Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99
100 #define SD_MINORS       16
101
102 static void sd_config_discard(struct scsi_disk *, unsigned int);
103 static void sd_config_write_same(struct scsi_disk *);
104 static int  sd_revalidate_disk(struct gendisk *);
105 static void sd_unlock_native_capacity(struct gendisk *disk);
106 static int  sd_probe(struct device *);
107 static int  sd_remove(struct device *);
108 static void sd_shutdown(struct device *);
109 static int sd_suspend_system(struct device *);
110 static int sd_suspend_runtime(struct device *);
111 static int sd_resume_system(struct device *);
112 static int sd_resume_runtime(struct device *);
113 static void sd_rescan(struct device *);
114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
115 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
116 static int sd_done(struct scsi_cmnd *);
117 static void sd_eh_reset(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121
122 static DEFINE_IDA(sd_index_ida);
123
124 static mempool_t *sd_page_pool;
125 static struct lock_class_key sd_bio_compl_lkclass;
126
127 static const char *sd_cache_types[] = {
128         "write through", "none", "write back",
129         "write back, no read (daft)"
130 };
131
132 static void sd_set_flush_flag(struct scsi_disk *sdkp)
133 {
134         bool wc = false, fua = false;
135
136         if (sdkp->WCE) {
137                 wc = true;
138                 if (sdkp->DPOFUA)
139                         fua = true;
140         }
141
142         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
143 }
144
145 static ssize_t
146 cache_type_store(struct device *dev, struct device_attribute *attr,
147                  const char *buf, size_t count)
148 {
149         int ct, rcd, wce, sp;
150         struct scsi_disk *sdkp = to_scsi_disk(dev);
151         struct scsi_device *sdp = sdkp->device;
152         char buffer[64];
153         char *buffer_data;
154         struct scsi_mode_data data;
155         struct scsi_sense_hdr sshdr;
156         static const char temp[] = "temporary ";
157         int len;
158
159         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
160                 /* no cache control on RBC devices; theoretically they
161                  * can do it, but there's probably so many exceptions
162                  * it's not worth the risk */
163                 return -EINVAL;
164
165         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
166                 buf += sizeof(temp) - 1;
167                 sdkp->cache_override = 1;
168         } else {
169                 sdkp->cache_override = 0;
170         }
171
172         ct = sysfs_match_string(sd_cache_types, buf);
173         if (ct < 0)
174                 return -EINVAL;
175
176         rcd = ct & 0x01 ? 1 : 0;
177         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
178
179         if (sdkp->cache_override) {
180                 sdkp->WCE = wce;
181                 sdkp->RCD = rcd;
182                 sd_set_flush_flag(sdkp);
183                 return count;
184         }
185
186         if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
187                             sdkp->max_retries, &data, NULL))
188                 return -EINVAL;
189         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
190                   data.block_descriptor_length);
191         buffer_data = buffer + data.header_length +
192                 data.block_descriptor_length;
193         buffer_data[2] &= ~0x05;
194         buffer_data[2] |= wce << 2 | rcd;
195         sp = buffer_data[0] & 0x80 ? 1 : 0;
196         buffer_data[0] &= ~0x80;
197
198         /*
199          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
200          * received mode parameter buffer before doing MODE SELECT.
201          */
202         data.device_specific = 0;
203
204         if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
205                              sdkp->max_retries, &data, &sshdr)) {
206                 if (scsi_sense_valid(&sshdr))
207                         sd_print_sense_hdr(sdkp, &sshdr);
208                 return -EINVAL;
209         }
210         sd_revalidate_disk(sdkp->disk);
211         return count;
212 }
213
214 static ssize_t
215 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
216                        char *buf)
217 {
218         struct scsi_disk *sdkp = to_scsi_disk(dev);
219         struct scsi_device *sdp = sdkp->device;
220
221         return sprintf(buf, "%u\n", sdp->manage_start_stop);
222 }
223
224 static ssize_t
225 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
226                         const char *buf, size_t count)
227 {
228         struct scsi_disk *sdkp = to_scsi_disk(dev);
229         struct scsi_device *sdp = sdkp->device;
230         bool v;
231
232         if (!capable(CAP_SYS_ADMIN))
233                 return -EACCES;
234
235         if (kstrtobool(buf, &v))
236                 return -EINVAL;
237
238         sdp->manage_start_stop = v;
239
240         return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243
244 static ssize_t
245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247         struct scsi_disk *sdkp = to_scsi_disk(dev);
248
249         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
250 }
251
252 static ssize_t
253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254                     const char *buf, size_t count)
255 {
256         bool v;
257         struct scsi_disk *sdkp = to_scsi_disk(dev);
258         struct scsi_device *sdp = sdkp->device;
259
260         if (!capable(CAP_SYS_ADMIN))
261                 return -EACCES;
262
263         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
264                 return -EINVAL;
265
266         if (kstrtobool(buf, &v))
267                 return -EINVAL;
268
269         sdp->allow_restart = v;
270
271         return count;
272 }
273 static DEVICE_ATTR_RW(allow_restart);
274
275 static ssize_t
276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
277 {
278         struct scsi_disk *sdkp = to_scsi_disk(dev);
279         int ct = sdkp->RCD + 2*sdkp->WCE;
280
281         return sprintf(buf, "%s\n", sd_cache_types[ct]);
282 }
283 static DEVICE_ATTR_RW(cache_type);
284
285 static ssize_t
286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288         struct scsi_disk *sdkp = to_scsi_disk(dev);
289
290         return sprintf(buf, "%u\n", sdkp->DPOFUA);
291 }
292 static DEVICE_ATTR_RO(FUA);
293
294 static ssize_t
295 protection_type_show(struct device *dev, struct device_attribute *attr,
296                      char *buf)
297 {
298         struct scsi_disk *sdkp = to_scsi_disk(dev);
299
300         return sprintf(buf, "%u\n", sdkp->protection_type);
301 }
302
303 static ssize_t
304 protection_type_store(struct device *dev, struct device_attribute *attr,
305                       const char *buf, size_t count)
306 {
307         struct scsi_disk *sdkp = to_scsi_disk(dev);
308         unsigned int val;
309         int err;
310
311         if (!capable(CAP_SYS_ADMIN))
312                 return -EACCES;
313
314         err = kstrtouint(buf, 10, &val);
315
316         if (err)
317                 return err;
318
319         if (val <= T10_PI_TYPE3_PROTECTION)
320                 sdkp->protection_type = val;
321
322         return count;
323 }
324 static DEVICE_ATTR_RW(protection_type);
325
326 static ssize_t
327 protection_mode_show(struct device *dev, struct device_attribute *attr,
328                      char *buf)
329 {
330         struct scsi_disk *sdkp = to_scsi_disk(dev);
331         struct scsi_device *sdp = sdkp->device;
332         unsigned int dif, dix;
333
334         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
335         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
336
337         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
338                 dif = 0;
339                 dix = 1;
340         }
341
342         if (!dif && !dix)
343                 return sprintf(buf, "none\n");
344
345         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
346 }
347 static DEVICE_ATTR_RO(protection_mode);
348
349 static ssize_t
350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
351 {
352         struct scsi_disk *sdkp = to_scsi_disk(dev);
353
354         return sprintf(buf, "%u\n", sdkp->ATO);
355 }
356 static DEVICE_ATTR_RO(app_tag_own);
357
358 static ssize_t
359 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
360                        char *buf)
361 {
362         struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364         return sprintf(buf, "%u\n", sdkp->lbpme);
365 }
366 static DEVICE_ATTR_RO(thin_provisioning);
367
368 /* sysfs_match_string() requires dense arrays */
369 static const char *lbp_mode[] = {
370         [SD_LBP_FULL]           = "full",
371         [SD_LBP_UNMAP]          = "unmap",
372         [SD_LBP_WS16]           = "writesame_16",
373         [SD_LBP_WS10]           = "writesame_10",
374         [SD_LBP_ZERO]           = "writesame_zero",
375         [SD_LBP_DISABLE]        = "disabled",
376 };
377
378 static ssize_t
379 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
380                        char *buf)
381 {
382         struct scsi_disk *sdkp = to_scsi_disk(dev);
383
384         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
385 }
386
387 static ssize_t
388 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
389                         const char *buf, size_t count)
390 {
391         struct scsi_disk *sdkp = to_scsi_disk(dev);
392         struct scsi_device *sdp = sdkp->device;
393         int mode;
394
395         if (!capable(CAP_SYS_ADMIN))
396                 return -EACCES;
397
398         if (sd_is_zoned(sdkp)) {
399                 sd_config_discard(sdkp, SD_LBP_DISABLE);
400                 return count;
401         }
402
403         if (sdp->type != TYPE_DISK)
404                 return -EINVAL;
405
406         mode = sysfs_match_string(lbp_mode, buf);
407         if (mode < 0)
408                 return -EINVAL;
409
410         sd_config_discard(sdkp, mode);
411
412         return count;
413 }
414 static DEVICE_ATTR_RW(provisioning_mode);
415
416 /* sysfs_match_string() requires dense arrays */
417 static const char *zeroing_mode[] = {
418         [SD_ZERO_WRITE]         = "write",
419         [SD_ZERO_WS]            = "writesame",
420         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
421         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
422 };
423
424 static ssize_t
425 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
426                   char *buf)
427 {
428         struct scsi_disk *sdkp = to_scsi_disk(dev);
429
430         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
431 }
432
433 static ssize_t
434 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
435                    const char *buf, size_t count)
436 {
437         struct scsi_disk *sdkp = to_scsi_disk(dev);
438         int mode;
439
440         if (!capable(CAP_SYS_ADMIN))
441                 return -EACCES;
442
443         mode = sysfs_match_string(zeroing_mode, buf);
444         if (mode < 0)
445                 return -EINVAL;
446
447         sdkp->zeroing_mode = mode;
448
449         return count;
450 }
451 static DEVICE_ATTR_RW(zeroing_mode);
452
453 static ssize_t
454 max_medium_access_timeouts_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct scsi_disk *sdkp = to_scsi_disk(dev);
458
459         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
460 }
461
462 static ssize_t
463 max_medium_access_timeouts_store(struct device *dev,
464                                  struct device_attribute *attr, const char *buf,
465                                  size_t count)
466 {
467         struct scsi_disk *sdkp = to_scsi_disk(dev);
468         int err;
469
470         if (!capable(CAP_SYS_ADMIN))
471                 return -EACCES;
472
473         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
474
475         return err ? err : count;
476 }
477 static DEVICE_ATTR_RW(max_medium_access_timeouts);
478
479 static ssize_t
480 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
481                            char *buf)
482 {
483         struct scsi_disk *sdkp = to_scsi_disk(dev);
484
485         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
486 }
487
488 static ssize_t
489 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
490                             const char *buf, size_t count)
491 {
492         struct scsi_disk *sdkp = to_scsi_disk(dev);
493         struct scsi_device *sdp = sdkp->device;
494         unsigned long max;
495         int err;
496
497         if (!capable(CAP_SYS_ADMIN))
498                 return -EACCES;
499
500         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
501                 return -EINVAL;
502
503         err = kstrtoul(buf, 10, &max);
504
505         if (err)
506                 return err;
507
508         if (max == 0)
509                 sdp->no_write_same = 1;
510         else if (max <= SD_MAX_WS16_BLOCKS) {
511                 sdp->no_write_same = 0;
512                 sdkp->max_ws_blocks = max;
513         }
514
515         sd_config_write_same(sdkp);
516
517         return count;
518 }
519 static DEVICE_ATTR_RW(max_write_same_blocks);
520
521 static ssize_t
522 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
523 {
524         struct scsi_disk *sdkp = to_scsi_disk(dev);
525
526         if (sdkp->device->type == TYPE_ZBC)
527                 return sprintf(buf, "host-managed\n");
528         if (sdkp->zoned == 1)
529                 return sprintf(buf, "host-aware\n");
530         if (sdkp->zoned == 2)
531                 return sprintf(buf, "drive-managed\n");
532         return sprintf(buf, "none\n");
533 }
534 static DEVICE_ATTR_RO(zoned_cap);
535
536 static ssize_t
537 max_retries_store(struct device *dev, struct device_attribute *attr,
538                   const char *buf, size_t count)
539 {
540         struct scsi_disk *sdkp = to_scsi_disk(dev);
541         struct scsi_device *sdev = sdkp->device;
542         int retries, err;
543
544         err = kstrtoint(buf, 10, &retries);
545         if (err)
546                 return err;
547
548         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
549                 sdkp->max_retries = retries;
550                 return count;
551         }
552
553         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
554                     SD_MAX_RETRIES);
555         return -EINVAL;
556 }
557
558 static ssize_t
559 max_retries_show(struct device *dev, struct device_attribute *attr,
560                  char *buf)
561 {
562         struct scsi_disk *sdkp = to_scsi_disk(dev);
563
564         return sprintf(buf, "%d\n", sdkp->max_retries);
565 }
566
567 static DEVICE_ATTR_RW(max_retries);
568
569 static struct attribute *sd_disk_attrs[] = {
570         &dev_attr_cache_type.attr,
571         &dev_attr_FUA.attr,
572         &dev_attr_allow_restart.attr,
573         &dev_attr_manage_start_stop.attr,
574         &dev_attr_protection_type.attr,
575         &dev_attr_protection_mode.attr,
576         &dev_attr_app_tag_own.attr,
577         &dev_attr_thin_provisioning.attr,
578         &dev_attr_provisioning_mode.attr,
579         &dev_attr_zeroing_mode.attr,
580         &dev_attr_max_write_same_blocks.attr,
581         &dev_attr_max_medium_access_timeouts.attr,
582         &dev_attr_zoned_cap.attr,
583         &dev_attr_max_retries.attr,
584         NULL,
585 };
586 ATTRIBUTE_GROUPS(sd_disk);
587
588 static struct class sd_disk_class = {
589         .name           = "scsi_disk",
590         .owner          = THIS_MODULE,
591         .dev_release    = scsi_disk_release,
592         .dev_groups     = sd_disk_groups,
593 };
594
595 static const struct dev_pm_ops sd_pm_ops = {
596         .suspend                = sd_suspend_system,
597         .resume                 = sd_resume_system,
598         .poweroff               = sd_suspend_system,
599         .restore                = sd_resume_system,
600         .runtime_suspend        = sd_suspend_runtime,
601         .runtime_resume         = sd_resume_runtime,
602 };
603
604 static struct scsi_driver sd_template = {
605         .gendrv = {
606                 .name           = "sd",
607                 .owner          = THIS_MODULE,
608                 .probe          = sd_probe,
609                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
610                 .remove         = sd_remove,
611                 .shutdown       = sd_shutdown,
612                 .pm             = &sd_pm_ops,
613         },
614         .rescan                 = sd_rescan,
615         .init_command           = sd_init_command,
616         .uninit_command         = sd_uninit_command,
617         .done                   = sd_done,
618         .eh_action              = sd_eh_action,
619         .eh_reset               = sd_eh_reset,
620 };
621
622 /*
623  * Don't request a new module, as that could deadlock in multipath
624  * environment.
625  */
626 static void sd_default_probe(dev_t devt)
627 {
628 }
629
630 /*
631  * Device no to disk mapping:
632  * 
633  *       major         disc2     disc  p1
634  *   |............|.............|....|....| <- dev_t
635  *    31        20 19          8 7  4 3  0
636  * 
637  * Inside a major, we have 16k disks, however mapped non-
638  * contiguously. The first 16 disks are for major0, the next
639  * ones with major1, ... Disk 256 is for major0 again, disk 272 
640  * for major1, ... 
641  * As we stay compatible with our numbering scheme, we can reuse 
642  * the well-know SCSI majors 8, 65--71, 136--143.
643  */
644 static int sd_major(int major_idx)
645 {
646         switch (major_idx) {
647         case 0:
648                 return SCSI_DISK0_MAJOR;
649         case 1 ... 7:
650                 return SCSI_DISK1_MAJOR + major_idx - 1;
651         case 8 ... 15:
652                 return SCSI_DISK8_MAJOR + major_idx - 8;
653         default:
654                 BUG();
655                 return 0;       /* shut up gcc */
656         }
657 }
658
659 #ifdef CONFIG_BLK_SED_OPAL
660 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
661                 size_t len, bool send)
662 {
663         struct scsi_disk *sdkp = data;
664         struct scsi_device *sdev = sdkp->device;
665         u8 cdb[12] = { 0, };
666         const struct scsi_exec_args exec_args = {
667                 .req_flags = BLK_MQ_REQ_PM,
668         };
669         int ret;
670
671         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
672         cdb[1] = secp;
673         put_unaligned_be16(spsp, &cdb[2]);
674         put_unaligned_be32(len, &cdb[6]);
675
676         ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
677                                buffer, len, SD_TIMEOUT, sdkp->max_retries,
678                                &exec_args);
679         return ret <= 0 ? ret : -EIO;
680 }
681 #endif /* CONFIG_BLK_SED_OPAL */
682
683 /*
684  * Look up the DIX operation based on whether the command is read or
685  * write and whether dix and dif are enabled.
686  */
687 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
688 {
689         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
690         static const unsigned int ops[] = {     /* wrt dix dif */
691                 SCSI_PROT_NORMAL,               /*  0   0   0  */
692                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
693                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
694                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
695                 SCSI_PROT_NORMAL,               /*  1   0   0  */
696                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
697                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
698                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
699         };
700
701         return ops[write << 2 | dix << 1 | dif];
702 }
703
704 /*
705  * Returns a mask of the protection flags that are valid for a given DIX
706  * operation.
707  */
708 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
709 {
710         static const unsigned int flag_mask[] = {
711                 [SCSI_PROT_NORMAL]              = 0,
712
713                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
714                                                   SCSI_PROT_GUARD_CHECK |
715                                                   SCSI_PROT_REF_CHECK |
716                                                   SCSI_PROT_REF_INCREMENT,
717
718                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
719                                                   SCSI_PROT_IP_CHECKSUM,
720
721                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
722                                                   SCSI_PROT_GUARD_CHECK |
723                                                   SCSI_PROT_REF_CHECK |
724                                                   SCSI_PROT_REF_INCREMENT |
725                                                   SCSI_PROT_IP_CHECKSUM,
726
727                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
728                                                   SCSI_PROT_REF_INCREMENT,
729
730                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
731                                                   SCSI_PROT_REF_CHECK |
732                                                   SCSI_PROT_REF_INCREMENT |
733                                                   SCSI_PROT_IP_CHECKSUM,
734
735                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
736                                                   SCSI_PROT_GUARD_CHECK |
737                                                   SCSI_PROT_REF_CHECK |
738                                                   SCSI_PROT_REF_INCREMENT |
739                                                   SCSI_PROT_IP_CHECKSUM,
740         };
741
742         return flag_mask[prot_op];
743 }
744
745 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
746                                            unsigned int dix, unsigned int dif)
747 {
748         struct request *rq = scsi_cmd_to_rq(scmd);
749         struct bio *bio = rq->bio;
750         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
751         unsigned int protect = 0;
752
753         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
754                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
755                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
756
757                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
758                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
759         }
760
761         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
762                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
763
764                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
765                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
766         }
767
768         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
769                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
770
771                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
772                         protect = 3 << 5;       /* Disable target PI checking */
773                 else
774                         protect = 1 << 5;       /* Enable target PI checking */
775         }
776
777         scsi_set_prot_op(scmd, prot_op);
778         scsi_set_prot_type(scmd, dif);
779         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
780
781         return protect;
782 }
783
784 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
785 {
786         struct request_queue *q = sdkp->disk->queue;
787         unsigned int logical_block_size = sdkp->device->sector_size;
788         unsigned int max_blocks = 0;
789
790         q->limits.discard_alignment =
791                 sdkp->unmap_alignment * logical_block_size;
792         q->limits.discard_granularity =
793                 max(sdkp->physical_block_size,
794                     sdkp->unmap_granularity * logical_block_size);
795         sdkp->provisioning_mode = mode;
796
797         switch (mode) {
798
799         case SD_LBP_FULL:
800         case SD_LBP_DISABLE:
801                 blk_queue_max_discard_sectors(q, 0);
802                 return;
803
804         case SD_LBP_UNMAP:
805                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
806                                           (u32)SD_MAX_WS16_BLOCKS);
807                 break;
808
809         case SD_LBP_WS16:
810                 if (sdkp->device->unmap_limit_for_ws)
811                         max_blocks = sdkp->max_unmap_blocks;
812                 else
813                         max_blocks = sdkp->max_ws_blocks;
814
815                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
816                 break;
817
818         case SD_LBP_WS10:
819                 if (sdkp->device->unmap_limit_for_ws)
820                         max_blocks = sdkp->max_unmap_blocks;
821                 else
822                         max_blocks = sdkp->max_ws_blocks;
823
824                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
825                 break;
826
827         case SD_LBP_ZERO:
828                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
829                                           (u32)SD_MAX_WS10_BLOCKS);
830                 break;
831         }
832
833         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
834 }
835
836 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
837 {
838         struct page *page;
839
840         page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
841         if (!page)
842                 return NULL;
843         clear_highpage(page);
844         bvec_set_page(&rq->special_vec, page, data_len, 0);
845         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
846         return bvec_virt(&rq->special_vec);
847 }
848
849 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
850 {
851         struct scsi_device *sdp = cmd->device;
852         struct request *rq = scsi_cmd_to_rq(cmd);
853         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
854         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
855         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
856         unsigned int data_len = 24;
857         char *buf;
858
859         buf = sd_set_special_bvec(rq, data_len);
860         if (!buf)
861                 return BLK_STS_RESOURCE;
862
863         cmd->cmd_len = 10;
864         cmd->cmnd[0] = UNMAP;
865         cmd->cmnd[8] = 24;
866
867         put_unaligned_be16(6 + 16, &buf[0]);
868         put_unaligned_be16(16, &buf[2]);
869         put_unaligned_be64(lba, &buf[8]);
870         put_unaligned_be32(nr_blocks, &buf[16]);
871
872         cmd->allowed = sdkp->max_retries;
873         cmd->transfersize = data_len;
874         rq->timeout = SD_TIMEOUT;
875
876         return scsi_alloc_sgtables(cmd);
877 }
878
879 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
880                 bool unmap)
881 {
882         struct scsi_device *sdp = cmd->device;
883         struct request *rq = scsi_cmd_to_rq(cmd);
884         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
885         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
886         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
887         u32 data_len = sdp->sector_size;
888
889         if (!sd_set_special_bvec(rq, data_len))
890                 return BLK_STS_RESOURCE;
891
892         cmd->cmd_len = 16;
893         cmd->cmnd[0] = WRITE_SAME_16;
894         if (unmap)
895                 cmd->cmnd[1] = 0x8; /* UNMAP */
896         put_unaligned_be64(lba, &cmd->cmnd[2]);
897         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
898
899         cmd->allowed = sdkp->max_retries;
900         cmd->transfersize = data_len;
901         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
902
903         return scsi_alloc_sgtables(cmd);
904 }
905
906 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
907                 bool unmap)
908 {
909         struct scsi_device *sdp = cmd->device;
910         struct request *rq = scsi_cmd_to_rq(cmd);
911         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
912         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
913         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
914         u32 data_len = sdp->sector_size;
915
916         if (!sd_set_special_bvec(rq, data_len))
917                 return BLK_STS_RESOURCE;
918
919         cmd->cmd_len = 10;
920         cmd->cmnd[0] = WRITE_SAME;
921         if (unmap)
922                 cmd->cmnd[1] = 0x8; /* UNMAP */
923         put_unaligned_be32(lba, &cmd->cmnd[2]);
924         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
925
926         cmd->allowed = sdkp->max_retries;
927         cmd->transfersize = data_len;
928         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
929
930         return scsi_alloc_sgtables(cmd);
931 }
932
933 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
934 {
935         struct request *rq = scsi_cmd_to_rq(cmd);
936         struct scsi_device *sdp = cmd->device;
937         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
938         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
939         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
940
941         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
942                 switch (sdkp->zeroing_mode) {
943                 case SD_ZERO_WS16_UNMAP:
944                         return sd_setup_write_same16_cmnd(cmd, true);
945                 case SD_ZERO_WS10_UNMAP:
946                         return sd_setup_write_same10_cmnd(cmd, true);
947                 }
948         }
949
950         if (sdp->no_write_same) {
951                 rq->rq_flags |= RQF_QUIET;
952                 return BLK_STS_TARGET;
953         }
954
955         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
956                 return sd_setup_write_same16_cmnd(cmd, false);
957
958         return sd_setup_write_same10_cmnd(cmd, false);
959 }
960
961 static void sd_config_write_same(struct scsi_disk *sdkp)
962 {
963         struct request_queue *q = sdkp->disk->queue;
964         unsigned int logical_block_size = sdkp->device->sector_size;
965
966         if (sdkp->device->no_write_same) {
967                 sdkp->max_ws_blocks = 0;
968                 goto out;
969         }
970
971         /* Some devices can not handle block counts above 0xffff despite
972          * supporting WRITE SAME(16). Consequently we default to 64k
973          * blocks per I/O unless the device explicitly advertises a
974          * bigger limit.
975          */
976         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
977                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
978                                                    (u32)SD_MAX_WS16_BLOCKS);
979         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
980                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
981                                                    (u32)SD_MAX_WS10_BLOCKS);
982         else {
983                 sdkp->device->no_write_same = 1;
984                 sdkp->max_ws_blocks = 0;
985         }
986
987         if (sdkp->lbprz && sdkp->lbpws)
988                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
989         else if (sdkp->lbprz && sdkp->lbpws10)
990                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
991         else if (sdkp->max_ws_blocks)
992                 sdkp->zeroing_mode = SD_ZERO_WS;
993         else
994                 sdkp->zeroing_mode = SD_ZERO_WRITE;
995
996         if (sdkp->max_ws_blocks &&
997             sdkp->physical_block_size > logical_block_size) {
998                 /*
999                  * Reporting a maximum number of blocks that is not aligned
1000                  * on the device physical size would cause a large write same
1001                  * request to be split into physically unaligned chunks by
1002                  * __blkdev_issue_write_zeroes() even if the caller of this
1003                  * functions took care to align the large request. So make sure
1004                  * the maximum reported is aligned to the device physical block
1005                  * size. This is only an optional optimization for regular
1006                  * disks, but this is mandatory to avoid failure of large write
1007                  * same requests directed at sequential write required zones of
1008                  * host-managed ZBC disks.
1009                  */
1010                 sdkp->max_ws_blocks =
1011                         round_down(sdkp->max_ws_blocks,
1012                                    bytes_to_logical(sdkp->device,
1013                                                     sdkp->physical_block_size));
1014         }
1015
1016 out:
1017         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1018                                          (logical_block_size >> 9));
1019 }
1020
1021 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1022 {
1023         struct request *rq = scsi_cmd_to_rq(cmd);
1024         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1025
1026         /* flush requests don't perform I/O, zero the S/G table */
1027         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1028
1029         if (cmd->device->use_16_for_sync) {
1030                 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1031                 cmd->cmd_len = 16;
1032         } else {
1033                 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1034                 cmd->cmd_len = 10;
1035         }
1036         cmd->transfersize = 0;
1037         cmd->allowed = sdkp->max_retries;
1038
1039         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1040         return BLK_STS_OK;
1041 }
1042
1043 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1044                                        sector_t lba, unsigned int nr_blocks,
1045                                        unsigned char flags)
1046 {
1047         cmd->cmd_len = SD_EXT_CDB_SIZE;
1048         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1049         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1050         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1051         cmd->cmnd[10] = flags;
1052         put_unaligned_be64(lba, &cmd->cmnd[12]);
1053         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1054         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1055
1056         return BLK_STS_OK;
1057 }
1058
1059 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1060                                        sector_t lba, unsigned int nr_blocks,
1061                                        unsigned char flags)
1062 {
1063         cmd->cmd_len  = 16;
1064         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1065         cmd->cmnd[1]  = flags;
1066         cmd->cmnd[14] = 0;
1067         cmd->cmnd[15] = 0;
1068         put_unaligned_be64(lba, &cmd->cmnd[2]);
1069         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1070
1071         return BLK_STS_OK;
1072 }
1073
1074 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1075                                        sector_t lba, unsigned int nr_blocks,
1076                                        unsigned char flags)
1077 {
1078         cmd->cmd_len = 10;
1079         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1080         cmd->cmnd[1] = flags;
1081         cmd->cmnd[6] = 0;
1082         cmd->cmnd[9] = 0;
1083         put_unaligned_be32(lba, &cmd->cmnd[2]);
1084         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1085
1086         return BLK_STS_OK;
1087 }
1088
1089 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1090                                       sector_t lba, unsigned int nr_blocks,
1091                                       unsigned char flags)
1092 {
1093         /* Avoid that 0 blocks gets translated into 256 blocks. */
1094         if (WARN_ON_ONCE(nr_blocks == 0))
1095                 return BLK_STS_IOERR;
1096
1097         if (unlikely(flags & 0x8)) {
1098                 /*
1099                  * This happens only if this drive failed 10byte rw
1100                  * command with ILLEGAL_REQUEST during operation and
1101                  * thus turned off use_10_for_rw.
1102                  */
1103                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1104                 return BLK_STS_IOERR;
1105         }
1106
1107         cmd->cmd_len = 6;
1108         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1109         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1110         cmd->cmnd[2] = (lba >> 8) & 0xff;
1111         cmd->cmnd[3] = lba & 0xff;
1112         cmd->cmnd[4] = nr_blocks;
1113         cmd->cmnd[5] = 0;
1114
1115         return BLK_STS_OK;
1116 }
1117
1118 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1119 {
1120         struct request *rq = scsi_cmd_to_rq(cmd);
1121         struct scsi_device *sdp = cmd->device;
1122         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1123         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1124         sector_t threshold;
1125         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1126         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1127         bool write = rq_data_dir(rq) == WRITE;
1128         unsigned char protect, fua;
1129         blk_status_t ret;
1130         unsigned int dif;
1131         bool dix;
1132
1133         ret = scsi_alloc_sgtables(cmd);
1134         if (ret != BLK_STS_OK)
1135                 return ret;
1136
1137         ret = BLK_STS_IOERR;
1138         if (!scsi_device_online(sdp) || sdp->changed) {
1139                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1140                 goto fail;
1141         }
1142
1143         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1144                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1145                 goto fail;
1146         }
1147
1148         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1149                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1150                 goto fail;
1151         }
1152
1153         /*
1154          * Some SD card readers can't handle accesses which touch the
1155          * last one or two logical blocks. Split accesses as needed.
1156          */
1157         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1158
1159         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1160                 if (lba < threshold) {
1161                         /* Access up to the threshold but not beyond */
1162                         nr_blocks = threshold - lba;
1163                 } else {
1164                         /* Access only a single logical block */
1165                         nr_blocks = 1;
1166                 }
1167         }
1168
1169         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1170                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1171                 if (ret)
1172                         goto fail;
1173         }
1174
1175         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1176         dix = scsi_prot_sg_count(cmd);
1177         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1178
1179         if (dif || dix)
1180                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1181         else
1182                 protect = 0;
1183
1184         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1185                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1186                                          protect | fua);
1187         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1188                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1189                                          protect | fua);
1190         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1191                    sdp->use_10_for_rw || protect) {
1192                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1193                                          protect | fua);
1194         } else {
1195                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1196                                         protect | fua);
1197         }
1198
1199         if (unlikely(ret != BLK_STS_OK))
1200                 goto fail;
1201
1202         /*
1203          * We shouldn't disconnect in the middle of a sector, so with a dumb
1204          * host adapter, it's safe to assume that we can at least transfer
1205          * this many bytes between each connect / disconnect.
1206          */
1207         cmd->transfersize = sdp->sector_size;
1208         cmd->underflow = nr_blocks << 9;
1209         cmd->allowed = sdkp->max_retries;
1210         cmd->sdb.length = nr_blocks * sdp->sector_size;
1211
1212         SCSI_LOG_HLQUEUE(1,
1213                          scmd_printk(KERN_INFO, cmd,
1214                                      "%s: block=%llu, count=%d\n", __func__,
1215                                      (unsigned long long)blk_rq_pos(rq),
1216                                      blk_rq_sectors(rq)));
1217         SCSI_LOG_HLQUEUE(2,
1218                          scmd_printk(KERN_INFO, cmd,
1219                                      "%s %d/%u 512 byte blocks.\n",
1220                                      write ? "writing" : "reading", nr_blocks,
1221                                      blk_rq_sectors(rq)));
1222
1223         /*
1224          * This indicates that the command is ready from our end to be queued.
1225          */
1226         return BLK_STS_OK;
1227 fail:
1228         scsi_free_sgtables(cmd);
1229         return ret;
1230 }
1231
1232 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1233 {
1234         struct request *rq = scsi_cmd_to_rq(cmd);
1235
1236         switch (req_op(rq)) {
1237         case REQ_OP_DISCARD:
1238                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1239                 case SD_LBP_UNMAP:
1240                         return sd_setup_unmap_cmnd(cmd);
1241                 case SD_LBP_WS16:
1242                         return sd_setup_write_same16_cmnd(cmd, true);
1243                 case SD_LBP_WS10:
1244                         return sd_setup_write_same10_cmnd(cmd, true);
1245                 case SD_LBP_ZERO:
1246                         return sd_setup_write_same10_cmnd(cmd, false);
1247                 default:
1248                         return BLK_STS_TARGET;
1249                 }
1250         case REQ_OP_WRITE_ZEROES:
1251                 return sd_setup_write_zeroes_cmnd(cmd);
1252         case REQ_OP_FLUSH:
1253                 return sd_setup_flush_cmnd(cmd);
1254         case REQ_OP_READ:
1255         case REQ_OP_WRITE:
1256         case REQ_OP_ZONE_APPEND:
1257                 return sd_setup_read_write_cmnd(cmd);
1258         case REQ_OP_ZONE_RESET:
1259                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1260                                                    false);
1261         case REQ_OP_ZONE_RESET_ALL:
1262                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1263                                                    true);
1264         case REQ_OP_ZONE_OPEN:
1265                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1266         case REQ_OP_ZONE_CLOSE:
1267                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1268         case REQ_OP_ZONE_FINISH:
1269                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1270         default:
1271                 WARN_ON_ONCE(1);
1272                 return BLK_STS_NOTSUPP;
1273         }
1274 }
1275
1276 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1277 {
1278         struct request *rq = scsi_cmd_to_rq(SCpnt);
1279
1280         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1281                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1282 }
1283
1284 static bool sd_need_revalidate(struct block_device *bdev,
1285                 struct scsi_disk *sdkp)
1286 {
1287         if (sdkp->device->removable || sdkp->write_prot) {
1288                 if (bdev_check_media_change(bdev))
1289                         return true;
1290         }
1291
1292         /*
1293          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1294          * nothing to do with partitions, BLKRRPART is used to force a full
1295          * revalidate after things like a format for historical reasons.
1296          */
1297         return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1298 }
1299
1300 /**
1301  *      sd_open - open a scsi disk device
1302  *      @bdev: Block device of the scsi disk to open
1303  *      @mode: FMODE_* mask
1304  *
1305  *      Returns 0 if successful. Returns a negated errno value in case 
1306  *      of error.
1307  *
1308  *      Note: This can be called from a user context (e.g. fsck(1) )
1309  *      or from within the kernel (e.g. as a result of a mount(1) ).
1310  *      In the latter case @inode and @filp carry an abridged amount
1311  *      of information as noted above.
1312  *
1313  *      Locking: called with bdev->bd_disk->open_mutex held.
1314  **/
1315 static int sd_open(struct block_device *bdev, fmode_t mode)
1316 {
1317         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1318         struct scsi_device *sdev = sdkp->device;
1319         int retval;
1320
1321         if (scsi_device_get(sdev))
1322                 return -ENXIO;
1323
1324         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1325
1326         /*
1327          * If the device is in error recovery, wait until it is done.
1328          * If the device is offline, then disallow any access to it.
1329          */
1330         retval = -ENXIO;
1331         if (!scsi_block_when_processing_errors(sdev))
1332                 goto error_out;
1333
1334         if (sd_need_revalidate(bdev, sdkp))
1335                 sd_revalidate_disk(bdev->bd_disk);
1336
1337         /*
1338          * If the drive is empty, just let the open fail.
1339          */
1340         retval = -ENOMEDIUM;
1341         if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1342                 goto error_out;
1343
1344         /*
1345          * If the device has the write protect tab set, have the open fail
1346          * if the user expects to be able to write to the thing.
1347          */
1348         retval = -EROFS;
1349         if (sdkp->write_prot && (mode & FMODE_WRITE))
1350                 goto error_out;
1351
1352         /*
1353          * It is possible that the disk changing stuff resulted in
1354          * the device being taken offline.  If this is the case,
1355          * report this to the user, and don't pretend that the
1356          * open actually succeeded.
1357          */
1358         retval = -ENXIO;
1359         if (!scsi_device_online(sdev))
1360                 goto error_out;
1361
1362         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1363                 if (scsi_block_when_processing_errors(sdev))
1364                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1365         }
1366
1367         return 0;
1368
1369 error_out:
1370         scsi_device_put(sdev);
1371         return retval;  
1372 }
1373
1374 /**
1375  *      sd_release - invoked when the (last) close(2) is called on this
1376  *      scsi disk.
1377  *      @disk: disk to release
1378  *      @mode: FMODE_* mask
1379  *
1380  *      Returns 0. 
1381  *
1382  *      Note: may block (uninterruptible) if error recovery is underway
1383  *      on this disk.
1384  *
1385  *      Locking: called with bdev->bd_disk->open_mutex held.
1386  **/
1387 static void sd_release(struct gendisk *disk, fmode_t mode)
1388 {
1389         struct scsi_disk *sdkp = scsi_disk(disk);
1390         struct scsi_device *sdev = sdkp->device;
1391
1392         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1393
1394         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1395                 if (scsi_block_when_processing_errors(sdev))
1396                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1397         }
1398
1399         scsi_device_put(sdev);
1400 }
1401
1402 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1403 {
1404         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1405         struct scsi_device *sdp = sdkp->device;
1406         struct Scsi_Host *host = sdp->host;
1407         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1408         int diskinfo[4];
1409
1410         /* default to most commonly used values */
1411         diskinfo[0] = 0x40;     /* 1 << 6 */
1412         diskinfo[1] = 0x20;     /* 1 << 5 */
1413         diskinfo[2] = capacity >> 11;
1414
1415         /* override with calculated, extended default, or driver values */
1416         if (host->hostt->bios_param)
1417                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1418         else
1419                 scsicam_bios_param(bdev, capacity, diskinfo);
1420
1421         geo->heads = diskinfo[0];
1422         geo->sectors = diskinfo[1];
1423         geo->cylinders = diskinfo[2];
1424         return 0;
1425 }
1426
1427 /**
1428  *      sd_ioctl - process an ioctl
1429  *      @bdev: target block device
1430  *      @mode: FMODE_* mask
1431  *      @cmd: ioctl command number
1432  *      @arg: this is third argument given to ioctl(2) system call.
1433  *      Often contains a pointer.
1434  *
1435  *      Returns 0 if successful (some ioctls return positive numbers on
1436  *      success as well). Returns a negated errno value in case of error.
1437  *
1438  *      Note: most ioctls are forward onto the block subsystem or further
1439  *      down in the scsi subsystem.
1440  **/
1441 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1442                     unsigned int cmd, unsigned long arg)
1443 {
1444         struct gendisk *disk = bdev->bd_disk;
1445         struct scsi_disk *sdkp = scsi_disk(disk);
1446         struct scsi_device *sdp = sdkp->device;
1447         void __user *p = (void __user *)arg;
1448         int error;
1449     
1450         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1451                                     "cmd=0x%x\n", disk->disk_name, cmd));
1452
1453         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1454                 return -ENOIOCTLCMD;
1455
1456         /*
1457          * If we are in the middle of error recovery, don't let anyone
1458          * else try and use this device.  Also, if error recovery fails, it
1459          * may try and take the device offline, in which case all further
1460          * access to the device is prohibited.
1461          */
1462         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1463                         (mode & FMODE_NDELAY) != 0);
1464         if (error)
1465                 return error;
1466
1467         if (is_sed_ioctl(cmd))
1468                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1469         return scsi_ioctl(sdp, mode, cmd, p);
1470 }
1471
1472 static void set_media_not_present(struct scsi_disk *sdkp)
1473 {
1474         if (sdkp->media_present)
1475                 sdkp->device->changed = 1;
1476
1477         if (sdkp->device->removable) {
1478                 sdkp->media_present = 0;
1479                 sdkp->capacity = 0;
1480         }
1481 }
1482
1483 static int media_not_present(struct scsi_disk *sdkp,
1484                              struct scsi_sense_hdr *sshdr)
1485 {
1486         if (!scsi_sense_valid(sshdr))
1487                 return 0;
1488
1489         /* not invoked for commands that could return deferred errors */
1490         switch (sshdr->sense_key) {
1491         case UNIT_ATTENTION:
1492         case NOT_READY:
1493                 /* medium not present */
1494                 if (sshdr->asc == 0x3A) {
1495                         set_media_not_present(sdkp);
1496                         return 1;
1497                 }
1498         }
1499         return 0;
1500 }
1501
1502 /**
1503  *      sd_check_events - check media events
1504  *      @disk: kernel device descriptor
1505  *      @clearing: disk events currently being cleared
1506  *
1507  *      Returns mask of DISK_EVENT_*.
1508  *
1509  *      Note: this function is invoked from the block subsystem.
1510  **/
1511 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1512 {
1513         struct scsi_disk *sdkp = disk->private_data;
1514         struct scsi_device *sdp;
1515         int retval;
1516         bool disk_changed;
1517
1518         if (!sdkp)
1519                 return 0;
1520
1521         sdp = sdkp->device;
1522         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1523
1524         /*
1525          * If the device is offline, don't send any commands - just pretend as
1526          * if the command failed.  If the device ever comes back online, we
1527          * can deal with it then.  It is only because of unrecoverable errors
1528          * that we would ever take a device offline in the first place.
1529          */
1530         if (!scsi_device_online(sdp)) {
1531                 set_media_not_present(sdkp);
1532                 goto out;
1533         }
1534
1535         /*
1536          * Using TEST_UNIT_READY enables differentiation between drive with
1537          * no cartridge loaded - NOT READY, drive with changed cartridge -
1538          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1539          *
1540          * Drives that auto spin down. eg iomega jaz 1G, will be started
1541          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1542          * sd_revalidate() is called.
1543          */
1544         if (scsi_block_when_processing_errors(sdp)) {
1545                 struct scsi_sense_hdr sshdr = { 0, };
1546
1547                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1548                                               &sshdr);
1549
1550                 /* failed to execute TUR, assume media not present */
1551                 if (retval < 0 || host_byte(retval)) {
1552                         set_media_not_present(sdkp);
1553                         goto out;
1554                 }
1555
1556                 if (media_not_present(sdkp, &sshdr))
1557                         goto out;
1558         }
1559
1560         /*
1561          * For removable scsi disk we have to recognise the presence
1562          * of a disk in the drive.
1563          */
1564         if (!sdkp->media_present)
1565                 sdp->changed = 1;
1566         sdkp->media_present = 1;
1567 out:
1568         /*
1569          * sdp->changed is set under the following conditions:
1570          *
1571          *      Medium present state has changed in either direction.
1572          *      Device has indicated UNIT_ATTENTION.
1573          */
1574         disk_changed = sdp->changed;
1575         sdp->changed = 0;
1576         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1577 }
1578
1579 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1580 {
1581         int retries, res;
1582         struct scsi_device *sdp = sdkp->device;
1583         const int timeout = sdp->request_queue->rq_timeout
1584                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1585         struct scsi_sense_hdr my_sshdr;
1586         const struct scsi_exec_args exec_args = {
1587                 .req_flags = BLK_MQ_REQ_PM,
1588                 /* caller might not be interested in sense, but we need it */
1589                 .sshdr = sshdr ? : &my_sshdr,
1590         };
1591
1592         if (!scsi_device_online(sdp))
1593                 return -ENODEV;
1594
1595         sshdr = exec_args.sshdr;
1596
1597         for (retries = 3; retries > 0; --retries) {
1598                 unsigned char cmd[16] = { 0 };
1599
1600                 if (sdp->use_16_for_sync)
1601                         cmd[0] = SYNCHRONIZE_CACHE_16;
1602                 else
1603                         cmd[0] = SYNCHRONIZE_CACHE;
1604                 /*
1605                  * Leave the rest of the command zero to indicate
1606                  * flush everything.
1607                  */
1608                 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1609                                        timeout, sdkp->max_retries, &exec_args);
1610                 if (res == 0)
1611                         break;
1612         }
1613
1614         if (res) {
1615                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1616
1617                 if (res < 0)
1618                         return res;
1619
1620                 if (scsi_status_is_check_condition(res) &&
1621                     scsi_sense_valid(sshdr)) {
1622                         sd_print_sense_hdr(sdkp, sshdr);
1623
1624                         /* we need to evaluate the error return  */
1625                         if (sshdr->asc == 0x3a ||       /* medium not present */
1626                             sshdr->asc == 0x20 ||       /* invalid command */
1627                             (sshdr->asc == 0x74 && sshdr->ascq == 0x71))        /* drive is password locked */
1628                                 /* this is no error here */
1629                                 return 0;
1630                 }
1631
1632                 switch (host_byte(res)) {
1633                 /* ignore errors due to racing a disconnection */
1634                 case DID_BAD_TARGET:
1635                 case DID_NO_CONNECT:
1636                         return 0;
1637                 /* signal the upper layer it might try again */
1638                 case DID_BUS_BUSY:
1639                 case DID_IMM_RETRY:
1640                 case DID_REQUEUE:
1641                 case DID_SOFT_ERROR:
1642                         return -EBUSY;
1643                 default:
1644                         return -EIO;
1645                 }
1646         }
1647         return 0;
1648 }
1649
1650 static void sd_rescan(struct device *dev)
1651 {
1652         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1653
1654         sd_revalidate_disk(sdkp->disk);
1655 }
1656
1657 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1658                 enum blk_unique_id type)
1659 {
1660         struct scsi_device *sdev = scsi_disk(disk)->device;
1661         const struct scsi_vpd *vpd;
1662         const unsigned char *d;
1663         int ret = -ENXIO, len;
1664
1665         rcu_read_lock();
1666         vpd = rcu_dereference(sdev->vpd_pg83);
1667         if (!vpd)
1668                 goto out_unlock;
1669
1670         ret = -EINVAL;
1671         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1672                 /* we only care about designators with LU association */
1673                 if (((d[1] >> 4) & 0x3) != 0x00)
1674                         continue;
1675                 if ((d[1] & 0xf) != type)
1676                         continue;
1677
1678                 /*
1679                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1680                  * keep looking as one with more entropy might still show up.
1681                  */
1682                 len = d[3];
1683                 if (len != 8 && len != 12 && len != 16)
1684                         continue;
1685                 ret = len;
1686                 memcpy(id, d + 4, len);
1687                 if (len == 16)
1688                         break;
1689         }
1690 out_unlock:
1691         rcu_read_unlock();
1692         return ret;
1693 }
1694
1695 static char sd_pr_type(enum pr_type type)
1696 {
1697         switch (type) {
1698         case PR_WRITE_EXCLUSIVE:
1699                 return 0x01;
1700         case PR_EXCLUSIVE_ACCESS:
1701                 return 0x03;
1702         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1703                 return 0x05;
1704         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1705                 return 0x06;
1706         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1707                 return 0x07;
1708         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1709                 return 0x08;
1710         default:
1711                 return 0;
1712         }
1713 };
1714
1715 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1716 {
1717         switch (host_byte(result)) {
1718         case DID_TRANSPORT_MARGINAL:
1719         case DID_TRANSPORT_DISRUPTED:
1720         case DID_BUS_BUSY:
1721                 return PR_STS_RETRY_PATH_FAILURE;
1722         case DID_NO_CONNECT:
1723                 return PR_STS_PATH_FAILED;
1724         case DID_TRANSPORT_FAILFAST:
1725                 return PR_STS_PATH_FAST_FAILED;
1726         }
1727
1728         switch (status_byte(result)) {
1729         case SAM_STAT_RESERVATION_CONFLICT:
1730                 return PR_STS_RESERVATION_CONFLICT;
1731         case SAM_STAT_CHECK_CONDITION:
1732                 if (!scsi_sense_valid(sshdr))
1733                         return PR_STS_IOERR;
1734
1735                 if (sshdr->sense_key == ILLEGAL_REQUEST &&
1736                     (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1737                         return -EINVAL;
1738
1739                 fallthrough;
1740         default:
1741                 return PR_STS_IOERR;
1742         }
1743 }
1744
1745 static int sd_pr_command(struct block_device *bdev, u8 sa,
1746                 u64 key, u64 sa_key, u8 type, u8 flags)
1747 {
1748         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1749         struct scsi_device *sdev = sdkp->device;
1750         struct scsi_sense_hdr sshdr;
1751         const struct scsi_exec_args exec_args = {
1752                 .sshdr = &sshdr,
1753         };
1754         int result;
1755         u8 cmd[16] = { 0, };
1756         u8 data[24] = { 0, };
1757
1758         cmd[0] = PERSISTENT_RESERVE_OUT;
1759         cmd[1] = sa;
1760         cmd[2] = type;
1761         put_unaligned_be32(sizeof(data), &cmd[5]);
1762
1763         put_unaligned_be64(key, &data[0]);
1764         put_unaligned_be64(sa_key, &data[8]);
1765         data[20] = flags;
1766
1767         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1768                                   sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1769                                   &exec_args);
1770
1771         if (scsi_status_is_check_condition(result) &&
1772             scsi_sense_valid(&sshdr)) {
1773                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1774                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1775         }
1776
1777         if (result <= 0)
1778                 return result;
1779
1780         return sd_scsi_to_pr_err(&sshdr, result);
1781 }
1782
1783 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1784                 u32 flags)
1785 {
1786         if (flags & ~PR_FL_IGNORE_KEY)
1787                 return -EOPNOTSUPP;
1788         return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1789                         old_key, new_key, 0,
1790                         (1 << 0) /* APTPL */);
1791 }
1792
1793 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1794                 u32 flags)
1795 {
1796         if (flags)
1797                 return -EOPNOTSUPP;
1798         return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1799 }
1800
1801 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1802 {
1803         return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1804 }
1805
1806 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1807                 enum pr_type type, bool abort)
1808 {
1809         return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1810                              sd_pr_type(type), 0);
1811 }
1812
1813 static int sd_pr_clear(struct block_device *bdev, u64 key)
1814 {
1815         return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1816 }
1817
1818 static const struct pr_ops sd_pr_ops = {
1819         .pr_register    = sd_pr_register,
1820         .pr_reserve     = sd_pr_reserve,
1821         .pr_release     = sd_pr_release,
1822         .pr_preempt     = sd_pr_preempt,
1823         .pr_clear       = sd_pr_clear,
1824 };
1825
1826 static void scsi_disk_free_disk(struct gendisk *disk)
1827 {
1828         struct scsi_disk *sdkp = scsi_disk(disk);
1829
1830         put_device(&sdkp->disk_dev);
1831 }
1832
1833 static const struct block_device_operations sd_fops = {
1834         .owner                  = THIS_MODULE,
1835         .open                   = sd_open,
1836         .release                = sd_release,
1837         .ioctl                  = sd_ioctl,
1838         .getgeo                 = sd_getgeo,
1839         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1840         .check_events           = sd_check_events,
1841         .unlock_native_capacity = sd_unlock_native_capacity,
1842         .report_zones           = sd_zbc_report_zones,
1843         .get_unique_id          = sd_get_unique_id,
1844         .free_disk              = scsi_disk_free_disk,
1845         .pr_ops                 = &sd_pr_ops,
1846 };
1847
1848 /**
1849  *      sd_eh_reset - reset error handling callback
1850  *      @scmd:          sd-issued command that has failed
1851  *
1852  *      This function is called by the SCSI midlayer before starting
1853  *      SCSI EH. When counting medium access failures we have to be
1854  *      careful to register it only only once per device and SCSI EH run;
1855  *      there might be several timed out commands which will cause the
1856  *      'max_medium_access_timeouts' counter to trigger after the first
1857  *      SCSI EH run already and set the device to offline.
1858  *      So this function resets the internal counter before starting SCSI EH.
1859  **/
1860 static void sd_eh_reset(struct scsi_cmnd *scmd)
1861 {
1862         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1863
1864         /* New SCSI EH run, reset gate variable */
1865         sdkp->ignore_medium_access_errors = false;
1866 }
1867
1868 /**
1869  *      sd_eh_action - error handling callback
1870  *      @scmd:          sd-issued command that has failed
1871  *      @eh_disp:       The recovery disposition suggested by the midlayer
1872  *
1873  *      This function is called by the SCSI midlayer upon completion of an
1874  *      error test command (currently TEST UNIT READY). The result of sending
1875  *      the eh command is passed in eh_disp.  We're looking for devices that
1876  *      fail medium access commands but are OK with non access commands like
1877  *      test unit ready (so wrongly see the device as having a successful
1878  *      recovery)
1879  **/
1880 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1881 {
1882         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1883         struct scsi_device *sdev = scmd->device;
1884
1885         if (!scsi_device_online(sdev) ||
1886             !scsi_medium_access_command(scmd) ||
1887             host_byte(scmd->result) != DID_TIME_OUT ||
1888             eh_disp != SUCCESS)
1889                 return eh_disp;
1890
1891         /*
1892          * The device has timed out executing a medium access command.
1893          * However, the TEST UNIT READY command sent during error
1894          * handling completed successfully. Either the device is in the
1895          * process of recovering or has it suffered an internal failure
1896          * that prevents access to the storage medium.
1897          */
1898         if (!sdkp->ignore_medium_access_errors) {
1899                 sdkp->medium_access_timed_out++;
1900                 sdkp->ignore_medium_access_errors = true;
1901         }
1902
1903         /*
1904          * If the device keeps failing read/write commands but TEST UNIT
1905          * READY always completes successfully we assume that medium
1906          * access is no longer possible and take the device offline.
1907          */
1908         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1909                 scmd_printk(KERN_ERR, scmd,
1910                             "Medium access timeout failure. Offlining disk!\n");
1911                 mutex_lock(&sdev->state_mutex);
1912                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1913                 mutex_unlock(&sdev->state_mutex);
1914
1915                 return SUCCESS;
1916         }
1917
1918         return eh_disp;
1919 }
1920
1921 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1922 {
1923         struct request *req = scsi_cmd_to_rq(scmd);
1924         struct scsi_device *sdev = scmd->device;
1925         unsigned int transferred, good_bytes;
1926         u64 start_lba, end_lba, bad_lba;
1927
1928         /*
1929          * Some commands have a payload smaller than the device logical
1930          * block size (e.g. INQUIRY on a 4K disk).
1931          */
1932         if (scsi_bufflen(scmd) <= sdev->sector_size)
1933                 return 0;
1934
1935         /* Check if we have a 'bad_lba' information */
1936         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1937                                      SCSI_SENSE_BUFFERSIZE,
1938                                      &bad_lba))
1939                 return 0;
1940
1941         /*
1942          * If the bad lba was reported incorrectly, we have no idea where
1943          * the error is.
1944          */
1945         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1946         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1947         if (bad_lba < start_lba || bad_lba >= end_lba)
1948                 return 0;
1949
1950         /*
1951          * resid is optional but mostly filled in.  When it's unused,
1952          * its value is zero, so we assume the whole buffer transferred
1953          */
1954         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1955
1956         /* This computation should always be done in terms of the
1957          * resolution of the device's medium.
1958          */
1959         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1960
1961         return min(good_bytes, transferred);
1962 }
1963
1964 /**
1965  *      sd_done - bottom half handler: called when the lower level
1966  *      driver has completed (successfully or otherwise) a scsi command.
1967  *      @SCpnt: mid-level's per command structure.
1968  *
1969  *      Note: potentially run from within an ISR. Must not block.
1970  **/
1971 static int sd_done(struct scsi_cmnd *SCpnt)
1972 {
1973         int result = SCpnt->result;
1974         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1975         unsigned int sector_size = SCpnt->device->sector_size;
1976         unsigned int resid;
1977         struct scsi_sense_hdr sshdr;
1978         struct request *req = scsi_cmd_to_rq(SCpnt);
1979         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
1980         int sense_valid = 0;
1981         int sense_deferred = 0;
1982
1983         switch (req_op(req)) {
1984         case REQ_OP_DISCARD:
1985         case REQ_OP_WRITE_ZEROES:
1986         case REQ_OP_ZONE_RESET:
1987         case REQ_OP_ZONE_RESET_ALL:
1988         case REQ_OP_ZONE_OPEN:
1989         case REQ_OP_ZONE_CLOSE:
1990         case REQ_OP_ZONE_FINISH:
1991                 if (!result) {
1992                         good_bytes = blk_rq_bytes(req);
1993                         scsi_set_resid(SCpnt, 0);
1994                 } else {
1995                         good_bytes = 0;
1996                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
1997                 }
1998                 break;
1999         default:
2000                 /*
2001                  * In case of bogus fw or device, we could end up having
2002                  * an unaligned partial completion. Check this here and force
2003                  * alignment.
2004                  */
2005                 resid = scsi_get_resid(SCpnt);
2006                 if (resid & (sector_size - 1)) {
2007                         sd_printk(KERN_INFO, sdkp,
2008                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2009                                 resid, sector_size);
2010                         scsi_print_command(SCpnt);
2011                         resid = min(scsi_bufflen(SCpnt),
2012                                     round_up(resid, sector_size));
2013                         scsi_set_resid(SCpnt, resid);
2014                 }
2015         }
2016
2017         if (result) {
2018                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2019                 if (sense_valid)
2020                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2021         }
2022         sdkp->medium_access_timed_out = 0;
2023
2024         if (!scsi_status_is_check_condition(result) &&
2025             (!sense_valid || sense_deferred))
2026                 goto out;
2027
2028         switch (sshdr.sense_key) {
2029         case HARDWARE_ERROR:
2030         case MEDIUM_ERROR:
2031                 good_bytes = sd_completed_bytes(SCpnt);
2032                 break;
2033         case RECOVERED_ERROR:
2034                 good_bytes = scsi_bufflen(SCpnt);
2035                 break;
2036         case NO_SENSE:
2037                 /* This indicates a false check condition, so ignore it.  An
2038                  * unknown amount of data was transferred so treat it as an
2039                  * error.
2040                  */
2041                 SCpnt->result = 0;
2042                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2043                 break;
2044         case ABORTED_COMMAND:
2045                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2046                         good_bytes = sd_completed_bytes(SCpnt);
2047                 break;
2048         case ILLEGAL_REQUEST:
2049                 switch (sshdr.asc) {
2050                 case 0x10:      /* DIX: Host detected corruption */
2051                         good_bytes = sd_completed_bytes(SCpnt);
2052                         break;
2053                 case 0x20:      /* INVALID COMMAND OPCODE */
2054                 case 0x24:      /* INVALID FIELD IN CDB */
2055                         switch (SCpnt->cmnd[0]) {
2056                         case UNMAP:
2057                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2058                                 break;
2059                         case WRITE_SAME_16:
2060                         case WRITE_SAME:
2061                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2062                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2063                                 } else {
2064                                         sdkp->device->no_write_same = 1;
2065                                         sd_config_write_same(sdkp);
2066                                         req->rq_flags |= RQF_QUIET;
2067                                 }
2068                                 break;
2069                         }
2070                 }
2071                 break;
2072         default:
2073                 break;
2074         }
2075
2076  out:
2077         if (sd_is_zoned(sdkp))
2078                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2079
2080         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2081                                            "sd_done: completed %d of %d bytes\n",
2082                                            good_bytes, scsi_bufflen(SCpnt)));
2083
2084         return good_bytes;
2085 }
2086
2087 /*
2088  * spinup disk - called only in sd_revalidate_disk()
2089  */
2090 static void
2091 sd_spinup_disk(struct scsi_disk *sdkp)
2092 {
2093         unsigned char cmd[10];
2094         unsigned long spintime_expire = 0;
2095         int retries, spintime;
2096         unsigned int the_result;
2097         struct scsi_sense_hdr sshdr;
2098         const struct scsi_exec_args exec_args = {
2099                 .sshdr = &sshdr,
2100         };
2101         int sense_valid = 0;
2102
2103         spintime = 0;
2104
2105         /* Spin up drives, as required.  Only do this at boot time */
2106         /* Spinup needs to be done for module loads too. */
2107         do {
2108                 retries = 0;
2109
2110                 do {
2111                         bool media_was_present = sdkp->media_present;
2112
2113                         cmd[0] = TEST_UNIT_READY;
2114                         memset((void *) &cmd[1], 0, 9);
2115
2116                         the_result = scsi_execute_cmd(sdkp->device, cmd,
2117                                                       REQ_OP_DRV_IN, NULL, 0,
2118                                                       SD_TIMEOUT,
2119                                                       sdkp->max_retries,
2120                                                       &exec_args);
2121
2122                         /*
2123                          * If the drive has indicated to us that it
2124                          * doesn't have any media in it, don't bother
2125                          * with any more polling.
2126                          */
2127                         if (media_not_present(sdkp, &sshdr)) {
2128                                 if (media_was_present)
2129                                         sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2130                                 return;
2131                         }
2132
2133                         if (the_result)
2134                                 sense_valid = scsi_sense_valid(&sshdr);
2135                         retries++;
2136                 } while (retries < 3 &&
2137                          (!scsi_status_is_good(the_result) ||
2138                           (scsi_status_is_check_condition(the_result) &&
2139                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2140
2141                 if (!scsi_status_is_check_condition(the_result)) {
2142                         /* no sense, TUR either succeeded or failed
2143                          * with a status error */
2144                         if(!spintime && !scsi_status_is_good(the_result)) {
2145                                 sd_print_result(sdkp, "Test Unit Ready failed",
2146                                                 the_result);
2147                         }
2148                         break;
2149                 }
2150
2151                 /*
2152                  * The device does not want the automatic start to be issued.
2153                  */
2154                 if (sdkp->device->no_start_on_add)
2155                         break;
2156
2157                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2158                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2159                                 break;  /* manual intervention required */
2160                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2161                                 break;  /* standby */
2162                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2163                                 break;  /* unavailable */
2164                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2165                                 break;  /* sanitize in progress */
2166                         /*
2167                          * Issue command to spin up drive when not ready
2168                          */
2169                         if (!spintime) {
2170                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2171                                 cmd[0] = START_STOP;
2172                                 cmd[1] = 1;     /* Return immediately */
2173                                 memset((void *) &cmd[2], 0, 8);
2174                                 cmd[4] = 1;     /* Start spin cycle */
2175                                 if (sdkp->device->start_stop_pwr_cond)
2176                                         cmd[4] |= 1 << 4;
2177                                 scsi_execute_cmd(sdkp->device, cmd,
2178                                                  REQ_OP_DRV_IN, NULL, 0,
2179                                                  SD_TIMEOUT, sdkp->max_retries,
2180                                                  &exec_args);
2181                                 spintime_expire = jiffies + 100 * HZ;
2182                                 spintime = 1;
2183                         }
2184                         /* Wait 1 second for next try */
2185                         msleep(1000);
2186                         printk(KERN_CONT ".");
2187
2188                 /*
2189                  * Wait for USB flash devices with slow firmware.
2190                  * Yes, this sense key/ASC combination shouldn't
2191                  * occur here.  It's characteristic of these devices.
2192                  */
2193                 } else if (sense_valid &&
2194                                 sshdr.sense_key == UNIT_ATTENTION &&
2195                                 sshdr.asc == 0x28) {
2196                         if (!spintime) {
2197                                 spintime_expire = jiffies + 5 * HZ;
2198                                 spintime = 1;
2199                         }
2200                         /* Wait 1 second for next try */
2201                         msleep(1000);
2202                 } else {
2203                         /* we don't understand the sense code, so it's
2204                          * probably pointless to loop */
2205                         if(!spintime) {
2206                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2207                                 sd_print_sense_hdr(sdkp, &sshdr);
2208                         }
2209                         break;
2210                 }
2211                                 
2212         } while (spintime && time_before_eq(jiffies, spintime_expire));
2213
2214         if (spintime) {
2215                 if (scsi_status_is_good(the_result))
2216                         printk(KERN_CONT "ready\n");
2217                 else
2218                         printk(KERN_CONT "not responding...\n");
2219         }
2220 }
2221
2222 /*
2223  * Determine whether disk supports Data Integrity Field.
2224  */
2225 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2226 {
2227         struct scsi_device *sdp = sdkp->device;
2228         u8 type;
2229
2230         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2231                 sdkp->protection_type = 0;
2232                 return 0;
2233         }
2234
2235         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2236
2237         if (type > T10_PI_TYPE3_PROTECTION) {
2238                 sd_printk(KERN_ERR, sdkp, "formatted with unsupported"  \
2239                           " protection type %u. Disabling disk!\n",
2240                           type);
2241                 sdkp->protection_type = 0;
2242                 return -ENODEV;
2243         }
2244
2245         sdkp->protection_type = type;
2246
2247         return 0;
2248 }
2249
2250 static void sd_config_protection(struct scsi_disk *sdkp)
2251 {
2252         struct scsi_device *sdp = sdkp->device;
2253
2254         sd_dif_config_host(sdkp);
2255
2256         if (!sdkp->protection_type)
2257                 return;
2258
2259         if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2260                 sd_first_printk(KERN_NOTICE, sdkp,
2261                                 "Disabling DIF Type %u protection\n",
2262                                 sdkp->protection_type);
2263                 sdkp->protection_type = 0;
2264         }
2265
2266         sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2267                         sdkp->protection_type);
2268 }
2269
2270 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2271                         struct scsi_sense_hdr *sshdr, int sense_valid,
2272                         int the_result)
2273 {
2274         if (sense_valid)
2275                 sd_print_sense_hdr(sdkp, sshdr);
2276         else
2277                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2278
2279         /*
2280          * Set dirty bit for removable devices if not ready -
2281          * sometimes drives will not report this properly.
2282          */
2283         if (sdp->removable &&
2284             sense_valid && sshdr->sense_key == NOT_READY)
2285                 set_media_not_present(sdkp);
2286
2287         /*
2288          * We used to set media_present to 0 here to indicate no media
2289          * in the drive, but some drives fail read capacity even with
2290          * media present, so we can't do that.
2291          */
2292         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2293 }
2294
2295 #define RC16_LEN 32
2296 #if RC16_LEN > SD_BUF_SIZE
2297 #error RC16_LEN must not be more than SD_BUF_SIZE
2298 #endif
2299
2300 #define READ_CAPACITY_RETRIES_ON_RESET  10
2301
2302 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2303                                                 unsigned char *buffer)
2304 {
2305         unsigned char cmd[16];
2306         struct scsi_sense_hdr sshdr;
2307         const struct scsi_exec_args exec_args = {
2308                 .sshdr = &sshdr,
2309         };
2310         int sense_valid = 0;
2311         int the_result;
2312         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2313         unsigned int alignment;
2314         unsigned long long lba;
2315         unsigned sector_size;
2316
2317         if (sdp->no_read_capacity_16)
2318                 return -EINVAL;
2319
2320         do {
2321                 memset(cmd, 0, 16);
2322                 cmd[0] = SERVICE_ACTION_IN_16;
2323                 cmd[1] = SAI_READ_CAPACITY_16;
2324                 cmd[13] = RC16_LEN;
2325                 memset(buffer, 0, RC16_LEN);
2326
2327                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2328                                               buffer, RC16_LEN, SD_TIMEOUT,
2329                                               sdkp->max_retries, &exec_args);
2330
2331                 if (media_not_present(sdkp, &sshdr))
2332                         return -ENODEV;
2333
2334                 if (the_result > 0) {
2335                         sense_valid = scsi_sense_valid(&sshdr);
2336                         if (sense_valid &&
2337                             sshdr.sense_key == ILLEGAL_REQUEST &&
2338                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2339                             sshdr.ascq == 0x00)
2340                                 /* Invalid Command Operation Code or
2341                                  * Invalid Field in CDB, just retry
2342                                  * silently with RC10 */
2343                                 return -EINVAL;
2344                         if (sense_valid &&
2345                             sshdr.sense_key == UNIT_ATTENTION &&
2346                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2347                                 /* Device reset might occur several times,
2348                                  * give it one more chance */
2349                                 if (--reset_retries > 0)
2350                                         continue;
2351                 }
2352                 retries--;
2353
2354         } while (the_result && retries);
2355
2356         if (the_result) {
2357                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2358                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2359                 return -EINVAL;
2360         }
2361
2362         sector_size = get_unaligned_be32(&buffer[8]);
2363         lba = get_unaligned_be64(&buffer[0]);
2364
2365         if (sd_read_protection_type(sdkp, buffer) < 0) {
2366                 sdkp->capacity = 0;
2367                 return -ENODEV;
2368         }
2369
2370         /* Logical blocks per physical block exponent */
2371         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2372
2373         /* RC basis */
2374         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2375
2376         /* Lowest aligned logical block */
2377         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2378         blk_queue_alignment_offset(sdp->request_queue, alignment);
2379         if (alignment && sdkp->first_scan)
2380                 sd_printk(KERN_NOTICE, sdkp,
2381                           "physical block alignment offset: %u\n", alignment);
2382
2383         if (buffer[14] & 0x80) { /* LBPME */
2384                 sdkp->lbpme = 1;
2385
2386                 if (buffer[14] & 0x40) /* LBPRZ */
2387                         sdkp->lbprz = 1;
2388
2389                 sd_config_discard(sdkp, SD_LBP_WS16);
2390         }
2391
2392         sdkp->capacity = lba + 1;
2393         return sector_size;
2394 }
2395
2396 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2397                                                 unsigned char *buffer)
2398 {
2399         unsigned char cmd[16];
2400         struct scsi_sense_hdr sshdr;
2401         const struct scsi_exec_args exec_args = {
2402                 .sshdr = &sshdr,
2403         };
2404         int sense_valid = 0;
2405         int the_result;
2406         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2407         sector_t lba;
2408         unsigned sector_size;
2409
2410         do {
2411                 cmd[0] = READ_CAPACITY;
2412                 memset(&cmd[1], 0, 9);
2413                 memset(buffer, 0, 8);
2414
2415                 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2416                                               8, SD_TIMEOUT, sdkp->max_retries,
2417                                               &exec_args);
2418
2419                 if (media_not_present(sdkp, &sshdr))
2420                         return -ENODEV;
2421
2422                 if (the_result > 0) {
2423                         sense_valid = scsi_sense_valid(&sshdr);
2424                         if (sense_valid &&
2425                             sshdr.sense_key == UNIT_ATTENTION &&
2426                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2427                                 /* Device reset might occur several times,
2428                                  * give it one more chance */
2429                                 if (--reset_retries > 0)
2430                                         continue;
2431                 }
2432                 retries--;
2433
2434         } while (the_result && retries);
2435
2436         if (the_result) {
2437                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2438                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2439                 return -EINVAL;
2440         }
2441
2442         sector_size = get_unaligned_be32(&buffer[4]);
2443         lba = get_unaligned_be32(&buffer[0]);
2444
2445         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2446                 /* Some buggy (usb cardreader) devices return an lba of
2447                    0xffffffff when the want to report a size of 0 (with
2448                    which they really mean no media is present) */
2449                 sdkp->capacity = 0;
2450                 sdkp->physical_block_size = sector_size;
2451                 return sector_size;
2452         }
2453
2454         sdkp->capacity = lba + 1;
2455         sdkp->physical_block_size = sector_size;
2456         return sector_size;
2457 }
2458
2459 static int sd_try_rc16_first(struct scsi_device *sdp)
2460 {
2461         if (sdp->host->max_cmd_len < 16)
2462                 return 0;
2463         if (sdp->try_rc_10_first)
2464                 return 0;
2465         if (sdp->scsi_level > SCSI_SPC_2)
2466                 return 1;
2467         if (scsi_device_protection(sdp))
2468                 return 1;
2469         return 0;
2470 }
2471
2472 /*
2473  * read disk capacity
2474  */
2475 static void
2476 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2477 {
2478         int sector_size;
2479         struct scsi_device *sdp = sdkp->device;
2480
2481         if (sd_try_rc16_first(sdp)) {
2482                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2483                 if (sector_size == -EOVERFLOW)
2484                         goto got_data;
2485                 if (sector_size == -ENODEV)
2486                         return;
2487                 if (sector_size < 0)
2488                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2489                 if (sector_size < 0)
2490                         return;
2491         } else {
2492                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2493                 if (sector_size == -EOVERFLOW)
2494                         goto got_data;
2495                 if (sector_size < 0)
2496                         return;
2497                 if ((sizeof(sdkp->capacity) > 4) &&
2498                     (sdkp->capacity > 0xffffffffULL)) {
2499                         int old_sector_size = sector_size;
2500                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2501                                         "Trying to use READ CAPACITY(16).\n");
2502                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2503                         if (sector_size < 0) {
2504                                 sd_printk(KERN_NOTICE, sdkp,
2505                                         "Using 0xffffffff as device size\n");
2506                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2507                                 sector_size = old_sector_size;
2508                                 goto got_data;
2509                         }
2510                         /* Remember that READ CAPACITY(16) succeeded */
2511                         sdp->try_rc_10_first = 0;
2512                 }
2513         }
2514
2515         /* Some devices are known to return the total number of blocks,
2516          * not the highest block number.  Some devices have versions
2517          * which do this and others which do not.  Some devices we might
2518          * suspect of doing this but we don't know for certain.
2519          *
2520          * If we know the reported capacity is wrong, decrement it.  If
2521          * we can only guess, then assume the number of blocks is even
2522          * (usually true but not always) and err on the side of lowering
2523          * the capacity.
2524          */
2525         if (sdp->fix_capacity ||
2526             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2527                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2528                                 "from its reported value: %llu\n",
2529                                 (unsigned long long) sdkp->capacity);
2530                 --sdkp->capacity;
2531         }
2532
2533 got_data:
2534         if (sector_size == 0) {
2535                 sector_size = 512;
2536                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2537                           "assuming 512.\n");
2538         }
2539
2540         if (sector_size != 512 &&
2541             sector_size != 1024 &&
2542             sector_size != 2048 &&
2543             sector_size != 4096) {
2544                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2545                           sector_size);
2546                 /*
2547                  * The user might want to re-format the drive with
2548                  * a supported sectorsize.  Once this happens, it
2549                  * would be relatively trivial to set the thing up.
2550                  * For this reason, we leave the thing in the table.
2551                  */
2552                 sdkp->capacity = 0;
2553                 /*
2554                  * set a bogus sector size so the normal read/write
2555                  * logic in the block layer will eventually refuse any
2556                  * request on this device without tripping over power
2557                  * of two sector size assumptions
2558                  */
2559                 sector_size = 512;
2560         }
2561         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2562         blk_queue_physical_block_size(sdp->request_queue,
2563                                       sdkp->physical_block_size);
2564         sdkp->device->sector_size = sector_size;
2565
2566         if (sdkp->capacity > 0xffffffff)
2567                 sdp->use_16_for_rw = 1;
2568
2569 }
2570
2571 /*
2572  * Print disk capacity
2573  */
2574 static void
2575 sd_print_capacity(struct scsi_disk *sdkp,
2576                   sector_t old_capacity)
2577 {
2578         int sector_size = sdkp->device->sector_size;
2579         char cap_str_2[10], cap_str_10[10];
2580
2581         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2582                 return;
2583
2584         string_get_size(sdkp->capacity, sector_size,
2585                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2586         string_get_size(sdkp->capacity, sector_size,
2587                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2588
2589         sd_printk(KERN_NOTICE, sdkp,
2590                   "%llu %d-byte logical blocks: (%s/%s)\n",
2591                   (unsigned long long)sdkp->capacity,
2592                   sector_size, cap_str_10, cap_str_2);
2593
2594         if (sdkp->physical_block_size != sector_size)
2595                 sd_printk(KERN_NOTICE, sdkp,
2596                           "%u-byte physical blocks\n",
2597                           sdkp->physical_block_size);
2598 }
2599
2600 /* called with buffer of length 512 */
2601 static inline int
2602 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2603                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2604                  struct scsi_sense_hdr *sshdr)
2605 {
2606         /*
2607          * If we must use MODE SENSE(10), make sure that the buffer length
2608          * is at least 8 bytes so that the mode sense header fits.
2609          */
2610         if (sdkp->device->use_10_for_ms && len < 8)
2611                 len = 8;
2612
2613         return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2614                                SD_TIMEOUT, sdkp->max_retries, data,
2615                                sshdr);
2616 }
2617
2618 /*
2619  * read write protect setting, if possible - called only in sd_revalidate_disk()
2620  * called with buffer of length SD_BUF_SIZE
2621  */
2622 static void
2623 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2624 {
2625         int res;
2626         struct scsi_device *sdp = sdkp->device;
2627         struct scsi_mode_data data;
2628         int old_wp = sdkp->write_prot;
2629
2630         set_disk_ro(sdkp->disk, 0);
2631         if (sdp->skip_ms_page_3f) {
2632                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2633                 return;
2634         }
2635
2636         if (sdp->use_192_bytes_for_3f) {
2637                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2638         } else {
2639                 /*
2640                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2641                  * We have to start carefully: some devices hang if we ask
2642                  * for more than is available.
2643                  */
2644                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2645
2646                 /*
2647                  * Second attempt: ask for page 0 When only page 0 is
2648                  * implemented, a request for page 3F may return Sense Key
2649                  * 5: Illegal Request, Sense Code 24: Invalid field in
2650                  * CDB.
2651                  */
2652                 if (res < 0)
2653                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2654
2655                 /*
2656                  * Third attempt: ask 255 bytes, as we did earlier.
2657                  */
2658                 if (res < 0)
2659                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2660                                                &data, NULL);
2661         }
2662
2663         if (res < 0) {
2664                 sd_first_printk(KERN_WARNING, sdkp,
2665                           "Test WP failed, assume Write Enabled\n");
2666         } else {
2667                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2668                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2669                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2670                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2671                                   sdkp->write_prot ? "on" : "off");
2672                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2673                 }
2674         }
2675 }
2676
2677 /*
2678  * sd_read_cache_type - called only from sd_revalidate_disk()
2679  * called with buffer of length SD_BUF_SIZE
2680  */
2681 static void
2682 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2683 {
2684         int len = 0, res;
2685         struct scsi_device *sdp = sdkp->device;
2686
2687         int dbd;
2688         int modepage;
2689         int first_len;
2690         struct scsi_mode_data data;
2691         struct scsi_sense_hdr sshdr;
2692         int old_wce = sdkp->WCE;
2693         int old_rcd = sdkp->RCD;
2694         int old_dpofua = sdkp->DPOFUA;
2695
2696
2697         if (sdkp->cache_override)
2698                 return;
2699
2700         first_len = 4;
2701         if (sdp->skip_ms_page_8) {
2702                 if (sdp->type == TYPE_RBC)
2703                         goto defaults;
2704                 else {
2705                         if (sdp->skip_ms_page_3f)
2706                                 goto defaults;
2707                         modepage = 0x3F;
2708                         if (sdp->use_192_bytes_for_3f)
2709                                 first_len = 192;
2710                         dbd = 0;
2711                 }
2712         } else if (sdp->type == TYPE_RBC) {
2713                 modepage = 6;
2714                 dbd = 8;
2715         } else {
2716                 modepage = 8;
2717                 dbd = 0;
2718         }
2719
2720         /* cautiously ask */
2721         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2722                         &data, &sshdr);
2723
2724         if (res < 0)
2725                 goto bad_sense;
2726
2727         if (!data.header_length) {
2728                 modepage = 6;
2729                 first_len = 0;
2730                 sd_first_printk(KERN_ERR, sdkp,
2731                                 "Missing header in MODE_SENSE response\n");
2732         }
2733
2734         /* that went OK, now ask for the proper length */
2735         len = data.length;
2736
2737         /*
2738          * We're only interested in the first three bytes, actually.
2739          * But the data cache page is defined for the first 20.
2740          */
2741         if (len < 3)
2742                 goto bad_sense;
2743         else if (len > SD_BUF_SIZE) {
2744                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2745                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2746                 len = SD_BUF_SIZE;
2747         }
2748         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2749                 len = 192;
2750
2751         /* Get the data */
2752         if (len > first_len)
2753                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2754                                 &data, &sshdr);
2755
2756         if (!res) {
2757                 int offset = data.header_length + data.block_descriptor_length;
2758
2759                 while (offset < len) {
2760                         u8 page_code = buffer[offset] & 0x3F;
2761                         u8 spf       = buffer[offset] & 0x40;
2762
2763                         if (page_code == 8 || page_code == 6) {
2764                                 /* We're interested only in the first 3 bytes.
2765                                  */
2766                                 if (len - offset <= 2) {
2767                                         sd_first_printk(KERN_ERR, sdkp,
2768                                                 "Incomplete mode parameter "
2769                                                         "data\n");
2770                                         goto defaults;
2771                                 } else {
2772                                         modepage = page_code;
2773                                         goto Page_found;
2774                                 }
2775                         } else {
2776                                 /* Go to the next page */
2777                                 if (spf && len - offset > 3)
2778                                         offset += 4 + (buffer[offset+2] << 8) +
2779                                                 buffer[offset+3];
2780                                 else if (!spf && len - offset > 1)
2781                                         offset += 2 + buffer[offset+1];
2782                                 else {
2783                                         sd_first_printk(KERN_ERR, sdkp,
2784                                                         "Incomplete mode "
2785                                                         "parameter data\n");
2786                                         goto defaults;
2787                                 }
2788                         }
2789                 }
2790
2791                 sd_first_printk(KERN_WARNING, sdkp,
2792                                 "No Caching mode page found\n");
2793                 goto defaults;
2794
2795         Page_found:
2796                 if (modepage == 8) {
2797                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2798                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2799                 } else {
2800                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2801                         sdkp->RCD = 0;
2802                 }
2803
2804                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2805                 if (sdp->broken_fua) {
2806                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2807                         sdkp->DPOFUA = 0;
2808                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2809                            !sdkp->device->use_16_for_rw) {
2810                         sd_first_printk(KERN_NOTICE, sdkp,
2811                                   "Uses READ/WRITE(6), disabling FUA\n");
2812                         sdkp->DPOFUA = 0;
2813                 }
2814
2815                 /* No cache flush allowed for write protected devices */
2816                 if (sdkp->WCE && sdkp->write_prot)
2817                         sdkp->WCE = 0;
2818
2819                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2820                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2821                         sd_printk(KERN_NOTICE, sdkp,
2822                                   "Write cache: %s, read cache: %s, %s\n",
2823                                   sdkp->WCE ? "enabled" : "disabled",
2824                                   sdkp->RCD ? "disabled" : "enabled",
2825                                   sdkp->DPOFUA ? "supports DPO and FUA"
2826                                   : "doesn't support DPO or FUA");
2827
2828                 return;
2829         }
2830
2831 bad_sense:
2832         if (scsi_sense_valid(&sshdr) &&
2833             sshdr.sense_key == ILLEGAL_REQUEST &&
2834             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2835                 /* Invalid field in CDB */
2836                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2837         else
2838                 sd_first_printk(KERN_ERR, sdkp,
2839                                 "Asking for cache data failed\n");
2840
2841 defaults:
2842         if (sdp->wce_default_on) {
2843                 sd_first_printk(KERN_NOTICE, sdkp,
2844                                 "Assuming drive cache: write back\n");
2845                 sdkp->WCE = 1;
2846         } else {
2847                 sd_first_printk(KERN_WARNING, sdkp,
2848                                 "Assuming drive cache: write through\n");
2849                 sdkp->WCE = 0;
2850         }
2851         sdkp->RCD = 0;
2852         sdkp->DPOFUA = 0;
2853 }
2854
2855 /*
2856  * The ATO bit indicates whether the DIF application tag is available
2857  * for use by the operating system.
2858  */
2859 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2860 {
2861         int res, offset;
2862         struct scsi_device *sdp = sdkp->device;
2863         struct scsi_mode_data data;
2864         struct scsi_sense_hdr sshdr;
2865
2866         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2867                 return;
2868
2869         if (sdkp->protection_type == 0)
2870                 return;
2871
2872         res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2873                               sdkp->max_retries, &data, &sshdr);
2874
2875         if (res < 0 || !data.header_length ||
2876             data.length < 6) {
2877                 sd_first_printk(KERN_WARNING, sdkp,
2878                           "getting Control mode page failed, assume no ATO\n");
2879
2880                 if (scsi_sense_valid(&sshdr))
2881                         sd_print_sense_hdr(sdkp, &sshdr);
2882
2883                 return;
2884         }
2885
2886         offset = data.header_length + data.block_descriptor_length;
2887
2888         if ((buffer[offset] & 0x3f) != 0x0a) {
2889                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2890                 return;
2891         }
2892
2893         if ((buffer[offset + 5] & 0x80) == 0)
2894                 return;
2895
2896         sdkp->ATO = 1;
2897
2898         return;
2899 }
2900
2901 /**
2902  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2903  * @sdkp: disk to query
2904  */
2905 static void sd_read_block_limits(struct scsi_disk *sdkp)
2906 {
2907         struct scsi_vpd *vpd;
2908
2909         rcu_read_lock();
2910
2911         vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2912         if (!vpd || vpd->len < 16)
2913                 goto out;
2914
2915         sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2916         sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2917         sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2918
2919         if (vpd->len >= 64) {
2920                 unsigned int lba_count, desc_count;
2921
2922                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2923
2924                 if (!sdkp->lbpme)
2925                         goto out;
2926
2927                 lba_count = get_unaligned_be32(&vpd->data[20]);
2928                 desc_count = get_unaligned_be32(&vpd->data[24]);
2929
2930                 if (lba_count && desc_count)
2931                         sdkp->max_unmap_blocks = lba_count;
2932
2933                 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2934
2935                 if (vpd->data[32] & 0x80)
2936                         sdkp->unmap_alignment =
2937                                 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
2938
2939                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2940
2941                         if (sdkp->max_unmap_blocks)
2942                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2943                         else
2944                                 sd_config_discard(sdkp, SD_LBP_WS16);
2945
2946                 } else {        /* LBP VPD page tells us what to use */
2947                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
2948                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2949                         else if (sdkp->lbpws)
2950                                 sd_config_discard(sdkp, SD_LBP_WS16);
2951                         else if (sdkp->lbpws10)
2952                                 sd_config_discard(sdkp, SD_LBP_WS10);
2953                         else
2954                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2955                 }
2956         }
2957
2958  out:
2959         rcu_read_unlock();
2960 }
2961
2962 /**
2963  * sd_read_block_characteristics - Query block dev. characteristics
2964  * @sdkp: disk to query
2965  */
2966 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2967 {
2968         struct request_queue *q = sdkp->disk->queue;
2969         struct scsi_vpd *vpd;
2970         u16 rot;
2971         u8 zoned;
2972
2973         rcu_read_lock();
2974         vpd = rcu_dereference(sdkp->device->vpd_pgb1);
2975
2976         if (!vpd || vpd->len < 8) {
2977                 rcu_read_unlock();
2978                 return;
2979         }
2980
2981         rot = get_unaligned_be16(&vpd->data[4]);
2982         zoned = (vpd->data[8] >> 4) & 3;
2983         rcu_read_unlock();
2984
2985         if (rot == 1) {
2986                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2987                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2988         }
2989
2990         if (sdkp->device->type == TYPE_ZBC) {
2991                 /* Host-managed */
2992                 disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
2993         } else {
2994                 sdkp->zoned = zoned;
2995                 if (sdkp->zoned == 1) {
2996                         /* Host-aware */
2997                         disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
2998                 } else {
2999                         /* Regular disk or drive managed disk */
3000                         disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3001                 }
3002         }
3003
3004         if (!sdkp->first_scan)
3005                 return;
3006
3007         if (blk_queue_is_zoned(q)) {
3008                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3009                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3010         } else {
3011                 if (sdkp->zoned == 1)
3012                         sd_printk(KERN_NOTICE, sdkp,
3013                                   "Host-aware SMR disk used as regular disk\n");
3014                 else if (sdkp->zoned == 2)
3015                         sd_printk(KERN_NOTICE, sdkp,
3016                                   "Drive-managed SMR disk\n");
3017         }
3018 }
3019
3020 /**
3021  * sd_read_block_provisioning - Query provisioning VPD page
3022  * @sdkp: disk to query
3023  */
3024 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3025 {
3026         struct scsi_vpd *vpd;
3027
3028         if (sdkp->lbpme == 0)
3029                 return;
3030
3031         rcu_read_lock();
3032         vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3033
3034         if (!vpd || vpd->len < 8) {
3035                 rcu_read_unlock();
3036                 return;
3037         }
3038
3039         sdkp->lbpvpd    = 1;
3040         sdkp->lbpu      = (vpd->data[5] >> 7) & 1; /* UNMAP */
3041         sdkp->lbpws     = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3042         sdkp->lbpws10   = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3043         rcu_read_unlock();
3044 }
3045
3046 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3047 {
3048         struct scsi_device *sdev = sdkp->device;
3049
3050         if (sdev->host->no_write_same) {
3051                 sdev->no_write_same = 1;
3052
3053                 return;
3054         }
3055
3056         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3057                 struct scsi_vpd *vpd;
3058
3059                 sdev->no_report_opcodes = 1;
3060
3061                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3062                  * CODES is unsupported and the device has an ATA
3063                  * Information VPD page (SAT).
3064                  */
3065                 rcu_read_lock();
3066                 vpd = rcu_dereference(sdev->vpd_pg89);
3067                 if (vpd)
3068                         sdev->no_write_same = 1;
3069                 rcu_read_unlock();
3070         }
3071
3072         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3073                 sdkp->ws16 = 1;
3074
3075         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3076                 sdkp->ws10 = 1;
3077 }
3078
3079 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3080 {
3081         struct scsi_device *sdev = sdkp->device;
3082
3083         if (!sdev->security_supported)
3084                 return;
3085
3086         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3087                         SECURITY_PROTOCOL_IN) == 1 &&
3088             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3089                         SECURITY_PROTOCOL_OUT) == 1)
3090                 sdkp->security = 1;
3091 }
3092
3093 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3094 {
3095         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3096 }
3097
3098 /**
3099  * sd_read_cpr - Query concurrent positioning ranges
3100  * @sdkp:       disk to query
3101  */
3102 static void sd_read_cpr(struct scsi_disk *sdkp)
3103 {
3104         struct blk_independent_access_ranges *iars = NULL;
3105         unsigned char *buffer = NULL;
3106         unsigned int nr_cpr = 0;
3107         int i, vpd_len, buf_len = SD_BUF_SIZE;
3108         u8 *desc;
3109
3110         /*
3111          * We need to have the capacity set first for the block layer to be
3112          * able to check the ranges.
3113          */
3114         if (sdkp->first_scan)
3115                 return;
3116
3117         if (!sdkp->capacity)
3118                 goto out;
3119
3120         /*
3121          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3122          * leading to a maximum page size of 64 + 256*32 bytes.
3123          */
3124         buf_len = 64 + 256*32;
3125         buffer = kmalloc(buf_len, GFP_KERNEL);
3126         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3127                 goto out;
3128
3129         /* We must have at least a 64B header and one 32B range descriptor */
3130         vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3131         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3132                 sd_printk(KERN_ERR, sdkp,
3133                           "Invalid Concurrent Positioning Ranges VPD page\n");
3134                 goto out;
3135         }
3136
3137         nr_cpr = (vpd_len - 64) / 32;
3138         if (nr_cpr == 1) {
3139                 nr_cpr = 0;
3140                 goto out;
3141         }
3142
3143         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3144         if (!iars) {
3145                 nr_cpr = 0;
3146                 goto out;
3147         }
3148
3149         desc = &buffer[64];
3150         for (i = 0; i < nr_cpr; i++, desc += 32) {
3151                 if (desc[0] != i) {
3152                         sd_printk(KERN_ERR, sdkp,
3153                                 "Invalid Concurrent Positioning Range number\n");
3154                         nr_cpr = 0;
3155                         break;
3156                 }
3157
3158                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3159                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3160         }
3161
3162 out:
3163         disk_set_independent_access_ranges(sdkp->disk, iars);
3164         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3165                 sd_printk(KERN_NOTICE, sdkp,
3166                           "%u concurrent positioning ranges\n", nr_cpr);
3167                 sdkp->nr_actuators = nr_cpr;
3168         }
3169
3170         kfree(buffer);
3171 }
3172
3173 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3174 {
3175         struct scsi_device *sdp = sdkp->device;
3176         unsigned int min_xfer_bytes =
3177                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3178
3179         if (sdkp->min_xfer_blocks == 0)
3180                 return false;
3181
3182         if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3183                 sd_first_printk(KERN_WARNING, sdkp,
3184                                 "Preferred minimum I/O size %u bytes not a " \
3185                                 "multiple of physical block size (%u bytes)\n",
3186                                 min_xfer_bytes, sdkp->physical_block_size);
3187                 sdkp->min_xfer_blocks = 0;
3188                 return false;
3189         }
3190
3191         sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3192                         min_xfer_bytes);
3193         return true;
3194 }
3195
3196 /*
3197  * Determine the device's preferred I/O size for reads and writes
3198  * unless the reported value is unreasonably small, large, not a
3199  * multiple of the physical block size, or simply garbage.
3200  */
3201 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3202                                       unsigned int dev_max)
3203 {
3204         struct scsi_device *sdp = sdkp->device;
3205         unsigned int opt_xfer_bytes =
3206                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3207         unsigned int min_xfer_bytes =
3208                 logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3209
3210         if (sdkp->opt_xfer_blocks == 0)
3211                 return false;
3212
3213         if (sdkp->opt_xfer_blocks > dev_max) {
3214                 sd_first_printk(KERN_WARNING, sdkp,
3215                                 "Optimal transfer size %u logical blocks " \
3216                                 "> dev_max (%u logical blocks)\n",
3217                                 sdkp->opt_xfer_blocks, dev_max);
3218                 return false;
3219         }
3220
3221         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3222                 sd_first_printk(KERN_WARNING, sdkp,
3223                                 "Optimal transfer size %u logical blocks " \
3224                                 "> sd driver limit (%u logical blocks)\n",
3225                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3226                 return false;
3227         }
3228
3229         if (opt_xfer_bytes < PAGE_SIZE) {
3230                 sd_first_printk(KERN_WARNING, sdkp,
3231                                 "Optimal transfer size %u bytes < " \
3232                                 "PAGE_SIZE (%u bytes)\n",
3233                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3234                 return false;
3235         }
3236
3237         if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3238                 sd_first_printk(KERN_WARNING, sdkp,
3239                                 "Optimal transfer size %u bytes not a " \
3240                                 "multiple of preferred minimum block " \
3241                                 "size (%u bytes)\n",
3242                                 opt_xfer_bytes, min_xfer_bytes);
3243                 return false;
3244         }
3245
3246         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3247                 sd_first_printk(KERN_WARNING, sdkp,
3248                                 "Optimal transfer size %u bytes not a " \
3249                                 "multiple of physical block size (%u bytes)\n",
3250                                 opt_xfer_bytes, sdkp->physical_block_size);
3251                 return false;
3252         }
3253
3254         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3255                         opt_xfer_bytes);
3256         return true;
3257 }
3258
3259 /**
3260  *      sd_revalidate_disk - called the first time a new disk is seen,
3261  *      performs disk spin up, read_capacity, etc.
3262  *      @disk: struct gendisk we care about
3263  **/
3264 static int sd_revalidate_disk(struct gendisk *disk)
3265 {
3266         struct scsi_disk *sdkp = scsi_disk(disk);
3267         struct scsi_device *sdp = sdkp->device;
3268         struct request_queue *q = sdkp->disk->queue;
3269         sector_t old_capacity = sdkp->capacity;
3270         unsigned char *buffer;
3271         unsigned int dev_max, rw_max;
3272
3273         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3274                                       "sd_revalidate_disk\n"));
3275
3276         /*
3277          * If the device is offline, don't try and read capacity or any
3278          * of the other niceties.
3279          */
3280         if (!scsi_device_online(sdp))
3281                 goto out;
3282
3283         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3284         if (!buffer) {
3285                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3286                           "allocation failure.\n");
3287                 goto out;
3288         }
3289
3290         sd_spinup_disk(sdkp);
3291
3292         /*
3293          * Without media there is no reason to ask; moreover, some devices
3294          * react badly if we do.
3295          */
3296         if (sdkp->media_present) {
3297                 sd_read_capacity(sdkp, buffer);
3298
3299                 /*
3300                  * set the default to rotational.  All non-rotational devices
3301                  * support the block characteristics VPD page, which will
3302                  * cause this to be updated correctly and any device which
3303                  * doesn't support it should be treated as rotational.
3304                  */
3305                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3306                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3307
3308                 if (scsi_device_supports_vpd(sdp)) {
3309                         sd_read_block_provisioning(sdkp);
3310                         sd_read_block_limits(sdkp);
3311                         sd_read_block_characteristics(sdkp);
3312                         sd_zbc_read_zones(sdkp, buffer);
3313                         sd_read_cpr(sdkp);
3314                 }
3315
3316                 sd_print_capacity(sdkp, old_capacity);
3317
3318                 sd_read_write_protect_flag(sdkp, buffer);
3319                 sd_read_cache_type(sdkp, buffer);
3320                 sd_read_app_tag_own(sdkp, buffer);
3321                 sd_read_write_same(sdkp, buffer);
3322                 sd_read_security(sdkp, buffer);
3323                 sd_config_protection(sdkp);
3324         }
3325
3326         /*
3327          * We now have all cache related info, determine how we deal
3328          * with flush requests.
3329          */
3330         sd_set_flush_flag(sdkp);
3331
3332         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3333         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3334
3335         /* Some devices report a maximum block count for READ/WRITE requests. */
3336         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3337         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3338
3339         if (sd_validate_min_xfer_size(sdkp))
3340                 blk_queue_io_min(sdkp->disk->queue,
3341                                  logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3342         else
3343                 blk_queue_io_min(sdkp->disk->queue, 0);
3344
3345         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3346                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3347                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3348         } else {
3349                 q->limits.io_opt = 0;
3350                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3351                                       (sector_t)BLK_DEF_MAX_SECTORS);
3352         }
3353
3354         /*
3355          * Limit default to SCSI host optimal sector limit if set. There may be
3356          * an impact on performance for when the size of a request exceeds this
3357          * host limit.
3358          */
3359         rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3360
3361         /* Do not exceed controller limit */
3362         rw_max = min(rw_max, queue_max_hw_sectors(q));
3363
3364         /*
3365          * Only update max_sectors if previously unset or if the current value
3366          * exceeds the capabilities of the hardware.
3367          */
3368         if (sdkp->first_scan ||
3369             q->limits.max_sectors > q->limits.max_dev_sectors ||
3370             q->limits.max_sectors > q->limits.max_hw_sectors)
3371                 q->limits.max_sectors = rw_max;
3372
3373         sdkp->first_scan = 0;
3374
3375         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3376         sd_config_write_same(sdkp);
3377         kfree(buffer);
3378
3379         /*
3380          * For a zoned drive, revalidating the zones can be done only once
3381          * the gendisk capacity is set. So if this fails, set back the gendisk
3382          * capacity to 0.
3383          */
3384         if (sd_zbc_revalidate_zones(sdkp))
3385                 set_capacity_and_notify(disk, 0);
3386
3387  out:
3388         return 0;
3389 }
3390
3391 /**
3392  *      sd_unlock_native_capacity - unlock native capacity
3393  *      @disk: struct gendisk to set capacity for
3394  *
3395  *      Block layer calls this function if it detects that partitions
3396  *      on @disk reach beyond the end of the device.  If the SCSI host
3397  *      implements ->unlock_native_capacity() method, it's invoked to
3398  *      give it a chance to adjust the device capacity.
3399  *
3400  *      CONTEXT:
3401  *      Defined by block layer.  Might sleep.
3402  */
3403 static void sd_unlock_native_capacity(struct gendisk *disk)
3404 {
3405         struct scsi_device *sdev = scsi_disk(disk)->device;
3406
3407         if (sdev->host->hostt->unlock_native_capacity)
3408                 sdev->host->hostt->unlock_native_capacity(sdev);
3409 }
3410
3411 /**
3412  *      sd_format_disk_name - format disk name
3413  *      @prefix: name prefix - ie. "sd" for SCSI disks
3414  *      @index: index of the disk to format name for
3415  *      @buf: output buffer
3416  *      @buflen: length of the output buffer
3417  *
3418  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3419  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3420  *      which is followed by sdaaa.
3421  *
3422  *      This is basically 26 base counting with one extra 'nil' entry
3423  *      at the beginning from the second digit on and can be
3424  *      determined using similar method as 26 base conversion with the
3425  *      index shifted -1 after each digit is computed.
3426  *
3427  *      CONTEXT:
3428  *      Don't care.
3429  *
3430  *      RETURNS:
3431  *      0 on success, -errno on failure.
3432  */
3433 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3434 {
3435         const int base = 'z' - 'a' + 1;
3436         char *begin = buf + strlen(prefix);
3437         char *end = buf + buflen;
3438         char *p;
3439         int unit;
3440
3441         p = end - 1;
3442         *p = '\0';
3443         unit = base;
3444         do {
3445                 if (p == begin)
3446                         return -EINVAL;
3447                 *--p = 'a' + (index % unit);
3448                 index = (index / unit) - 1;
3449         } while (index >= 0);
3450
3451         memmove(begin, p, end - p);
3452         memcpy(buf, prefix, strlen(prefix));
3453
3454         return 0;
3455 }
3456
3457 /**
3458  *      sd_probe - called during driver initialization and whenever a
3459  *      new scsi device is attached to the system. It is called once
3460  *      for each scsi device (not just disks) present.
3461  *      @dev: pointer to device object
3462  *
3463  *      Returns 0 if successful (or not interested in this scsi device 
3464  *      (e.g. scanner)); 1 when there is an error.
3465  *
3466  *      Note: this function is invoked from the scsi mid-level.
3467  *      This function sets up the mapping between a given 
3468  *      <host,channel,id,lun> (found in sdp) and new device name 
3469  *      (e.g. /dev/sda). More precisely it is the block device major 
3470  *      and minor number that is chosen here.
3471  *
3472  *      Assume sd_probe is not re-entrant (for time being)
3473  *      Also think about sd_probe() and sd_remove() running coincidentally.
3474  **/
3475 static int sd_probe(struct device *dev)
3476 {
3477         struct scsi_device *sdp = to_scsi_device(dev);
3478         struct scsi_disk *sdkp;
3479         struct gendisk *gd;
3480         int index;
3481         int error;
3482
3483         scsi_autopm_get_device(sdp);
3484         error = -ENODEV;
3485         if (sdp->type != TYPE_DISK &&
3486             sdp->type != TYPE_ZBC &&
3487             sdp->type != TYPE_MOD &&
3488             sdp->type != TYPE_RBC)
3489                 goto out;
3490
3491         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3492                 sdev_printk(KERN_WARNING, sdp,
3493                             "Unsupported ZBC host-managed device.\n");
3494                 goto out;
3495         }
3496
3497         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3498                                         "sd_probe\n"));
3499
3500         error = -ENOMEM;
3501         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3502         if (!sdkp)
3503                 goto out;
3504
3505         gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3506                                          &sd_bio_compl_lkclass);
3507         if (!gd)
3508                 goto out_free;
3509
3510         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3511         if (index < 0) {
3512                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3513                 goto out_put;
3514         }
3515
3516         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3517         if (error) {
3518                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3519                 goto out_free_index;
3520         }
3521
3522         sdkp->device = sdp;
3523         sdkp->disk = gd;
3524         sdkp->index = index;
3525         sdkp->max_retries = SD_MAX_RETRIES;
3526         atomic_set(&sdkp->openers, 0);
3527         atomic_set(&sdkp->device->ioerr_cnt, 0);
3528
3529         if (!sdp->request_queue->rq_timeout) {
3530                 if (sdp->type != TYPE_MOD)
3531                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3532                 else
3533                         blk_queue_rq_timeout(sdp->request_queue,
3534                                              SD_MOD_TIMEOUT);
3535         }
3536
3537         device_initialize(&sdkp->disk_dev);
3538         sdkp->disk_dev.parent = get_device(dev);
3539         sdkp->disk_dev.class = &sd_disk_class;
3540         dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3541
3542         error = device_add(&sdkp->disk_dev);
3543         if (error) {
3544                 put_device(&sdkp->disk_dev);
3545                 goto out;
3546         }
3547
3548         dev_set_drvdata(dev, sdkp);
3549
3550         gd->major = sd_major((index & 0xf0) >> 4);
3551         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3552         gd->minors = SD_MINORS;
3553
3554         gd->fops = &sd_fops;
3555         gd->private_data = sdkp;
3556
3557         /* defaults, until the device tells us otherwise */
3558         sdp->sector_size = 512;
3559         sdkp->capacity = 0;
3560         sdkp->media_present = 1;
3561         sdkp->write_prot = 0;
3562         sdkp->cache_override = 0;
3563         sdkp->WCE = 0;
3564         sdkp->RCD = 0;
3565         sdkp->ATO = 0;
3566         sdkp->first_scan = 1;
3567         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3568
3569         sd_revalidate_disk(gd);
3570
3571         if (sdp->removable) {
3572                 gd->flags |= GENHD_FL_REMOVABLE;
3573                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3574                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3575         }
3576
3577         blk_pm_runtime_init(sdp->request_queue, dev);
3578         if (sdp->rpm_autosuspend) {
3579                 pm_runtime_set_autosuspend_delay(dev,
3580                         sdp->host->hostt->rpm_autosuspend_delay);
3581         }
3582
3583         error = device_add_disk(dev, gd, NULL);
3584         if (error) {
3585                 put_device(&sdkp->disk_dev);
3586                 put_disk(gd);
3587                 goto out;
3588         }
3589
3590         if (sdkp->security) {
3591                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3592                 if (sdkp->opal_dev)
3593                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3594         }
3595
3596         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3597                   sdp->removable ? "removable " : "");
3598         scsi_autopm_put_device(sdp);
3599
3600         return 0;
3601
3602  out_free_index:
3603         ida_free(&sd_index_ida, index);
3604  out_put:
3605         put_disk(gd);
3606  out_free:
3607         kfree(sdkp);
3608  out:
3609         scsi_autopm_put_device(sdp);
3610         return error;
3611 }
3612
3613 /**
3614  *      sd_remove - called whenever a scsi disk (previously recognized by
3615  *      sd_probe) is detached from the system. It is called (potentially
3616  *      multiple times) during sd module unload.
3617  *      @dev: pointer to device object
3618  *
3619  *      Note: this function is invoked from the scsi mid-level.
3620  *      This function potentially frees up a device name (e.g. /dev/sdc)
3621  *      that could be re-used by a subsequent sd_probe().
3622  *      This function is not called when the built-in sd driver is "exit-ed".
3623  **/
3624 static int sd_remove(struct device *dev)
3625 {
3626         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3627
3628         scsi_autopm_get_device(sdkp->device);
3629
3630         device_del(&sdkp->disk_dev);
3631         del_gendisk(sdkp->disk);
3632         sd_shutdown(dev);
3633
3634         put_disk(sdkp->disk);
3635         return 0;
3636 }
3637
3638 static void scsi_disk_release(struct device *dev)
3639 {
3640         struct scsi_disk *sdkp = to_scsi_disk(dev);
3641
3642         ida_free(&sd_index_ida, sdkp->index);
3643         sd_zbc_free_zone_info(sdkp);
3644         put_device(&sdkp->device->sdev_gendev);
3645         free_opal_dev(sdkp->opal_dev);
3646
3647         kfree(sdkp);
3648 }
3649
3650 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3651 {
3652         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3653         struct scsi_sense_hdr sshdr;
3654         const struct scsi_exec_args exec_args = {
3655                 .sshdr = &sshdr,
3656                 .req_flags = BLK_MQ_REQ_PM,
3657         };
3658         struct scsi_device *sdp = sdkp->device;
3659         int res;
3660
3661         if (start)
3662                 cmd[4] |= 1;    /* START */
3663
3664         if (sdp->start_stop_pwr_cond)
3665                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3666
3667         if (!scsi_device_online(sdp))
3668                 return -ENODEV;
3669
3670         res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3671                                sdkp->max_retries, &exec_args);
3672         if (res) {
3673                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3674                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3675                         sd_print_sense_hdr(sdkp, &sshdr);
3676                         /* 0x3a is medium not present */
3677                         if (sshdr.asc == 0x3a)
3678                                 res = 0;
3679                 }
3680         }
3681
3682         /* SCSI error codes must not go to the generic layer */
3683         if (res)
3684                 return -EIO;
3685
3686         return 0;
3687 }
3688
3689 /*
3690  * Send a SYNCHRONIZE CACHE instruction down to the device through
3691  * the normal SCSI command structure.  Wait for the command to
3692  * complete.
3693  */
3694 static void sd_shutdown(struct device *dev)
3695 {
3696         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3697
3698         if (!sdkp)
3699                 return;         /* this can happen */
3700
3701         if (pm_runtime_suspended(dev))
3702                 return;
3703
3704         if (sdkp->WCE && sdkp->media_present) {
3705                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3706                 sd_sync_cache(sdkp, NULL);
3707         }
3708
3709         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3710                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3711                 sd_start_stop_device(sdkp, 0);
3712         }
3713 }
3714
3715 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3716 {
3717         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3718         struct scsi_sense_hdr sshdr;
3719         int ret = 0;
3720
3721         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3722                 return 0;
3723
3724         if (sdkp->WCE && sdkp->media_present) {
3725                 if (!sdkp->device->silence_suspend)
3726                         sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3727                 ret = sd_sync_cache(sdkp, &sshdr);
3728
3729                 if (ret) {
3730                         /* ignore OFFLINE device */
3731                         if (ret == -ENODEV)
3732                                 return 0;
3733
3734                         if (!scsi_sense_valid(&sshdr) ||
3735                             sshdr.sense_key != ILLEGAL_REQUEST)
3736                                 return ret;
3737
3738                         /*
3739                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3740                          * doesn't support sync. There's not much to do and
3741                          * suspend shouldn't fail.
3742                          */
3743                         ret = 0;
3744                 }
3745         }
3746
3747         if (sdkp->device->manage_start_stop) {
3748                 if (!sdkp->device->silence_suspend)
3749                         sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3750                 /* an error is not worth aborting a system sleep */
3751                 ret = sd_start_stop_device(sdkp, 0);
3752                 if (ignore_stop_errors)
3753                         ret = 0;
3754         }
3755
3756         return ret;
3757 }
3758
3759 static int sd_suspend_system(struct device *dev)
3760 {
3761         if (pm_runtime_suspended(dev))
3762                 return 0;
3763
3764         return sd_suspend_common(dev, true);
3765 }
3766
3767 static int sd_suspend_runtime(struct device *dev)
3768 {
3769         return sd_suspend_common(dev, false);
3770 }
3771
3772 static int sd_resume(struct device *dev)
3773 {
3774         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3775         int ret;
3776
3777         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3778                 return 0;
3779
3780         if (!sdkp->device->manage_start_stop)
3781                 return 0;
3782
3783         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3784         ret = sd_start_stop_device(sdkp, 1);
3785         if (!ret)
3786                 opal_unlock_from_suspend(sdkp->opal_dev);
3787         return ret;
3788 }
3789
3790 static int sd_resume_system(struct device *dev)
3791 {
3792         if (pm_runtime_suspended(dev))
3793                 return 0;
3794
3795         return sd_resume(dev);
3796 }
3797
3798 static int sd_resume_runtime(struct device *dev)
3799 {
3800         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3801         struct scsi_device *sdp;
3802
3803         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3804                 return 0;
3805
3806         sdp = sdkp->device;
3807
3808         if (sdp->ignore_media_change) {
3809                 /* clear the device's sense data */
3810                 static const u8 cmd[10] = { REQUEST_SENSE };
3811                 const struct scsi_exec_args exec_args = {
3812                         .req_flags = BLK_MQ_REQ_PM,
3813                 };
3814
3815                 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3816                                      sdp->request_queue->rq_timeout, 1,
3817                                      &exec_args))
3818                         sd_printk(KERN_NOTICE, sdkp,
3819                                   "Failed to clear sense data\n");
3820         }
3821
3822         return sd_resume(dev);
3823 }
3824
3825 /**
3826  *      init_sd - entry point for this driver (both when built in or when
3827  *      a module).
3828  *
3829  *      Note: this function registers this driver with the scsi mid-level.
3830  **/
3831 static int __init init_sd(void)
3832 {
3833         int majors = 0, i, err;
3834
3835         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3836
3837         for (i = 0; i < SD_MAJORS; i++) {
3838                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3839                         continue;
3840                 majors++;
3841         }
3842
3843         if (!majors)
3844                 return -ENODEV;
3845
3846         err = class_register(&sd_disk_class);
3847         if (err)
3848                 goto err_out;
3849
3850         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3851         if (!sd_page_pool) {
3852                 printk(KERN_ERR "sd: can't init discard page pool\n");
3853                 err = -ENOMEM;
3854                 goto err_out_class;
3855         }
3856
3857         err = scsi_register_driver(&sd_template.gendrv);
3858         if (err)
3859                 goto err_out_driver;
3860
3861         return 0;
3862
3863 err_out_driver:
3864         mempool_destroy(sd_page_pool);
3865 err_out_class:
3866         class_unregister(&sd_disk_class);
3867 err_out:
3868         for (i = 0; i < SD_MAJORS; i++)
3869                 unregister_blkdev(sd_major(i), "sd");
3870         return err;
3871 }
3872
3873 /**
3874  *      exit_sd - exit point for this driver (when it is a module).
3875  *
3876  *      Note: this function unregisters this driver from the scsi mid-level.
3877  **/
3878 static void __exit exit_sd(void)
3879 {
3880         int i;
3881
3882         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3883
3884         scsi_unregister_driver(&sd_template.gendrv);
3885         mempool_destroy(sd_page_pool);
3886
3887         class_unregister(&sd_disk_class);
3888
3889         for (i = 0; i < SD_MAJORS; i++)
3890                 unregister_blkdev(sd_major(i), "sd");
3891 }
3892
3893 module_init(init_sd);
3894 module_exit(exit_sd);
3895
3896 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3897 {
3898         scsi_print_sense_hdr(sdkp->device,
3899                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3900 }
3901
3902 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3903 {
3904         const char *hb_string = scsi_hostbyte_string(result);
3905
3906         if (hb_string)
3907                 sd_printk(KERN_INFO, sdkp,
3908                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3909                           hb_string ? hb_string : "invalid",
3910                           "DRIVER_OK");
3911         else
3912                 sd_printk(KERN_INFO, sdkp,
3913                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3914                           msg, host_byte(result), "DRIVER_OK");
3915 }