr, char *buf)
458 {
459         struct scsi_disk *sdkp = to_scsi_disk(dev);
460
461         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
462 }
463
464 static ssize_t
465 max_medium_access_timeouts_store(struct device *dev,
466                                  struct device_attribute *attr, const char *buf,
467                                  size_t count)
468 {
469         struct scsi_disk *sdkp = to_scsi_disk(dev);
470         int err;
471
472         if (!capable(CAP_SYS_ADMIN))
473                 return -EACCES;
474
475         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
476
477         return err ? err : count;
478 }
479 static DEVICE_ATTR_RW(max_medium_access_timeouts);
480
481 static ssize_t
482 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
483                            char *buf)
484 {
485         struct scsi_disk *sdkp = to_scsi_disk(dev);
486
487         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
488 }
489
490 static ssize_t
491 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
492                             const char *buf, size_t count)
493 {
494         struct scsi_disk *sdkp = to_scsi_disk(dev);
495         struct scsi_device *sdp = sdkp->device;
496         unsigned long max;
497         int err;
498
499         if (!capable(CAP_SYS_ADMIN))
500                 return -EACCES;
501
502         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
503                 return -EINVAL;
504
505         err = kstrtoul(buf, 10, &max);
506
507         if (err)
508                 return err;
509
510         if (max == 0)
511                 sdp->no_write_same = 1;
512         else if (max <= SD_MAX_WS16_BLOCKS) {
513                 sdp->no_write_same = 0;
514                 sdkp->max_ws_blocks = max;
515         }
516
517         sd_config_write_same(sdkp);
518
519         return count;
520 }
521 static DEVICE_ATTR_RW(max_write_same_blocks);
522
523 static ssize_t
524 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
525 {
526         struct scsi_disk *sdkp = to_scsi_disk(dev);
527
528         if (sdkp->device->type == TYPE_ZBC)
529                 return sprintf(buf, "host-managed\n");
530         if (sdkp->zoned == 1)
531                 return sprintf(buf, "host-aware\n");
532         if (sdkp->zoned == 2)
533                 return sprintf(buf, "drive-managed\n");
534         return sprintf(buf, "none\n");
535 }
536 static DEVICE_ATTR_RO(zoned_cap);
537
538 static ssize_t
539 max_retries_store(struct device *dev, struct device_attribute *attr,
540                   const char *buf, size_t count)
541 {
542         struct scsi_disk *sdkp = to_scsi_disk(dev);
543         struct scsi_device *sdev = sdkp->device;
544         int retries, err;
545
546         err = kstrtoint(buf, 10, &retries);
547         if (err)
548                 return err;
549
550         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
551                 sdkp->max_retries = retries;
552                 return count;
553         }
554
555         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
556                     SD_MAX_RETRIES);
557         return -EINVAL;
558 }
559
560 static ssize_t
561 max_retries_show(struct device *dev, struct device_attribute *attr,
562                  char *buf)
563 {
564         struct scsi_disk *sdkp = to_scsi_disk(dev);
565
566         return sprintf(buf, "%d\n", sdkp->max_retries);
567 }
568
569 static DEVICE_ATTR_RW(max_retries);
570
571 static struct attribute *sd_disk_attrs[] = {
572         &dev_attr_cache_type.attr,
573         &dev_attr_FUA.attr,
574         &dev_attr_allow_restart.attr,
575         &dev_attr_manage_start_stop.attr,
576         &dev_attr_protection_type.attr,
577         &dev_attr_protection_mode.attr,
578         &dev_attr_app_tag_own.attr,
579         &dev_attr_thin_provisioning.attr,
580         &dev_attr_provisioning_mode.attr,
581         &dev_attr_zeroing_mode.attr,
582         &dev_attr_max_write_same_blocks.attr,
583         &dev_attr_max_medium_access_timeouts.attr,
584         &dev_attr_zoned_cap.attr,
585         &dev_attr_max_retries.attr,
586         NULL,
587 };
588 ATTRIBUTE_GROUPS(sd_disk);
589
590 static struct class sd_disk_class = {
591         .name           = "scsi_disk",
592         .owner          = THIS_MODULE,
593         .dev_release    = scsi_disk_release,
594         .dev_groups     = sd_disk_groups,
595 };
596
597 static const struct dev_pm_ops sd_pm_ops = {
598         .suspend                = sd_suspend_system,
599         .resume                 = sd_resume_system,
600         .poweroff               = sd_suspend_system,
601         .restore                = sd_resume_system,
602         .runtime_suspend        = sd_suspend_runtime,
603         .runtime_resume         = sd_resume_runtime,
604 };
605
606 static struct scsi_driver sd_template = {
607         .gendrv = {
608                 .name           = "sd",
609                 .owner          = THIS_MODULE,
610                 .probe          = sd_probe,
611                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
612                 .remove         = sd_remove,
613                 .shutdown       = sd_shutdown,
614                 .pm             = &sd_pm_ops,
615         },
616         .rescan                 = sd_rescan,
617         .init_command           = sd_init_command,
618         .uninit_command         = sd_uninit_command,
619         .done                   = sd_done,
620         .eh_action              = sd_eh_action,
621         .eh_reset               = sd_eh_reset,
622 };
623
624 /*
625  * Don't request a new module, as that could deadlock in multipath
626  * environment.
627  */
628 static void sd_default_probe(dev_t devt)
629 {
630 }
631
632 /*
633  * Device no to disk mapping:
634  * 
635  *       major         disc2     disc  p1
636  *   |............|.............|....|....| <- dev_t
637  *    31        20 19          8 7  4 3  0
638  * 
639  * Inside a major, we have 16k disks, however mapped non-
640  * contiguously. The first 16 disks are for major0, the next
641  * ones with major1, ... Disk 256 is for major0 again, disk 272 
642  * for major1, ... 
643  * As we stay compatible with our numbering scheme, we can reuse 
644  * the well-know SCSI majors 8, 65--71, 136--143.
645  */
646 static int sd_major(int major_idx)
647 {
648         switch (major_idx) {
649         case 0:
650                 return SCSI_DISK0_MAJOR;
651         case 1 ... 7:
652                 return SCSI_DISK1_MAJOR + major_idx - 1;
653         case 8 ... 15:
654                 return SCSI_DISK8_MAJOR + major_idx - 8;
655         default:
656                 BUG();
657                 return 0;       /* shut up gcc */
658         }
659 }
660
661 #ifdef CONFIG_BLK_SED_OPAL
662 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
663                 size_t len, bool send)
664 {
665         struct scsi_disk *sdkp = data;
666         struct scsi_device *sdev = sdkp->device;
667         u8 cdb[12] = { 0, };
668         int ret;
669
670         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
671         cdb[1] = secp;
672         put_unaligned_be16(spsp, &cdb[2]);
673         put_unaligned_be32(len, &cdb[6]);
674
675         ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
676                 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
677                 RQF_PM, NULL);
678         return ret <= 0 ? ret : -EIO;
679 }
680 #endif /* CONFIG_BLK_SED_OPAL */
681
682 /*
683  * Look up the DIX operation based on whether the command is read or
684  * write and whether dix and dif are enabled.
685  */
686 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
687 {
688         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
689         static const unsigned int ops[] = {     /* wrt dix dif */
690                 SCSI_PROT_NORMAL,               /*  0   0   0  */
691                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
692                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
693                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
694                 SCSI_PROT_NORMAL,               /*  1   0   0  */
695                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
696                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
697                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
698         };
699
700         return ops[write << 2 | dix << 1 | dif];
701 }
702
703 /*
704  * Returns a mask of the protection flags that are valid for a given DIX
705  * operation.
706  */
707 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
708 {
709         static const unsigned int flag_mask[] = {
710                 [SCSI_PROT_NORMAL]              = 0,
711
712                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
713                                                   SCSI_PROT_GUARD_CHECK |
714                                                   SCSI_PROT_REF_CHECK |
715                                                   SCSI_PROT_REF_INCREMENT,
716
717                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
718                                                   SCSI_PROT_IP_CHECKSUM,
719
720                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
721                                                   SCSI_PROT_GUARD_CHECK |
722                                                   SCSI_PROT_REF_CHECK |
723                                                   SCSI_PROT_REF_INCREMENT |
724                                                   SCSI_PROT_IP_CHECKSUM,
725
726                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
727                                                   SCSI_PROT_REF_INCREMENT,
728
729                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
730                                                   SCSI_PROT_REF_CHECK |
731                                                   SCSI_PROT_REF_INCREMENT |
732                                                   SCSI_PROT_IP_CHECKSUM,
733
734                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
735                                                   SCSI_PROT_GUARD_CHECK |
736                                                   SCSI_PROT_REF_CHECK |
737                                                   SCSI_PROT_REF_INCREMENT |
738                                                   SCSI_PROT_IP_CHECKSUM,
739         };
740
741         return flag_mask[prot_op];
742 }
743
744 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
745                                            unsigned int dix, unsigned int dif)
746 {
747         struct request *rq = scsi_cmd_to_rq(scmd);
748         struct bio *bio = rq->bio;
749         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
750         unsigned int protect = 0;
751
752         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
753                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
754                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
755
756                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
757                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
758         }
759
760         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
761                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
762
763                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
764                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
765         }
766
767         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
768                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
769
770                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
771                         protect = 3 << 5;       /* Disable target PI checking */
772                 else
773                         protect = 1 << 5;       /* Enable target PI checking */
774         }
775
776         scsi_set_prot_op(scmd, prot_op);
777         scsi_set_prot_type(scmd, dif);
778         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
779
780         return protect;
781 }
782
783 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
784 {
785         struct request_queue *q = sdkp->disk->queue;
786         unsigned int logical_block_size = sdkp->device->sector_size;
787         unsigned int max_blocks = 0;
788
789         q->limits.discard_alignment =
790                 sdkp->unmap_alignment * logical_block_size;
791         q->limits.discard_granularity =
792                 max(sdkp->physical_block_size,
793                     sdkp->unmap_granularity * logical_block_size);
794         sdkp->provisioning_mode = mode;
795
796         switch (mode) {
797
798         case SD_LBP_FULL:
799         case SD_LBP_DISABLE:
800                 blk_queue_max_discard_sectors(q, 0);
801                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
802                 return;
803
804         case SD_LBP_UNMAP:
805                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
806                                           (u32)SD_MAX_WS16_BLOCKS);
807                 break;
808
809         case SD_LBP_WS16:
810                 if (sdkp->device->unmap_limit_for_ws)
811                         max_blocks = sdkp->max_unmap_blocks;
812                 else
813                         max_blocks = sdkp->max_ws_blocks;
814
815                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
816                 break;
817
818         case SD_LBP_WS10:
819                 if (sdkp->device->unmap_limit_for_ws)
820                         max_blocks = sdkp->max_unmap_blocks;
821                 else
822                         max_blocks = sdkp->max_ws_blocks;
823
824                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
825                 break;
826
827         case SD_LBP_ZERO:
828                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
829                                           (u32)SD_MAX_WS10_BLOCKS);
830                 break;
831         }
832
833         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
834         blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
835 }
836
837 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
838 {
839         struct scsi_device *sdp = cmd->device;
840         struct request *rq = scsi_cmd_to_rq(cmd);
841         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
842         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
843         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
844         unsigned int data_len = 24;
845         char *buf;
846
847         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
848         if (!rq->special_vec.bv_page)
849                 return BLK_STS_RESOURCE;
850         clear_highpage(rq->special_vec.bv_page);
851         rq->special_vec.bv_offset = 0;
852         rq->special_vec.bv_len = data_len;
853         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
854
855         cmd->cmd_len = 10;
856         cmd->cmnd[0] = UNMAP;
857         cmd->cmnd[8] = 24;
858
859         buf = bvec_virt(&rq->special_vec);
860         put_unaligned_be16(6 + 16, &buf[0]);
861         put_unaligned_be16(16, &buf[2]);
862         put_unaligned_be64(lba, &buf[8]);
863         put_unaligned_be32(nr_blocks, &buf[16]);
864
865         cmd->allowed = sdkp->max_retries;
866         cmd->transfersize = data_len;
867         rq->timeout = SD_TIMEOUT;
868
869         return scsi_alloc_sgtables(cmd);
870 }
871
872 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
873                 bool unmap)
874 {
875         struct scsi_device *sdp = cmd->device;
876         struct request *rq = scsi_cmd_to_rq(cmd);
877         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
878         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
879         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
880         u32 data_len = sdp->sector_size;
881
882         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
883         if (!rq->special_vec.bv_page)
884                 return BLK_STS_RESOURCE;
885         clear_highpage(rq->special_vec.bv_page);
886         rq->special_vec.bv_offset = 0;
887         rq->special_vec.bv_len = data_len;
888         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
889
890         cmd->cmd_len = 16;
891         cmd->cmnd[0] = WRITE_SAME_16;
892         if (unmap)
893                 cmd->cmnd[1] = 0x8; /* UNMAP */
894         put_unaligned_be64(lba, &cmd->cmnd[2]);
895         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
896
897         cmd->allowed = sdkp->max_retries;
898         cmd->transfersize = data_len;
899         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
900
901         return scsi_alloc_sgtables(cmd);
902 }
903
904 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
905                 bool unmap)
906 {
907         struct scsi_device *sdp = cmd->device;
908         struct request *rq = scsi_cmd_to_rq(cmd);
909         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
910         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
911         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
912         u32 data_len = sdp->sector_size;
913
914         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
915         if (!rq->special_vec.bv_page)
916                 return BLK_STS_RESOURCE;
917         clear_highpage(rq->special_vec.bv_page);
918         rq->special_vec.bv_offset = 0;
919         rq->special_vec.bv_len = data_len;
920         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
921
922         cmd->cmd_len = 10;
923         cmd->cmnd[0] = WRITE_SAME;
924         if (unmap)
925                 cmd->cmnd[1] = 0x8; /* UNMAP */
926         put_unaligned_be32(lba, &cmd->cmnd[2]);
927         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
928
929         cmd->allowed = sdkp->max_retries;
930         cmd->transfersize = data_len;
931         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
932
933         return scsi_alloc_sgtables(cmd);
934 }
935
936 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
937 {
938         struct request *rq = scsi_cmd_to_rq(cmd);
939         struct scsi_device *sdp = cmd->device;
940         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
941         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
942         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
943
944         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
945                 switch (sdkp->zeroing_mode) {
946                 case SD_ZERO_WS16_UNMAP:
947                         return sd_setup_write_same16_cmnd(cmd, true);
948                 case SD_ZERO_WS10_UNMAP:
949                         return sd_setup_write_same10_cmnd(cmd, true);
950                 }
951         }
952
953         if (sdp->no_write_same) {
954                 rq->rq_flags |= RQF_QUIET;
955                 return BLK_STS_TARGET;
956         }
957
958         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
959                 return sd_setup_write_same16_cmnd(cmd, false);
960
961         return sd_setup_write_same10_cmnd(cmd, false);
962 }
963
964 static void sd_config_write_same(struct scsi_disk *sdkp)
965 {
966         struct request_queue *q = sdkp->disk->queue;
967         unsigned int logical_block_size = sdkp->device->sector_size;
968
969         if (sdkp->device->no_write_same) {
970                 sdkp->max_ws_blocks = 0;
971                 goto out;
972         }
973
974         /* Some devices can not handle block counts above 0xffff despite
975          * supporting WRITE SAME(16). Consequently we default to 64k
976          * blocks per I/O unless the device explicitly advertises a
977          * bigger limit.
978          */
979         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
980                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
981                                                    (u32)SD_MAX_WS16_BLOCKS);
982         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
983                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
984                                                    (u32)SD_MAX_WS10_BLOCKS);
985         else {
986                 sdkp->device->no_write_same = 1;
987                 sdkp->max_ws_blocks = 0;
988         }
989
990         if (sdkp->lbprz && sdkp->lbpws)
991                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
992         else if (sdkp->lbprz && sdkp->lbpws10)
993                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
994         else if (sdkp->max_ws_blocks)
995                 sdkp->zeroing_mode = SD_ZERO_WS;
996         else
997                 sdkp->zeroing_mode = SD_ZERO_WRITE;
998
999         if (sdkp->max_ws_blocks &&
1000             sdkp->physical_block_size > logical_block_size) {
1001                 /*
1002                  * Reporting a maximum number of blocks that is not aligned
1003                  * on the device physical size would cause a large write same
1004                  * request to be split into physically unaligned chunks by
1005                  * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1006                  * even if the caller of these functions took care to align the
1007                  * large request. So make sure the maximum reported is aligned
1008                  * to the device physical block size. This is only an optional
1009                  * optimization for regular disks, but this is mandatory to
1010                  * avoid failure of large write same requests directed at
1011                  * sequential write required zones of host-managed ZBC disks.
1012                  */
1013                 sdkp->max_ws_blocks =
1014                         round_down(sdkp->max_ws_blocks,
1015                                    bytes_to_logical(sdkp->device,
1016                                                     sdkp->physical_block_size));
1017         }
1018
1019 out:
1020         blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1021                                          (logical_block_size >> 9));
1022         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1023                                          (logical_block_size >> 9));
1024 }
1025
1026 /**
1027  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1028  * @cmd: command to prepare
1029  *
1030  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1031  * the preference indicated by the target device.
1032  **/
1033 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1034 {
1035         struct request *rq = scsi_cmd_to_rq(cmd);
1036         struct scsi_device *sdp = cmd->device;
1037         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1038         struct bio *bio = rq->bio;
1039         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1040         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1041         blk_status_t ret;
1042
1043         if (sdkp->device->no_write_same)
1044                 return BLK_STS_TARGET;
1045
1046         BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1047
1048         rq->timeout = SD_WRITE_SAME_TIMEOUT;
1049
1050         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1051                 cmd->cmd_len = 16;
1052                 cmd->cmnd[0] = WRITE_SAME_16;
1053                 put_unaligned_be64(lba, &cmd->cmnd[2]);
1054                 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1055         } else {
1056                 cmd->cmd_len = 10;
1057                 cmd->cmnd[0] = WRITE_SAME;
1058                 put_unaligned_be32(lba, &cmd->cmnd[2]);
1059                 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1060         }
1061
1062         cmd->transfersize = sdp->sector_size;
1063         cmd->allowed = sdkp->max_retries;
1064
1065         /*
1066          * For WRITE SAME the data transferred via the DATA OUT buffer is
1067          * different from the amount of data actually written to the target.
1068          *
1069          * We set up __data_len to the amount of data transferred via the
1070          * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1071          * to transfer a single sector of data first, but then reset it to
1072          * the amount of data to be written right after so that the I/O path
1073          * knows how much to actually write.
1074          */
1075         rq->__data_len = sdp->sector_size;
1076         ret = scsi_alloc_sgtables(cmd);
1077         rq->__data_len = blk_rq_bytes(rq);
1078
1079         return ret;
1080 }
1081
1082 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1083 {
1084         struct request *rq = scsi_cmd_to_rq(cmd);
1085         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1086
1087         /* flush requests don't perform I/O, zero the S/G table */
1088         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1089
1090         cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1091         cmd->cmd_len = 10;
1092         cmd->transfersize = 0;
1093         cmd->allowed = sdkp->max_retries;
1094
1095         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1096         return BLK_STS_OK;
1097 }
1098
1099 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1100                                        sector_t lba, unsigned int nr_blocks,
1101                                        unsigned char flags)
1102 {
1103         cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1104         if (unlikely(cmd->cmnd == NULL))
1105                 return BLK_STS_RESOURCE;
1106
1107         cmd->cmd_len = SD_EXT_CDB_SIZE;
1108         memset(cmd->cmnd, 0, cmd->cmd_len);
1109
1110         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1111         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1112         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1113         cmd->cmnd[10] = flags;
1114         put_unaligned_be64(lba, &cmd->cmnd[12]);
1115         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1116         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1117
1118         return BLK_STS_OK;
1119 }
1120
1121 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1122                                        sector_t lba, unsigned int nr_blocks,
1123                                        unsigned char flags)
1124 {
1125         cmd->cmd_len  = 16;
1126         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1127         cmd->cmnd[1]  = flags;
1128         cmd->cmnd[14] = 0;
1129         cmd->cmnd[15] = 0;
1130         put_unaligned_be64(lba, &cmd->cmnd[2]);
1131         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1132
1133         return BLK_STS_OK;
1134 }
1135
1136 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1137                                        sector_t lba, unsigned int nr_blocks,
1138                                        unsigned char flags)
1139 {
1140         cmd->cmd_len = 10;
1141         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1142         cmd->cmnd[1] = flags;
1143         cmd->cmnd[6] = 0;
1144         cmd->cmnd[9] = 0;
1145         put_unaligned_be32(lba, &cmd->cmnd[2]);
1146         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1147
1148         return BLK_STS_OK;
1149 }
1150
1151 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1152                                       sector_t lba, unsigned int nr_blocks,
1153                                       unsigned char flags)
1154 {
1155         /* Avoid that 0 blocks gets translated into 256 blocks. */
1156         if (WARN_ON_ONCE(nr_blocks == 0))
1157                 return BLK_STS_IOERR;
1158
1159         if (unlikely(flags & 0x8)) {
1160                 /*
1161                  * This happens only if this drive failed 10byte rw
1162                  * command with ILLEGAL_REQUEST during operation and
1163                  * thus turned off use_10_for_rw.
1164                  */
1165                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1166                 return BLK_STS_IOERR;
1167         }
1168
1169         cmd->cmd_len = 6;
1170         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1171         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1172         cmd->cmnd[2] = (lba >> 8) & 0xff;
1173         cmd->cmnd[3] = lba & 0xff;
1174         cmd->cmnd[4] = nr_blocks;
1175         cmd->cmnd[5] = 0;
1176
1177         return BLK_STS_OK;
1178 }
1179
1180 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1181 {
1182         struct request *rq = scsi_cmd_to_rq(cmd);
1183         struct scsi_device *sdp = cmd->device;
1184         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1185         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1186         sector_t threshold;
1187         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1188         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1189         bool write = rq_data_dir(rq) == WRITE;
1190         unsigned char protect, fua;
1191         blk_status_t ret;
1192         unsigned int dif;
1193         bool dix;
1194
1195         ret = scsi_alloc_sgtables(cmd);
1196         if (ret != BLK_STS_OK)
1197                 return ret;
1198
1199         ret = BLK_STS_IOERR;
1200         if (!scsi_device_online(sdp) || sdp->changed) {
1201                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1202                 goto fail;
1203         }
1204
1205         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1206                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1207                 goto fail;
1208         }
1209
1210         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1211                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1212                 goto fail;
1213         }
1214
1215         /*
1216          * Some SD card readers can't handle accesses which touch the
1217          * last one or two logical blocks. Split accesses as needed.
1218          */
1219         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1220
1221         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1222                 if (lba < threshold) {
1223                         /* Access up to the threshold but not beyond */
1224                         nr_blocks = threshold - lba;
1225                 } else {
1226                         /* Access only a single logical block */
1227                         nr_blocks = 1;
1228                 }
1229         }
1230
1231         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1232                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1233                 if (ret)
1234                         goto fail;
1235         }
1236
1237         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1238         dix = scsi_prot_sg_count(cmd);
1239         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1240
1241         if (dif || dix)
1242                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1243         else
1244                 protect = 0;
1245
1246         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1247                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1248                                          protect | fua);
1249         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1250                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1251                                          protect | fua);
1252         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1253                    sdp->use_10_for_rw || protect) {
1254                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1255                                          protect | fua);
1256         } else {
1257                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1258                                         protect | fua);
1259         }
1260
1261         if (unlikely(ret != BLK_STS_OK))
1262                 goto fail;
1263
1264         /*
1265          * We shouldn't disconnect in the middle of a sector, so with a dumb
1266          * host adapter, it's safe to assume that we can at least transfer
1267          * this many bytes between each connect / disconnect.
1268          */
1269         cmd->transfersize = sdp->sector_size;
1270         cmd->underflow = nr_blocks << 9;
1271         cmd->allowed = sdkp->max_retries;
1272         cmd->sdb.length = nr_blocks * sdp->sector_size;
1273
1274         SCSI_LOG_HLQUEUE(1,
1275                          scmd_printk(KERN_INFO, cmd,
1276                                      "%s: block=%llu, count=%d\n", __func__,
1277                                      (unsigned long long)blk_rq_pos(rq),
1278                                      blk_rq_sectors(rq)));
1279         SCSI_LOG_HLQUEUE(2,
1280                          scmd_printk(KERN_INFO, cmd,
1281                                      "%s %d/%u 512 byte blocks.\n",
1282                                      write ? "writing" : "reading", nr_blocks,
1283                                      blk_rq_sectors(rq)));
1284
1285         /*
1286          * This indicates that the command is ready from our end to be queued.
1287          */
1288         return BLK_STS_OK;
1289 fail:
1290         scsi_free_sgtables(cmd);
1291         return ret;
1292 }
1293
1294 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1295 {
1296         struct request *rq = scsi_cmd_to_rq(cmd);
1297
1298         switch (req_op(rq)) {
1299         case REQ_OP_DISCARD:
1300                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1301                 case SD_LBP_UNMAP:
1302                         return sd_setup_unmap_cmnd(cmd);
1303                 case SD_LBP_WS16:
1304                         return sd_setup_write_same16_cmnd(cmd, true);
1305                 case SD_LBP_WS10:
1306                         return sd_setup_write_same10_cmnd(cmd, true);
1307                 case SD_LBP_ZERO:
1308                         return sd_setup_write_same10_cmnd(cmd, false);
1309                 default:
1310                         return BLK_STS_TARGET;
1311                 }
1312         case REQ_OP_WRITE_ZEROES:
1313                 return sd_setup_write_zeroes_cmnd(cmd);
1314         case REQ_OP_WRITE_SAME:
1315                 return sd_setup_write_same_cmnd(cmd);
1316         case REQ_OP_FLUSH:
1317                 return sd_setup_flush_cmnd(cmd);
1318         case REQ_OP_READ:
1319         case REQ_OP_WRITE:
1320         case REQ_OP_ZONE_APPEND:
1321                 return sd_setup_read_write_cmnd(cmd);
1322         case REQ_OP_ZONE_RESET:
1323                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1324                                                    false);
1325         case REQ_OP_ZONE_RESET_ALL:
1326                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1327                                                    true);
1328         case REQ_OP_ZONE_OPEN:
1329                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1330         case REQ_OP_ZONE_CLOSE:
1331                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1332         case REQ_OP_ZONE_FINISH:
1333                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1334         default:
1335                 WARN_ON_ONCE(1);
1336                 return BLK_STS_NOTSUPP;
1337         }
1338 }
1339
1340 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1341 {
1342         struct request *rq = scsi_cmd_to_rq(SCpnt);
1343         u8 *cmnd;
1344
1345         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1346                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1347
1348         if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1349                 cmnd = SCpnt->cmnd;
1350                 SCpnt->cmnd = NULL;
1351                 SCpnt->cmd_len = 0;
1352                 mempool_free(cmnd, sd_cdb_pool);
1353         }
1354 }
1355
1356 static bool sd_need_revalidate(struct block_device *bdev,
1357                 struct scsi_disk *sdkp)
1358 {
1359         if (sdkp->device->removable || sdkp->write_prot) {
1360                 if (bdev_check_media_change(bdev))
1361                         return true;
1362         }
1363
1364         /*
1365          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1366          * nothing to do with partitions, BLKRRPART is used to force a full
1367          * revalidate after things like a format for historical reasons.
1368          */
1369         return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1370 }
1371
1372 /**
1373  *      sd_open - open a scsi disk device
1374  *      @bdev: Block device of the scsi disk to open
1375  *      @mode: FMODE_* mask
1376  *
1377  *      Returns 0 if successful. Returns a negated errno value in case 
1378  *      of error.
1379  *
1380  *      Note: This can be called from a user context (e.g. fsck(1) )
1381  *      or from within the kernel (e.g. as a result of a mount(1) ).
1382  *      In the latter case @inode and @filp carry an abridged amount
1383  *      of information as noted above.
1384  *
1385  *      Locking: called with bdev->bd_disk->open_mutex held.
1386  **/
1387 static int sd_open(struct block_device *bdev, fmode_t mode)
1388 {
1389         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1390         struct scsi_device *sdev = sdkp->device;
1391         int retval;
1392
1393         if (scsi_device_get(sdev))
1394                 return -ENXIO;
1395
1396         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1397
1398         /*
1399          * If the device is in error recovery, wait until it is done.
1400          * If the device is offline, then disallow any access to it.
1401          */
1402         retval = -ENXIO;
1403         if (!scsi_block_when_processing_errors(sdev))
1404                 goto error_out;
1405
1406         if (sd_need_revalidate(bdev, sdkp))
1407                 sd_revalidate_disk(bdev->bd_disk);
1408
1409         /*
1410          * If the drive is empty, just let the open fail.
1411          */
1412         retval = -ENOMEDIUM;
1413         if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1414                 goto error_out;
1415
1416         /*
1417          * If the device has the write protect tab set, have the open fail
1418          * if the user expects to be able to write to the thing.
1419          */
1420         retval = -EROFS;
1421         if (sdkp->write_prot && (mode & FMODE_WRITE))
1422                 goto error_out;
1423
1424         /*
1425          * It is possible that the disk changing stuff resulted in
1426          * the device being taken offline.  If this is the case,
1427          * report this to the user, and don't pretend that the
1428          * open actually succeeded.
1429          */
1430         retval = -ENXIO;
1431         if (!scsi_device_online(sdev))
1432                 goto error_out;
1433
1434         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1435                 if (scsi_block_when_processing_errors(sdev))
1436                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1437         }
1438
1439         return 0;
1440
1441 error_out:
1442         scsi_device_put(sdev);
1443         return retval;  
1444 }
1445
1446 /**
1447  *      sd_release - invoked when the (last) close(2) is called on this
1448  *      scsi disk.
1449  *      @disk: disk to release
1450  *      @mode: FMODE_* mask
1451  *
1452  *      Returns 0. 
1453  *
1454  *      Note: may block (uninterruptible) if error recovery is underway
1455  *      on this disk.
1456  *
1457  *      Locking: called with bdev->bd_disk->open_mutex held.
1458  **/
1459 static void sd_release(struct gendisk *disk, fmode_t mode)
1460 {
1461         struct scsi_disk *sdkp = scsi_disk(disk);
1462         struct scsi_device *sdev = sdkp->device;
1463
1464         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1465
1466         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1467                 if (scsi_block_when_processing_errors(sdev))
1468                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1469         }
1470
1471         scsi_device_put(sdev);
1472 }
1473
1474 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1475 {
1476         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1477         struct scsi_device *sdp = sdkp->device;
1478         struct Scsi_Host *host = sdp->host;
1479         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1480         int diskinfo[4];
1481
1482         /* default to most commonly used values */
1483         diskinfo[0] = 0x40;     /* 1 << 6 */
1484         diskinfo[1] = 0x20;     /* 1 << 5 */
1485         diskinfo[2] = capacity >> 11;
1486
1487         /* override with calculated, extended default, or driver values */
1488         if (host->hostt->bios_param)
1489                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1490         else
1491                 scsicam_bios_param(bdev, capacity, diskinfo);
1492
1493         geo->heads = diskinfo[0];
1494         geo->sectors = diskinfo[1];
1495         geo->cylinders = diskinfo[2];
1496         return 0;
1497 }
1498
1499 /**
1500  *      sd_ioctl - process an ioctl
1501  *      @bdev: target block device
1502  *      @mode: FMODE_* mask
1503  *      @cmd: ioctl command number
1504  *      @arg: this is third argument given to ioctl(2) system call.
1505  *      Often contains a pointer.
1506  *
1507  *      Returns 0 if successful (some ioctls return positive numbers on
1508  *      success as well). Returns a negated errno value in case of error.
1509  *
1510  *      Note: most ioctls are forward onto the block subsystem or further
1511  *      down in the scsi subsystem.
1512  **/
1513 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1514                     unsigned int cmd, unsigned long arg)
1515 {
1516         struct gendisk *disk = bdev->bd_disk;
1517         struct scsi_disk *sdkp = scsi_disk(disk);
1518         struct scsi_device *sdp = sdkp->device;
1519         void __user *p = (void __user *)arg;
1520         int error;
1521     
1522         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1523                                     "cmd=0x%x\n", disk->disk_name, cmd));
1524
1525         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1526                 return -ENOIOCTLCMD;
1527
1528         /*
1529          * If we are in the middle of error recovery, don't let anyone
1530          * else try and use this device.  Also, if error recovery fails, it
1531          * may try and take the device offline, in which case all further
1532          * access to the device is prohibited.
1533          */
1534         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1535                         (mode & FMODE_NDELAY) != 0);
1536         if (error)
1537                 return error;
1538
1539         if (is_sed_ioctl(cmd))
1540                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1541         return scsi_ioctl(sdp, mode, cmd, p);
1542 }
1543
1544 static void set_media_not_present(struct scsi_disk *sdkp)
1545 {
1546         if (sdkp->media_present)
1547                 sdkp->device->changed = 1;
1548
1549         if (sdkp->device->removable) {
1550                 sdkp->media_present = 0;
1551                 sdkp->capacity = 0;
1552         }
1553 }
1554
1555 static int media_not_present(struct scsi_disk *sdkp,
1556                              struct scsi_sense_hdr *sshdr)
1557 {
1558         if (!scsi_sense_valid(sshdr))
1559                 return 0;
1560
1561         /* not invoked for commands that could return deferred errors */
1562         switch (sshdr->sense_key) {
1563         case UNIT_ATTENTION:
1564         case NOT_READY:
1565                 /* medium not present */
1566                 if (sshdr->asc == 0x3A) {
1567                         set_media_not_present(sdkp);
1568                         return 1;
1569                 }
1570         }
1571         return 0;
1572 }
1573
1574 /**
1575  *      sd_check_events - check media events
1576  *      @disk: kernel device descriptor
1577  *      @clearing: disk events currently being cleared
1578  *
1579  *      Returns mask of DISK_EVENT_*.
1580  *
1581  *      Note: this function is invoked from the block subsystem.
1582  **/
1583 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1584 {
1585         struct scsi_disk *sdkp = disk->private_data;
1586         struct scsi_device *sdp;
1587         int retval;
1588         bool disk_changed;
1589
1590         if (!sdkp)
1591                 return 0;
1592
1593         sdp = sdkp->device;
1594         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1595
1596         /*
1597          * If the device is offline, don't send any commands - just pretend as
1598          * if the command failed.  If the device ever comes back online, we
1599          * can deal with it then.  It is only because of unrecoverable errors
1600          * that we would ever take a device offline in the first place.
1601          */
1602         if (!scsi_device_online(sdp)) {
1603                 set_media_not_present(sdkp);
1604                 goto out;
1605         }
1606
1607         /*
1608          * Using TEST_UNIT_READY enables differentiation between drive with
1609          * no cartridge loaded - NOT READY, drive with changed cartridge -
1610          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1611          *
1612          * Drives that auto spin down. eg iomega jaz 1G, will be started
1613          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1614          * sd_revalidate() is called.
1615          */
1616         if (scsi_block_when_processing_errors(sdp)) {
1617                 struct scsi_sense_hdr sshdr = { 0, };
1618
1619                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1620                                               &sshdr);
1621
1622                 /* failed to execute TUR, assume media not present */
1623                 if (retval < 0 || host_byte(retval)) {
1624                         set_media_not_present(sdkp);
1625                         goto out;
1626                 }
1627
1628                 if (media_not_present(sdkp, &sshdr))
1629                         goto out;
1630         }
1631
1632         /*
1633          * For removable scsi disk we have to recognise the presence
1634          * of a disk in the drive.
1635          */
1636         if (!sdkp->media_present)
1637                 sdp->changed = 1;
1638         sdkp->media_present = 1;
1639 out:
1640         /*
1641          * sdp->changed is set under the following conditions:
1642          *
1643          *      Medium present state has changed in either direction.
1644          *      Device has indicated UNIT_ATTENTION.
1645          */
1646         disk_changed = sdp->changed;
1647         sdp->changed = 0;
1648         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1649 }
1650
1651 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1652 {
1653         int retries, res;
1654         struct scsi_device *sdp = sdkp->device;
1655         const int timeout = sdp->request_queue->rq_timeout
1656                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1657         struct scsi_sense_hdr my_sshdr;
1658
1659         if (!scsi_device_online(sdp))
1660                 return -ENODEV;
1661
1662         /* caller might not be interested in sense, but we need it */
1663         if (!sshdr)
1664                 sshdr = &my_sshdr;
1665
1666         for (retries = 3; retries > 0; --retries) {
1667                 unsigned char cmd[10] = { 0 };
1668
1669                 cmd[0] = SYNCHRONIZE_CACHE;
1670                 /*
1671                  * Leave the rest of the command zero to indicate
1672                  * flush everything.
1673                  */
1674                 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1675                                 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1676                 if (res == 0)
1677                         break;
1678         }
1679
1680         if (res) {
1681                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1682
1683                 if (res < 0)
1684                         return res;
1685
1686                 if (scsi_status_is_check_condition(res) &&
1687                     scsi_sense_valid(sshdr)) {
1688                         sd_print_sense_hdr(sdkp, sshdr);
1689
1690                         /* we need to evaluate the error return  */
1691                         if (sshdr->asc == 0x3a ||       /* medium not present */
1692                             sshdr->asc == 0x20 ||       /* invalid command */
1693                             (sshdr->asc == 0x74 && sshdr->ascq == 0x71))        /* drive is password locked */
1694                                 /* this is no error here */
1695                                 return 0;
1696                 }
1697
1698                 switch (host_byte(res)) {
1699                 /* ignore errors due to racing a disconnection */
1700                 case DID_BAD_TARGET:
1701                 case DID_NO_CONNECT:
1702                         return 0;
1703                 /* signal the upper layer it might try again */
1704                 case DID_BUS_BUSY:
1705                 case DID_IMM_RETRY:
1706                 case DID_REQUEUE:
1707                 case DID_SOFT_ERROR:
1708                         return -EBUSY;
1709                 default:
1710                         return -EIO;
1711                 }
1712         }
1713         return 0;
1714 }
1715
1716 static void sd_rescan(struct device *dev)
1717 {
1718         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1719
1720         sd_revalidate_disk(sdkp->disk);
1721 }
1722
1723 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1724                 enum blk_unique_id type)
1725 {
1726         struct scsi_device *sdev = scsi_disk(disk)->device;
1727         const struct scsi_vpd *vpd;
1728         const unsigned char *d;
1729         int ret = -ENXIO, len;
1730
1731         rcu_read_lock();
1732         vpd = rcu_dereference(sdev->vpd_pg83);
1733         if (!vpd)
1734                 goto out_unlock;
1735
1736         ret = -EINVAL;
1737         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1738                 /* we only care about designators with LU association */
1739                 if (((d[1] >> 4) & 0x3) != 0x00)
1740                         continue;
1741                 if ((d[1] & 0xf) != type)
1742                         continue;
1743
1744                 /*
1745                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1746                  * keep looking as one with more entropy might still show up.
1747                  */
1748                 len = d[3];
1749                 if (len != 8 && len != 12 && len != 16)
1750                         continue;
1751                 ret = len;
1752                 memcpy(id, d + 4, len);
1753                 if (len == 16)
1754                         break;
1755         }
1756 out_unlock:
1757         rcu_read_unlock();
1758         return ret;
1759 }
1760
1761 static char sd_pr_type(enum pr_type type)
1762 {
1763         switch (type) {
1764         case PR_WRITE_EXCLUSIVE:
1765                 return 0x01;
1766         case PR_EXCLUSIVE_ACCESS:
1767                 return 0x03;
1768         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1769                 return 0x05;
1770         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1771                 return 0x06;
1772         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1773                 return 0x07;
1774         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1775                 return 0x08;
1776         default:
1777                 return 0;
1778         }
1779 };
1780
1781 static int sd_pr_command(struct block_device *bdev, u8 sa,
1782                 u64 key, u64 sa_key, u8 type, u8 flags)
1783 {
1784         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1785         struct scsi_device *sdev = sdkp->device;
1786         struct scsi_sense_hdr sshdr;
1787         int result;
1788         u8 cmd[16] = { 0, };
1789         u8 data[24] = { 0, };
1790
1791         cmd[0] = PERSISTENT_RESERVE_OUT;
1792         cmd[1] = sa;
1793         cmd[2] = type;
1794         put_unaligned_be32(sizeof(data), &cmd[5]);
1795
1796         put_unaligned_be64(key, &data[0]);
1797         put_unaligned_be64(sa_key, &data[8]);
1798         data[20] = flags;
1799
1800         result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1801                         &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1802
1803         if (scsi_status_is_check_condition(result) &&
1804             scsi_sense_valid(&sshdr)) {
1805                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1806                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1807         }
1808
1809         return result;
1810 }
1811
1812 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1813                 u32 flags)
1814 {
1815         if (flags & ~PR_FL_IGNORE_KEY)
1816                 return -EOPNOTSUPP;
1817         return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1818                         old_key, new_key, 0,
1819                         (1 << 0) /* APTPL */);
1820 }
1821
1822 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1823                 u32 flags)
1824 {
1825         if (flags)
1826                 return -EOPNOTSUPP;
1827         return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1828 }
1829
1830 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1831 {
1832         return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1833 }
1834
1835 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1836                 enum pr_type type, bool abort)
1837 {
1838         return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1839                              sd_pr_type(type), 0);
1840 }
1841
1842 static int sd_pr_clear(struct block_device *bdev, u64 key)
1843 {
1844         return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1845 }
1846
1847 static const struct pr_ops sd_pr_ops = {
1848         .pr_register    = sd_pr_register,
1849         .pr_reserve     = sd_pr_reserve,
1850         .pr_release     = sd_pr_release,
1851         .pr_preempt     = sd_pr_preempt,
1852         .pr_clear       = sd_pr_clear,
1853 };
1854
1855 static void scsi_disk_free_disk(struct gendisk *disk)
1856 {
1857         struct scsi_disk *sdkp = scsi_disk(disk);
1858
1859         put_device(&sdkp->disk_dev);
1860 }
1861
1862 static const struct block_device_operations sd_fops = {
1863         .owner                  = THIS_MODULE,
1864         .open                   = sd_open,
1865         .release                = sd_release,
1866         .ioctl                  = sd_ioctl,
1867         .getgeo                 = sd_getgeo,
1868         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1869         .check_events           = sd_check_events,
1870         .unlock_native_capacity = sd_unlock_native_capacity,
1871         .report_zones           = sd_zbc_report_zones,
1872         .get_unique_id          = sd_get_unique_id,
1873         .free_disk              = scsi_disk_free_disk,
1874         .pr_ops                 = &sd_pr_ops,
1875 };
1876
1877 /**
1878  *      sd_eh_reset - reset error handling callback
1879  *      @scmd:          sd-issued command that has failed
1880  *
1881  *      This function is called by the SCSI midlayer before starting
1882  *      SCSI EH. When counting medium access failures we have to be
1883  *      careful to register it only only once per device and SCSI EH run;
1884  *      there might be several timed out commands which will cause the
1885  *      'max_medium_access_timeouts' counter to trigger after the first
1886  *      SCSI EH run already and set the device to offline.
1887  *      So this function resets the internal counter before starting SCSI EH.
1888  **/
1889 static void sd_eh_reset(struct scsi_cmnd *scmd)
1890 {
1891         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1892
1893         /* New SCSI EH run, reset gate variable */
1894         sdkp->ignore_medium_access_errors = false;
1895 }
1896
1897 /**
1898  *      sd_eh_action - error handling callback
1899  *      @scmd:          sd-issued command that has failed
1900  *      @eh_disp:       The recovery disposition suggested by the midlayer
1901  *
1902  *      This function is called by the SCSI midlayer upon completion of an
1903  *      error test command (currently TEST UNIT READY). The result of sending
1904  *      the eh command is passed in eh_disp.  We're looking for devices that
1905  *      fail medium access commands but are OK with non access commands like
1906  *      test unit ready (so wrongly see the device as having a successful
1907  *      recovery)
1908  **/
1909 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1910 {
1911         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1912         struct scsi_device *sdev = scmd->device;
1913
1914         if (!scsi_device_online(sdev) ||
1915             !scsi_medium_access_command(scmd) ||
1916             host_byte(scmd->result) != DID_TIME_OUT ||
1917             eh_disp != SUCCESS)
1918                 return eh_disp;
1919
1920         /*
1921          * The device has timed out executing a medium access command.
1922          * However, the TEST UNIT READY command sent during error
1923          * handling completed successfully. Either the device is in the
1924          * process of recovering or has it suffered an internal failure
1925          * that prevents access to the storage medium.
1926          */
1927         if (!sdkp->ignore_medium_access_errors) {
1928                 sdkp->medium_access_timed_out++;
1929                 sdkp->ignore_medium_access_errors = true;
1930         }
1931
1932         /*
1933          * If the device keeps failing read/write commands but TEST UNIT
1934          * READY always completes successfully we assume that medium
1935          * access is no longer possible and take the device offline.
1936          */
1937         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1938                 scmd_printk(KERN_ERR, scmd,
1939                             "Medium access timeout failure. Offlining disk!\n");
1940                 mutex_lock(&sdev->state_mutex);
1941                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1942                 mutex_unlock(&sdev->state_mutex);
1943
1944                 return SUCCESS;
1945         }
1946
1947         return eh_disp;
1948 }
1949
1950 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1951 {
1952         struct request *req = scsi_cmd_to_rq(scmd);
1953         struct scsi_device *sdev = scmd->device;
1954         unsigned int transferred, good_bytes;
1955         u64 start_lba, end_lba, bad_lba;
1956
1957         /*
1958          * Some commands have a payload smaller than the device logical
1959          * block size (e.g. INQUIRY on a 4K disk).
1960          */
1961         if (scsi_bufflen(scmd) <= sdev->sector_size)
1962                 return 0;
1963
1964         /* Check if we have a 'bad_lba' information */
1965         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1966                                      SCSI_SENSE_BUFFERSIZE,
1967                                      &bad_lba))
1968                 return 0;
1969
1970         /*
1971          * If the bad lba was reported incorrectly, we have no idea where
1972          * the error is.
1973          */
1974         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1975         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1976         if (bad_lba < start_lba || bad_lba >= end_lba)
1977                 return 0;
1978
1979         /*
1980          * resid is optional but mostly filled in.  When it's unused,
1981          * its value is zero, so we assume the whole buffer transferred
1982          */
1983         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1984
1985         /* This computation should always be done in terms of the
1986          * resolution of the device's medium.
1987          */
1988         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1989
1990         return min(good_bytes, transferred);
1991 }
1992
1993 /**
1994  *      sd_done - bottom half handler: called when the lower level
1995  *      driver has completed (successfully or otherwise) a scsi command.
1996  *      @SCpnt: mid-level's per command structure.
1997  *
1998  *      Note: potentially run from within an ISR. Must not block.
1999  **/
2000 static int sd_done(struct scsi_cmnd *SCpnt)
2001 {
2002         int result = SCpnt->result;
2003         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2004         unsigned int sector_size = SCpnt->device->sector_size;
2005         unsigned int resid;
2006         struct scsi_sense_hdr sshdr;
2007         struct request *req = scsi_cmd_to_rq(SCpnt);
2008         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2009         int sense_valid = 0;
2010         int sense_deferred = 0;
2011
2012         switch (req_op(req)) {
2013         case REQ_OP_DISCARD:
2014         case REQ_OP_WRITE_ZEROES:
2015         case REQ_OP_WRITE_SAME:
2016         case REQ_OP_ZONE_RESET:
2017         case REQ_OP_ZONE_RESET_ALL:
2018         case REQ_OP_ZONE_OPEN:
2019         case REQ_OP_ZONE_CLOSE:
2020         case REQ_OP_ZONE_FINISH:
2021                 if (!result) {
2022                         good_bytes = blk_rq_bytes(req);
2023                         scsi_set_resid(SCpnt, 0);
2024                 } else {
2025                         good_bytes = 0;
2026                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2027                 }
2028                 break;
2029         default:
2030                 /*
2031                  * In case of bogus fw or device, we could end up having
2032                  * an unaligned partial completion. Check this here and force
2033                  * alignment.
2034                  */
2035                 resid = scsi_get_resid(SCpnt);
2036                 if (resid & (sector_size - 1)) {
2037                         sd_printk(KERN_INFO, sdkp,
2038                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2039                                 resid, sector_size);
2040                         scsi_print_command(SCpnt);
2041                         resid = min(scsi_bufflen(SCpnt),
2042                                     round_up(resid, sector_size));
2043                         scsi_set_resid(SCpnt, resid);
2044                 }
2045         }
2046
2047         if (result) {
2048                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2049                 if (sense_valid)
2050                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2051         }
2052         sdkp->medium_access_timed_out = 0;
2053
2054         if (!scsi_status_is_check_condition(result) &&
2055             (!sense_valid || sense_deferred))
2056                 goto out;
2057
2058         switch (sshdr.sense_key) {
2059         case HARDWARE_ERROR:
2060         case MEDIUM_ERROR:
2061                 good_bytes = sd_completed_bytes(SCpnt);
2062                 break;
2063         case RECOVERED_ERROR:
2064                 good_bytes = scsi_bufflen(SCpnt);
2065                 break;
2066         case NO_SENSE:
2067                 /* This indicates a false check condition, so ignore it.  An
2068                  * unknown amount of data was transferred so treat it as an
2069                  * error.
2070                  */
2071                 SCpnt->result = 0;
2072                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2073                 break;
2074         case ABORTED_COMMAND:
2075                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2076                         good_bytes = sd_completed_bytes(SCpnt);
2077                 break;
2078         case ILLEGAL_REQUEST:
2079                 switch (sshdr.asc) {
2080                 case 0x10:      /* DIX: Host detected corruption */
2081                         good_bytes = sd_completed_bytes(SCpnt);
2082                         break;
2083                 case 0x20:      /* INVALID COMMAND OPCODE */
2084                 case 0x24:      /* INVALID FIELD IN CDB */
2085                         switch (SCpnt->cmnd[0]) {
2086                         case UNMAP:
2087                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2088                                 break;
2089                         case WRITE_SAME_16:
2090                         case WRITE_SAME:
2091                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2092                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2093                                 } else {
2094                                         sdkp->device->no_write_same = 1;
2095                                         sd_config_write_same(sdkp);
2096                                         req->rq_flags |= RQF_QUIET;
2097                                 }
2098                                 break;
2099                         }
2100                 }
2101                 break;
2102         default:
2103                 break;
2104         }
2105
2106  out:
2107         if (sd_is_zoned(sdkp))
2108                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2109
2110         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2111                                            "sd_done: completed %d of %d bytes\n",
2112                                            good_bytes, scsi_bufflen(SCpnt)));
2113
2114         return good_bytes;
2115 }
2116
2117 /*
2118  * spinup disk - called only in sd_revalidate_disk()
2119  */
2120 static void
2121 sd_spinup_disk(struct scsi_disk *sdkp)
2122 {
2123         unsigned char cmd[10];
2124         unsigned long spintime_expire = 0;
2125         int retries, spintime;
2126         unsigned int the_result;
2127         struct scsi_sense_hdr sshdr;
2128         int sense_valid = 0;
2129
2130         spintime = 0;
2131
2132         /* Spin up drives, as required.  Only do this at boot time */
2133         /* Spinup needs to be done for module loads too. */
2134         do {
2135                 retries = 0;
2136
2137                 do {
2138                         bool media_was_present = sdkp->media_present;
2139
2140                         cmd[0] = TEST_UNIT_READY;
2141                         memset((void *) &cmd[1], 0, 9);
2142
2143                         the_result = scsi_execute_req(sdkp->device, cmd,
2144                                                       DMA_NONE, NULL, 0,
2145                                                       &sshdr, SD_TIMEOUT,
2146                                                       sdkp->max_retries, NULL);
2147
2148                         /*
2149                          * If the drive has indicated to us that it
2150                          * doesn't have any media in it, don't bother
2151                          * with any more polling.
2152                          */
2153                         if (media_not_present(sdkp, &sshdr)) {
2154                                 if (media_was_present)
2155                                         sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2156                                 return;
2157                         }
2158
2159                         if (the_result)
2160                                 sense_valid = scsi_sense_valid(&sshdr);
2161                         retries++;
2162                 } while (retries < 3 &&
2163                          (!scsi_status_is_good(the_result) ||
2164                           (scsi_status_is_check_condition(the_result) &&
2165                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2166
2167                 if (!scsi_status_is_check_condition(the_result)) {
2168                         /* no sense, TUR either succeeded or failed
2169                          * with a status error */
2170                         if(!spintime && !scsi_status_is_good(the_result)) {
2171                                 sd_print_result(sdkp, "Test Unit Ready failed",
2172                                                 the_result);
2173                         }
2174                         break;
2175                 }
2176
2177                 /*
2178                  * The device does not want the automatic start to be issued.
2179                  */
2180                 if (sdkp->device->no_start_on_add)
2181                         break;
2182
2183                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2184                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2185                                 break;  /* manual intervention required */
2186                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2187                                 break;  /* standby */
2188                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2189                                 break;  /* unavailable */
2190                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2191                                 break;  /* sanitize in progress */
2192                         /*
2193                          * Issue command to spin up drive when not ready
2194                          */
2195                         if (!spintime) {
2196                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2197                                 cmd[0] = START_STOP;
2198                                 cmd[1] = 1;     /* Return immediately */
2199                                 memset((void *) &cmd[2], 0, 8);
2200                                 cmd[4] = 1;     /* Start spin cycle */
2201                                 if (sdkp->device->start_stop_pwr_cond)
2202                                         cmd[4] |= 1 << 4;
2203                                 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2204                                                  NULL, 0, &sshdr,
2205                                                  SD_TIMEOUT, sdkp->max_retries,
2206                                                  NULL);
2207                                 spintime_expire = jiffies + 100 * HZ;
2208                                 spintime = 1;
2209                         }
2210                         /* Wait 1 second for next try */
2211                         msleep(1000);
2212                         printk(KERN_CONT ".");
2213
2214                 /*
2215                  * Wait for USB flash devices with slow firmware.
2216                  * Yes, this sense key/ASC combination shouldn't
2217                  * occur here.  It's characteristic of these devices.
2218                  */
2219                 } else if (sense_valid &&
2220                                 sshdr.sense_key == UNIT_ATTENTION &&
2221                                 sshdr.asc == 0x28) {
2222                         if (!spintime) {
2223                                 spintime_expire = jiffies + 5 * HZ;
2224                                 spintime = 1;
2225                         }
2226                         /* Wait 1 second for next try */
2227                         msleep(1000);
2228                 } else {
2229                         /* we don't understand the sense code, so it's
2230                          * probably pointless to loop */
2231                         if(!spintime) {
2232                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2233                                 sd_print_sense_hdr(sdkp, &sshdr);
2234                         }
2235                         break;
2236                 }
2237                                 
2238         } while (spintime && time_before_eq(jiffies, spintime_expire));
2239
2240         if (spintime) {
2241                 if (scsi_status_is_good(the_result))
2242                         printk(KERN_CONT "ready\n");
2243                 else
2244                         printk(KERN_CONT "not responding...\n");
2245         }
2246 }
2247
2248 /*
2249  * Determine whether disk supports Data Integrity Field.
2250  */
2251 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2252 {
2253         struct scsi_device *sdp = sdkp->device;
2254         u8 type;
2255         int ret = 0;
2256
2257         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2258                 sdkp->protection_type = 0;
2259                 return ret;
2260         }
2261
2262         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2263
2264         if (type > T10_PI_TYPE3_PROTECTION)
2265                 ret = -ENODEV;
2266         else if (scsi_host_dif_capable(sdp->host, type))
2267                 ret = 1;
2268
2269         if (sdkp->first_scan || type != sdkp->protection_type)
2270                 switch (ret) {
2271                 case -ENODEV:
2272                         sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2273                                   " protection type %u. Disabling disk!\n",
2274                                   type);
2275                         break;
2276                 case 1:
2277                         sd_printk(KERN_NOTICE, sdkp,
2278                                   "Enabling DIF Type %u protection\n", type);
2279                         break;
2280                 case 0:
2281                         sd_printk(KERN_NOTICE, sdkp,
2282                                   "Disabling DIF Type %u protection\n", type);
2283                         break;
2284                 }
2285
2286         sdkp->protection_type = type;
2287
2288         return ret;
2289 }
2290
2291 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2292                         struct scsi_sense_hdr *sshdr, int sense_valid,
2293                         int the_result)
2294 {
2295         if (sense_valid)
2296                 sd_print_sense_hdr(sdkp, sshdr);
2297         else
2298                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2299
2300         /*
2301          * Set dirty bit for removable devices if not ready -
2302          * sometimes drives will not report this properly.
2303          */
2304         if (sdp->removable &&
2305             sense_valid && sshdr->sense_key == NOT_READY)
2306                 set_media_not_present(sdkp);
2307
2308         /*
2309          * We used to set media_present to 0 here to indicate no media
2310          * in the drive, but some drives fail read capacity even with
2311          * media present, so we can't do that.
2312          */
2313         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2314 }
2315
2316 #define RC16_LEN 32
2317 #if RC16_LEN > SD_BUF_SIZE
2318 #error RC16_LEN must not be more than SD_BUF_SIZE
2319 #endif
2320
2321 #define READ_CAPACITY_RETRIES_ON_RESET  10
2322
2323 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2324                                                 unsigned char *buffer)
2325 {
2326         unsigned char cmd[16];
2327         struct scsi_sense_hdr sshdr;
2328         int sense_valid = 0;
2329         int the_result;
2330         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2331         unsigned int alignment;
2332         unsigned long long lba;
2333         unsigned sector_size;
2334
2335         if (sdp->no_read_capacity_16)
2336                 return -EINVAL;
2337
2338         do {
2339                 memset(cmd, 0, 16);
2340                 cmd[0] = SERVICE_ACTION_IN_16;
2341                 cmd[1] = SAI_READ_CAPACITY_16;
2342                 cmd[13] = RC16_LEN;
2343                 memset(buffer, 0, RC16_LEN);
2344
2345                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2346                                         buffer, RC16_LEN, &sshdr,
2347                                         SD_TIMEOUT, sdkp->max_retries, NULL);
2348
2349                 if (media_not_present(sdkp, &sshdr))
2350                         return -ENODEV;
2351
2352                 if (the_result > 0) {
2353                         sense_valid = scsi_sense_valid(&sshdr);
2354                         if (sense_valid &&
2355                             sshdr.sense_key == ILLEGAL_REQUEST &&
2356                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2357                             sshdr.ascq == 0x00)
2358                                 /* Invalid Command Operation Code or
2359                                  * Invalid Field in CDB, just retry
2360                                  * silently with RC10 */
2361                                 return -EINVAL;
2362                         if (sense_valid &&
2363                             sshdr.sense_key == UNIT_ATTENTION &&
2364                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2365                                 /* Device reset might occur several times,
2366                                  * give it one more chance */
2367                                 if (--reset_retries > 0)
2368                                         continue;
2369                 }
2370                 retries--;
2371
2372         } while (the_result && retries);
2373
2374         if (the_result) {
2375                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2376                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2377                 return -EINVAL;
2378         }
2379
2380         sector_size = get_unaligned_be32(&buffer[8]);
2381         lba = get_unaligned_be64(&buffer[0]);
2382
2383         if (sd_read_protection_type(sdkp, buffer) < 0) {
2384                 sdkp->capacity = 0;
2385                 return -ENODEV;
2386         }
2387
2388         /* Logical blocks per physical block exponent */
2389         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2390
2391         /* RC basis */
2392         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2393
2394         /* Lowest aligned logical block */
2395         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2396         blk_queue_alignment_offset(sdp->request_queue, alignment);
2397         if (alignment && sdkp->first_scan)
2398                 sd_printk(KERN_NOTICE, sdkp,
2399                           "physical block alignment offset: %u\n", alignment);
2400
2401         if (buffer[14] & 0x80) { /* LBPME */
2402                 sdkp->lbpme = 1;
2403
2404                 if (buffer[14] & 0x40) /* LBPRZ */
2405                         sdkp->lbprz = 1;
2406
2407                 sd_config_discard(sdkp, SD_LBP_WS16);
2408         }
2409
2410         sdkp->capacity = lba + 1;
2411         return sector_size;
2412 }
2413
2414 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2415                                                 unsigned char *buffer)
2416 {
2417         unsigned char cmd[16];
2418         struct scsi_sense_hdr sshdr;
2419         int sense_valid = 0;
2420         int the_result;
2421         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2422         sector_t lba;
2423         unsigned sector_size;
2424
2425         do {
2426                 cmd[0] = READ_CAPACITY;
2427                 memset(&cmd[1], 0, 9);
2428                 memset(buffer, 0, 8);
2429
2430                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2431                                         buffer, 8, &sshdr,
2432                                         SD_TIMEOUT, sdkp->max_retries, NULL);
2433
2434                 if (media_not_present(sdkp, &sshdr))
2435                         return -ENODEV;
2436
2437                 if (the_result > 0) {
2438                         sense_valid = scsi_sense_valid(&sshdr);
2439                         if (sense_valid &&
2440                             sshdr.sense_key == UNIT_ATTENTION &&
2441                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2442                                 /* Device reset might occur several times,
2443                                  * give it one more chance */
2444                                 if (--reset_retries > 0)
2445                                         continue;
2446                 }
2447                 retries--;
2448
2449         } while (the_result && retries);
2450
2451         if (the_result) {
2452                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2453                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2454                 return -EINVAL;
2455         }
2456
2457         sector_size = get_unaligned_be32(&buffer[4]);
2458         lba = get_unaligned_be32(&buffer[0]);
2459
2460         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2461                 /* Some buggy (usb cardreader) devices return an lba of
2462                    0xffffffff when the want to report a size of 0 (with
2463                    which they really mean no media is present) */
2464                 sdkp->capacity = 0;
2465                 sdkp->physical_block_size = sector_size;
2466                 return sector_size;
2467         }
2468
2469         sdkp->capacity = lba + 1;
2470         sdkp->physical_block_size = sector_size;
2471         return sector_size;
2472 }
2473
2474 static int sd_try_rc16_first(struct scsi_device *sdp)
2475 {
2476         if (sdp->host->max_cmd_len < 16)
2477                 return 0;
2478         if (sdp->try_rc_10_first)
2479                 return 0;
2480         if (sdp->scsi_level > SCSI_SPC_2)
2481                 return 1;
2482         if (scsi_device_protection(sdp))
2483                 return 1;
2484         return 0;
2485 }
2486
2487 /*
2488  * read disk capacity
2489  */
2490 static void
2491 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2492 {
2493         int sector_size;
2494         struct scsi_device *sdp = sdkp->device;
2495
2496         if (sd_try_rc16_first(sdp)) {
2497                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2498                 if (sector_size == -EOVERFLOW)
2499                         goto got_data;
2500                 if (sector_size == -ENODEV)
2501                         return;
2502                 if (sector_size < 0)
2503                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2504                 if (sector_size < 0)
2505                         return;
2506         } else {
2507                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2508                 if (sector_size == -EOVERFLOW)
2509                         goto got_data;
2510                 if (sector_size < 0)
2511                         return;
2512                 if ((sizeof(sdkp->capacity) > 4) &&
2513                     (sdkp->capacity > 0xffffffffULL)) {
2514                         int old_sector_size = sector_size;
2515                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2516                                         "Trying to use READ CAPACITY(16).\n");
2517                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2518                         if (sector_size < 0) {
2519                                 sd_printk(KERN_NOTICE, sdkp,
2520                                         "Using 0xffffffff as device size\n");
2521                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2522                                 sector_size = old_sector_size;
2523                                 goto got_data;
2524                         }
2525                         /* Remember that READ CAPACITY(16) succeeded */
2526                         sdp->try_rc_10_first = 0;
2527                 }
2528         }
2529
2530         /* Some devices are known to return the total number of blocks,
2531          * not the highest block number.  Some devices have versions
2532          * which do this and others which do not.  Some devices we might
2533          * suspect of doing this but we don't know for certain.
2534          *
2535          * If we know the reported capacity is wrong, decrement it.  If
2536          * we can only guess, then assume the number of blocks is even
2537          * (usually true but not always) and err on the side of lowering
2538          * the capacity.
2539          */
2540         if (sdp->fix_capacity ||
2541             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2542                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2543                                 "from its reported value: %llu\n",
2544                                 (unsigned long long) sdkp->capacity);
2545                 --sdkp->capacity;
2546         }
2547
2548 got_data:
2549         if (sector_size == 0) {
2550                 sector_size = 512;
2551                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2552                           "assuming 512.\n");
2553         }
2554
2555         if (sector_size != 512 &&
2556             sector_size != 1024 &&
2557             sector_size != 2048 &&
2558             sector_size != 4096) {
2559                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2560                           sector_size);
2561                 /*
2562                  * The user might want to re-format the drive with
2563                  * a supported sectorsize.  Once this happens, it
2564                  * would be relatively trivial to set the thing up.
2565                  * For this reason, we leave the thing in the table.
2566                  */
2567                 sdkp->capacity = 0;
2568                 /*
2569                  * set a bogus sector size so the normal read/write
2570                  * logic in the block layer will eventually refuse any
2571                  * request on this device without tripping over power
2572                  * of two sector size assumptions
2573                  */
2574                 sector_size = 512;
2575         }
2576         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2577         blk_queue_physical_block_size(sdp->request_queue,
2578                                       sdkp->physical_block_size);
2579         sdkp->device->sector_size = sector_size;
2580
2581         if (sdkp->capacity > 0xffffffff)
2582                 sdp->use_16_for_rw = 1;
2583
2584 }
2585
2586 /*
2587  * Print disk capacity
2588  */
2589 static void
2590 sd_print_capacity(struct scsi_disk *sdkp,
2591                   sector_t old_capacity)
2592 {
2593         int sector_size = sdkp->device->sector_size;
2594         char cap_str_2[10], cap_str_10[10];
2595
2596         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2597                 return;
2598
2599         string_get_size(sdkp->capacity, sector_size,
2600                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2601         string_get_size(sdkp->capacity, sector_size,
2602                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2603
2604         sd_printk(KERN_NOTICE, sdkp,
2605                   "%llu %d-byte logical blocks: (%s/%s)\n",
2606                   (unsigned long long)sdkp->capacity,
2607                   sector_size, cap_str_10, cap_str_2);
2608
2609         if (sdkp->physical_block_size != sector_size)
2610                 sd_printk(KERN_NOTICE, sdkp,
2611                           "%u-byte physical blocks\n",
2612                           sdkp->physical_block_size);
2613 }
2614
2615 /* called with buffer of length 512 */
2616 static inline int
2617 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2618                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2619                  struct scsi_sense_hdr *sshdr)
2620 {
2621         /*
2622          * If we must use MODE SENSE(10), make sure that the buffer length
2623          * is at least 8 bytes so that the mode sense header fits.
2624          */
2625         if (sdkp->device->use_10_for_ms && len < 8)
2626                 len = 8;
2627
2628         return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2629                                SD_TIMEOUT, sdkp->max_retries, data,
2630                                sshdr);
2631 }
2632
2633 /*
2634  * read write protect setting, if possible - called only in sd_revalidate_disk()
2635  * called with buffer of length SD_BUF_SIZE
2636  */
2637 static void
2638 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2639 {
2640         int res;
2641         struct scsi_device *sdp = sdkp->device;
2642         struct scsi_mode_data data;
2643         int old_wp = sdkp->write_prot;
2644
2645         set_disk_ro(sdkp->disk, 0);
2646         if (sdp->skip_ms_page_3f) {
2647                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2648                 return;
2649         }
2650
2651         if (sdp->use_192_bytes_for_3f) {
2652                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2653         } else {
2654                 /*
2655                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2656                  * We have to start carefully: some devices hang if we ask
2657                  * for more than is available.
2658                  */
2659                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2660
2661                 /*
2662                  * Second attempt: ask for page 0 When only page 0 is
2663                  * implemented, a request for page 3F may return Sense Key
2664                  * 5: Illegal Request, Sense Code 24: Invalid field in
2665                  * CDB.
2666                  */
2667                 if (res < 0)
2668                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2669
2670                 /*
2671                  * Third attempt: ask 255 bytes, as we did earlier.
2672                  */
2673                 if (res < 0)
2674                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2675                                                &data, NULL);
2676         }
2677
2678         if (res < 0) {
2679                 sd_first_printk(KERN_WARNING, sdkp,
2680                           "Test WP failed, assume Write Enabled\n");
2681         } else {
2682                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2683                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2684                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2685                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2686                                   sdkp->write_prot ? "on" : "off");
2687                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2688                 }
2689         }
2690 }
2691
2692 /*
2693  * sd_read_cache_type - called only from sd_revalidate_disk()
2694  * called with buffer of length SD_BUF_SIZE
2695  */
2696 static void
2697 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2698 {
2699         int len = 0, res;
2700         struct scsi_device *sdp = sdkp->device;
2701
2702         int dbd;
2703         int modepage;
2704         int first_len;
2705         struct scsi_mode_data data;
2706         struct scsi_sense_hdr sshdr;
2707         int old_wce = sdkp->WCE;
2708         int old_rcd = sdkp->RCD;
2709         int old_dpofua = sdkp->DPOFUA;
2710
2711
2712         if (sdkp->cache_override)
2713                 return;
2714
2715         first_len = 4;
2716         if (sdp->skip_ms_page_8) {
2717                 if (sdp->type == TYPE_RBC)
2718                         goto defaults;
2719                 else {
2720                         if (sdp->skip_ms_page_3f)
2721                                 goto defaults;
2722                         modepage = 0x3F;
2723                         if (sdp->use_192_bytes_for_3f)
2724                                 first_len = 192;
2725                         dbd = 0;
2726                 }
2727         } else if (sdp->type == TYPE_RBC) {
2728                 modepage = 6;
2729                 dbd = 8;
2730         } else {
2731                 modepage = 8;
2732                 dbd = 0;
2733         }
2734
2735         /* cautiously ask */
2736         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2737                         &data, &sshdr);
2738
2739         if (res < 0)
2740                 goto bad_sense;
2741
2742         if (!data.header_length) {
2743                 modepage = 6;
2744                 first_len = 0;
2745                 sd_first_printk(KERN_ERR, sdkp,
2746                                 "Missing header in MODE_SENSE response\n");
2747         }
2748
2749         /* that went OK, now ask for the proper length */
2750         len = data.length;
2751
2752         /*
2753          * We're only interested in the first three bytes, actually.
2754          * But the data cache page is defined for the first 20.
2755          */
2756         if (len < 3)
2757                 goto bad_sense;
2758         else if (len > SD_BUF_SIZE) {
2759                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2760                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2761                 len = SD_BUF_SIZE;
2762         }
2763         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2764                 len = 192;
2765
2766         /* Get the data */
2767         if (len > first_len)
2768                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2769                                 &data, &sshdr);
2770
2771         if (!res) {
2772                 int offset = data.header_length + data.block_descriptor_length;
2773
2774                 while (offset < len) {
2775                         u8 page_code = buffer[offset] & 0x3F;
2776                         u8 spf       = buffer[offset] & 0x40;
2777
2778                         if (page_code == 8 || page_code == 6) {
2779                                 /* We're interested only in the first 3 bytes.
2780                                  */
2781                                 if (len - offset <= 2) {
2782                                         sd_first_printk(KERN_ERR, sdkp,
2783                                                 "Incomplete mode parameter "
2784                                                         "data\n");
2785                                         goto defaults;
2786                                 } else {
2787                                         modepage = page_code;
2788                                         goto Page_found;
2789                                 }
2790                         } else {
2791                                 /* Go to the next page */
2792                                 if (spf && len - offset > 3)
2793                                         offset += 4 + (buffer[offset+2] << 8) +
2794                                                 buffer[offset+3];
2795                                 else if (!spf && len - offset > 1)
2796                                         offset += 2 + buffer[offset+1];
2797                                 else {
2798                                         sd_first_printk(KERN_ERR, sdkp,
2799                                                         "Incomplete mode "
2800                                                         "parameter data\n");
2801                                         goto defaults;
2802                                 }
2803                         }
2804                 }
2805
2806                 sd_first_printk(KERN_WARNING, sdkp,
2807                                 "No Caching mode page found\n");
2808                 goto defaults;
2809
2810         Page_found:
2811                 if (modepage == 8) {
2812                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2813                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2814                 } else {
2815                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2816                         sdkp->RCD = 0;
2817                 }
2818
2819                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2820                 if (sdp->broken_fua) {
2821                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2822                         sdkp->DPOFUA = 0;
2823                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2824                            !sdkp->device->use_16_for_rw) {
2825                         sd_first_printk(KERN_NOTICE, sdkp,
2826                                   "Uses READ/WRITE(6), disabling FUA\n");
2827                         sdkp->DPOFUA = 0;
2828                 }
2829
2830                 /* No cache flush allowed for write protected devices */
2831                 if (sdkp->WCE && sdkp->write_prot)
2832                         sdkp->WCE = 0;
2833
2834                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2835                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2836                         sd_printk(KERN_NOTICE, sdkp,
2837                                   "Write cache: %s, read cache: %s, %s\n",
2838                                   sdkp->WCE ? "enabled" : "disabled",
2839                                   sdkp->RCD ? "disabled" : "enabled",
2840                                   sdkp->DPOFUA ? "supports DPO and FUA"
2841                                   : "doesn't support DPO or FUA");
2842
2843                 return;
2844         }
2845
2846 bad_sense:
2847         if (scsi_sense_valid(&sshdr) &&
2848             sshdr.sense_key == ILLEGAL_REQUEST &&
2849             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2850                 /* Invalid field in CDB */
2851                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2852         else
2853                 sd_first_printk(KERN_ERR, sdkp,
2854                                 "Asking for cache data failed\n");
2855
2856 defaults:
2857         if (sdp->wce_default_on) {
2858                 sd_first_printk(KERN_NOTICE, sdkp,
2859                                 "Assuming drive cache: write back\n");
2860                 sdkp->WCE = 1;
2861         } else {
2862                 sd_first_printk(KERN_WARNING, sdkp,
2863                                 "Assuming drive cache: write through\n");
2864                 sdkp->WCE = 0;
2865         }
2866         sdkp->RCD = 0;
2867         sdkp->DPOFUA = 0;
2868 }
2869
2870 /*
2871  * The ATO bit indicates whether the DIF application tag is available
2872  * for use by the operating system.
2873  */
2874 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2875 {
2876         int res, offset;
2877         struct scsi_device *sdp = sdkp->device;
2878         struct scsi_mode_data data;
2879         struct scsi_sense_hdr sshdr;
2880
2881         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2882                 return;
2883
2884         if (sdkp->protection_type == 0)
2885                 return;
2886
2887         res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2888                               sdkp->max_retries, &data, &sshdr);
2889
2890         if (res < 0 || !data.header_length ||
2891             data.length < 6) {
2892                 sd_first_printk(KERN_WARNING, sdkp,
2893                           "getting Control mode page failed, assume no ATO\n");
2894
2895                 if (scsi_sense_valid(&sshdr))
2896                         sd_print_sense_hdr(sdkp, &sshdr);
2897
2898                 return;
2899         }
2900
2901         offset = data.header_length + data.block_descriptor_length;
2902
2903         if ((buffer[offset] & 0x3f) != 0x0a) {
2904                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2905                 return;
2906         }
2907
2908         if ((buffer[offset + 5] & 0x80) == 0)
2909                 return;
2910
2911         sdkp->ATO = 1;
2912
2913         return;
2914 }
2915
2916 /**
2917  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2918  * @sdkp: disk to query
2919  */
2920 static void sd_read_block_limits(struct scsi_disk *sdkp)
2921 {
2922         unsigned int sector_sz = sdkp->device->sector_size;
2923         const int vpd_len = 64;
2924         unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2925
2926         if (!buffer ||
2927             /* Block Limits VPD */
2928             scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2929                 goto out;
2930
2931         blk_queue_io_min(sdkp->disk->queue,
2932                          get_unaligned_be16(&buffer[6]) * sector_sz);
2933
2934         sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2935         sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2936
2937         if (buffer[3] == 0x3c) {
2938                 unsigned int lba_count, desc_count;
2939
2940                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2941
2942                 if (!sdkp->lbpme)
2943                         goto out;
2944
2945                 lba_count = get_unaligned_be32(&buffer[20]);
2946                 desc_count = get_unaligned_be32(&buffer[24]);
2947
2948                 if (lba_count && desc_count)
2949                         sdkp->max_unmap_blocks = lba_count;
2950
2951                 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2952
2953                 if (buffer[32] & 0x80)
2954                         sdkp->unmap_alignment =
2955                                 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2956
2957                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2958
2959                         if (sdkp->max_unmap_blocks)
2960                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2961                         else
2962                                 sd_config_discard(sdkp, SD_LBP_WS16);
2963
2964                 } else {        /* LBP VPD page tells us what to use */
2965                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
2966                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2967                         else if (sdkp->lbpws)
2968                                 sd_config_discard(sdkp, SD_LBP_WS16);
2969                         else if (sdkp->lbpws10)
2970                                 sd_config_discard(sdkp, SD_LBP_WS10);
2971                         else
2972                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2973                 }
2974         }
2975
2976  out:
2977         kfree(buffer);
2978 }
2979
2980 /**
2981  * sd_read_block_characteristics - Query block dev. characteristics
2982  * @sdkp: disk to query
2983  */
2984 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2985 {
2986         struct request_queue *q = sdkp->disk->queue;
2987         unsigned char *buffer;
2988         u16 rot;
2989         const int vpd_len = 64;
2990
2991         buffer = kmalloc(vpd_len, GFP_KERNEL);
2992
2993         if (!buffer ||
2994             /* Block Device Characteristics VPD */
2995             scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2996                 goto out;
2997
2998         rot = get_unaligned_be16(&buffer[4]);
2999
3000         if (rot == 1) {
3001                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3002                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3003         }
3004
3005         if (sdkp->device->type == TYPE_ZBC) {
3006                 /* Host-managed */
3007                 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
3008         } else {
3009                 sdkp->zoned = (buffer[8] >> 4) & 3;
3010                 if (sdkp->zoned == 1) {
3011                         /* Host-aware */
3012                         blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3013                 } else {
3014                         /* Regular disk or drive managed disk */
3015                         blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3016                 }
3017         }
3018
3019         if (!sdkp->first_scan)
3020                 goto out;
3021
3022         if (blk_queue_is_zoned(q)) {
3023                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3024                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3025         } else {
3026                 if (sdkp->zoned == 1)
3027                         sd_printk(KERN_NOTICE, sdkp,
3028                                   "Host-aware SMR disk used as regular disk\n");
3029                 else if (sdkp->zoned == 2)
3030                         sd_printk(KERN_NOTICE, sdkp,
3031                                   "Drive-managed SMR disk\n");
3032         }
3033
3034  out:
3035         kfree(buffer);
3036 }
3037
3038 /**
3039  * sd_read_block_provisioning - Query provisioning VPD page
3040  * @sdkp: disk to query
3041  */
3042 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3043 {
3044         unsigned char *buffer;
3045         const int vpd_len = 8;
3046
3047         if (sdkp->lbpme == 0)
3048                 return;
3049
3050         buffer = kmalloc(vpd_len, GFP_KERNEL);
3051
3052         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3053                 goto out;
3054
3055         sdkp->lbpvpd    = 1;
3056         sdkp->lbpu      = (buffer[5] >> 7) & 1; /* UNMAP */
3057         sdkp->lbpws     = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3058         sdkp->lbpws10   = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3059
3060  out:
3061         kfree(buffer);
3062 }
3063
3064 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3065 {
3066         struct scsi_device *sdev = sdkp->device;
3067
3068         if (sdev->host->no_write_same) {
3069                 sdev->no_write_same = 1;
3070
3071                 return;
3072         }
3073
3074         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3075                 /* too large values might cause issues with arcmsr */
3076                 int vpd_buf_len = 64;
3077
3078                 sdev->no_report_opcodes = 1;
3079
3080                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3081                  * CODES is unsupported and the device has an ATA
3082                  * Information VPD page (SAT).
3083                  */
3084                 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3085                         sdev->no_write_same = 1;
3086         }
3087
3088         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3089                 sdkp->ws16 = 1;
3090
3091         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3092                 sdkp->ws10 = 1;
3093 }
3094
3095 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3096 {
3097         struct scsi_device *sdev = sdkp->device;
3098
3099         if (!sdev->security_supported)
3100                 return;
3101
3102         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3103                         SECURITY_PROTOCOL_IN) == 1 &&
3104             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3105                         SECURITY_PROTOCOL_OUT) == 1)
3106                 sdkp->security = 1;
3107 }
3108
3109 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3110 {
3111         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3112 }
3113
3114 /**
3115  * sd_read_cpr - Query concurrent positioning ranges
3116  * @sdkp:       disk to query
3117  */
3118 static void sd_read_cpr(struct scsi_disk *sdkp)
3119 {
3120         struct blk_independent_access_ranges *iars = NULL;
3121         unsigned char *buffer = NULL;
3122         unsigned int nr_cpr = 0;
3123         int i, vpd_len, buf_len = SD_BUF_SIZE;
3124         u8 *desc;
3125
3126         /*
3127          * We need to have the capacity set first for the block layer to be
3128          * able to check the ranges.
3129          */
3130         if (sdkp->first_scan)
3131                 return;
3132
3133         if (!sdkp->capacity)
3134                 goto out;
3135
3136         /*
3137          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3138          * leading to a maximum page size of 64 + 256*32 bytes.
3139          */
3140         buf_len = 64 + 256*32;
3141         buffer = kmalloc(buf_len, GFP_KERNEL);
3142         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3143                 goto out;
3144
3145         /* We must have at least a 64B header and one 32B range descriptor */
3146         vpd_len = get_unaligned_be16(&buffer[2]) + 3;
3147         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3148                 sd_printk(KERN_ERR, sdkp,
3149                           "Invalid Concurrent Positioning Ranges VPD page\n");
3150                 goto out;
3151         }
3152
3153         nr_cpr = (vpd_len - 64) / 32;
3154         if (nr_cpr == 1) {
3155                 nr_cpr = 0;
3156                 goto out;
3157         }
3158
3159         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3160         if (!iars) {
3161                 nr_cpr = 0;
3162                 goto out;
3163         }
3164
3165         desc = &buffer[64];
3166         for (i = 0; i < nr_cpr; i++, desc += 32) {
3167                 if (desc[0] != i) {
3168                         sd_printk(KERN_ERR, sdkp,
3169                                 "Invalid Concurrent Positioning Range number\n");
3170                         nr_cpr = 0;
3171                         break;
3172                 }
3173
3174                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3175                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3176         }
3177
3178 out:
3179         disk_set_independent_access_ranges(sdkp->disk, iars);
3180         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3181                 sd_printk(KERN_NOTICE, sdkp,
3182                           "%u concurrent positioning ranges\n", nr_cpr);
3183                 sdkp->nr_actuators = nr_cpr;
3184         }
3185
3186         kfree(buffer);
3187 }
3188
3189 /*
3190  * Determine the device's preferred I/O size for reads and writes
3191  * unless the reported value is unreasonably small, large, not a
3192  * multiple of the physical block size, or simply garbage.
3193  */
3194 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3195                                       unsigned int dev_max)
3196 {
3197         struct scsi_device *sdp = sdkp->device;
3198         unsigned int opt_xfer_bytes =
3199                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3200
3201         if (sdkp->opt_xfer_blocks == 0)
3202                 return false;
3203
3204         if (sdkp->opt_xfer_blocks > dev_max) {
3205                 sd_first_printk(KERN_WARNING, sdkp,
3206                                 "Optimal transfer size %u logical blocks " \
3207                                 "> dev_max (%u logical blocks)\n",
3208                                 sdkp->opt_xfer_blocks, dev_max);
3209                 return false;
3210         }
3211
3212         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3213                 sd_first_printk(KERN_WARNING, sdkp,
3214                                 "Optimal transfer size %u logical blocks " \
3215                                 "> sd driver limit (%u logical blocks)\n",
3216                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3217                 return false;
3218         }
3219
3220         if (opt_xfer_bytes < PAGE_SIZE) {
3221                 sd_first_printk(KERN_WARNING, sdkp,
3222                                 "Optimal transfer size %u bytes < " \
3223                                 "PAGE_SIZE (%u bytes)\n",
3224                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3225                 return false;
3226         }
3227
3228         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3229                 sd_first_printk(KERN_WARNING, sdkp,
3230                                 "Optimal transfer size %u bytes not a " \
3231                                 "multiple of physical block size (%u bytes)\n",
3232                                 opt_xfer_bytes, sdkp->physical_block_size);
3233                 return false;
3234         }
3235
3236         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3237                         opt_xfer_bytes);
3238         return true;
3239 }
3240
3241 /**
3242  *      sd_revalidate_disk - called the first time a new disk is seen,
3243  *      performs disk spin up, read_capacity, etc.
3244  *      @disk: struct gendisk we care about
3245  **/
3246 static int sd_revalidate_disk(struct gendisk *disk)
3247 {
3248         struct scsi_disk *sdkp = scsi_disk(disk);
3249         struct scsi_device *sdp = sdkp->device;
3250         struct request_queue *q = sdkp->disk->queue;
3251         sector_t old_capacity = sdkp->capacity;
3252         unsigned char *buffer;
3253         unsigned int dev_max, rw_max;
3254
3255         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3256                                       "sd_revalidate_disk\n"));
3257
3258         /*
3259          * If the device is offline, don't try and read capacity or any
3260          * of the other niceties.
3261          */
3262         if (!scsi_device_online(sdp))
3263                 goto out;
3264
3265         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3266         if (!buffer) {
3267                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3268                           "allocation failure.\n");
3269                 goto out;
3270         }
3271
3272         sd_spinup_disk(sdkp);
3273
3274         /*
3275          * Without media there is no reason to ask; moreover, some devices
3276          * react badly if we do.
3277          */
3278         if (sdkp->media_present) {
3279                 sd_read_capacity(sdkp, buffer);
3280
3281                 /*
3282                  * set the default to rotational.  All non-rotational devices
3283                  * support the block characteristics VPD page, which will
3284                  * cause this to be updated correctly and any device which
3285                  * doesn't support it should be treated as rotational.
3286                  */
3287                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3288                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3289
3290                 if (scsi_device_supports_vpd(sdp)) {
3291                         sd_read_block_provisioning(sdkp);
3292                         sd_read_block_limits(sdkp);
3293                         sd_read_block_characteristics(sdkp);
3294                         sd_zbc_read_zones(sdkp, buffer);
3295                 }
3296
3297                 sd_print_capacity(sdkp, old_capacity);
3298
3299                 sd_read_write_protect_flag(sdkp, buffer);
3300                 sd_read_cache_type(sdkp, buffer);
3301                 sd_read_app_tag_own(sdkp, buffer);
3302                 sd_read_write_same(sdkp, buffer);
3303                 sd_read_security(sdkp, buffer);
3304                 sd_read_cpr(sdkp);
3305         }
3306
3307         /*
3308          * We now have all cache related info, determine how we deal
3309          * with flush requests.
3310          */
3311         sd_set_flush_flag(sdkp);
3312
3313         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3314         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3315
3316         /* Some devices report a maximum block count for READ/WRITE requests. */
3317         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3318         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3319
3320         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3321                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3322                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3323         } else {
3324                 q->limits.io_opt = 0;
3325                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3326                                       (sector_t)BLK_DEF_MAX_SECTORS);
3327         }
3328
3329         /* Do not exceed controller limit */
3330         rw_max = min(rw_max, queue_max_hw_sectors(q));
3331
3332         /*
3333          * Only update max_sectors if previously unset or if the current value
3334          * exceeds the capabilities of the hardware.
3335          */
3336         if (sdkp->first_scan ||
3337             q->limits.max_sectors > q->limits.max_dev_sectors ||
3338             q->limits.max_sectors > q->limits.max_hw_sectors)
3339                 q->limits.max_sectors = rw_max;
3340
3341         sdkp->first_scan = 0;
3342
3343         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3344         sd_config_write_same(sdkp);
3345         kfree(buffer);
3346
3347         /*
3348          * For a zoned drive, revalidating the zones can be done only once
3349          * the gendisk capacity is set. So if this fails, set back the gendisk
3350          * capacity to 0.
3351          */
3352         if (sd_zbc_revalidate_zones(sdkp))
3353                 set_capacity_and_notify(disk, 0);
3354
3355  out:
3356         return 0;
3357 }
3358
3359 /**
3360  *      sd_unlock_native_capacity - unlock native capacity
3361  *      @disk: struct gendisk to set capacity for
3362  *
3363  *      Block layer calls this function if it detects that partitions
3364  *      on @disk reach beyond the end of the device.  If the SCSI host
3365  *      implements ->unlock_native_capacity() method, it's invoked to
3366  *      give it a chance to adjust the device capacity.
3367  *
3368  *      CONTEXT:
3369  *      Defined by block layer.  Might sleep.
3370  */
3371 static void sd_unlock_native_capacity(struct gendisk *disk)
3372 {
3373         struct scsi_device *sdev = scsi_disk(disk)->device;
3374
3375         if (sdev->host->hostt->unlock_native_capacity)
3376                 sdev->host->hostt->unlock_native_capacity(sdev);
3377 }
3378
3379 /**
3380  *      sd_format_disk_name - format disk name
3381  *      @prefix: name prefix - ie. "sd" for SCSI disks
3382  *      @index: index of the disk to format name for
3383  *      @buf: output buffer
3384  *      @buflen: length of the output buffer
3385  *
3386  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3387  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3388  *      which is followed by sdaaa.
3389  *
3390  *      This is basically 26 base counting with one extra 'nil' entry
3391  *      at the beginning from the second digit on and can be
3392  *      determined using similar method as 26 base conversion with the
3393  *      index shifted -1 after each digit is computed.
3394  *
3395  *      CONTEXT:
3396  *      Don't care.
3397  *
3398  *      RETURNS:
3399  *      0 on success, -errno on failure.
3400  */
3401 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3402 {
3403         const int base = 'z' - 'a' + 1;
3404         char *begin = buf + strlen(prefix);
3405         char *end = buf + buflen;
3406         char *p;
3407         int unit;
3408
3409         p = end - 1;
3410         *p = '\0';
3411         unit = base;
3412         do {
3413                 if (p == begin)
3414                         return -EINVAL;
3415                 *--p = 'a' + (index % unit);
3416                 index = (index / unit) - 1;
3417         } while (index >= 0);
3418
3419         memmove(begin, p, end - p);
3420         memcpy(buf, prefix, strlen(prefix));
3421
3422         return 0;
3423 }
3424
3425 /**
3426  *      sd_probe - called during driver initialization and whenever a
3427  *      new scsi device is attached to the system. It is called once
3428  *      for each scsi device (not just disks) present.
3429  *      @dev: pointer to device object
3430  *
3431  *      Returns 0 if successful (or not interested in this scsi device 
3432  *      (e.g. scanner)); 1 when there is an error.
3433  *
3434  *      Note: this function is invoked from the scsi mid-level.
3435  *      This function sets up the mapping between a given 
3436  *      <host,channel,id,lun> (found in sdp) and new device name 
3437  *      (e.g. /dev/sda). More precisely it is the block device major 
3438  *      and minor number that is chosen here.
3439  *
3440  *      Assume sd_probe is not re-entrant (for time being)
3441  *      Also think about sd_probe() and sd_remove() running coincidentally.
3442  **/
3443 static int sd_probe(struct device *dev)
3444 {
3445         struct scsi_device *sdp = to_scsi_device(dev);
3446         struct scsi_disk *sdkp;
3447         struct gendisk *gd;
3448         int index;
3449         int error;
3450
3451         scsi_autopm_get_device(sdp);
3452         error = -ENODEV;
3453         if (sdp->type != TYPE_DISK &&
3454             sdp->type != TYPE_ZBC &&
3455             sdp->type != TYPE_MOD &&
3456             sdp->type != TYPE_RBC)
3457                 goto out;
3458
3459         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3460                 sdev_printk(KERN_WARNING, sdp,
3461                             "Unsupported ZBC host-managed device.\n");
3462                 goto out;
3463         }
3464
3465         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3466                                         "sd_probe\n"));
3467
3468         error = -ENOMEM;
3469         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3470         if (!sdkp)
3471                 goto out;
3472
3473         gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE,
3474                                &sd_bio_compl_lkclass);
3475         if (!gd)
3476                 goto out_free;
3477
3478         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3479         if (index < 0) {
3480                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3481                 goto out_put;
3482         }
3483
3484         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3485         if (error) {
3486                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3487                 goto out_free_index;
3488         }
3489
3490         sdkp->device = sdp;
3491         sdkp->disk = gd;
3492         sdkp->index = index;
3493         sdkp->max_retries = SD_MAX_RETRIES;
3494         atomic_set(&sdkp->openers, 0);
3495         atomic_set(&sdkp->device->ioerr_cnt, 0);
3496
3497         if (!sdp->request_queue->rq_timeout) {
3498                 if (sdp->type != TYPE_MOD)
3499                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3500                 else
3501                         blk_queue_rq_timeout(sdp->request_queue,
3502                                              SD_MOD_TIMEOUT);
3503         }
3504
3505         device_initialize(&sdkp->disk_dev);
3506         sdkp->disk_dev.parent = get_device(dev);
3507         sdkp->disk_dev.class = &sd_disk_class;
3508         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3509
3510         error = device_add(&sdkp->disk_dev);
3511         if (error) {
3512                 put_device(&sdkp->disk_dev);
3513                 goto out;
3514         }
3515
3516         dev_set_drvdata(dev, sdkp);
3517
3518         gd->major = sd_major((index & 0xf0) >> 4);
3519         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3520         gd->minors = SD_MINORS;
3521
3522         gd->fops = &sd_fops;
3523         gd->private_data = sdkp;
3524
3525         /* defaults, until the device tells us otherwise */
3526         sdp->sector_size = 512;
3527         sdkp->capacity = 0;
3528         sdkp->media_present = 1;
3529         sdkp->write_prot = 0;
3530         sdkp->cache_override = 0;
3531         sdkp->WCE = 0;
3532         sdkp->RCD = 0;
3533         sdkp->ATO = 0;
3534         sdkp->first_scan = 1;
3535         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3536
3537         sd_revalidate_disk(gd);
3538
3539         if (sdp->removable) {
3540                 gd->flags |= GENHD_FL_REMOVABLE;
3541                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3542                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3543         }
3544
3545         blk_pm_runtime_init(sdp->request_queue, dev);
3546         if (sdp->rpm_autosuspend) {
3547                 pm_runtime_set_autosuspend_delay(dev,
3548                         sdp->host->hostt->rpm_autosuspend_delay);
3549         }
3550
3551         error = device_add_disk(dev, gd, NULL);
3552         if (error) {
3553                 put_device(&sdkp->disk_dev);
3554                 goto out;
3555         }
3556
3557         if (sdkp->capacity)
3558                 sd_dif_config_host(sdkp);
3559
3560         sd_revalidate_disk(gd);
3561
3562         if (sdkp->security) {
3563                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3564                 if (sdkp->opal_dev)
3565                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3566         }
3567
3568         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3569                   sdp->removable ? "removable " : "");
3570         scsi_autopm_put_device(sdp);
3571
3572         return 0;
3573
3574  out_free_index:
3575         ida_free(&sd_index_ida, index);
3576  out_put:
3577         put_disk(gd);
3578  out_free:
3579         sd_zbc_release_disk(sdkp);
3580         kfree(sdkp);
3581  out:
3582         scsi_autopm_put_device(sdp);
3583         return error;
3584 }
3585
3586 /**
3587  *      sd_remove - called whenever a scsi disk (previously recognized by
3588  *      sd_probe) is detached from the system. It is called (potentially
3589  *      multiple times) during sd module unload.
3590  *      @dev: pointer to device object
3591  *
3592  *      Note: this function is invoked from the scsi mid-level.
3593  *      This function potentially frees up a device name (e.g. /dev/sdc)
3594  *      that could be re-used by a subsequent sd_probe().
3595  *      This function is not called when the built-in sd driver is "exit-ed".
3596  **/
3597 static int sd_remove(struct device *dev)
3598 {
3599         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3600
3601         scsi_autopm_get_device(sdkp->device);
3602
3603         device_del(&sdkp->disk_dev);
3604         del_gendisk(sdkp->disk);
3605         sd_shutdown(dev);
3606
3607         put_disk(sdkp->disk);
3608         return 0;
3609 }
3610
3611 static void scsi_disk_release(struct device *dev)
3612 {
3613         struct scsi_disk *sdkp = to_scsi_disk(dev);
3614
3615         ida_free(&sd_index_ida, sdkp->index);
3616         sd_zbc_release_disk(sdkp);
3617         put_device(&sdkp->device->sdev_gendev);
3618         free_opal_dev(sdkp->opal_dev);
3619
3620         kfree(sdkp);
3621 }
3622
3623 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3624 {
3625         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3626         struct scsi_sense_hdr sshdr;
3627         struct scsi_device *sdp = sdkp->device;
3628         int res;
3629
3630         if (start)
3631                 cmd[4] |= 1;    /* START */
3632
3633         if (sdp->start_stop_pwr_cond)
3634                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3635
3636         if (!scsi_device_online(sdp))
3637                 return -ENODEV;
3638
3639         res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3640                         SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3641         if (res) {
3642                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3643                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3644                         sd_print_sense_hdr(sdkp, &sshdr);
3645                         /* 0x3a is medium not present */
3646                         if (sshdr.asc == 0x3a)
3647                                 res = 0;
3648                 }
3649         }
3650
3651         /* SCSI error codes must not go to the generic layer */
3652         if (res)
3653                 return -EIO;
3654
3655         return 0;
3656 }
3657
3658 /*
3659  * Send a SYNCHRONIZE CACHE instruction down to the device through
3660  * the normal SCSI command structure.  Wait for the command to
3661  * complete.
3662  */
3663 static void sd_shutdown(struct device *dev)
3664 {
3665         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3666
3667         if (!sdkp)
3668                 return;         /* this can happen */
3669
3670         if (pm_runtime_suspended(dev))
3671                 return;
3672
3673         if (sdkp->WCE && sdkp->media_present) {
3674                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3675                 sd_sync_cache(sdkp, NULL);
3676         }
3677
3678         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3679                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3680                 sd_start_stop_device(sdkp, 0);
3681         }
3682 }
3683
3684 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3685 {
3686         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3687         struct scsi_sense_hdr sshdr;
3688         int ret = 0;
3689
3690         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3691                 return 0;
3692
3693         if (sdkp->WCE && sdkp->media_present) {
3694                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3695                 ret = sd_sync_cache(sdkp, &sshdr);
3696
3697                 if (ret) {
3698                         /* ignore OFFLINE device */
3699                         if (ret == -ENODEV)
3700                                 return 0;
3701
3702                         if (!scsi_sense_valid(&sshdr) ||
3703                             sshdr.sense_key != ILLEGAL_REQUEST)
3704                                 return ret;
3705
3706                         /*
3707                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3708                          * doesn't support sync. There's not much to do and
3709                          * suspend shouldn't fail.
3710                          */
3711                         ret = 0;
3712                 }
3713         }
3714
3715         if (sdkp->device->manage_start_stop) {
3716                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3717                 /* an error is not worth aborting a system sleep */
3718                 ret = sd_start_stop_device(sdkp, 0);
3719                 if (ignore_stop_errors)
3720                         ret = 0;
3721         }
3722
3723         return ret;
3724 }
3725
3726 static int sd_suspend_system(struct device *dev)
3727 {
3728         if (pm_runtime_suspended(dev))
3729                 return 0;
3730
3731         return sd_suspend_common(dev, true);
3732 }
3733
3734 static int sd_suspend_runtime(struct device *dev)
3735 {
3736         return sd_suspend_common(dev, false);
3737 }
3738
3739 static int sd_resume(struct device *dev)
3740 {
3741         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3742         int ret;
3743
3744         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3745                 return 0;
3746
3747         if (!sdkp->device->manage_start_stop)
3748                 return 0;
3749
3750         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3751         ret = sd_start_stop_device(sdkp, 1);
3752         if (!ret)
3753                 opal_unlock_from_suspend(sdkp->opal_dev);
3754         return ret;
3755 }
3756
3757 static int sd_resume_system(struct device *dev)
3758 {
3759         if (pm_runtime_suspended(dev))
3760                 return 0;
3761
3762         return sd_resume(dev);
3763 }
3764
3765 static int sd_resume_runtime(struct device *dev)
3766 {
3767         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3768         struct scsi_device *sdp;
3769
3770         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3771                 return 0;
3772
3773         sdp = sdkp->device;
3774
3775         if (sdp->ignore_media_change) {
3776                 /* clear the device's sense data */
3777                 static const u8 cmd[10] = { REQUEST_SENSE };
3778
3779                 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3780                                  NULL, sdp->request_queue->rq_timeout, 1, 0,
3781                                  RQF_PM, NULL))
3782                         sd_printk(KERN_NOTICE, sdkp,
3783                                   "Failed to clear sense data\n");
3784         }
3785
3786         return sd_resume(dev);
3787 }
3788
3789 /**
3790  *      init_sd - entry point for this driver (both when built in or when
3791  *      a module).
3792  *
3793  *      Note: this function registers this driver with the scsi mid-level.
3794  **/
3795 static int __init init_sd(void)
3796 {
3797         int majors = 0, i, err;
3798
3799         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3800
3801         for (i = 0; i < SD_MAJORS; i++) {
3802                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3803                         continue;
3804                 majors++;
3805         }
3806
3807         if (!majors)
3808                 return -ENODEV;
3809
3810         err = class_register(&sd_disk_class);
3811         if (err)
3812                 goto err_out;
3813
3814         sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3815                                          0, 0, NULL);
3816         if (!sd_cdb_cache) {
3817                 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3818                 err = -ENOMEM;
3819                 goto err_out_class;
3820         }
3821
3822         sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3823         if (!sd_cdb_pool) {
3824                 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3825                 err = -ENOMEM;
3826                 goto err_out_cache;
3827         }
3828
3829         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3830         if (!sd_page_pool) {
3831                 printk(KERN_ERR "sd: can't init discard page pool\n");
3832                 err = -ENOMEM;
3833                 goto err_out_ppool;
3834         }
3835
3836         err = scsi_register_driver(&sd_template.gendrv);
3837         if (err)
3838                 goto err_out_driver;
3839
3840         return 0;
3841
3842 err_out_driver:
3843         mempool_destroy(sd_page_pool);
3844
3845 err_out_ppool:
3846         mempool_destroy(sd_cdb_pool);
3847
3848 err_out_cache:
3849         kmem_cache_destroy(sd_cdb_cache);
3850
3851 err_out_class:
3852         class_unregister(&sd_disk_class);
3853 err_out:
3854         for (i = 0; i < SD_MAJORS; i++)
3855                 unregister_blkdev(sd_major(i), "sd");
3856         return err;
3857 }
3858
3859 /**
3860  *      exit_sd - exit point for this driver (when it is a module).
3861  *
3862  *      Note: this function unregisters this driver from the scsi mid-level.
3863  **/
3864 static void __exit exit_sd(void)
3865 {
3866         int i;
3867
3868         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3869
3870         scsi_unregister_driver(&sd_template.gendrv);
3871         mempool_destroy(sd_cdb_pool);
3872         mempool_destroy(sd_page_pool);
3873         kmem_cache_destroy(sd_cdb_cache);
3874
3875         class_unregister(&sd_disk_class);
3876
3877         for (i = 0; i < SD_MAJORS; i++)
3878                 unregister_blkdev(sd_major(i), "sd");
3879 }
3880
3881 module_init(init_sd);
3882 module_exit(exit_sd);
3883
3884 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3885 {
3886         scsi_print_sense_hdr(sdkp->device,
3887                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3888 }
3889
3890 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3891 {
3892         const char *hb_string = scsi_hostbyte_string(result);
3893
3894         if (hb_string)
3895                 sd_printk(KERN_INFO, sdkp,
3896                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3897                           hb_string ? hb_string : "invalid",
3898                           "DRIVER_OK");
3899         else
3900                 sd_printk(KERN_INFO, sdkp,
3901                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3902                           msg, host_byte(result), "DRIVER_OK");
3903 }