Merge tag 'for-5.19/drivers-2022-06-02' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99
100 #define SD_MINORS       16
101
102 static void sd_config_discard(struct scsi_disk *, unsigned int);
103 static void sd_config_write_same(struct scsi_disk *);
104 static int  sd_revalidate_disk(struct gendisk *);
105 static void sd_unlock_native_capacity(struct gendisk *disk);
106 static int  sd_probe(struct device *);
107 static int  sd_remove(struct device *);
108 static void sd_shutdown(struct device *);
109 static int sd_suspend_system(struct device *);
110 static int sd_suspend_runtime(struct device *);
111 static int sd_resume_system(struct device *);
112 static int sd_resume_runtime(struct device *);
113 static void sd_rescan(struct device *);
114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
115 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
116 static int sd_done(struct scsi_cmnd *);
117 static void sd_eh_reset(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121
122 static DEFINE_IDA(sd_index_ida);
123
124 static struct kmem_cache *sd_cdb_cache;
125 static mempool_t *sd_page_pool;
126 static struct lock_class_key sd_bio_compl_lkclass;
127
128 static const char *sd_cache_types[] = {
129         "write through", "none", "write back",
130         "write back, no read (daft)"
131 };
132
133 static void sd_set_flush_flag(struct scsi_disk *sdkp)
134 {
135         bool wc = false, fua = false;
136
137         if (sdkp->WCE) {
138                 wc = true;
139                 if (sdkp->DPOFUA)
140                         fua = true;
141         }
142
143         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
144 }
145
146 static ssize_t
147 cache_type_store(struct device *dev, struct device_attribute *attr,
148                  const char *buf, size_t count)
149 {
150         int ct, rcd, wce, sp;
151         struct scsi_disk *sdkp = to_scsi_disk(dev);
152         struct scsi_device *sdp = sdkp->device;
153         char buffer[64];
154         char *buffer_data;
155         struct scsi_mode_data data;
156         struct scsi_sense_hdr sshdr;
157         static const char temp[] = "temporary ";
158         int len;
159
160         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
161                 /* no cache control on RBC devices; theoretically they
162                  * can do it, but there's probably so many exceptions
163                  * it's not worth the risk */
164                 return -EINVAL;
165
166         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
167                 buf += sizeof(temp) - 1;
168                 sdkp->cache_override = 1;
169         } else {
170                 sdkp->cache_override = 0;
171         }
172
173         ct = sysfs_match_string(sd_cache_types, buf);
174         if (ct < 0)
175                 return -EINVAL;
176
177         rcd = ct & 0x01 ? 1 : 0;
178         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
179
180         if (sdkp->cache_override) {
181                 sdkp->WCE = wce;
182                 sdkp->RCD = rcd;
183                 sd_set_flush_flag(sdkp);
184                 return count;
185         }
186
187         if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
188                             sdkp->max_retries, &data, NULL))
189                 return -EINVAL;
190         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
191                   data.block_descriptor_length);
192         buffer_data = buffer + data.header_length +
193                 data.block_descriptor_length;
194         buffer_data[2] &= ~0x05;
195         buffer_data[2] |= wce << 2 | rcd;
196         sp = buffer_data[0] & 0x80 ? 1 : 0;
197         buffer_data[0] &= ~0x80;
198
199         /*
200          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
201          * received mode parameter buffer before doing MODE SELECT.
202          */
203         data.device_specific = 0;
204
205         if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
206                              sdkp->max_retries, &data, &sshdr)) {
207                 if (scsi_sense_valid(&sshdr))
208                         sd_print_sense_hdr(sdkp, &sshdr);
209                 return -EINVAL;
210         }
211         sd_revalidate_disk(sdkp->disk);
212         return count;
213 }
214
215 static ssize_t
216 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
217                        char *buf)
218 {
219         struct scsi_disk *sdkp = to_scsi_disk(dev);
220         struct scsi_device *sdp = sdkp->device;
221
222         return sprintf(buf, "%u\n", sdp->manage_start_stop);
223 }
224
225 static ssize_t
226 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
227                         const char *buf, size_t count)
228 {
229         struct scsi_disk *sdkp = to_scsi_disk(dev);
230         struct scsi_device *sdp = sdkp->device;
231         bool v;
232
233         if (!capable(CAP_SYS_ADMIN))
234                 return -EACCES;
235
236         if (kstrtobool(buf, &v))
237                 return -EINVAL;
238
239         sdp->manage_start_stop = v;
240
241         return count;
242 }
243 static DEVICE_ATTR_RW(manage_start_stop);
244
245 static ssize_t
246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
247 {
248         struct scsi_disk *sdkp = to_scsi_disk(dev);
249
250         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
251 }
252
253 static ssize_t
254 allow_restart_store(struct device *dev, struct device_attribute *attr,
255                     const char *buf, size_t count)
256 {
257         bool v;
258         struct scsi_disk *sdkp = to_scsi_disk(dev);
259         struct scsi_device *sdp = sdkp->device;
260
261         if (!capable(CAP_SYS_ADMIN))
262                 return -EACCES;
263
264         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
265                 return -EINVAL;
266
267         if (kstrtobool(buf, &v))
268                 return -EINVAL;
269
270         sdp->allow_restart = v;
271
272         return count;
273 }
274 static DEVICE_ATTR_RW(allow_restart);
275
276 static ssize_t
277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
278 {
279         struct scsi_disk *sdkp = to_scsi_disk(dev);
280         int ct = sdkp->RCD + 2*sdkp->WCE;
281
282         return sprintf(buf, "%s\n", sd_cache_types[ct]);
283 }
284 static DEVICE_ATTR_RW(cache_type);
285
286 static ssize_t
287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289         struct scsi_disk *sdkp = to_scsi_disk(dev);
290
291         return sprintf(buf, "%u\n", sdkp->DPOFUA);
292 }
293 static DEVICE_ATTR_RO(FUA);
294
295 static ssize_t
296 protection_type_show(struct device *dev, struct device_attribute *attr,
297                      char *buf)
298 {
299         struct scsi_disk *sdkp = to_scsi_disk(dev);
300
301         return sprintf(buf, "%u\n", sdkp->protection_type);
302 }
303
304 static ssize_t
305 protection_type_store(struct device *dev, struct device_attribute *attr,
306                       const char *buf, size_t count)
307 {
308         struct scsi_disk *sdkp = to_scsi_disk(dev);
309         unsigned int val;
310         int err;
311
312         if (!capable(CAP_SYS_ADMIN))
313                 return -EACCES;
314
315         err = kstrtouint(buf, 10, &val);
316
317         if (err)
318                 return err;
319
320         if (val <= T10_PI_TYPE3_PROTECTION)
321                 sdkp->protection_type = val;
322
323         return count;
324 }
325 static DEVICE_ATTR_RW(protection_type);
326
327 static ssize_t
328 protection_mode_show(struct device *dev, struct device_attribute *attr,
329                      char *buf)
330 {
331         struct scsi_disk *sdkp = to_scsi_disk(dev);
332         struct scsi_device *sdp = sdkp->device;
333         unsigned int dif, dix;
334
335         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
336         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
337
338         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
339                 dif = 0;
340                 dix = 1;
341         }
342
343         if (!dif && !dix)
344                 return sprintf(buf, "none\n");
345
346         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
347 }
348 static DEVICE_ATTR_RO(protection_mode);
349
350 static ssize_t
351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353         struct scsi_disk *sdkp = to_scsi_disk(dev);
354
355         return sprintf(buf, "%u\n", sdkp->ATO);
356 }
357 static DEVICE_ATTR_RO(app_tag_own);
358
359 static ssize_t
360 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
361                        char *buf)
362 {
363         struct scsi_disk *sdkp = to_scsi_disk(dev);
364
365         return sprintf(buf, "%u\n", sdkp->lbpme);
366 }
367 static DEVICE_ATTR_RO(thin_provisioning);
368
369 /* sysfs_match_string() requires dense arrays */
370 static const char *lbp_mode[] = {
371         [SD_LBP_FULL]           = "full",
372         [SD_LBP_UNMAP]          = "unmap",
373         [SD_LBP_WS16]           = "writesame_16",
374         [SD_LBP_WS10]           = "writesame_10",
375         [SD_LBP_ZERO]           = "writesame_zero",
376         [SD_LBP_DISABLE]        = "disabled",
377 };
378
379 static ssize_t
380 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
381                        char *buf)
382 {
383         struct scsi_disk *sdkp = to_scsi_disk(dev);
384
385         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
386 }
387
388 static ssize_t
389 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
390                         const char *buf, size_t count)
391 {
392         struct scsi_disk *sdkp = to_scsi_disk(dev);
393         struct scsi_device *sdp = sdkp->device;
394         int mode;
395
396         if (!capable(CAP_SYS_ADMIN))
397                 return -EACCES;
398
399         if (sd_is_zoned(sdkp)) {
400                 sd_config_discard(sdkp, SD_LBP_DISABLE);
401                 return count;
402         }
403
404         if (sdp->type != TYPE_DISK)
405                 return -EINVAL;
406
407         mode = sysfs_match_string(lbp_mode, buf);
408         if (mode < 0)
409                 return -EINVAL;
410
411         sd_config_discard(sdkp, mode);
412
413         return count;
414 }
415 static DEVICE_ATTR_RW(provisioning_mode);
416
417 /* sysfs_match_string() requires dense arrays */
418 static const char *zeroing_mode[] = {
419         [SD_ZERO_WRITE]         = "write",
420         [SD_ZERO_WS]            = "writesame",
421         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
422         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
423 };
424
425 static ssize_t
426 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
427                   char *buf)
428 {
429         struct scsi_disk *sdkp = to_scsi_disk(dev);
430
431         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
432 }
433
434 static ssize_t
435 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
436                    const char *buf, size_t count)
437 {
438         struct scsi_disk *sdkp = to_scsi_disk(dev);
439         int mode;
440
441         if (!capable(CAP_SYS_ADMIN))
442                 return -EACCES;
443
444         mode = sysfs_match_string(zeroing_mode, buf);
445         if (mode < 0)
446                 return -EINVAL;
447
448         sdkp->zeroing_mode = mode;
449
450         return count;
451 }
452 static DEVICE_ATTR_RW(zeroing_mode);
453
454 static ssize_t
455 max_medium_access_timeouts_show(struct device *dev,
456                                 struct device_attribute *attr, char *buf)
457 {
458         struct scsi_disk *sdkp = to_scsi_disk(dev);
459
460         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
461 }
462
463 static ssize_t
464 max_medium_access_timeouts_store(struct device *dev,
465                                  struct device_attribute *attr, const char *buf,
466                                  size_t count)
467 {
468         struct scsi_disk *sdkp = to_scsi_disk(dev);
469         int err;
470
471         if (!capable(CAP_SYS_ADMIN))
472                 return -EACCES;
473
474         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
475
476         return err ? err : count;
477 }
478 static DEVICE_ATTR_RW(max_medium_access_timeouts);
479
480 static ssize_t
481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
482                            char *buf)
483 {
484         struct scsi_disk *sdkp = to_scsi_disk(dev);
485
486         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
487 }
488
489 static ssize_t
490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
491                             const char *buf, size_t count)
492 {
493         struct scsi_disk *sdkp = to_scsi_disk(dev);
494         struct scsi_device *sdp = sdkp->device;
495         unsigned long max;
496         int err;
497
498         if (!capable(CAP_SYS_ADMIN))
499                 return -EACCES;
500
501         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
502                 return -EINVAL;
503
504         err = kstrtoul(buf, 10, &max);
505
506         if (err)
507                 return err;
508
509         if (max == 0)
510                 sdp->no_write_same = 1;
511         else if (max <= SD_MAX_WS16_BLOCKS) {
512                 sdp->no_write_same = 0;
513                 sdkp->max_ws_blocks = max;
514         }
515
516         sd_config_write_same(sdkp);
517
518         return count;
519 }
520 static DEVICE_ATTR_RW(max_write_same_blocks);
521
522 static ssize_t
523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
524 {
525         struct scsi_disk *sdkp = to_scsi_disk(dev);
526
527         if (sdkp->device->type == TYPE_ZBC)
528                 return sprintf(buf, "host-managed\n");
529         if (sdkp->zoned == 1)
530                 return sprintf(buf, "host-aware\n");
531         if (sdkp->zoned == 2)
532                 return sprintf(buf, "drive-managed\n");
533         return sprintf(buf, "none\n");
534 }
535 static DEVICE_ATTR_RO(zoned_cap);
536
537 static ssize_t
538 max_retries_store(struct device *dev, struct device_attribute *attr,
539                   const char *buf, size_t count)
540 {
541         struct scsi_disk *sdkp = to_scsi_disk(dev);
542         struct scsi_device *sdev = sdkp->device;
543         int retries, err;
544
545         err = kstrtoint(buf, 10, &retries);
546         if (err)
547                 return err;
548
549         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
550                 sdkp->max_retries = retries;
551                 return count;
552         }
553
554         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
555                     SD_MAX_RETRIES);
556         return -EINVAL;
557 }
558
559 static ssize_t
560 max_retries_show(struct device *dev, struct device_attribute *attr,
561                  char *buf)
562 {
563         struct scsi_disk *sdkp = to_scsi_disk(dev);
564
565         return sprintf(buf, "%d\n", sdkp->max_retries);
566 }
567
568 static DEVICE_ATTR_RW(max_retries);
569
570 static struct attribute *sd_disk_attrs[] = {
571         &dev_attr_cache_type.attr,
572         &dev_attr_FUA.attr,
573         &dev_attr_allow_restart.attr,
574         &dev_attr_manage_start_stop.attr,
575         &dev_attr_protection_type.attr,
576         &dev_attr_protection_mode.attr,
577         &dev_attr_app_tag_own.attr,
578         &dev_attr_thin_provisioning.attr,
579         &dev_attr_provisioning_mode.attr,
580         &dev_attr_zeroing_mode.attr,
581         &dev_attr_max_write_same_blocks.attr,
582         &dev_attr_max_medium_access_timeouts.attr,
583         &dev_attr_zoned_cap.attr,
584         &dev_attr_max_retries.attr,
585         NULL,
586 };
587 ATTRIBUTE_GROUPS(sd_disk);
588
589 static struct class sd_disk_class = {
590         .name           = "scsi_disk",
591         .owner          = THIS_MODULE,
592         .dev_release    = scsi_disk_release,
593         .dev_groups     = sd_disk_groups,
594 };
595
596 static const struct dev_pm_ops sd_pm_ops = {
597         .suspend                = sd_suspend_system,
598         .resume                 = sd_resume_system,
599         .poweroff               = sd_suspend_system,
600         .restore                = sd_resume_system,
601         .runtime_suspend        = sd_suspend_runtime,
602         .runtime_resume         = sd_resume_runtime,
603 };
604
605 static struct scsi_driver sd_template = {
606         .gendrv = {
607                 .name           = "sd",
608                 .owner          = THIS_MODULE,
609                 .probe          = sd_probe,
610                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
611                 .remove         = sd_remove,
612                 .shutdown       = sd_shutdown,
613                 .pm             = &sd_pm_ops,
614         },
615         .rescan                 = sd_rescan,
616         .init_command           = sd_init_command,
617         .uninit_command         = sd_uninit_command,
618         .done                   = sd_done,
619         .eh_action              = sd_eh_action,
620         .eh_reset               = sd_eh_reset,
621 };
622
623 /*
624  * Don't request a new module, as that could deadlock in multipath
625  * environment.
626  */
627 static void sd_default_probe(dev_t devt)
628 {
629 }
630
631 /*
632  * Device no to disk mapping:
633  * 
634  *       major         disc2     disc  p1
635  *   |............|.............|....|....| <- dev_t
636  *    31        20 19          8 7  4 3  0
637  * 
638  * Inside a major, we have 16k disks, however mapped non-
639  * contiguously. The first 16 disks are for major0, the next
640  * ones with major1, ... Disk 256 is for major0 again, disk 272 
641  * for major1, ... 
642  * As we stay compatible with our numbering scheme, we can reuse 
643  * the well-know SCSI majors 8, 65--71, 136--143.
644  */
645 static int sd_major(int major_idx)
646 {
647         switch (major_idx) {
648         case 0:
649                 return SCSI_DISK0_MAJOR;
650         case 1 ... 7:
651                 return SCSI_DISK1_MAJOR + major_idx - 1;
652         case 8 ... 15:
653                 return SCSI_DISK8_MAJOR + major_idx - 8;
654         default:
655                 BUG();
656                 return 0;       /* shut up gcc */
657         }
658 }
659
660 #ifdef CONFIG_BLK_SED_OPAL
661 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
662                 size_t len, bool send)
663 {
664         struct scsi_disk *sdkp = data;
665         struct scsi_device *sdev = sdkp->device;
666         u8 cdb[12] = { 0, };
667         int ret;
668
669         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
670         cdb[1] = secp;
671         put_unaligned_be16(spsp, &cdb[2]);
672         put_unaligned_be32(len, &cdb[6]);
673
674         ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
675                 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
676                 RQF_PM, NULL);
677         return ret <= 0 ? ret : -EIO;
678 }
679 #endif /* CONFIG_BLK_SED_OPAL */
680
681 /*
682  * Look up the DIX operation based on whether the command is read or
683  * write and whether dix and dif are enabled.
684  */
685 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
686 {
687         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
688         static const unsigned int ops[] = {     /* wrt dix dif */
689                 SCSI_PROT_NORMAL,               /*  0   0   0  */
690                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
691                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
692                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
693                 SCSI_PROT_NORMAL,               /*  1   0   0  */
694                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
695                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
696                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
697         };
698
699         return ops[write << 2 | dix << 1 | dif];
700 }
701
702 /*
703  * Returns a mask of the protection flags that are valid for a given DIX
704  * operation.
705  */
706 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
707 {
708         static const unsigned int flag_mask[] = {
709                 [SCSI_PROT_NORMAL]              = 0,
710
711                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
712                                                   SCSI_PROT_GUARD_CHECK |
713                                                   SCSI_PROT_REF_CHECK |
714                                                   SCSI_PROT_REF_INCREMENT,
715
716                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
717                                                   SCSI_PROT_IP_CHECKSUM,
718
719                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
720                                                   SCSI_PROT_GUARD_CHECK |
721                                                   SCSI_PROT_REF_CHECK |
722                                                   SCSI_PROT_REF_INCREMENT |
723                                                   SCSI_PROT_IP_CHECKSUM,
724
725                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
726                                                   SCSI_PROT_REF_INCREMENT,
727
728                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
729                                                   SCSI_PROT_REF_CHECK |
730                                                   SCSI_PROT_REF_INCREMENT |
731                                                   SCSI_PROT_IP_CHECKSUM,
732
733                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
734                                                   SCSI_PROT_GUARD_CHECK |
735                                                   SCSI_PROT_REF_CHECK |
736                                                   SCSI_PROT_REF_INCREMENT |
737                                                   SCSI_PROT_IP_CHECKSUM,
738         };
739
740         return flag_mask[prot_op];
741 }
742
743 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
744                                            unsigned int dix, unsigned int dif)
745 {
746         struct request *rq = scsi_cmd_to_rq(scmd);
747         struct bio *bio = rq->bio;
748         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
749         unsigned int protect = 0;
750
751         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
752                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
753                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
754
755                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
756                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
757         }
758
759         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
760                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
761
762                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
763                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
764         }
765
766         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
767                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
768
769                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
770                         protect = 3 << 5;       /* Disable target PI checking */
771                 else
772                         protect = 1 << 5;       /* Enable target PI checking */
773         }
774
775         scsi_set_prot_op(scmd, prot_op);
776         scsi_set_prot_type(scmd, dif);
777         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
778
779         return protect;
780 }
781
782 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
783 {
784         struct request_queue *q = sdkp->disk->queue;
785         unsigned int logical_block_size = sdkp->device->sector_size;
786         unsigned int max_blocks = 0;
787
788         q->limits.discard_alignment =
789                 sdkp->unmap_alignment * logical_block_size;
790         q->limits.discard_granularity =
791                 max(sdkp->physical_block_size,
792                     sdkp->unmap_granularity * logical_block_size);
793         sdkp->provisioning_mode = mode;
794
795         switch (mode) {
796
797         case SD_LBP_FULL:
798         case SD_LBP_DISABLE:
799                 blk_queue_max_discard_sectors(q, 0);
800                 return;
801
802         case SD_LBP_UNMAP:
803                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
804                                           (u32)SD_MAX_WS16_BLOCKS);
805                 break;
806
807         case SD_LBP_WS16:
808                 if (sdkp->device->unmap_limit_for_ws)
809                         max_blocks = sdkp->max_unmap_blocks;
810                 else
811                         max_blocks = sdkp->max_ws_blocks;
812
813                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
814                 break;
815
816         case SD_LBP_WS10:
817                 if (sdkp->device->unmap_limit_for_ws)
818                         max_blocks = sdkp->max_unmap_blocks;
819                 else
820                         max_blocks = sdkp->max_ws_blocks;
821
822                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
823                 break;
824
825         case SD_LBP_ZERO:
826                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
827                                           (u32)SD_MAX_WS10_BLOCKS);
828                 break;
829         }
830
831         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
832 }
833
834 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
835 {
836         struct scsi_device *sdp = cmd->device;
837         struct request *rq = scsi_cmd_to_rq(cmd);
838         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
839         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
840         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
841         unsigned int data_len = 24;
842         char *buf;
843
844         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
845         if (!rq->special_vec.bv_page)
846                 return BLK_STS_RESOURCE;
847         clear_highpage(rq->special_vec.bv_page);
848         rq->special_vec.bv_offset = 0;
849         rq->special_vec.bv_len = data_len;
850         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
851
852         cmd->cmd_len = 10;
853         cmd->cmnd[0] = UNMAP;
854         cmd->cmnd[8] = 24;
855
856         buf = bvec_virt(&rq->special_vec);
857         put_unaligned_be16(6 + 16, &buf[0]);
858         put_unaligned_be16(16, &buf[2]);
859         put_unaligned_be64(lba, &buf[8]);
860         put_unaligned_be32(nr_blocks, &buf[16]);
861
862         cmd->allowed = sdkp->max_retries;
863         cmd->transfersize = data_len;
864         rq->timeout = SD_TIMEOUT;
865
866         return scsi_alloc_sgtables(cmd);
867 }
868
869 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
870                 bool unmap)
871 {
872         struct scsi_device *sdp = cmd->device;
873         struct request *rq = scsi_cmd_to_rq(cmd);
874         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
875         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
876         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
877         u32 data_len = sdp->sector_size;
878
879         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
880         if (!rq->special_vec.bv_page)
881                 return BLK_STS_RESOURCE;
882         clear_highpage(rq->special_vec.bv_page);
883         rq->special_vec.bv_offset = 0;
884         rq->special_vec.bv_len = data_len;
885         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
886
887         cmd->cmd_len = 16;
888         cmd->cmnd[0] = WRITE_SAME_16;
889         if (unmap)
890                 cmd->cmnd[1] = 0x8; /* UNMAP */
891         put_unaligned_be64(lba, &cmd->cmnd[2]);
892         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
893
894         cmd->allowed = sdkp->max_retries;
895         cmd->transfersize = data_len;
896         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
897
898         return scsi_alloc_sgtables(cmd);
899 }
900
901 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
902                 bool unmap)
903 {
904         struct scsi_device *sdp = cmd->device;
905         struct request *rq = scsi_cmd_to_rq(cmd);
906         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
907         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
908         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
909         u32 data_len = sdp->sector_size;
910
911         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
912         if (!rq->special_vec.bv_page)
913                 return BLK_STS_RESOURCE;
914         clear_highpage(rq->special_vec.bv_page);
915         rq->special_vec.bv_offset = 0;
916         rq->special_vec.bv_len = data_len;
917         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
918
919         cmd->cmd_len = 10;
920         cmd->cmnd[0] = WRITE_SAME;
921         if (unmap)
922                 cmd->cmnd[1] = 0x8; /* UNMAP */
923         put_unaligned_be32(lba, &cmd->cmnd[2]);
924         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
925
926         cmd->allowed = sdkp->max_retries;
927         cmd->transfersize = data_len;
928         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
929
930         return scsi_alloc_sgtables(cmd);
931 }
932
933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
934 {
935         struct request *rq = scsi_cmd_to_rq(cmd);
936         struct scsi_device *sdp = cmd->device;
937         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
938         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
939         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
940
941         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
942                 switch (sdkp->zeroing_mode) {
943                 case SD_ZERO_WS16_UNMAP:
944                         return sd_setup_write_same16_cmnd(cmd, true);
945                 case SD_ZERO_WS10_UNMAP:
946                         return sd_setup_write_same10_cmnd(cmd, true);
947                 }
948         }
949
950         if (sdp->no_write_same) {
951                 rq->rq_flags |= RQF_QUIET;
952                 return BLK_STS_TARGET;
953         }
954
955         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
956                 return sd_setup_write_same16_cmnd(cmd, false);
957
958         return sd_setup_write_same10_cmnd(cmd, false);
959 }
960
961 static void sd_config_write_same(struct scsi_disk *sdkp)
962 {
963         struct request_queue *q = sdkp->disk->queue;
964         unsigned int logical_block_size = sdkp->device->sector_size;
965
966         if (sdkp->device->no_write_same) {
967                 sdkp->max_ws_blocks = 0;
968                 goto out;
969         }
970
971         /* Some devices can not handle block counts above 0xffff despite
972          * supporting WRITE SAME(16). Consequently we default to 64k
973          * blocks per I/O unless the device explicitly advertises a
974          * bigger limit.
975          */
976         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
977                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
978                                                    (u32)SD_MAX_WS16_BLOCKS);
979         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
980                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
981                                                    (u32)SD_MAX_WS10_BLOCKS);
982         else {
983                 sdkp->device->no_write_same = 1;
984                 sdkp->max_ws_blocks = 0;
985         }
986
987         if (sdkp->lbprz && sdkp->lbpws)
988                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
989         else if (sdkp->lbprz && sdkp->lbpws10)
990                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
991         else if (sdkp->max_ws_blocks)
992                 sdkp->zeroing_mode = SD_ZERO_WS;
993         else
994                 sdkp->zeroing_mode = SD_ZERO_WRITE;
995
996         if (sdkp->max_ws_blocks &&
997             sdkp->physical_block_size > logical_block_size) {
998                 /*
999                  * Reporting a maximum number of blocks that is not aligned
1000                  * on the device physical size would cause a large write same
1001                  * request to be split into physically unaligned chunks by
1002                  * __blkdev_issue_write_zeroes() even if the caller of this
1003                  * functions took care to align the large request. So make sure
1004                  * the maximum reported is aligned to the device physical block
1005                  * size. This is only an optional optimization for regular
1006                  * disks, but this is mandatory to avoid failure of large write
1007                  * same requests directed at sequential write required zones of
1008                  * host-managed ZBC disks.
1009                  */
1010                 sdkp->max_ws_blocks =
1011                         round_down(sdkp->max_ws_blocks,
1012                                    bytes_to_logical(sdkp->device,
1013                                                     sdkp->physical_block_size));
1014         }
1015
1016 out:
1017         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1018                                          (logical_block_size >> 9));
1019 }
1020
1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1022 {
1023         struct request *rq = scsi_cmd_to_rq(cmd);
1024         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1025
1026         /* flush requests don't perform I/O, zero the S/G table */
1027         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1028
1029         cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1030         cmd->cmd_len = 10;
1031         cmd->transfersize = 0;
1032         cmd->allowed = sdkp->max_retries;
1033
1034         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1035         return BLK_STS_OK;
1036 }
1037
1038 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1039                                        sector_t lba, unsigned int nr_blocks,
1040                                        unsigned char flags)
1041 {
1042         cmd->cmd_len = SD_EXT_CDB_SIZE;
1043         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1044         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1045         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1046         cmd->cmnd[10] = flags;
1047         put_unaligned_be64(lba, &cmd->cmnd[12]);
1048         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1049         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1050
1051         return BLK_STS_OK;
1052 }
1053
1054 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1055                                        sector_t lba, unsigned int nr_blocks,
1056                                        unsigned char flags)
1057 {
1058         cmd->cmd_len  = 16;
1059         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1060         cmd->cmnd[1]  = flags;
1061         cmd->cmnd[14] = 0;
1062         cmd->cmnd[15] = 0;
1063         put_unaligned_be64(lba, &cmd->cmnd[2]);
1064         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1065
1066         return BLK_STS_OK;
1067 }
1068
1069 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1070                                        sector_t lba, unsigned int nr_blocks,
1071                                        unsigned char flags)
1072 {
1073         cmd->cmd_len = 10;
1074         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1075         cmd->cmnd[1] = flags;
1076         cmd->cmnd[6] = 0;
1077         cmd->cmnd[9] = 0;
1078         put_unaligned_be32(lba, &cmd->cmnd[2]);
1079         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1080
1081         return BLK_STS_OK;
1082 }
1083
1084 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1085                                       sector_t lba, unsigned int nr_blocks,
1086                                       unsigned char flags)
1087 {
1088         /* Avoid that 0 blocks gets translated into 256 blocks. */
1089         if (WARN_ON_ONCE(nr_blocks == 0))
1090                 return BLK_STS_IOERR;
1091
1092         if (unlikely(flags & 0x8)) {
1093                 /*
1094                  * This happens only if this drive failed 10byte rw
1095                  * command with ILLEGAL_REQUEST during operation and
1096                  * thus turned off use_10_for_rw.
1097                  */
1098                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1099                 return BLK_STS_IOERR;
1100         }
1101
1102         cmd->cmd_len = 6;
1103         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1104         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1105         cmd->cmnd[2] = (lba >> 8) & 0xff;
1106         cmd->cmnd[3] = lba & 0xff;
1107         cmd->cmnd[4] = nr_blocks;
1108         cmd->cmnd[5] = 0;
1109
1110         return BLK_STS_OK;
1111 }
1112
1113 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1114 {
1115         struct request *rq = scsi_cmd_to_rq(cmd);
1116         struct scsi_device *sdp = cmd->device;
1117         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1118         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1119         sector_t threshold;
1120         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1121         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1122         bool write = rq_data_dir(rq) == WRITE;
1123         unsigned char protect, fua;
1124         blk_status_t ret;
1125         unsigned int dif;
1126         bool dix;
1127
1128         ret = scsi_alloc_sgtables(cmd);
1129         if (ret != BLK_STS_OK)
1130                 return ret;
1131
1132         ret = BLK_STS_IOERR;
1133         if (!scsi_device_online(sdp) || sdp->changed) {
1134                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1135                 goto fail;
1136         }
1137
1138         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1139                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1140                 goto fail;
1141         }
1142
1143         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1144                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1145                 goto fail;
1146         }
1147
1148         /*
1149          * Some SD card readers can't handle accesses which touch the
1150          * last one or two logical blocks. Split accesses as needed.
1151          */
1152         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1153
1154         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1155                 if (lba < threshold) {
1156                         /* Access up to the threshold but not beyond */
1157                         nr_blocks = threshold - lba;
1158                 } else {
1159                         /* Access only a single logical block */
1160                         nr_blocks = 1;
1161                 }
1162         }
1163
1164         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1165                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1166                 if (ret)
1167                         goto fail;
1168         }
1169
1170         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1171         dix = scsi_prot_sg_count(cmd);
1172         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1173
1174         if (dif || dix)
1175                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1176         else
1177                 protect = 0;
1178
1179         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1180                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1181                                          protect | fua);
1182         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1183                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1184                                          protect | fua);
1185         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1186                    sdp->use_10_for_rw || protect) {
1187                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1188                                          protect | fua);
1189         } else {
1190                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1191                                         protect | fua);
1192         }
1193
1194         if (unlikely(ret != BLK_STS_OK))
1195                 goto fail;
1196
1197         /*
1198          * We shouldn't disconnect in the middle of a sector, so with a dumb
1199          * host adapter, it's safe to assume that we can at least transfer
1200          * this many bytes between each connect / disconnect.
1201          */
1202         cmd->transfersize = sdp->sector_size;
1203         cmd->underflow = nr_blocks << 9;
1204         cmd->allowed = sdkp->max_retries;
1205         cmd->sdb.length = nr_blocks * sdp->sector_size;
1206
1207         SCSI_LOG_HLQUEUE(1,
1208                          scmd_printk(KERN_INFO, cmd,
1209                                      "%s: block=%llu, count=%d\n", __func__,
1210                                      (unsigned long long)blk_rq_pos(rq),
1211                                      blk_rq_sectors(rq)));
1212         SCSI_LOG_HLQUEUE(2,
1213                          scmd_printk(KERN_INFO, cmd,
1214                                      "%s %d/%u 512 byte blocks.\n",
1215                                      write ? "writing" : "reading", nr_blocks,
1216                                      blk_rq_sectors(rq)));
1217
1218         /*
1219          * This indicates that the command is ready from our end to be queued.
1220          */
1221         return BLK_STS_OK;
1222 fail:
1223         scsi_free_sgtables(cmd);
1224         return ret;
1225 }
1226
1227 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1228 {
1229         struct request *rq = scsi_cmd_to_rq(cmd);
1230
1231         switch (req_op(rq)) {
1232         case REQ_OP_DISCARD:
1233                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1234                 case SD_LBP_UNMAP:
1235                         return sd_setup_unmap_cmnd(cmd);
1236                 case SD_LBP_WS16:
1237                         return sd_setup_write_same16_cmnd(cmd, true);
1238                 case SD_LBP_WS10:
1239                         return sd_setup_write_same10_cmnd(cmd, true);
1240                 case SD_LBP_ZERO:
1241                         return sd_setup_write_same10_cmnd(cmd, false);
1242                 default:
1243                         return BLK_STS_TARGET;
1244                 }
1245         case REQ_OP_WRITE_ZEROES:
1246                 return sd_setup_write_zeroes_cmnd(cmd);
1247         case REQ_OP_FLUSH:
1248                 return sd_setup_flush_cmnd(cmd);
1249         case REQ_OP_READ:
1250         case REQ_OP_WRITE:
1251         case REQ_OP_ZONE_APPEND:
1252                 return sd_setup_read_write_cmnd(cmd);
1253         case REQ_OP_ZONE_RESET:
1254                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1255                                                    false);
1256         case REQ_OP_ZONE_RESET_ALL:
1257                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1258                                                    true);
1259         case REQ_OP_ZONE_OPEN:
1260                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1261         case REQ_OP_ZONE_CLOSE:
1262                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1263         case REQ_OP_ZONE_FINISH:
1264                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1265         default:
1266                 WARN_ON_ONCE(1);
1267                 return BLK_STS_NOTSUPP;
1268         }
1269 }
1270
1271 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1272 {
1273         struct request *rq = scsi_cmd_to_rq(SCpnt);
1274
1275         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1276                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1277 }
1278
1279 static bool sd_need_revalidate(struct block_device *bdev,
1280                 struct scsi_disk *sdkp)
1281 {
1282         if (sdkp->device->removable || sdkp->write_prot) {
1283                 if (bdev_check_media_change(bdev))
1284                         return true;
1285         }
1286
1287         /*
1288          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1289          * nothing to do with partitions, BLKRRPART is used to force a full
1290          * revalidate after things like a format for historical reasons.
1291          */
1292         return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1293 }
1294
1295 /**
1296  *      sd_open - open a scsi disk device
1297  *      @bdev: Block device of the scsi disk to open
1298  *      @mode: FMODE_* mask
1299  *
1300  *      Returns 0 if successful. Returns a negated errno value in case 
1301  *      of error.
1302  *
1303  *      Note: This can be called from a user context (e.g. fsck(1) )
1304  *      or from within the kernel (e.g. as a result of a mount(1) ).
1305  *      In the latter case @inode and @filp carry an abridged amount
1306  *      of information as noted above.
1307  *
1308  *      Locking: called with bdev->bd_disk->open_mutex held.
1309  **/
1310 static int sd_open(struct block_device *bdev, fmode_t mode)
1311 {
1312         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1313         struct scsi_device *sdev = sdkp->device;
1314         int retval;
1315
1316         if (scsi_device_get(sdev))
1317                 return -ENXIO;
1318
1319         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1320
1321         /*
1322          * If the device is in error recovery, wait until it is done.
1323          * If the device is offline, then disallow any access to it.
1324          */
1325         retval = -ENXIO;
1326         if (!scsi_block_when_processing_errors(sdev))
1327                 goto error_out;
1328
1329         if (sd_need_revalidate(bdev, sdkp))
1330                 sd_revalidate_disk(bdev->bd_disk);
1331
1332         /*
1333          * If the drive is empty, just let the open fail.
1334          */
1335         retval = -ENOMEDIUM;
1336         if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1337                 goto error_out;
1338
1339         /*
1340          * If the device has the write protect tab set, have the open fail
1341          * if the user expects to be able to write to the thing.
1342          */
1343         retval = -EROFS;
1344         if (sdkp->write_prot && (mode & FMODE_WRITE))
1345                 goto error_out;
1346
1347         /*
1348          * It is possible that the disk changing stuff resulted in
1349          * the device being taken offline.  If this is the case,
1350          * report this to the user, and don't pretend that the
1351          * open actually succeeded.
1352          */
1353         retval = -ENXIO;
1354         if (!scsi_device_online(sdev))
1355                 goto error_out;
1356
1357         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1358                 if (scsi_block_when_processing_errors(sdev))
1359                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1360         }
1361
1362         return 0;
1363
1364 error_out:
1365         scsi_device_put(sdev);
1366         return retval;  
1367 }
1368
1369 /**
1370  *      sd_release - invoked when the (last) close(2) is called on this
1371  *      scsi disk.
1372  *      @disk: disk to release
1373  *      @mode: FMODE_* mask
1374  *
1375  *      Returns 0. 
1376  *
1377  *      Note: may block (uninterruptible) if error recovery is underway
1378  *      on this disk.
1379  *
1380  *      Locking: called with bdev->bd_disk->open_mutex held.
1381  **/
1382 static void sd_release(struct gendisk *disk, fmode_t mode)
1383 {
1384         struct scsi_disk *sdkp = scsi_disk(disk);
1385         struct scsi_device *sdev = sdkp->device;
1386
1387         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1388
1389         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1390                 if (scsi_block_when_processing_errors(sdev))
1391                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1392         }
1393
1394         scsi_device_put(sdev);
1395 }
1396
1397 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1398 {
1399         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1400         struct scsi_device *sdp = sdkp->device;
1401         struct Scsi_Host *host = sdp->host;
1402         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1403         int diskinfo[4];
1404
1405         /* default to most commonly used values */
1406         diskinfo[0] = 0x40;     /* 1 << 6 */
1407         diskinfo[1] = 0x20;     /* 1 << 5 */
1408         diskinfo[2] = capacity >> 11;
1409
1410         /* override with calculated, extended default, or driver values */
1411         if (host->hostt->bios_param)
1412                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1413         else
1414                 scsicam_bios_param(bdev, capacity, diskinfo);
1415
1416         geo->heads = diskinfo[0];
1417         geo->sectors = diskinfo[1];
1418         geo->cylinders = diskinfo[2];
1419         return 0;
1420 }
1421
1422 /**
1423  *      sd_ioctl - process an ioctl
1424  *      @bdev: target block device
1425  *      @mode: FMODE_* mask
1426  *      @cmd: ioctl command number
1427  *      @arg: this is third argument given to ioctl(2) system call.
1428  *      Often contains a pointer.
1429  *
1430  *      Returns 0 if successful (some ioctls return positive numbers on
1431  *      success as well). Returns a negated errno value in case of error.
1432  *
1433  *      Note: most ioctls are forward onto the block subsystem or further
1434  *      down in the scsi subsystem.
1435  **/
1436 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1437                     unsigned int cmd, unsigned long arg)
1438 {
1439         struct gendisk *disk = bdev->bd_disk;
1440         struct scsi_disk *sdkp = scsi_disk(disk);
1441         struct scsi_device *sdp = sdkp->device;
1442         void __user *p = (void __user *)arg;
1443         int error;
1444     
1445         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1446                                     "cmd=0x%x\n", disk->disk_name, cmd));
1447
1448         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1449                 return -ENOIOCTLCMD;
1450
1451         /*
1452          * If we are in the middle of error recovery, don't let anyone
1453          * else try and use this device.  Also, if error recovery fails, it
1454          * may try and take the device offline, in which case all further
1455          * access to the device is prohibited.
1456          */
1457         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1458                         (mode & FMODE_NDELAY) != 0);
1459         if (error)
1460                 return error;
1461
1462         if (is_sed_ioctl(cmd))
1463                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1464         return scsi_ioctl(sdp, mode, cmd, p);
1465 }
1466
1467 static void set_media_not_present(struct scsi_disk *sdkp)
1468 {
1469         if (sdkp->media_present)
1470                 sdkp->device->changed = 1;
1471
1472         if (sdkp->device->removable) {
1473                 sdkp->media_present = 0;
1474                 sdkp->capacity = 0;
1475         }
1476 }
1477
1478 static int media_not_present(struct scsi_disk *sdkp,
1479                              struct scsi_sense_hdr *sshdr)
1480 {
1481         if (!scsi_sense_valid(sshdr))
1482                 return 0;
1483
1484         /* not invoked for commands that could return deferred errors */
1485         switch (sshdr->sense_key) {
1486         case UNIT_ATTENTION:
1487         case NOT_READY:
1488                 /* medium not present */
1489                 if (sshdr->asc == 0x3A) {
1490                         set_media_not_present(sdkp);
1491                         return 1;
1492                 }
1493         }
1494         return 0;
1495 }
1496
1497 /**
1498  *      sd_check_events - check media events
1499  *      @disk: kernel device descriptor
1500  *      @clearing: disk events currently being cleared
1501  *
1502  *      Returns mask of DISK_EVENT_*.
1503  *
1504  *      Note: this function is invoked from the block subsystem.
1505  **/
1506 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1507 {
1508         struct scsi_disk *sdkp = disk->private_data;
1509         struct scsi_device *sdp;
1510         int retval;
1511         bool disk_changed;
1512
1513         if (!sdkp)
1514                 return 0;
1515
1516         sdp = sdkp->device;
1517         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1518
1519         /*
1520          * If the device is offline, don't send any commands - just pretend as
1521          * if the command failed.  If the device ever comes back online, we
1522          * can deal with it then.  It is only because of unrecoverable errors
1523          * that we would ever take a device offline in the first place.
1524          */
1525         if (!scsi_device_online(sdp)) {
1526                 set_media_not_present(sdkp);
1527                 goto out;
1528         }
1529
1530         /*
1531          * Using TEST_UNIT_READY enables differentiation between drive with
1532          * no cartridge loaded - NOT READY, drive with changed cartridge -
1533          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1534          *
1535          * Drives that auto spin down. eg iomega jaz 1G, will be started
1536          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1537          * sd_revalidate() is called.
1538          */
1539         if (scsi_block_when_processing_errors(sdp)) {
1540                 struct scsi_sense_hdr sshdr = { 0, };
1541
1542                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1543                                               &sshdr);
1544
1545                 /* failed to execute TUR, assume media not present */
1546                 if (retval < 0 || host_byte(retval)) {
1547                         set_media_not_present(sdkp);
1548                         goto out;
1549                 }
1550
1551                 if (media_not_present(sdkp, &sshdr))
1552                         goto out;
1553         }
1554
1555         /*
1556          * For removable scsi disk we have to recognise the presence
1557          * of a disk in the drive.
1558          */
1559         if (!sdkp->media_present)
1560                 sdp->changed = 1;
1561         sdkp->media_present = 1;
1562 out:
1563         /*
1564          * sdp->changed is set under the following conditions:
1565          *
1566          *      Medium present state has changed in either direction.
1567          *      Device has indicated UNIT_ATTENTION.
1568          */
1569         disk_changed = sdp->changed;
1570         sdp->changed = 0;
1571         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1572 }
1573
1574 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1575 {
1576         int retries, res;
1577         struct scsi_device *sdp = sdkp->device;
1578         const int timeout = sdp->request_queue->rq_timeout
1579                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1580         struct scsi_sense_hdr my_sshdr;
1581
1582         if (!scsi_device_online(sdp))
1583                 return -ENODEV;
1584
1585         /* caller might not be interested in sense, but we need it */
1586         if (!sshdr)
1587                 sshdr = &my_sshdr;
1588
1589         for (retries = 3; retries > 0; --retries) {
1590                 unsigned char cmd[10] = { 0 };
1591
1592                 cmd[0] = SYNCHRONIZE_CACHE;
1593                 /*
1594                  * Leave the rest of the command zero to indicate
1595                  * flush everything.
1596                  */
1597                 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1598                                 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1599                 if (res == 0)
1600                         break;
1601         }
1602
1603         if (res) {
1604                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1605
1606                 if (res < 0)
1607                         return res;
1608
1609                 if (scsi_status_is_check_condition(res) &&
1610                     scsi_sense_valid(sshdr)) {
1611                         sd_print_sense_hdr(sdkp, sshdr);
1612
1613                         /* we need to evaluate the error return  */
1614                         if (sshdr->asc == 0x3a ||       /* medium not present */
1615                             sshdr->asc == 0x20 ||       /* invalid command */
1616                             (sshdr->asc == 0x74 && sshdr->ascq == 0x71))        /* drive is password locked */
1617                                 /* this is no error here */
1618                                 return 0;
1619                 }
1620
1621                 switch (host_byte(res)) {
1622                 /* ignore errors due to racing a disconnection */
1623                 case DID_BAD_TARGET:
1624                 case DID_NO_CONNECT:
1625                         return 0;
1626                 /* signal the upper layer it might try again */
1627                 case DID_BUS_BUSY:
1628                 case DID_IMM_RETRY:
1629                 case DID_REQUEUE:
1630                 case DID_SOFT_ERROR:
1631                         return -EBUSY;
1632                 default:
1633                         return -EIO;
1634                 }
1635         }
1636         return 0;
1637 }
1638
1639 static void sd_rescan(struct device *dev)
1640 {
1641         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1642
1643         sd_revalidate_disk(sdkp->disk);
1644 }
1645
1646 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1647                 enum blk_unique_id type)
1648 {
1649         struct scsi_device *sdev = scsi_disk(disk)->device;
1650         const struct scsi_vpd *vpd;
1651         const unsigned char *d;
1652         int ret = -ENXIO, len;
1653
1654         rcu_read_lock();
1655         vpd = rcu_dereference(sdev->vpd_pg83);
1656         if (!vpd)
1657                 goto out_unlock;
1658
1659         ret = -EINVAL;
1660         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1661                 /* we only care about designators with LU association */
1662                 if (((d[1] >> 4) & 0x3) != 0x00)
1663                         continue;
1664                 if ((d[1] & 0xf) != type)
1665                         continue;
1666
1667                 /*
1668                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1669                  * keep looking as one with more entropy might still show up.
1670                  */
1671                 len = d[3];
1672                 if (len != 8 && len != 12 && len != 16)
1673                         continue;
1674                 ret = len;
1675                 memcpy(id, d + 4, len);
1676                 if (len == 16)
1677                         break;
1678         }
1679 out_unlock:
1680         rcu_read_unlock();
1681         return ret;
1682 }
1683
1684 static char sd_pr_type(enum pr_type type)
1685 {
1686         switch (type) {
1687         case PR_WRITE_EXCLUSIVE:
1688                 return 0x01;
1689         case PR_EXCLUSIVE_ACCESS:
1690                 return 0x03;
1691         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1692                 return 0x05;
1693         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1694                 return 0x06;
1695         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1696                 return 0x07;
1697         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1698                 return 0x08;
1699         default:
1700                 return 0;
1701         }
1702 };
1703
1704 static int sd_pr_command(struct block_device *bdev, u8 sa,
1705                 u64 key, u64 sa_key, u8 type, u8 flags)
1706 {
1707         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1708         struct scsi_device *sdev = sdkp->device;
1709         struct scsi_sense_hdr sshdr;
1710         int result;
1711         u8 cmd[16] = { 0, };
1712         u8 data[24] = { 0, };
1713
1714         cmd[0] = PERSISTENT_RESERVE_OUT;
1715         cmd[1] = sa;
1716         cmd[2] = type;
1717         put_unaligned_be32(sizeof(data), &cmd[5]);
1718
1719         put_unaligned_be64(key, &data[0]);
1720         put_unaligned_be64(sa_key, &data[8]);
1721         data[20] = flags;
1722
1723         result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1724                         &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1725
1726         if (scsi_status_is_check_condition(result) &&
1727             scsi_sense_valid(&sshdr)) {
1728                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1729                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1730         }
1731
1732         return result;
1733 }
1734
1735 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1736                 u32 flags)
1737 {
1738         if (flags & ~PR_FL_IGNORE_KEY)
1739                 return -EOPNOTSUPP;
1740         return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1741                         old_key, new_key, 0,
1742                         (1 << 0) /* APTPL */);
1743 }
1744
1745 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1746                 u32 flags)
1747 {
1748         if (flags)
1749                 return -EOPNOTSUPP;
1750         return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1751 }
1752
1753 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1754 {
1755         return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1756 }
1757
1758 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1759                 enum pr_type type, bool abort)
1760 {
1761         return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1762                              sd_pr_type(type), 0);
1763 }
1764
1765 static int sd_pr_clear(struct block_device *bdev, u64 key)
1766 {
1767         return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1768 }
1769
1770 static const struct pr_ops sd_pr_ops = {
1771         .pr_register    = sd_pr_register,
1772         .pr_reserve     = sd_pr_reserve,
1773         .pr_release     = sd_pr_release,
1774         .pr_preempt     = sd_pr_preempt,
1775         .pr_clear       = sd_pr_clear,
1776 };
1777
1778 static void scsi_disk_free_disk(struct gendisk *disk)
1779 {
1780         struct scsi_disk *sdkp = scsi_disk(disk);
1781
1782         put_device(&sdkp->disk_dev);
1783 }
1784
1785 static const struct block_device_operations sd_fops = {
1786         .owner                  = THIS_MODULE,
1787         .open                   = sd_open,
1788         .release                = sd_release,
1789         .ioctl                  = sd_ioctl,
1790         .getgeo                 = sd_getgeo,
1791         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1792         .check_events           = sd_check_events,
1793         .unlock_native_capacity = sd_unlock_native_capacity,
1794         .report_zones           = sd_zbc_report_zones,
1795         .get_unique_id          = sd_get_unique_id,
1796         .free_disk              = scsi_disk_free_disk,
1797         .pr_ops                 = &sd_pr_ops,
1798 };
1799
1800 /**
1801  *      sd_eh_reset - reset error handling callback
1802  *      @scmd:          sd-issued command that has failed
1803  *
1804  *      This function is called by the SCSI midlayer before starting
1805  *      SCSI EH. When counting medium access failures we have to be
1806  *      careful to register it only only once per device and SCSI EH run;
1807  *      there might be several timed out commands which will cause the
1808  *      'max_medium_access_timeouts' counter to trigger after the first
1809  *      SCSI EH run already and set the device to offline.
1810  *      So this function resets the internal counter before starting SCSI EH.
1811  **/
1812 static void sd_eh_reset(struct scsi_cmnd *scmd)
1813 {
1814         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1815
1816         /* New SCSI EH run, reset gate variable */
1817         sdkp->ignore_medium_access_errors = false;
1818 }
1819
1820 /**
1821  *      sd_eh_action - error handling callback
1822  *      @scmd:          sd-issued command that has failed
1823  *      @eh_disp:       The recovery disposition suggested by the midlayer
1824  *
1825  *      This function is called by the SCSI midlayer upon completion of an
1826  *      error test command (currently TEST UNIT READY). The result of sending
1827  *      the eh command is passed in eh_disp.  We're looking for devices that
1828  *      fail medium access commands but are OK with non access commands like
1829  *      test unit ready (so wrongly see the device as having a successful
1830  *      recovery)
1831  **/
1832 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1833 {
1834         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1835         struct scsi_device *sdev = scmd->device;
1836
1837         if (!scsi_device_online(sdev) ||
1838             !scsi_medium_access_command(scmd) ||
1839             host_byte(scmd->result) != DID_TIME_OUT ||
1840             eh_disp != SUCCESS)
1841                 return eh_disp;
1842
1843         /*
1844          * The device has timed out executing a medium access command.
1845          * However, the TEST UNIT READY command sent during error
1846          * handling completed successfully. Either the device is in the
1847          * process of recovering or has it suffered an internal failure
1848          * that prevents access to the storage medium.
1849          */
1850         if (!sdkp->ignore_medium_access_errors) {
1851                 sdkp->medium_access_timed_out++;
1852                 sdkp->ignore_medium_access_errors = true;
1853         }
1854
1855         /*
1856          * If the device keeps failing read/write commands but TEST UNIT
1857          * READY always completes successfully we assume that medium
1858          * access is no longer possible and take the device offline.
1859          */
1860         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1861                 scmd_printk(KERN_ERR, scmd,
1862                             "Medium access timeout failure. Offlining disk!\n");
1863                 mutex_lock(&sdev->state_mutex);
1864                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1865                 mutex_unlock(&sdev->state_mutex);
1866
1867                 return SUCCESS;
1868         }
1869
1870         return eh_disp;
1871 }
1872
1873 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1874 {
1875         struct request *req = scsi_cmd_to_rq(scmd);
1876         struct scsi_device *sdev = scmd->device;
1877         unsigned int transferred, good_bytes;
1878         u64 start_lba, end_lba, bad_lba;
1879
1880         /*
1881          * Some commands have a payload smaller than the device logical
1882          * block size (e.g. INQUIRY on a 4K disk).
1883          */
1884         if (scsi_bufflen(scmd) <= sdev->sector_size)
1885                 return 0;
1886
1887         /* Check if we have a 'bad_lba' information */
1888         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1889                                      SCSI_SENSE_BUFFERSIZE,
1890                                      &bad_lba))
1891                 return 0;
1892
1893         /*
1894          * If the bad lba was reported incorrectly, we have no idea where
1895          * the error is.
1896          */
1897         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1898         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1899         if (bad_lba < start_lba || bad_lba >= end_lba)
1900                 return 0;
1901
1902         /*
1903          * resid is optional but mostly filled in.  When it's unused,
1904          * its value is zero, so we assume the whole buffer transferred
1905          */
1906         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1907
1908         /* This computation should always be done in terms of the
1909          * resolution of the device's medium.
1910          */
1911         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1912
1913         return min(good_bytes, transferred);
1914 }
1915
1916 /**
1917  *      sd_done - bottom half handler: called when the lower level
1918  *      driver has completed (successfully or otherwise) a scsi command.
1919  *      @SCpnt: mid-level's per command structure.
1920  *
1921  *      Note: potentially run from within an ISR. Must not block.
1922  **/
1923 static int sd_done(struct scsi_cmnd *SCpnt)
1924 {
1925         int result = SCpnt->result;
1926         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1927         unsigned int sector_size = SCpnt->device->sector_size;
1928         unsigned int resid;
1929         struct scsi_sense_hdr sshdr;
1930         struct request *req = scsi_cmd_to_rq(SCpnt);
1931         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
1932         int sense_valid = 0;
1933         int sense_deferred = 0;
1934
1935         switch (req_op(req)) {
1936         case REQ_OP_DISCARD:
1937         case REQ_OP_WRITE_ZEROES:
1938         case REQ_OP_ZONE_RESET:
1939         case REQ_OP_ZONE_RESET_ALL:
1940         case REQ_OP_ZONE_OPEN:
1941         case REQ_OP_ZONE_CLOSE:
1942         case REQ_OP_ZONE_FINISH:
1943                 if (!result) {
1944                         good_bytes = blk_rq_bytes(req);
1945                         scsi_set_resid(SCpnt, 0);
1946                 } else {
1947                         good_bytes = 0;
1948                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
1949                 }
1950                 break;
1951         default:
1952                 /*
1953                  * In case of bogus fw or device, we could end up having
1954                  * an unaligned partial completion. Check this here and force
1955                  * alignment.
1956                  */
1957                 resid = scsi_get_resid(SCpnt);
1958                 if (resid & (sector_size - 1)) {
1959                         sd_printk(KERN_INFO, sdkp,
1960                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1961                                 resid, sector_size);
1962                         scsi_print_command(SCpnt);
1963                         resid = min(scsi_bufflen(SCpnt),
1964                                     round_up(resid, sector_size));
1965                         scsi_set_resid(SCpnt, resid);
1966                 }
1967         }
1968
1969         if (result) {
1970                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1971                 if (sense_valid)
1972                         sense_deferred = scsi_sense_is_deferred(&sshdr);
1973         }
1974         sdkp->medium_access_timed_out = 0;
1975
1976         if (!scsi_status_is_check_condition(result) &&
1977             (!sense_valid || sense_deferred))
1978                 goto out;
1979
1980         switch (sshdr.sense_key) {
1981         case HARDWARE_ERROR:
1982         case MEDIUM_ERROR:
1983                 good_bytes = sd_completed_bytes(SCpnt);
1984                 break;
1985         case RECOVERED_ERROR:
1986                 good_bytes = scsi_bufflen(SCpnt);
1987                 break;
1988         case NO_SENSE:
1989                 /* This indicates a false check condition, so ignore it.  An
1990                  * unknown amount of data was transferred so treat it as an
1991                  * error.
1992                  */
1993                 SCpnt->result = 0;
1994                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1995                 break;
1996         case ABORTED_COMMAND:
1997                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
1998                         good_bytes = sd_completed_bytes(SCpnt);
1999                 break;
2000         case ILLEGAL_REQUEST:
2001                 switch (sshdr.asc) {
2002                 case 0x10:      /* DIX: Host detected corruption */
2003                         good_bytes = sd_completed_bytes(SCpnt);
2004                         break;
2005                 case 0x20:      /* INVALID COMMAND OPCODE */
2006                 case 0x24:      /* INVALID FIELD IN CDB */
2007                         switch (SCpnt->cmnd[0]) {
2008                         case UNMAP:
2009                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2010                                 break;
2011                         case WRITE_SAME_16:
2012                         case WRITE_SAME:
2013                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2014                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2015                                 } else {
2016                                         sdkp->device->no_write_same = 1;
2017                                         sd_config_write_same(sdkp);
2018                                         req->rq_flags |= RQF_QUIET;
2019                                 }
2020                                 break;
2021                         }
2022                 }
2023                 break;
2024         default:
2025                 break;
2026         }
2027
2028  out:
2029         if (sd_is_zoned(sdkp))
2030                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2031
2032         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2033                                            "sd_done: completed %d of %d bytes\n",
2034                                            good_bytes, scsi_bufflen(SCpnt)));
2035
2036         return good_bytes;
2037 }
2038
2039 /*
2040  * spinup disk - called only in sd_revalidate_disk()
2041  */
2042 static void
2043 sd_spinup_disk(struct scsi_disk *sdkp)
2044 {
2045         unsigned char cmd[10];
2046         unsigned long spintime_expire = 0;
2047         int retries, spintime;
2048         unsigned int the_result;
2049         struct scsi_sense_hdr sshdr;
2050         int sense_valid = 0;
2051
2052         spintime = 0;
2053
2054         /* Spin up drives, as required.  Only do this at boot time */
2055         /* Spinup needs to be done for module loads too. */
2056         do {
2057                 retries = 0;
2058
2059                 do {
2060                         bool media_was_present = sdkp->media_present;
2061
2062                         cmd[0] = TEST_UNIT_READY;
2063                         memset((void *) &cmd[1], 0, 9);
2064
2065                         the_result = scsi_execute_req(sdkp->device, cmd,
2066                                                       DMA_NONE, NULL, 0,
2067                                                       &sshdr, SD_TIMEOUT,
2068                                                       sdkp->max_retries, NULL);
2069
2070                         /*
2071                          * If the drive has indicated to us that it
2072                          * doesn't have any media in it, don't bother
2073                          * with any more polling.
2074                          */
2075                         if (media_not_present(sdkp, &sshdr)) {
2076                                 if (media_was_present)
2077                                         sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2078                                 return;
2079                         }
2080
2081                         if (the_result)
2082                                 sense_valid = scsi_sense_valid(&sshdr);
2083                         retries++;
2084                 } while (retries < 3 &&
2085                          (!scsi_status_is_good(the_result) ||
2086                           (scsi_status_is_check_condition(the_result) &&
2087                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2088
2089                 if (!scsi_status_is_check_condition(the_result)) {
2090                         /* no sense, TUR either succeeded or failed
2091                          * with a status error */
2092                         if(!spintime && !scsi_status_is_good(the_result)) {
2093                                 sd_print_result(sdkp, "Test Unit Ready failed",
2094                                                 the_result);
2095                         }
2096                         break;
2097                 }
2098
2099                 /*
2100                  * The device does not want the automatic start to be issued.
2101                  */
2102                 if (sdkp->device->no_start_on_add)
2103                         break;
2104
2105                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2106                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2107                                 break;  /* manual intervention required */
2108                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2109                                 break;  /* standby */
2110                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2111                                 break;  /* unavailable */
2112                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2113                                 break;  /* sanitize in progress */
2114                         /*
2115                          * Issue command to spin up drive when not ready
2116                          */
2117                         if (!spintime) {
2118                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2119                                 cmd[0] = START_STOP;
2120                                 cmd[1] = 1;     /* Return immediately */
2121                                 memset((void *) &cmd[2], 0, 8);
2122                                 cmd[4] = 1;     /* Start spin cycle */
2123                                 if (sdkp->device->start_stop_pwr_cond)
2124                                         cmd[4] |= 1 << 4;
2125                                 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2126                                                  NULL, 0, &sshdr,
2127                                                  SD_TIMEOUT, sdkp->max_retries,
2128                                                  NULL);
2129                                 spintime_expire = jiffies + 100 * HZ;
2130                                 spintime = 1;
2131                         }
2132                         /* Wait 1 second for next try */
2133                         msleep(1000);
2134                         printk(KERN_CONT ".");
2135
2136                 /*
2137                  * Wait for USB flash devices with slow firmware.
2138                  * Yes, this sense key/ASC combination shouldn't
2139                  * occur here.  It's characteristic of these devices.
2140                  */
2141                 } else if (sense_valid &&
2142                                 sshdr.sense_key == UNIT_ATTENTION &&
2143                                 sshdr.asc == 0x28) {
2144                         if (!spintime) {
2145                                 spintime_expire = jiffies + 5 * HZ;
2146                                 spintime = 1;
2147                         }
2148                         /* Wait 1 second for next try */
2149                         msleep(1000);
2150                 } else {
2151                         /* we don't understand the sense code, so it's
2152                          * probably pointless to loop */
2153                         if(!spintime) {
2154                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2155                                 sd_print_sense_hdr(sdkp, &sshdr);
2156                         }
2157                         break;
2158                 }
2159                                 
2160         } while (spintime && time_before_eq(jiffies, spintime_expire));
2161
2162         if (spintime) {
2163                 if (scsi_status_is_good(the_result))
2164                         printk(KERN_CONT "ready\n");
2165                 else
2166                         printk(KERN_CONT "not responding...\n");
2167         }
2168 }
2169
2170 /*
2171  * Determine whether disk supports Data Integrity Field.
2172  */
2173 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2174 {
2175         struct scsi_device *sdp = sdkp->device;
2176         u8 type;
2177
2178         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2179                 sdkp->protection_type = 0;
2180                 return 0;
2181         }
2182
2183         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2184
2185         if (type > T10_PI_TYPE3_PROTECTION) {
2186                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2187                           " protection type %u. Disabling disk!\n",
2188                           type);
2189                 sdkp->protection_type = 0;
2190                 return -ENODEV;
2191         }
2192
2193         sdkp->protection_type = type;
2194
2195         return 0;
2196 }
2197
2198 static void sd_config_protection(struct scsi_disk *sdkp)
2199 {
2200         struct scsi_device *sdp = sdkp->device;
2201
2202         if (!sdkp->first_scan)
2203                 return;
2204
2205         sd_dif_config_host(sdkp);
2206
2207         if (!sdkp->protection_type)
2208                 return;
2209
2210         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2211                 sd_printk(KERN_NOTICE, sdkp,
2212                           "Disabling DIF Type %u protection\n",
2213                           sdkp->protection_type);
2214                 sdkp->protection_type = 0;
2215         }
2216
2217         sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2218                   sdkp->protection_type);
2219 }
2220
2221 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2222                         struct scsi_sense_hdr *sshdr, int sense_valid,
2223                         int the_result)
2224 {
2225         if (sense_valid)
2226                 sd_print_sense_hdr(sdkp, sshdr);
2227         else
2228                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2229
2230         /*
2231          * Set dirty bit for removable devices if not ready -
2232          * sometimes drives will not report this properly.
2233          */
2234         if (sdp->removable &&
2235             sense_valid && sshdr->sense_key == NOT_READY)
2236                 set_media_not_present(sdkp);
2237
2238         /*
2239          * We used to set media_present to 0 here to indicate no media
2240          * in the drive, but some drives fail read capacity even with
2241          * media present, so we can't do that.
2242          */
2243         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2244 }
2245
2246 #define RC16_LEN 32
2247 #if RC16_LEN > SD_BUF_SIZE
2248 #error RC16_LEN must not be more than SD_BUF_SIZE
2249 #endif
2250
2251 #define READ_CAPACITY_RETRIES_ON_RESET  10
2252
2253 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2254                                                 unsigned char *buffer)
2255 {
2256         unsigned char cmd[16];
2257         struct scsi_sense_hdr sshdr;
2258         int sense_valid = 0;
2259         int the_result;
2260         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2261         unsigned int alignment;
2262         unsigned long long lba;
2263         unsigned sector_size;
2264
2265         if (sdp->no_read_capacity_16)
2266                 return -EINVAL;
2267
2268         do {
2269                 memset(cmd, 0, 16);
2270                 cmd[0] = SERVICE_ACTION_IN_16;
2271                 cmd[1] = SAI_READ_CAPACITY_16;
2272                 cmd[13] = RC16_LEN;
2273                 memset(buffer, 0, RC16_LEN);
2274
2275                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2276                                         buffer, RC16_LEN, &sshdr,
2277                                         SD_TIMEOUT, sdkp->max_retries, NULL);
2278
2279                 if (media_not_present(sdkp, &sshdr))
2280                         return -ENODEV;
2281
2282                 if (the_result > 0) {
2283                         sense_valid = scsi_sense_valid(&sshdr);
2284                         if (sense_valid &&
2285                             sshdr.sense_key == ILLEGAL_REQUEST &&
2286                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2287                             sshdr.ascq == 0x00)
2288                                 /* Invalid Command Operation Code or
2289                                  * Invalid Field in CDB, just retry
2290                                  * silently with RC10 */
2291                                 return -EINVAL;
2292                         if (sense_valid &&
2293                             sshdr.sense_key == UNIT_ATTENTION &&
2294                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2295                                 /* Device reset might occur several times,
2296                                  * give it one more chance */
2297                                 if (--reset_retries > 0)
2298                                         continue;
2299                 }
2300                 retries--;
2301
2302         } while (the_result && retries);
2303
2304         if (the_result) {
2305                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2306                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2307                 return -EINVAL;
2308         }
2309
2310         sector_size = get_unaligned_be32(&buffer[8]);
2311         lba = get_unaligned_be64(&buffer[0]);
2312
2313         if (sd_read_protection_type(sdkp, buffer) < 0) {
2314                 sdkp->capacity = 0;
2315                 return -ENODEV;
2316         }
2317
2318         /* Logical blocks per physical block exponent */
2319         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2320
2321         /* RC basis */
2322         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2323
2324         /* Lowest aligned logical block */
2325         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2326         blk_queue_alignment_offset(sdp->request_queue, alignment);
2327         if (alignment && sdkp->first_scan)
2328                 sd_printk(KERN_NOTICE, sdkp,
2329                           "physical block alignment offset: %u\n", alignment);
2330
2331         if (buffer[14] & 0x80) { /* LBPME */
2332                 sdkp->lbpme = 1;
2333
2334                 if (buffer[14] & 0x40) /* LBPRZ */
2335                         sdkp->lbprz = 1;
2336
2337                 sd_config_discard(sdkp, SD_LBP_WS16);
2338         }
2339
2340         sdkp->capacity = lba + 1;
2341         return sector_size;
2342 }
2343
2344 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2345                                                 unsigned char *buffer)
2346 {
2347         unsigned char cmd[16];
2348         struct scsi_sense_hdr sshdr;
2349         int sense_valid = 0;
2350         int the_result;
2351         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2352         sector_t lba;
2353         unsigned sector_size;
2354
2355         do {
2356                 cmd[0] = READ_CAPACITY;
2357                 memset(&cmd[1], 0, 9);
2358                 memset(buffer, 0, 8);
2359
2360                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2361                                         buffer, 8, &sshdr,
2362                                         SD_TIMEOUT, sdkp->max_retries, NULL);
2363
2364                 if (media_not_present(sdkp, &sshdr))
2365                         return -ENODEV;
2366
2367                 if (the_result > 0) {
2368                         sense_valid = scsi_sense_valid(&sshdr);
2369                         if (sense_valid &&
2370                             sshdr.sense_key == UNIT_ATTENTION &&
2371                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2372                                 /* Device reset might occur several times,
2373                                  * give it one more chance */
2374                                 if (--reset_retries > 0)
2375                                         continue;
2376                 }
2377                 retries--;
2378
2379         } while (the_result && retries);
2380
2381         if (the_result) {
2382                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2383                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2384                 return -EINVAL;
2385         }
2386
2387         sector_size = get_unaligned_be32(&buffer[4]);
2388         lba = get_unaligned_be32(&buffer[0]);
2389
2390         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2391                 /* Some buggy (usb cardreader) devices return an lba of
2392                    0xffffffff when the want to report a size of 0 (with
2393                    which they really mean no media is present) */
2394                 sdkp->capacity = 0;
2395                 sdkp->physical_block_size = sector_size;
2396                 return sector_size;
2397         }
2398
2399         sdkp->capacity = lba + 1;
2400         sdkp->physical_block_size = sector_size;
2401         return sector_size;
2402 }
2403
2404 static int sd_try_rc16_first(struct scsi_device *sdp)
2405 {
2406         if (sdp->host->max_cmd_len < 16)
2407                 return 0;
2408         if (sdp->try_rc_10_first)
2409                 return 0;
2410         if (sdp->scsi_level > SCSI_SPC_2)
2411                 return 1;
2412         if (scsi_device_protection(sdp))
2413                 return 1;
2414         return 0;
2415 }
2416
2417 /*
2418  * read disk capacity
2419  */
2420 static void
2421 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2422 {
2423         int sector_size;
2424         struct scsi_device *sdp = sdkp->device;
2425
2426         if (sd_try_rc16_first(sdp)) {
2427                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2428                 if (sector_size == -EOVERFLOW)
2429                         goto got_data;
2430                 if (sector_size == -ENODEV)
2431                         return;
2432                 if (sector_size < 0)
2433                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2434                 if (sector_size < 0)
2435                         return;
2436         } else {
2437                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2438                 if (sector_size == -EOVERFLOW)
2439                         goto got_data;
2440                 if (sector_size < 0)
2441                         return;
2442                 if ((sizeof(sdkp->capacity) > 4) &&
2443                     (sdkp->capacity > 0xffffffffULL)) {
2444                         int old_sector_size = sector_size;
2445                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2446                                         "Trying to use READ CAPACITY(16).\n");
2447                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2448                         if (sector_size < 0) {
2449                                 sd_printk(KERN_NOTICE, sdkp,
2450                                         "Using 0xffffffff as device size\n");
2451                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2452                                 sector_size = old_sector_size;
2453                                 goto got_data;
2454                         }
2455                         /* Remember that READ CAPACITY(16) succeeded */
2456                         sdp->try_rc_10_first = 0;
2457                 }
2458         }
2459
2460         /* Some devices are known to return the total number of blocks,
2461          * not the highest block number.  Some devices have versions
2462          * which do this and others which do not.  Some devices we might
2463          * suspect of doing this but we don't know for certain.
2464          *
2465          * If we know the reported capacity is wrong, decrement it.  If
2466          * we can only guess, then assume the number of blocks is even
2467          * (usually true but not always) and err on the side of lowering
2468          * the capacity.
2469          */
2470         if (sdp->fix_capacity ||
2471             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2472                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2473                                 "from its reported value: %llu\n",
2474                                 (unsigned long long) sdkp->capacity);
2475                 --sdkp->capacity;
2476         }
2477
2478 got_data:
2479         if (sector_size == 0) {
2480                 sector_size = 512;
2481                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2482                           "assuming 512.\n");
2483         }
2484
2485         if (sector_size != 512 &&
2486             sector_size != 1024 &&
2487             sector_size != 2048 &&
2488             sector_size != 4096) {
2489                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2490                           sector_size);
2491                 /*
2492                  * The user might want to re-format the drive with
2493                  * a supported sectorsize.  Once this happens, it
2494                  * would be relatively trivial to set the thing up.
2495                  * For this reason, we leave the thing in the table.
2496                  */
2497                 sdkp->capacity = 0;
2498                 /*
2499                  * set a bogus sector size so the normal read/write
2500                  * logic in the block layer will eventually refuse any
2501                  * request on this device without tripping over power
2502                  * of two sector size assumptions
2503                  */
2504                 sector_size = 512;
2505         }
2506         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2507         blk_queue_physical_block_size(sdp->request_queue,
2508                                       sdkp->physical_block_size);
2509         sdkp->device->sector_size = sector_size;
2510
2511         if (sdkp->capacity > 0xffffffff)
2512                 sdp->use_16_for_rw = 1;
2513
2514 }
2515
2516 /*
2517  * Print disk capacity
2518  */
2519 static void
2520 sd_print_capacity(struct scsi_disk *sdkp,
2521                   sector_t old_capacity)
2522 {
2523         int sector_size = sdkp->device->sector_size;
2524         char cap_str_2[10], cap_str_10[10];
2525
2526         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2527                 return;
2528
2529         string_get_size(sdkp->capacity, sector_size,
2530                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2531         string_get_size(sdkp->capacity, sector_size,
2532                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2533
2534         sd_printk(KERN_NOTICE, sdkp,
2535                   "%llu %d-byte logical blocks: (%s/%s)\n",
2536                   (unsigned long long)sdkp->capacity,
2537                   sector_size, cap_str_10, cap_str_2);
2538
2539         if (sdkp->physical_block_size != sector_size)
2540                 sd_printk(KERN_NOTICE, sdkp,
2541                           "%u-byte physical blocks\n",
2542                           sdkp->physical_block_size);
2543 }
2544
2545 /* called with buffer of length 512 */
2546 static inline int
2547 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2548                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2549                  struct scsi_sense_hdr *sshdr)
2550 {
2551         /*
2552          * If we must use MODE SENSE(10), make sure that the buffer length
2553          * is at least 8 bytes so that the mode sense header fits.
2554          */
2555         if (sdkp->device->use_10_for_ms && len < 8)
2556                 len = 8;
2557
2558         return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2559                                SD_TIMEOUT, sdkp->max_retries, data,
2560                                sshdr);
2561 }
2562
2563 /*
2564  * read write protect setting, if possible - called only in sd_revalidate_disk()
2565  * called with buffer of length SD_BUF_SIZE
2566  */
2567 static void
2568 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2569 {
2570         int res;
2571         struct scsi_device *sdp = sdkp->device;
2572         struct scsi_mode_data data;
2573         int old_wp = sdkp->write_prot;
2574
2575         set_disk_ro(sdkp->disk, 0);
2576         if (sdp->skip_ms_page_3f) {
2577                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2578                 return;
2579         }
2580
2581         if (sdp->use_192_bytes_for_3f) {
2582                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2583         } else {
2584                 /*
2585                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2586                  * We have to start carefully: some devices hang if we ask
2587                  * for more than is available.
2588                  */
2589                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2590
2591                 /*
2592                  * Second attempt: ask for page 0 When only page 0 is
2593                  * implemented, a request for page 3F may return Sense Key
2594                  * 5: Illegal Request, Sense Code 24: Invalid field in
2595                  * CDB.
2596                  */
2597                 if (res < 0)
2598                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2599
2600                 /*
2601                  * Third attempt: ask 255 bytes, as we did earlier.
2602                  */
2603                 if (res < 0)
2604                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2605                                                &data, NULL);
2606         }
2607
2608         if (res < 0) {
2609                 sd_first_printk(KERN_WARNING, sdkp,
2610                           "Test WP failed, assume Write Enabled\n");
2611         } else {
2612                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2613                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2614                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2615                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2616                                   sdkp->write_prot ? "on" : "off");
2617                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2618                 }
2619         }
2620 }
2621
2622 /*
2623  * sd_read_cache_type - called only from sd_revalidate_disk()
2624  * called with buffer of length SD_BUF_SIZE
2625  */
2626 static void
2627 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2628 {
2629         int len = 0, res;
2630         struct scsi_device *sdp = sdkp->device;
2631
2632         int dbd;
2633         int modepage;
2634         int first_len;
2635         struct scsi_mode_data data;
2636         struct scsi_sense_hdr sshdr;
2637         int old_wce = sdkp->WCE;
2638         int old_rcd = sdkp->RCD;
2639         int old_dpofua = sdkp->DPOFUA;
2640
2641
2642         if (sdkp->cache_override)
2643                 return;
2644
2645         first_len = 4;
2646         if (sdp->skip_ms_page_8) {
2647                 if (sdp->type == TYPE_RBC)
2648                         goto defaults;
2649                 else {
2650                         if (sdp->skip_ms_page_3f)
2651                                 goto defaults;
2652                         modepage = 0x3F;
2653                         if (sdp->use_192_bytes_for_3f)
2654                                 first_len = 192;
2655                         dbd = 0;
2656                 }
2657         } else if (sdp->type == TYPE_RBC) {
2658                 modepage = 6;
2659                 dbd = 8;
2660         } else {
2661                 modepage = 8;
2662                 dbd = 0;
2663         }
2664
2665         /* cautiously ask */
2666         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2667                         &data, &sshdr);
2668
2669         if (res < 0)
2670                 goto bad_sense;
2671
2672         if (!data.header_length) {
2673                 modepage = 6;
2674                 first_len = 0;
2675                 sd_first_printk(KERN_ERR, sdkp,
2676                                 "Missing header in MODE_SENSE response\n");
2677         }
2678
2679         /* that went OK, now ask for the proper length */
2680         len = data.length;
2681
2682         /*
2683          * We're only interested in the first three bytes, actually.
2684          * But the data cache page is defined for the first 20.
2685          */
2686         if (len < 3)
2687                 goto bad_sense;
2688         else if (len > SD_BUF_SIZE) {
2689                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2690                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2691                 len = SD_BUF_SIZE;
2692         }
2693         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2694                 len = 192;
2695
2696         /* Get the data */
2697         if (len > first_len)
2698                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2699                                 &data, &sshdr);
2700
2701         if (!res) {
2702                 int offset = data.header_length + data.block_descriptor_length;
2703
2704                 while (offset < len) {
2705                         u8 page_code = buffer[offset] & 0x3F;
2706                         u8 spf       = buffer[offset] & 0x40;
2707
2708                         if (page_code == 8 || page_code == 6) {
2709                                 /* We're interested only in the first 3 bytes.
2710                                  */
2711                                 if (len - offset <= 2) {
2712                                         sd_first_printk(KERN_ERR, sdkp,
2713                                                 "Incomplete mode parameter "
2714                                                         "data\n");
2715                                         goto defaults;
2716                                 } else {
2717                                         modepage = page_code;
2718                                         goto Page_found;
2719                                 }
2720                         } else {
2721                                 /* Go to the next page */
2722                                 if (spf && len - offset > 3)
2723                                         offset += 4 + (buffer[offset+2] << 8) +
2724                                                 buffer[offset+3];
2725                                 else if (!spf && len - offset > 1)
2726                                         offset += 2 + buffer[offset+1];
2727                                 else {
2728                                         sd_first_printk(KERN_ERR, sdkp,
2729                                                         "Incomplete mode "
2730                                                         "parameter data\n");
2731                                         goto defaults;
2732                                 }
2733                         }
2734                 }
2735
2736                 sd_first_printk(KERN_WARNING, sdkp,
2737                                 "No Caching mode page found\n");
2738                 goto defaults;
2739
2740         Page_found:
2741                 if (modepage == 8) {
2742                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2743                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2744                 } else {
2745                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2746                         sdkp->RCD = 0;
2747                 }
2748
2749                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2750                 if (sdp->broken_fua) {
2751                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2752                         sdkp->DPOFUA = 0;
2753                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2754                            !sdkp->device->use_16_for_rw) {
2755                         sd_first_printk(KERN_NOTICE, sdkp,
2756                                   "Uses READ/WRITE(6), disabling FUA\n");
2757                         sdkp->DPOFUA = 0;
2758                 }
2759
2760                 /* No cache flush allowed for write protected devices */
2761                 if (sdkp->WCE && sdkp->write_prot)
2762                         sdkp->WCE = 0;
2763
2764                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2765                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2766                         sd_printk(KERN_NOTICE, sdkp,
2767                                   "Write cache: %s, read cache: %s, %s\n",
2768                                   sdkp->WCE ? "enabled" : "disabled",
2769                                   sdkp->RCD ? "disabled" : "enabled",
2770                                   sdkp->DPOFUA ? "supports DPO and FUA"
2771                                   : "doesn't support DPO or FUA");
2772
2773                 return;
2774         }
2775
2776 bad_sense:
2777         if (scsi_sense_valid(&sshdr) &&
2778             sshdr.sense_key == ILLEGAL_REQUEST &&
2779             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2780                 /* Invalid field in CDB */
2781                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2782         else
2783                 sd_first_printk(KERN_ERR, sdkp,
2784                                 "Asking for cache data failed\n");
2785
2786 defaults:
2787         if (sdp->wce_default_on) {
2788                 sd_first_printk(KERN_NOTICE, sdkp,
2789                                 "Assuming drive cache: write back\n");
2790                 sdkp->WCE = 1;
2791         } else {
2792                 sd_first_printk(KERN_WARNING, sdkp,
2793                                 "Assuming drive cache: write through\n");
2794                 sdkp->WCE = 0;
2795         }
2796         sdkp->RCD = 0;
2797         sdkp->DPOFUA = 0;
2798 }
2799
2800 /*
2801  * The ATO bit indicates whether the DIF application tag is available
2802  * for use by the operating system.
2803  */
2804 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2805 {
2806         int res, offset;
2807         struct scsi_device *sdp = sdkp->device;
2808         struct scsi_mode_data data;
2809         struct scsi_sense_hdr sshdr;
2810
2811         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2812                 return;
2813
2814         if (sdkp->protection_type == 0)
2815                 return;
2816
2817         res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2818                               sdkp->max_retries, &data, &sshdr);
2819
2820         if (res < 0 || !data.header_length ||
2821             data.length < 6) {
2822                 sd_first_printk(KERN_WARNING, sdkp,
2823                           "getting Control mode page failed, assume no ATO\n");
2824
2825                 if (scsi_sense_valid(&sshdr))
2826                         sd_print_sense_hdr(sdkp, &sshdr);
2827
2828                 return;
2829         }
2830
2831         offset = data.header_length + data.block_descriptor_length;
2832
2833         if ((buffer[offset] & 0x3f) != 0x0a) {
2834                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2835                 return;
2836         }
2837
2838         if ((buffer[offset + 5] & 0x80) == 0)
2839                 return;
2840
2841         sdkp->ATO = 1;
2842
2843         return;
2844 }
2845
2846 /**
2847  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2848  * @sdkp: disk to query
2849  */
2850 static void sd_read_block_limits(struct scsi_disk *sdkp)
2851 {
2852         struct scsi_vpd *vpd;
2853
2854         rcu_read_lock();
2855
2856         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2857         if (!vpd || vpd->len < 16)
2858                 goto out;
2859
2860         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2861         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2862         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2863
2864         if (vpd->len >= 64) {
2865                 unsigned int lba_count, desc_count;
2866
2867                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2868
2869                 if (!sdkp->lbpme)
2870                         goto out;
2871
2872                 lba_count = get_unaligned_be32(&vpd->data[20]);
2873                 desc_count = get_unaligned_be32(&vpd->data[24]);
2874
2875                 if (lba_count && desc_count)
2876                         sdkp->max_unmap_blocks = lba_count;
2877
2878                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2879
2880                 if (vpd->data[32] & 0x80)
2881                         sdkp->unmap_alignment =
2882                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
2883
2884                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2885
2886                         if (sdkp->max_unmap_blocks)
2887                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2888                         else
2889                                 sd_config_discard(sdkp, SD_LBP_WS16);
2890
2891                 } else {        /* LBP VPD page tells us what to use */
2892                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
2893                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2894                         else if (sdkp->lbpws)
2895                                 sd_config_discard(sdkp, SD_LBP_WS16);
2896                         else if (sdkp->lbpws10)
2897                                 sd_config_discard(sdkp, SD_LBP_WS10);
2898                         else
2899                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2900                 }
2901         }
2902
2903  out:
2904         rcu_read_unlock();
2905 }
2906
2907 /**
2908  * sd_read_block_characteristics - Query block dev. characteristics
2909  * @sdkp: disk to query
2910  */
2911 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2912 {
2913         struct request_queue *q = sdkp->disk->queue;
2914         struct scsi_vpd *vpd;
2915         u16 rot;
2916         u8 zoned;
2917
2918         rcu_read_lock();
2919         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
2920
2921         if (!vpd || vpd->len < 8) {
2922                 rcu_read_unlock();
2923                 return;
2924         }
2925
2926         rot = get_unaligned_be16(&vpd->data[4]);
2927         zoned = (vpd->data[8] >> 4) & 3;
2928         rcu_read_unlock();
2929
2930         if (rot == 1) {
2931                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2932                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2933         }
2934
2935         if (sdkp->device->type == TYPE_ZBC) {
2936                 /* Host-managed */
2937                 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
2938         } else {
2939                 sdkp->zoned = zoned;
2940                 if (sdkp->zoned == 1) {
2941                         /* Host-aware */
2942                         blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
2943                 } else {
2944                         /* Regular disk or drive managed disk */
2945                         blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2946                 }
2947         }
2948
2949         if (!sdkp->first_scan)
2950                 return;
2951
2952         if (blk_queue_is_zoned(q)) {
2953                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2954                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2955         } else {
2956                 if (sdkp->zoned == 1)
2957                         sd_printk(KERN_NOTICE, sdkp,
2958                                   "Host-aware SMR disk used as regular disk\n");
2959                 else if (sdkp->zoned == 2)
2960                         sd_printk(KERN_NOTICE, sdkp,
2961                                   "Drive-managed SMR disk\n");
2962         }
2963 }
2964
2965 /**
2966  * sd_read_block_provisioning - Query provisioning VPD page
2967  * @sdkp: disk to query
2968  */
2969 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2970 {
2971         struct scsi_vpd *vpd;
2972
2973         if (sdkp->lbpme == 0)
2974                 return;
2975
2976         rcu_read_lock();
2977         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
2978
2979         if (!vpd || vpd->len < 8) {
2980                 rcu_read_unlock();
2981                 return;
2982         }
2983
2984         sdkp->lbpvpd    = 1;
2985         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
2986         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
2987         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
2988         rcu_read_unlock();
2989 }
2990
2991 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2992 {
2993         struct scsi_device *sdev = sdkp->device;
2994
2995         if (sdev->host->no_write_same) {
2996                 sdev->no_write_same = 1;
2997
2998                 return;
2999         }
3000
3001         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3002                 struct scsi_vpd *vpd;
3003
3004                 sdev->no_report_opcodes = 1;
3005
3006                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3007                  * CODES is unsupported and the device has an ATA
3008                  * Information VPD page (SAT).
3009                  */
3010                 rcu_read_lock();
3011                 vpd = rcu_dereference(sdev->vpd_pg89);
3012                 if (vpd)
3013                         sdev->no_write_same = 1;
3014                 rcu_read_unlock();
3015         }
3016
3017         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3018                 sdkp->ws16 = 1;
3019
3020         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3021                 sdkp->ws10 = 1;
3022 }
3023
3024 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3025 {
3026         struct scsi_device *sdev = sdkp->device;
3027
3028         if (!sdev->security_supported)
3029                 return;
3030
3031         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3032                         SECURITY_PROTOCOL_IN) == 1 &&
3033             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3034                         SECURITY_PROTOCOL_OUT) == 1)
3035                 sdkp->security = 1;
3036 }
3037
3038 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3039 {
3040         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3041 }
3042
3043 /**
3044  * sd_read_cpr - Query concurrent positioning ranges
3045  * @sdkp:       disk to query
3046  */
3047 static void sd_read_cpr(struct scsi_disk *sdkp)
3048 {
3049         struct blk_independent_access_ranges *iars = NULL;
3050         unsigned char *buffer = NULL;
3051         unsigned int nr_cpr = 0;
3052         int i, vpd_len, buf_len = SD_BUF_SIZE;
3053         u8 *desc;
3054
3055         /*
3056          * We need to have the capacity set first for the block layer to be
3057          * able to check the ranges.
3058          */
3059         if (sdkp->first_scan)
3060                 return;
3061
3062         if (!sdkp->capacity)
3063                 goto out;
3064
3065         /*
3066          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3067          * leading to a maximum page size of 64 + 256*32 bytes.
3068          */
3069         buf_len = 64 + 256*32;
3070         buffer = kmalloc(buf_len, GFP_KERNEL);
3071         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3072                 goto out;
3073
3074         /* We must have at least a 64B header and one 32B range descriptor */
3075         vpd_len = get_unaligned_be16(&buffer[2]) + 3;
3076         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3077                 sd_printk(KERN_ERR, sdkp,
3078                           "Invalid Concurrent Positioning Ranges VPD page\n");
3079                 goto out;
3080         }
3081
3082         nr_cpr = (vpd_len - 64) / 32;
3083         if (nr_cpr == 1) {
3084                 nr_cpr = 0;
3085                 goto out;
3086         }
3087
3088         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3089         if (!iars) {
3090                 nr_cpr = 0;
3091                 goto out;
3092         }
3093
3094         desc = &buffer[64];
3095         for (i = 0; i < nr_cpr; i++, desc += 32) {
3096                 if (desc[0] != i) {
3097                         sd_printk(KERN_ERR, sdkp,
3098                                 "Invalid Concurrent Positioning Range number\n");
3099                         nr_cpr = 0;
3100                         break;
3101                 }
3102
3103                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3104                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3105         }
3106
3107 out:
3108         disk_set_independent_access_ranges(sdkp->disk, iars);
3109         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3110                 sd_printk(KERN_NOTICE, sdkp,
3111                           "%u concurrent positioning ranges\n", nr_cpr);
3112                 sdkp->nr_actuators = nr_cpr;
3113         }
3114
3115         kfree(buffer);
3116 }
3117
3118 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3119 {
3120         struct scsi_device *sdp = sdkp->device;
3121         unsigned int min_xfer_bytes =
3122                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3123
3124         if (sdkp->min_xfer_blocks == 0)
3125                 return false;
3126
3127         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3128                 sd_first_printk(KERN_WARNING, sdkp,
3129                                 "Preferred minimum I/O size %u bytes not a " \
3130                                 "multiple of physical block size (%u bytes)\n",
3131                                 min_xfer_bytes, sdkp->physical_block_size);
3132                 sdkp->min_xfer_blocks = 0;
3133                 return false;
3134         }
3135
3136         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3137                         min_xfer_bytes);
3138         return true;
3139 }
3140
3141 /*
3142  * Determine the device's preferred I/O size for reads and writes
3143  * unless the reported value is unreasonably small, large, not a
3144  * multiple of the physical block size, or simply garbage.
3145  */
3146 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3147                                       unsigned int dev_max)
3148 {
3149         struct scsi_device *sdp = sdkp->device;
3150         unsigned int opt_xfer_bytes =
3151                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3152         unsigned int min_xfer_bytes =
3153                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3154
3155         if (sdkp->opt_xfer_blocks == 0)
3156                 return false;
3157
3158         if (sdkp->opt_xfer_blocks > dev_max) {
3159                 sd_first_printk(KERN_WARNING, sdkp,
3160                                 "Optimal transfer size %u logical blocks " \
3161                                 "> dev_max (%u logical blocks)\n",
3162                                 sdkp->opt_xfer_blocks, dev_max);
3163                 return false;
3164         }
3165
3166         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3167                 sd_first_printk(KERN_WARNING, sdkp,
3168                                 "Optimal transfer size %u logical blocks " \
3169                                 "> sd driver limit (%u logical blocks)\n",
3170                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3171                 return false;
3172         }
3173
3174         if (opt_xfer_bytes < PAGE_SIZE) {
3175                 sd_first_printk(KERN_WARNING, sdkp,
3176                                 "Optimal transfer size %u bytes < " \
3177                                 "PAGE_SIZE (%u bytes)\n",
3178                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3179                 return false;
3180         }
3181
3182         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3183                 sd_first_printk(KERN_WARNING, sdkp,
3184                                 "Optimal transfer size %u bytes not a " \
3185                                 "multiple of preferred minimum block " \
3186                                 "size (%u bytes)\n",
3187                                 opt_xfer_bytes, min_xfer_bytes);
3188                 return false;
3189         }
3190
3191         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3192                 sd_first_printk(KERN_WARNING, sdkp,
3193                                 "Optimal transfer size %u bytes not a " \
3194                                 "multiple of physical block size (%u bytes)\n",
3195                                 opt_xfer_bytes, sdkp->physical_block_size);
3196                 return false;
3197         }
3198
3199         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3200                         opt_xfer_bytes);
3201         return true;
3202 }
3203
3204 /**
3205  *      sd_revalidate_disk - called the first time a new disk is seen,
3206  *      performs disk spin up, read_capacity, etc.
3207  *      @disk: struct gendisk we care about
3208  **/
3209 static int sd_revalidate_disk(struct gendisk *disk)
3210 {
3211         struct scsi_disk *sdkp = scsi_disk(disk);
3212         struct scsi_device *sdp = sdkp->device;
3213         struct request_queue *q = sdkp->disk->queue;
3214         sector_t old_capacity = sdkp->capacity;
3215         unsigned char *buffer;
3216         unsigned int dev_max, rw_max;
3217
3218         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3219                                       "sd_revalidate_disk\n"));
3220
3221         /*
3222          * If the device is offline, don't try and read capacity or any
3223          * of the other niceties.
3224          */
3225         if (!scsi_device_online(sdp))
3226                 goto out;
3227
3228         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3229         if (!buffer) {
3230                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3231                           "allocation failure.\n");
3232                 goto out;
3233         }
3234
3235         sd_spinup_disk(sdkp);
3236
3237         /*
3238          * Without media there is no reason to ask; moreover, some devices
3239          * react badly if we do.
3240          */
3241         if (sdkp->media_present) {
3242                 sd_read_capacity(sdkp, buffer);
3243
3244                 /*
3245                  * set the default to rotational.  All non-rotational devices
3246                  * support the block characteristics VPD page, which will
3247                  * cause this to be updated correctly and any device which
3248                  * doesn't support it should be treated as rotational.
3249                  */
3250                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3251                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3252
3253                 if (scsi_device_supports_vpd(sdp)) {
3254                         sd_read_block_provisioning(sdkp);
3255                         sd_read_block_limits(sdkp);
3256                         sd_read_block_characteristics(sdkp);
3257                         sd_zbc_read_zones(sdkp, buffer);
3258                         sd_read_cpr(sdkp);
3259                 }
3260
3261                 sd_print_capacity(sdkp, old_capacity);
3262
3263                 sd_read_write_protect_flag(sdkp, buffer);
3264                 sd_read_cache_type(sdkp, buffer);
3265                 sd_read_app_tag_own(sdkp, buffer);
3266                 sd_read_write_same(sdkp, buffer);
3267                 sd_read_security(sdkp, buffer);
3268                 sd_config_protection(sdkp);
3269         }
3270
3271         /*
3272          * We now have all cache related info, determine how we deal
3273          * with flush requests.
3274          */
3275         sd_set_flush_flag(sdkp);
3276
3277         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3278         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3279
3280         /* Some devices report a maximum block count for READ/WRITE requests. */
3281         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3282         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3283
3284         if (sd_validate_min_xfer_size(sdkp))
3285                 blk_queue_io_min(sdkp->disk->queue,
3286                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3287         else
3288                 blk_queue_io_min(sdkp->disk->queue, 0);
3289
3290         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3291                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3292                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3293         } else {
3294                 q->limits.io_opt = 0;
3295                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3296                                       (sector_t)BLK_DEF_MAX_SECTORS);
3297         }
3298
3299         /* Do not exceed controller limit */
3300         rw_max = min(rw_max, queue_max_hw_sectors(q));
3301
3302         /*
3303          * Only update max_sectors if previously unset or if the current value
3304          * exceeds the capabilities of the hardware.
3305          */
3306         if (sdkp->first_scan ||
3307             q->limits.max_sectors > q->limits.max_dev_sectors ||
3308             q->limits.max_sectors > q->limits.max_hw_sectors)
3309                 q->limits.max_sectors = rw_max;
3310
3311         sdkp->first_scan = 0;
3312
3313         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3314         sd_config_write_same(sdkp);
3315         kfree(buffer);
3316
3317         /*
3318          * For a zoned drive, revalidating the zones can be done only once
3319          * the gendisk capacity is set. So if this fails, set back the gendisk
3320          * capacity to 0.
3321          */
3322         if (sd_zbc_revalidate_zones(sdkp))
3323                 set_capacity_and_notify(disk, 0);
3324
3325  out:
3326         return 0;
3327 }
3328
3329 /**
3330  *      sd_unlock_native_capacity - unlock native capacity
3331  *      @disk: struct gendisk to set capacity for
3332  *
3333  *      Block layer calls this function if it detects that partitions
3334  *      on @disk reach beyond the end of the device.  If the SCSI host
3335  *      implements ->unlock_native_capacity() method, it's invoked to
3336  *      give it a chance to adjust the device capacity.
3337  *
3338  *      CONTEXT:
3339  *      Defined by block layer.  Might sleep.
3340  */
3341 static void sd_unlock_native_capacity(struct gendisk *disk)
3342 {
3343         struct scsi_device *sdev = scsi_disk(disk)->device;
3344
3345         if (sdev->host->hostt->unlock_native_capacity)
3346                 sdev->host->hostt->unlock_native_capacity(sdev);
3347 }
3348
3349 /**
3350  *      sd_format_disk_name - format disk name
3351  *      @prefix: name prefix - ie. "sd" for SCSI disks
3352  *      @index: index of the disk to format name for
3353  *      @buf: output buffer
3354  *      @buflen: length of the output buffer
3355  *
3356  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3357  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3358  *      which is followed by sdaaa.
3359  *
3360  *      This is basically 26 base counting with one extra 'nil' entry
3361  *      at the beginning from the second digit on and can be
3362  *      determined using similar method as 26 base conversion with the
3363  *      index shifted -1 after each digit is computed.
3364  *
3365  *      CONTEXT:
3366  *      Don't care.
3367  *
3368  *      RETURNS:
3369  *      0 on success, -errno on failure.
3370  */
3371 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3372 {
3373         const int base = 'z' - 'a' + 1;
3374         char *begin = buf + strlen(prefix);
3375         char *end = buf + buflen;
3376         char *p;
3377         int unit;
3378
3379         p = end - 1;
3380         *p = '\0';
3381         unit = base;
3382         do {
3383                 if (p == begin)
3384                         return -EINVAL;
3385                 *--p = 'a' + (index % unit);
3386                 index = (index / unit) - 1;
3387         } while (index >= 0);
3388
3389         memmove(begin, p, end - p);
3390         memcpy(buf, prefix, strlen(prefix));
3391
3392         return 0;
3393 }
3394
3395 /**
3396  *      sd_probe - called during driver initialization and whenever a
3397  *      new scsi device is attached to the system. It is called once
3398  *      for each scsi device (not just disks) present.
3399  *      @dev: pointer to device object
3400  *
3401  *      Returns 0 if successful (or not interested in this scsi device 
3402  *      (e.g. scanner)); 1 when there is an error.
3403  *
3404  *      Note: this function is invoked from the scsi mid-level.
3405  *      This function sets up the mapping between a given 
3406  *      <host,channel,id,lun> (found in sdp) and new device name 
3407  *      (e.g. /dev/sda). More precisely it is the block device major 
3408  *      and minor number that is chosen here.
3409  *
3410  *      Assume sd_probe is not re-entrant (for time being)
3411  *      Also think about sd_probe() and sd_remove() running coincidentally.
3412  **/
3413 static int sd_probe(struct device *dev)
3414 {
3415         struct scsi_device *sdp = to_scsi_device(dev);
3416         struct scsi_disk *sdkp;
3417         struct gendisk *gd;
3418         int index;
3419         int error;
3420
3421         scsi_autopm_get_device(sdp);
3422         error = -ENODEV;
3423         if (sdp->type != TYPE_DISK &&
3424             sdp->type != TYPE_ZBC &&
3425             sdp->type != TYPE_MOD &&
3426             sdp->type != TYPE_RBC)
3427                 goto out;
3428
3429         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3430                 sdev_printk(KERN_WARNING, sdp,
3431                             "Unsupported ZBC host-managed device.\n");
3432                 goto out;
3433         }
3434
3435         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3436                                         "sd_probe\n"));
3437
3438         error = -ENOMEM;
3439         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3440         if (!sdkp)
3441                 goto out;
3442
3443         gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE,
3444                                &sd_bio_compl_lkclass);
3445         if (!gd)
3446                 goto out_free;
3447
3448         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3449         if (index < 0) {
3450                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3451                 goto out_put;
3452         }
3453
3454         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3455         if (error) {
3456                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3457                 goto out_free_index;
3458         }
3459
3460         sdkp->device = sdp;
3461         sdkp->disk = gd;
3462         sdkp->index = index;
3463         sdkp->max_retries = SD_MAX_RETRIES;
3464         atomic_set(&sdkp->openers, 0);
3465         atomic_set(&sdkp->device->ioerr_cnt, 0);
3466
3467         if (!sdp->request_queue->rq_timeout) {
3468                 if (sdp->type != TYPE_MOD)
3469                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3470                 else
3471                         blk_queue_rq_timeout(sdp->request_queue,
3472                                              SD_MOD_TIMEOUT);
3473         }
3474
3475         device_initialize(&sdkp->disk_dev);
3476         sdkp->disk_dev.parent = get_device(dev);
3477         sdkp->disk_dev.class = &sd_disk_class;
3478         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3479
3480         error = device_add(&sdkp->disk_dev);
3481         if (error) {
3482                 put_device(&sdkp->disk_dev);
3483                 goto out;
3484         }
3485
3486         dev_set_drvdata(dev, sdkp);
3487
3488         gd->major = sd_major((index & 0xf0) >> 4);
3489         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3490         gd->minors = SD_MINORS;
3491
3492         gd->fops = &sd_fops;
3493         gd->private_data = sdkp;
3494
3495         /* defaults, until the device tells us otherwise */
3496         sdp->sector_size = 512;
3497         sdkp->capacity = 0;
3498         sdkp->media_present = 1;
3499         sdkp->write_prot = 0;
3500         sdkp->cache_override = 0;
3501         sdkp->WCE = 0;
3502         sdkp->RCD = 0;
3503         sdkp->ATO = 0;
3504         sdkp->first_scan = 1;
3505         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3506
3507         sd_revalidate_disk(gd);
3508
3509         if (sdp->removable) {
3510                 gd->flags |= GENHD_FL_REMOVABLE;
3511                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3512                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3513         }
3514
3515         blk_pm_runtime_init(sdp->request_queue, dev);
3516         if (sdp->rpm_autosuspend) {
3517                 pm_runtime_set_autosuspend_delay(dev,
3518                         sdp->host->hostt->rpm_autosuspend_delay);
3519         }
3520
3521         error = device_add_disk(dev, gd, NULL);
3522         if (error) {
3523                 put_device(&sdkp->disk_dev);
3524                 blk_cleanup_disk(gd);
3525                 goto out;
3526         }
3527
3528         if (sdkp->security) {
3529                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3530                 if (sdkp->opal_dev)
3531                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3532         }
3533
3534         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3535                   sdp->removable ? "removable " : "");
3536         scsi_autopm_put_device(sdp);
3537
3538         return 0;
3539
3540  out_free_index:
3541         ida_free(&sd_index_ida, index);
3542  out_put:
3543         put_disk(gd);
3544  out_free:
3545         sd_zbc_release_disk(sdkp);
3546         kfree(sdkp);
3547  out:
3548         scsi_autopm_put_device(sdp);
3549         return error;
3550 }
3551
3552 /**
3553  *      sd_remove - called whenever a scsi disk (previously recognized by
3554  *      sd_probe) is detached from the system. It is called (potentially
3555  *      multiple times) during sd module unload.
3556  *      @dev: pointer to device object
3557  *
3558  *      Note: this function is invoked from the scsi mid-level.
3559  *      This function potentially frees up a device name (e.g. /dev/sdc)
3560  *      that could be re-used by a subsequent sd_probe().
3561  *      This function is not called when the built-in sd driver is "exit-ed".
3562  **/
3563 static int sd_remove(struct device *dev)
3564 {
3565         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3566
3567         scsi_autopm_get_device(sdkp->device);
3568
3569         device_del(&sdkp->disk_dev);
3570         del_gendisk(sdkp->disk);
3571         sd_shutdown(dev);
3572
3573         put_disk(sdkp->disk);
3574         return 0;
3575 }
3576
3577 static void scsi_disk_release(struct device *dev)
3578 {
3579         struct scsi_disk *sdkp = to_scsi_disk(dev);
3580
3581         ida_free(&sd_index_ida, sdkp->index);
3582         sd_zbc_release_disk(sdkp);
3583         put_device(&sdkp->device->sdev_gendev);
3584         free_opal_dev(sdkp->opal_dev);
3585
3586         kfree(sdkp);
3587 }
3588
3589 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3590 {
3591         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3592         struct scsi_sense_hdr sshdr;
3593         struct scsi_device *sdp = sdkp->device;
3594         int res;
3595
3596         if (start)
3597                 cmd[4] |= 1;    /* START */
3598
3599         if (sdp->start_stop_pwr_cond)
3600                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3601
3602         if (!scsi_device_online(sdp))
3603                 return -ENODEV;
3604
3605         res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3606                         SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3607         if (res) {
3608                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3609                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3610                         sd_print_sense_hdr(sdkp, &sshdr);
3611                         /* 0x3a is medium not present */
3612                         if (sshdr.asc == 0x3a)
3613                                 res = 0;
3614                 }
3615         }
3616
3617         /* SCSI error codes must not go to the generic layer */
3618         if (res)
3619                 return -EIO;
3620
3621         return 0;
3622 }
3623
3624 /*
3625  * Send a SYNCHRONIZE CACHE instruction down to the device through
3626  * the normal SCSI command structure.  Wait for the command to
3627  * complete.
3628  */
3629 static void sd_shutdown(struct device *dev)
3630 {
3631         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3632
3633         if (!sdkp)
3634                 return;         /* this can happen */
3635
3636         if (pm_runtime_suspended(dev))
3637                 return;
3638
3639         if (sdkp->WCE && sdkp->media_present) {
3640                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3641                 sd_sync_cache(sdkp, NULL);
3642         }
3643
3644         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3645                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3646                 sd_start_stop_device(sdkp, 0);
3647         }
3648 }
3649
3650 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3651 {
3652         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3653         struct scsi_sense_hdr sshdr;
3654         int ret = 0;
3655
3656         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3657                 return 0;
3658
3659         if (sdkp->WCE && sdkp->media_present) {
3660                 if (!sdkp->device->silence_suspend)
3661                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3662                 ret = sd_sync_cache(sdkp, &sshdr);
3663
3664                 if (ret) {
3665                         /* ignore OFFLINE device */
3666                         if (ret == -ENODEV)
3667                                 return 0;
3668
3669                         if (!scsi_sense_valid(&sshdr) ||
3670                             sshdr.sense_key != ILLEGAL_REQUEST)
3671                                 return ret;
3672
3673                         /*
3674                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3675                          * doesn't support sync. There's not much to do and
3676                          * suspend shouldn't fail.
3677                          */
3678                         ret = 0;
3679                 }
3680         }
3681
3682         if (sdkp->device->manage_start_stop) {
3683                 if (!sdkp->device->silence_suspend)
3684                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3685                 /* an error is not worth aborting a system sleep */
3686                 ret = sd_start_stop_device(sdkp, 0);
3687                 if (ignore_stop_errors)
3688                         ret = 0;
3689         }
3690
3691         return ret;
3692 }
3693
3694 static int sd_suspend_system(struct device *dev)
3695 {
3696         if (pm_runtime_suspended(dev))
3697                 return 0;
3698
3699         return sd_suspend_common(dev, true);
3700 }
3701
3702 static int sd_suspend_runtime(struct device *dev)
3703 {
3704         return sd_suspend_common(dev, false);
3705 }
3706
3707 static int sd_resume(struct device *dev)
3708 {
3709         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3710         int ret;
3711
3712         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3713                 return 0;
3714
3715         if (!sdkp->device->manage_start_stop)
3716                 return 0;
3717
3718         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3719         ret = sd_start_stop_device(sdkp, 1);
3720         if (!ret)
3721                 opal_unlock_from_suspend(sdkp->opal_dev);
3722         return ret;
3723 }
3724
3725 static int sd_resume_system(struct device *dev)
3726 {
3727         if (pm_runtime_suspended(dev))
3728                 return 0;
3729
3730         return sd_resume(dev);
3731 }
3732
3733 static int sd_resume_runtime(struct device *dev)
3734 {
3735         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3736         struct scsi_device *sdp;
3737
3738         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3739                 return 0;
3740
3741         sdp = sdkp->device;
3742
3743         if (sdp->ignore_media_change) {
3744                 /* clear the device's sense data */
3745                 static const u8 cmd[10] = { REQUEST_SENSE };
3746
3747                 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3748                                  NULL, sdp->request_queue->rq_timeout, 1, 0,
3749                                  RQF_PM, NULL))
3750                         sd_printk(KERN_NOTICE, sdkp,
3751                                   "Failed to clear sense data\n");
3752         }
3753
3754         return sd_resume(dev);
3755 }
3756
3757 /**
3758  *      init_sd - entry point for this driver (both when built in or when
3759  *      a module).
3760  *
3761  *      Note: this function registers this driver with the scsi mid-level.
3762  **/
3763 static int __init init_sd(void)
3764 {
3765         int majors = 0, i, err;
3766
3767         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3768
3769         for (i = 0; i < SD_MAJORS; i++) {
3770                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3771                         continue;
3772                 majors++;
3773         }
3774
3775         if (!majors)
3776                 return -ENODEV;
3777
3778         err = class_register(&sd_disk_class);
3779         if (err)
3780                 goto err_out;
3781
3782         sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3783                                          0, 0, NULL);
3784         if (!sd_cdb_cache) {
3785                 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3786                 err = -ENOMEM;
3787                 goto err_out_class;
3788         }
3789
3790         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3791         if (!sd_page_pool) {
3792                 printk(KERN_ERR "sd: can't init discard page pool\n");
3793                 err = -ENOMEM;
3794                 goto err_out_cache;
3795         }
3796
3797         err = scsi_register_driver(&sd_template.gendrv);
3798         if (err)
3799                 goto err_out_driver;
3800
3801         return 0;
3802
3803 err_out_driver:
3804         mempool_destroy(sd_page_pool);
3805
3806 err_out_cache:
3807         kmem_cache_destroy(sd_cdb_cache);
3808
3809 err_out_class:
3810         class_unregister(&sd_disk_class);
3811 err_out:
3812         for (i = 0; i < SD_MAJORS; i++)
3813                 unregister_blkdev(sd_major(i), "sd");
3814         return err;
3815 }
3816
3817 /**
3818  *      exit_sd - exit point for this driver (when it is a module).
3819  *
3820  *      Note: this function unregisters this driver from the scsi mid-level.
3821  **/
3822 static void __exit exit_sd(void)
3823 {
3824         int i;
3825
3826         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3827
3828         scsi_unregister_driver(&sd_template.gendrv);
3829         mempool_destroy(sd_page_pool);
3830         kmem_cache_destroy(sd_cdb_cache);
3831
3832         class_unregister(&sd_disk_class);
3833
3834         for (i = 0; i < SD_MAJORS; i++)
3835                 unregister_blkdev(sd_major(i), "sd");
3836 }
3837
3838 module_init(init_sd);
3839 module_exit(exit_sd);
3840
3841 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3842 {
3843         scsi_print_sense_hdr(sdkp->device,
3844                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3845 }
3846
3847 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3848 {
3849         const char *hb_string = scsi_hostbyte_string(result);
3850
3851         if (hb_string)
3852                 sd_printk(KERN_INFO, sdkp,
3853                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3854                           hb_string ? hb_string : "invalid",
3855                           "DRIVER_OK");
3856         else
3857                 sd_printk(KERN_INFO, sdkp,
3858                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3859                           msg, host_byte(result), "DRIVER_OK");
3860 }