scsi: core: Introduce enum scsi_disposition
[linux-2.6-microblaze.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68                                    unsigned char *sense_buffer)
69 {
70         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71                         sense_buffer);
72 }
73
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75         gfp_t gfp_mask, int numa_node)
76 {
77         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78                                      gfp_mask, numa_node);
79 }
80
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83         struct kmem_cache *cache;
84         int ret = 0;
85
86         mutex_lock(&scsi_sense_cache_mutex);
87         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88         if (cache)
89                 goto exit;
90
91         if (shost->unchecked_isa_dma) {
92                 scsi_sense_isadma_cache =
93                         kmem_cache_create("scsi_sense_cache(DMA)",
94                                 SCSI_SENSE_BUFFERSIZE, 0,
95                                 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96                 if (!scsi_sense_isadma_cache)
97                         ret = -ENOMEM;
98         } else {
99                 scsi_sense_cache =
100                         kmem_cache_create_usercopy("scsi_sense_cache",
101                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
103                 if (!scsi_sense_cache)
104                         ret = -ENOMEM;
105         }
106  exit:
107         mutex_unlock(&scsi_sense_cache_mutex);
108         return ret;
109 }
110
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY        3
117
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121         struct Scsi_Host *host = cmd->device->host;
122         struct scsi_device *device = cmd->device;
123         struct scsi_target *starget = scsi_target(device);
124
125         /*
126          * Set the appropriate busy bit for the device/host.
127          *
128          * If the host/device isn't busy, assume that something actually
129          * completed, and that we should be able to queue a command now.
130          *
131          * Note that the prior mid-layer assumption that any host could
132          * always queue at least one command is now broken.  The mid-layer
133          * will implement a user specifiable stall (see
134          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135          * if a command is requeued with no other commands outstanding
136          * either for the device or for the host.
137          */
138         switch (reason) {
139         case SCSI_MLQUEUE_HOST_BUSY:
140                 atomic_set(&host->host_blocked, host->max_host_blocked);
141                 break;
142         case SCSI_MLQUEUE_DEVICE_BUSY:
143         case SCSI_MLQUEUE_EH_RETRY:
144                 atomic_set(&device->device_blocked,
145                            device->max_device_blocked);
146                 break;
147         case SCSI_MLQUEUE_TARGET_BUSY:
148                 atomic_set(&starget->target_blocked,
149                            starget->max_target_blocked);
150                 break;
151         }
152 }
153
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156         if (cmd->request->rq_flags & RQF_DONTPREP) {
157                 cmd->request->rq_flags &= ~RQF_DONTPREP;
158                 scsi_mq_uninit_cmd(cmd);
159         } else {
160                 WARN_ON_ONCE(true);
161         }
162         blk_mq_requeue_request(cmd->request, true);
163 }
164
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179         struct scsi_device *device = cmd->device;
180
181         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182                 "Inserting command %p into mlqueue\n", cmd));
183
184         scsi_set_blocked(cmd, reason);
185
186         /*
187          * Decrement the counters, since these commands are no longer
188          * active on the host/device.
189          */
190         if (unbusy)
191                 scsi_device_unbusy(device, cmd);
192
193         /*
194          * Requeue this command.  It will go before all other commands
195          * that are already in the queue. Schedule requeue work under
196          * lock such that the kblockd_schedule_work() call happens
197          * before blk_cleanup_queue() finishes.
198          */
199         cmd->result = 0;
200
201         blk_mq_requeue_request(cmd->request, true);
202 }
203
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218         __scsi_queue_insert(cmd, reason, true);
219 }
220
221
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:       scsi device
225  * @cmd:        scsi command
226  * @data_direction: data direction
227  * @buffer:     data buffer
228  * @bufflen:    len of buffer
229  * @sense:      optional sense buffer
230  * @sshdr:      optional decoded sense header
231  * @timeout:    request timeout in seconds
232  * @retries:    number of times to retry request
233  * @flags:      flags for ->cmd_flags
234  * @rq_flags:   flags for ->rq_flags
235  * @resid:      optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241                  int data_direction, void *buffer, unsigned bufflen,
242                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
243                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
244                  int *resid)
245 {
246         struct request *req;
247         struct scsi_request *rq;
248         int ret = DRIVER_ERROR << 24;
249
250         req = blk_get_request(sdev->request_queue,
251                         data_direction == DMA_TO_DEVICE ?
252                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
253                         rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
254         if (IS_ERR(req))
255                 return ret;
256         rq = scsi_req(req);
257
258         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
259                                         buffer, bufflen, GFP_NOIO))
260                 goto out;
261
262         rq->cmd_len = COMMAND_SIZE(cmd[0]);
263         memcpy(rq->cmd, cmd, rq->cmd_len);
264         rq->retries = retries;
265         req->timeout = timeout;
266         req->cmd_flags |= flags;
267         req->rq_flags |= rq_flags | RQF_QUIET;
268
269         /*
270          * head injection *required* here otherwise quiesce won't work
271          */
272         blk_execute_rq(NULL, req, 1);
273
274         /*
275          * Some devices (USB mass-storage in particular) may transfer
276          * garbage data together with a residue indicating that the data
277          * is invalid.  Prevent the garbage from being misinterpreted
278          * and prevent security leaks by zeroing out the excess data.
279          */
280         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282
283         if (resid)
284                 *resid = rq->resid_len;
285         if (sense && rq->sense_len)
286                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287         if (sshdr)
288                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289         ret = rq->result;
290  out:
291         blk_put_request(req);
292
293         return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296
297 /*
298  * Wake up the error handler if necessary. Avoid as follows that the error
299  * handler is not woken up if host in-flight requests number ==
300  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
301  * with an RCU read lock in this function to ensure that this function in
302  * its entirety either finishes before scsi_eh_scmd_add() increases the
303  * host_failed counter or that it notices the shost state change made by
304  * scsi_eh_scmd_add().
305  */
306 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
307 {
308         unsigned long flags;
309
310         rcu_read_lock();
311         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
312         if (unlikely(scsi_host_in_recovery(shost))) {
313                 spin_lock_irqsave(shost->host_lock, flags);
314                 if (shost->host_failed || shost->host_eh_scheduled)
315                         scsi_eh_wakeup(shost);
316                 spin_unlock_irqrestore(shost->host_lock, flags);
317         }
318         rcu_read_unlock();
319 }
320
321 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
322 {
323         struct Scsi_Host *shost = sdev->host;
324         struct scsi_target *starget = scsi_target(sdev);
325
326         scsi_dec_host_busy(shost, cmd);
327
328         if (starget->can_queue > 0)
329                 atomic_dec(&starget->target_busy);
330
331         sbitmap_put(&sdev->budget_map, cmd->budget_token);
332         cmd->budget_token = -1;
333 }
334
335 static void scsi_kick_queue(struct request_queue *q)
336 {
337         blk_mq_run_hw_queues(q, false);
338 }
339
340 /*
341  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
342  * and call blk_run_queue for all the scsi_devices on the target -
343  * including current_sdev first.
344  *
345  * Called with *no* scsi locks held.
346  */
347 static void scsi_single_lun_run(struct scsi_device *current_sdev)
348 {
349         struct Scsi_Host *shost = current_sdev->host;
350         struct scsi_device *sdev, *tmp;
351         struct scsi_target *starget = scsi_target(current_sdev);
352         unsigned long flags;
353
354         spin_lock_irqsave(shost->host_lock, flags);
355         starget->starget_sdev_user = NULL;
356         spin_unlock_irqrestore(shost->host_lock, flags);
357
358         /*
359          * Call blk_run_queue for all LUNs on the target, starting with
360          * current_sdev. We race with others (to set starget_sdev_user),
361          * but in most cases, we will be first. Ideally, each LU on the
362          * target would get some limited time or requests on the target.
363          */
364         scsi_kick_queue(current_sdev->request_queue);
365
366         spin_lock_irqsave(shost->host_lock, flags);
367         if (starget->starget_sdev_user)
368                 goto out;
369         list_for_each_entry_safe(sdev, tmp, &starget->devices,
370                         same_target_siblings) {
371                 if (sdev == current_sdev)
372                         continue;
373                 if (scsi_device_get(sdev))
374                         continue;
375
376                 spin_unlock_irqrestore(shost->host_lock, flags);
377                 scsi_kick_queue(sdev->request_queue);
378                 spin_lock_irqsave(shost->host_lock, flags);
379
380                 scsi_device_put(sdev);
381         }
382  out:
383         spin_unlock_irqrestore(shost->host_lock, flags);
384 }
385
386 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
387 {
388         if (scsi_device_busy(sdev) >= sdev->queue_depth)
389                 return true;
390         if (atomic_read(&sdev->device_blocked) > 0)
391                 return true;
392         return false;
393 }
394
395 static inline bool scsi_target_is_busy(struct scsi_target *starget)
396 {
397         if (starget->can_queue > 0) {
398                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
399                         return true;
400                 if (atomic_read(&starget->target_blocked) > 0)
401                         return true;
402         }
403         return false;
404 }
405
406 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
407 {
408         if (atomic_read(&shost->host_blocked) > 0)
409                 return true;
410         if (shost->host_self_blocked)
411                 return true;
412         return false;
413 }
414
415 static void scsi_starved_list_run(struct Scsi_Host *shost)
416 {
417         LIST_HEAD(starved_list);
418         struct scsi_device *sdev;
419         unsigned long flags;
420
421         spin_lock_irqsave(shost->host_lock, flags);
422         list_splice_init(&shost->starved_list, &starved_list);
423
424         while (!list_empty(&starved_list)) {
425                 struct request_queue *slq;
426
427                 /*
428                  * As long as shost is accepting commands and we have
429                  * starved queues, call blk_run_queue. scsi_request_fn
430                  * drops the queue_lock and can add us back to the
431                  * starved_list.
432                  *
433                  * host_lock protects the starved_list and starved_entry.
434                  * scsi_request_fn must get the host_lock before checking
435                  * or modifying starved_list or starved_entry.
436                  */
437                 if (scsi_host_is_busy(shost))
438                         break;
439
440                 sdev = list_entry(starved_list.next,
441                                   struct scsi_device, starved_entry);
442                 list_del_init(&sdev->starved_entry);
443                 if (scsi_target_is_busy(scsi_target(sdev))) {
444                         list_move_tail(&sdev->starved_entry,
445                                        &shost->starved_list);
446                         continue;
447                 }
448
449                 /*
450                  * Once we drop the host lock, a racing scsi_remove_device()
451                  * call may remove the sdev from the starved list and destroy
452                  * it and the queue.  Mitigate by taking a reference to the
453                  * queue and never touching the sdev again after we drop the
454                  * host lock.  Note: if __scsi_remove_device() invokes
455                  * blk_cleanup_queue() before the queue is run from this
456                  * function then blk_run_queue() will return immediately since
457                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
458                  */
459                 slq = sdev->request_queue;
460                 if (!blk_get_queue(slq))
461                         continue;
462                 spin_unlock_irqrestore(shost->host_lock, flags);
463
464                 scsi_kick_queue(slq);
465                 blk_put_queue(slq);
466
467                 spin_lock_irqsave(shost->host_lock, flags);
468         }
469         /* put any unprocessed entries back */
470         list_splice(&starved_list, &shost->starved_list);
471         spin_unlock_irqrestore(shost->host_lock, flags);
472 }
473
474 /**
475  * scsi_run_queue - Select a proper request queue to serve next.
476  * @q:  last request's queue
477  *
478  * The previous command was completely finished, start a new one if possible.
479  */
480 static void scsi_run_queue(struct request_queue *q)
481 {
482         struct scsi_device *sdev = q->queuedata;
483
484         if (scsi_target(sdev)->single_lun)
485                 scsi_single_lun_run(sdev);
486         if (!list_empty(&sdev->host->starved_list))
487                 scsi_starved_list_run(sdev->host);
488
489         blk_mq_run_hw_queues(q, false);
490 }
491
492 void scsi_requeue_run_queue(struct work_struct *work)
493 {
494         struct scsi_device *sdev;
495         struct request_queue *q;
496
497         sdev = container_of(work, struct scsi_device, requeue_work);
498         q = sdev->request_queue;
499         scsi_run_queue(q);
500 }
501
502 void scsi_run_host_queues(struct Scsi_Host *shost)
503 {
504         struct scsi_device *sdev;
505
506         shost_for_each_device(sdev, shost)
507                 scsi_run_queue(sdev->request_queue);
508 }
509
510 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
511 {
512         if (!blk_rq_is_passthrough(cmd->request)) {
513                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
514
515                 if (drv->uninit_command)
516                         drv->uninit_command(cmd);
517         }
518 }
519
520 void scsi_free_sgtables(struct scsi_cmnd *cmd)
521 {
522         if (cmd->sdb.table.nents)
523                 sg_free_table_chained(&cmd->sdb.table,
524                                 SCSI_INLINE_SG_CNT);
525         if (scsi_prot_sg_count(cmd))
526                 sg_free_table_chained(&cmd->prot_sdb->table,
527                                 SCSI_INLINE_PROT_SG_CNT);
528 }
529 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
530
531 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
532 {
533         scsi_free_sgtables(cmd);
534         scsi_uninit_cmd(cmd);
535 }
536
537 static void scsi_run_queue_async(struct scsi_device *sdev)
538 {
539         if (scsi_target(sdev)->single_lun ||
540             !list_empty(&sdev->host->starved_list)) {
541                 kblockd_schedule_work(&sdev->requeue_work);
542         } else {
543                 /*
544                  * smp_mb() present in sbitmap_queue_clear() or implied in
545                  * .end_io is for ordering writing .device_busy in
546                  * scsi_device_unbusy() and reading sdev->restarts.
547                  */
548                 int old = atomic_read(&sdev->restarts);
549
550                 /*
551                  * ->restarts has to be kept as non-zero if new budget
552                  *  contention occurs.
553                  *
554                  *  No need to run queue when either another re-run
555                  *  queue wins in updating ->restarts or a new budget
556                  *  contention occurs.
557                  */
558                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
559                         blk_mq_run_hw_queues(sdev->request_queue, true);
560         }
561 }
562
563 /* Returns false when no more bytes to process, true if there are more */
564 static bool scsi_end_request(struct request *req, blk_status_t error,
565                 unsigned int bytes)
566 {
567         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
568         struct scsi_device *sdev = cmd->device;
569         struct request_queue *q = sdev->request_queue;
570
571         if (blk_update_request(req, error, bytes))
572                 return true;
573
574         if (blk_queue_add_random(q))
575                 add_disk_randomness(req->rq_disk);
576
577         if (!blk_rq_is_scsi(req)) {
578                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
579                 cmd->flags &= ~SCMD_INITIALIZED;
580         }
581
582         /*
583          * Calling rcu_barrier() is not necessary here because the
584          * SCSI error handler guarantees that the function called by
585          * call_rcu() has been called before scsi_end_request() is
586          * called.
587          */
588         destroy_rcu_head(&cmd->rcu);
589
590         /*
591          * In the MQ case the command gets freed by __blk_mq_end_request,
592          * so we have to do all cleanup that depends on it earlier.
593          *
594          * We also can't kick the queues from irq context, so we
595          * will have to defer it to a workqueue.
596          */
597         scsi_mq_uninit_cmd(cmd);
598
599         /*
600          * queue is still alive, so grab the ref for preventing it
601          * from being cleaned up during running queue.
602          */
603         percpu_ref_get(&q->q_usage_counter);
604
605         __blk_mq_end_request(req, error);
606
607         scsi_run_queue_async(sdev);
608
609         percpu_ref_put(&q->q_usage_counter);
610         return false;
611 }
612
613 /**
614  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
615  * @cmd:        SCSI command
616  * @result:     scsi error code
617  *
618  * Translate a SCSI result code into a blk_status_t value. May reset the host
619  * byte of @cmd->result.
620  */
621 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
622 {
623         switch (host_byte(result)) {
624         case DID_OK:
625                 /*
626                  * Also check the other bytes than the status byte in result
627                  * to handle the case when a SCSI LLD sets result to
628                  * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
629                  */
630                 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
631                         return BLK_STS_OK;
632                 return BLK_STS_IOERR;
633         case DID_TRANSPORT_FAILFAST:
634         case DID_TRANSPORT_MARGINAL:
635                 return BLK_STS_TRANSPORT;
636         case DID_TARGET_FAILURE:
637                 set_host_byte(cmd, DID_OK);
638                 return BLK_STS_TARGET;
639         case DID_NEXUS_FAILURE:
640                 set_host_byte(cmd, DID_OK);
641                 return BLK_STS_NEXUS;
642         case DID_ALLOC_FAILURE:
643                 set_host_byte(cmd, DID_OK);
644                 return BLK_STS_NOSPC;
645         case DID_MEDIUM_ERROR:
646                 set_host_byte(cmd, DID_OK);
647                 return BLK_STS_MEDIUM;
648         default:
649                 return BLK_STS_IOERR;
650         }
651 }
652
653 /* Helper for scsi_io_completion() when "reprep" action required. */
654 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
655                                       struct request_queue *q)
656 {
657         /* A new command will be prepared and issued. */
658         scsi_mq_requeue_cmd(cmd);
659 }
660
661 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
662 {
663         struct request *req = cmd->request;
664         unsigned long wait_for;
665
666         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
667                 return false;
668
669         wait_for = (cmd->allowed + 1) * req->timeout;
670         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
671                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
672                             wait_for/HZ);
673                 return true;
674         }
675         return false;
676 }
677
678 /* Helper for scsi_io_completion() when special action required. */
679 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
680 {
681         struct request_queue *q = cmd->device->request_queue;
682         struct request *req = cmd->request;
683         int level = 0;
684         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
685               ACTION_DELAYED_RETRY} action;
686         struct scsi_sense_hdr sshdr;
687         bool sense_valid;
688         bool sense_current = true;      /* false implies "deferred sense" */
689         blk_status_t blk_stat;
690
691         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
692         if (sense_valid)
693                 sense_current = !scsi_sense_is_deferred(&sshdr);
694
695         blk_stat = scsi_result_to_blk_status(cmd, result);
696
697         if (host_byte(result) == DID_RESET) {
698                 /* Third party bus reset or reset for error recovery
699                  * reasons.  Just retry the command and see what
700                  * happens.
701                  */
702                 action = ACTION_RETRY;
703         } else if (sense_valid && sense_current) {
704                 switch (sshdr.sense_key) {
705                 case UNIT_ATTENTION:
706                         if (cmd->device->removable) {
707                                 /* Detected disc change.  Set a bit
708                                  * and quietly refuse further access.
709                                  */
710                                 cmd->device->changed = 1;
711                                 action = ACTION_FAIL;
712                         } else {
713                                 /* Must have been a power glitch, or a
714                                  * bus reset.  Could not have been a
715                                  * media change, so we just retry the
716                                  * command and see what happens.
717                                  */
718                                 action = ACTION_RETRY;
719                         }
720                         break;
721                 case ILLEGAL_REQUEST:
722                         /* If we had an ILLEGAL REQUEST returned, then
723                          * we may have performed an unsupported
724                          * command.  The only thing this should be
725                          * would be a ten byte read where only a six
726                          * byte read was supported.  Also, on a system
727                          * where READ CAPACITY failed, we may have
728                          * read past the end of the disk.
729                          */
730                         if ((cmd->device->use_10_for_rw &&
731                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
732                             (cmd->cmnd[0] == READ_10 ||
733                              cmd->cmnd[0] == WRITE_10)) {
734                                 /* This will issue a new 6-byte command. */
735                                 cmd->device->use_10_for_rw = 0;
736                                 action = ACTION_REPREP;
737                         } else if (sshdr.asc == 0x10) /* DIX */ {
738                                 action = ACTION_FAIL;
739                                 blk_stat = BLK_STS_PROTECTION;
740                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
741                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
742                                 action = ACTION_FAIL;
743                                 blk_stat = BLK_STS_TARGET;
744                         } else
745                                 action = ACTION_FAIL;
746                         break;
747                 case ABORTED_COMMAND:
748                         action = ACTION_FAIL;
749                         if (sshdr.asc == 0x10) /* DIF */
750                                 blk_stat = BLK_STS_PROTECTION;
751                         break;
752                 case NOT_READY:
753                         /* If the device is in the process of becoming
754                          * ready, or has a temporary blockage, retry.
755                          */
756                         if (sshdr.asc == 0x04) {
757                                 switch (sshdr.ascq) {
758                                 case 0x01: /* becoming ready */
759                                 case 0x04: /* format in progress */
760                                 case 0x05: /* rebuild in progress */
761                                 case 0x06: /* recalculation in progress */
762                                 case 0x07: /* operation in progress */
763                                 case 0x08: /* Long write in progress */
764                                 case 0x09: /* self test in progress */
765                                 case 0x14: /* space allocation in progress */
766                                 case 0x1a: /* start stop unit in progress */
767                                 case 0x1b: /* sanitize in progress */
768                                 case 0x1d: /* configuration in progress */
769                                 case 0x24: /* depopulation in progress */
770                                         action = ACTION_DELAYED_RETRY;
771                                         break;
772                                 case 0x0a: /* ALUA state transition */
773                                         blk_stat = BLK_STS_AGAIN;
774                                         fallthrough;
775                                 default:
776                                         action = ACTION_FAIL;
777                                         break;
778                                 }
779                         } else
780                                 action = ACTION_FAIL;
781                         break;
782                 case VOLUME_OVERFLOW:
783                         /* See SSC3rXX or current. */
784                         action = ACTION_FAIL;
785                         break;
786                 case DATA_PROTECT:
787                         action = ACTION_FAIL;
788                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
789                             (sshdr.asc == 0x55 &&
790                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
791                                 /* Insufficient zone resources */
792                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
793                         }
794                         break;
795                 default:
796                         action = ACTION_FAIL;
797                         break;
798                 }
799         } else
800                 action = ACTION_FAIL;
801
802         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
803                 action = ACTION_FAIL;
804
805         switch (action) {
806         case ACTION_FAIL:
807                 /* Give up and fail the remainder of the request */
808                 if (!(req->rq_flags & RQF_QUIET)) {
809                         static DEFINE_RATELIMIT_STATE(_rs,
810                                         DEFAULT_RATELIMIT_INTERVAL,
811                                         DEFAULT_RATELIMIT_BURST);
812
813                         if (unlikely(scsi_logging_level))
814                                 level =
815                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
816                                                     SCSI_LOG_MLCOMPLETE_BITS);
817
818                         /*
819                          * if logging is enabled the failure will be printed
820                          * in scsi_log_completion(), so avoid duplicate messages
821                          */
822                         if (!level && __ratelimit(&_rs)) {
823                                 scsi_print_result(cmd, NULL, FAILED);
824                                 if (driver_byte(result) == DRIVER_SENSE)
825                                         scsi_print_sense(cmd);
826                                 scsi_print_command(cmd);
827                         }
828                 }
829                 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
830                         return;
831                 fallthrough;
832         case ACTION_REPREP:
833                 scsi_io_completion_reprep(cmd, q);
834                 break;
835         case ACTION_RETRY:
836                 /* Retry the same command immediately */
837                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
838                 break;
839         case ACTION_DELAYED_RETRY:
840                 /* Retry the same command after a delay */
841                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
842                 break;
843         }
844 }
845
846 /*
847  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
848  * new result that may suppress further error checking. Also modifies
849  * *blk_statp in some cases.
850  */
851 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
852                                         blk_status_t *blk_statp)
853 {
854         bool sense_valid;
855         bool sense_current = true;      /* false implies "deferred sense" */
856         struct request *req = cmd->request;
857         struct scsi_sense_hdr sshdr;
858
859         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
860         if (sense_valid)
861                 sense_current = !scsi_sense_is_deferred(&sshdr);
862
863         if (blk_rq_is_passthrough(req)) {
864                 if (sense_valid) {
865                         /*
866                          * SG_IO wants current and deferred errors
867                          */
868                         scsi_req(req)->sense_len =
869                                 min(8 + cmd->sense_buffer[7],
870                                     SCSI_SENSE_BUFFERSIZE);
871                 }
872                 if (sense_current)
873                         *blk_statp = scsi_result_to_blk_status(cmd, result);
874         } else if (blk_rq_bytes(req) == 0 && sense_current) {
875                 /*
876                  * Flush commands do not transfers any data, and thus cannot use
877                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
878                  * This sets *blk_statp explicitly for the problem case.
879                  */
880                 *blk_statp = scsi_result_to_blk_status(cmd, result);
881         }
882         /*
883          * Recovered errors need reporting, but they're always treated as
884          * success, so fiddle the result code here.  For passthrough requests
885          * we already took a copy of the original into sreq->result which
886          * is what gets returned to the user
887          */
888         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
889                 bool do_print = true;
890                 /*
891                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
892                  * skip print since caller wants ATA registers. Only occurs
893                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
894                  */
895                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
896                         do_print = false;
897                 else if (req->rq_flags & RQF_QUIET)
898                         do_print = false;
899                 if (do_print)
900                         scsi_print_sense(cmd);
901                 result = 0;
902                 /* for passthrough, *blk_statp may be set */
903                 *blk_statp = BLK_STS_OK;
904         }
905         /*
906          * Another corner case: the SCSI status byte is non-zero but 'good'.
907          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
908          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
909          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
910          * intermediate statuses (both obsolete in SAM-4) as good.
911          */
912         if (status_byte(result) && scsi_status_is_good(result)) {
913                 result = 0;
914                 *blk_statp = BLK_STS_OK;
915         }
916         return result;
917 }
918
919 /**
920  * scsi_io_completion - Completion processing for SCSI commands.
921  * @cmd:        command that is finished.
922  * @good_bytes: number of processed bytes.
923  *
924  * We will finish off the specified number of sectors. If we are done, the
925  * command block will be released and the queue function will be goosed. If we
926  * are not done then we have to figure out what to do next:
927  *
928  *   a) We can call scsi_io_completion_reprep().  The request will be
929  *      unprepared and put back on the queue.  Then a new command will
930  *      be created for it.  This should be used if we made forward
931  *      progress, or if we want to switch from READ(10) to READ(6) for
932  *      example.
933  *
934  *   b) We can call scsi_io_completion_action().  The request will be
935  *      put back on the queue and retried using the same command as
936  *      before, possibly after a delay.
937  *
938  *   c) We can call scsi_end_request() with blk_stat other than
939  *      BLK_STS_OK, to fail the remainder of the request.
940  */
941 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
942 {
943         int result = cmd->result;
944         struct request_queue *q = cmd->device->request_queue;
945         struct request *req = cmd->request;
946         blk_status_t blk_stat = BLK_STS_OK;
947
948         if (unlikely(result))   /* a nz result may or may not be an error */
949                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
950
951         if (unlikely(blk_rq_is_passthrough(req))) {
952                 /*
953                  * scsi_result_to_blk_status may have reset the host_byte
954                  */
955                 scsi_req(req)->result = cmd->result;
956         }
957
958         /*
959          * Next deal with any sectors which we were able to correctly
960          * handle.
961          */
962         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
963                 "%u sectors total, %d bytes done.\n",
964                 blk_rq_sectors(req), good_bytes));
965
966         /*
967          * Failed, zero length commands always need to drop down
968          * to retry code. Fast path should return in this block.
969          */
970         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
971                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
972                         return; /* no bytes remaining */
973         }
974
975         /* Kill remainder if no retries. */
976         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
977                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
978                         WARN_ONCE(true,
979                             "Bytes remaining after failed, no-retry command");
980                 return;
981         }
982
983         /*
984          * If there had been no error, but we have leftover bytes in the
985          * requeues just queue the command up again.
986          */
987         if (likely(result == 0))
988                 scsi_io_completion_reprep(cmd, q);
989         else
990                 scsi_io_completion_action(cmd, result);
991 }
992
993 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
994                 struct request *rq)
995 {
996         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
997                !op_is_write(req_op(rq)) &&
998                sdev->host->hostt->dma_need_drain(rq);
999 }
1000
1001 /**
1002  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1003  * @cmd: SCSI command data structure to initialize.
1004  *
1005  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1006  * for @cmd.
1007  *
1008  * Returns:
1009  * * BLK_STS_OK       - on success
1010  * * BLK_STS_RESOURCE - if the failure is retryable
1011  * * BLK_STS_IOERR    - if the failure is fatal
1012  */
1013 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1014 {
1015         struct scsi_device *sdev = cmd->device;
1016         struct request *rq = cmd->request;
1017         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1018         struct scatterlist *last_sg = NULL;
1019         blk_status_t ret;
1020         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1021         int count;
1022
1023         if (WARN_ON_ONCE(!nr_segs))
1024                 return BLK_STS_IOERR;
1025
1026         /*
1027          * Make sure there is space for the drain.  The driver must adjust
1028          * max_hw_segments to be prepared for this.
1029          */
1030         if (need_drain)
1031                 nr_segs++;
1032
1033         /*
1034          * If sg table allocation fails, requeue request later.
1035          */
1036         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1037                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1038                 return BLK_STS_RESOURCE;
1039
1040         /*
1041          * Next, walk the list, and fill in the addresses and sizes of
1042          * each segment.
1043          */
1044         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1045
1046         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1047                 unsigned int pad_len =
1048                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1049
1050                 last_sg->length += pad_len;
1051                 cmd->extra_len += pad_len;
1052         }
1053
1054         if (need_drain) {
1055                 sg_unmark_end(last_sg);
1056                 last_sg = sg_next(last_sg);
1057                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1058                 sg_mark_end(last_sg);
1059
1060                 cmd->extra_len += sdev->dma_drain_len;
1061                 count++;
1062         }
1063
1064         BUG_ON(count > cmd->sdb.table.nents);
1065         cmd->sdb.table.nents = count;
1066         cmd->sdb.length = blk_rq_payload_bytes(rq);
1067
1068         if (blk_integrity_rq(rq)) {
1069                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1070                 int ivecs;
1071
1072                 if (WARN_ON_ONCE(!prot_sdb)) {
1073                         /*
1074                          * This can happen if someone (e.g. multipath)
1075                          * queues a command to a device on an adapter
1076                          * that does not support DIX.
1077                          */
1078                         ret = BLK_STS_IOERR;
1079                         goto out_free_sgtables;
1080                 }
1081
1082                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1083
1084                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1085                                 prot_sdb->table.sgl,
1086                                 SCSI_INLINE_PROT_SG_CNT)) {
1087                         ret = BLK_STS_RESOURCE;
1088                         goto out_free_sgtables;
1089                 }
1090
1091                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1092                                                 prot_sdb->table.sgl);
1093                 BUG_ON(count > ivecs);
1094                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1095
1096                 cmd->prot_sdb = prot_sdb;
1097                 cmd->prot_sdb->table.nents = count;
1098         }
1099
1100         return BLK_STS_OK;
1101 out_free_sgtables:
1102         scsi_free_sgtables(cmd);
1103         return ret;
1104 }
1105 EXPORT_SYMBOL(scsi_alloc_sgtables);
1106
1107 /**
1108  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1109  * @rq: Request associated with the SCSI command to be initialized.
1110  *
1111  * This function initializes the members of struct scsi_cmnd that must be
1112  * initialized before request processing starts and that won't be
1113  * reinitialized if a SCSI command is requeued.
1114  *
1115  * Called from inside blk_get_request() for pass-through requests and from
1116  * inside scsi_init_command() for filesystem requests.
1117  */
1118 static void scsi_initialize_rq(struct request *rq)
1119 {
1120         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1121
1122         scsi_req_init(&cmd->req);
1123         init_rcu_head(&cmd->rcu);
1124         cmd->jiffies_at_alloc = jiffies;
1125         cmd->retries = 0;
1126 }
1127
1128 /*
1129  * Only called when the request isn't completed by SCSI, and not freed by
1130  * SCSI
1131  */
1132 static void scsi_cleanup_rq(struct request *rq)
1133 {
1134         if (rq->rq_flags & RQF_DONTPREP) {
1135                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1136                 rq->rq_flags &= ~RQF_DONTPREP;
1137         }
1138 }
1139
1140 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1141 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1142 {
1143         void *buf = cmd->sense_buffer;
1144         void *prot = cmd->prot_sdb;
1145         struct request *rq = blk_mq_rq_from_pdu(cmd);
1146         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1147         unsigned long jiffies_at_alloc;
1148         int retries, to_clear;
1149         bool in_flight;
1150         int budget_token = cmd->budget_token;
1151
1152         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1153                 flags |= SCMD_INITIALIZED;
1154                 scsi_initialize_rq(rq);
1155         }
1156
1157         jiffies_at_alloc = cmd->jiffies_at_alloc;
1158         retries = cmd->retries;
1159         in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1160         /*
1161          * Zero out the cmd, except for the embedded scsi_request. Only clear
1162          * the driver-private command data if the LLD does not supply a
1163          * function to initialize that data.
1164          */
1165         to_clear = sizeof(*cmd) - sizeof(cmd->req);
1166         if (!dev->host->hostt->init_cmd_priv)
1167                 to_clear += dev->host->hostt->cmd_size;
1168         memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1169
1170         cmd->device = dev;
1171         cmd->sense_buffer = buf;
1172         cmd->prot_sdb = prot;
1173         cmd->flags = flags;
1174         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1175         cmd->jiffies_at_alloc = jiffies_at_alloc;
1176         cmd->retries = retries;
1177         if (in_flight)
1178                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1179         cmd->budget_token = budget_token;
1180
1181 }
1182
1183 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1184                 struct request *req)
1185 {
1186         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1187
1188         /*
1189          * Passthrough requests may transfer data, in which case they must
1190          * a bio attached to them.  Or they might contain a SCSI command
1191          * that does not transfer data, in which case they may optionally
1192          * submit a request without an attached bio.
1193          */
1194         if (req->bio) {
1195                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1196                 if (unlikely(ret != BLK_STS_OK))
1197                         return ret;
1198         } else {
1199                 BUG_ON(blk_rq_bytes(req));
1200
1201                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1202         }
1203
1204         cmd->cmd_len = scsi_req(req)->cmd_len;
1205         if (cmd->cmd_len == 0)
1206                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
1207         cmd->cmnd = scsi_req(req)->cmd;
1208         cmd->transfersize = blk_rq_bytes(req);
1209         cmd->allowed = scsi_req(req)->retries;
1210         return BLK_STS_OK;
1211 }
1212
1213 static blk_status_t
1214 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1215 {
1216         switch (sdev->sdev_state) {
1217         case SDEV_CREATED:
1218                 return BLK_STS_OK;
1219         case SDEV_OFFLINE:
1220         case SDEV_TRANSPORT_OFFLINE:
1221                 /*
1222                  * If the device is offline we refuse to process any
1223                  * commands.  The device must be brought online
1224                  * before trying any recovery commands.
1225                  */
1226                 if (!sdev->offline_already) {
1227                         sdev->offline_already = true;
1228                         sdev_printk(KERN_ERR, sdev,
1229                                     "rejecting I/O to offline device\n");
1230                 }
1231                 return BLK_STS_IOERR;
1232         case SDEV_DEL:
1233                 /*
1234                  * If the device is fully deleted, we refuse to
1235                  * process any commands as well.
1236                  */
1237                 sdev_printk(KERN_ERR, sdev,
1238                             "rejecting I/O to dead device\n");
1239                 return BLK_STS_IOERR;
1240         case SDEV_BLOCK:
1241         case SDEV_CREATED_BLOCK:
1242                 return BLK_STS_RESOURCE;
1243         case SDEV_QUIESCE:
1244                 /*
1245                  * If the device is blocked we only accept power management
1246                  * commands.
1247                  */
1248                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1249                         return BLK_STS_RESOURCE;
1250                 return BLK_STS_OK;
1251         default:
1252                 /*
1253                  * For any other not fully online state we only allow
1254                  * power management commands.
1255                  */
1256                 if (req && !(req->rq_flags & RQF_PM))
1257                         return BLK_STS_IOERR;
1258                 return BLK_STS_OK;
1259         }
1260 }
1261
1262 /*
1263  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1264  * and return the token else return -1.
1265  */
1266 static inline int scsi_dev_queue_ready(struct request_queue *q,
1267                                   struct scsi_device *sdev)
1268 {
1269         int token;
1270
1271         token = sbitmap_get(&sdev->budget_map);
1272         if (atomic_read(&sdev->device_blocked)) {
1273                 if (token < 0)
1274                         goto out;
1275
1276                 if (scsi_device_busy(sdev) > 1)
1277                         goto out_dec;
1278
1279                 /*
1280                  * unblock after device_blocked iterates to zero
1281                  */
1282                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1283                         goto out_dec;
1284                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1285                                    "unblocking device at zero depth\n"));
1286         }
1287
1288         return token;
1289 out_dec:
1290         if (token >= 0)
1291                 sbitmap_put(&sdev->budget_map, token);
1292 out:
1293         return -1;
1294 }
1295
1296 /*
1297  * scsi_target_queue_ready: checks if there we can send commands to target
1298  * @sdev: scsi device on starget to check.
1299  */
1300 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1301                                            struct scsi_device *sdev)
1302 {
1303         struct scsi_target *starget = scsi_target(sdev);
1304         unsigned int busy;
1305
1306         if (starget->single_lun) {
1307                 spin_lock_irq(shost->host_lock);
1308                 if (starget->starget_sdev_user &&
1309                     starget->starget_sdev_user != sdev) {
1310                         spin_unlock_irq(shost->host_lock);
1311                         return 0;
1312                 }
1313                 starget->starget_sdev_user = sdev;
1314                 spin_unlock_irq(shost->host_lock);
1315         }
1316
1317         if (starget->can_queue <= 0)
1318                 return 1;
1319
1320         busy = atomic_inc_return(&starget->target_busy) - 1;
1321         if (atomic_read(&starget->target_blocked) > 0) {
1322                 if (busy)
1323                         goto starved;
1324
1325                 /*
1326                  * unblock after target_blocked iterates to zero
1327                  */
1328                 if (atomic_dec_return(&starget->target_blocked) > 0)
1329                         goto out_dec;
1330
1331                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1332                                  "unblocking target at zero depth\n"));
1333         }
1334
1335         if (busy >= starget->can_queue)
1336                 goto starved;
1337
1338         return 1;
1339
1340 starved:
1341         spin_lock_irq(shost->host_lock);
1342         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1343         spin_unlock_irq(shost->host_lock);
1344 out_dec:
1345         if (starget->can_queue > 0)
1346                 atomic_dec(&starget->target_busy);
1347         return 0;
1348 }
1349
1350 /*
1351  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1352  * return 0. We must end up running the queue again whenever 0 is
1353  * returned, else IO can hang.
1354  */
1355 static inline int scsi_host_queue_ready(struct request_queue *q,
1356                                    struct Scsi_Host *shost,
1357                                    struct scsi_device *sdev,
1358                                    struct scsi_cmnd *cmd)
1359 {
1360         if (scsi_host_in_recovery(shost))
1361                 return 0;
1362
1363         if (atomic_read(&shost->host_blocked) > 0) {
1364                 if (scsi_host_busy(shost) > 0)
1365                         goto starved;
1366
1367                 /*
1368                  * unblock after host_blocked iterates to zero
1369                  */
1370                 if (atomic_dec_return(&shost->host_blocked) > 0)
1371                         goto out_dec;
1372
1373                 SCSI_LOG_MLQUEUE(3,
1374                         shost_printk(KERN_INFO, shost,
1375                                      "unblocking host at zero depth\n"));
1376         }
1377
1378         if (shost->host_self_blocked)
1379                 goto starved;
1380
1381         /* We're OK to process the command, so we can't be starved */
1382         if (!list_empty(&sdev->starved_entry)) {
1383                 spin_lock_irq(shost->host_lock);
1384                 if (!list_empty(&sdev->starved_entry))
1385                         list_del_init(&sdev->starved_entry);
1386                 spin_unlock_irq(shost->host_lock);
1387         }
1388
1389         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1390
1391         return 1;
1392
1393 starved:
1394         spin_lock_irq(shost->host_lock);
1395         if (list_empty(&sdev->starved_entry))
1396                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1397         spin_unlock_irq(shost->host_lock);
1398 out_dec:
1399         scsi_dec_host_busy(shost, cmd);
1400         return 0;
1401 }
1402
1403 /*
1404  * Busy state exporting function for request stacking drivers.
1405  *
1406  * For efficiency, no lock is taken to check the busy state of
1407  * shost/starget/sdev, since the returned value is not guaranteed and
1408  * may be changed after request stacking drivers call the function,
1409  * regardless of taking lock or not.
1410  *
1411  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1412  * needs to return 'not busy'. Otherwise, request stacking drivers
1413  * may hold requests forever.
1414  */
1415 static bool scsi_mq_lld_busy(struct request_queue *q)
1416 {
1417         struct scsi_device *sdev = q->queuedata;
1418         struct Scsi_Host *shost;
1419
1420         if (blk_queue_dying(q))
1421                 return false;
1422
1423         shost = sdev->host;
1424
1425         /*
1426          * Ignore host/starget busy state.
1427          * Since block layer does not have a concept of fairness across
1428          * multiple queues, congestion of host/starget needs to be handled
1429          * in SCSI layer.
1430          */
1431         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1432                 return true;
1433
1434         return false;
1435 }
1436
1437 /*
1438  * Block layer request completion callback. May be called from interrupt
1439  * context.
1440  */
1441 static void scsi_complete(struct request *rq)
1442 {
1443         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1444         enum scsi_disposition disposition;
1445
1446         INIT_LIST_HEAD(&cmd->eh_entry);
1447
1448         atomic_inc(&cmd->device->iodone_cnt);
1449         if (cmd->result)
1450                 atomic_inc(&cmd->device->ioerr_cnt);
1451
1452         disposition = scsi_decide_disposition(cmd);
1453         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1454                 disposition = SUCCESS;
1455
1456         scsi_log_completion(cmd, disposition);
1457
1458         switch (disposition) {
1459         case SUCCESS:
1460                 scsi_finish_command(cmd);
1461                 break;
1462         case NEEDS_RETRY:
1463                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1464                 break;
1465         case ADD_TO_MLQUEUE:
1466                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1467                 break;
1468         default:
1469                 scsi_eh_scmd_add(cmd);
1470                 break;
1471         }
1472 }
1473
1474 /**
1475  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1476  * @cmd: command block we are dispatching.
1477  *
1478  * Return: nonzero return request was rejected and device's queue needs to be
1479  * plugged.
1480  */
1481 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1482 {
1483         struct Scsi_Host *host = cmd->device->host;
1484         int rtn = 0;
1485
1486         atomic_inc(&cmd->device->iorequest_cnt);
1487
1488         /* check if the device is still usable */
1489         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1490                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1491                  * returns an immediate error upwards, and signals
1492                  * that the device is no longer present */
1493                 cmd->result = DID_NO_CONNECT << 16;
1494                 goto done;
1495         }
1496
1497         /* Check to see if the scsi lld made this device blocked. */
1498         if (unlikely(scsi_device_blocked(cmd->device))) {
1499                 /*
1500                  * in blocked state, the command is just put back on
1501                  * the device queue.  The suspend state has already
1502                  * blocked the queue so future requests should not
1503                  * occur until the device transitions out of the
1504                  * suspend state.
1505                  */
1506                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1507                         "queuecommand : device blocked\n"));
1508                 return SCSI_MLQUEUE_DEVICE_BUSY;
1509         }
1510
1511         /* Store the LUN value in cmnd, if needed. */
1512         if (cmd->device->lun_in_cdb)
1513                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1514                                (cmd->device->lun << 5 & 0xe0);
1515
1516         scsi_log_send(cmd);
1517
1518         /*
1519          * Before we queue this command, check if the command
1520          * length exceeds what the host adapter can handle.
1521          */
1522         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1523                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1524                                "queuecommand : command too long. "
1525                                "cdb_size=%d host->max_cmd_len=%d\n",
1526                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1527                 cmd->result = (DID_ABORT << 16);
1528                 goto done;
1529         }
1530
1531         if (unlikely(host->shost_state == SHOST_DEL)) {
1532                 cmd->result = (DID_NO_CONNECT << 16);
1533                 goto done;
1534
1535         }
1536
1537         trace_scsi_dispatch_cmd_start(cmd);
1538         rtn = host->hostt->queuecommand(host, cmd);
1539         if (rtn) {
1540                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1541                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1542                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1543                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1544
1545                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1546                         "queuecommand : request rejected\n"));
1547         }
1548
1549         return rtn;
1550  done:
1551         cmd->scsi_done(cmd);
1552         return 0;
1553 }
1554
1555 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1556 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1557 {
1558         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1559                 sizeof(struct scatterlist);
1560 }
1561
1562 static blk_status_t scsi_prepare_cmd(struct request *req)
1563 {
1564         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1565         struct scsi_device *sdev = req->q->queuedata;
1566         struct Scsi_Host *shost = sdev->host;
1567         struct scatterlist *sg;
1568
1569         scsi_init_command(sdev, cmd);
1570
1571         cmd->request = req;
1572         cmd->tag = req->tag;
1573         cmd->prot_op = SCSI_PROT_NORMAL;
1574         if (blk_rq_bytes(req))
1575                 cmd->sc_data_direction = rq_dma_dir(req);
1576         else
1577                 cmd->sc_data_direction = DMA_NONE;
1578
1579         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1580         cmd->sdb.table.sgl = sg;
1581
1582         if (scsi_host_get_prot(shost)) {
1583                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1584
1585                 cmd->prot_sdb->table.sgl =
1586                         (struct scatterlist *)(cmd->prot_sdb + 1);
1587         }
1588
1589         /*
1590          * Special handling for passthrough commands, which don't go to the ULP
1591          * at all:
1592          */
1593         if (blk_rq_is_scsi(req))
1594                 return scsi_setup_scsi_cmnd(sdev, req);
1595
1596         if (sdev->handler && sdev->handler->prep_fn) {
1597                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1598
1599                 if (ret != BLK_STS_OK)
1600                         return ret;
1601         }
1602
1603         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1604         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1605         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1606 }
1607
1608 static void scsi_mq_done(struct scsi_cmnd *cmd)
1609 {
1610         if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1611                 return;
1612         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1613                 return;
1614         trace_scsi_dispatch_cmd_done(cmd);
1615         blk_mq_complete_request(cmd->request);
1616 }
1617
1618 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1619 {
1620         struct scsi_device *sdev = q->queuedata;
1621
1622         sbitmap_put(&sdev->budget_map, budget_token);
1623 }
1624
1625 static int scsi_mq_get_budget(struct request_queue *q)
1626 {
1627         struct scsi_device *sdev = q->queuedata;
1628         int token = scsi_dev_queue_ready(q, sdev);
1629
1630         if (token >= 0)
1631                 return token;
1632
1633         atomic_inc(&sdev->restarts);
1634
1635         /*
1636          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1637          * .restarts must be incremented before .device_busy is read because the
1638          * code in scsi_run_queue_async() depends on the order of these operations.
1639          */
1640         smp_mb__after_atomic();
1641
1642         /*
1643          * If all in-flight requests originated from this LUN are completed
1644          * before reading .device_busy, sdev->device_busy will be observed as
1645          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1646          * soon. Otherwise, completion of one of these requests will observe
1647          * the .restarts flag, and the request queue will be run for handling
1648          * this request, see scsi_end_request().
1649          */
1650         if (unlikely(scsi_device_busy(sdev) == 0 &&
1651                                 !scsi_device_blocked(sdev)))
1652                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1653         return -1;
1654 }
1655
1656 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1657 {
1658         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1659
1660         cmd->budget_token = token;
1661 }
1662
1663 static int scsi_mq_get_rq_budget_token(struct request *req)
1664 {
1665         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1666
1667         return cmd->budget_token;
1668 }
1669
1670 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1671                          const struct blk_mq_queue_data *bd)
1672 {
1673         struct request *req = bd->rq;
1674         struct request_queue *q = req->q;
1675         struct scsi_device *sdev = q->queuedata;
1676         struct Scsi_Host *shost = sdev->host;
1677         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1678         blk_status_t ret;
1679         int reason;
1680
1681         WARN_ON_ONCE(cmd->budget_token < 0);
1682
1683         /*
1684          * If the device is not in running state we will reject some or all
1685          * commands.
1686          */
1687         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1688                 ret = scsi_device_state_check(sdev, req);
1689                 if (ret != BLK_STS_OK)
1690                         goto out_put_budget;
1691         }
1692
1693         ret = BLK_STS_RESOURCE;
1694         if (!scsi_target_queue_ready(shost, sdev))
1695                 goto out_put_budget;
1696         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1697                 goto out_dec_target_busy;
1698
1699         if (!(req->rq_flags & RQF_DONTPREP)) {
1700                 ret = scsi_prepare_cmd(req);
1701                 if (ret != BLK_STS_OK)
1702                         goto out_dec_host_busy;
1703                 req->rq_flags |= RQF_DONTPREP;
1704         } else {
1705                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1706         }
1707
1708         cmd->flags &= SCMD_PRESERVED_FLAGS;
1709         if (sdev->simple_tags)
1710                 cmd->flags |= SCMD_TAGGED;
1711         if (bd->last)
1712                 cmd->flags |= SCMD_LAST;
1713
1714         scsi_set_resid(cmd, 0);
1715         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1716         cmd->scsi_done = scsi_mq_done;
1717
1718         blk_mq_start_request(req);
1719         reason = scsi_dispatch_cmd(cmd);
1720         if (reason) {
1721                 scsi_set_blocked(cmd, reason);
1722                 ret = BLK_STS_RESOURCE;
1723                 goto out_dec_host_busy;
1724         }
1725
1726         return BLK_STS_OK;
1727
1728 out_dec_host_busy:
1729         scsi_dec_host_busy(shost, cmd);
1730 out_dec_target_busy:
1731         if (scsi_target(sdev)->can_queue > 0)
1732                 atomic_dec(&scsi_target(sdev)->target_busy);
1733 out_put_budget:
1734         scsi_mq_put_budget(q, cmd->budget_token);
1735         cmd->budget_token = -1;
1736         switch (ret) {
1737         case BLK_STS_OK:
1738                 break;
1739         case BLK_STS_RESOURCE:
1740         case BLK_STS_ZONE_RESOURCE:
1741                 if (scsi_device_blocked(sdev))
1742                         ret = BLK_STS_DEV_RESOURCE;
1743                 break;
1744         case BLK_STS_AGAIN:
1745                 scsi_req(req)->result = DID_BUS_BUSY << 16;
1746                 if (req->rq_flags & RQF_DONTPREP)
1747                         scsi_mq_uninit_cmd(cmd);
1748                 break;
1749         default:
1750                 if (unlikely(!scsi_device_online(sdev)))
1751                         scsi_req(req)->result = DID_NO_CONNECT << 16;
1752                 else
1753                         scsi_req(req)->result = DID_ERROR << 16;
1754                 /*
1755                  * Make sure to release all allocated resources when
1756                  * we hit an error, as we will never see this command
1757                  * again.
1758                  */
1759                 if (req->rq_flags & RQF_DONTPREP)
1760                         scsi_mq_uninit_cmd(cmd);
1761                 scsi_run_queue_async(sdev);
1762                 break;
1763         }
1764         return ret;
1765 }
1766
1767 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1768                 bool reserved)
1769 {
1770         if (reserved)
1771                 return BLK_EH_RESET_TIMER;
1772         return scsi_times_out(req);
1773 }
1774
1775 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1776                                 unsigned int hctx_idx, unsigned int numa_node)
1777 {
1778         struct Scsi_Host *shost = set->driver_data;
1779         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1780         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1781         struct scatterlist *sg;
1782         int ret = 0;
1783
1784         if (unchecked_isa_dma)
1785                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1786         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1787                                                     GFP_KERNEL, numa_node);
1788         if (!cmd->sense_buffer)
1789                 return -ENOMEM;
1790         cmd->req.sense = cmd->sense_buffer;
1791
1792         if (scsi_host_get_prot(shost)) {
1793                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1794                         shost->hostt->cmd_size;
1795                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1796         }
1797
1798         if (shost->hostt->init_cmd_priv) {
1799                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1800                 if (ret < 0)
1801                         scsi_free_sense_buffer(unchecked_isa_dma,
1802                                                cmd->sense_buffer);
1803         }
1804
1805         return ret;
1806 }
1807
1808 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1809                                  unsigned int hctx_idx)
1810 {
1811         struct Scsi_Host *shost = set->driver_data;
1812         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1813
1814         if (shost->hostt->exit_cmd_priv)
1815                 shost->hostt->exit_cmd_priv(shost, cmd);
1816         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1817                                cmd->sense_buffer);
1818 }
1819
1820
1821 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1822 {
1823         struct Scsi_Host *shost = hctx->driver_data;
1824
1825         if (shost->hostt->mq_poll)
1826                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1827
1828         return 0;
1829 }
1830
1831 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1832                           unsigned int hctx_idx)
1833 {
1834         struct Scsi_Host *shost = data;
1835
1836         hctx->driver_data = shost;
1837         return 0;
1838 }
1839
1840 static int scsi_map_queues(struct blk_mq_tag_set *set)
1841 {
1842         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1843
1844         if (shost->hostt->map_queues)
1845                 return shost->hostt->map_queues(shost);
1846         return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1847 }
1848
1849 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1850 {
1851         struct device *dev = shost->dma_dev;
1852
1853         /*
1854          * this limit is imposed by hardware restrictions
1855          */
1856         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1857                                         SG_MAX_SEGMENTS));
1858
1859         if (scsi_host_prot_dma(shost)) {
1860                 shost->sg_prot_tablesize =
1861                         min_not_zero(shost->sg_prot_tablesize,
1862                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1863                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1864                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1865         }
1866
1867         if (dev->dma_mask) {
1868                 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1869                                 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1870         }
1871         blk_queue_max_hw_sectors(q, shost->max_sectors);
1872         if (shost->unchecked_isa_dma)
1873                 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1874         blk_queue_segment_boundary(q, shost->dma_boundary);
1875         dma_set_seg_boundary(dev, shost->dma_boundary);
1876
1877         blk_queue_max_segment_size(q, shost->max_segment_size);
1878         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1879         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1880
1881         /*
1882          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1883          * which is a common minimum for HBAs, and the minimum DMA alignment,
1884          * which is set by the platform.
1885          *
1886          * Devices that require a bigger alignment can increase it later.
1887          */
1888         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1889 }
1890 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1891
1892 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1893         .get_budget     = scsi_mq_get_budget,
1894         .put_budget     = scsi_mq_put_budget,
1895         .queue_rq       = scsi_queue_rq,
1896         .complete       = scsi_complete,
1897         .timeout        = scsi_timeout,
1898 #ifdef CONFIG_BLK_DEBUG_FS
1899         .show_rq        = scsi_show_rq,
1900 #endif
1901         .init_request   = scsi_mq_init_request,
1902         .exit_request   = scsi_mq_exit_request,
1903         .initialize_rq_fn = scsi_initialize_rq,
1904         .cleanup_rq     = scsi_cleanup_rq,
1905         .busy           = scsi_mq_lld_busy,
1906         .map_queues     = scsi_map_queues,
1907         .init_hctx      = scsi_init_hctx,
1908         .poll           = scsi_mq_poll,
1909         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1910         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1911 };
1912
1913
1914 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1915 {
1916         struct Scsi_Host *shost = hctx->driver_data;
1917
1918         shost->hostt->commit_rqs(shost, hctx->queue_num);
1919 }
1920
1921 static const struct blk_mq_ops scsi_mq_ops = {
1922         .get_budget     = scsi_mq_get_budget,
1923         .put_budget     = scsi_mq_put_budget,
1924         .queue_rq       = scsi_queue_rq,
1925         .commit_rqs     = scsi_commit_rqs,
1926         .complete       = scsi_complete,
1927         .timeout        = scsi_timeout,
1928 #ifdef CONFIG_BLK_DEBUG_FS
1929         .show_rq        = scsi_show_rq,
1930 #endif
1931         .init_request   = scsi_mq_init_request,
1932         .exit_request   = scsi_mq_exit_request,
1933         .initialize_rq_fn = scsi_initialize_rq,
1934         .cleanup_rq     = scsi_cleanup_rq,
1935         .busy           = scsi_mq_lld_busy,
1936         .map_queues     = scsi_map_queues,
1937         .init_hctx      = scsi_init_hctx,
1938         .poll           = scsi_mq_poll,
1939         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1940         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1941 };
1942
1943 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1944 {
1945         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1946         if (IS_ERR(sdev->request_queue))
1947                 return NULL;
1948
1949         sdev->request_queue->queuedata = sdev;
1950         __scsi_init_queue(sdev->host, sdev->request_queue);
1951         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1952         return sdev->request_queue;
1953 }
1954
1955 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1956 {
1957         unsigned int cmd_size, sgl_size;
1958         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1959
1960         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1961                                 scsi_mq_inline_sgl_size(shost));
1962         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1963         if (scsi_host_get_prot(shost))
1964                 cmd_size += sizeof(struct scsi_data_buffer) +
1965                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1966
1967         memset(tag_set, 0, sizeof(*tag_set));
1968         if (shost->hostt->commit_rqs)
1969                 tag_set->ops = &scsi_mq_ops;
1970         else
1971                 tag_set->ops = &scsi_mq_ops_no_commit;
1972         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1973         tag_set->nr_maps = shost->nr_maps ? : 1;
1974         tag_set->queue_depth = shost->can_queue;
1975         tag_set->cmd_size = cmd_size;
1976         tag_set->numa_node = NUMA_NO_NODE;
1977         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1978         tag_set->flags |=
1979                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1980         tag_set->driver_data = shost;
1981         if (shost->host_tagset)
1982                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1983
1984         return blk_mq_alloc_tag_set(tag_set);
1985 }
1986
1987 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1988 {
1989         blk_mq_free_tag_set(&shost->tag_set);
1990 }
1991
1992 /**
1993  * scsi_device_from_queue - return sdev associated with a request_queue
1994  * @q: The request queue to return the sdev from
1995  *
1996  * Return the sdev associated with a request queue or NULL if the
1997  * request_queue does not reference a SCSI device.
1998  */
1999 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2000 {
2001         struct scsi_device *sdev = NULL;
2002
2003         if (q->mq_ops == &scsi_mq_ops_no_commit ||
2004             q->mq_ops == &scsi_mq_ops)
2005                 sdev = q->queuedata;
2006         if (!sdev || !get_device(&sdev->sdev_gendev))
2007                 sdev = NULL;
2008
2009         return sdev;
2010 }
2011
2012 /**
2013  * scsi_block_requests - Utility function used by low-level drivers to prevent
2014  * further commands from being queued to the device.
2015  * @shost:  host in question
2016  *
2017  * There is no timer nor any other means by which the requests get unblocked
2018  * other than the low-level driver calling scsi_unblock_requests().
2019  */
2020 void scsi_block_requests(struct Scsi_Host *shost)
2021 {
2022         shost->host_self_blocked = 1;
2023 }
2024 EXPORT_SYMBOL(scsi_block_requests);
2025
2026 /**
2027  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2028  * further commands to be queued to the device.
2029  * @shost:  host in question
2030  *
2031  * There is no timer nor any other means by which the requests get unblocked
2032  * other than the low-level driver calling scsi_unblock_requests(). This is done
2033  * as an API function so that changes to the internals of the scsi mid-layer
2034  * won't require wholesale changes to drivers that use this feature.
2035  */
2036 void scsi_unblock_requests(struct Scsi_Host *shost)
2037 {
2038         shost->host_self_blocked = 0;
2039         scsi_run_host_queues(shost);
2040 }
2041 EXPORT_SYMBOL(scsi_unblock_requests);
2042
2043 void scsi_exit_queue(void)
2044 {
2045         kmem_cache_destroy(scsi_sense_cache);
2046         kmem_cache_destroy(scsi_sense_isadma_cache);
2047 }
2048
2049 /**
2050  *      scsi_mode_select - issue a mode select
2051  *      @sdev:  SCSI device to be queried
2052  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2053  *      @sp:    Save page bit (0 == don't save, 1 == save)
2054  *      @modepage: mode page being requested
2055  *      @buffer: request buffer (may not be smaller than eight bytes)
2056  *      @len:   length of request buffer.
2057  *      @timeout: command timeout
2058  *      @retries: number of retries before failing
2059  *      @data: returns a structure abstracting the mode header data
2060  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2061  *              must be SCSI_SENSE_BUFFERSIZE big.
2062  *
2063  *      Returns zero if successful; negative error number or scsi
2064  *      status on error
2065  *
2066  */
2067 int
2068 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2069                  unsigned char *buffer, int len, int timeout, int retries,
2070                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2071 {
2072         unsigned char cmd[10];
2073         unsigned char *real_buffer;
2074         int ret;
2075
2076         memset(cmd, 0, sizeof(cmd));
2077         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2078
2079         if (sdev->use_10_for_ms) {
2080                 if (len > 65535)
2081                         return -EINVAL;
2082                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2083                 if (!real_buffer)
2084                         return -ENOMEM;
2085                 memcpy(real_buffer + 8, buffer, len);
2086                 len += 8;
2087                 real_buffer[0] = 0;
2088                 real_buffer[1] = 0;
2089                 real_buffer[2] = data->medium_type;
2090                 real_buffer[3] = data->device_specific;
2091                 real_buffer[4] = data->longlba ? 0x01 : 0;
2092                 real_buffer[5] = 0;
2093                 real_buffer[6] = data->block_descriptor_length >> 8;
2094                 real_buffer[7] = data->block_descriptor_length;
2095
2096                 cmd[0] = MODE_SELECT_10;
2097                 cmd[7] = len >> 8;
2098                 cmd[8] = len;
2099         } else {
2100                 if (len > 255 || data->block_descriptor_length > 255 ||
2101                     data->longlba)
2102                         return -EINVAL;
2103
2104                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2105                 if (!real_buffer)
2106                         return -ENOMEM;
2107                 memcpy(real_buffer + 4, buffer, len);
2108                 len += 4;
2109                 real_buffer[0] = 0;
2110                 real_buffer[1] = data->medium_type;
2111                 real_buffer[2] = data->device_specific;
2112                 real_buffer[3] = data->block_descriptor_length;
2113
2114                 cmd[0] = MODE_SELECT;
2115                 cmd[4] = len;
2116         }
2117
2118         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2119                                sshdr, timeout, retries, NULL);
2120         kfree(real_buffer);
2121         return ret;
2122 }
2123 EXPORT_SYMBOL_GPL(scsi_mode_select);
2124
2125 /**
2126  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2127  *      @sdev:  SCSI device to be queried
2128  *      @dbd:   set if mode sense will allow block descriptors to be returned
2129  *      @modepage: mode page being requested
2130  *      @buffer: request buffer (may not be smaller than eight bytes)
2131  *      @len:   length of request buffer.
2132  *      @timeout: command timeout
2133  *      @retries: number of retries before failing
2134  *      @data: returns a structure abstracting the mode header data
2135  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2136  *              must be SCSI_SENSE_BUFFERSIZE big.
2137  *
2138  *      Returns zero if unsuccessful, or the header offset (either 4
2139  *      or 8 depending on whether a six or ten byte command was
2140  *      issued) if successful.
2141  */
2142 int
2143 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2144                   unsigned char *buffer, int len, int timeout, int retries,
2145                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2146 {
2147         unsigned char cmd[12];
2148         int use_10_for_ms;
2149         int header_length;
2150         int result, retry_count = retries;
2151         struct scsi_sense_hdr my_sshdr;
2152
2153         memset(data, 0, sizeof(*data));
2154         memset(&cmd[0], 0, 12);
2155
2156         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2157         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2158         cmd[2] = modepage;
2159
2160         /* caller might not be interested in sense, but we need it */
2161         if (!sshdr)
2162                 sshdr = &my_sshdr;
2163
2164  retry:
2165         use_10_for_ms = sdev->use_10_for_ms;
2166
2167         if (use_10_for_ms) {
2168                 if (len < 8)
2169                         len = 8;
2170
2171                 cmd[0] = MODE_SENSE_10;
2172                 cmd[8] = len;
2173                 header_length = 8;
2174         } else {
2175                 if (len < 4)
2176                         len = 4;
2177
2178                 cmd[0] = MODE_SENSE;
2179                 cmd[4] = len;
2180                 header_length = 4;
2181         }
2182
2183         memset(buffer, 0, len);
2184
2185         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2186                                   sshdr, timeout, retries, NULL);
2187
2188         /* This code looks awful: what it's doing is making sure an
2189          * ILLEGAL REQUEST sense return identifies the actual command
2190          * byte as the problem.  MODE_SENSE commands can return
2191          * ILLEGAL REQUEST if the code page isn't supported */
2192
2193         if (use_10_for_ms && !scsi_status_is_good(result) &&
2194             driver_byte(result) == DRIVER_SENSE) {
2195                 if (scsi_sense_valid(sshdr)) {
2196                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2197                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2198                                 /*
2199                                  * Invalid command operation code
2200                                  */
2201                                 sdev->use_10_for_ms = 0;
2202                                 goto retry;
2203                         }
2204                 }
2205         }
2206
2207         if (scsi_status_is_good(result)) {
2208                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2209                              (modepage == 6 || modepage == 8))) {
2210                         /* Initio breakage? */
2211                         header_length = 0;
2212                         data->length = 13;
2213                         data->medium_type = 0;
2214                         data->device_specific = 0;
2215                         data->longlba = 0;
2216                         data->block_descriptor_length = 0;
2217                 } else if (use_10_for_ms) {
2218                         data->length = buffer[0]*256 + buffer[1] + 2;
2219                         data->medium_type = buffer[2];
2220                         data->device_specific = buffer[3];
2221                         data->longlba = buffer[4] & 0x01;
2222                         data->block_descriptor_length = buffer[6]*256
2223                                 + buffer[7];
2224                 } else {
2225                         data->length = buffer[0] + 1;
2226                         data->medium_type = buffer[1];
2227                         data->device_specific = buffer[2];
2228                         data->block_descriptor_length = buffer[3];
2229                 }
2230                 data->header_length = header_length;
2231         } else if ((status_byte(result) == CHECK_CONDITION) &&
2232                    scsi_sense_valid(sshdr) &&
2233                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2234                 retry_count--;
2235                 goto retry;
2236         }
2237
2238         return result;
2239 }
2240 EXPORT_SYMBOL(scsi_mode_sense);
2241
2242 /**
2243  *      scsi_test_unit_ready - test if unit is ready
2244  *      @sdev:  scsi device to change the state of.
2245  *      @timeout: command timeout
2246  *      @retries: number of retries before failing
2247  *      @sshdr: outpout pointer for decoded sense information.
2248  *
2249  *      Returns zero if unsuccessful or an error if TUR failed.  For
2250  *      removable media, UNIT_ATTENTION sets ->changed flag.
2251  **/
2252 int
2253 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2254                      struct scsi_sense_hdr *sshdr)
2255 {
2256         char cmd[] = {
2257                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2258         };
2259         int result;
2260
2261         /* try to eat the UNIT_ATTENTION if there are enough retries */
2262         do {
2263                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2264                                           timeout, 1, NULL);
2265                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2266                     sshdr->sense_key == UNIT_ATTENTION)
2267                         sdev->changed = 1;
2268         } while (scsi_sense_valid(sshdr) &&
2269                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2270
2271         return result;
2272 }
2273 EXPORT_SYMBOL(scsi_test_unit_ready);
2274
2275 /**
2276  *      scsi_device_set_state - Take the given device through the device state model.
2277  *      @sdev:  scsi device to change the state of.
2278  *      @state: state to change to.
2279  *
2280  *      Returns zero if successful or an error if the requested
2281  *      transition is illegal.
2282  */
2283 int
2284 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2285 {
2286         enum scsi_device_state oldstate = sdev->sdev_state;
2287
2288         if (state == oldstate)
2289                 return 0;
2290
2291         switch (state) {
2292         case SDEV_CREATED:
2293                 switch (oldstate) {
2294                 case SDEV_CREATED_BLOCK:
2295                         break;
2296                 default:
2297                         goto illegal;
2298                 }
2299                 break;
2300
2301         case SDEV_RUNNING:
2302                 switch (oldstate) {
2303                 case SDEV_CREATED:
2304                 case SDEV_OFFLINE:
2305                 case SDEV_TRANSPORT_OFFLINE:
2306                 case SDEV_QUIESCE:
2307                 case SDEV_BLOCK:
2308                         break;
2309                 default:
2310                         goto illegal;
2311                 }
2312                 break;
2313
2314         case SDEV_QUIESCE:
2315                 switch (oldstate) {
2316                 case SDEV_RUNNING:
2317                 case SDEV_OFFLINE:
2318                 case SDEV_TRANSPORT_OFFLINE:
2319                         break;
2320                 default:
2321                         goto illegal;
2322                 }
2323                 break;
2324
2325         case SDEV_OFFLINE:
2326         case SDEV_TRANSPORT_OFFLINE:
2327                 switch (oldstate) {
2328                 case SDEV_CREATED:
2329                 case SDEV_RUNNING:
2330                 case SDEV_QUIESCE:
2331                 case SDEV_BLOCK:
2332                         break;
2333                 default:
2334                         goto illegal;
2335                 }
2336                 break;
2337
2338         case SDEV_BLOCK:
2339                 switch (oldstate) {
2340                 case SDEV_RUNNING:
2341                 case SDEV_CREATED_BLOCK:
2342                 case SDEV_QUIESCE:
2343                 case SDEV_OFFLINE:
2344                         break;
2345                 default:
2346                         goto illegal;
2347                 }
2348                 break;
2349
2350         case SDEV_CREATED_BLOCK:
2351                 switch (oldstate) {
2352                 case SDEV_CREATED:
2353                         break;
2354                 default:
2355                         goto illegal;
2356                 }
2357                 break;
2358
2359         case SDEV_CANCEL:
2360                 switch (oldstate) {
2361                 case SDEV_CREATED:
2362                 case SDEV_RUNNING:
2363                 case SDEV_QUIESCE:
2364                 case SDEV_OFFLINE:
2365                 case SDEV_TRANSPORT_OFFLINE:
2366                         break;
2367                 default:
2368                         goto illegal;
2369                 }
2370                 break;
2371
2372         case SDEV_DEL:
2373                 switch (oldstate) {
2374                 case SDEV_CREATED:
2375                 case SDEV_RUNNING:
2376                 case SDEV_OFFLINE:
2377                 case SDEV_TRANSPORT_OFFLINE:
2378                 case SDEV_CANCEL:
2379                 case SDEV_BLOCK:
2380                 case SDEV_CREATED_BLOCK:
2381                         break;
2382                 default:
2383                         goto illegal;
2384                 }
2385                 break;
2386
2387         }
2388         sdev->offline_already = false;
2389         sdev->sdev_state = state;
2390         return 0;
2391
2392  illegal:
2393         SCSI_LOG_ERROR_RECOVERY(1,
2394                                 sdev_printk(KERN_ERR, sdev,
2395                                             "Illegal state transition %s->%s",
2396                                             scsi_device_state_name(oldstate),
2397                                             scsi_device_state_name(state))
2398                                 );
2399         return -EINVAL;
2400 }
2401 EXPORT_SYMBOL(scsi_device_set_state);
2402
2403 /**
2404  *      scsi_evt_emit - emit a single SCSI device uevent
2405  *      @sdev: associated SCSI device
2406  *      @evt: event to emit
2407  *
2408  *      Send a single uevent (scsi_event) to the associated scsi_device.
2409  */
2410 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2411 {
2412         int idx = 0;
2413         char *envp[3];
2414
2415         switch (evt->evt_type) {
2416         case SDEV_EVT_MEDIA_CHANGE:
2417                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2418                 break;
2419         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2420                 scsi_rescan_device(&sdev->sdev_gendev);
2421                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2422                 break;
2423         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2424                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2425                 break;
2426         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2427                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2428                 break;
2429         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2430                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2431                 break;
2432         case SDEV_EVT_LUN_CHANGE_REPORTED:
2433                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2434                 break;
2435         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2436                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2437                 break;
2438         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2439                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2440                 break;
2441         default:
2442                 /* do nothing */
2443                 break;
2444         }
2445
2446         envp[idx++] = NULL;
2447
2448         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2449 }
2450
2451 /**
2452  *      scsi_evt_thread - send a uevent for each scsi event
2453  *      @work: work struct for scsi_device
2454  *
2455  *      Dispatch queued events to their associated scsi_device kobjects
2456  *      as uevents.
2457  */
2458 void scsi_evt_thread(struct work_struct *work)
2459 {
2460         struct scsi_device *sdev;
2461         enum scsi_device_event evt_type;
2462         LIST_HEAD(event_list);
2463
2464         sdev = container_of(work, struct scsi_device, event_work);
2465
2466         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2467                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2468                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2469
2470         while (1) {
2471                 struct scsi_event *evt;
2472                 struct list_head *this, *tmp;
2473                 unsigned long flags;
2474
2475                 spin_lock_irqsave(&sdev->list_lock, flags);
2476                 list_splice_init(&sdev->event_list, &event_list);
2477                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2478
2479                 if (list_empty(&event_list))
2480                         break;
2481
2482                 list_for_each_safe(this, tmp, &event_list) {
2483                         evt = list_entry(this, struct scsi_event, node);
2484                         list_del(&evt->node);
2485                         scsi_evt_emit(sdev, evt);
2486                         kfree(evt);
2487                 }
2488         }
2489 }
2490
2491 /**
2492  *      sdev_evt_send - send asserted event to uevent thread
2493  *      @sdev: scsi_device event occurred on
2494  *      @evt: event to send
2495  *
2496  *      Assert scsi device event asynchronously.
2497  */
2498 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2499 {
2500         unsigned long flags;
2501
2502 #if 0
2503         /* FIXME: currently this check eliminates all media change events
2504          * for polled devices.  Need to update to discriminate between AN
2505          * and polled events */
2506         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2507                 kfree(evt);
2508                 return;
2509         }
2510 #endif
2511
2512         spin_lock_irqsave(&sdev->list_lock, flags);
2513         list_add_tail(&evt->node, &sdev->event_list);
2514         schedule_work(&sdev->event_work);
2515         spin_unlock_irqrestore(&sdev->list_lock, flags);
2516 }
2517 EXPORT_SYMBOL_GPL(sdev_evt_send);
2518
2519 /**
2520  *      sdev_evt_alloc - allocate a new scsi event
2521  *      @evt_type: type of event to allocate
2522  *      @gfpflags: GFP flags for allocation
2523  *
2524  *      Allocates and returns a new scsi_event.
2525  */
2526 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2527                                   gfp_t gfpflags)
2528 {
2529         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2530         if (!evt)
2531                 return NULL;
2532
2533         evt->evt_type = evt_type;
2534         INIT_LIST_HEAD(&evt->node);
2535
2536         /* evt_type-specific initialization, if any */
2537         switch (evt_type) {
2538         case SDEV_EVT_MEDIA_CHANGE:
2539         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2540         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2541         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2542         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2543         case SDEV_EVT_LUN_CHANGE_REPORTED:
2544         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2545         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2546         default:
2547                 /* do nothing */
2548                 break;
2549         }
2550
2551         return evt;
2552 }
2553 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2554
2555 /**
2556  *      sdev_evt_send_simple - send asserted event to uevent thread
2557  *      @sdev: scsi_device event occurred on
2558  *      @evt_type: type of event to send
2559  *      @gfpflags: GFP flags for allocation
2560  *
2561  *      Assert scsi device event asynchronously, given an event type.
2562  */
2563 void sdev_evt_send_simple(struct scsi_device *sdev,
2564                           enum scsi_device_event evt_type, gfp_t gfpflags)
2565 {
2566         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2567         if (!evt) {
2568                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2569                             evt_type);
2570                 return;
2571         }
2572
2573         sdev_evt_send(sdev, evt);
2574 }
2575 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2576
2577 /**
2578  *      scsi_device_quiesce - Block all commands except power management.
2579  *      @sdev:  scsi device to quiesce.
2580  *
2581  *      This works by trying to transition to the SDEV_QUIESCE state
2582  *      (which must be a legal transition).  When the device is in this
2583  *      state, only power management requests will be accepted, all others will
2584  *      be deferred.
2585  *
2586  *      Must be called with user context, may sleep.
2587  *
2588  *      Returns zero if unsuccessful or an error if not.
2589  */
2590 int
2591 scsi_device_quiesce(struct scsi_device *sdev)
2592 {
2593         struct request_queue *q = sdev->request_queue;
2594         int err;
2595
2596         /*
2597          * It is allowed to call scsi_device_quiesce() multiple times from
2598          * the same context but concurrent scsi_device_quiesce() calls are
2599          * not allowed.
2600          */
2601         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2602
2603         if (sdev->quiesced_by == current)
2604                 return 0;
2605
2606         blk_set_pm_only(q);
2607
2608         blk_mq_freeze_queue(q);
2609         /*
2610          * Ensure that the effect of blk_set_pm_only() will be visible
2611          * for percpu_ref_tryget() callers that occur after the queue
2612          * unfreeze even if the queue was already frozen before this function
2613          * was called. See also https://lwn.net/Articles/573497/.
2614          */
2615         synchronize_rcu();
2616         blk_mq_unfreeze_queue(q);
2617
2618         mutex_lock(&sdev->state_mutex);
2619         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2620         if (err == 0)
2621                 sdev->quiesced_by = current;
2622         else
2623                 blk_clear_pm_only(q);
2624         mutex_unlock(&sdev->state_mutex);
2625
2626         return err;
2627 }
2628 EXPORT_SYMBOL(scsi_device_quiesce);
2629
2630 /**
2631  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2632  *      @sdev:  scsi device to resume.
2633  *
2634  *      Moves the device from quiesced back to running and restarts the
2635  *      queues.
2636  *
2637  *      Must be called with user context, may sleep.
2638  */
2639 void scsi_device_resume(struct scsi_device *sdev)
2640 {
2641         /* check if the device state was mutated prior to resume, and if
2642          * so assume the state is being managed elsewhere (for example
2643          * device deleted during suspend)
2644          */
2645         mutex_lock(&sdev->state_mutex);
2646         if (sdev->sdev_state == SDEV_QUIESCE)
2647                 scsi_device_set_state(sdev, SDEV_RUNNING);
2648         if (sdev->quiesced_by) {
2649                 sdev->quiesced_by = NULL;
2650                 blk_clear_pm_only(sdev->request_queue);
2651         }
2652         mutex_unlock(&sdev->state_mutex);
2653 }
2654 EXPORT_SYMBOL(scsi_device_resume);
2655
2656 static void
2657 device_quiesce_fn(struct scsi_device *sdev, void *data)
2658 {
2659         scsi_device_quiesce(sdev);
2660 }
2661
2662 void
2663 scsi_target_quiesce(struct scsi_target *starget)
2664 {
2665         starget_for_each_device(starget, NULL, device_quiesce_fn);
2666 }
2667 EXPORT_SYMBOL(scsi_target_quiesce);
2668
2669 static void
2670 device_resume_fn(struct scsi_device *sdev, void *data)
2671 {
2672         scsi_device_resume(sdev);
2673 }
2674
2675 void
2676 scsi_target_resume(struct scsi_target *starget)
2677 {
2678         starget_for_each_device(starget, NULL, device_resume_fn);
2679 }
2680 EXPORT_SYMBOL(scsi_target_resume);
2681
2682 /**
2683  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2684  * @sdev: device to block
2685  *
2686  * Pause SCSI command processing on the specified device. Does not sleep.
2687  *
2688  * Returns zero if successful or a negative error code upon failure.
2689  *
2690  * Notes:
2691  * This routine transitions the device to the SDEV_BLOCK state (which must be
2692  * a legal transition). When the device is in this state, command processing
2693  * is paused until the device leaves the SDEV_BLOCK state. See also
2694  * scsi_internal_device_unblock_nowait().
2695  */
2696 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2697 {
2698         struct request_queue *q = sdev->request_queue;
2699         int err = 0;
2700
2701         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2702         if (err) {
2703                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2704
2705                 if (err)
2706                         return err;
2707         }
2708
2709         /*
2710          * The device has transitioned to SDEV_BLOCK.  Stop the
2711          * block layer from calling the midlayer with this device's
2712          * request queue.
2713          */
2714         blk_mq_quiesce_queue_nowait(q);
2715         return 0;
2716 }
2717 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2718
2719 /**
2720  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2721  * @sdev: device to block
2722  *
2723  * Pause SCSI command processing on the specified device and wait until all
2724  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2725  *
2726  * Returns zero if successful or a negative error code upon failure.
2727  *
2728  * Note:
2729  * This routine transitions the device to the SDEV_BLOCK state (which must be
2730  * a legal transition). When the device is in this state, command processing
2731  * is paused until the device leaves the SDEV_BLOCK state. See also
2732  * scsi_internal_device_unblock().
2733  */
2734 static int scsi_internal_device_block(struct scsi_device *sdev)
2735 {
2736         struct request_queue *q = sdev->request_queue;
2737         int err;
2738
2739         mutex_lock(&sdev->state_mutex);
2740         err = scsi_internal_device_block_nowait(sdev);
2741         if (err == 0)
2742                 blk_mq_quiesce_queue(q);
2743         mutex_unlock(&sdev->state_mutex);
2744
2745         return err;
2746 }
2747
2748 void scsi_start_queue(struct scsi_device *sdev)
2749 {
2750         struct request_queue *q = sdev->request_queue;
2751
2752         blk_mq_unquiesce_queue(q);
2753 }
2754
2755 /**
2756  * scsi_internal_device_unblock_nowait - resume a device after a block request
2757  * @sdev:       device to resume
2758  * @new_state:  state to set the device to after unblocking
2759  *
2760  * Restart the device queue for a previously suspended SCSI device. Does not
2761  * sleep.
2762  *
2763  * Returns zero if successful or a negative error code upon failure.
2764  *
2765  * Notes:
2766  * This routine transitions the device to the SDEV_RUNNING state or to one of
2767  * the offline states (which must be a legal transition) allowing the midlayer
2768  * to goose the queue for this device.
2769  */
2770 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2771                                         enum scsi_device_state new_state)
2772 {
2773         switch (new_state) {
2774         case SDEV_RUNNING:
2775         case SDEV_TRANSPORT_OFFLINE:
2776                 break;
2777         default:
2778                 return -EINVAL;
2779         }
2780
2781         /*
2782          * Try to transition the scsi device to SDEV_RUNNING or one of the
2783          * offlined states and goose the device queue if successful.
2784          */
2785         switch (sdev->sdev_state) {
2786         case SDEV_BLOCK:
2787         case SDEV_TRANSPORT_OFFLINE:
2788                 sdev->sdev_state = new_state;
2789                 break;
2790         case SDEV_CREATED_BLOCK:
2791                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2792                     new_state == SDEV_OFFLINE)
2793                         sdev->sdev_state = new_state;
2794                 else
2795                         sdev->sdev_state = SDEV_CREATED;
2796                 break;
2797         case SDEV_CANCEL:
2798         case SDEV_OFFLINE:
2799                 break;
2800         default:
2801                 return -EINVAL;
2802         }
2803         scsi_start_queue(sdev);
2804
2805         return 0;
2806 }
2807 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2808
2809 /**
2810  * scsi_internal_device_unblock - resume a device after a block request
2811  * @sdev:       device to resume
2812  * @new_state:  state to set the device to after unblocking
2813  *
2814  * Restart the device queue for a previously suspended SCSI device. May sleep.
2815  *
2816  * Returns zero if successful or a negative error code upon failure.
2817  *
2818  * Notes:
2819  * This routine transitions the device to the SDEV_RUNNING state or to one of
2820  * the offline states (which must be a legal transition) allowing the midlayer
2821  * to goose the queue for this device.
2822  */
2823 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2824                                         enum scsi_device_state new_state)
2825 {
2826         int ret;
2827
2828         mutex_lock(&sdev->state_mutex);
2829         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2830         mutex_unlock(&sdev->state_mutex);
2831
2832         return ret;
2833 }
2834
2835 static void
2836 device_block(struct scsi_device *sdev, void *data)
2837 {
2838         int ret;
2839
2840         ret = scsi_internal_device_block(sdev);
2841
2842         WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2843                   dev_name(&sdev->sdev_gendev), ret);
2844 }
2845
2846 static int
2847 target_block(struct device *dev, void *data)
2848 {
2849         if (scsi_is_target_device(dev))
2850                 starget_for_each_device(to_scsi_target(dev), NULL,
2851                                         device_block);
2852         return 0;
2853 }
2854
2855 void
2856 scsi_target_block(struct device *dev)
2857 {
2858         if (scsi_is_target_device(dev))
2859                 starget_for_each_device(to_scsi_target(dev), NULL,
2860                                         device_block);
2861         else
2862                 device_for_each_child(dev, NULL, target_block);
2863 }
2864 EXPORT_SYMBOL_GPL(scsi_target_block);
2865
2866 static void
2867 device_unblock(struct scsi_device *sdev, void *data)
2868 {
2869         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2870 }
2871
2872 static int
2873 target_unblock(struct device *dev, void *data)
2874 {
2875         if (scsi_is_target_device(dev))
2876                 starget_for_each_device(to_scsi_target(dev), data,
2877                                         device_unblock);
2878         return 0;
2879 }
2880
2881 void
2882 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2883 {
2884         if (scsi_is_target_device(dev))
2885                 starget_for_each_device(to_scsi_target(dev), &new_state,
2886                                         device_unblock);
2887         else
2888                 device_for_each_child(dev, &new_state, target_unblock);
2889 }
2890 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2891
2892 int
2893 scsi_host_block(struct Scsi_Host *shost)
2894 {
2895         struct scsi_device *sdev;
2896         int ret = 0;
2897
2898         /*
2899          * Call scsi_internal_device_block_nowait so we can avoid
2900          * calling synchronize_rcu() for each LUN.
2901          */
2902         shost_for_each_device(sdev, shost) {
2903                 mutex_lock(&sdev->state_mutex);
2904                 ret = scsi_internal_device_block_nowait(sdev);
2905                 mutex_unlock(&sdev->state_mutex);
2906                 if (ret) {
2907                         scsi_device_put(sdev);
2908                         break;
2909                 }
2910         }
2911
2912         /*
2913          * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2914          * calling synchronize_rcu() once is enough.
2915          */
2916         WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2917
2918         if (!ret)
2919                 synchronize_rcu();
2920
2921         return ret;
2922 }
2923 EXPORT_SYMBOL_GPL(scsi_host_block);
2924
2925 int
2926 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2927 {
2928         struct scsi_device *sdev;
2929         int ret = 0;
2930
2931         shost_for_each_device(sdev, shost) {
2932                 ret = scsi_internal_device_unblock(sdev, new_state);
2933                 if (ret) {
2934                         scsi_device_put(sdev);
2935                         break;
2936                 }
2937         }
2938         return ret;
2939 }
2940 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2941
2942 /**
2943  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2944  * @sgl:        scatter-gather list
2945  * @sg_count:   number of segments in sg
2946  * @offset:     offset in bytes into sg, on return offset into the mapped area
2947  * @len:        bytes to map, on return number of bytes mapped
2948  *
2949  * Returns virtual address of the start of the mapped page
2950  */
2951 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2952                           size_t *offset, size_t *len)
2953 {
2954         int i;
2955         size_t sg_len = 0, len_complete = 0;
2956         struct scatterlist *sg;
2957         struct page *page;
2958
2959         WARN_ON(!irqs_disabled());
2960
2961         for_each_sg(sgl, sg, sg_count, i) {
2962                 len_complete = sg_len; /* Complete sg-entries */
2963                 sg_len += sg->length;
2964                 if (sg_len > *offset)
2965                         break;
2966         }
2967
2968         if (unlikely(i == sg_count)) {
2969                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2970                         "elements %d\n",
2971                        __func__, sg_len, *offset, sg_count);
2972                 WARN_ON(1);
2973                 return NULL;
2974         }
2975
2976         /* Offset starting from the beginning of first page in this sg-entry */
2977         *offset = *offset - len_complete + sg->offset;
2978
2979         /* Assumption: contiguous pages can be accessed as "page + i" */
2980         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2981         *offset &= ~PAGE_MASK;
2982
2983         /* Bytes in this sg-entry from *offset to the end of the page */
2984         sg_len = PAGE_SIZE - *offset;
2985         if (*len > sg_len)
2986                 *len = sg_len;
2987
2988         return kmap_atomic(page);
2989 }
2990 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2991
2992 /**
2993  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2994  * @virt:       virtual address to be unmapped
2995  */
2996 void scsi_kunmap_atomic_sg(void *virt)
2997 {
2998         kunmap_atomic(virt);
2999 }
3000 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3001
3002 void sdev_disable_disk_events(struct scsi_device *sdev)
3003 {
3004         atomic_inc(&sdev->disk_events_disable_depth);
3005 }
3006 EXPORT_SYMBOL(sdev_disable_disk_events);
3007
3008 void sdev_enable_disk_events(struct scsi_device *sdev)
3009 {
3010         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3011                 return;
3012         atomic_dec(&sdev->disk_events_disable_depth);
3013 }
3014 EXPORT_SYMBOL(sdev_enable_disk_events);
3015
3016 static unsigned char designator_prio(const unsigned char *d)
3017 {
3018         if (d[1] & 0x30)
3019                 /* not associated with LUN */
3020                 return 0;
3021
3022         if (d[3] == 0)
3023                 /* invalid length */
3024                 return 0;
3025
3026         /*
3027          * Order of preference for lun descriptor:
3028          * - SCSI name string
3029          * - NAA IEEE Registered Extended
3030          * - EUI-64 based 16-byte
3031          * - EUI-64 based 12-byte
3032          * - NAA IEEE Registered
3033          * - NAA IEEE Extended
3034          * - EUI-64 based 8-byte
3035          * - SCSI name string (truncated)
3036          * - T10 Vendor ID
3037          * as longer descriptors reduce the likelyhood
3038          * of identification clashes.
3039          */
3040
3041         switch (d[1] & 0xf) {
3042         case 8:
3043                 /* SCSI name string, variable-length UTF-8 */
3044                 return 9;
3045         case 3:
3046                 switch (d[4] >> 4) {
3047                 case 6:
3048                         /* NAA registered extended */
3049                         return 8;
3050                 case 5:
3051                         /* NAA registered */
3052                         return 5;
3053                 case 4:
3054                         /* NAA extended */
3055                         return 4;
3056                 case 3:
3057                         /* NAA locally assigned */
3058                         return 1;
3059                 default:
3060                         break;
3061                 }
3062                 break;
3063         case 2:
3064                 switch (d[3]) {
3065                 case 16:
3066                         /* EUI64-based, 16 byte */
3067                         return 7;
3068                 case 12:
3069                         /* EUI64-based, 12 byte */
3070                         return 6;
3071                 case 8:
3072                         /* EUI64-based, 8 byte */
3073                         return 3;
3074                 default:
3075                         break;
3076                 }
3077                 break;
3078         case 1:
3079                 /* T10 vendor ID */
3080                 return 1;
3081         default:
3082                 break;
3083         }
3084
3085         return 0;
3086 }
3087
3088 /**
3089  * scsi_vpd_lun_id - return a unique device identification
3090  * @sdev: SCSI device
3091  * @id:   buffer for the identification
3092  * @id_len:  length of the buffer
3093  *
3094  * Copies a unique device identification into @id based
3095  * on the information in the VPD page 0x83 of the device.
3096  * The string will be formatted as a SCSI name string.
3097  *
3098  * Returns the length of the identification or error on failure.
3099  * If the identifier is longer than the supplied buffer the actual
3100  * identifier length is returned and the buffer is not zero-padded.
3101  */
3102 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3103 {
3104         u8 cur_id_prio = 0;
3105         u8 cur_id_size = 0;
3106         const unsigned char *d, *cur_id_str;
3107         const struct scsi_vpd *vpd_pg83;
3108         int id_size = -EINVAL;
3109
3110         rcu_read_lock();
3111         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3112         if (!vpd_pg83) {
3113                 rcu_read_unlock();
3114                 return -ENXIO;
3115         }
3116
3117         /* The id string must be at least 20 bytes + terminating NULL byte */
3118         if (id_len < 21) {
3119                 rcu_read_unlock();
3120                 return -EINVAL;
3121         }
3122
3123         memset(id, 0, id_len);
3124         for (d = vpd_pg83->data + 4;
3125              d < vpd_pg83->data + vpd_pg83->len;
3126              d += d[3] + 4) {
3127                 u8 prio = designator_prio(d);
3128
3129                 if (prio == 0 || cur_id_prio > prio)
3130                         continue;
3131
3132                 switch (d[1] & 0xf) {
3133                 case 0x1:
3134                         /* T10 Vendor ID */
3135                         if (cur_id_size > d[3])
3136                                 break;
3137                         cur_id_prio = prio;
3138                         cur_id_size = d[3];
3139                         if (cur_id_size + 4 > id_len)
3140                                 cur_id_size = id_len - 4;
3141                         cur_id_str = d + 4;
3142                         id_size = snprintf(id, id_len, "t10.%*pE",
3143                                            cur_id_size, cur_id_str);
3144                         break;
3145                 case 0x2:
3146                         /* EUI-64 */
3147                         cur_id_prio = prio;
3148                         cur_id_size = d[3];
3149                         cur_id_str = d + 4;
3150                         switch (cur_id_size) {
3151                         case 8:
3152                                 id_size = snprintf(id, id_len,
3153                                                    "eui.%8phN",
3154                                                    cur_id_str);
3155                                 break;
3156                         case 12:
3157                                 id_size = snprintf(id, id_len,
3158                                                    "eui.%12phN",
3159                                                    cur_id_str);
3160                                 break;
3161                         case 16:
3162                                 id_size = snprintf(id, id_len,
3163                                                    "eui.%16phN",
3164                                                    cur_id_str);
3165                                 break;
3166                         default:
3167                                 break;
3168                         }
3169                         break;
3170                 case 0x3:
3171                         /* NAA */
3172                         cur_id_prio = prio;
3173                         cur_id_size = d[3];
3174                         cur_id_str = d + 4;
3175                         switch (cur_id_size) {
3176                         case 8:
3177                                 id_size = snprintf(id, id_len,
3178                                                    "naa.%8phN",
3179                                                    cur_id_str);
3180                                 break;
3181                         case 16:
3182                                 id_size = snprintf(id, id_len,
3183                                                    "naa.%16phN",
3184                                                    cur_id_str);
3185                                 break;
3186                         default:
3187                                 break;
3188                         }
3189                         break;
3190                 case 0x8:
3191                         /* SCSI name string */
3192                         if (cur_id_size > d[3])
3193                                 break;
3194                         /* Prefer others for truncated descriptor */
3195                         if (d[3] > id_len) {
3196                                 prio = 2;
3197                                 if (cur_id_prio > prio)
3198                                         break;
3199                         }
3200                         cur_id_prio = prio;
3201                         cur_id_size = id_size = d[3];
3202                         cur_id_str = d + 4;
3203                         if (cur_id_size >= id_len)
3204                                 cur_id_size = id_len - 1;
3205                         memcpy(id, cur_id_str, cur_id_size);
3206                         break;
3207                 default:
3208                         break;
3209                 }
3210         }
3211         rcu_read_unlock();
3212
3213         return id_size;
3214 }
3215 EXPORT_SYMBOL(scsi_vpd_lun_id);
3216
3217 /*
3218  * scsi_vpd_tpg_id - return a target port group identifier
3219  * @sdev: SCSI device
3220  *
3221  * Returns the Target Port Group identifier from the information
3222  * froom VPD page 0x83 of the device.
3223  *
3224  * Returns the identifier or error on failure.
3225  */
3226 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3227 {
3228         const unsigned char *d;
3229         const struct scsi_vpd *vpd_pg83;
3230         int group_id = -EAGAIN, rel_port = -1;
3231
3232         rcu_read_lock();
3233         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3234         if (!vpd_pg83) {
3235                 rcu_read_unlock();
3236                 return -ENXIO;
3237         }
3238
3239         d = vpd_pg83->data + 4;
3240         while (d < vpd_pg83->data + vpd_pg83->len) {
3241                 switch (d[1] & 0xf) {
3242                 case 0x4:
3243                         /* Relative target port */
3244                         rel_port = get_unaligned_be16(&d[6]);
3245                         break;
3246                 case 0x5:
3247                         /* Target port group */
3248                         group_id = get_unaligned_be16(&d[6]);
3249                         break;
3250                 default:
3251                         break;
3252                 }
3253                 d += d[3] + 4;
3254         }
3255         rcu_read_unlock();
3256
3257         if (group_id >= 0 && rel_id && rel_port != -1)
3258                 *rel_id = rel_port;
3259
3260         return group_id;
3261 }
3262 EXPORT_SYMBOL(scsi_vpd_tpg_id);