Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-2.6-microblaze.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #define SD_MINORS       16
102
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static int  sd_probe(struct device *);
108 static int  sd_remove(struct device *);
109 static void sd_shutdown(struct device *);
110 static int sd_suspend_system(struct device *);
111 static int sd_suspend_runtime(struct device *);
112 static int sd_resume_system(struct device *);
113 static int sd_resume_runtime(struct device *);
114 static void sd_rescan(struct device *);
115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static void sd_eh_reset(struct scsi_cmnd *);
119 static int sd_eh_action(struct scsi_cmnd *, int);
120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
121 static void scsi_disk_release(struct device *cdev);
122
123 static DEFINE_IDA(sd_index_ida);
124
125 /* This semaphore is used to mediate the 0->1 reference get in the
126  * face of object destruction (i.e. we can't allow a get on an
127  * object after last put) */
128 static DEFINE_MUTEX(sd_ref_mutex);
129
130 static struct kmem_cache *sd_cdb_cache;
131 static mempool_t *sd_cdb_pool;
132 static mempool_t *sd_page_pool;
133 static struct lock_class_key sd_bio_compl_lkclass;
134
135 static const char *sd_cache_types[] = {
136         "write through", "none", "write back",
137         "write back, no read (daft)"
138 };
139
140 static void sd_set_flush_flag(struct scsi_disk *sdkp)
141 {
142         bool wc = false, fua = false;
143
144         if (sdkp->WCE) {
145                 wc = true;
146                 if (sdkp->DPOFUA)
147                         fua = true;
148         }
149
150         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
151 }
152
153 static ssize_t
154 cache_type_store(struct device *dev, struct device_attribute *attr,
155                  const char *buf, size_t count)
156 {
157         int ct, rcd, wce, sp;
158         struct scsi_disk *sdkp = to_scsi_disk(dev);
159         struct scsi_device *sdp = sdkp->device;
160         char buffer[64];
161         char *buffer_data;
162         struct scsi_mode_data data;
163         struct scsi_sense_hdr sshdr;
164         static const char temp[] = "temporary ";
165         int len;
166
167         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
168                 /* no cache control on RBC devices; theoretically they
169                  * can do it, but there's probably so many exceptions
170                  * it's not worth the risk */
171                 return -EINVAL;
172
173         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
174                 buf += sizeof(temp) - 1;
175                 sdkp->cache_override = 1;
176         } else {
177                 sdkp->cache_override = 0;
178         }
179
180         ct = sysfs_match_string(sd_cache_types, buf);
181         if (ct < 0)
182                 return -EINVAL;
183
184         rcd = ct & 0x01 ? 1 : 0;
185         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
186
187         if (sdkp->cache_override) {
188                 sdkp->WCE = wce;
189                 sdkp->RCD = rcd;
190                 sd_set_flush_flag(sdkp);
191                 return count;
192         }
193
194         if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
195                             sdkp->max_retries, &data, NULL))
196                 return -EINVAL;
197         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
198                   data.block_descriptor_length);
199         buffer_data = buffer + data.header_length +
200                 data.block_descriptor_length;
201         buffer_data[2] &= ~0x05;
202         buffer_data[2] |= wce << 2 | rcd;
203         sp = buffer_data[0] & 0x80 ? 1 : 0;
204         buffer_data[0] &= ~0x80;
205
206         /*
207          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
208          * received mode parameter buffer before doing MODE SELECT.
209          */
210         data.device_specific = 0;
211
212         if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
213                              sdkp->max_retries, &data, &sshdr)) {
214                 if (scsi_sense_valid(&sshdr))
215                         sd_print_sense_hdr(sdkp, &sshdr);
216                 return -EINVAL;
217         }
218         sd_revalidate_disk(sdkp->disk);
219         return count;
220 }
221
222 static ssize_t
223 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
224                        char *buf)
225 {
226         struct scsi_disk *sdkp = to_scsi_disk(dev);
227         struct scsi_device *sdp = sdkp->device;
228
229         return sprintf(buf, "%u\n", sdp->manage_start_stop);
230 }
231
232 static ssize_t
233 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
234                         const char *buf, size_t count)
235 {
236         struct scsi_disk *sdkp = to_scsi_disk(dev);
237         struct scsi_device *sdp = sdkp->device;
238         bool v;
239
240         if (!capable(CAP_SYS_ADMIN))
241                 return -EACCES;
242
243         if (kstrtobool(buf, &v))
244                 return -EINVAL;
245
246         sdp->manage_start_stop = v;
247
248         return count;
249 }
250 static DEVICE_ATTR_RW(manage_start_stop);
251
252 static ssize_t
253 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
254 {
255         struct scsi_disk *sdkp = to_scsi_disk(dev);
256
257         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
258 }
259
260 static ssize_t
261 allow_restart_store(struct device *dev, struct device_attribute *attr,
262                     const char *buf, size_t count)
263 {
264         bool v;
265         struct scsi_disk *sdkp = to_scsi_disk(dev);
266         struct scsi_device *sdp = sdkp->device;
267
268         if (!capable(CAP_SYS_ADMIN))
269                 return -EACCES;
270
271         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
272                 return -EINVAL;
273
274         if (kstrtobool(buf, &v))
275                 return -EINVAL;
276
277         sdp->allow_restart = v;
278
279         return count;
280 }
281 static DEVICE_ATTR_RW(allow_restart);
282
283 static ssize_t
284 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
285 {
286         struct scsi_disk *sdkp = to_scsi_disk(dev);
287         int ct = sdkp->RCD + 2*sdkp->WCE;
288
289         return sprintf(buf, "%s\n", sd_cache_types[ct]);
290 }
291 static DEVICE_ATTR_RW(cache_type);
292
293 static ssize_t
294 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
295 {
296         struct scsi_disk *sdkp = to_scsi_disk(dev);
297
298         return sprintf(buf, "%u\n", sdkp->DPOFUA);
299 }
300 static DEVICE_ATTR_RO(FUA);
301
302 static ssize_t
303 protection_type_show(struct device *dev, struct device_attribute *attr,
304                      char *buf)
305 {
306         struct scsi_disk *sdkp = to_scsi_disk(dev);
307
308         return sprintf(buf, "%u\n", sdkp->protection_type);
309 }
310
311 static ssize_t
312 protection_type_store(struct device *dev, struct device_attribute *attr,
313                       const char *buf, size_t count)
314 {
315         struct scsi_disk *sdkp = to_scsi_disk(dev);
316         unsigned int val;
317         int err;
318
319         if (!capable(CAP_SYS_ADMIN))
320                 return -EACCES;
321
322         err = kstrtouint(buf, 10, &val);
323
324         if (err)
325                 return err;
326
327         if (val <= T10_PI_TYPE3_PROTECTION)
328                 sdkp->protection_type = val;
329
330         return count;
331 }
332 static DEVICE_ATTR_RW(protection_type);
333
334 static ssize_t
335 protection_mode_show(struct device *dev, struct device_attribute *attr,
336                      char *buf)
337 {
338         struct scsi_disk *sdkp = to_scsi_disk(dev);
339         struct scsi_device *sdp = sdkp->device;
340         unsigned int dif, dix;
341
342         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
343         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
344
345         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
346                 dif = 0;
347                 dix = 1;
348         }
349
350         if (!dif && !dix)
351                 return sprintf(buf, "none\n");
352
353         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
354 }
355 static DEVICE_ATTR_RO(protection_mode);
356
357 static ssize_t
358 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
359 {
360         struct scsi_disk *sdkp = to_scsi_disk(dev);
361
362         return sprintf(buf, "%u\n", sdkp->ATO);
363 }
364 static DEVICE_ATTR_RO(app_tag_own);
365
366 static ssize_t
367 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
368                        char *buf)
369 {
370         struct scsi_disk *sdkp = to_scsi_disk(dev);
371
372         return sprintf(buf, "%u\n", sdkp->lbpme);
373 }
374 static DEVICE_ATTR_RO(thin_provisioning);
375
376 /* sysfs_match_string() requires dense arrays */
377 static const char *lbp_mode[] = {
378         [SD_LBP_FULL]           = "full",
379         [SD_LBP_UNMAP]          = "unmap",
380         [SD_LBP_WS16]           = "writesame_16",
381         [SD_LBP_WS10]           = "writesame_10",
382         [SD_LBP_ZERO]           = "writesame_zero",
383         [SD_LBP_DISABLE]        = "disabled",
384 };
385
386 static ssize_t
387 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
388                        char *buf)
389 {
390         struct scsi_disk *sdkp = to_scsi_disk(dev);
391
392         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
393 }
394
395 static ssize_t
396 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
397                         const char *buf, size_t count)
398 {
399         struct scsi_disk *sdkp = to_scsi_disk(dev);
400         struct scsi_device *sdp = sdkp->device;
401         int mode;
402
403         if (!capable(CAP_SYS_ADMIN))
404                 return -EACCES;
405
406         if (sd_is_zoned(sdkp)) {
407                 sd_config_discard(sdkp, SD_LBP_DISABLE);
408                 return count;
409         }
410
411         if (sdp->type != TYPE_DISK)
412                 return -EINVAL;
413
414         mode = sysfs_match_string(lbp_mode, buf);
415         if (mode < 0)
416                 return -EINVAL;
417
418         sd_config_discard(sdkp, mode);
419
420         return count;
421 }
422 static DEVICE_ATTR_RW(provisioning_mode);
423
424 /* sysfs_match_string() requires dense arrays */
425 static const char *zeroing_mode[] = {
426         [SD_ZERO_WRITE]         = "write",
427         [SD_ZERO_WS]            = "writesame",
428         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
429         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
430 };
431
432 static ssize_t
433 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
434                   char *buf)
435 {
436         struct scsi_disk *sdkp = to_scsi_disk(dev);
437
438         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
439 }
440
441 static ssize_t
442 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
443                    const char *buf, size_t count)
444 {
445         struct scsi_disk *sdkp = to_scsi_disk(dev);
446         int mode;
447
448         if (!capable(CAP_SYS_ADMIN))
449                 return -EACCES;
450
451         mode = sysfs_match_string(zeroing_mode, buf);
452         if (mode < 0)
453                 return -EINVAL;
454
455         sdkp->zeroing_mode = mode;
456
457         return count;
458 }
459 static DEVICE_ATTR_RW(zeroing_mode);
460
461 static ssize_t
462 max_medium_access_timeouts_show(struct device *dev,
463                                 struct device_attribute *attr, char *buf)
464 {
465         struct scsi_disk *sdkp = to_scsi_disk(dev);
466
467         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
468 }
469
470 static ssize_t
471 max_medium_access_timeouts_store(struct device *dev,
472                                  struct device_attribute *attr, const char *buf,
473                                  size_t count)
474 {
475         struct scsi_disk *sdkp = to_scsi_disk(dev);
476         int err;
477
478         if (!capable(CAP_SYS_ADMIN))
479                 return -EACCES;
480
481         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
482
483         return err ? err : count;
484 }
485 static DEVICE_ATTR_RW(max_medium_access_timeouts);
486
487 static ssize_t
488 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
489                            char *buf)
490 {
491         struct scsi_disk *sdkp = to_scsi_disk(dev);
492
493         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
494 }
495
496 static ssize_t
497 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
498                             const char *buf, size_t count)
499 {
500         struct scsi_disk *sdkp = to_scsi_disk(dev);
501         struct scsi_device *sdp = sdkp->device;
502         unsigned long max;
503         int err;
504
505         if (!capable(CAP_SYS_ADMIN))
506                 return -EACCES;
507
508         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
509                 return -EINVAL;
510
511         err = kstrtoul(buf, 10, &max);
512
513         if (err)
514                 return err;
515
516         if (max == 0)
517                 sdp->no_write_same = 1;
518         else if (max <= SD_MAX_WS16_BLOCKS) {
519                 sdp->no_write_same = 0;
520                 sdkp->max_ws_blocks = max;
521         }
522
523         sd_config_write_same(sdkp);
524
525         return count;
526 }
527 static DEVICE_ATTR_RW(max_write_same_blocks);
528
529 static ssize_t
530 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
531 {
532         struct scsi_disk *sdkp = to_scsi_disk(dev);
533
534         if (sdkp->device->type == TYPE_ZBC)
535                 return sprintf(buf, "host-managed\n");
536         if (sdkp->zoned == 1)
537                 return sprintf(buf, "host-aware\n");
538         if (sdkp->zoned == 2)
539                 return sprintf(buf, "drive-managed\n");
540         return sprintf(buf, "none\n");
541 }
542 static DEVICE_ATTR_RO(zoned_cap);
543
544 static ssize_t
545 max_retries_store(struct device *dev, struct device_attribute *attr,
546                   const char *buf, size_t count)
547 {
548         struct scsi_disk *sdkp = to_scsi_disk(dev);
549         struct scsi_device *sdev = sdkp->device;
550         int retries, err;
551
552         err = kstrtoint(buf, 10, &retries);
553         if (err)
554                 return err;
555
556         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
557                 sdkp->max_retries = retries;
558                 return count;
559         }
560
561         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
562                     SD_MAX_RETRIES);
563         return -EINVAL;
564 }
565
566 static ssize_t
567 max_retries_show(struct device *dev, struct device_attribute *attr,
568                  char *buf)
569 {
570         struct scsi_disk *sdkp = to_scsi_disk(dev);
571
572         return sprintf(buf, "%d\n", sdkp->max_retries);
573 }
574
575 static DEVICE_ATTR_RW(max_retries);
576
577 static struct attribute *sd_disk_attrs[] = {
578         &dev_attr_cache_type.attr,
579         &dev_attr_FUA.attr,
580         &dev_attr_allow_restart.attr,
581         &dev_attr_manage_start_stop.attr,
582         &dev_attr_protection_type.attr,
583         &dev_attr_protection_mode.attr,
584         &dev_attr_app_tag_own.attr,
585         &dev_attr_thin_provisioning.attr,
586         &dev_attr_provisioning_mode.attr,
587         &dev_attr_zeroing_mode.attr,
588         &dev_attr_max_write_same_blocks.attr,
589         &dev_attr_max_medium_access_timeouts.attr,
590         &dev_attr_zoned_cap.attr,
591         &dev_attr_max_retries.attr,
592         NULL,
593 };
594 ATTRIBUTE_GROUPS(sd_disk);
595
596 static struct class sd_disk_class = {
597         .name           = "scsi_disk",
598         .owner          = THIS_MODULE,
599         .dev_release    = scsi_disk_release,
600         .dev_groups     = sd_disk_groups,
601 };
602
603 static const struct dev_pm_ops sd_pm_ops = {
604         .suspend                = sd_suspend_system,
605         .resume                 = sd_resume_system,
606         .poweroff               = sd_suspend_system,
607         .restore                = sd_resume_system,
608         .runtime_suspend        = sd_suspend_runtime,
609         .runtime_resume         = sd_resume_runtime,
610 };
611
612 static struct scsi_driver sd_template = {
613         .gendrv = {
614                 .name           = "sd",
615                 .owner          = THIS_MODULE,
616                 .probe          = sd_probe,
617                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
618                 .remove         = sd_remove,
619                 .shutdown       = sd_shutdown,
620                 .pm             = &sd_pm_ops,
621         },
622         .rescan                 = sd_rescan,
623         .init_command           = sd_init_command,
624         .uninit_command         = sd_uninit_command,
625         .done                   = sd_done,
626         .eh_action              = sd_eh_action,
627         .eh_reset               = sd_eh_reset,
628 };
629
630 /*
631  * Don't request a new module, as that could deadlock in multipath
632  * environment.
633  */
634 static void sd_default_probe(dev_t devt)
635 {
636 }
637
638 /*
639  * Device no to disk mapping:
640  * 
641  *       major         disc2     disc  p1
642  *   |............|.............|....|....| <- dev_t
643  *    31        20 19          8 7  4 3  0
644  * 
645  * Inside a major, we have 16k disks, however mapped non-
646  * contiguously. The first 16 disks are for major0, the next
647  * ones with major1, ... Disk 256 is for major0 again, disk 272 
648  * for major1, ... 
649  * As we stay compatible with our numbering scheme, we can reuse 
650  * the well-know SCSI majors 8, 65--71, 136--143.
651  */
652 static int sd_major(int major_idx)
653 {
654         switch (major_idx) {
655         case 0:
656                 return SCSI_DISK0_MAJOR;
657         case 1 ... 7:
658                 return SCSI_DISK1_MAJOR + major_idx - 1;
659         case 8 ... 15:
660                 return SCSI_DISK8_MAJOR + major_idx - 8;
661         default:
662                 BUG();
663                 return 0;       /* shut up gcc */
664         }
665 }
666
667 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
668 {
669         struct scsi_disk *sdkp = NULL;
670
671         mutex_lock(&sd_ref_mutex);
672
673         if (disk->private_data) {
674                 sdkp = scsi_disk(disk);
675                 if (scsi_device_get(sdkp->device) == 0)
676                         get_device(&sdkp->dev);
677                 else
678                         sdkp = NULL;
679         }
680         mutex_unlock(&sd_ref_mutex);
681         return sdkp;
682 }
683
684 static void scsi_disk_put(struct scsi_disk *sdkp)
685 {
686         struct scsi_device *sdev = sdkp->device;
687
688         mutex_lock(&sd_ref_mutex);
689         put_device(&sdkp->dev);
690         scsi_device_put(sdev);
691         mutex_unlock(&sd_ref_mutex);
692 }
693
694 #ifdef CONFIG_BLK_SED_OPAL
695 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
696                 size_t len, bool send)
697 {
698         struct scsi_disk *sdkp = data;
699         struct scsi_device *sdev = sdkp->device;
700         u8 cdb[12] = { 0, };
701         int ret;
702
703         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
704         cdb[1] = secp;
705         put_unaligned_be16(spsp, &cdb[2]);
706         put_unaligned_be32(len, &cdb[6]);
707
708         ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
709                 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
710                 RQF_PM, NULL);
711         return ret <= 0 ? ret : -EIO;
712 }
713 #endif /* CONFIG_BLK_SED_OPAL */
714
715 /*
716  * Look up the DIX operation based on whether the command is read or
717  * write and whether dix and dif are enabled.
718  */
719 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
720 {
721         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
722         static const unsigned int ops[] = {     /* wrt dix dif */
723                 SCSI_PROT_NORMAL,               /*  0   0   0  */
724                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
725                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
726                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
727                 SCSI_PROT_NORMAL,               /*  1   0   0  */
728                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
729                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
730                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
731         };
732
733         return ops[write << 2 | dix << 1 | dif];
734 }
735
736 /*
737  * Returns a mask of the protection flags that are valid for a given DIX
738  * operation.
739  */
740 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
741 {
742         static const unsigned int flag_mask[] = {
743                 [SCSI_PROT_NORMAL]              = 0,
744
745                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
746                                                   SCSI_PROT_GUARD_CHECK |
747                                                   SCSI_PROT_REF_CHECK |
748                                                   SCSI_PROT_REF_INCREMENT,
749
750                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
751                                                   SCSI_PROT_IP_CHECKSUM,
752
753                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
754                                                   SCSI_PROT_GUARD_CHECK |
755                                                   SCSI_PROT_REF_CHECK |
756                                                   SCSI_PROT_REF_INCREMENT |
757                                                   SCSI_PROT_IP_CHECKSUM,
758
759                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
760                                                   SCSI_PROT_REF_INCREMENT,
761
762                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
763                                                   SCSI_PROT_REF_CHECK |
764                                                   SCSI_PROT_REF_INCREMENT |
765                                                   SCSI_PROT_IP_CHECKSUM,
766
767                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
768                                                   SCSI_PROT_GUARD_CHECK |
769                                                   SCSI_PROT_REF_CHECK |
770                                                   SCSI_PROT_REF_INCREMENT |
771                                                   SCSI_PROT_IP_CHECKSUM,
772         };
773
774         return flag_mask[prot_op];
775 }
776
777 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
778                                            unsigned int dix, unsigned int dif)
779 {
780         struct request *rq = scsi_cmd_to_rq(scmd);
781         struct bio *bio = rq->bio;
782         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
783         unsigned int protect = 0;
784
785         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
786                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
787                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
788
789                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
790                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
791         }
792
793         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
794                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
795
796                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
797                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
798         }
799
800         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
801                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
802
803                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
804                         protect = 3 << 5;       /* Disable target PI checking */
805                 else
806                         protect = 1 << 5;       /* Enable target PI checking */
807         }
808
809         scsi_set_prot_op(scmd, prot_op);
810         scsi_set_prot_type(scmd, dif);
811         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
812
813         return protect;
814 }
815
816 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
817 {
818         struct request_queue *q = sdkp->disk->queue;
819         unsigned int logical_block_size = sdkp->device->sector_size;
820         unsigned int max_blocks = 0;
821
822         q->limits.discard_alignment =
823                 sdkp->unmap_alignment * logical_block_size;
824         q->limits.discard_granularity =
825                 max(sdkp->physical_block_size,
826                     sdkp->unmap_granularity * logical_block_size);
827         sdkp->provisioning_mode = mode;
828
829         switch (mode) {
830
831         case SD_LBP_FULL:
832         case SD_LBP_DISABLE:
833                 blk_queue_max_discard_sectors(q, 0);
834                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
835                 return;
836
837         case SD_LBP_UNMAP:
838                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
839                                           (u32)SD_MAX_WS16_BLOCKS);
840                 break;
841
842         case SD_LBP_WS16:
843                 if (sdkp->device->unmap_limit_for_ws)
844                         max_blocks = sdkp->max_unmap_blocks;
845                 else
846                         max_blocks = sdkp->max_ws_blocks;
847
848                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
849                 break;
850
851         case SD_LBP_WS10:
852                 if (sdkp->device->unmap_limit_for_ws)
853                         max_blocks = sdkp->max_unmap_blocks;
854                 else
855                         max_blocks = sdkp->max_ws_blocks;
856
857                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
858                 break;
859
860         case SD_LBP_ZERO:
861                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
862                                           (u32)SD_MAX_WS10_BLOCKS);
863                 break;
864         }
865
866         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
867         blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
868 }
869
870 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
871 {
872         struct scsi_device *sdp = cmd->device;
873         struct request *rq = scsi_cmd_to_rq(cmd);
874         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
875         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
876         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
877         unsigned int data_len = 24;
878         char *buf;
879
880         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
881         if (!rq->special_vec.bv_page)
882                 return BLK_STS_RESOURCE;
883         clear_highpage(rq->special_vec.bv_page);
884         rq->special_vec.bv_offset = 0;
885         rq->special_vec.bv_len = data_len;
886         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
887
888         cmd->cmd_len = 10;
889         cmd->cmnd[0] = UNMAP;
890         cmd->cmnd[8] = 24;
891
892         buf = bvec_virt(&rq->special_vec);
893         put_unaligned_be16(6 + 16, &buf[0]);
894         put_unaligned_be16(16, &buf[2]);
895         put_unaligned_be64(lba, &buf[8]);
896         put_unaligned_be32(nr_blocks, &buf[16]);
897
898         cmd->allowed = sdkp->max_retries;
899         cmd->transfersize = data_len;
900         rq->timeout = SD_TIMEOUT;
901
902         return scsi_alloc_sgtables(cmd);
903 }
904
905 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
906                 bool unmap)
907 {
908         struct scsi_device *sdp = cmd->device;
909         struct request *rq = scsi_cmd_to_rq(cmd);
910         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
911         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
912         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
913         u32 data_len = sdp->sector_size;
914
915         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
916         if (!rq->special_vec.bv_page)
917                 return BLK_STS_RESOURCE;
918         clear_highpage(rq->special_vec.bv_page);
919         rq->special_vec.bv_offset = 0;
920         rq->special_vec.bv_len = data_len;
921         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
922
923         cmd->cmd_len = 16;
924         cmd->cmnd[0] = WRITE_SAME_16;
925         if (unmap)
926                 cmd->cmnd[1] = 0x8; /* UNMAP */
927         put_unaligned_be64(lba, &cmd->cmnd[2]);
928         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
929
930         cmd->allowed = sdkp->max_retries;
931         cmd->transfersize = data_len;
932         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
933
934         return scsi_alloc_sgtables(cmd);
935 }
936
937 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
938                 bool unmap)
939 {
940         struct scsi_device *sdp = cmd->device;
941         struct request *rq = scsi_cmd_to_rq(cmd);
942         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
943         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
944         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
945         u32 data_len = sdp->sector_size;
946
947         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
948         if (!rq->special_vec.bv_page)
949                 return BLK_STS_RESOURCE;
950         clear_highpage(rq->special_vec.bv_page);
951         rq->special_vec.bv_offset = 0;
952         rq->special_vec.bv_len = data_len;
953         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
954
955         cmd->cmd_len = 10;
956         cmd->cmnd[0] = WRITE_SAME;
957         if (unmap)
958                 cmd->cmnd[1] = 0x8; /* UNMAP */
959         put_unaligned_be32(lba, &cmd->cmnd[2]);
960         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
961
962         cmd->allowed = sdkp->max_retries;
963         cmd->transfersize = data_len;
964         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
965
966         return scsi_alloc_sgtables(cmd);
967 }
968
969 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
970 {
971         struct request *rq = scsi_cmd_to_rq(cmd);
972         struct scsi_device *sdp = cmd->device;
973         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
974         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
975         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
976
977         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
978                 switch (sdkp->zeroing_mode) {
979                 case SD_ZERO_WS16_UNMAP:
980                         return sd_setup_write_same16_cmnd(cmd, true);
981                 case SD_ZERO_WS10_UNMAP:
982                         return sd_setup_write_same10_cmnd(cmd, true);
983                 }
984         }
985
986         if (sdp->no_write_same) {
987                 rq->rq_flags |= RQF_QUIET;
988                 return BLK_STS_TARGET;
989         }
990
991         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
992                 return sd_setup_write_same16_cmnd(cmd, false);
993
994         return sd_setup_write_same10_cmnd(cmd, false);
995 }
996
997 static void sd_config_write_same(struct scsi_disk *sdkp)
998 {
999         struct request_queue *q = sdkp->disk->queue;
1000         unsigned int logical_block_size = sdkp->device->sector_size;
1001
1002         if (sdkp->device->no_write_same) {
1003                 sdkp->max_ws_blocks = 0;
1004                 goto out;
1005         }
1006
1007         /* Some devices can not handle block counts above 0xffff despite
1008          * supporting WRITE SAME(16). Consequently we default to 64k
1009          * blocks per I/O unless the device explicitly advertises a
1010          * bigger limit.
1011          */
1012         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1013                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1014                                                    (u32)SD_MAX_WS16_BLOCKS);
1015         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1016                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1017                                                    (u32)SD_MAX_WS10_BLOCKS);
1018         else {
1019                 sdkp->device->no_write_same = 1;
1020                 sdkp->max_ws_blocks = 0;
1021         }
1022
1023         if (sdkp->lbprz && sdkp->lbpws)
1024                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1025         else if (sdkp->lbprz && sdkp->lbpws10)
1026                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1027         else if (sdkp->max_ws_blocks)
1028                 sdkp->zeroing_mode = SD_ZERO_WS;
1029         else
1030                 sdkp->zeroing_mode = SD_ZERO_WRITE;
1031
1032         if (sdkp->max_ws_blocks &&
1033             sdkp->physical_block_size > logical_block_size) {
1034                 /*
1035                  * Reporting a maximum number of blocks that is not aligned
1036                  * on the device physical size would cause a large write same
1037                  * request to be split into physically unaligned chunks by
1038                  * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1039                  * even if the caller of these functions took care to align the
1040                  * large request. So make sure the maximum reported is aligned
1041                  * to the device physical block size. This is only an optional
1042                  * optimization for regular disks, but this is mandatory to
1043                  * avoid failure of large write same requests directed at
1044                  * sequential write required zones of host-managed ZBC disks.
1045                  */
1046                 sdkp->max_ws_blocks =
1047                         round_down(sdkp->max_ws_blocks,
1048                                    bytes_to_logical(sdkp->device,
1049                                                     sdkp->physical_block_size));
1050         }
1051
1052 out:
1053         blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1054                                          (logical_block_size >> 9));
1055         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1056                                          (logical_block_size >> 9));
1057 }
1058
1059 /**
1060  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1061  * @cmd: command to prepare
1062  *
1063  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1064  * the preference indicated by the target device.
1065  **/
1066 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1067 {
1068         struct request *rq = scsi_cmd_to_rq(cmd);
1069         struct scsi_device *sdp = cmd->device;
1070         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1071         struct bio *bio = rq->bio;
1072         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1073         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1074         blk_status_t ret;
1075
1076         if (sdkp->device->no_write_same)
1077                 return BLK_STS_TARGET;
1078
1079         BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1080
1081         rq->timeout = SD_WRITE_SAME_TIMEOUT;
1082
1083         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1084                 cmd->cmd_len = 16;
1085                 cmd->cmnd[0] = WRITE_SAME_16;
1086                 put_unaligned_be64(lba, &cmd->cmnd[2]);
1087                 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1088         } else {
1089                 cmd->cmd_len = 10;
1090                 cmd->cmnd[0] = WRITE_SAME;
1091                 put_unaligned_be32(lba, &cmd->cmnd[2]);
1092                 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1093         }
1094
1095         cmd->transfersize = sdp->sector_size;
1096         cmd->allowed = sdkp->max_retries;
1097
1098         /*
1099          * For WRITE SAME the data transferred via the DATA OUT buffer is
1100          * different from the amount of data actually written to the target.
1101          *
1102          * We set up __data_len to the amount of data transferred via the
1103          * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1104          * to transfer a single sector of data first, but then reset it to
1105          * the amount of data to be written right after so that the I/O path
1106          * knows how much to actually write.
1107          */
1108         rq->__data_len = sdp->sector_size;
1109         ret = scsi_alloc_sgtables(cmd);
1110         rq->__data_len = blk_rq_bytes(rq);
1111
1112         return ret;
1113 }
1114
1115 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1116 {
1117         struct request *rq = scsi_cmd_to_rq(cmd);
1118         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1119
1120         /* flush requests don't perform I/O, zero the S/G table */
1121         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1122
1123         cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1124         cmd->cmd_len = 10;
1125         cmd->transfersize = 0;
1126         cmd->allowed = sdkp->max_retries;
1127
1128         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1129         return BLK_STS_OK;
1130 }
1131
1132 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1133                                        sector_t lba, unsigned int nr_blocks,
1134                                        unsigned char flags)
1135 {
1136         cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1137         if (unlikely(cmd->cmnd == NULL))
1138                 return BLK_STS_RESOURCE;
1139
1140         cmd->cmd_len = SD_EXT_CDB_SIZE;
1141         memset(cmd->cmnd, 0, cmd->cmd_len);
1142
1143         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1144         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1145         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1146         cmd->cmnd[10] = flags;
1147         put_unaligned_be64(lba, &cmd->cmnd[12]);
1148         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1149         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1150
1151         return BLK_STS_OK;
1152 }
1153
1154 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1155                                        sector_t lba, unsigned int nr_blocks,
1156                                        unsigned char flags)
1157 {
1158         cmd->cmd_len  = 16;
1159         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1160         cmd->cmnd[1]  = flags;
1161         cmd->cmnd[14] = 0;
1162         cmd->cmnd[15] = 0;
1163         put_unaligned_be64(lba, &cmd->cmnd[2]);
1164         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1165
1166         return BLK_STS_OK;
1167 }
1168
1169 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1170                                        sector_t lba, unsigned int nr_blocks,
1171                                        unsigned char flags)
1172 {
1173         cmd->cmd_len = 10;
1174         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1175         cmd->cmnd[1] = flags;
1176         cmd->cmnd[6] = 0;
1177         cmd->cmnd[9] = 0;
1178         put_unaligned_be32(lba, &cmd->cmnd[2]);
1179         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1180
1181         return BLK_STS_OK;
1182 }
1183
1184 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1185                                       sector_t lba, unsigned int nr_blocks,
1186                                       unsigned char flags)
1187 {
1188         /* Avoid that 0 blocks gets translated into 256 blocks. */
1189         if (WARN_ON_ONCE(nr_blocks == 0))
1190                 return BLK_STS_IOERR;
1191
1192         if (unlikely(flags & 0x8)) {
1193                 /*
1194                  * This happens only if this drive failed 10byte rw
1195                  * command with ILLEGAL_REQUEST during operation and
1196                  * thus turned off use_10_for_rw.
1197                  */
1198                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1199                 return BLK_STS_IOERR;
1200         }
1201
1202         cmd->cmd_len = 6;
1203         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1204         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1205         cmd->cmnd[2] = (lba >> 8) & 0xff;
1206         cmd->cmnd[3] = lba & 0xff;
1207         cmd->cmnd[4] = nr_blocks;
1208         cmd->cmnd[5] = 0;
1209
1210         return BLK_STS_OK;
1211 }
1212
1213 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1214 {
1215         struct request *rq = scsi_cmd_to_rq(cmd);
1216         struct scsi_device *sdp = cmd->device;
1217         struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1218         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1219         sector_t threshold;
1220         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1221         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1222         bool write = rq_data_dir(rq) == WRITE;
1223         unsigned char protect, fua;
1224         blk_status_t ret;
1225         unsigned int dif;
1226         bool dix;
1227
1228         ret = scsi_alloc_sgtables(cmd);
1229         if (ret != BLK_STS_OK)
1230                 return ret;
1231
1232         ret = BLK_STS_IOERR;
1233         if (!scsi_device_online(sdp) || sdp->changed) {
1234                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1235                 goto fail;
1236         }
1237
1238         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1239                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1240                 goto fail;
1241         }
1242
1243         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1244                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1245                 goto fail;
1246         }
1247
1248         /*
1249          * Some SD card readers can't handle accesses which touch the
1250          * last one or two logical blocks. Split accesses as needed.
1251          */
1252         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1253
1254         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1255                 if (lba < threshold) {
1256                         /* Access up to the threshold but not beyond */
1257                         nr_blocks = threshold - lba;
1258                 } else {
1259                         /* Access only a single logical block */
1260                         nr_blocks = 1;
1261                 }
1262         }
1263
1264         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1265                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1266                 if (ret)
1267                         goto fail;
1268         }
1269
1270         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1271         dix = scsi_prot_sg_count(cmd);
1272         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1273
1274         if (dif || dix)
1275                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1276         else
1277                 protect = 0;
1278
1279         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1280                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1281                                          protect | fua);
1282         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1283                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1284                                          protect | fua);
1285         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1286                    sdp->use_10_for_rw || protect) {
1287                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1288                                          protect | fua);
1289         } else {
1290                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1291                                         protect | fua);
1292         }
1293
1294         if (unlikely(ret != BLK_STS_OK))
1295                 goto fail;
1296
1297         /*
1298          * We shouldn't disconnect in the middle of a sector, so with a dumb
1299          * host adapter, it's safe to assume that we can at least transfer
1300          * this many bytes between each connect / disconnect.
1301          */
1302         cmd->transfersize = sdp->sector_size;
1303         cmd->underflow = nr_blocks << 9;
1304         cmd->allowed = sdkp->max_retries;
1305         cmd->sdb.length = nr_blocks * sdp->sector_size;
1306
1307         SCSI_LOG_HLQUEUE(1,
1308                          scmd_printk(KERN_INFO, cmd,
1309                                      "%s: block=%llu, count=%d\n", __func__,
1310                                      (unsigned long long)blk_rq_pos(rq),
1311                                      blk_rq_sectors(rq)));
1312         SCSI_LOG_HLQUEUE(2,
1313                          scmd_printk(KERN_INFO, cmd,
1314                                      "%s %d/%u 512 byte blocks.\n",
1315                                      write ? "writing" : "reading", nr_blocks,
1316                                      blk_rq_sectors(rq)));
1317
1318         /*
1319          * This indicates that the command is ready from our end to be queued.
1320          */
1321         return BLK_STS_OK;
1322 fail:
1323         scsi_free_sgtables(cmd);
1324         return ret;
1325 }
1326
1327 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1328 {
1329         struct request *rq = scsi_cmd_to_rq(cmd);
1330
1331         switch (req_op(rq)) {
1332         case REQ_OP_DISCARD:
1333                 switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1334                 case SD_LBP_UNMAP:
1335                         return sd_setup_unmap_cmnd(cmd);
1336                 case SD_LBP_WS16:
1337                         return sd_setup_write_same16_cmnd(cmd, true);
1338                 case SD_LBP_WS10:
1339                         return sd_setup_write_same10_cmnd(cmd, true);
1340                 case SD_LBP_ZERO:
1341                         return sd_setup_write_same10_cmnd(cmd, false);
1342                 default:
1343                         return BLK_STS_TARGET;
1344                 }
1345         case REQ_OP_WRITE_ZEROES:
1346                 return sd_setup_write_zeroes_cmnd(cmd);
1347         case REQ_OP_WRITE_SAME:
1348                 return sd_setup_write_same_cmnd(cmd);
1349         case REQ_OP_FLUSH:
1350                 return sd_setup_flush_cmnd(cmd);
1351         case REQ_OP_READ:
1352         case REQ_OP_WRITE:
1353         case REQ_OP_ZONE_APPEND:
1354                 return sd_setup_read_write_cmnd(cmd);
1355         case REQ_OP_ZONE_RESET:
1356                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1357                                                    false);
1358         case REQ_OP_ZONE_RESET_ALL:
1359                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1360                                                    true);
1361         case REQ_OP_ZONE_OPEN:
1362                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1363         case REQ_OP_ZONE_CLOSE:
1364                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1365         case REQ_OP_ZONE_FINISH:
1366                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1367         default:
1368                 WARN_ON_ONCE(1);
1369                 return BLK_STS_NOTSUPP;
1370         }
1371 }
1372
1373 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1374 {
1375         struct request *rq = scsi_cmd_to_rq(SCpnt);
1376         u8 *cmnd;
1377
1378         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1379                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1380
1381         if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1382                 cmnd = SCpnt->cmnd;
1383                 SCpnt->cmnd = NULL;
1384                 SCpnt->cmd_len = 0;
1385                 mempool_free(cmnd, sd_cdb_pool);
1386         }
1387 }
1388
1389 static bool sd_need_revalidate(struct block_device *bdev,
1390                 struct scsi_disk *sdkp)
1391 {
1392         if (sdkp->device->removable || sdkp->write_prot) {
1393                 if (bdev_check_media_change(bdev))
1394                         return true;
1395         }
1396
1397         /*
1398          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1399          * nothing to do with partitions, BLKRRPART is used to force a full
1400          * revalidate after things like a format for historical reasons.
1401          */
1402         return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1403 }
1404
1405 /**
1406  *      sd_open - open a scsi disk device
1407  *      @bdev: Block device of the scsi disk to open
1408  *      @mode: FMODE_* mask
1409  *
1410  *      Returns 0 if successful. Returns a negated errno value in case 
1411  *      of error.
1412  *
1413  *      Note: This can be called from a user context (e.g. fsck(1) )
1414  *      or from within the kernel (e.g. as a result of a mount(1) ).
1415  *      In the latter case @inode and @filp carry an abridged amount
1416  *      of information as noted above.
1417  *
1418  *      Locking: called with bdev->bd_disk->open_mutex held.
1419  **/
1420 static int sd_open(struct block_device *bdev, fmode_t mode)
1421 {
1422         struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1423         struct scsi_device *sdev;
1424         int retval;
1425
1426         if (!sdkp)
1427                 return -ENXIO;
1428
1429         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1430
1431         sdev = sdkp->device;
1432
1433         /*
1434          * If the device is in error recovery, wait until it is done.
1435          * If the device is offline, then disallow any access to it.
1436          */
1437         retval = -ENXIO;
1438         if (!scsi_block_when_processing_errors(sdev))
1439                 goto error_out;
1440
1441         if (sd_need_revalidate(bdev, sdkp))
1442                 sd_revalidate_disk(bdev->bd_disk);
1443
1444         /*
1445          * If the drive is empty, just let the open fail.
1446          */
1447         retval = -ENOMEDIUM;
1448         if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1449                 goto error_out;
1450
1451         /*
1452          * If the device has the write protect tab set, have the open fail
1453          * if the user expects to be able to write to the thing.
1454          */
1455         retval = -EROFS;
1456         if (sdkp->write_prot && (mode & FMODE_WRITE))
1457                 goto error_out;
1458
1459         /*
1460          * It is possible that the disk changing stuff resulted in
1461          * the device being taken offline.  If this is the case,
1462          * report this to the user, and don't pretend that the
1463          * open actually succeeded.
1464          */
1465         retval = -ENXIO;
1466         if (!scsi_device_online(sdev))
1467                 goto error_out;
1468
1469         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1470                 if (scsi_block_when_processing_errors(sdev))
1471                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1472         }
1473
1474         return 0;
1475
1476 error_out:
1477         scsi_disk_put(sdkp);
1478         return retval;  
1479 }
1480
1481 /**
1482  *      sd_release - invoked when the (last) close(2) is called on this
1483  *      scsi disk.
1484  *      @disk: disk to release
1485  *      @mode: FMODE_* mask
1486  *
1487  *      Returns 0. 
1488  *
1489  *      Note: may block (uninterruptible) if error recovery is underway
1490  *      on this disk.
1491  *
1492  *      Locking: called with bdev->bd_disk->open_mutex held.
1493  **/
1494 static void sd_release(struct gendisk *disk, fmode_t mode)
1495 {
1496         struct scsi_disk *sdkp = scsi_disk(disk);
1497         struct scsi_device *sdev = sdkp->device;
1498
1499         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1500
1501         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1502                 if (scsi_block_when_processing_errors(sdev))
1503                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1504         }
1505
1506         scsi_disk_put(sdkp);
1507 }
1508
1509 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1510 {
1511         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1512         struct scsi_device *sdp = sdkp->device;
1513         struct Scsi_Host *host = sdp->host;
1514         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1515         int diskinfo[4];
1516
1517         /* default to most commonly used values */
1518         diskinfo[0] = 0x40;     /* 1 << 6 */
1519         diskinfo[1] = 0x20;     /* 1 << 5 */
1520         diskinfo[2] = capacity >> 11;
1521
1522         /* override with calculated, extended default, or driver values */
1523         if (host->hostt->bios_param)
1524                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1525         else
1526                 scsicam_bios_param(bdev, capacity, diskinfo);
1527
1528         geo->heads = diskinfo[0];
1529         geo->sectors = diskinfo[1];
1530         geo->cylinders = diskinfo[2];
1531         return 0;
1532 }
1533
1534 /**
1535  *      sd_ioctl - process an ioctl
1536  *      @bdev: target block device
1537  *      @mode: FMODE_* mask
1538  *      @cmd: ioctl command number
1539  *      @arg: this is third argument given to ioctl(2) system call.
1540  *      Often contains a pointer.
1541  *
1542  *      Returns 0 if successful (some ioctls return positive numbers on
1543  *      success as well). Returns a negated errno value in case of error.
1544  *
1545  *      Note: most ioctls are forward onto the block subsystem or further
1546  *      down in the scsi subsystem.
1547  **/
1548 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1549                     unsigned int cmd, unsigned long arg)
1550 {
1551         struct gendisk *disk = bdev->bd_disk;
1552         struct scsi_disk *sdkp = scsi_disk(disk);
1553         struct scsi_device *sdp = sdkp->device;
1554         void __user *p = (void __user *)arg;
1555         int error;
1556     
1557         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1558                                     "cmd=0x%x\n", disk->disk_name, cmd));
1559
1560         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1561                 return -ENOIOCTLCMD;
1562
1563         /*
1564          * If we are in the middle of error recovery, don't let anyone
1565          * else try and use this device.  Also, if error recovery fails, it
1566          * may try and take the device offline, in which case all further
1567          * access to the device is prohibited.
1568          */
1569         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1570                         (mode & FMODE_NDELAY) != 0);
1571         if (error)
1572                 return error;
1573
1574         if (is_sed_ioctl(cmd))
1575                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1576         return scsi_ioctl(sdp, mode, cmd, p);
1577 }
1578
1579 static void set_media_not_present(struct scsi_disk *sdkp)
1580 {
1581         if (sdkp->media_present)
1582                 sdkp->device->changed = 1;
1583
1584         if (sdkp->device->removable) {
1585                 sdkp->media_present = 0;
1586                 sdkp->capacity = 0;
1587         }
1588 }
1589
1590 static int media_not_present(struct scsi_disk *sdkp,
1591                              struct scsi_sense_hdr *sshdr)
1592 {
1593         if (!scsi_sense_valid(sshdr))
1594                 return 0;
1595
1596         /* not invoked for commands that could return deferred errors */
1597         switch (sshdr->sense_key) {
1598         case UNIT_ATTENTION:
1599         case NOT_READY:
1600                 /* medium not present */
1601                 if (sshdr->asc == 0x3A) {
1602                         set_media_not_present(sdkp);
1603                         return 1;
1604                 }
1605         }
1606         return 0;
1607 }
1608
1609 /**
1610  *      sd_check_events - check media events
1611  *      @disk: kernel device descriptor
1612  *      @clearing: disk events currently being cleared
1613  *
1614  *      Returns mask of DISK_EVENT_*.
1615  *
1616  *      Note: this function is invoked from the block subsystem.
1617  **/
1618 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1619 {
1620         struct scsi_disk *sdkp = scsi_disk_get(disk);
1621         struct scsi_device *sdp;
1622         int retval;
1623         bool disk_changed;
1624
1625         if (!sdkp)
1626                 return 0;
1627
1628         sdp = sdkp->device;
1629         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1630
1631         /*
1632          * If the device is offline, don't send any commands - just pretend as
1633          * if the command failed.  If the device ever comes back online, we
1634          * can deal with it then.  It is only because of unrecoverable errors
1635          * that we would ever take a device offline in the first place.
1636          */
1637         if (!scsi_device_online(sdp)) {
1638                 set_media_not_present(sdkp);
1639                 goto out;
1640         }
1641
1642         /*
1643          * Using TEST_UNIT_READY enables differentiation between drive with
1644          * no cartridge loaded - NOT READY, drive with changed cartridge -
1645          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1646          *
1647          * Drives that auto spin down. eg iomega jaz 1G, will be started
1648          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1649          * sd_revalidate() is called.
1650          */
1651         if (scsi_block_when_processing_errors(sdp)) {
1652                 struct scsi_sense_hdr sshdr = { 0, };
1653
1654                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1655                                               &sshdr);
1656
1657                 /* failed to execute TUR, assume media not present */
1658                 if (retval < 0 || host_byte(retval)) {
1659                         set_media_not_present(sdkp);
1660                         goto out;
1661                 }
1662
1663                 if (media_not_present(sdkp, &sshdr))
1664                         goto out;
1665         }
1666
1667         /*
1668          * For removable scsi disk we have to recognise the presence
1669          * of a disk in the drive.
1670          */
1671         if (!sdkp->media_present)
1672                 sdp->changed = 1;
1673         sdkp->media_present = 1;
1674 out:
1675         /*
1676          * sdp->changed is set under the following conditions:
1677          *
1678          *      Medium present state has changed in either direction.
1679          *      Device has indicated UNIT_ATTENTION.
1680          */
1681         disk_changed = sdp->changed;
1682         sdp->changed = 0;
1683         scsi_disk_put(sdkp);
1684         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1685 }
1686
1687 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1688 {
1689         int retries, res;
1690         struct scsi_device *sdp = sdkp->device;
1691         const int timeout = sdp->request_queue->rq_timeout
1692                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1693         struct scsi_sense_hdr my_sshdr;
1694
1695         if (!scsi_device_online(sdp))
1696                 return -ENODEV;
1697
1698         /* caller might not be interested in sense, but we need it */
1699         if (!sshdr)
1700                 sshdr = &my_sshdr;
1701
1702         for (retries = 3; retries > 0; --retries) {
1703                 unsigned char cmd[10] = { 0 };
1704
1705                 cmd[0] = SYNCHRONIZE_CACHE;
1706                 /*
1707                  * Leave the rest of the command zero to indicate
1708                  * flush everything.
1709                  */
1710                 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1711                                 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1712                 if (res == 0)
1713                         break;
1714         }
1715
1716         if (res) {
1717                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1718
1719                 if (res < 0)
1720                         return res;
1721
1722                 if (scsi_status_is_check_condition(res) &&
1723                     scsi_sense_valid(sshdr)) {
1724                         sd_print_sense_hdr(sdkp, sshdr);
1725
1726                         /* we need to evaluate the error return  */
1727                         if (sshdr->asc == 0x3a ||       /* medium not present */
1728                             sshdr->asc == 0x20 ||       /* invalid command */
1729                             (sshdr->asc == 0x74 && sshdr->ascq == 0x71))        /* drive is password locked */
1730                                 /* this is no error here */
1731                                 return 0;
1732                 }
1733
1734                 switch (host_byte(res)) {
1735                 /* ignore errors due to racing a disconnection */
1736                 case DID_BAD_TARGET:
1737                 case DID_NO_CONNECT:
1738                         return 0;
1739                 /* signal the upper layer it might try again */
1740                 case DID_BUS_BUSY:
1741                 case DID_IMM_RETRY:
1742                 case DID_REQUEUE:
1743                 case DID_SOFT_ERROR:
1744                         return -EBUSY;
1745                 default:
1746                         return -EIO;
1747                 }
1748         }
1749         return 0;
1750 }
1751
1752 static void sd_rescan(struct device *dev)
1753 {
1754         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1755
1756         sd_revalidate_disk(sdkp->disk);
1757 }
1758
1759 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1760                 enum blk_unique_id type)
1761 {
1762         struct scsi_device *sdev = scsi_disk(disk)->device;
1763         const struct scsi_vpd *vpd;
1764         const unsigned char *d;
1765         int ret = -ENXIO, len;
1766
1767         rcu_read_lock();
1768         vpd = rcu_dereference(sdev->vpd_pg83);
1769         if (!vpd)
1770                 goto out_unlock;
1771
1772         ret = -EINVAL;
1773         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1774                 /* we only care about designators with LU association */
1775                 if (((d[1] >> 4) & 0x3) != 0x00)
1776                         continue;
1777                 if ((d[1] & 0xf) != type)
1778                         continue;
1779
1780                 /*
1781                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1782                  * keep looking as one with more entropy might still show up.
1783                  */
1784                 len = d[3];
1785                 if (len != 8 && len != 12 && len != 16)
1786                         continue;
1787                 ret = len;
1788                 memcpy(id, d + 4, len);
1789                 if (len == 16)
1790                         break;
1791         }
1792 out_unlock:
1793         rcu_read_unlock();
1794         return ret;
1795 }
1796
1797 static char sd_pr_type(enum pr_type type)
1798 {
1799         switch (type) {
1800         case PR_WRITE_EXCLUSIVE:
1801                 return 0x01;
1802         case PR_EXCLUSIVE_ACCESS:
1803                 return 0x03;
1804         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1805                 return 0x05;
1806         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1807                 return 0x06;
1808         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1809                 return 0x07;
1810         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1811                 return 0x08;
1812         default:
1813                 return 0;
1814         }
1815 };
1816
1817 static int sd_pr_command(struct block_device *bdev, u8 sa,
1818                 u64 key, u64 sa_key, u8 type, u8 flags)
1819 {
1820         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1821         struct scsi_device *sdev = sdkp->device;
1822         struct scsi_sense_hdr sshdr;
1823         int result;
1824         u8 cmd[16] = { 0, };
1825         u8 data[24] = { 0, };
1826
1827         cmd[0] = PERSISTENT_RESERVE_OUT;
1828         cmd[1] = sa;
1829         cmd[2] = type;
1830         put_unaligned_be32(sizeof(data), &cmd[5]);
1831
1832         put_unaligned_be64(key, &data[0]);
1833         put_unaligned_be64(sa_key, &data[8]);
1834         data[20] = flags;
1835
1836         result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1837                         &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1838
1839         if (scsi_status_is_check_condition(result) &&
1840             scsi_sense_valid(&sshdr)) {
1841                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1842                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1843         }
1844
1845         return result;
1846 }
1847
1848 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1849                 u32 flags)
1850 {
1851         if (flags & ~PR_FL_IGNORE_KEY)
1852                 return -EOPNOTSUPP;
1853         return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1854                         old_key, new_key, 0,
1855                         (1 << 0) /* APTPL */);
1856 }
1857
1858 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1859                 u32 flags)
1860 {
1861         if (flags)
1862                 return -EOPNOTSUPP;
1863         return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1864 }
1865
1866 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1867 {
1868         return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1869 }
1870
1871 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1872                 enum pr_type type, bool abort)
1873 {
1874         return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1875                              sd_pr_type(type), 0);
1876 }
1877
1878 static int sd_pr_clear(struct block_device *bdev, u64 key)
1879 {
1880         return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1881 }
1882
1883 static const struct pr_ops sd_pr_ops = {
1884         .pr_register    = sd_pr_register,
1885         .pr_reserve     = sd_pr_reserve,
1886         .pr_release     = sd_pr_release,
1887         .pr_preempt     = sd_pr_preempt,
1888         .pr_clear       = sd_pr_clear,
1889 };
1890
1891 static const struct block_device_operations sd_fops = {
1892         .owner                  = THIS_MODULE,
1893         .open                   = sd_open,
1894         .release                = sd_release,
1895         .ioctl                  = sd_ioctl,
1896         .getgeo                 = sd_getgeo,
1897         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1898         .check_events           = sd_check_events,
1899         .unlock_native_capacity = sd_unlock_native_capacity,
1900         .report_zones           = sd_zbc_report_zones,
1901         .get_unique_id          = sd_get_unique_id,
1902         .pr_ops                 = &sd_pr_ops,
1903 };
1904
1905 /**
1906  *      sd_eh_reset - reset error handling callback
1907  *      @scmd:          sd-issued command that has failed
1908  *
1909  *      This function is called by the SCSI midlayer before starting
1910  *      SCSI EH. When counting medium access failures we have to be
1911  *      careful to register it only only once per device and SCSI EH run;
1912  *      there might be several timed out commands which will cause the
1913  *      'max_medium_access_timeouts' counter to trigger after the first
1914  *      SCSI EH run already and set the device to offline.
1915  *      So this function resets the internal counter before starting SCSI EH.
1916  **/
1917 static void sd_eh_reset(struct scsi_cmnd *scmd)
1918 {
1919         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1920
1921         /* New SCSI EH run, reset gate variable */
1922         sdkp->ignore_medium_access_errors = false;
1923 }
1924
1925 /**
1926  *      sd_eh_action - error handling callback
1927  *      @scmd:          sd-issued command that has failed
1928  *      @eh_disp:       The recovery disposition suggested by the midlayer
1929  *
1930  *      This function is called by the SCSI midlayer upon completion of an
1931  *      error test command (currently TEST UNIT READY). The result of sending
1932  *      the eh command is passed in eh_disp.  We're looking for devices that
1933  *      fail medium access commands but are OK with non access commands like
1934  *      test unit ready (so wrongly see the device as having a successful
1935  *      recovery)
1936  **/
1937 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1938 {
1939         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1940         struct scsi_device *sdev = scmd->device;
1941
1942         if (!scsi_device_online(sdev) ||
1943             !scsi_medium_access_command(scmd) ||
1944             host_byte(scmd->result) != DID_TIME_OUT ||
1945             eh_disp != SUCCESS)
1946                 return eh_disp;
1947
1948         /*
1949          * The device has timed out executing a medium access command.
1950          * However, the TEST UNIT READY command sent during error
1951          * handling completed successfully. Either the device is in the
1952          * process of recovering or has it suffered an internal failure
1953          * that prevents access to the storage medium.
1954          */
1955         if (!sdkp->ignore_medium_access_errors) {
1956                 sdkp->medium_access_timed_out++;
1957                 sdkp->ignore_medium_access_errors = true;
1958         }
1959
1960         /*
1961          * If the device keeps failing read/write commands but TEST UNIT
1962          * READY always completes successfully we assume that medium
1963          * access is no longer possible and take the device offline.
1964          */
1965         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1966                 scmd_printk(KERN_ERR, scmd,
1967                             "Medium access timeout failure. Offlining disk!\n");
1968                 mutex_lock(&sdev->state_mutex);
1969                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1970                 mutex_unlock(&sdev->state_mutex);
1971
1972                 return SUCCESS;
1973         }
1974
1975         return eh_disp;
1976 }
1977
1978 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1979 {
1980         struct request *req = scsi_cmd_to_rq(scmd);
1981         struct scsi_device *sdev = scmd->device;
1982         unsigned int transferred, good_bytes;
1983         u64 start_lba, end_lba, bad_lba;
1984
1985         /*
1986          * Some commands have a payload smaller than the device logical
1987          * block size (e.g. INQUIRY on a 4K disk).
1988          */
1989         if (scsi_bufflen(scmd) <= sdev->sector_size)
1990                 return 0;
1991
1992         /* Check if we have a 'bad_lba' information */
1993         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1994                                      SCSI_SENSE_BUFFERSIZE,
1995                                      &bad_lba))
1996                 return 0;
1997
1998         /*
1999          * If the bad lba was reported incorrectly, we have no idea where
2000          * the error is.
2001          */
2002         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2003         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2004         if (bad_lba < start_lba || bad_lba >= end_lba)
2005                 return 0;
2006
2007         /*
2008          * resid is optional but mostly filled in.  When it's unused,
2009          * its value is zero, so we assume the whole buffer transferred
2010          */
2011         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2012
2013         /* This computation should always be done in terms of the
2014          * resolution of the device's medium.
2015          */
2016         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2017
2018         return min(good_bytes, transferred);
2019 }
2020
2021 /**
2022  *      sd_done - bottom half handler: called when the lower level
2023  *      driver has completed (successfully or otherwise) a scsi command.
2024  *      @SCpnt: mid-level's per command structure.
2025  *
2026  *      Note: potentially run from within an ISR. Must not block.
2027  **/
2028 static int sd_done(struct scsi_cmnd *SCpnt)
2029 {
2030         int result = SCpnt->result;
2031         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2032         unsigned int sector_size = SCpnt->device->sector_size;
2033         unsigned int resid;
2034         struct scsi_sense_hdr sshdr;
2035         struct request *req = scsi_cmd_to_rq(SCpnt);
2036         struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2037         int sense_valid = 0;
2038         int sense_deferred = 0;
2039
2040         switch (req_op(req)) {
2041         case REQ_OP_DISCARD:
2042         case REQ_OP_WRITE_ZEROES:
2043         case REQ_OP_WRITE_SAME:
2044         case REQ_OP_ZONE_RESET:
2045         case REQ_OP_ZONE_RESET_ALL:
2046         case REQ_OP_ZONE_OPEN:
2047         case REQ_OP_ZONE_CLOSE:
2048         case REQ_OP_ZONE_FINISH:
2049                 if (!result) {
2050                         good_bytes = blk_rq_bytes(req);
2051                         scsi_set_resid(SCpnt, 0);
2052                 } else {
2053                         good_bytes = 0;
2054                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2055                 }
2056                 break;
2057         default:
2058                 /*
2059                  * In case of bogus fw or device, we could end up having
2060                  * an unaligned partial completion. Check this here and force
2061                  * alignment.
2062                  */
2063                 resid = scsi_get_resid(SCpnt);
2064                 if (resid & (sector_size - 1)) {
2065                         sd_printk(KERN_INFO, sdkp,
2066                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2067                                 resid, sector_size);
2068                         scsi_print_command(SCpnt);
2069                         resid = min(scsi_bufflen(SCpnt),
2070                                     round_up(resid, sector_size));
2071                         scsi_set_resid(SCpnt, resid);
2072                 }
2073         }
2074
2075         if (result) {
2076                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2077                 if (sense_valid)
2078                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2079         }
2080         sdkp->medium_access_timed_out = 0;
2081
2082         if (!scsi_status_is_check_condition(result) &&
2083             (!sense_valid || sense_deferred))
2084                 goto out;
2085
2086         switch (sshdr.sense_key) {
2087         case HARDWARE_ERROR:
2088         case MEDIUM_ERROR:
2089                 good_bytes = sd_completed_bytes(SCpnt);
2090                 break;
2091         case RECOVERED_ERROR:
2092                 good_bytes = scsi_bufflen(SCpnt);
2093                 break;
2094         case NO_SENSE:
2095                 /* This indicates a false check condition, so ignore it.  An
2096                  * unknown amount of data was transferred so treat it as an
2097                  * error.
2098                  */
2099                 SCpnt->result = 0;
2100                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2101                 break;
2102         case ABORTED_COMMAND:
2103                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2104                         good_bytes = sd_completed_bytes(SCpnt);
2105                 break;
2106         case ILLEGAL_REQUEST:
2107                 switch (sshdr.asc) {
2108                 case 0x10:      /* DIX: Host detected corruption */
2109                         good_bytes = sd_completed_bytes(SCpnt);
2110                         break;
2111                 case 0x20:      /* INVALID COMMAND OPCODE */
2112                 case 0x24:      /* INVALID FIELD IN CDB */
2113                         switch (SCpnt->cmnd[0]) {
2114                         case UNMAP:
2115                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2116                                 break;
2117                         case WRITE_SAME_16:
2118                         case WRITE_SAME:
2119                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2120                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2121                                 } else {
2122                                         sdkp->device->no_write_same = 1;
2123                                         sd_config_write_same(sdkp);
2124                                         req->rq_flags |= RQF_QUIET;
2125                                 }
2126                                 break;
2127                         }
2128                 }
2129                 break;
2130         default:
2131                 break;
2132         }
2133
2134  out:
2135         if (sd_is_zoned(sdkp))
2136                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2137
2138         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2139                                            "sd_done: completed %d of %d bytes\n",
2140                                            good_bytes, scsi_bufflen(SCpnt)));
2141
2142         return good_bytes;
2143 }
2144
2145 /*
2146  * spinup disk - called only in sd_revalidate_disk()
2147  */
2148 static void
2149 sd_spinup_disk(struct scsi_disk *sdkp)
2150 {
2151         unsigned char cmd[10];
2152         unsigned long spintime_expire = 0;
2153         int retries, spintime;
2154         unsigned int the_result;
2155         struct scsi_sense_hdr sshdr;
2156         int sense_valid = 0;
2157
2158         spintime = 0;
2159
2160         /* Spin up drives, as required.  Only do this at boot time */
2161         /* Spinup needs to be done for module loads too. */
2162         do {
2163                 retries = 0;
2164
2165                 do {
2166                         bool media_was_present = sdkp->media_present;
2167
2168                         cmd[0] = TEST_UNIT_READY;
2169                         memset((void *) &cmd[1], 0, 9);
2170
2171                         the_result = scsi_execute_req(sdkp->device, cmd,
2172                                                       DMA_NONE, NULL, 0,
2173                                                       &sshdr, SD_TIMEOUT,
2174                                                       sdkp->max_retries, NULL);
2175
2176                         /*
2177                          * If the drive has indicated to us that it
2178                          * doesn't have any media in it, don't bother
2179                          * with any more polling.
2180                          */
2181                         if (media_not_present(sdkp, &sshdr)) {
2182                                 if (media_was_present)
2183                                         sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2184                                 return;
2185                         }
2186
2187                         if (the_result)
2188                                 sense_valid = scsi_sense_valid(&sshdr);
2189                         retries++;
2190                 } while (retries < 3 &&
2191                          (!scsi_status_is_good(the_result) ||
2192                           (scsi_status_is_check_condition(the_result) &&
2193                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2194
2195                 if (!scsi_status_is_check_condition(the_result)) {
2196                         /* no sense, TUR either succeeded or failed
2197                          * with a status error */
2198                         if(!spintime && !scsi_status_is_good(the_result)) {
2199                                 sd_print_result(sdkp, "Test Unit Ready failed",
2200                                                 the_result);
2201                         }
2202                         break;
2203                 }
2204
2205                 /*
2206                  * The device does not want the automatic start to be issued.
2207                  */
2208                 if (sdkp->device->no_start_on_add)
2209                         break;
2210
2211                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2212                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2213                                 break;  /* manual intervention required */
2214                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2215                                 break;  /* standby */
2216                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2217                                 break;  /* unavailable */
2218                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2219                                 break;  /* sanitize in progress */
2220                         /*
2221                          * Issue command to spin up drive when not ready
2222                          */
2223                         if (!spintime) {
2224                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2225                                 cmd[0] = START_STOP;
2226                                 cmd[1] = 1;     /* Return immediately */
2227                                 memset((void *) &cmd[2], 0, 8);
2228                                 cmd[4] = 1;     /* Start spin cycle */
2229                                 if (sdkp->device->start_stop_pwr_cond)
2230                                         cmd[4] |= 1 << 4;
2231                                 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2232                                                  NULL, 0, &sshdr,
2233                                                  SD_TIMEOUT, sdkp->max_retries,
2234                                                  NULL);
2235                                 spintime_expire = jiffies + 100 * HZ;
2236                                 spintime = 1;
2237                         }
2238                         /* Wait 1 second for next try */
2239                         msleep(1000);
2240                         printk(KERN_CONT ".");
2241
2242                 /*
2243                  * Wait for USB flash devices with slow firmware.
2244                  * Yes, this sense key/ASC combination shouldn't
2245                  * occur here.  It's characteristic of these devices.
2246                  */
2247                 } else if (sense_valid &&
2248                                 sshdr.sense_key == UNIT_ATTENTION &&
2249                                 sshdr.asc == 0x28) {
2250                         if (!spintime) {
2251                                 spintime_expire = jiffies + 5 * HZ;
2252                                 spintime = 1;
2253                         }
2254                         /* Wait 1 second for next try */
2255                         msleep(1000);
2256                 } else {
2257                         /* we don't understand the sense code, so it's
2258                          * probably pointless to loop */
2259                         if(!spintime) {
2260                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2261                                 sd_print_sense_hdr(sdkp, &sshdr);
2262                         }
2263                         break;
2264                 }
2265                                 
2266         } while (spintime && time_before_eq(jiffies, spintime_expire));
2267
2268         if (spintime) {
2269                 if (scsi_status_is_good(the_result))
2270                         printk(KERN_CONT "ready\n");
2271                 else
2272                         printk(KERN_CONT "not responding...\n");
2273         }
2274 }
2275
2276 /*
2277  * Determine whether disk supports Data Integrity Field.
2278  */
2279 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2280 {
2281         struct scsi_device *sdp = sdkp->device;
2282         u8 type;
2283         int ret = 0;
2284
2285         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2286                 sdkp->protection_type = 0;
2287                 return ret;
2288         }
2289
2290         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2291
2292         if (type > T10_PI_TYPE3_PROTECTION)
2293                 ret = -ENODEV;
2294         else if (scsi_host_dif_capable(sdp->host, type))
2295                 ret = 1;
2296
2297         if (sdkp->first_scan || type != sdkp->protection_type)
2298                 switch (ret) {
2299                 case -ENODEV:
2300                         sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2301                                   " protection type %u. Disabling disk!\n",
2302                                   type);
2303                         break;
2304                 case 1:
2305                         sd_printk(KERN_NOTICE, sdkp,
2306                                   "Enabling DIF Type %u protection\n", type);
2307                         break;
2308                 case 0:
2309                         sd_printk(KERN_NOTICE, sdkp,
2310                                   "Disabling DIF Type %u protection\n", type);
2311                         break;
2312                 }
2313
2314         sdkp->protection_type = type;
2315
2316         return ret;
2317 }
2318
2319 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2320                         struct scsi_sense_hdr *sshdr, int sense_valid,
2321                         int the_result)
2322 {
2323         if (sense_valid)
2324                 sd_print_sense_hdr(sdkp, sshdr);
2325         else
2326                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2327
2328         /*
2329          * Set dirty bit for removable devices if not ready -
2330          * sometimes drives will not report this properly.
2331          */
2332         if (sdp->removable &&
2333             sense_valid && sshdr->sense_key == NOT_READY)
2334                 set_media_not_present(sdkp);
2335
2336         /*
2337          * We used to set media_present to 0 here to indicate no media
2338          * in the drive, but some drives fail read capacity even with
2339          * media present, so we can't do that.
2340          */
2341         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2342 }
2343
2344 #define RC16_LEN 32
2345 #if RC16_LEN > SD_BUF_SIZE
2346 #error RC16_LEN must not be more than SD_BUF_SIZE
2347 #endif
2348
2349 #define READ_CAPACITY_RETRIES_ON_RESET  10
2350
2351 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2352                                                 unsigned char *buffer)
2353 {
2354         unsigned char cmd[16];
2355         struct scsi_sense_hdr sshdr;
2356         int sense_valid = 0;
2357         int the_result;
2358         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2359         unsigned int alignment;
2360         unsigned long long lba;
2361         unsigned sector_size;
2362
2363         if (sdp->no_read_capacity_16)
2364                 return -EINVAL;
2365
2366         do {
2367                 memset(cmd, 0, 16);
2368                 cmd[0] = SERVICE_ACTION_IN_16;
2369                 cmd[1] = SAI_READ_CAPACITY_16;
2370                 cmd[13] = RC16_LEN;
2371                 memset(buffer, 0, RC16_LEN);
2372
2373                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2374                                         buffer, RC16_LEN, &sshdr,
2375                                         SD_TIMEOUT, sdkp->max_retries, NULL);
2376
2377                 if (media_not_present(sdkp, &sshdr))
2378                         return -ENODEV;
2379
2380                 if (the_result > 0) {
2381                         sense_valid = scsi_sense_valid(&sshdr);
2382                         if (sense_valid &&
2383                             sshdr.sense_key == ILLEGAL_REQUEST &&
2384                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2385                             sshdr.ascq == 0x00)
2386                                 /* Invalid Command Operation Code or
2387                                  * Invalid Field in CDB, just retry
2388                                  * silently with RC10 */
2389                                 return -EINVAL;
2390                         if (sense_valid &&
2391                             sshdr.sense_key == UNIT_ATTENTION &&
2392                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2393                                 /* Device reset might occur several times,
2394                                  * give it one more chance */
2395                                 if (--reset_retries > 0)
2396                                         continue;
2397                 }
2398                 retries--;
2399
2400         } while (the_result && retries);
2401
2402         if (the_result) {
2403                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2404                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2405                 return -EINVAL;
2406         }
2407
2408         sector_size = get_unaligned_be32(&buffer[8]);
2409         lba = get_unaligned_be64(&buffer[0]);
2410
2411         if (sd_read_protection_type(sdkp, buffer) < 0) {
2412                 sdkp->capacity = 0;
2413                 return -ENODEV;
2414         }
2415
2416         /* Logical blocks per physical block exponent */
2417         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2418
2419         /* RC basis */
2420         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2421
2422         /* Lowest aligned logical block */
2423         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2424         blk_queue_alignment_offset(sdp->request_queue, alignment);
2425         if (alignment && sdkp->first_scan)
2426                 sd_printk(KERN_NOTICE, sdkp,
2427                           "physical block alignment offset: %u\n", alignment);
2428
2429         if (buffer[14] & 0x80) { /* LBPME */
2430                 sdkp->lbpme = 1;
2431
2432                 if (buffer[14] & 0x40) /* LBPRZ */
2433                         sdkp->lbprz = 1;
2434
2435                 sd_config_discard(sdkp, SD_LBP_WS16);
2436         }
2437
2438         sdkp->capacity = lba + 1;
2439         return sector_size;
2440 }
2441
2442 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2443                                                 unsigned char *buffer)
2444 {
2445         unsigned char cmd[16];
2446         struct scsi_sense_hdr sshdr;
2447         int sense_valid = 0;
2448         int the_result;
2449         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2450         sector_t lba;
2451         unsigned sector_size;
2452
2453         do {
2454                 cmd[0] = READ_CAPACITY;
2455                 memset(&cmd[1], 0, 9);
2456                 memset(buffer, 0, 8);
2457
2458                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2459                                         buffer, 8, &sshdr,
2460                                         SD_TIMEOUT, sdkp->max_retries, NULL);
2461
2462                 if (media_not_present(sdkp, &sshdr))
2463                         return -ENODEV;
2464
2465                 if (the_result > 0) {
2466                         sense_valid = scsi_sense_valid(&sshdr);
2467                         if (sense_valid &&
2468                             sshdr.sense_key == UNIT_ATTENTION &&
2469                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2470                                 /* Device reset might occur several times,
2471                                  * give it one more chance */
2472                                 if (--reset_retries > 0)
2473                                         continue;
2474                 }
2475                 retries--;
2476
2477         } while (the_result && retries);
2478
2479         if (the_result) {
2480                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2481                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2482                 return -EINVAL;
2483         }
2484
2485         sector_size = get_unaligned_be32(&buffer[4]);
2486         lba = get_unaligned_be32(&buffer[0]);
2487
2488         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2489                 /* Some buggy (usb cardreader) devices return an lba of
2490                    0xffffffff when the want to report a size of 0 (with
2491                    which they really mean no media is present) */
2492                 sdkp->capacity = 0;
2493                 sdkp->physical_block_size = sector_size;
2494                 return sector_size;
2495         }
2496
2497         sdkp->capacity = lba + 1;
2498         sdkp->physical_block_size = sector_size;
2499         return sector_size;
2500 }
2501
2502 static int sd_try_rc16_first(struct scsi_device *sdp)
2503 {
2504         if (sdp->host->max_cmd_len < 16)
2505                 return 0;
2506         if (sdp->try_rc_10_first)
2507                 return 0;
2508         if (sdp->scsi_level > SCSI_SPC_2)
2509                 return 1;
2510         if (scsi_device_protection(sdp))
2511                 return 1;
2512         return 0;
2513 }
2514
2515 /*
2516  * read disk capacity
2517  */
2518 static void
2519 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2520 {
2521         int sector_size;
2522         struct scsi_device *sdp = sdkp->device;
2523
2524         if (sd_try_rc16_first(sdp)) {
2525                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2526                 if (sector_size == -EOVERFLOW)
2527                         goto got_data;
2528                 if (sector_size == -ENODEV)
2529                         return;
2530                 if (sector_size < 0)
2531                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2532                 if (sector_size < 0)
2533                         return;
2534         } else {
2535                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2536                 if (sector_size == -EOVERFLOW)
2537                         goto got_data;
2538                 if (sector_size < 0)
2539                         return;
2540                 if ((sizeof(sdkp->capacity) > 4) &&
2541                     (sdkp->capacity > 0xffffffffULL)) {
2542                         int old_sector_size = sector_size;
2543                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2544                                         "Trying to use READ CAPACITY(16).\n");
2545                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2546                         if (sector_size < 0) {
2547                                 sd_printk(KERN_NOTICE, sdkp,
2548                                         "Using 0xffffffff as device size\n");
2549                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2550                                 sector_size = old_sector_size;
2551                                 goto got_data;
2552                         }
2553                         /* Remember that READ CAPACITY(16) succeeded */
2554                         sdp->try_rc_10_first = 0;
2555                 }
2556         }
2557
2558         /* Some devices are known to return the total number of blocks,
2559          * not the highest block number.  Some devices have versions
2560          * which do this and others which do not.  Some devices we might
2561          * suspect of doing this but we don't know for certain.
2562          *
2563          * If we know the reported capacity is wrong, decrement it.  If
2564          * we can only guess, then assume the number of blocks is even
2565          * (usually true but not always) and err on the side of lowering
2566          * the capacity.
2567          */
2568         if (sdp->fix_capacity ||
2569             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2570                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2571                                 "from its reported value: %llu\n",
2572                                 (unsigned long long) sdkp->capacity);
2573                 --sdkp->capacity;
2574         }
2575
2576 got_data:
2577         if (sector_size == 0) {
2578                 sector_size = 512;
2579                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2580                           "assuming 512.\n");
2581         }
2582
2583         if (sector_size != 512 &&
2584             sector_size != 1024 &&
2585             sector_size != 2048 &&
2586             sector_size != 4096) {
2587                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2588                           sector_size);
2589                 /*
2590                  * The user might want to re-format the drive with
2591                  * a supported sectorsize.  Once this happens, it
2592                  * would be relatively trivial to set the thing up.
2593                  * For this reason, we leave the thing in the table.
2594                  */
2595                 sdkp->capacity = 0;
2596                 /*
2597                  * set a bogus sector size so the normal read/write
2598                  * logic in the block layer will eventually refuse any
2599                  * request on this device without tripping over power
2600                  * of two sector size assumptions
2601                  */
2602                 sector_size = 512;
2603         }
2604         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2605         blk_queue_physical_block_size(sdp->request_queue,
2606                                       sdkp->physical_block_size);
2607         sdkp->device->sector_size = sector_size;
2608
2609         if (sdkp->capacity > 0xffffffff)
2610                 sdp->use_16_for_rw = 1;
2611
2612 }
2613
2614 /*
2615  * Print disk capacity
2616  */
2617 static void
2618 sd_print_capacity(struct scsi_disk *sdkp,
2619                   sector_t old_capacity)
2620 {
2621         int sector_size = sdkp->device->sector_size;
2622         char cap_str_2[10], cap_str_10[10];
2623
2624         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2625                 return;
2626
2627         string_get_size(sdkp->capacity, sector_size,
2628                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2629         string_get_size(sdkp->capacity, sector_size,
2630                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2631
2632         sd_printk(KERN_NOTICE, sdkp,
2633                   "%llu %d-byte logical blocks: (%s/%s)\n",
2634                   (unsigned long long)sdkp->capacity,
2635                   sector_size, cap_str_10, cap_str_2);
2636
2637         if (sdkp->physical_block_size != sector_size)
2638                 sd_printk(KERN_NOTICE, sdkp,
2639                           "%u-byte physical blocks\n",
2640                           sdkp->physical_block_size);
2641 }
2642
2643 /* called with buffer of length 512 */
2644 static inline int
2645 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2646                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2647                  struct scsi_sense_hdr *sshdr)
2648 {
2649         /*
2650          * If we must use MODE SENSE(10), make sure that the buffer length
2651          * is at least 8 bytes so that the mode sense header fits.
2652          */
2653         if (sdkp->device->use_10_for_ms && len < 8)
2654                 len = 8;
2655
2656         return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2657                                SD_TIMEOUT, sdkp->max_retries, data,
2658                                sshdr);
2659 }
2660
2661 /*
2662  * read write protect setting, if possible - called only in sd_revalidate_disk()
2663  * called with buffer of length SD_BUF_SIZE
2664  */
2665 static void
2666 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2667 {
2668         int res;
2669         struct scsi_device *sdp = sdkp->device;
2670         struct scsi_mode_data data;
2671         int old_wp = sdkp->write_prot;
2672
2673         set_disk_ro(sdkp->disk, 0);
2674         if (sdp->skip_ms_page_3f) {
2675                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2676                 return;
2677         }
2678
2679         if (sdp->use_192_bytes_for_3f) {
2680                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2681         } else {
2682                 /*
2683                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2684                  * We have to start carefully: some devices hang if we ask
2685                  * for more than is available.
2686                  */
2687                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2688
2689                 /*
2690                  * Second attempt: ask for page 0 When only page 0 is
2691                  * implemented, a request for page 3F may return Sense Key
2692                  * 5: Illegal Request, Sense Code 24: Invalid field in
2693                  * CDB.
2694                  */
2695                 if (res < 0)
2696                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2697
2698                 /*
2699                  * Third attempt: ask 255 bytes, as we did earlier.
2700                  */
2701                 if (res < 0)
2702                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2703                                                &data, NULL);
2704         }
2705
2706         if (res < 0) {
2707                 sd_first_printk(KERN_WARNING, sdkp,
2708                           "Test WP failed, assume Write Enabled\n");
2709         } else {
2710                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2711                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2712                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2713                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2714                                   sdkp->write_prot ? "on" : "off");
2715                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2716                 }
2717         }
2718 }
2719
2720 /*
2721  * sd_read_cache_type - called only from sd_revalidate_disk()
2722  * called with buffer of length SD_BUF_SIZE
2723  */
2724 static void
2725 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2726 {
2727         int len = 0, res;
2728         struct scsi_device *sdp = sdkp->device;
2729
2730         int dbd;
2731         int modepage;
2732         int first_len;
2733         struct scsi_mode_data data;
2734         struct scsi_sense_hdr sshdr;
2735         int old_wce = sdkp->WCE;
2736         int old_rcd = sdkp->RCD;
2737         int old_dpofua = sdkp->DPOFUA;
2738
2739
2740         if (sdkp->cache_override)
2741                 return;
2742
2743         first_len = 4;
2744         if (sdp->skip_ms_page_8) {
2745                 if (sdp->type == TYPE_RBC)
2746                         goto defaults;
2747                 else {
2748                         if (sdp->skip_ms_page_3f)
2749                                 goto defaults;
2750                         modepage = 0x3F;
2751                         if (sdp->use_192_bytes_for_3f)
2752                                 first_len = 192;
2753                         dbd = 0;
2754                 }
2755         } else if (sdp->type == TYPE_RBC) {
2756                 modepage = 6;
2757                 dbd = 8;
2758         } else {
2759                 modepage = 8;
2760                 dbd = 0;
2761         }
2762
2763         /* cautiously ask */
2764         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2765                         &data, &sshdr);
2766
2767         if (res < 0)
2768                 goto bad_sense;
2769
2770         if (!data.header_length) {
2771                 modepage = 6;
2772                 first_len = 0;
2773                 sd_first_printk(KERN_ERR, sdkp,
2774                                 "Missing header in MODE_SENSE response\n");
2775         }
2776
2777         /* that went OK, now ask for the proper length */
2778         len = data.length;
2779
2780         /*
2781          * We're only interested in the first three bytes, actually.
2782          * But the data cache page is defined for the first 20.
2783          */
2784         if (len < 3)
2785                 goto bad_sense;
2786         else if (len > SD_BUF_SIZE) {
2787                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2788                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2789                 len = SD_BUF_SIZE;
2790         }
2791         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2792                 len = 192;
2793
2794         /* Get the data */
2795         if (len > first_len)
2796                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2797                                 &data, &sshdr);
2798
2799         if (!res) {
2800                 int offset = data.header_length + data.block_descriptor_length;
2801
2802                 while (offset < len) {
2803                         u8 page_code = buffer[offset] & 0x3F;
2804                         u8 spf       = buffer[offset] & 0x40;
2805
2806                         if (page_code == 8 || page_code == 6) {
2807                                 /* We're interested only in the first 3 bytes.
2808                                  */
2809                                 if (len - offset <= 2) {
2810                                         sd_first_printk(KERN_ERR, sdkp,
2811                                                 "Incomplete mode parameter "
2812                                                         "data\n");
2813                                         goto defaults;
2814                                 } else {
2815                                         modepage = page_code;
2816                                         goto Page_found;
2817                                 }
2818                         } else {
2819                                 /* Go to the next page */
2820                                 if (spf && len - offset > 3)
2821                                         offset += 4 + (buffer[offset+2] << 8) +
2822                                                 buffer[offset+3];
2823                                 else if (!spf && len - offset > 1)
2824                                         offset += 2 + buffer[offset+1];
2825                                 else {
2826                                         sd_first_printk(KERN_ERR, sdkp,
2827                                                         "Incomplete mode "
2828                                                         "parameter data\n");
2829                                         goto defaults;
2830                                 }
2831                         }
2832                 }
2833
2834                 sd_first_printk(KERN_WARNING, sdkp,
2835                                 "No Caching mode page found\n");
2836                 goto defaults;
2837
2838         Page_found:
2839                 if (modepage == 8) {
2840                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2841                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2842                 } else {
2843                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2844                         sdkp->RCD = 0;
2845                 }
2846
2847                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2848                 if (sdp->broken_fua) {
2849                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2850                         sdkp->DPOFUA = 0;
2851                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2852                            !sdkp->device->use_16_for_rw) {
2853                         sd_first_printk(KERN_NOTICE, sdkp,
2854                                   "Uses READ/WRITE(6), disabling FUA\n");
2855                         sdkp->DPOFUA = 0;
2856                 }
2857
2858                 /* No cache flush allowed for write protected devices */
2859                 if (sdkp->WCE && sdkp->write_prot)
2860                         sdkp->WCE = 0;
2861
2862                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2863                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2864                         sd_printk(KERN_NOTICE, sdkp,
2865                                   "Write cache: %s, read cache: %s, %s\n",
2866                                   sdkp->WCE ? "enabled" : "disabled",
2867                                   sdkp->RCD ? "disabled" : "enabled",
2868                                   sdkp->DPOFUA ? "supports DPO and FUA"
2869                                   : "doesn't support DPO or FUA");
2870
2871                 return;
2872         }
2873
2874 bad_sense:
2875         if (scsi_sense_valid(&sshdr) &&
2876             sshdr.sense_key == ILLEGAL_REQUEST &&
2877             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2878                 /* Invalid field in CDB */
2879                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2880         else
2881                 sd_first_printk(KERN_ERR, sdkp,
2882                                 "Asking for cache data failed\n");
2883
2884 defaults:
2885         if (sdp->wce_default_on) {
2886                 sd_first_printk(KERN_NOTICE, sdkp,
2887                                 "Assuming drive cache: write back\n");
2888                 sdkp->WCE = 1;
2889         } else {
2890                 sd_first_printk(KERN_WARNING, sdkp,
2891                                 "Assuming drive cache: write through\n");
2892                 sdkp->WCE = 0;
2893         }
2894         sdkp->RCD = 0;
2895         sdkp->DPOFUA = 0;
2896 }
2897
2898 /*
2899  * The ATO bit indicates whether the DIF application tag is available
2900  * for use by the operating system.
2901  */
2902 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2903 {
2904         int res, offset;
2905         struct scsi_device *sdp = sdkp->device;
2906         struct scsi_mode_data data;
2907         struct scsi_sense_hdr sshdr;
2908
2909         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2910                 return;
2911
2912         if (sdkp->protection_type == 0)
2913                 return;
2914
2915         res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2916                               sdkp->max_retries, &data, &sshdr);
2917
2918         if (res < 0 || !data.header_length ||
2919             data.length < 6) {
2920                 sd_first_printk(KERN_WARNING, sdkp,
2921                           "getting Control mode page failed, assume no ATO\n");
2922
2923                 if (scsi_sense_valid(&sshdr))
2924                         sd_print_sense_hdr(sdkp, &sshdr);
2925
2926                 return;
2927         }
2928
2929         offset = data.header_length + data.block_descriptor_length;
2930
2931         if ((buffer[offset] & 0x3f) != 0x0a) {
2932                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2933                 return;
2934         }
2935
2936         if ((buffer[offset + 5] & 0x80) == 0)
2937                 return;
2938
2939         sdkp->ATO = 1;
2940
2941         return;
2942 }
2943
2944 /**
2945  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2946  * @sdkp: disk to query
2947  */
2948 static void sd_read_block_limits(struct scsi_disk *sdkp)
2949 {
2950         unsigned int sector_sz = sdkp->device->sector_size;
2951         const int vpd_len = 64;
2952         unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2953
2954         if (!buffer ||
2955             /* Block Limits VPD */
2956             scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2957                 goto out;
2958
2959         blk_queue_io_min(sdkp->disk->queue,
2960                          get_unaligned_be16(&buffer[6]) * sector_sz);
2961
2962         sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2963         sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2964
2965         if (buffer[3] == 0x3c) {
2966                 unsigned int lba_count, desc_count;
2967
2968                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2969
2970                 if (!sdkp->lbpme)
2971                         goto out;
2972
2973                 lba_count = get_unaligned_be32(&buffer[20]);
2974                 desc_count = get_unaligned_be32(&buffer[24]);
2975
2976                 if (lba_count && desc_count)
2977                         sdkp->max_unmap_blocks = lba_count;
2978
2979                 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2980
2981                 if (buffer[32] & 0x80)
2982                         sdkp->unmap_alignment =
2983                                 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2984
2985                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2986
2987                         if (sdkp->max_unmap_blocks)
2988                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2989                         else
2990                                 sd_config_discard(sdkp, SD_LBP_WS16);
2991
2992                 } else {        /* LBP VPD page tells us what to use */
2993                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
2994                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2995                         else if (sdkp->lbpws)
2996                                 sd_config_discard(sdkp, SD_LBP_WS16);
2997                         else if (sdkp->lbpws10)
2998                                 sd_config_discard(sdkp, SD_LBP_WS10);
2999                         else
3000                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
3001                 }
3002         }
3003
3004  out:
3005         kfree(buffer);
3006 }
3007
3008 /**
3009  * sd_read_block_characteristics - Query block dev. characteristics
3010  * @sdkp: disk to query
3011  */
3012 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3013 {
3014         struct request_queue *q = sdkp->disk->queue;
3015         unsigned char *buffer;
3016         u16 rot;
3017         const int vpd_len = 64;
3018
3019         buffer = kmalloc(vpd_len, GFP_KERNEL);
3020
3021         if (!buffer ||
3022             /* Block Device Characteristics VPD */
3023             scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
3024                 goto out;
3025
3026         rot = get_unaligned_be16(&buffer[4]);
3027
3028         if (rot == 1) {
3029                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3030                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3031         }
3032
3033         if (sdkp->device->type == TYPE_ZBC) {
3034                 /* Host-managed */
3035                 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
3036         } else {
3037                 sdkp->zoned = (buffer[8] >> 4) & 3;
3038                 if (sdkp->zoned == 1) {
3039                         /* Host-aware */
3040                         blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3041                 } else {
3042                         /* Regular disk or drive managed disk */
3043                         blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3044                 }
3045         }
3046
3047         if (!sdkp->first_scan)
3048                 goto out;
3049
3050         if (blk_queue_is_zoned(q)) {
3051                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3052                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3053         } else {
3054                 if (sdkp->zoned == 1)
3055                         sd_printk(KERN_NOTICE, sdkp,
3056                                   "Host-aware SMR disk used as regular disk\n");
3057                 else if (sdkp->zoned == 2)
3058                         sd_printk(KERN_NOTICE, sdkp,
3059                                   "Drive-managed SMR disk\n");
3060         }
3061
3062  out:
3063         kfree(buffer);
3064 }
3065
3066 /**
3067  * sd_read_block_provisioning - Query provisioning VPD page
3068  * @sdkp: disk to query
3069  */
3070 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3071 {
3072         unsigned char *buffer;
3073         const int vpd_len = 8;
3074
3075         if (sdkp->lbpme == 0)
3076                 return;
3077
3078         buffer = kmalloc(vpd_len, GFP_KERNEL);
3079
3080         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3081                 goto out;
3082
3083         sdkp->lbpvpd    = 1;
3084         sdkp->lbpu      = (buffer[5] >> 7) & 1; /* UNMAP */
3085         sdkp->lbpws     = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3086         sdkp->lbpws10   = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3087
3088  out:
3089         kfree(buffer);
3090 }
3091
3092 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3093 {
3094         struct scsi_device *sdev = sdkp->device;
3095
3096         if (sdev->host->no_write_same) {
3097                 sdev->no_write_same = 1;
3098
3099                 return;
3100         }
3101
3102         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3103                 /* too large values might cause issues with arcmsr */
3104                 int vpd_buf_len = 64;
3105
3106                 sdev->no_report_opcodes = 1;
3107
3108                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3109                  * CODES is unsupported and the device has an ATA
3110                  * Information VPD page (SAT).
3111                  */
3112                 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3113                         sdev->no_write_same = 1;
3114         }
3115
3116         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3117                 sdkp->ws16 = 1;
3118
3119         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3120                 sdkp->ws10 = 1;
3121 }
3122
3123 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3124 {
3125         struct scsi_device *sdev = sdkp->device;
3126
3127         if (!sdev->security_supported)
3128                 return;
3129
3130         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3131                         SECURITY_PROTOCOL_IN) == 1 &&
3132             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3133                         SECURITY_PROTOCOL_OUT) == 1)
3134                 sdkp->security = 1;
3135 }
3136
3137 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3138 {
3139         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3140 }
3141
3142 /**
3143  * sd_read_cpr - Query concurrent positioning ranges
3144  * @sdkp:       disk to query
3145  */
3146 static void sd_read_cpr(struct scsi_disk *sdkp)
3147 {
3148         struct blk_independent_access_ranges *iars = NULL;
3149         unsigned char *buffer = NULL;
3150         unsigned int nr_cpr = 0;
3151         int i, vpd_len, buf_len = SD_BUF_SIZE;
3152         u8 *desc;
3153
3154         /*
3155          * We need to have the capacity set first for the block layer to be
3156          * able to check the ranges.
3157          */
3158         if (sdkp->first_scan)
3159                 return;
3160
3161         if (!sdkp->capacity)
3162                 goto out;
3163
3164         /*
3165          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3166          * leading to a maximum page size of 64 + 256*32 bytes.
3167          */
3168         buf_len = 64 + 256*32;
3169         buffer = kmalloc(buf_len, GFP_KERNEL);
3170         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3171                 goto out;
3172
3173         /* We must have at least a 64B header and one 32B range descriptor */
3174         vpd_len = get_unaligned_be16(&buffer[2]) + 3;
3175         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3176                 sd_printk(KERN_ERR, sdkp,
3177                           "Invalid Concurrent Positioning Ranges VPD page\n");
3178                 goto out;
3179         }
3180
3181         nr_cpr = (vpd_len - 64) / 32;
3182         if (nr_cpr == 1) {
3183                 nr_cpr = 0;
3184                 goto out;
3185         }
3186
3187         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3188         if (!iars) {
3189                 nr_cpr = 0;
3190                 goto out;
3191         }
3192
3193         desc = &buffer[64];
3194         for (i = 0; i < nr_cpr; i++, desc += 32) {
3195                 if (desc[0] != i) {
3196                         sd_printk(KERN_ERR, sdkp,
3197                                 "Invalid Concurrent Positioning Range number\n");
3198                         nr_cpr = 0;
3199                         break;
3200                 }
3201
3202                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3203                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3204         }
3205
3206 out:
3207         disk_set_independent_access_ranges(sdkp->disk, iars);
3208         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3209                 sd_printk(KERN_NOTICE, sdkp,
3210                           "%u concurrent positioning ranges\n", nr_cpr);
3211                 sdkp->nr_actuators = nr_cpr;
3212         }
3213
3214         kfree(buffer);
3215 }
3216
3217 /*
3218  * Determine the device's preferred I/O size for reads and writes
3219  * unless the reported value is unreasonably small, large, not a
3220  * multiple of the physical block size, or simply garbage.
3221  */
3222 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3223                                       unsigned int dev_max)
3224 {
3225         struct scsi_device *sdp = sdkp->device;
3226         unsigned int opt_xfer_bytes =
3227                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3228
3229         if (sdkp->opt_xfer_blocks == 0)
3230                 return false;
3231
3232         if (sdkp->opt_xfer_blocks > dev_max) {
3233                 sd_first_printk(KERN_WARNING, sdkp,
3234                                 "Optimal transfer size %u logical blocks " \
3235                                 "> dev_max (%u logical blocks)\n",
3236                                 sdkp->opt_xfer_blocks, dev_max);
3237                 return false;
3238         }
3239
3240         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3241                 sd_first_printk(KERN_WARNING, sdkp,
3242                                 "Optimal transfer size %u logical blocks " \
3243                                 "> sd driver limit (%u logical blocks)\n",
3244                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3245                 return false;
3246         }
3247
3248         if (opt_xfer_bytes < PAGE_SIZE) {
3249                 sd_first_printk(KERN_WARNING, sdkp,
3250                                 "Optimal transfer size %u bytes < " \
3251                                 "PAGE_SIZE (%u bytes)\n",
3252                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3253                 return false;
3254         }
3255
3256         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3257                 sd_first_printk(KERN_WARNING, sdkp,
3258                                 "Optimal transfer size %u bytes not a " \
3259                                 "multiple of physical block size (%u bytes)\n",
3260                                 opt_xfer_bytes, sdkp->physical_block_size);
3261                 return false;
3262         }
3263
3264         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3265                         opt_xfer_bytes);
3266         return true;
3267 }
3268
3269 /**
3270  *      sd_revalidate_disk - called the first time a new disk is seen,
3271  *      performs disk spin up, read_capacity, etc.
3272  *      @disk: struct gendisk we care about
3273  **/
3274 static int sd_revalidate_disk(struct gendisk *disk)
3275 {
3276         struct scsi_disk *sdkp = scsi_disk(disk);
3277         struct scsi_device *sdp = sdkp->device;
3278         struct request_queue *q = sdkp->disk->queue;
3279         sector_t old_capacity = sdkp->capacity;
3280         unsigned char *buffer;
3281         unsigned int dev_max, rw_max;
3282
3283         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3284                                       "sd_revalidate_disk\n"));
3285
3286         /*
3287          * If the device is offline, don't try and read capacity or any
3288          * of the other niceties.
3289          */
3290         if (!scsi_device_online(sdp))
3291                 goto out;
3292
3293         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3294         if (!buffer) {
3295                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3296                           "allocation failure.\n");
3297                 goto out;
3298         }
3299
3300         sd_spinup_disk(sdkp);
3301
3302         /*
3303          * Without media there is no reason to ask; moreover, some devices
3304          * react badly if we do.
3305          */
3306         if (sdkp->media_present) {
3307                 sd_read_capacity(sdkp, buffer);
3308
3309                 /*
3310                  * set the default to rotational.  All non-rotational devices
3311                  * support the block characteristics VPD page, which will
3312                  * cause this to be updated correctly and any device which
3313                  * doesn't support it should be treated as rotational.
3314                  */
3315                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3316                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3317
3318                 if (scsi_device_supports_vpd(sdp)) {
3319                         sd_read_block_provisioning(sdkp);
3320                         sd_read_block_limits(sdkp);
3321                         sd_read_block_characteristics(sdkp);
3322                         sd_zbc_read_zones(sdkp, buffer);
3323                 }
3324
3325                 sd_print_capacity(sdkp, old_capacity);
3326
3327                 sd_read_write_protect_flag(sdkp, buffer);
3328                 sd_read_cache_type(sdkp, buffer);
3329                 sd_read_app_tag_own(sdkp, buffer);
3330                 sd_read_write_same(sdkp, buffer);
3331                 sd_read_security(sdkp, buffer);
3332                 sd_read_cpr(sdkp);
3333         }
3334
3335         /*
3336          * We now have all cache related info, determine how we deal
3337          * with flush requests.
3338          */
3339         sd_set_flush_flag(sdkp);
3340
3341         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3342         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3343
3344         /* Some devices report a maximum block count for READ/WRITE requests. */
3345         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3346         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3347
3348         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3349                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3350                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3351         } else {
3352                 q->limits.io_opt = 0;
3353                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3354                                       (sector_t)BLK_DEF_MAX_SECTORS);
3355         }
3356
3357         /* Do not exceed controller limit */
3358         rw_max = min(rw_max, queue_max_hw_sectors(q));
3359
3360         /*
3361          * Only update max_sectors if previously unset or if the current value
3362          * exceeds the capabilities of the hardware.
3363          */
3364         if (sdkp->first_scan ||
3365             q->limits.max_sectors > q->limits.max_dev_sectors ||
3366             q->limits.max_sectors > q->limits.max_hw_sectors)
3367                 q->limits.max_sectors = rw_max;
3368
3369         sdkp->first_scan = 0;
3370
3371         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3372         sd_config_write_same(sdkp);
3373         kfree(buffer);
3374
3375         /*
3376          * For a zoned drive, revalidating the zones can be done only once
3377          * the gendisk capacity is set. So if this fails, set back the gendisk
3378          * capacity to 0.
3379          */
3380         if (sd_zbc_revalidate_zones(sdkp))
3381                 set_capacity_and_notify(disk, 0);
3382
3383  out:
3384         return 0;
3385 }
3386
3387 /**
3388  *      sd_unlock_native_capacity - unlock native capacity
3389  *      @disk: struct gendisk to set capacity for
3390  *
3391  *      Block layer calls this function if it detects that partitions
3392  *      on @disk reach beyond the end of the device.  If the SCSI host
3393  *      implements ->unlock_native_capacity() method, it's invoked to
3394  *      give it a chance to adjust the device capacity.
3395  *
3396  *      CONTEXT:
3397  *      Defined by block layer.  Might sleep.
3398  */
3399 static void sd_unlock_native_capacity(struct gendisk *disk)
3400 {
3401         struct scsi_device *sdev = scsi_disk(disk)->device;
3402
3403         if (sdev->host->hostt->unlock_native_capacity)
3404                 sdev->host->hostt->unlock_native_capacity(sdev);
3405 }
3406
3407 /**
3408  *      sd_format_disk_name - format disk name
3409  *      @prefix: name prefix - ie. "sd" for SCSI disks
3410  *      @index: index of the disk to format name for
3411  *      @buf: output buffer
3412  *      @buflen: length of the output buffer
3413  *
3414  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3415  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3416  *      which is followed by sdaaa.
3417  *
3418  *      This is basically 26 base counting with one extra 'nil' entry
3419  *      at the beginning from the second digit on and can be
3420  *      determined using similar method as 26 base conversion with the
3421  *      index shifted -1 after each digit is computed.
3422  *
3423  *      CONTEXT:
3424  *      Don't care.
3425  *
3426  *      RETURNS:
3427  *      0 on success, -errno on failure.
3428  */
3429 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3430 {
3431         const int base = 'z' - 'a' + 1;
3432         char *begin = buf + strlen(prefix);
3433         char *end = buf + buflen;
3434         char *p;
3435         int unit;
3436
3437         p = end - 1;
3438         *p = '\0';
3439         unit = base;
3440         do {
3441                 if (p == begin)
3442                         return -EINVAL;
3443                 *--p = 'a' + (index % unit);
3444                 index = (index / unit) - 1;
3445         } while (index >= 0);
3446
3447         memmove(begin, p, end - p);
3448         memcpy(buf, prefix, strlen(prefix));
3449
3450         return 0;
3451 }
3452
3453 /**
3454  *      sd_probe - called during driver initialization and whenever a
3455  *      new scsi device is attached to the system. It is called once
3456  *      for each scsi device (not just disks) present.
3457  *      @dev: pointer to device object
3458  *
3459  *      Returns 0 if successful (or not interested in this scsi device 
3460  *      (e.g. scanner)); 1 when there is an error.
3461  *
3462  *      Note: this function is invoked from the scsi mid-level.
3463  *      This function sets up the mapping between a given 
3464  *      <host,channel,id,lun> (found in sdp) and new device name 
3465  *      (e.g. /dev/sda). More precisely it is the block device major 
3466  *      and minor number that is chosen here.
3467  *
3468  *      Assume sd_probe is not re-entrant (for time being)
3469  *      Also think about sd_probe() and sd_remove() running coincidentally.
3470  **/
3471 static int sd_probe(struct device *dev)
3472 {
3473         struct scsi_device *sdp = to_scsi_device(dev);
3474         struct scsi_disk *sdkp;
3475         struct gendisk *gd;
3476         int index;
3477         int error;
3478
3479         scsi_autopm_get_device(sdp);
3480         error = -ENODEV;
3481         if (sdp->type != TYPE_DISK &&
3482             sdp->type != TYPE_ZBC &&
3483             sdp->type != TYPE_MOD &&
3484             sdp->type != TYPE_RBC)
3485                 goto out;
3486
3487         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3488                 sdev_printk(KERN_WARNING, sdp,
3489                             "Unsupported ZBC host-managed device.\n");
3490                 goto out;
3491         }
3492
3493         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3494                                         "sd_probe\n"));
3495
3496         error = -ENOMEM;
3497         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3498         if (!sdkp)
3499                 goto out;
3500
3501         gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE,
3502                                &sd_bio_compl_lkclass);
3503         if (!gd)
3504                 goto out_free;
3505
3506         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3507         if (index < 0) {
3508                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3509                 goto out_put;
3510         }
3511
3512         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3513         if (error) {
3514                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3515                 goto out_free_index;
3516         }
3517
3518         sdkp->device = sdp;
3519         sdkp->driver = &sd_template;
3520         sdkp->disk = gd;
3521         sdkp->index = index;
3522         sdkp->max_retries = SD_MAX_RETRIES;
3523         atomic_set(&sdkp->openers, 0);
3524         atomic_set(&sdkp->device->ioerr_cnt, 0);
3525
3526         if (!sdp->request_queue->rq_timeout) {
3527                 if (sdp->type != TYPE_MOD)
3528                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3529                 else
3530                         blk_queue_rq_timeout(sdp->request_queue,
3531                                              SD_MOD_TIMEOUT);
3532         }
3533
3534         device_initialize(&sdkp->dev);
3535         sdkp->dev.parent = get_device(dev);
3536         sdkp->dev.class = &sd_disk_class;
3537         dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3538
3539         error = device_add(&sdkp->dev);
3540         if (error) {
3541                 put_device(&sdkp->dev);
3542                 goto out;
3543         }
3544
3545         dev_set_drvdata(dev, sdkp);
3546
3547         gd->major = sd_major((index & 0xf0) >> 4);
3548         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3549         gd->minors = SD_MINORS;
3550
3551         gd->fops = &sd_fops;
3552         gd->private_data = &sdkp->driver;
3553
3554         /* defaults, until the device tells us otherwise */
3555         sdp->sector_size = 512;
3556         sdkp->capacity = 0;
3557         sdkp->media_present = 1;
3558         sdkp->write_prot = 0;
3559         sdkp->cache_override = 0;
3560         sdkp->WCE = 0;
3561         sdkp->RCD = 0;
3562         sdkp->ATO = 0;
3563         sdkp->first_scan = 1;
3564         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3565
3566         sd_revalidate_disk(gd);
3567
3568         if (sdp->removable) {
3569                 gd->flags |= GENHD_FL_REMOVABLE;
3570                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3571                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3572         }
3573
3574         blk_pm_runtime_init(sdp->request_queue, dev);
3575         if (sdp->rpm_autosuspend) {
3576                 pm_runtime_set_autosuspend_delay(dev,
3577                         sdp->host->hostt->rpm_autosuspend_delay);
3578         }
3579
3580         error = device_add_disk(dev, gd, NULL);
3581         if (error) {
3582                 put_device(&sdkp->dev);
3583                 goto out;
3584         }
3585
3586         if (sdkp->capacity)
3587                 sd_dif_config_host(sdkp);
3588
3589         sd_revalidate_disk(gd);
3590
3591         if (sdkp->security) {
3592                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3593                 if (sdkp->opal_dev)
3594                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3595         }
3596
3597         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3598                   sdp->removable ? "removable " : "");
3599         scsi_autopm_put_device(sdp);
3600
3601         return 0;
3602
3603  out_free_index:
3604         ida_free(&sd_index_ida, index);
3605  out_put:
3606         put_disk(gd);
3607  out_free:
3608         sd_zbc_release_disk(sdkp);
3609         kfree(sdkp);
3610  out:
3611         scsi_autopm_put_device(sdp);
3612         return error;
3613 }
3614
3615 /**
3616  *      sd_remove - called whenever a scsi disk (previously recognized by
3617  *      sd_probe) is detached from the system. It is called (potentially
3618  *      multiple times) during sd module unload.
3619  *      @dev: pointer to device object
3620  *
3621  *      Note: this function is invoked from the scsi mid-level.
3622  *      This function potentially frees up a device name (e.g. /dev/sdc)
3623  *      that could be re-used by a subsequent sd_probe().
3624  *      This function is not called when the built-in sd driver is "exit-ed".
3625  **/
3626 static int sd_remove(struct device *dev)
3627 {
3628         struct scsi_disk *sdkp;
3629
3630         sdkp = dev_get_drvdata(dev);
3631         scsi_autopm_get_device(sdkp->device);
3632
3633         device_del(&sdkp->dev);
3634         del_gendisk(sdkp->disk);
3635         sd_shutdown(dev);
3636
3637         free_opal_dev(sdkp->opal_dev);
3638
3639         mutex_lock(&sd_ref_mutex);
3640         dev_set_drvdata(dev, NULL);
3641         put_device(&sdkp->dev);
3642         mutex_unlock(&sd_ref_mutex);
3643
3644         return 0;
3645 }
3646
3647 /**
3648  *      scsi_disk_release - Called to free the scsi_disk structure
3649  *      @dev: pointer to embedded class device
3650  *
3651  *      sd_ref_mutex must be held entering this routine.  Because it is
3652  *      called on last put, you should always use the scsi_disk_get()
3653  *      scsi_disk_put() helpers which manipulate the semaphore directly
3654  *      and never do a direct put_device.
3655  **/
3656 static void scsi_disk_release(struct device *dev)
3657 {
3658         struct scsi_disk *sdkp = to_scsi_disk(dev);
3659         struct gendisk *disk = sdkp->disk;
3660         struct request_queue *q = disk->queue;
3661
3662         ida_free(&sd_index_ida, sdkp->index);
3663
3664         /*
3665          * Wait until all requests that are in progress have completed.
3666          * This is necessary to avoid that e.g. scsi_end_request() crashes
3667          * due to clearing the disk->private_data pointer. Wait from inside
3668          * scsi_disk_release() instead of from sd_release() to avoid that
3669          * freezing and unfreezing the request queue affects user space I/O
3670          * in case multiple processes open a /dev/sd... node concurrently.
3671          */
3672         blk_mq_freeze_queue(q);
3673         blk_mq_unfreeze_queue(q);
3674
3675         disk->private_data = NULL;
3676         put_disk(disk);
3677         put_device(&sdkp->device->sdev_gendev);
3678
3679         sd_zbc_release_disk(sdkp);
3680
3681         kfree(sdkp);
3682 }
3683
3684 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3685 {
3686         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3687         struct scsi_sense_hdr sshdr;
3688         struct scsi_device *sdp = sdkp->device;
3689         int res;
3690
3691         if (start)
3692                 cmd[4] |= 1;    /* START */
3693
3694         if (sdp->start_stop_pwr_cond)
3695                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3696
3697         if (!scsi_device_online(sdp))
3698                 return -ENODEV;
3699
3700         res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3701                         SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3702         if (res) {
3703                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3704                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3705                         sd_print_sense_hdr(sdkp, &sshdr);
3706                         /* 0x3a is medium not present */
3707                         if (sshdr.asc == 0x3a)
3708                                 res = 0;
3709                 }
3710         }
3711
3712         /* SCSI error codes must not go to the generic layer */
3713         if (res)
3714                 return -EIO;
3715
3716         return 0;
3717 }
3718
3719 /*
3720  * Send a SYNCHRONIZE CACHE instruction down to the device through
3721  * the normal SCSI command structure.  Wait for the command to
3722  * complete.
3723  */
3724 static void sd_shutdown(struct device *dev)
3725 {
3726         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3727
3728         if (!sdkp)
3729                 return;         /* this can happen */
3730
3731         if (pm_runtime_suspended(dev))
3732                 return;
3733
3734         if (sdkp->WCE && sdkp->media_present) {
3735                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3736                 sd_sync_cache(sdkp, NULL);
3737         }
3738
3739         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3740                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3741                 sd_start_stop_device(sdkp, 0);
3742         }
3743 }
3744
3745 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3746 {
3747         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3748         struct scsi_sense_hdr sshdr;
3749         int ret = 0;
3750
3751         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3752                 return 0;
3753
3754         if (sdkp->WCE && sdkp->media_present) {
3755                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3756                 ret = sd_sync_cache(sdkp, &sshdr);
3757
3758                 if (ret) {
3759                         /* ignore OFFLINE device */
3760                         if (ret == -ENODEV)
3761                                 return 0;
3762
3763                         if (!scsi_sense_valid(&sshdr) ||
3764                             sshdr.sense_key != ILLEGAL_REQUEST)
3765                                 return ret;
3766
3767                         /*
3768                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3769                          * doesn't support sync. There's not much to do and
3770                          * suspend shouldn't fail.
3771                          */
3772                         ret = 0;
3773                 }
3774         }
3775
3776         if (sdkp->device->manage_start_stop) {
3777                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3778                 /* an error is not worth aborting a system sleep */
3779                 ret = sd_start_stop_device(sdkp, 0);
3780                 if (ignore_stop_errors)
3781                         ret = 0;
3782         }
3783
3784         return ret;
3785 }
3786
3787 static int sd_suspend_system(struct device *dev)
3788 {
3789         if (pm_runtime_suspended(dev))
3790                 return 0;
3791
3792         return sd_suspend_common(dev, true);
3793 }
3794
3795 static int sd_suspend_runtime(struct device *dev)
3796 {
3797         return sd_suspend_common(dev, false);
3798 }
3799
3800 static int sd_resume(struct device *dev)
3801 {
3802         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3803         int ret;
3804
3805         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3806                 return 0;
3807
3808         if (!sdkp->device->manage_start_stop)
3809                 return 0;
3810
3811         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3812         ret = sd_start_stop_device(sdkp, 1);
3813         if (!ret)
3814                 opal_unlock_from_suspend(sdkp->opal_dev);
3815         return ret;
3816 }
3817
3818 static int sd_resume_system(struct device *dev)
3819 {
3820         if (pm_runtime_suspended(dev))
3821                 return 0;
3822
3823         return sd_resume(dev);
3824 }
3825
3826 static int sd_resume_runtime(struct device *dev)
3827 {
3828         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3829         struct scsi_device *sdp;
3830
3831         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3832                 return 0;
3833
3834         sdp = sdkp->device;
3835
3836         if (sdp->ignore_media_change) {
3837                 /* clear the device's sense data */
3838                 static const u8 cmd[10] = { REQUEST_SENSE };
3839
3840                 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3841                                  NULL, sdp->request_queue->rq_timeout, 1, 0,
3842                                  RQF_PM, NULL))
3843                         sd_printk(KERN_NOTICE, sdkp,
3844                                   "Failed to clear sense data\n");
3845         }
3846
3847         return sd_resume(dev);
3848 }
3849
3850 /**
3851  *      init_sd - entry point for this driver (both when built in or when
3852  *      a module).
3853  *
3854  *      Note: this function registers this driver with the scsi mid-level.
3855  **/
3856 static int __init init_sd(void)
3857 {
3858         int majors = 0, i, err;
3859
3860         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3861
3862         for (i = 0; i < SD_MAJORS; i++) {
3863                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3864                         continue;
3865                 majors++;
3866         }
3867
3868         if (!majors)
3869                 return -ENODEV;
3870
3871         err = class_register(&sd_disk_class);
3872         if (err)
3873                 goto err_out;
3874
3875         sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3876                                          0, 0, NULL);
3877         if (!sd_cdb_cache) {
3878                 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3879                 err = -ENOMEM;
3880                 goto err_out_class;
3881         }
3882
3883         sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3884         if (!sd_cdb_pool) {
3885                 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3886                 err = -ENOMEM;
3887                 goto err_out_cache;
3888         }
3889
3890         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3891         if (!sd_page_pool) {
3892                 printk(KERN_ERR "sd: can't init discard page pool\n");
3893                 err = -ENOMEM;
3894                 goto err_out_ppool;
3895         }
3896
3897         err = scsi_register_driver(&sd_template.gendrv);
3898         if (err)
3899                 goto err_out_driver;
3900
3901         return 0;
3902
3903 err_out_driver:
3904         mempool_destroy(sd_page_pool);
3905
3906 err_out_ppool:
3907         mempool_destroy(sd_cdb_pool);
3908
3909 err_out_cache:
3910         kmem_cache_destroy(sd_cdb_cache);
3911
3912 err_out_class:
3913         class_unregister(&sd_disk_class);
3914 err_out:
3915         for (i = 0; i < SD_MAJORS; i++)
3916                 unregister_blkdev(sd_major(i), "sd");
3917         return err;
3918 }
3919
3920 /**
3921  *      exit_sd - exit point for this driver (when it is a module).
3922  *
3923  *      Note: this function unregisters this driver from the scsi mid-level.
3924  **/
3925 static void __exit exit_sd(void)
3926 {
3927         int i;
3928
3929         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3930
3931         scsi_unregister_driver(&sd_template.gendrv);
3932         mempool_destroy(sd_cdb_pool);
3933         mempool_destroy(sd_page_pool);
3934         kmem_cache_destroy(sd_cdb_cache);
3935
3936         class_unregister(&sd_disk_class);
3937
3938         for (i = 0; i < SD_MAJORS; i++)
3939                 unregister_blkdev(sd_major(i), "sd");
3940 }
3941
3942 module_init(init_sd);
3943 module_exit(exit_sd);
3944
3945 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3946 {
3947         scsi_print_sense_hdr(sdkp->device,
3948                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3949 }
3950
3951 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3952 {
3953         const char *hb_string = scsi_hostbyte_string(result);
3954
3955         if (hb_string)
3956                 sd_printk(KERN_INFO, sdkp,
3957                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3958                           hb_string ? hb_string : "invalid",
3959                           "DRIVER_OK");
3960         else
3961                 sd_printk(KERN_INFO, sdkp,
3962                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3963                           msg, host_byte(result), "DRIVER_OK");
3964 }