drivers: remove struct module * setting from struct class
[linux-2.6-microblaze.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99
100 #define SD_MINORS       16
101
102 static void sd_config_discard(struct scsi_disk *, unsigned int);
103 static void sd_config_write_same(struct scsi_disk *);
104 static int  sd_revalidate_disk(struct gendisk *);
105 static void sd_unlock_native_capacity(struct gendisk *disk);
106 static int  sd_probe(struct device *);
107 static int  sd_remove(struct device *);
108 static void sd_shutdown(struct device *);
109 static int sd_suspend_system(struct device *);
110 static int sd_suspend_runtime(struct device *);
111 static int sd_resume_system(struct device *);
112 static int sd_resume_runtime(struct device *);
113 static void sd_rescan(struct device *);
114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
115 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
116 static int sd_done(struct scsi_cmnd *);
117 static void sd_eh_reset(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121
122 static DEFINE_IDA(sd_index_ida);
123
124 static mempool_t *sd_page_pool;
125 static struct lock_class_key sd_bio_compl_lkclass;
126
127 static const char *sd_cache_types[] = {
128         "write through", "none", "write back",
129         "write back, no read (daft)"
130 };
131
132 static void sd_set_flush_flag(struct scsi_disk *sdkp)
133 {
134         bool wc = false, fua = false;
135
136         if (sdkp->WCE) {
137                 wc = true;
138                 if (sdkp->DPOFUA)
139                         fua = true;
140         }
141
142         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
143 }
144
145 static ssize_t
146 cache_type_store(struct device *dev, struct device_attribute *attr,
147                  const char *buf, size_t count)
148 {
149         int ct, rcd, wce, sp;
150         struct scsi_disk *sdkp = to_scsi_disk(dev);
151         struct scsi_device *sdp = sdkp->device;
152         char buffer[64];
153         char *buffer_data;
154         struct scsi_mode_data data;
155         struct scsi_sense_hdr sshdr;
156         static const char temp[] = "temporary ";
157         int len;
158
159         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
160                 /* no cache control on RBC devices; theoretically they
161                  * can do it, but there's probably so many exceptions
162                  * it's not worth the risk */
163                 return -EINVAL;
164
165         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
166                 buf += sizeof(temp) - 1;
167                 sdkp->cache_override = 1;
168         } else {
169                 sdkp->cache_override = 0;
170         }
171
172         ct = sysfs_match_string(sd_cache_types, buf);
173         if (ct < 0)
174                 return -EINVAL;
175
176         rcd = ct & 0x01 ? 1 : 0;
177         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
178
179         if (sdkp->cache_override) {
180                 sdkp->WCE = wce;
181                 sdkp->RCD = rcd;
182                 sd_set_flush_flag(sdkp);
183                 return count;
184         }
185
186         if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
187                             sdkp->max_retries, &data, NULL))
188                 return -EINVAL;
189         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
190                   data.block_descriptor_length);
191         buffer_data = buffer + data.header_length +
192                 data.block_descriptor_length;
193         buffer_data[2] &= ~0x05;
194         buffer_data[2] |= wce << 2 | rcd;
195         sp = buffer_data[0] & 0x80 ? 1 : 0;
196         buffer_data[0] &= ~0x80;
197
198         /*
199          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
200          * received mode parameter buffer before doing MODE SELECT.
201          */
202         data.device_specific = 0;
203
204         if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
205                              sdkp->max_retries, &data, &sshdr)) {
206                 if (scsi_sense_valid(&sshdr))
207                         sd_print_sense_hdr(sdkp, &sshdr);
208                 return -EINVAL;
209         }
210         sd_revalidate_disk(sdkp->disk);
211         return count;
212 }
213
214 static ssize_t
215 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
216                        char *buf)
217 {
218         struct scsi_disk *sdkp = to_scsi_disk(dev);
219         struct scsi_device *sdp = sdkp->device;
220
221         return sprintf(buf, "%u\n", sdp->manage_start_stop);
222 }
223
224 static ssize_t
225 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
226                         const char *buf, size_t count)
227 {
228         struct scsi_disk *sdkp = to_scsi_disk(dev);
229         struct scsi_device *sdp = sdkp->device;
230         bool v;
231
232         if (!capable(CAP_SYS_ADMIN))
233                 return -EACCES;
234
235         if (kstrtobool(buf, &v))
236                 return -EINVAL;
237
238         sdp->manage_start_stop = v;
239
240         return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243
244 static ssize_t
245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247         struct scsi_disk *sdkp = to_scsi_disk(dev);
248
249         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
250 }
251
252 static ssize_t
253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254                     const char *buf, size_t count)
255 {
256         bool v;
257         struct scsi_disk *sdkp = to_scsi_disk(dev);
258         struct scsi_device *sdp = sdkp->device;
259
260         if (!capable(CAP_SYS_ADMIN))
261                 return -EACCES;
262
263         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
264                 return -EINVAL;
265
266         if (kstrtobool(buf, &v))
267                 return -EINVAL;
268
269         sdp->allow_restart = v;
270
271         return count;
272 }
273 static DEVICE_ATTR_RW(allow_restart);
274
275 static ssize_t
276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
277 {
278         struct scsi_disk *sdkp = to_scsi_disk(dev);
279         int ct = sdkp->RCD + 2*sdkp->WCE;
280
281         return sprintf(buf, "%s\n", sd_cache_types[ct]);
282 }
283 static DEVICE_ATTR_RW(cache_type);
284
285 static ssize_t
286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288         struct scsi_disk *sdkp = to_scsi_disk(dev);
289
290         return sprintf(buf, "%u\n", sdkp->DPOFUA);
291 }
292 static DEVICE_ATTR_RO(FUA);
293
294 static ssize_t
295 protection_type_show(struct device *dev, struct device_attribute *attr,
296                      char *buf)
297 {
298         struct scsi_disk *sdkp = to_scsi_disk(dev);
299
300         return sprintf(buf, "%u\n", sdkp->protection_type);
301 }
302
303 static ssize_t
304 protection_type_store(struct device *dev, struct device_attribute *attr,
305                       const char *buf, size_t count)
306 {
307         struct scsi_disk *sdkp = to_scsi_disk(dev);
308         unsigned int val;
309         int err;
310
311         if (!capable(CAP_SYS_ADMIN))
312                 return -EACCES;
313
314         err = kstrtouint(buf, 10, &val);
315
316         if (err)
317                 return err;
318
319         if (val <= T10_PI_TYPE3_PROTECTION)
320                 sdkp->protection_type = val;
321
322         return count;
323 }
324 static DEVICE_ATTR_RW(protection_type);
325
326 static ssize_t
327 protection_mode_show(struct device *dev, struct device_attribute *attr,
328                      char *buf)
329 {
330         struct scsi_disk *sdkp = to_scsi_disk(dev);
331         struct scsi_device *sdp = sdkp->device;
332         unsigned int dif, dix;
333
334         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
335         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
336
337         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
338                 dif = 0;
339                 dix = 1;
340         }
341
342         if (!dif && !dix)
343                 return sprintf(buf, "none\n");
344
345         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
346 }
347 static DEVICE_ATTR_RO(protection_mode);
348
349 static ssize_t
350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
351 {
352         struct scsi_disk *sdkp = to_scsi_disk(dev);
353
354         return sprintf(buf, "%u\n", sdkp->ATO);
355 }
356 static DEVICE_ATTR_RO(app_tag_own);
357
358 static ssize_t
359 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
360                        char *buf)
361 {
362         struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364         return sprintf(buf, "%u\n", sdkp->lbpme);
365 }
366 static DEVICE_ATTR_RO(thin_provisioning);
367
368 /* sysfs_match_string() requires dense arrays */
369 static const char *lbp_mode[] = {
370         [SD_LBP_FULL]           = "full",
371         [SD_LBP_UNMAP]          = "unmap",
372         [SD_LBP_WS16]           = "writesame_16",
373         [SD_LBP_WS10]           = "writesame_10",
374         [SD_LBP_ZERO]           = "writesame_zero",
375         [SD_LBP_DISABLE]        = "disabled",
376 };
377
378 static ssize_t
379 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
380                        char *buf)
381 {
382         struct scsi_disk *sdkp = to_scsi_disk(dev);
383
384         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
385 }
386
387 static ssize_t
388 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
389                         const char *buf, size_t count)
390 {
391         struct scsi_disk *sdkp = to_scsi_disk(dev);
392         struct scsi_device *sdp = sdkp->device;
393         int mode;
394
395         if (!capable(CAP_SYS_ADMIN))
396                 return -EACCES;
397
398         if (sd_is_zoned(sdkp)) {
399                 sd_config_discard(sdkp, SD_LBP_DISABLE);
400                 return count;
401         }
402
403         if (sdp->type != TYPE_DISK)
404                 return -EINVAL;
405
406         mode = sysfs_match_string(lbp_mode, buf);
407         if (mode < 0)
408                 return -EINVAL;
409
410         sd_config_discard(sdkp, mode);
411
412         return count;
413 }
414 static DEVICE_ATTR_RW(provisioning_mode);
415
416 /* sysfs_match_string() requires dense arrays */
417 static const char *zeroing_mode[] = {
418         [SD_ZERO_WRITE]         = "write",
419         [SD_ZERO_WS]            = "writesame",
420         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
421         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
422 };
423
424 static ssize_t
425 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
426                   char *buf)
427 {
428         struct scsi_disk *sdkp = to_scsi_disk(dev);
429
430         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
431 }
432
433 static ssize_t
434 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
435                    const char *buf, size_t count)
436 {
437         struct scsi_disk *sdkp = to_scsi_disk(dev);
438         int mode;
439
440         if (!capable(CAP_SYS_ADMIN))
441                 return -EACCES;
442
443         mode = sysfs_match_string(zeroing_mode, buf);
444         if (mode < 0)
445                 return -EINVAL;
446
447         sdkp->zeroing_mode = mode;
448
449         return count;
450 }
451 static DEVICE_ATTR_RW(zeroing_mode);
452
453 static ssize_t
454 max_medium_access_timeouts_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct scsi_disk *sdkp = to_scsi_disk(dev);
458
459         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
460 }
461
462 static ssize_t
463 max_medium_access_timeouts_store(struct device *dev,
464                                  struct device_attribute *attr, const char *buf,
465                                  size_t count)
466 {
467         struct scsi_disk *sdkp = to_scsi_disk(dev);
468         int err;
469
470         if (!capable(CAP_SYS_ADMIN))
471                 return -EACCES;
472
473         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
474
475         return err ? err : count;
476 }
477 static DEVICE_ATTR_RW(max_medium_access_timeouts);
478
479 static ssize_t
480 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
481                            char *buf)
482 {
483         struct scsi_disk *sdkp = to_scsi_disk(dev);
484
485         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
486 }
487
488 static ssize_t
489 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
490                             const char *buf, size_t count)
491 {
492         struct scsi_disk *sdkp = to_scsi_disk(dev);
493         struct scsi_device *sdp = sdkp->device;
494         unsigned long max;
495         int err;
496
497         if (!capable(CAP_SYS_ADMIN))
498                 return -EACCES;
499
500         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
501                 return -EINVAL;
502
503         err = kstrtoul(buf, 10, &max);
504
505         if (err)
506                 return err;
507
508         if (max == 0)
509                 sdp->no_write_same = 1;
510         else if (max <= SD_MAX_WS16_BLOCKS) {
511                 sdp->no_write_same = 0;
512                 sdkp->max_ws_blocks = max;
513         }
514
515         sd_config_write_same(sdkp);
516
517         return count;
518 }
519 static DEVICE_ATTR_RW(max_write_same_blocks);
520
521 static ssize_t
522 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
523 {
524         struct scsi_disk *sdkp = to_scsi_disk(dev);
525
526         if (sdkp->device->type == TYPE_ZBC)
527                 return sprintf(buf, "host-managed\n");
528         if (sdkp->zoned == 1)
529                 return sprintf(buf, "host-aware\n");
530         if (sdkp->zoned == 2)
531                 return sprintf(buf, "drive-managed\n");
532         return sprintf(buf, "none\n");
533 }
534 static DEVICE_ATTR_RO(zoned_cap);
535
536 static ssize_t
537 max_retries_store(struct device *dev, struct device_attribute *attr,
538                   const char *buf, size_t count)
539 {
540         struct scsi_disk *sdkp = to_scsi_disk(dev);
541         struct scsi_device *sdev = sdkp->device;
542         int retries, err;
543
544         err = kstrtoint(buf, 10, &retries);
545         if (err)
546                 return err;
547
548         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
549                 sdkp->max_retries = retries;
550                 return count;
551         }
552
553         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
554                     SD_MAX_RETRIES);
555         return -EINVAL;
556 }
557
558 static ssize_t
559 max_retries_show(struct device *dev, struct device_attribute *attr,
560                  char *buf)
561 {
562         struct scsi_disk *sdkp = to_scsi_disk(dev);
563
564         return sprintf(buf, "%d\n", sdkp->max_retries);
565 }
566
567 static DEVICE_ATTR_RW(max_retries);
568
569 static struct attribute *sd_disk_attrs[] = {
570         &dev_attr_cache_type.attr,
571         &dev_attr_FUA.attr,
572         &dev_attr_allow_restart.attr,
573         &dev_attr_manage_start_stop.attr,
574         &dev_attr_protection_type.attr,
575         &dev_attr_protection_mode.attr,
576         &dev_attr_app_tag_own.attr,
577         &dev_attr_thin_provisioning.attr,
578         &dev_attr_provisioning_mode.attr,
579         &dev_attr_zeroing_mode.attr,
580         &dev_attr_max_write_same_blocks.attr,
581         &dev_attr_max_medium_access_timeouts.attr,
582         &dev_attr_zoned_cap.attr,
583         &dev_attr_max_retries.attr,
584         NULL,
585 };
586 ATTRIBUTE_GROUPS(sd_disk);
587
588 static struct class sd_disk_class = {
589         .name           = "scsi_disk",
590         .dev_release    = scsi_disk_release,
591         .dev_groups     = sd_disk_groups,
592 };
593
594 static const struct dev_pm_ops sd_pm_ops = {
595         .suspend                = sd_suspend_system,
596         .resume                 = sd_resume_system,
597         .poweroff               = sd_suspend_system,
598         .restore                = sd_resume_system,
599         .runtime_suspend        = sd_suspend_runtime,
600         .runtime_resume         = sd_resume_runtime,
601 };
602
603 static struct scsi_driver sd_template = {
604         .gendrv = {
605                 .name           = "sd",
606                 .owner          = THIS_MODULE,
607                 .probe          = sd_probe,
608                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
609                 .remove         = sd_remove,
610                 .shutdown       = sd_shutdown,
611                 .pm             = &sd_pm_ops,
612         },
613         .rescan                 = sd_rescan,
614         .init_command           = sd_init_command,
615         .uninit_command         = sd_uninit_command,
616         .done                   = sd_done,
617         .eh_action              = sd_eh_action,
618         .eh_reset               = sd_eh_reset,
619 };
620
621 /*
622  * Don't request a new module, as that could deadlock in multipath
623  * environment.
624  */
625 static void sd_default_probe(dev_t devt)
626 {
627 }
628
629 /*
630  * Device no to disk mapping:
631  * 
632  *       major         disc2     disc  p1
633  *   |............|.............|....|....| <- dev_t
634  *    31        20 19          8 7  4 3  0
635  * 
636  * Inside a major, we have 16k disks, however mapped non-
637  * contiguously. The first 16 disks are for major0, the next
638  * ones with major1, ... Disk 256 is for major0 again, disk 272 
639  * for major1, ... 
640  * As we stay compatible with our numbering scheme, we can reuse 
641  * the well-know SCSI majors 8, 65--71, 136--143.
642  */
643 static int sd_major(int major_idx)
644 {
645         switch (major_idx) {
646         case 0:
647                 return SCSI_DISK0_MAJOR;
648         case 1 ... 7:
649                 return SCSI_DISK1_MAJOR + major_idx - 1;
650         case 8 ... 15:
651                 return SCSI_DISK8_MAJOR + major_idx - 8;
652         default:
653                 BUG();
654                 return 0;       /* shut up gcc */
655         }
656 }
657
658 #ifdef CONFIG_BLK_SED_OPAL
659 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
660                 size_t len, bool send)
661 {
662         struct scsi_disk *sdkp = data;
663         struct scsi_device *sdev = sdkp->device;
664         u8 cdb[12] = { 0, };
665         const struct scsi_exec_args exec_args = {
666                 .req_flags = BLK_MQ_REQ_PM,
667         };
668         int ret;
669
670         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
671         cdb[1] = secp;
672         put_unaligned_be16(spsp, &cdb[2]);
673         put_unaligned_be32(len, &cdb[6]);
674
675         ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
676                                buffer, len, SD_TIMEOUT, sdkp->max_retries,
677                                &exec_args);
678         return ret <= 0 ? ret : -EIO;
679 }
680 #endif /* CONFIG_BLK_SED_OPAL */
681
682 /*
683  * Look up the DIX operation based on whether the command is read or
684  * write and whether dix and dif are enabled.
685  */
686 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
687 {
688         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
689         static const unsigned int ops[] = {     /* wrt dix dif */
690                 SCSI_PROT_NORMAL,               /*  0   0   0  */
691                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
692                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
693                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
694                 SCSI_PROT_NORMAL,               /*  1   0   0  */
695                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
696                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
697                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
698         };
699
700         return ops[write << 2 | dix << 1 | dif];
701 }
702
703 /*
704  * Returns a mask of the protection flags that are valid for a given DIX
705  * operation.
706  */
707 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
708 {
709         static const unsigned int flag_mask[] = {
710                 [SCSI_PROT_NORMAL]              = 0,
711
712                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
713                                                   SCSI_PROT_GUARD_CHECK |
714                                                   SCSI_PROT_REF_CHECK |
715                                                   SCSI_PROT_REF_INCREMENT,
716
717                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
718                                                   SCSI_PROT_IP_CHECKSUM,
719
720                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
721                                                   SCSI_PROT_GUARD_CHECK |
722                                                   SCSI_PROT_REF_CHECK |
723                                                   SCSI_PROT_REF_INCREMENT |
724                                                   SCSI_PROT_IP_CHECKSUM,
725
726                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
727                                                   SCSI_PROT_REF_INCREMENT,
728
729                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
730                                                   SCSI_PROT_REF_CHECK |
731                                                   SCSI_PROT_REF_INCREMENT |
732                                                   SCSI_PROT_IP_CHECKSUM,
733
734                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
735                                                   SCSI_PROT_GUARD_CHECK |
736                                                   SCSI_PROT_REF_CHECK |
737                                                   SCSI_PROT_REF_INCREMENT |
738                                                   SCSI_PROT_IP_CHECKSUM,
739         };
740
741         return flag_mask[prot_op];
742 }
743
744 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
745                                            unsigned int dix, unsigned int dif)
746 {
747         struct request *rq = scsi_cmd_to_rq(scmd);
748         struct bio *bio = rq->bio;
749         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
750         unsigned int protect = 0;
751
752         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
753                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
754                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
755
756                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
757                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
758         }
759
760         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
761                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
762
763                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
764                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
765         }
766
767         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
768                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
769
770                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
771                         protect = 3 << 5;       /* Disable target PI checking */
772                 else
773                         protect = 1 << 5;       /* Enable target PI checking */
774         }
775
776         scsi_set_prot_op(scmd, prot_op);
777         scsi_set_prot_type(scmd, dif);
778         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
779
780         return protect;
781 }
782
783 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
784 {
785         struct request_queue *q = sdkp->disk->queue;
786         unsigned int logical_block_size = sdkp->device->sector_size;
787         unsigned int max_blocks = 0;
788
789         q->limits.discard_alignment =
790                 sdkp->unmap_alignment * logical_block_size;
791         q->limits.discard_granularity =
792                 max(sdkp->physical_block_size,
793                     sdkp->unmap_granularity * logical_block_size);
794         sdkp->provisioning_mode = mode;
795
796         switch (mode) {
797
798         case SD_LBP_FULL:
799         case SD_LBP_DISABLE:
800                 blk_queue_max_discard_sectors(q, 0);
801                 return;
802
803         case SD_LBP_UNMAP:
804                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
805                                           (u32)SD_MAX_WS16_BLOCKS);
806                 break;
807
808         case SD_LBP_WS16:
809                 if (sdkp->device->unmap_limit_for_ws)
810                         max_blocks = sdkp->max_unmap_blocks;
811                 else
812                         max_blocks = sdkp->max_ws_blocks;
813
814                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
815                 break;
816
817         case SD_LBP_WS10:
818                 if (sdkp->device->unmap_limit_for_ws)
819                         max_blocks = sdkp->max_unmap_blocks;
820                 else
821                         max_blocks = sdkp->max_ws_blocks;
822
823                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
824                 break;
825
826         case SD_LBP_ZERO:
827                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
828                                           (u32)SD_MAX_WS10_BLOCKS);
829                 break;
830         }
831
832         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
833 }
834
835 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
836 {
837         struct page *page;
838
839         page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
840         if (!page)
841                 return NULL;
842         clear_highpage(page);
843         bvec_set_page(&rq->special_vec, page, data_len, 0);
844         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
845         return bvec_virt(&rq->special_vec);
846 }
847
848 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
849 {
850         struct scsi_device *sdp = cmd->device;
851         struct request *rq = scsi_cmd_to_rq(cmd);
852         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
853         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
854         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
855         unsigned int data_len = 24;
856         char *buf;
857
858         buf = sd_set_special_bvec(rq, data_len);
859         if (!buf)
860                 return BLK_STS_RESOURCE;
861
862         cmd->cmd_len = 10;
863         cmd->cmnd[0] = UNMAP;
864         cmd->cmnd[8] = 24;
865
866         put_unaligned_be16(6 + 16, &buf[0]);
867         put_unaligned_be16(16, &buf[2]);
868         put_unaligned_be64(lba, &buf[8]);
869         put_unaligned_be32(nr_blocks, &buf[16]);
870
871         cmd->allowed = sdkp->max_retries;
872         cmd->transfersize = data_len;
873         rq->timeout = SD_TIMEOUT;
874
875         return scsi_alloc_sgtables(cmd);
876 }
877
878 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
879                 bool unmap)
880 {
881         struct scsi_device *sdp = cmd->device;
882         struct request *rq = scsi_cmd_to_rq(cmd);
883         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
884         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
885         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
886         u32 data_len = sdp->sector_size;
887
888         if (!sd_set_special_bvec(rq, data_len))
889                 return BLK_STS_RESOURCE;
890
891         cmd->cmd_len = 16;
892         cmd->cmnd[0] = WRITE_SAME_16;
893         if (unmap)
894                 cmd->cmnd[1] = 0x8; /* UNMAP */
895         put_unaligned_be64(lba, &cmd->cmnd[2]);
896         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
897
898         cmd->allowed = sdkp->max_retries;
899         cmd->transfersize = data_len;
900         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
901
902         return scsi_alloc_sgtables(cmd);
903 }
904
905 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
906                 bool unmap)
907 {
908         struct scsi_device *sdp = cmd->device;
909         struct request *rq = scsi_cmd_to_rq(cmd);
910         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
911         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
912         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
913         u32 data_len = sdp->sector_size;
914
915         if (!sd_set_special_bvec(rq, data_len))
916                 return BLK_STS_RESOURCE;
917
918         cmd->cmd_len = 10;
919         cmd->cmnd[0] = WRITE_SAME;
920         if (unmap)
921                 cmd->cmnd[1] = 0x8; /* UNMAP */
922         put_unaligned_be32(lba, &cmd->cmnd[2]);
923         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
924
925         cmd->allowed = sdkp->max_retries;
926         cmd->transfersize = data_len;
927         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
928
929         return scsi_alloc_sgtables(cmd);
930 }
931
932 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
933 {
934         struct request *rq = scsi_cmd_to_rq(cmd);
935         struct scsi_device *sdp = cmd->device;
936         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
937         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
938         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
939
940         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
941                 switch (sdkp->zeroing_mode) {
942                 case SD_ZERO_WS16_UNMAP:
943                         return sd_setup_write_same16_cmnd(cmd, true);
944                 case SD_ZERO_WS10_UNMAP:
945                         return sd_setup_write_same10_cmnd(cmd, true);
946                 }
947         }
948
949         if (sdp->no_write_same) {
950                 rq->rq_flags |= RQF_QUIET;
951                 return BLK_STS_TARGET;
952         }
953
954         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
955                 return sd_setup_write_same16_cmnd(cmd, false);
956
957         return sd_setup_write_same10_cmnd(cmd, false);
958 }
959
960 static void sd_config_write_same(struct scsi_disk *sdkp)
961 {
962         struct request_queue *q = sdkp->disk->queue;
963         unsigned int logical_block_size = sdkp->device->sector_size;
964
965         if (sdkp->device->no_write_same) {
966                 sdkp->max_ws_blocks = 0;
967                 goto out;
968         }
969
970         /* Some devices can not handle block counts above 0xffff despite
971          * supporting WRITE SAME(16). Consequently we default to 64k
972          * blocks per I/O unless the device explicitly advertises a
973          * bigger limit.
974          */
975         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
976                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
977                                                    (u32)SD_MAX_WS16_BLOCKS);
978         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
979                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
980                                                    (u32)SD_MAX_WS10_BLOCKS);
981         else {
982                 sdkp->device->no_write_same = 1;
983                 sdkp->max_ws_blocks = 0;
984         }
985
986         if (sdkp->lbprz && sdkp->lbpws)
987                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
988         else if (sdkp->lbprz && sdkp->lbpws10)
989                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
990         else if (sdkp->max_ws_blocks)
991                 sdkp->zeroing_mode = SD_ZERO_WS;
992         else
993                 sdkp->zeroing_mode = SD_ZERO_WRITE;
994
995         if (sdkp->max_ws_blocks &&
996             sdkp->physical_block_size > logical_block_size) {
997                 /*
998                  * Reporting a maximum number of blocks that is not aligned
999                  * on the device physical size would cause a large write same
1000                  * request to be split into physically unaligned chunks by
1001                  * __blkdev_issue_write_zeroes() even if the caller of this
1002                  * functions took care to align the large request. So make sure
1003                  * the maximum reported is aligned to the device physical block
1004                  * size. This is only an optional optimization for regular
1005                  * disks, but this is mandatory to avoid failure of large write
1006                  * same requests directed at sequential write required zones of
1007                  * host-managed ZBC disks.
1008                  */
1009                 sdkp->max_ws_blocks =
1010                         round_down(sdkp->max_ws_blocks,
1011                                    bytes_to_logical(sdkp->device,
1012                                                     sdkp->physical_block_size));
1013         }
1014
1015 out:
1016         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1017                                          (logical_block_size >> 9));
1018 }
1019
1020 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1021 {
1022         struct request *rq = scsi_cmd_to_rq(cmd);
1023         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1024
1025         /* flush requests don't perform I/O, zero the S/G table */
1026         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1027
1028         if (cmd->device->use_16_for_sync) {
1029                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1030                 cmd->cmd_len = 16;
1031         } else {
1032                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1033                 cmd->cmd_len = 10;
1034         }
1035         cmd->transfersize = 0;
1036         cmd->allowed = sdkp->max_retries;
1037
1038         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1039         return BLK_STS_OK;
1040 }
1041
1042 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1043                                        sector_t lba, unsigned int nr_blocks,
1044                                        unsigned char flags)
1045 {
1046         cmd->cmd_len = SD_EXT_CDB_SIZE;
1047         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1048         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1049         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1050         cmd->cmnd[10] = flags;
1051         put_unaligned_be64(lba, &cmd->cmnd[12]);
1052         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1053         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1054
1055         return BLK_STS_OK;
1056 }
1057
1058 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1059                                        sector_t lba, unsigned int nr_blocks,
1060                                        unsigned char flags)
1061 {
1062         cmd->cmd_len  = 16;
1063         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1064         cmd->cmnd[1]  = flags;
1065         cmd->cmnd[14] = 0;
1066         cmd->cmnd[15] = 0;
1067         put_unaligned_be64(lba, &cmd->cmnd[2]);
1068         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1069
1070         return BLK_STS_OK;
1071 }
1072
1073 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1074                                        sector_t lba, unsigned int nr_blocks,
1075                                        unsigned char flags)
1076 {
1077         cmd->cmd_len = 10;
1078         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1079         cmd->cmnd[1] = flags;
1080         cmd->cmnd[6] = 0;
1081         cmd->cmnd[9] = 0;
1082         put_unaligned_be32(lba, &cmd->cmnd[2]);
1083         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1084
1085         return BLK_STS_OK;
1086 }
1087
1088 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1089                                       sector_t lba, unsigned int nr_blocks,
1090                                       unsigned char flags)
1091 {
1092         /* Avoid that 0 blocks gets translated into 256 blocks. */
1093         if (WARN_ON_ONCE(nr_blocks == 0))
1094                 return BLK_STS_IOERR;
1095
1096         if (unlikely(flags & 0x8)) {
1097                 /*
1098                  * This happens only if this drive failed 10byte rw
1099                  * command with ILLEGAL_REQUEST during operation and
1100                  * thus turned off use_10_for_rw.
1101                  */
1102                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1103                 return BLK_STS_IOERR;
1104         }
1105
1106         cmd->cmd_len = 6;
1107         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1108         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1109         cmd->cmnd[2] = (lba >> 8) & 0xff;
1110         cmd->cmnd[3] = lba & 0xff;
1111         cmd->cmnd[4] = nr_blocks;
1112         cmd->cmnd[5] = 0;
1113
1114         return BLK_STS_OK;
1115 }
1116
1117 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1118 {
1119         struct request *rq = scsi_cmd_to_rq(cmd);
1120         struct scsi_device *sdp = cmd->device;
1121         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1122         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1123         sector_t threshold;
1124         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1125         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1126         bool write = rq_data_dir(rq) == WRITE;
1127         unsigned char protect, fua;
1128         blk_status_t ret;
1129         unsigned int dif;
1130         bool dix;
1131
1132         ret = scsi_alloc_sgtables(cmd);
1133         if (ret != BLK_STS_OK)
1134                 return ret;
1135
1136         ret = BLK_STS_IOERR;
1137         if (!scsi_device_online(sdp) || sdp->changed) {
1138                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1139                 goto fail;
1140         }
1141
1142         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1143                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1144                 goto fail;
1145         }
1146
1147         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1148                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1149                 goto fail;
1150         }
1151
1152         /*
1153          * Some SD card readers can't handle accesses which touch the
1154          * last one or two logical blocks. Split accesses as needed.
1155          */
1156         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1157
1158         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1159                 if (lba < threshold) {
1160                         /* Access up to the threshold but not beyond */
1161                         nr_blocks = threshold - lba;
1162                 } else {
1163                         /* Access only a single logical block */
1164                         nr_blocks = 1;
1165                 }
1166         }
1167
1168         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1169                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1170                 if (ret)
1171                         goto fail;
1172         }
1173
1174         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1175         dix = scsi_prot_sg_count(cmd);
1176         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1177
1178         if (dif || dix)
1179                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1180         else
1181                 protect = 0;
1182
1183         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1184                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1185                                          protect | fua);
1186         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1187                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1188                                          protect | fua);
1189         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1190                    sdp->use_10_for_rw || protect) {
1191                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1192                                          protect | fua);
1193         } else {
1194                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1195                                         protect | fua);
1196         }
1197
1198         if (unlikely(ret != BLK_STS_OK))
1199                 goto fail;
1200
1201         /*
1202          * We shouldn't disconnect in the middle of a sector, so with a dumb
1203          * host adapter, it's safe to assume that we can at least transfer
1204          * this many bytes between each connect / disconnect.
1205          */
1206         cmd->transfersize = sdp->sector_size;
1207         cmd->underflow = nr_blocks << 9;
1208         cmd->allowed = sdkp->max_retries;
1209         cmd->sdb.length = nr_blocks * sdp->sector_size;
1210
1211         SCSI_LOG_HLQUEUE(1,
1212                          scmd_printk(KERN_INFO, cmd,
1213                                      "%s: block=%llu, count=%d\n", __func__,
1214                                      (unsigned long long)blk_rq_pos(rq),
1215                                      blk_rq_sectors(rq)));
1216         SCSI_LOG_HLQUEUE(2,
1217                          scmd_printk(KERN_INFO, cmd,
1218                                      "%s %d/%u 512 byte blocks.\n",
1219                                      write ? "writing" : "reading", nr_blocks,
1220                                      blk_rq_sectors(rq)));
1221
1222         /*
1223          * This indicates that the command is ready from our end to be queued.
1224          */
1225         return BLK_STS_OK;
1226 fail:
1227         scsi_free_sgtables(cmd);
1228         return ret;
1229 }
1230
1231 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1232 {
1233         struct request *rq = scsi_cmd_to_rq(cmd);
1234
1235         switch (req_op(rq)) {
1236         case REQ_OP_DISCARD:
1237                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1238                 case SD_LBP_UNMAP:
1239                         return sd_setup_unmap_cmnd(cmd);
1240                 case SD_LBP_WS16:
1241                         return sd_setup_write_same16_cmnd(cmd, true);
1242                 case SD_LBP_WS10:
1243                         return sd_setup_write_same10_cmnd(cmd, true);
1244                 case SD_LBP_ZERO:
1245                         return sd_setup_write_same10_cmnd(cmd, false);
1246                 default:
1247                         return BLK_STS_TARGET;
1248                 }
1249         case REQ_OP_WRITE_ZEROES:
1250                 return sd_setup_write_zeroes_cmnd(cmd);
1251         case REQ_OP_FLUSH:
1252                 return sd_setup_flush_cmnd(cmd);
1253         case REQ_OP_READ:
1254         case REQ_OP_WRITE:
1255         case REQ_OP_ZONE_APPEND:
1256                 return sd_setup_read_write_cmnd(cmd);
1257         case REQ_OP_ZONE_RESET:
1258                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1259                                                    false);
1260         case REQ_OP_ZONE_RESET_ALL:
1261                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1262                                                    true);
1263         case REQ_OP_ZONE_OPEN:
1264                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1265         case REQ_OP_ZONE_CLOSE:
1266                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1267         case REQ_OP_ZONE_FINISH:
1268                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1269         default:
1270                 WARN_ON_ONCE(1);
1271                 return BLK_STS_NOTSUPP;
1272         }
1273 }
1274
1275 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1276 {
1277         struct request *rq = scsi_cmd_to_rq(SCpnt);
1278
1279         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1280                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1281 }
1282
1283 static bool sd_need_revalidate(struct block_device *bdev,
1284                 struct scsi_disk *sdkp)
1285 {
1286         if (sdkp->device->removable || sdkp->write_prot) {
1287                 if (bdev_check_media_change(bdev))
1288                         return true;
1289         }
1290
1291         /*
1292          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1293          * nothing to do with partitions, BLKRRPART is used to force a full
1294          * revalidate after things like a format for historical reasons.
1295          */
1296         return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1297 }
1298
1299 /**
1300  *      sd_open - open a scsi disk device
1301  *      @bdev: Block device of the scsi disk to open
1302  *      @mode: FMODE_* mask
1303  *
1304  *      Returns 0 if successful. Returns a negated errno value in case 
1305  *      of error.
1306  *
1307  *      Note: This can be called from a user context (e.g. fsck(1) )
1308  *      or from within the kernel (e.g. as a result of a mount(1) ).
1309  *      In the latter case @inode and @filp carry an abridged amount
1310  *      of information as noted above.
1311  *
1312  *      Locking: called with bdev->bd_disk->open_mutex held.
1313  **/
1314 static int sd_open(struct block_device *bdev, fmode_t mode)
1315 {
1316         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1317         struct scsi_device *sdev = sdkp->device;
1318         int retval;
1319
1320         if (scsi_device_get(sdev))
1321                 return -ENXIO;
1322
1323         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1324
1325         /*
1326          * If the device is in error recovery, wait until it is done.
1327          * If the device is offline, then disallow any access to it.
1328          */
1329         retval = -ENXIO;
1330         if (!scsi_block_when_processing_errors(sdev))
1331                 goto error_out;
1332
1333         if (sd_need_revalidate(bdev, sdkp))
1334                 sd_revalidate_disk(bdev->bd_disk);
1335
1336         /*
1337          * If the drive is empty, just let the open fail.
1338          */
1339         retval = -ENOMEDIUM;
1340         if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1341                 goto error_out;
1342
1343         /*
1344          * If the device has the write protect tab set, have the open fail
1345          * if the user expects to be able to write to the thing.
1346          */
1347         retval = -EROFS;
1348         if (sdkp->write_prot && (mode & FMODE_WRITE))
1349                 goto error_out;
1350
1351         /*
1352          * It is possible that the disk changing stuff resulted in
1353          * the device being taken offline.  If this is the case,
1354          * report this to the user, and don't pretend that the
1355          * open actually succeeded.
1356          */
1357         retval = -ENXIO;
1358         if (!scsi_device_online(sdev))
1359                 goto error_out;
1360
1361         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1362                 if (scsi_block_when_processing_errors(sdev))
1363                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1364         }
1365
1366         return 0;
1367
1368 error_out:
1369         scsi_device_put(sdev);
1370         return retval;  
1371 }
1372
1373 /**
1374  *      sd_release - invoked when the (last) close(2) is called on this
1375  *      scsi disk.
1376  *      @disk: disk to release
1377  *      @mode: FMODE_* mask
1378  *
1379  *      Returns 0. 
1380  *
1381  *      Note: may block (uninterruptible) if error recovery is underway
1382  *      on this disk.
1383  *
1384  *      Locking: called with bdev->bd_disk->open_mutex held.
1385  **/
1386 static void sd_release(struct gendisk *disk, fmode_t mode)
1387 {
1388         struct scsi_disk *sdkp = scsi_disk(disk);
1389         struct scsi_device *sdev = sdkp->device;
1390
1391         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1392
1393         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1394                 if (scsi_block_when_processing_errors(sdev))
1395                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1396         }
1397
1398         scsi_device_put(sdev);
1399 }
1400
1401 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1402 {
1403         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1404         struct scsi_device *sdp = sdkp->device;
1405         struct Scsi_Host *host = sdp->host;
1406         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1407         int diskinfo[4];
1408
1409         /* default to most commonly used values */
1410         diskinfo[0] = 0x40;     /* 1 << 6 */
1411         diskinfo[1] = 0x20;     /* 1 << 5 */
1412         diskinfo[2] = capacity >> 11;
1413
1414         /* override with calculated, extended default, or driver values */
1415         if (host->hostt->bios_param)
1416                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1417         else
1418                 scsicam_bios_param(bdev, capacity, diskinfo);
1419
1420         geo->heads = diskinfo[0];
1421         geo->sectors = diskinfo[1];
1422         geo->cylinders = diskinfo[2];
1423         return 0;
1424 }
1425
1426 /**
1427  *      sd_ioctl - process an ioctl
1428  *      @bdev: target block device
1429  *      @mode: FMODE_* mask
1430  *      @cmd: ioctl command number
1431  *      @arg: this is third argument given to ioctl(2) system call.
1432  *      Often contains a pointer.
1433  *
1434  *      Returns 0 if successful (some ioctls return positive numbers on
1435  *      success as well). Returns a negated errno value in case of error.
1436  *
1437  *      Note: most ioctls are forward onto the block subsystem or further
1438  *      down in the scsi subsystem.
1439  **/
1440 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1441                     unsigned int cmd, unsigned long arg)
1442 {
1443         struct gendisk *disk = bdev->bd_disk;
1444         struct scsi_disk *sdkp = scsi_disk(disk);
1445         struct scsi_device *sdp = sdkp->device;
1446         void __user *p = (void __user *)arg;
1447         int error;
1448     
1449         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1450                                     "cmd=0x%x\n", disk->disk_name, cmd));
1451
1452         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1453                 return -ENOIOCTLCMD;
1454
1455         /*
1456          * If we are in the middle of error recovery, don't let anyone
1457          * else try and use this device.  Also, if error recovery fails, it
1458          * may try and take the device offline, in which case all further
1459          * access to the device is prohibited.
1460          */
1461         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1462                         (mode & FMODE_NDELAY) != 0);
1463         if (error)
1464                 return error;
1465
1466         if (is_sed_ioctl(cmd))
1467                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1468         return scsi_ioctl(sdp, mode, cmd, p);
1469 }
1470
1471 static void set_media_not_present(struct scsi_disk *sdkp)
1472 {
1473         if (sdkp->media_present)
1474                 sdkp->device->changed = 1;
1475
1476         if (sdkp->device->removable) {
1477                 sdkp->media_present = 0;
1478                 sdkp->capacity = 0;
1479         }
1480 }
1481
1482 static int media_not_present(struct scsi_disk *sdkp,
1483                              struct scsi_sense_hdr *sshdr)
1484 {
1485         if (!scsi_sense_valid(sshdr))
1486                 return 0;
1487
1488         /* not invoked for commands that could return deferred errors */
1489         switch (sshdr->sense_key) {
1490         case UNIT_ATTENTION:
1491         case NOT_READY:
1492                 /* medium not present */
1493                 if (sshdr->asc == 0x3A) {
1494                         set_media_not_present(sdkp);
1495                         return 1;
1496                 }
1497         }
1498         return 0;
1499 }
1500
1501 /**
1502  *      sd_check_events - check media events
1503  *      @disk: kernel device descriptor
1504  *      @clearing: disk events currently being cleared
1505  *
1506  *      Returns mask of DISK_EVENT_*.
1507  *
1508  *      Note: this function is invoked from the block subsystem.
1509  **/
1510 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1511 {
1512         struct scsi_disk *sdkp = disk->private_data;
1513         struct scsi_device *sdp;
1514         int retval;
1515         bool disk_changed;
1516
1517         if (!sdkp)
1518                 return 0;
1519
1520         sdp = sdkp->device;
1521         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1522
1523         /*
1524          * If the device is offline, don't send any commands - just pretend as
1525          * if the command failed.  If the device ever comes back online, we
1526          * can deal with it then.  It is only because of unrecoverable errors
1527          * that we would ever take a device offline in the first place.
1528          */
1529         if (!scsi_device_online(sdp)) {
1530                 set_media_not_present(sdkp);
1531                 goto out;
1532         }
1533
1534         /*
1535          * Using TEST_UNIT_READY enables differentiation between drive with
1536          * no cartridge loaded - NOT READY, drive with changed cartridge -
1537          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1538          *
1539          * Drives that auto spin down. eg iomega jaz 1G, will be started
1540          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1541          * sd_revalidate() is called.
1542          */
1543         if (scsi_block_when_processing_errors(sdp)) {
1544                 struct scsi_sense_hdr sshdr = { 0, };
1545
1546                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1547                                               &sshdr);
1548
1549                 /* failed to execute TUR, assume media not present */
1550                 if (retval < 0 || host_byte(retval)) {
1551                         set_media_not_present(sdkp);
1552                         goto out;
1553                 }
1554
1555                 if (media_not_present(sdkp, &sshdr))
1556                         goto out;
1557         }
1558
1559         /*
1560          * For removable scsi disk we have to recognise the presence
1561          * of a disk in the drive.
1562          */
1563         if (!sdkp->media_present)
1564                 sdp->changed = 1;
1565         sdkp->media_present = 1;
1566 out:
1567         /*
1568          * sdp->changed is set under the following conditions:
1569          *
1570          *      Medium present state has changed in either direction.
1571          *      Device has indicated UNIT_ATTENTION.
1572          */
1573         disk_changed = sdp->changed;
1574         sdp->changed = 0;
1575         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1576 }
1577
1578 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1579 {
1580         int retries, res;
1581         struct scsi_device *sdp = sdkp->device;
1582         const int timeout = sdp->request_queue->rq_timeout
1583                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1584         struct scsi_sense_hdr my_sshdr;
1585         const struct scsi_exec_args exec_args = {
1586                 .req_flags = BLK_MQ_REQ_PM,
1587                 /* caller might not be interested in sense, but we need it */
1588                 .sshdr = sshdr ? : &my_sshdr,
1589         };
1590
1591         if (!scsi_device_online(sdp))
1592                 return -ENODEV;
1593
1594         sshdr = exec_args.sshdr;
1595
1596         for (retries = 3; retries > 0; --retries) {
1597                 unsigned char cmd[16] = { 0 };
1598
1599                 if (sdp->use_16_for_sync)
1600                         cmd[0] = SYNCHRONIZE_CACHE_16;
1601                 else
1602                         cmd[0] = SYNCHRONIZE_CACHE;
1603                 /*
1604                  * Leave the rest of the command zero to indicate
1605                  * flush everything.
1606                  */
1607                 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1608                                        timeout, sdkp->max_retries, &exec_args);
1609                 if (res == 0)
1610                         break;
1611         }
1612
1613         if (res) {
1614                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1615
1616                 if (res < 0)
1617                         return res;
1618
1619                 if (scsi_status_is_check_condition(res) &&
1620                     scsi_sense_valid(sshdr)) {
1621                         sd_print_sense_hdr(sdkp, sshdr);
1622
1623                         /* we need to evaluate the error return  */
1624                         if (sshdr->asc == 0x3a ||       /* medium not present */
1625                             sshdr->asc == 0x20 ||       /* invalid command */
1626                             (sshdr->asc == 0x74 && sshdr->ascq == 0x71))        /* drive is password locked */
1627                                 /* this is no error here */
1628                                 return 0;
1629                 }
1630
1631                 switch (host_byte(res)) {
1632                 /* ignore errors due to racing a disconnection */
1633                 case DID_BAD_TARGET:
1634                 case DID_NO_CONNECT:
1635                         return 0;
1636                 /* signal the upper layer it might try again */
1637                 case DID_BUS_BUSY:
1638                 case DID_IMM_RETRY:
1639                 case DID_REQUEUE:
1640                 case DID_SOFT_ERROR:
1641                         return -EBUSY;
1642                 default:
1643                         return -EIO;
1644                 }
1645         }
1646         return 0;
1647 }
1648
1649 static void sd_rescan(struct device *dev)
1650 {
1651         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1652
1653         sd_revalidate_disk(sdkp->disk);
1654 }
1655
1656 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1657                 enum blk_unique_id type)
1658 {
1659         struct scsi_device *sdev = scsi_disk(disk)->device;
1660         const struct scsi_vpd *vpd;
1661         const unsigned char *d;
1662         int ret = -ENXIO, len;
1663
1664         rcu_read_lock();
1665         vpd = rcu_dereference(sdev->vpd_pg83);
1666         if (!vpd)
1667                 goto out_unlock;
1668
1669         ret = -EINVAL;
1670         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1671                 /* we only care about designators with LU association */
1672                 if (((d[1] >> 4) & 0x3) != 0x00)
1673                         continue;
1674                 if ((d[1] & 0xf) != type)
1675                         continue;
1676
1677                 /*
1678                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1679                  * keep looking as one with more entropy might still show up.
1680                  */
1681                 len = d[3];
1682                 if (len != 8 && len != 12 && len != 16)
1683                         continue;
1684                 ret = len;
1685                 memcpy(id, d + 4, len);
1686                 if (len == 16)
1687                         break;
1688         }
1689 out_unlock:
1690         rcu_read_unlock();
1691         return ret;
1692 }
1693
1694 static char sd_pr_type(enum pr_type type)
1695 {
1696         switch (type) {
1697         case PR_WRITE_EXCLUSIVE:
1698                 return 0x01;
1699         case PR_EXCLUSIVE_ACCESS:
1700                 return 0x03;
1701         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1702                 return 0x05;
1703         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1704                 return 0x06;
1705         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1706                 return 0x07;
1707         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1708                 return 0x08;
1709         default:
1710                 return 0;
1711         }
1712 };
1713
1714 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1715 {
1716         switch (host_byte(result)) {
1717         case DID_TRANSPORT_MARGINAL:
1718         case DID_TRANSPORT_DISRUPTED:
1719         case DID_BUS_BUSY:
1720                 return PR_STS_RETRY_PATH_FAILURE;
1721         case DID_NO_CONNECT:
1722                 return PR_STS_PATH_FAILED;
1723         case DID_TRANSPORT_FAILFAST:
1724                 return PR_STS_PATH_FAST_FAILED;
1725         }
1726
1727         switch (status_byte(result)) {
1728         case SAM_STAT_RESERVATION_CONFLICT:
1729                 return PR_STS_RESERVATION_CONFLICT;
1730         case SAM_STAT_CHECK_CONDITION:
1731                 if (!scsi_sense_valid(sshdr))
1732                         return PR_STS_IOERR;
1733
1734                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1735                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1736                         return -EINVAL;
1737
1738                 fallthrough;
1739         default:
1740                 return PR_STS_IOERR;
1741         }
1742 }
1743
1744 static int sd_pr_command(struct block_device *bdev, u8 sa,
1745                 u64 key, u64 sa_key, u8 type, u8 flags)
1746 {
1747         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1748         struct scsi_device *sdev = sdkp->device;
1749         struct scsi_sense_hdr sshdr;
1750         const struct scsi_exec_args exec_args = {
1751                 .sshdr = &sshdr,
1752         };
1753         int result;
1754         u8 cmd[16] = { 0, };
1755         u8 data[24] = { 0, };
1756
1757         cmd[0] = PERSISTENT_RESERVE_OUT;
1758         cmd[1] = sa;
1759         cmd[2] = type;
1760         put_unaligned_be32(sizeof(data), &cmd[5]);
1761
1762         put_unaligned_be64(key, &data[0]);
1763         put_unaligned_be64(sa_key, &data[8]);
1764         data[20] = flags;
1765
1766         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1767                                   sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1768                                   &exec_args);
1769
1770         if (scsi_status_is_check_condition(result) &&
1771             scsi_sense_valid(&sshdr)) {
1772                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1773                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1774         }
1775
1776         if (result <= 0)
1777                 return result;
1778
1779         return sd_scsi_to_pr_err(&sshdr, result);
1780 }
1781
1782 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1783                 u32 flags)
1784 {
1785         if (flags & ~PR_FL_IGNORE_KEY)
1786                 return -EOPNOTSUPP;
1787         return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1788                         old_key, new_key, 0,
1789                         (1 << 0) /* APTPL */);
1790 }
1791
1792 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1793                 u32 flags)
1794 {
1795         if (flags)
1796                 return -EOPNOTSUPP;
1797         return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1798 }
1799
1800 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1801 {
1802         return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1803 }
1804
1805 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1806                 enum pr_type type, bool abort)
1807 {
1808         return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1809                              sd_pr_type(type), 0);
1810 }
1811
1812 static int sd_pr_clear(struct block_device *bdev, u64 key)
1813 {
1814         return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1815 }
1816
1817 static const struct pr_ops sd_pr_ops = {
1818         .pr_register    = sd_pr_register,
1819         .pr_reserve     = sd_pr_reserve,
1820         .pr_release     = sd_pr_release,
1821         .pr_preempt     = sd_pr_preempt,
1822         .pr_clear       = sd_pr_clear,
1823 };
1824
1825 static void scsi_disk_free_disk(struct gendisk *disk)
1826 {
1827         struct scsi_disk *sdkp = scsi_disk(disk);
1828
1829         put_device(&sdkp->disk_dev);
1830 }
1831
1832 static const struct block_device_operations sd_fops = {
1833         .owner                  = THIS_MODULE,
1834         .open                   = sd_open,
1835         .release                = sd_release,
1836         .ioctl                  = sd_ioctl,
1837         .getgeo                 = sd_getgeo,
1838         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1839         .check_events           = sd_check_events,
1840         .unlock_native_capacity = sd_unlock_native_capacity,
1841         .report_zones           = sd_zbc_report_zones,
1842         .get_unique_id          = sd_get_unique_id,
1843         .free_disk              = scsi_disk_free_disk,
1844         .pr_ops                 = &sd_pr_ops,
1845 };
1846
1847 /**
1848  *      sd_eh_reset - reset error handling callback
1849  *      @scmd:          sd-issued command that has failed
1850  *
1851  *      This function is called by the SCSI midlayer before starting
1852  *      SCSI EH. When counting medium access failures we have to be
1853  *      careful to register it only only once per device and SCSI EH run;
1854  *      there might be several timed out commands which will cause the
1855  *      'max_medium_access_timeouts' counter to trigger after the first
1856  *      SCSI EH run already and set the device to offline.
1857  *      So this function resets the internal counter before starting SCSI EH.
1858  **/
1859 static void sd_eh_reset(struct scsi_cmnd *scmd)
1860 {
1861         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1862
1863         /* New SCSI EH run, reset gate variable */
1864         sdkp->ignore_medium_access_errors = false;
1865 }
1866
1867 /**
1868  *      sd_eh_action - error handling callback
1869  *      @scmd:          sd-issued command that has failed
1870  *      @eh_disp:       The recovery disposition suggested by the midlayer
1871  *
1872  *      This function is called by the SCSI midlayer upon completion of an
1873  *      error test command (currently TEST UNIT READY). The result of sending
1874  *      the eh command is passed in eh_disp.  We're looking for devices that
1875  *      fail medium access commands but are OK with non access commands like
1876  *      test unit ready (so wrongly see the device as having a successful
1877  *      recovery)
1878  **/
1879 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1880 {
1881         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1882         struct scsi_device *sdev = scmd->device;
1883
1884         if (!scsi_device_online(sdev) ||
1885             !scsi_medium_access_command(scmd) ||
1886             host_byte(scmd->result) != DID_TIME_OUT ||
1887             eh_disp != SUCCESS)
1888                 return eh_disp;
1889
1890         /*
1891          * The device has timed out executing a medium access command.
1892          * However, the TEST UNIT READY command sent during error
1893          * handling completed successfully. Either the device is in the
1894          * process of recovering or has it suffered an internal failure
1895          * that prevents access to the storage medium.
1896          */
1897         if (!sdkp->ignore_medium_access_errors) {
1898                 sdkp->medium_access_timed_out++;
1899                 sdkp->ignore_medium_access_errors = true;
1900         }
1901
1902         /*
1903          * If the device keeps failing read/write commands but TEST UNIT
1904          * READY always completes successfully we assume that medium
1905          * access is no longer possible and take the device offline.
1906          */
1907         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1908                 scmd_printk(KERN_ERR, scmd,
1909                             "Medium access timeout failure. Offlining disk!\n");
1910                 mutex_lock(&sdev->state_mutex);
1911                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1912                 mutex_unlock(&sdev->state_mutex);
1913
1914                 return SUCCESS;
1915         }
1916
1917         return eh_disp;
1918 }
1919
1920 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1921 {
1922         struct request *req = scsi_cmd_to_rq(scmd);
1923         struct scsi_device *sdev = scmd->device;
1924         unsigned int transferred, good_bytes;
1925         u64 start_lba, end_lba, bad_lba;
1926
1927         /*
1928          * Some commands have a payload smaller than the device logical
1929          * block size (e.g. INQUIRY on a 4K disk).
1930          */
1931         if (scsi_bufflen(scmd) <= sdev->sector_size)
1932                 return 0;
1933
1934         /* Check if we have a 'bad_lba' information */
1935         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1936                                      SCSI_SENSE_BUFFERSIZE,
1937                                      &bad_lba))
1938                 return 0;
1939
1940         /*
1941          * If the bad lba was reported incorrectly, we have no idea where
1942          * the error is.
1943          */
1944         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1945         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1946         if (bad_lba < start_lba || bad_lba >= end_lba)
1947                 return 0;
1948
1949         /*
1950          * resid is optional but mostly filled in.  When it's unused,
1951          * its value is zero, so we assume the whole buffer transferred
1952          */
1953         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1954
1955         /* This computation should always be done in terms of the
1956          * resolution of the device's medium.
1957          */
1958         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1959
1960         return min(good_bytes, transferred);
1961 }
1962
1963 /**
1964  *      sd_done - bottom half handler: called when the lower level
1965  *      driver has completed (successfully or otherwise) a scsi command.
1966  *      @SCpnt: mid-level's per command structure.
1967  *
1968  *      Note: potentially run from within an ISR. Must not block.
1969  **/
1970 static int sd_done(struct scsi_cmnd *SCpnt)
1971 {
1972         int result = SCpnt->result;
1973         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1974         unsigned int sector_size = SCpnt->device->sector_size;
1975         unsigned int resid;
1976         struct scsi_sense_hdr sshdr;
1977         struct request *req = scsi_cmd_to_rq(SCpnt);
1978         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
1979         int sense_valid = 0;
1980         int sense_deferred = 0;
1981
1982         switch (req_op(req)) {
1983         case REQ_OP_DISCARD:
1984         case REQ_OP_WRITE_ZEROES:
1985         case REQ_OP_ZONE_RESET:
1986         case REQ_OP_ZONE_RESET_ALL:
1987         case REQ_OP_ZONE_OPEN:
1988         case REQ_OP_ZONE_CLOSE:
1989         case REQ_OP_ZONE_FINISH:
1990                 if (!result) {
1991                         good_bytes = blk_rq_bytes(req);
1992                         scsi_set_resid(SCpnt, 0);
1993                 } else {
1994                         good_bytes = 0;
1995                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
1996                 }
1997                 break;
1998         default:
1999                 /*
2000                  * In case of bogus fw or device, we could end up having
2001                  * an unaligned partial completion. Check this here and force
2002                  * alignment.
2003                  */
2004                 resid = scsi_get_resid(SCpnt);
2005                 if (resid & (sector_size - 1)) {
2006                         sd_printk(KERN_INFO, sdkp,
2007                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2008                                 resid, sector_size);
2009                         scsi_print_command(SCpnt);
2010                         resid = min(scsi_bufflen(SCpnt),
2011                                     round_up(resid, sector_size));
2012                         scsi_set_resid(SCpnt, resid);
2013                 }
2014         }
2015
2016         if (result) {
2017                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2018                 if (sense_valid)
2019                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2020         }
2021         sdkp->medium_access_timed_out = 0;
2022
2023         if (!scsi_status_is_check_condition(result) &&
2024             (!sense_valid || sense_deferred))
2025                 goto out;
2026
2027         switch (sshdr.sense_key) {
2028         case HARDWARE_ERROR:
2029         case MEDIUM_ERROR:
2030                 good_bytes = sd_completed_bytes(SCpnt);
2031                 break;
2032         case RECOVERED_ERROR:
2033                 good_bytes = scsi_bufflen(SCpnt);
2034                 break;
2035         case NO_SENSE:
2036                 /* This indicates a false check condition, so ignore it.  An
2037                  * unknown amount of data was transferred so treat it as an
2038                  * error.
2039                  */
2040                 SCpnt->result = 0;
2041                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2042                 break;
2043         case ABORTED_COMMAND:
2044                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2045                         good_bytes = sd_completed_bytes(SCpnt);
2046                 break;
2047         case ILLEGAL_REQUEST:
2048                 switch (sshdr.asc) {
2049                 case 0x10:      /* DIX: Host detected corruption */
2050                         good_bytes = sd_completed_bytes(SCpnt);
2051                         break;
2052                 case 0x20:      /* INVALID COMMAND OPCODE */
2053                 case 0x24:      /* INVALID FIELD IN CDB */
2054                         switch (SCpnt->cmnd[0]) {
2055                         case UNMAP:
2056                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2057                                 break;
2058                         case WRITE_SAME_16:
2059                         case WRITE_SAME:
2060                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2061                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2062                                 } else {
2063                                         sdkp->device->no_write_same = 1;
2064                                         sd_config_write_same(sdkp);
2065                                         req->rq_flags |= RQF_QUIET;
2066                                 }
2067                                 break;
2068                         }
2069                 }
2070                 break;
2071         default:
2072                 break;
2073         }
2074
2075  out:
2076         if (sd_is_zoned(sdkp))
2077                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2078
2079         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2080                                            "sd_done: completed %d of %d bytes\n",
2081                                            good_bytes, scsi_bufflen(SCpnt)));
2082
2083         return good_bytes;
2084 }
2085
2086 /*
2087  * spinup disk - called only in sd_revalidate_disk()
2088  */
2089 static void
2090 sd_spinup_disk(struct scsi_disk *sdkp)
2091 {
2092         unsigned char cmd[10];
2093         unsigned long spintime_expire = 0;
2094         int retries, spintime;
2095         unsigned int the_result;
2096         struct scsi_sense_hdr sshdr;
2097         const struct scsi_exec_args exec_args = {
2098                 .sshdr = &sshdr,
2099         };
2100         int sense_valid = 0;
2101
2102         spintime = 0;
2103
2104         /* Spin up drives, as required.  Only do this at boot time */
2105         /* Spinup needs to be done for module loads too. */
2106         do {
2107                 retries = 0;
2108
2109                 do {
2110                         bool media_was_present = sdkp->media_present;
2111
2112                         cmd[0] = TEST_UNIT_READY;
2113                         memset((void *) &cmd[1], 0, 9);
2114
2115                         the_result = scsi_execute_cmd(sdkp->device, cmd,
2116                                                       REQ_OP_DRV_IN, NULL, 0,
2117                                                       SD_TIMEOUT,
2118                                                       sdkp->max_retries,
2119                                                       &exec_args);
2120
2121                         /*
2122                          * If the drive has indicated to us that it
2123                          * doesn't have any media in it, don't bother
2124                          * with any more polling.
2125                          */
2126                         if (media_not_present(sdkp, &sshdr)) {
2127                                 if (media_was_present)
2128                                         sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2129                                 return;
2130                         }
2131
2132                         if (the_result)
2133                                 sense_valid = scsi_sense_valid(&sshdr);
2134                         retries++;
2135                 } while (retries < 3 &&
2136                          (!scsi_status_is_good(the_result) ||
2137                           (scsi_status_is_check_condition(the_result) &&
2138                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2139
2140                 if (!scsi_status_is_check_condition(the_result)) {
2141                         /* no sense, TUR either succeeded or failed
2142                          * with a status error */
2143                         if(!spintime && !scsi_status_is_good(the_result)) {
2144                                 sd_print_result(sdkp, "Test Unit Ready failed",
2145                                                 the_result);
2146                         }
2147                         break;
2148                 }
2149
2150                 /*
2151                  * The device does not want the automatic start to be issued.
2152                  */
2153                 if (sdkp->device->no_start_on_add)
2154                         break;
2155
2156                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2157                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2158                                 break;  /* manual intervention required */
2159                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2160                                 break;  /* standby */
2161                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2162                                 break;  /* unavailable */
2163                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2164                                 break;  /* sanitize in progress */
2165                         /*
2166                          * Issue command to spin up drive when not ready
2167                          */
2168                         if (!spintime) {
2169                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2170                                 cmd[0] = START_STOP;
2171                                 cmd[1] = 1;     /* Return immediately */
2172                                 memset((void *) &cmd[2], 0, 8);
2173                                 cmd[4] = 1;     /* Start spin cycle */
2174                                 if (sdkp->device->start_stop_pwr_cond)
2175                                         cmd[4] |= 1 << 4;
2176                                 scsi_execute_cmd(sdkp->device, cmd,
2177                                                  REQ_OP_DRV_IN, NULL, 0,
2178                                                  SD_TIMEOUT, sdkp->max_retries,
2179                                                  &exec_args);
2180                                 spintime_expire = jiffies + 100 * HZ;
2181                                 spintime = 1;
2182                         }
2183                         /* Wait 1 second for next try */
2184                         msleep(1000);
2185                         printk(KERN_CONT ".");
2186
2187                 /*
2188                  * Wait for USB flash devices with slow firmware.
2189                  * Yes, this sense key/ASC combination shouldn't
2190                  * occur here.  It's characteristic of these devices.
2191                  */
2192                 } else if (sense_valid &&
2193                                 sshdr.sense_key == UNIT_ATTENTION &&
2194                                 sshdr.asc == 0x28) {
2195                         if (!spintime) {
2196                                 spintime_expire = jiffies + 5 * HZ;
2197                                 spintime = 1;
2198                         }
2199                         /* Wait 1 second for next try */
2200                         msleep(1000);
2201                 } else {
2202                         /* we don't understand the sense code, so it's
2203                          * probably pointless to loop */
2204                         if(!spintime) {
2205                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2206                                 sd_print_sense_hdr(sdkp, &sshdr);
2207                         }
2208                         break;
2209                 }
2210                                 
2211         } while (spintime && time_before_eq(jiffies, spintime_expire));
2212
2213         if (spintime) {
2214                 if (scsi_status_is_good(the_result))
2215                         printk(KERN_CONT "ready\n");
2216                 else
2217                         printk(KERN_CONT "not responding...\n");
2218         }
2219 }
2220
2221 /*
2222  * Determine whether disk supports Data Integrity Field.
2223  */
2224 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2225 {
2226         struct scsi_device *sdp = sdkp->device;
2227         u8 type;
2228
2229         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2230                 sdkp->protection_type = 0;
2231                 return 0;
2232         }
2233
2234         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2235
2236         if (type > T10_PI_TYPE3_PROTECTION) {
2237                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2238                           " protection type %u. Disabling disk!\n",
2239                           type);
2240                 sdkp->protection_type = 0;
2241                 return -ENODEV;
2242         }
2243
2244         sdkp->protection_type = type;
2245
2246         return 0;
2247 }
2248
2249 static void sd_config_protection(struct scsi_disk *sdkp)
2250 {
2251         struct scsi_device *sdp = sdkp->device;
2252
2253         sd_dif_config_host(sdkp);
2254
2255         if (!sdkp->protection_type)
2256                 return;
2257
2258         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2259                 sd_first_printk(KERN_NOTICE, sdkp,
2260                                 "Disabling DIF Type %u protection\n",
2261                                 sdkp->protection_type);
2262                 sdkp->protection_type = 0;
2263         }
2264
2265         sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2266                         sdkp->protection_type);
2267 }
2268
2269 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2270                         struct scsi_sense_hdr *sshdr, int sense_valid,
2271                         int the_result)
2272 {
2273         if (sense_valid)
2274                 sd_print_sense_hdr(sdkp, sshdr);
2275         else
2276                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2277
2278         /*
2279          * Set dirty bit for removable devices if not ready -
2280          * sometimes drives will not report this properly.
2281          */
2282         if (sdp->removable &&
2283             sense_valid && sshdr->sense_key == NOT_READY)
2284                 set_media_not_present(sdkp);
2285
2286         /*
2287          * We used to set media_present to 0 here to indicate no media
2288          * in the drive, but some drives fail read capacity even with
2289          * media present, so we can't do that.
2290          */
2291         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2292 }
2293
2294 #define RC16_LEN 32
2295 #if RC16_LEN > SD_BUF_SIZE
2296 #error RC16_LEN must not be more than SD_BUF_SIZE
2297 #endif
2298
2299 #define READ_CAPACITY_RETRIES_ON_RESET  10
2300
2301 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2302                                                 unsigned char *buffer)
2303 {
2304         unsigned char cmd[16];
2305         struct scsi_sense_hdr sshdr;
2306         const struct scsi_exec_args exec_args = {
2307                 .sshdr = &sshdr,
2308         };
2309         int sense_valid = 0;
2310         int the_result;
2311         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2312         unsigned int alignment;
2313         unsigned long long lba;
2314         unsigned sector_size;
2315
2316         if (sdp->no_read_capacity_16)
2317                 return -EINVAL;
2318
2319         do {
2320                 memset(cmd, 0, 16);
2321                 cmd[0] = SERVICE_ACTION_IN_16;
2322                 cmd[1] = SAI_READ_CAPACITY_16;
2323                 cmd[13] = RC16_LEN;
2324                 memset(buffer, 0, RC16_LEN);
2325
2326                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2327                                               buffer, RC16_LEN, SD_TIMEOUT,
2328                                               sdkp->max_retries, &exec_args);
2329
2330                 if (media_not_present(sdkp, &sshdr))
2331                         return -ENODEV;
2332
2333                 if (the_result > 0) {
2334                         sense_valid = scsi_sense_valid(&sshdr);
2335                         if (sense_valid &&
2336                             sshdr.sense_key == ILLEGAL_REQUEST &&
2337                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2338                             sshdr.ascq == 0x00)
2339                                 /* Invalid Command Operation Code or
2340                                  * Invalid Field in CDB, just retry
2341                                  * silently with RC10 */
2342                                 return -EINVAL;
2343                         if (sense_valid &&
2344                             sshdr.sense_key == UNIT_ATTENTION &&
2345                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2346                                 /* Device reset might occur several times,
2347                                  * give it one more chance */
2348                                 if (--reset_retries > 0)
2349                                         continue;
2350                 }
2351                 retries--;
2352
2353         } while (the_result && retries);
2354
2355         if (the_result) {
2356                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2357                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2358                 return -EINVAL;
2359         }
2360
2361         sector_size = get_unaligned_be32(&buffer[8]);
2362         lba = get_unaligned_be64(&buffer[0]);
2363
2364         if (sd_read_protection_type(sdkp, buffer) < 0) {
2365                 sdkp->capacity = 0;
2366                 return -ENODEV;
2367         }
2368
2369         /* Logical blocks per physical block exponent */
2370         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2371
2372         /* RC basis */
2373         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2374
2375         /* Lowest aligned logical block */
2376         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2377         blk_queue_alignment_offset(sdp->request_queue, alignment);
2378         if (alignment && sdkp->first_scan)
2379                 sd_printk(KERN_NOTICE, sdkp,
2380                           "physical block alignment offset: %u\n", alignment);
2381
2382         if (buffer[14] & 0x80) { /* LBPME */
2383                 sdkp->lbpme = 1;
2384
2385                 if (buffer[14] & 0x40) /* LBPRZ */
2386                         sdkp->lbprz = 1;
2387
2388                 sd_config_discard(sdkp, SD_LBP_WS16);
2389         }
2390
2391         sdkp->capacity = lba + 1;
2392         return sector_size;
2393 }
2394
2395 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2396                                                 unsigned char *buffer)
2397 {
2398         unsigned char cmd[16];
2399         struct scsi_sense_hdr sshdr;
2400         const struct scsi_exec_args exec_args = {
2401                 .sshdr = &sshdr,
2402         };
2403         int sense_valid = 0;
2404         int the_result;
2405         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2406         sector_t lba;
2407         unsigned sector_size;
2408
2409         do {
2410                 cmd[0] = READ_CAPACITY;
2411                 memset(&cmd[1], 0, 9);
2412                 memset(buffer, 0, 8);
2413
2414                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2415                                               8, SD_TIMEOUT, sdkp->max_retries,
2416                                               &exec_args);
2417
2418                 if (media_not_present(sdkp, &sshdr))
2419                         return -ENODEV;
2420
2421                 if (the_result > 0) {
2422                         sense_valid = scsi_sense_valid(&sshdr);
2423                         if (sense_valid &&
2424                             sshdr.sense_key == UNIT_ATTENTION &&
2425                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2426                                 /* Device reset might occur several times,
2427                                  * give it one more chance */
2428                                 if (--reset_retries > 0)
2429                                         continue;
2430                 }
2431                 retries--;
2432
2433         } while (the_result && retries);
2434
2435         if (the_result) {
2436                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2437                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2438                 return -EINVAL;
2439         }
2440
2441         sector_size = get_unaligned_be32(&buffer[4]);
2442         lba = get_unaligned_be32(&buffer[0]);
2443
2444         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2445                 /* Some buggy (usb cardreader) devices return an lba of
2446                    0xffffffff when the want to report a size of 0 (with
2447                    which they really mean no media is present) */
2448                 sdkp->capacity = 0;
2449                 sdkp->physical_block_size = sector_size;
2450                 return sector_size;
2451         }
2452
2453         sdkp->capacity = lba + 1;
2454         sdkp->physical_block_size = sector_size;
2455         return sector_size;
2456 }
2457
2458 static int sd_try_rc16_first(struct scsi_device *sdp)
2459 {
2460         if (sdp->host->max_cmd_len < 16)
2461                 return 0;
2462         if (sdp->try_rc_10_first)
2463                 return 0;
2464         if (sdp->scsi_level > SCSI_SPC_2)
2465                 return 1;
2466         if (scsi_device_protection(sdp))
2467                 return 1;
2468         return 0;
2469 }
2470
2471 /*
2472  * read disk capacity
2473  */
2474 static void
2475 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2476 {
2477         int sector_size;
2478         struct scsi_device *sdp = sdkp->device;
2479
2480         if (sd_try_rc16_first(sdp)) {
2481                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2482                 if (sector_size == -EOVERFLOW)
2483                         goto got_data;
2484                 if (sector_size == -ENODEV)
2485                         return;
2486                 if (sector_size < 0)
2487                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2488                 if (sector_size < 0)
2489                         return;
2490         } else {
2491                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2492                 if (sector_size == -EOVERFLOW)
2493                         goto got_data;
2494                 if (sector_size < 0)
2495                         return;
2496                 if ((sizeof(sdkp->capacity) > 4) &&
2497                     (sdkp->capacity > 0xffffffffULL)) {
2498                         int old_sector_size = sector_size;
2499                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2500                                         "Trying to use READ CAPACITY(16).\n");
2501                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2502                         if (sector_size < 0) {
2503                                 sd_printk(KERN_NOTICE, sdkp,
2504                                         "Using 0xffffffff as device size\n");
2505                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2506                                 sector_size = old_sector_size;
2507                                 goto got_data;
2508                         }
2509                         /* Remember that READ CAPACITY(16) succeeded */
2510                         sdp->try_rc_10_first = 0;
2511                 }
2512         }
2513
2514         /* Some devices are known to return the total number of blocks,
2515          * not the highest block number.  Some devices have versions
2516          * which do this and others which do not.  Some devices we might
2517          * suspect of doing this but we don't know for certain.
2518          *
2519          * If we know the reported capacity is wrong, decrement it.  If
2520          * we can only guess, then assume the number of blocks is even
2521          * (usually true but not always) and err on the side of lowering
2522          * the capacity.
2523          */
2524         if (sdp->fix_capacity ||
2525             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2526                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2527                                 "from its reported value: %llu\n",
2528                                 (unsigned long long) sdkp->capacity);
2529                 --sdkp->capacity;
2530         }
2531
2532 got_data:
2533         if (sector_size == 0) {
2534                 sector_size = 512;
2535                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2536                           "assuming 512.\n");
2537         }
2538
2539         if (sector_size != 512 &&
2540             sector_size != 1024 &&
2541             sector_size != 2048 &&
2542             sector_size != 4096) {
2543                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2544                           sector_size);
2545                 /*
2546                  * The user might want to re-format the drive with
2547                  * a supported sectorsize.  Once this happens, it
2548                  * would be relatively trivial to set the thing up.
2549                  * For this reason, we leave the thing in the table.
2550                  */
2551                 sdkp->capacity = 0;
2552                 /*
2553                  * set a bogus sector size so the normal read/write
2554                  * logic in the block layer will eventually refuse any
2555                  * request on this device without tripping over power
2556                  * of two sector size assumptions
2557                  */
2558                 sector_size = 512;
2559         }
2560         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2561         blk_queue_physical_block_size(sdp->request_queue,
2562                                       sdkp->physical_block_size);
2563         sdkp->device->sector_size = sector_size;
2564
2565         if (sdkp->capacity > 0xffffffff)
2566                 sdp->use_16_for_rw = 1;
2567
2568 }
2569
2570 /*
2571  * Print disk capacity
2572  */
2573 static void
2574 sd_print_capacity(struct scsi_disk *sdkp,
2575                   sector_t old_capacity)
2576 {
2577         int sector_size = sdkp->device->sector_size;
2578         char cap_str_2[10], cap_str_10[10];
2579
2580         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2581                 return;
2582
2583         string_get_size(sdkp->capacity, sector_size,
2584                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2585         string_get_size(sdkp->capacity, sector_size,
2586                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2587
2588         sd_printk(KERN_NOTICE, sdkp,
2589                   "%llu %d-byte logical blocks: (%s/%s)\n",
2590                   (unsigned long long)sdkp->capacity,
2591                   sector_size, cap_str_10, cap_str_2);
2592
2593         if (sdkp->physical_block_size != sector_size)
2594                 sd_printk(KERN_NOTICE, sdkp,
2595                           "%u-byte physical blocks\n",
2596                           sdkp->physical_block_size);
2597 }
2598
2599 /* called with buffer of length 512 */
2600 static inline int
2601 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2602                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2603                  struct scsi_sense_hdr *sshdr)
2604 {
2605         /*
2606          * If we must use MODE SENSE(10), make sure that the buffer length
2607          * is at least 8 bytes so that the mode sense header fits.
2608          */
2609         if (sdkp->device->use_10_for_ms && len < 8)
2610                 len = 8;
2611
2612         return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2613                                SD_TIMEOUT, sdkp->max_retries, data,
2614                                sshdr);
2615 }
2616
2617 /*
2618  * read write protect setting, if possible - called only in sd_revalidate_disk()
2619  * called with buffer of length SD_BUF_SIZE
2620  */
2621 static void
2622 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2623 {
2624         int res;
2625         struct scsi_device *sdp = sdkp->device;
2626         struct scsi_mode_data data;
2627         int old_wp = sdkp->write_prot;
2628
2629         set_disk_ro(sdkp->disk, 0);
2630         if (sdp->skip_ms_page_3f) {
2631                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2632                 return;
2633         }
2634
2635         if (sdp->use_192_bytes_for_3f) {
2636                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2637         } else {
2638                 /*
2639                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2640                  * We have to start carefully: some devices hang if we ask
2641                  * for more than is available.
2642                  */
2643                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2644
2645                 /*
2646                  * Second attempt: ask for page 0 When only page 0 is
2647                  * implemented, a request for page 3F may return Sense Key
2648                  * 5: Illegal Request, Sense Code 24: Invalid field in
2649                  * CDB.
2650                  */
2651                 if (res < 0)
2652                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2653
2654                 /*
2655                  * Third attempt: ask 255 bytes, as we did earlier.
2656                  */
2657                 if (res < 0)
2658                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2659                                                &data, NULL);
2660         }
2661
2662         if (res < 0) {
2663                 sd_first_printk(KERN_WARNING, sdkp,
2664                           "Test WP failed, assume Write Enabled\n");
2665         } else {
2666                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2667                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2668                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2669                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2670                                   sdkp->write_prot ? "on" : "off");
2671                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2672                 }
2673         }
2674 }
2675
2676 /*
2677  * sd_read_cache_type - called only from sd_revalidate_disk()
2678  * called with buffer of length SD_BUF_SIZE
2679  */
2680 static void
2681 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2682 {
2683         int len = 0, res;
2684         struct scsi_device *sdp = sdkp->device;
2685
2686         int dbd;
2687         int modepage;
2688         int first_len;
2689         struct scsi_mode_data data;
2690         struct scsi_sense_hdr sshdr;
2691         int old_wce = sdkp->WCE;
2692         int old_rcd = sdkp->RCD;
2693         int old_dpofua = sdkp->DPOFUA;
2694
2695
2696         if (sdkp->cache_override)
2697                 return;
2698
2699         first_len = 4;
2700         if (sdp->skip_ms_page_8) {
2701                 if (sdp->type == TYPE_RBC)
2702                         goto defaults;
2703                 else {
2704                         if (sdp->skip_ms_page_3f)
2705                                 goto defaults;
2706                         modepage = 0x3F;
2707                         if (sdp->use_192_bytes_for_3f)
2708                                 first_len = 192;
2709                         dbd = 0;
2710                 }
2711         } else if (sdp->type == TYPE_RBC) {
2712                 modepage = 6;
2713                 dbd = 8;
2714         } else {
2715                 modepage = 8;
2716                 dbd = 0;
2717         }
2718
2719         /* cautiously ask */
2720         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2721                         &data, &sshdr);
2722
2723         if (res < 0)
2724                 goto bad_sense;
2725
2726         if (!data.header_length) {
2727                 modepage = 6;
2728                 first_len = 0;
2729                 sd_first_printk(KERN_ERR, sdkp,
2730                                 "Missing header in MODE_SENSE response\n");
2731         }
2732
2733         /* that went OK, now ask for the proper length */
2734         len = data.length;
2735
2736         /*
2737          * We're only interested in the first three bytes, actually.
2738          * But the data cache page is defined for the first 20.
2739          */
2740         if (len < 3)
2741                 goto bad_sense;
2742         else if (len > SD_BUF_SIZE) {
2743                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2744                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2745                 len = SD_BUF_SIZE;
2746         }
2747         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2748                 len = 192;
2749
2750         /* Get the data */
2751         if (len > first_len)
2752                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2753                                 &data, &sshdr);
2754
2755         if (!res) {
2756                 int offset = data.header_length + data.block_descriptor_length;
2757
2758                 while (offset < len) {
2759                         u8 page_code = buffer[offset] & 0x3F;
2760                         u8 spf       = buffer[offset] & 0x40;
2761
2762                         if (page_code == 8 || page_code == 6) {
2763                                 /* We're interested only in the first 3 bytes.
2764                                  */
2765                                 if (len - offset <= 2) {
2766                                         sd_first_printk(KERN_ERR, sdkp,
2767                                                 "Incomplete mode parameter "
2768                                                         "data\n");
2769                                         goto defaults;
2770                                 } else {
2771                                         modepage = page_code;
2772                                         goto Page_found;
2773                                 }
2774                         } else {
2775                                 /* Go to the next page */
2776                                 if (spf && len - offset > 3)
2777                                         offset += 4 + (buffer[offset+2] << 8) +
2778                                                 buffer[offset+3];
2779                                 else if (!spf && len - offset > 1)
2780                                         offset += 2 + buffer[offset+1];
2781                                 else {
2782                                         sd_first_printk(KERN_ERR, sdkp,
2783                                                         "Incomplete mode "
2784                                                         "parameter data\n");
2785                                         goto defaults;
2786                                 }
2787                         }
2788                 }
2789
2790                 sd_first_printk(KERN_WARNING, sdkp,
2791                                 "No Caching mode page found\n");
2792                 goto defaults;
2793
2794         Page_found:
2795                 if (modepage == 8) {
2796                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2797                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2798                 } else {
2799                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2800                         sdkp->RCD = 0;
2801                 }
2802
2803                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2804                 if (sdp->broken_fua) {
2805                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2806                         sdkp->DPOFUA = 0;
2807                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2808                            !sdkp->device->use_16_for_rw) {
2809                         sd_first_printk(KERN_NOTICE, sdkp,
2810                                   "Uses READ/WRITE(6), disabling FUA\n");
2811                         sdkp->DPOFUA = 0;
2812                 }
2813
2814                 /* No cache flush allowed for write protected devices */
2815                 if (sdkp->WCE && sdkp->write_prot)
2816                         sdkp->WCE = 0;
2817
2818                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2819                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2820                         sd_printk(KERN_NOTICE, sdkp,
2821                                   "Write cache: %s, read cache: %s, %s\n",
2822                                   sdkp->WCE ? "enabled" : "disabled",
2823                                   sdkp->RCD ? "disabled" : "enabled",
2824                                   sdkp->DPOFUA ? "supports DPO and FUA"
2825                                   : "doesn't support DPO or FUA");
2826
2827                 return;
2828         }
2829
2830 bad_sense:
2831         if (scsi_sense_valid(&sshdr) &&
2832             sshdr.sense_key == ILLEGAL_REQUEST &&
2833             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2834                 /* Invalid field in CDB */
2835                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2836         else
2837                 sd_first_printk(KERN_ERR, sdkp,
2838                                 "Asking for cache data failed\n");
2839
2840 defaults:
2841         if (sdp->wce_default_on) {
2842                 sd_first_printk(KERN_NOTICE, sdkp,
2843                                 "Assuming drive cache: write back\n");
2844                 sdkp->WCE = 1;
2845         } else {
2846                 sd_first_printk(KERN_WARNING, sdkp,
2847                                 "Assuming drive cache: write through\n");
2848                 sdkp->WCE = 0;
2849         }
2850         sdkp->RCD = 0;
2851         sdkp->DPOFUA = 0;
2852 }
2853
2854 /*
2855  * The ATO bit indicates whether the DIF application tag is available
2856  * for use by the operating system.
2857  */
2858 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2859 {
2860         int res, offset;
2861         struct scsi_device *sdp = sdkp->device;
2862         struct scsi_mode_data data;
2863         struct scsi_sense_hdr sshdr;
2864
2865         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2866                 return;
2867
2868         if (sdkp->protection_type == 0)
2869                 return;
2870
2871         res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2872                               sdkp->max_retries, &data, &sshdr);
2873
2874         if (res < 0 || !data.header_length ||
2875             data.length < 6) {
2876                 sd_first_printk(KERN_WARNING, sdkp,
2877                           "getting Control mode page failed, assume no ATO\n");
2878
2879                 if (scsi_sense_valid(&sshdr))
2880                         sd_print_sense_hdr(sdkp, &sshdr);
2881
2882                 return;
2883         }
2884
2885         offset = data.header_length + data.block_descriptor_length;
2886
2887         if ((buffer[offset] & 0x3f) != 0x0a) {
2888                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2889                 return;
2890         }
2891
2892         if ((buffer[offset + 5] & 0x80) == 0)
2893                 return;
2894
2895         sdkp->ATO = 1;
2896
2897         return;
2898 }
2899
2900 /**
2901  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2902  * @sdkp: disk to query
2903  */
2904 static void sd_read_block_limits(struct scsi_disk *sdkp)
2905 {
2906         struct scsi_vpd *vpd;
2907
2908         rcu_read_lock();
2909
2910         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2911         if (!vpd || vpd->len < 16)
2912                 goto out;
2913
2914         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2915         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2916         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2917
2918         if (vpd->len >= 64) {
2919                 unsigned int lba_count, desc_count;
2920
2921                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2922
2923                 if (!sdkp->lbpme)
2924                         goto out;
2925
2926                 lba_count = get_unaligned_be32(&vpd->data[20]);
2927                 desc_count = get_unaligned_be32(&vpd->data[24]);
2928
2929                 if (lba_count && desc_count)
2930                         sdkp->max_unmap_blocks = lba_count;
2931
2932                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2933
2934                 if (vpd->data[32] & 0x80)
2935                         sdkp->unmap_alignment =
2936                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
2937
2938                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2939
2940                         if (sdkp->max_unmap_blocks)
2941                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2942                         else
2943                                 sd_config_discard(sdkp, SD_LBP_WS16);
2944
2945                 } else {        /* LBP VPD page tells us what to use */
2946                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
2947                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2948                         else if (sdkp->lbpws)
2949                                 sd_config_discard(sdkp, SD_LBP_WS16);
2950                         else if (sdkp->lbpws10)
2951                                 sd_config_discard(sdkp, SD_LBP_WS10);
2952                         else
2953                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2954                 }
2955         }
2956
2957  out:
2958         rcu_read_unlock();
2959 }
2960
2961 /**
2962  * sd_read_block_characteristics - Query block dev. characteristics
2963  * @sdkp: disk to query
2964  */
2965 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2966 {
2967         struct request_queue *q = sdkp->disk->queue;
2968         struct scsi_vpd *vpd;
2969         u16 rot;
2970         u8 zoned;
2971
2972         rcu_read_lock();
2973         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
2974
2975         if (!vpd || vpd->len < 8) {
2976                 rcu_read_unlock();
2977                 return;
2978         }
2979
2980         rot = get_unaligned_be16(&vpd->data[4]);
2981         zoned = (vpd->data[8] >> 4) & 3;
2982         rcu_read_unlock();
2983
2984         if (rot == 1) {
2985                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2986                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2987         }
2988
2989         if (sdkp->device->type == TYPE_ZBC) {
2990                 /* Host-managed */
2991                 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
2992         } else {
2993                 sdkp->zoned = zoned;
2994                 if (sdkp->zoned == 1) {
2995                         /* Host-aware */
2996                         disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
2997                 } else {
2998                         /* Regular disk or drive managed disk */
2999                         disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3000                 }
3001         }
3002
3003         if (!sdkp->first_scan)
3004                 return;
3005
3006         if (blk_queue_is_zoned(q)) {
3007                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3008                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3009         } else {
3010                 if (sdkp->zoned == 1)
3011                         sd_printk(KERN_NOTICE, sdkp,
3012                                   "Host-aware SMR disk used as regular disk\n");
3013                 else if (sdkp->zoned == 2)
3014                         sd_printk(KERN_NOTICE, sdkp,
3015                                   "Drive-managed SMR disk\n");
3016         }
3017 }
3018
3019 /**
3020  * sd_read_block_provisioning - Query provisioning VPD page
3021  * @sdkp: disk to query
3022  */
3023 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3024 {
3025         struct scsi_vpd *vpd;
3026
3027         if (sdkp->lbpme == 0)
3028                 return;
3029
3030         rcu_read_lock();
3031         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3032
3033         if (!vpd || vpd->len < 8) {
3034                 rcu_read_unlock();
3035                 return;
3036         }
3037
3038         sdkp->lbpvpd    = 1;
3039         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3040         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3041         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3042         rcu_read_unlock();
3043 }
3044
3045 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3046 {
3047         struct scsi_device *sdev = sdkp->device;
3048
3049         if (sdev->host->no_write_same) {
3050                 sdev->no_write_same = 1;
3051
3052                 return;
3053         }
3054
3055         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3056                 struct scsi_vpd *vpd;
3057
3058                 sdev->no_report_opcodes = 1;
3059
3060                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3061                  * CODES is unsupported and the device has an ATA
3062                  * Information VPD page (SAT).
3063                  */
3064                 rcu_read_lock();
3065                 vpd = rcu_dereference(sdev->vpd_pg89);
3066                 if (vpd)
3067                         sdev->no_write_same = 1;
3068                 rcu_read_unlock();
3069         }
3070
3071         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3072                 sdkp->ws16 = 1;
3073
3074         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3075                 sdkp->ws10 = 1;
3076 }
3077
3078 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3079 {
3080         struct scsi_device *sdev = sdkp->device;
3081
3082         if (!sdev->security_supported)
3083                 return;
3084
3085         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3086                         SECURITY_PROTOCOL_IN) == 1 &&
3087             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3088                         SECURITY_PROTOCOL_OUT) == 1)
3089                 sdkp->security = 1;
3090 }
3091
3092 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3093 {
3094         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3095 }
3096
3097 /**
3098  * sd_read_cpr - Query concurrent positioning ranges
3099  * @sdkp:       disk to query
3100  */
3101 static void sd_read_cpr(struct scsi_disk *sdkp)
3102 {
3103         struct blk_independent_access_ranges *iars = NULL;
3104         unsigned char *buffer = NULL;
3105         unsigned int nr_cpr = 0;
3106         int i, vpd_len, buf_len = SD_BUF_SIZE;
3107         u8 *desc;
3108
3109         /*
3110          * We need to have the capacity set first for the block layer to be
3111          * able to check the ranges.
3112          */
3113         if (sdkp->first_scan)
3114                 return;
3115
3116         if (!sdkp->capacity)
3117                 goto out;
3118
3119         /*
3120          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3121          * leading to a maximum page size of 64 + 256*32 bytes.
3122          */
3123         buf_len = 64 + 256*32;
3124         buffer = kmalloc(buf_len, GFP_KERNEL);
3125         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3126                 goto out;
3127
3128         /* We must have at least a 64B header and one 32B range descriptor */
3129         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3130         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3131                 sd_printk(KERN_ERR, sdkp,
3132                           "Invalid Concurrent Positioning Ranges VPD page\n");
3133                 goto out;
3134         }
3135
3136         nr_cpr = (vpd_len - 64) / 32;
3137         if (nr_cpr == 1) {
3138                 nr_cpr = 0;
3139                 goto out;
3140         }
3141
3142         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3143         if (!iars) {
3144                 nr_cpr = 0;
3145                 goto out;
3146         }
3147
3148         desc = &buffer[64];
3149         for (i = 0; i < nr_cpr; i++, desc += 32) {
3150                 if (desc[0] != i) {
3151                         sd_printk(KERN_ERR, sdkp,
3152                                 "Invalid Concurrent Positioning Range number\n");
3153                         nr_cpr = 0;
3154                         break;
3155                 }
3156
3157                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3158                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3159         }
3160
3161 out:
3162         disk_set_independent_access_ranges(sdkp->disk, iars);
3163         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3164                 sd_printk(KERN_NOTICE, sdkp,
3165                           "%u concurrent positioning ranges\n", nr_cpr);
3166                 sdkp->nr_actuators = nr_cpr;
3167         }
3168
3169         kfree(buffer);
3170 }
3171
3172 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3173 {
3174         struct scsi_device *sdp = sdkp->device;
3175         unsigned int min_xfer_bytes =
3176                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3177
3178         if (sdkp->min_xfer_blocks == 0)
3179                 return false;
3180
3181         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3182                 sd_first_printk(KERN_WARNING, sdkp,
3183                                 "Preferred minimum I/O size %u bytes not a " \
3184                                 "multiple of physical block size (%u bytes)\n",
3185                                 min_xfer_bytes, sdkp->physical_block_size);
3186                 sdkp->min_xfer_blocks = 0;
3187                 return false;
3188         }
3189
3190         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3191                         min_xfer_bytes);
3192         return true;
3193 }
3194
3195 /*
3196  * Determine the device's preferred I/O size for reads and writes
3197  * unless the reported value is unreasonably small, large, not a
3198  * multiple of the physical block size, or simply garbage.
3199  */
3200 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3201                                       unsigned int dev_max)
3202 {
3203         struct scsi_device *sdp = sdkp->device;
3204         unsigned int opt_xfer_bytes =
3205                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3206         unsigned int min_xfer_bytes =
3207                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3208
3209         if (sdkp->opt_xfer_blocks == 0)
3210                 return false;
3211
3212         if (sdkp->opt_xfer_blocks > dev_max) {
3213                 sd_first_printk(KERN_WARNING, sdkp,
3214                                 "Optimal transfer size %u logical blocks " \
3215                                 "> dev_max (%u logical blocks)\n",
3216                                 sdkp->opt_xfer_blocks, dev_max);
3217                 return false;
3218         }
3219
3220         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3221                 sd_first_printk(KERN_WARNING, sdkp,
3222                                 "Optimal transfer size %u logical blocks " \
3223                                 "> sd driver limit (%u logical blocks)\n",
3224                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3225                 return false;
3226         }
3227
3228         if (opt_xfer_bytes < PAGE_SIZE) {
3229                 sd_first_printk(KERN_WARNING, sdkp,
3230                                 "Optimal transfer size %u bytes < " \
3231                                 "PAGE_SIZE (%u bytes)\n",
3232                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3233                 return false;
3234         }
3235
3236         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3237                 sd_first_printk(KERN_WARNING, sdkp,
3238                                 "Optimal transfer size %u bytes not a " \
3239                                 "multiple of preferred minimum block " \
3240                                 "size (%u bytes)\n",
3241                                 opt_xfer_bytes, min_xfer_bytes);
3242                 return false;
3243         }
3244
3245         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3246                 sd_first_printk(KERN_WARNING, sdkp,
3247                                 "Optimal transfer size %u bytes not a " \
3248                                 "multiple of physical block size (%u bytes)\n",
3249                                 opt_xfer_bytes, sdkp->physical_block_size);
3250                 return false;
3251         }
3252
3253         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3254                         opt_xfer_bytes);
3255         return true;
3256 }
3257
3258 /**
3259  *      sd_revalidate_disk - called the first time a new disk is seen,
3260  *      performs disk spin up, read_capacity, etc.
3261  *      @disk: struct gendisk we care about
3262  **/
3263 static int sd_revalidate_disk(struct gendisk *disk)
3264 {
3265         struct scsi_disk *sdkp = scsi_disk(disk);
3266         struct scsi_device *sdp = sdkp->device;
3267         struct request_queue *q = sdkp->disk->queue;
3268         sector_t old_capacity = sdkp->capacity;
3269         unsigned char *buffer;
3270         unsigned int dev_max, rw_max;
3271
3272         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3273                                       "sd_revalidate_disk\n"));
3274
3275         /*
3276          * If the device is offline, don't try and read capacity or any
3277          * of the other niceties.
3278          */
3279         if (!scsi_device_online(sdp))
3280                 goto out;
3281
3282         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3283         if (!buffer) {
3284                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3285                           "allocation failure.\n");
3286                 goto out;
3287         }
3288
3289         sd_spinup_disk(sdkp);
3290
3291         /*
3292          * Without media there is no reason to ask; moreover, some devices
3293          * react badly if we do.
3294          */
3295         if (sdkp->media_present) {
3296                 sd_read_capacity(sdkp, buffer);
3297
3298                 /*
3299                  * set the default to rotational.  All non-rotational devices
3300                  * support the block characteristics VPD page, which will
3301                  * cause this to be updated correctly and any device which
3302                  * doesn't support it should be treated as rotational.
3303                  */
3304                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3305                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3306
3307                 if (scsi_device_supports_vpd(sdp)) {
3308                         sd_read_block_provisioning(sdkp);
3309                         sd_read_block_limits(sdkp);
3310                         sd_read_block_characteristics(sdkp);
3311                         sd_zbc_read_zones(sdkp, buffer);
3312                         sd_read_cpr(sdkp);
3313                 }
3314
3315                 sd_print_capacity(sdkp, old_capacity);
3316
3317                 sd_read_write_protect_flag(sdkp, buffer);
3318                 sd_read_cache_type(sdkp, buffer);
3319                 sd_read_app_tag_own(sdkp, buffer);
3320                 sd_read_write_same(sdkp, buffer);
3321                 sd_read_security(sdkp, buffer);
3322                 sd_config_protection(sdkp);
3323         }
3324
3325         /*
3326          * We now have all cache related info, determine how we deal
3327          * with flush requests.
3328          */
3329         sd_set_flush_flag(sdkp);
3330
3331         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3332         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3333
3334         /* Some devices report a maximum block count for READ/WRITE requests. */
3335         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3336         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3337
3338         if (sd_validate_min_xfer_size(sdkp))
3339                 blk_queue_io_min(sdkp->disk->queue,
3340                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3341         else
3342                 blk_queue_io_min(sdkp->disk->queue, 0);
3343
3344         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3345                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3346                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3347         } else {
3348                 q->limits.io_opt = 0;
3349                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3350                                       (sector_t)BLK_DEF_MAX_SECTORS);
3351         }
3352
3353         /*
3354          * Limit default to SCSI host optimal sector limit if set. There may be
3355          * an impact on performance for when the size of a request exceeds this
3356          * host limit.
3357          */
3358         rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3359
3360         /* Do not exceed controller limit */
3361         rw_max = min(rw_max, queue_max_hw_sectors(q));
3362
3363         /*
3364          * Only update max_sectors if previously unset or if the current value
3365          * exceeds the capabilities of the hardware.
3366          */
3367         if (sdkp->first_scan ||
3368             q->limits.max_sectors > q->limits.max_dev_sectors ||
3369             q->limits.max_sectors > q->limits.max_hw_sectors)
3370                 q->limits.max_sectors = rw_max;
3371
3372         sdkp->first_scan = 0;
3373
3374         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3375         sd_config_write_same(sdkp);
3376         kfree(buffer);
3377
3378         /*
3379          * For a zoned drive, revalidating the zones can be done only once
3380          * the gendisk capacity is set. So if this fails, set back the gendisk
3381          * capacity to 0.
3382          */
3383         if (sd_zbc_revalidate_zones(sdkp))
3384                 set_capacity_and_notify(disk, 0);
3385
3386  out:
3387         return 0;
3388 }
3389
3390 /**
3391  *      sd_unlock_native_capacity - unlock native capacity
3392  *      @disk: struct gendisk to set capacity for
3393  *
3394  *      Block layer calls this function if it detects that partitions
3395  *      on @disk reach beyond the end of the device.  If the SCSI host
3396  *      implements ->unlock_native_capacity() method, it's invoked to
3397  *      give it a chance to adjust the device capacity.
3398  *
3399  *      CONTEXT:
3400  *      Defined by block layer.  Might sleep.
3401  */
3402 static void sd_unlock_native_capacity(struct gendisk *disk)
3403 {
3404         struct scsi_device *sdev = scsi_disk(disk)->device;
3405
3406         if (sdev->host->hostt->unlock_native_capacity)
3407                 sdev->host->hostt->unlock_native_capacity(sdev);
3408 }
3409
3410 /**
3411  *      sd_format_disk_name - format disk name
3412  *      @prefix: name prefix - ie. "sd" for SCSI disks
3413  *      @index: index of the disk to format name for
3414  *      @buf: output buffer
3415  *      @buflen: length of the output buffer
3416  *
3417  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3418  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3419  *      which is followed by sdaaa.
3420  *
3421  *      This is basically 26 base counting with one extra 'nil' entry
3422  *      at the beginning from the second digit on and can be
3423  *      determined using similar method as 26 base conversion with the
3424  *      index shifted -1 after each digit is computed.
3425  *
3426  *      CONTEXT:
3427  *      Don't care.
3428  *
3429  *      RETURNS:
3430  *      0 on success, -errno on failure.
3431  */
3432 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3433 {
3434         const int base = 'z' - 'a' + 1;
3435         char *begin = buf + strlen(prefix);
3436         char *end = buf + buflen;
3437         char *p;
3438         int unit;
3439
3440         p = end - 1;
3441         *p = '\0';
3442         unit = base;
3443         do {
3444                 if (p == begin)
3445                         return -EINVAL;
3446                 *--p = 'a' + (index % unit);
3447                 index = (index / unit) - 1;
3448         } while (index >= 0);
3449
3450         memmove(begin, p, end - p);
3451         memcpy(buf, prefix, strlen(prefix));
3452
3453         return 0;
3454 }
3455
3456 /**
3457  *      sd_probe - called during driver initialization and whenever a
3458  *      new scsi device is attached to the system. It is called once
3459  *      for each scsi device (not just disks) present.
3460  *      @dev: pointer to device object
3461  *
3462  *      Returns 0 if successful (or not interested in this scsi device 
3463  *      (e.g. scanner)); 1 when there is an error.
3464  *
3465  *      Note: this function is invoked from the scsi mid-level.
3466  *      This function sets up the mapping between a given 
3467  *      <host,channel,id,lun> (found in sdp) and new device name 
3468  *      (e.g. /dev/sda). More precisely it is the block device major 
3469  *      and minor number that is chosen here.
3470  *
3471  *      Assume sd_probe is not re-entrant (for time being)
3472  *      Also think about sd_probe() and sd_remove() running coincidentally.
3473  **/
3474 static int sd_probe(struct device *dev)
3475 {
3476         struct scsi_device *sdp = to_scsi_device(dev);
3477         struct scsi_disk *sdkp;
3478         struct gendisk *gd;
3479         int index;
3480         int error;
3481
3482         scsi_autopm_get_device(sdp);
3483         error = -ENODEV;
3484         if (sdp->type != TYPE_DISK &&
3485             sdp->type != TYPE_ZBC &&
3486             sdp->type != TYPE_MOD &&
3487             sdp->type != TYPE_RBC)
3488                 goto out;
3489
3490         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3491                 sdev_printk(KERN_WARNING, sdp,
3492                             "Unsupported ZBC host-managed device.\n");
3493                 goto out;
3494         }
3495
3496         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3497                                         "sd_probe\n"));
3498
3499         error = -ENOMEM;
3500         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3501         if (!sdkp)
3502                 goto out;
3503
3504         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3505                                          &sd_bio_compl_lkclass);
3506         if (!gd)
3507                 goto out_free;
3508
3509         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3510         if (index < 0) {
3511                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3512                 goto out_put;
3513         }
3514
3515         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3516         if (error) {
3517                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3518                 goto out_free_index;
3519         }
3520
3521         sdkp->device = sdp;
3522         sdkp->disk = gd;
3523         sdkp->index = index;
3524         sdkp->max_retries = SD_MAX_RETRIES;
3525         atomic_set(&sdkp->openers, 0);
3526         atomic_set(&sdkp->device->ioerr_cnt, 0);
3527
3528         if (!sdp->request_queue->rq_timeout) {
3529                 if (sdp->type != TYPE_MOD)
3530                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3531                 else
3532                         blk_queue_rq_timeout(sdp->request_queue,
3533                                              SD_MOD_TIMEOUT);
3534         }
3535
3536         device_initialize(&sdkp->disk_dev);
3537         sdkp->disk_dev.parent = get_device(dev);
3538         sdkp->disk_dev.class = &sd_disk_class;
3539         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3540
3541         error = device_add(&sdkp->disk_dev);
3542         if (error) {
3543                 put_device(&sdkp->disk_dev);
3544                 goto out;
3545         }
3546
3547         dev_set_drvdata(dev, sdkp);
3548
3549         gd->major = sd_major((index & 0xf0) >> 4);
3550         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3551         gd->minors = SD_MINORS;
3552
3553         gd->fops = &sd_fops;
3554         gd->private_data = sdkp;
3555
3556         /* defaults, until the device tells us otherwise */
3557         sdp->sector_size = 512;
3558         sdkp->capacity = 0;
3559         sdkp->media_present = 1;
3560         sdkp->write_prot = 0;
3561         sdkp->cache_override = 0;
3562         sdkp->WCE = 0;
3563         sdkp->RCD = 0;
3564         sdkp->ATO = 0;
3565         sdkp->first_scan = 1;
3566         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3567
3568         sd_revalidate_disk(gd);
3569
3570         if (sdp->removable) {
3571                 gd->flags |= GENHD_FL_REMOVABLE;
3572                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3573                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3574         }
3575
3576         blk_pm_runtime_init(sdp->request_queue, dev);
3577         if (sdp->rpm_autosuspend) {
3578                 pm_runtime_set_autosuspend_delay(dev,
3579                         sdp->host->hostt->rpm_autosuspend_delay);
3580         }
3581
3582         error = device_add_disk(dev, gd, NULL);
3583         if (error) {
3584                 put_device(&sdkp->disk_dev);
3585                 put_disk(gd);
3586                 goto out;
3587         }
3588
3589         if (sdkp->security) {
3590                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3591                 if (sdkp->opal_dev)
3592                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3593         }
3594
3595         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3596                   sdp->removable ? "removable " : "");
3597         scsi_autopm_put_device(sdp);
3598
3599         return 0;
3600
3601  out_free_index:
3602         ida_free(&sd_index_ida, index);
3603  out_put:
3604         put_disk(gd);
3605  out_free:
3606         kfree(sdkp);
3607  out:
3608         scsi_autopm_put_device(sdp);
3609         return error;
3610 }
3611
3612 /**
3613  *      sd_remove - called whenever a scsi disk (previously recognized by
3614  *      sd_probe) is detached from the system. It is called (potentially
3615  *      multiple times) during sd module unload.
3616  *      @dev: pointer to device object
3617  *
3618  *      Note: this function is invoked from the scsi mid-level.
3619  *      This function potentially frees up a device name (e.g. /dev/sdc)
3620  *      that could be re-used by a subsequent sd_probe().
3621  *      This function is not called when the built-in sd driver is "exit-ed".
3622  **/
3623 static int sd_remove(struct device *dev)
3624 {
3625         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3626
3627         scsi_autopm_get_device(sdkp->device);
3628
3629         device_del(&sdkp->disk_dev);
3630         del_gendisk(sdkp->disk);
3631         sd_shutdown(dev);
3632
3633         put_disk(sdkp->disk);
3634         return 0;
3635 }
3636
3637 static void scsi_disk_release(struct device *dev)
3638 {
3639         struct scsi_disk *sdkp = to_scsi_disk(dev);
3640
3641         ida_free(&sd_index_ida, sdkp->index);
3642         sd_zbc_free_zone_info(sdkp);
3643         put_device(&sdkp->device->sdev_gendev);
3644         free_opal_dev(sdkp->opal_dev);
3645
3646         kfree(sdkp);
3647 }
3648
3649 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3650 {
3651         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3652         struct scsi_sense_hdr sshdr;
3653         const struct scsi_exec_args exec_args = {
3654                 .sshdr = &sshdr,
3655                 .req_flags = BLK_MQ_REQ_PM,
3656         };
3657         struct scsi_device *sdp = sdkp->device;
3658         int res;
3659
3660         if (start)
3661                 cmd[4] |= 1;    /* START */
3662
3663         if (sdp->start_stop_pwr_cond)
3664                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3665
3666         if (!scsi_device_online(sdp))
3667                 return -ENODEV;
3668
3669         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3670                                sdkp->max_retries, &exec_args);
3671         if (res) {
3672                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3673                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3674                         sd_print_sense_hdr(sdkp, &sshdr);
3675                         /* 0x3a is medium not present */
3676                         if (sshdr.asc == 0x3a)
3677                                 res = 0;
3678                 }
3679         }
3680
3681         /* SCSI error codes must not go to the generic layer */
3682         if (res)
3683                 return -EIO;
3684
3685         return 0;
3686 }
3687
3688 /*
3689  * Send a SYNCHRONIZE CACHE instruction down to the device through
3690  * the normal SCSI command structure.  Wait for the command to
3691  * complete.
3692  */
3693 static void sd_shutdown(struct device *dev)
3694 {
3695         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3696
3697         if (!sdkp)
3698                 return;         /* this can happen */
3699
3700         if (pm_runtime_suspended(dev))
3701                 return;
3702
3703         if (sdkp->WCE && sdkp->media_present) {
3704                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3705                 sd_sync_cache(sdkp, NULL);
3706         }
3707
3708         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3709                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3710                 sd_start_stop_device(sdkp, 0);
3711         }
3712 }
3713
3714 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3715 {
3716         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3717         struct scsi_sense_hdr sshdr;
3718         int ret = 0;
3719
3720         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3721                 return 0;
3722
3723         if (sdkp->WCE && sdkp->media_present) {
3724                 if (!sdkp->device->silence_suspend)
3725                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3726                 ret = sd_sync_cache(sdkp, &sshdr);
3727
3728                 if (ret) {
3729                         /* ignore OFFLINE device */
3730                         if (ret == -ENODEV)
3731                                 return 0;
3732
3733                         if (!scsi_sense_valid(&sshdr) ||
3734                             sshdr.sense_key != ILLEGAL_REQUEST)
3735                                 return ret;
3736
3737                         /*
3738                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3739                          * doesn't support sync. There's not much to do and
3740                          * suspend shouldn't fail.
3741                          */
3742                         ret = 0;
3743                 }
3744         }
3745
3746         if (sdkp->device->manage_start_stop) {
3747                 if (!sdkp->device->silence_suspend)
3748                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3749                 /* an error is not worth aborting a system sleep */
3750                 ret = sd_start_stop_device(sdkp, 0);
3751                 if (ignore_stop_errors)
3752                         ret = 0;
3753         }
3754
3755         return ret;
3756 }
3757
3758 static int sd_suspend_system(struct device *dev)
3759 {
3760         if (pm_runtime_suspended(dev))
3761                 return 0;
3762
3763         return sd_suspend_common(dev, true);
3764 }
3765
3766 static int sd_suspend_runtime(struct device *dev)
3767 {
3768         return sd_suspend_common(dev, false);
3769 }
3770
3771 static int sd_resume(struct device *dev)
3772 {
3773         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3774         int ret;
3775
3776         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3777                 return 0;
3778
3779         if (!sdkp->device->manage_start_stop)
3780                 return 0;
3781
3782         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3783         ret = sd_start_stop_device(sdkp, 1);
3784         if (!ret)
3785                 opal_unlock_from_suspend(sdkp->opal_dev);
3786         return ret;
3787 }
3788
3789 static int sd_resume_system(struct device *dev)
3790 {
3791         if (pm_runtime_suspended(dev))
3792                 return 0;
3793
3794         return sd_resume(dev);
3795 }
3796
3797 static int sd_resume_runtime(struct device *dev)
3798 {
3799         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3800         struct scsi_device *sdp;
3801
3802         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3803                 return 0;
3804
3805         sdp = sdkp->device;
3806
3807         if (sdp->ignore_media_change) {
3808                 /* clear the device's sense data */
3809                 static const u8 cmd[10] = { REQUEST_SENSE };
3810                 const struct scsi_exec_args exec_args = {
3811                         .req_flags = BLK_MQ_REQ_PM,
3812                 };
3813
3814                 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3815                                      sdp->request_queue->rq_timeout, 1,
3816                                      &exec_args))
3817                         sd_printk(KERN_NOTICE, sdkp,
3818                                   "Failed to clear sense data\n");
3819         }
3820
3821         return sd_resume(dev);
3822 }
3823
3824 /**
3825  *      init_sd - entry point for this driver (both when built in or when
3826  *      a module).
3827  *
3828  *      Note: this function registers this driver with the scsi mid-level.
3829  **/
3830 static int __init init_sd(void)
3831 {
3832         int majors = 0, i, err;
3833
3834         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3835
3836         for (i = 0; i < SD_MAJORS; i++) {
3837                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3838                         continue;
3839                 majors++;
3840         }
3841
3842         if (!majors)
3843                 return -ENODEV;
3844
3845         err = class_register(&sd_disk_class);
3846         if (err)
3847                 goto err_out;
3848
3849         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3850         if (!sd_page_pool) {
3851                 printk(KERN_ERR "sd: can't init discard page pool\n");
3852                 err = -ENOMEM;
3853                 goto err_out_class;
3854         }
3855
3856         err = scsi_register_driver(&sd_template.gendrv);
3857         if (err)
3858                 goto err_out_driver;
3859
3860         return 0;
3861
3862 err_out_driver:
3863         mempool_destroy(sd_page_pool);
3864 err_out_class:
3865         class_unregister(&sd_disk_class);
3866 err_out:
3867         for (i = 0; i < SD_MAJORS; i++)
3868                 unregister_blkdev(sd_major(i), "sd");
3869         return err;
3870 }
3871
3872 /**
3873  *      exit_sd - exit point for this driver (when it is a module).
3874  *
3875  *      Note: this function unregisters this driver from the scsi mid-level.
3876  **/
3877 static void __exit exit_sd(void)
3878 {
3879         int i;
3880
3881         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3882
3883         scsi_unregister_driver(&sd_template.gendrv);
3884         mempool_destroy(sd_page_pool);
3885
3886         class_unregister(&sd_disk_class);
3887
3888         for (i = 0; i < SD_MAJORS; i++)
3889                 unregister_blkdev(sd_major(i), "sd");
3890 }
3891
3892 module_init(init_sd);
3893 module_exit(exit_sd);
3894
3895 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3896 {
3897         scsi_print_sense_hdr(sdkp->device,
3898                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3899 }
3900
3901 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3902 {
3903         const char *hb_string = scsi_hostbyte_string(result);
3904
3905         if (hb_string)
3906                 sd_printk(KERN_INFO, sdkp,
3907                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3908                           hb_string ? hb_string : "invalid",
3909                           "DRIVER_OK");
3910         else
3911                 sd_printk(KERN_INFO, sdkp,
3912                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3913                           msg, host_byte(result), "DRIVER_OK");
3914 }