Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 static inline struct kmem_cache *
62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66
67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68                                    unsigned char *sense_buffer)
69 {
70         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71                         sense_buffer);
72 }
73
74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75         gfp_t gfp_mask, int numa_node)
76 {
77         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78                                      gfp_mask, numa_node);
79 }
80
81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83         struct kmem_cache *cache;
84         int ret = 0;
85
86         mutex_lock(&scsi_sense_cache_mutex);
87         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88         if (cache)
89                 goto exit;
90
91         if (shost->unchecked_isa_dma) {
92                 scsi_sense_isadma_cache =
93                         kmem_cache_create("scsi_sense_cache(DMA)",
94                                 SCSI_SENSE_BUFFERSIZE, 0,
95                                 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96                 if (!scsi_sense_isadma_cache)
97                         ret = -ENOMEM;
98         } else {
99                 scsi_sense_cache =
100                         kmem_cache_create_usercopy("scsi_sense_cache",
101                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
103                 if (!scsi_sense_cache)
104                         ret = -ENOMEM;
105         }
106  exit:
107         mutex_unlock(&scsi_sense_cache_mutex);
108         return ret;
109 }
110
111 /*
112  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113  * not change behaviour from the previous unplug mechanism, experimentation
114  * may prove this needs changing.
115  */
116 #define SCSI_QUEUE_DELAY        3
117
118 static void
119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121         struct Scsi_Host *host = cmd->device->host;
122         struct scsi_device *device = cmd->device;
123         struct scsi_target *starget = scsi_target(device);
124
125         /*
126          * Set the appropriate busy bit for the device/host.
127          *
128          * If the host/device isn't busy, assume that something actually
129          * completed, and that we should be able to queue a command now.
130          *
131          * Note that the prior mid-layer assumption that any host could
132          * always queue at least one command is now broken.  The mid-layer
133          * will implement a user specifiable stall (see
134          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135          * if a command is requeued with no other commands outstanding
136          * either for the device or for the host.
137          */
138         switch (reason) {
139         case SCSI_MLQUEUE_HOST_BUSY:
140                 atomic_set(&host->host_blocked, host->max_host_blocked);
141                 break;
142         case SCSI_MLQUEUE_DEVICE_BUSY:
143         case SCSI_MLQUEUE_EH_RETRY:
144                 atomic_set(&device->device_blocked,
145                            device->max_device_blocked);
146                 break;
147         case SCSI_MLQUEUE_TARGET_BUSY:
148                 atomic_set(&starget->target_blocked,
149                            starget->max_target_blocked);
150                 break;
151         }
152 }
153
154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156         if (cmd->request->rq_flags & RQF_DONTPREP) {
157                 cmd->request->rq_flags &= ~RQF_DONTPREP;
158                 scsi_mq_uninit_cmd(cmd);
159         } else {
160                 WARN_ON_ONCE(true);
161         }
162         blk_mq_requeue_request(cmd->request, true);
163 }
164
165 /**
166  * __scsi_queue_insert - private queue insertion
167  * @cmd: The SCSI command being requeued
168  * @reason:  The reason for the requeue
169  * @unbusy: Whether the queue should be unbusied
170  *
171  * This is a private queue insertion.  The public interface
172  * scsi_queue_insert() always assumes the queue should be unbusied
173  * because it's always called before the completion.  This function is
174  * for a requeue after completion, which should only occur in this
175  * file.
176  */
177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179         struct scsi_device *device = cmd->device;
180
181         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182                 "Inserting command %p into mlqueue\n", cmd));
183
184         scsi_set_blocked(cmd, reason);
185
186         /*
187          * Decrement the counters, since these commands are no longer
188          * active on the host/device.
189          */
190         if (unbusy)
191                 scsi_device_unbusy(device, cmd);
192
193         /*
194          * Requeue this command.  It will go before all other commands
195          * that are already in the queue. Schedule requeue work under
196          * lock such that the kblockd_schedule_work() call happens
197          * before blk_cleanup_queue() finishes.
198          */
199         cmd->result = 0;
200
201         blk_mq_requeue_request(cmd->request, true);
202 }
203
204 /**
205  * scsi_queue_insert - Reinsert a command in the queue.
206  * @cmd:    command that we are adding to queue.
207  * @reason: why we are inserting command to queue.
208  *
209  * We do this for one of two cases. Either the host is busy and it cannot accept
210  * any more commands for the time being, or the device returned QUEUE_FULL and
211  * can accept no more commands.
212  *
213  * Context: This could be called either from an interrupt context or a normal
214  * process context.
215  */
216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218         __scsi_queue_insert(cmd, reason, true);
219 }
220
221
222 /**
223  * __scsi_execute - insert request and wait for the result
224  * @sdev:       scsi device
225  * @cmd:        scsi command
226  * @data_direction: data direction
227  * @buffer:     data buffer
228  * @bufflen:    len of buffer
229  * @sense:      optional sense buffer
230  * @sshdr:      optional decoded sense header
231  * @timeout:    request timeout in seconds
232  * @retries:    number of times to retry request
233  * @flags:      flags for ->cmd_flags
234  * @rq_flags:   flags for ->rq_flags
235  * @resid:      optional residual length
236  *
237  * Returns the scsi_cmnd result field if a command was executed, or a negative
238  * Linux error code if we didn't get that far.
239  */
240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241                  int data_direction, void *buffer, unsigned bufflen,
242                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
243                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
244                  int *resid)
245 {
246         struct request *req;
247         struct scsi_request *rq;
248         int ret = DRIVER_ERROR << 24;
249
250         req = blk_get_request(sdev->request_queue,
251                         data_direction == DMA_TO_DEVICE ?
252                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
253                         rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
254         if (IS_ERR(req))
255                 return ret;
256         rq = scsi_req(req);
257
258         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
259                                         buffer, bufflen, GFP_NOIO))
260                 goto out;
261
262         rq->cmd_len = COMMAND_SIZE(cmd[0]);
263         memcpy(rq->cmd, cmd, rq->cmd_len);
264         rq->retries = retries;
265         req->timeout = timeout;
266         req->cmd_flags |= flags;
267         req->rq_flags |= rq_flags | RQF_QUIET;
268
269         /*
270          * head injection *required* here otherwise quiesce won't work
271          */
272         blk_execute_rq(NULL, req, 1);
273
274         /*
275          * Some devices (USB mass-storage in particular) may transfer
276          * garbage data together with a residue indicating that the data
277          * is invalid.  Prevent the garbage from being misinterpreted
278          * and prevent security leaks by zeroing out the excess data.
279          */
280         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
281                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
282
283         if (resid)
284                 *resid = rq->resid_len;
285         if (sense && rq->sense_len)
286                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
287         if (sshdr)
288                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
289         ret = rq->result;
290  out:
291         blk_put_request(req);
292
293         return ret;
294 }
295 EXPORT_SYMBOL(__scsi_execute);
296
297 /*
298  * Wake up the error handler if necessary. Avoid as follows that the error
299  * handler is not woken up if host in-flight requests number ==
300  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
301  * with an RCU read lock in this function to ensure that this function in
302  * its entirety either finishes before scsi_eh_scmd_add() increases the
303  * host_failed counter or that it notices the shost state change made by
304  * scsi_eh_scmd_add().
305  */
306 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
307 {
308         unsigned long flags;
309
310         rcu_read_lock();
311         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
312         if (unlikely(scsi_host_in_recovery(shost))) {
313                 spin_lock_irqsave(shost->host_lock, flags);
314                 if (shost->host_failed || shost->host_eh_scheduled)
315                         scsi_eh_wakeup(shost);
316                 spin_unlock_irqrestore(shost->host_lock, flags);
317         }
318         rcu_read_unlock();
319 }
320
321 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
322 {
323         struct Scsi_Host *shost = sdev->host;
324         struct scsi_target *starget = scsi_target(sdev);
325
326         scsi_dec_host_busy(shost, cmd);
327
328         if (starget->can_queue > 0)
329                 atomic_dec(&starget->target_busy);
330
331         atomic_dec(&sdev->device_busy);
332 }
333
334 static void scsi_kick_queue(struct request_queue *q)
335 {
336         blk_mq_run_hw_queues(q, false);
337 }
338
339 /*
340  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
341  * and call blk_run_queue for all the scsi_devices on the target -
342  * including current_sdev first.
343  *
344  * Called with *no* scsi locks held.
345  */
346 static void scsi_single_lun_run(struct scsi_device *current_sdev)
347 {
348         struct Scsi_Host *shost = current_sdev->host;
349         struct scsi_device *sdev, *tmp;
350         struct scsi_target *starget = scsi_target(current_sdev);
351         unsigned long flags;
352
353         spin_lock_irqsave(shost->host_lock, flags);
354         starget->starget_sdev_user = NULL;
355         spin_unlock_irqrestore(shost->host_lock, flags);
356
357         /*
358          * Call blk_run_queue for all LUNs on the target, starting with
359          * current_sdev. We race with others (to set starget_sdev_user),
360          * but in most cases, we will be first. Ideally, each LU on the
361          * target would get some limited time or requests on the target.
362          */
363         scsi_kick_queue(current_sdev->request_queue);
364
365         spin_lock_irqsave(shost->host_lock, flags);
366         if (starget->starget_sdev_user)
367                 goto out;
368         list_for_each_entry_safe(sdev, tmp, &starget->devices,
369                         same_target_siblings) {
370                 if (sdev == current_sdev)
371                         continue;
372                 if (scsi_device_get(sdev))
373                         continue;
374
375                 spin_unlock_irqrestore(shost->host_lock, flags);
376                 scsi_kick_queue(sdev->request_queue);
377                 spin_lock_irqsave(shost->host_lock, flags);
378
379                 scsi_device_put(sdev);
380         }
381  out:
382         spin_unlock_irqrestore(shost->host_lock, flags);
383 }
384
385 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
386 {
387         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
388                 return true;
389         if (atomic_read(&sdev->device_blocked) > 0)
390                 return true;
391         return false;
392 }
393
394 static inline bool scsi_target_is_busy(struct scsi_target *starget)
395 {
396         if (starget->can_queue > 0) {
397                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
398                         return true;
399                 if (atomic_read(&starget->target_blocked) > 0)
400                         return true;
401         }
402         return false;
403 }
404
405 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
406 {
407         if (atomic_read(&shost->host_blocked) > 0)
408                 return true;
409         if (shost->host_self_blocked)
410                 return true;
411         return false;
412 }
413
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416         LIST_HEAD(starved_list);
417         struct scsi_device *sdev;
418         unsigned long flags;
419
420         spin_lock_irqsave(shost->host_lock, flags);
421         list_splice_init(&shost->starved_list, &starved_list);
422
423         while (!list_empty(&starved_list)) {
424                 struct request_queue *slq;
425
426                 /*
427                  * As long as shost is accepting commands and we have
428                  * starved queues, call blk_run_queue. scsi_request_fn
429                  * drops the queue_lock and can add us back to the
430                  * starved_list.
431                  *
432                  * host_lock protects the starved_list and starved_entry.
433                  * scsi_request_fn must get the host_lock before checking
434                  * or modifying starved_list or starved_entry.
435                  */
436                 if (scsi_host_is_busy(shost))
437                         break;
438
439                 sdev = list_entry(starved_list.next,
440                                   struct scsi_device, starved_entry);
441                 list_del_init(&sdev->starved_entry);
442                 if (scsi_target_is_busy(scsi_target(sdev))) {
443                         list_move_tail(&sdev->starved_entry,
444                                        &shost->starved_list);
445                         continue;
446                 }
447
448                 /*
449                  * Once we drop the host lock, a racing scsi_remove_device()
450                  * call may remove the sdev from the starved list and destroy
451                  * it and the queue.  Mitigate by taking a reference to the
452                  * queue and never touching the sdev again after we drop the
453                  * host lock.  Note: if __scsi_remove_device() invokes
454                  * blk_cleanup_queue() before the queue is run from this
455                  * function then blk_run_queue() will return immediately since
456                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457                  */
458                 slq = sdev->request_queue;
459                 if (!blk_get_queue(slq))
460                         continue;
461                 spin_unlock_irqrestore(shost->host_lock, flags);
462
463                 scsi_kick_queue(slq);
464                 blk_put_queue(slq);
465
466                 spin_lock_irqsave(shost->host_lock, flags);
467         }
468         /* put any unprocessed entries back */
469         list_splice(&starved_list, &shost->starved_list);
470         spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472
473 /**
474  * scsi_run_queue - Select a proper request queue to serve next.
475  * @q:  last request's queue
476  *
477  * The previous command was completely finished, start a new one if possible.
478  */
479 static void scsi_run_queue(struct request_queue *q)
480 {
481         struct scsi_device *sdev = q->queuedata;
482
483         if (scsi_target(sdev)->single_lun)
484                 scsi_single_lun_run(sdev);
485         if (!list_empty(&sdev->host->starved_list))
486                 scsi_starved_list_run(sdev->host);
487
488         blk_mq_run_hw_queues(q, false);
489 }
490
491 void scsi_requeue_run_queue(struct work_struct *work)
492 {
493         struct scsi_device *sdev;
494         struct request_queue *q;
495
496         sdev = container_of(work, struct scsi_device, requeue_work);
497         q = sdev->request_queue;
498         scsi_run_queue(q);
499 }
500
501 void scsi_run_host_queues(struct Scsi_Host *shost)
502 {
503         struct scsi_device *sdev;
504
505         shost_for_each_device(sdev, shost)
506                 scsi_run_queue(sdev->request_queue);
507 }
508
509 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
510 {
511         if (!blk_rq_is_passthrough(cmd->request)) {
512                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
513
514                 if (drv->uninit_command)
515                         drv->uninit_command(cmd);
516         }
517 }
518
519 void scsi_free_sgtables(struct scsi_cmnd *cmd)
520 {
521         if (cmd->sdb.table.nents)
522                 sg_free_table_chained(&cmd->sdb.table,
523                                 SCSI_INLINE_SG_CNT);
524         if (scsi_prot_sg_count(cmd))
525                 sg_free_table_chained(&cmd->prot_sdb->table,
526                                 SCSI_INLINE_PROT_SG_CNT);
527 }
528 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
529
530 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
531 {
532         scsi_free_sgtables(cmd);
533         scsi_uninit_cmd(cmd);
534 }
535
536 static void scsi_run_queue_async(struct scsi_device *sdev)
537 {
538         if (scsi_target(sdev)->single_lun ||
539             !list_empty(&sdev->host->starved_list)) {
540                 kblockd_schedule_work(&sdev->requeue_work);
541         } else {
542                 /*
543                  * smp_mb() present in sbitmap_queue_clear() or implied in
544                  * .end_io is for ordering writing .device_busy in
545                  * scsi_device_unbusy() and reading sdev->restarts.
546                  */
547                 int old = atomic_read(&sdev->restarts);
548
549                 /*
550                  * ->restarts has to be kept as non-zero if new budget
551                  *  contention occurs.
552                  *
553                  *  No need to run queue when either another re-run
554                  *  queue wins in updating ->restarts or a new budget
555                  *  contention occurs.
556                  */
557                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
558                         blk_mq_run_hw_queues(sdev->request_queue, true);
559         }
560 }
561
562 /* Returns false when no more bytes to process, true if there are more */
563 static bool scsi_end_request(struct request *req, blk_status_t error,
564                 unsigned int bytes)
565 {
566         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
567         struct scsi_device *sdev = cmd->device;
568         struct request_queue *q = sdev->request_queue;
569
570         if (blk_update_request(req, error, bytes))
571                 return true;
572
573         if (blk_queue_add_random(q))
574                 add_disk_randomness(req->rq_disk);
575
576         if (!blk_rq_is_scsi(req)) {
577                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
578                 cmd->flags &= ~SCMD_INITIALIZED;
579         }
580
581         /*
582          * Calling rcu_barrier() is not necessary here because the
583          * SCSI error handler guarantees that the function called by
584          * call_rcu() has been called before scsi_end_request() is
585          * called.
586          */
587         destroy_rcu_head(&cmd->rcu);
588
589         /*
590          * In the MQ case the command gets freed by __blk_mq_end_request,
591          * so we have to do all cleanup that depends on it earlier.
592          *
593          * We also can't kick the queues from irq context, so we
594          * will have to defer it to a workqueue.
595          */
596         scsi_mq_uninit_cmd(cmd);
597
598         /*
599          * queue is still alive, so grab the ref for preventing it
600          * from being cleaned up during running queue.
601          */
602         percpu_ref_get(&q->q_usage_counter);
603
604         __blk_mq_end_request(req, error);
605
606         scsi_run_queue_async(sdev);
607
608         percpu_ref_put(&q->q_usage_counter);
609         return false;
610 }
611
612 /**
613  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
614  * @cmd:        SCSI command
615  * @result:     scsi error code
616  *
617  * Translate a SCSI result code into a blk_status_t value. May reset the host
618  * byte of @cmd->result.
619  */
620 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
621 {
622         switch (host_byte(result)) {
623         case DID_OK:
624                 /*
625                  * Also check the other bytes than the status byte in result
626                  * to handle the case when a SCSI LLD sets result to
627                  * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
628                  */
629                 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
630                         return BLK_STS_OK;
631                 return BLK_STS_IOERR;
632         case DID_TRANSPORT_FAILFAST:
633         case DID_TRANSPORT_MARGINAL:
634                 return BLK_STS_TRANSPORT;
635         case DID_TARGET_FAILURE:
636                 set_host_byte(cmd, DID_OK);
637                 return BLK_STS_TARGET;
638         case DID_NEXUS_FAILURE:
639                 set_host_byte(cmd, DID_OK);
640                 return BLK_STS_NEXUS;
641         case DID_ALLOC_FAILURE:
642                 set_host_byte(cmd, DID_OK);
643                 return BLK_STS_NOSPC;
644         case DID_MEDIUM_ERROR:
645                 set_host_byte(cmd, DID_OK);
646                 return BLK_STS_MEDIUM;
647         default:
648                 return BLK_STS_IOERR;
649         }
650 }
651
652 /* Helper for scsi_io_completion() when "reprep" action required. */
653 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
654                                       struct request_queue *q)
655 {
656         /* A new command will be prepared and issued. */
657         scsi_mq_requeue_cmd(cmd);
658 }
659
660 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
661 {
662         struct request *req = cmd->request;
663         unsigned long wait_for;
664
665         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
666                 return false;
667
668         wait_for = (cmd->allowed + 1) * req->timeout;
669         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
670                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
671                             wait_for/HZ);
672                 return true;
673         }
674         return false;
675 }
676
677 /* Helper for scsi_io_completion() when special action required. */
678 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
679 {
680         struct request_queue *q = cmd->device->request_queue;
681         struct request *req = cmd->request;
682         int level = 0;
683         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
684               ACTION_DELAYED_RETRY} action;
685         struct scsi_sense_hdr sshdr;
686         bool sense_valid;
687         bool sense_current = true;      /* false implies "deferred sense" */
688         blk_status_t blk_stat;
689
690         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
691         if (sense_valid)
692                 sense_current = !scsi_sense_is_deferred(&sshdr);
693
694         blk_stat = scsi_result_to_blk_status(cmd, result);
695
696         if (host_byte(result) == DID_RESET) {
697                 /* Third party bus reset or reset for error recovery
698                  * reasons.  Just retry the command and see what
699                  * happens.
700                  */
701                 action = ACTION_RETRY;
702         } else if (sense_valid && sense_current) {
703                 switch (sshdr.sense_key) {
704                 case UNIT_ATTENTION:
705                         if (cmd->device->removable) {
706                                 /* Detected disc change.  Set a bit
707                                  * and quietly refuse further access.
708                                  */
709                                 cmd->device->changed = 1;
710                                 action = ACTION_FAIL;
711                         } else {
712                                 /* Must have been a power glitch, or a
713                                  * bus reset.  Could not have been a
714                                  * media change, so we just retry the
715                                  * command and see what happens.
716                                  */
717                                 action = ACTION_RETRY;
718                         }
719                         break;
720                 case ILLEGAL_REQUEST:
721                         /* If we had an ILLEGAL REQUEST returned, then
722                          * we may have performed an unsupported
723                          * command.  The only thing this should be
724                          * would be a ten byte read where only a six
725                          * byte read was supported.  Also, on a system
726                          * where READ CAPACITY failed, we may have
727                          * read past the end of the disk.
728                          */
729                         if ((cmd->device->use_10_for_rw &&
730                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
731                             (cmd->cmnd[0] == READ_10 ||
732                              cmd->cmnd[0] == WRITE_10)) {
733                                 /* This will issue a new 6-byte command. */
734                                 cmd->device->use_10_for_rw = 0;
735                                 action = ACTION_REPREP;
736                         } else if (sshdr.asc == 0x10) /* DIX */ {
737                                 action = ACTION_FAIL;
738                                 blk_stat = BLK_STS_PROTECTION;
739                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
740                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
741                                 action = ACTION_FAIL;
742                                 blk_stat = BLK_STS_TARGET;
743                         } else
744                                 action = ACTION_FAIL;
745                         break;
746                 case ABORTED_COMMAND:
747                         action = ACTION_FAIL;
748                         if (sshdr.asc == 0x10) /* DIF */
749                                 blk_stat = BLK_STS_PROTECTION;
750                         break;
751                 case NOT_READY:
752                         /* If the device is in the process of becoming
753                          * ready, or has a temporary blockage, retry.
754                          */
755                         if (sshdr.asc == 0x04) {
756                                 switch (sshdr.ascq) {
757                                 case 0x01: /* becoming ready */
758                                 case 0x04: /* format in progress */
759                                 case 0x05: /* rebuild in progress */
760                                 case 0x06: /* recalculation in progress */
761                                 case 0x07: /* operation in progress */
762                                 case 0x08: /* Long write in progress */
763                                 case 0x09: /* self test in progress */
764                                 case 0x14: /* space allocation in progress */
765                                 case 0x1a: /* start stop unit in progress */
766                                 case 0x1b: /* sanitize in progress */
767                                 case 0x1d: /* configuration in progress */
768                                 case 0x24: /* depopulation in progress */
769                                         action = ACTION_DELAYED_RETRY;
770                                         break;
771                                 case 0x0a: /* ALUA state transition */
772                                         blk_stat = BLK_STS_AGAIN;
773                                         fallthrough;
774                                 default:
775                                         action = ACTION_FAIL;
776                                         break;
777                                 }
778                         } else
779                                 action = ACTION_FAIL;
780                         break;
781                 case VOLUME_OVERFLOW:
782                         /* See SSC3rXX or current. */
783                         action = ACTION_FAIL;
784                         break;
785                 case DATA_PROTECT:
786                         action = ACTION_FAIL;
787                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
788                             (sshdr.asc == 0x55 &&
789                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
790                                 /* Insufficient zone resources */
791                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
792                         }
793                         break;
794                 default:
795                         action = ACTION_FAIL;
796                         break;
797                 }
798         } else
799                 action = ACTION_FAIL;
800
801         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
802                 action = ACTION_FAIL;
803
804         switch (action) {
805         case ACTION_FAIL:
806                 /* Give up and fail the remainder of the request */
807                 if (!(req->rq_flags & RQF_QUIET)) {
808                         static DEFINE_RATELIMIT_STATE(_rs,
809                                         DEFAULT_RATELIMIT_INTERVAL,
810                                         DEFAULT_RATELIMIT_BURST);
811
812                         if (unlikely(scsi_logging_level))
813                                 level =
814                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
815                                                     SCSI_LOG_MLCOMPLETE_BITS);
816
817                         /*
818                          * if logging is enabled the failure will be printed
819                          * in scsi_log_completion(), so avoid duplicate messages
820                          */
821                         if (!level && __ratelimit(&_rs)) {
822                                 scsi_print_result(cmd, NULL, FAILED);
823                                 if (driver_byte(result) == DRIVER_SENSE)
824                                         scsi_print_sense(cmd);
825                                 scsi_print_command(cmd);
826                         }
827                 }
828                 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
829                         return;
830                 fallthrough;
831         case ACTION_REPREP:
832                 scsi_io_completion_reprep(cmd, q);
833                 break;
834         case ACTION_RETRY:
835                 /* Retry the same command immediately */
836                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
837                 break;
838         case ACTION_DELAYED_RETRY:
839                 /* Retry the same command after a delay */
840                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
841                 break;
842         }
843 }
844
845 /*
846  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
847  * new result that may suppress further error checking. Also modifies
848  * *blk_statp in some cases.
849  */
850 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
851                                         blk_status_t *blk_statp)
852 {
853         bool sense_valid;
854         bool sense_current = true;      /* false implies "deferred sense" */
855         struct request *req = cmd->request;
856         struct scsi_sense_hdr sshdr;
857
858         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
859         if (sense_valid)
860                 sense_current = !scsi_sense_is_deferred(&sshdr);
861
862         if (blk_rq_is_passthrough(req)) {
863                 if (sense_valid) {
864                         /*
865                          * SG_IO wants current and deferred errors
866                          */
867                         scsi_req(req)->sense_len =
868                                 min(8 + cmd->sense_buffer[7],
869                                     SCSI_SENSE_BUFFERSIZE);
870                 }
871                 if (sense_current)
872                         *blk_statp = scsi_result_to_blk_status(cmd, result);
873         } else if (blk_rq_bytes(req) == 0 && sense_current) {
874                 /*
875                  * Flush commands do not transfers any data, and thus cannot use
876                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
877                  * This sets *blk_statp explicitly for the problem case.
878                  */
879                 *blk_statp = scsi_result_to_blk_status(cmd, result);
880         }
881         /*
882          * Recovered errors need reporting, but they're always treated as
883          * success, so fiddle the result code here.  For passthrough requests
884          * we already took a copy of the original into sreq->result which
885          * is what gets returned to the user
886          */
887         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
888                 bool do_print = true;
889                 /*
890                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
891                  * skip print since caller wants ATA registers. Only occurs
892                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
893                  */
894                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
895                         do_print = false;
896                 else if (req->rq_flags & RQF_QUIET)
897                         do_print = false;
898                 if (do_print)
899                         scsi_print_sense(cmd);
900                 result = 0;
901                 /* for passthrough, *blk_statp may be set */
902                 *blk_statp = BLK_STS_OK;
903         }
904         /*
905          * Another corner case: the SCSI status byte is non-zero but 'good'.
906          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
907          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
908          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
909          * intermediate statuses (both obsolete in SAM-4) as good.
910          */
911         if (status_byte(result) && scsi_status_is_good(result)) {
912                 result = 0;
913                 *blk_statp = BLK_STS_OK;
914         }
915         return result;
916 }
917
918 /**
919  * scsi_io_completion - Completion processing for SCSI commands.
920  * @cmd:        command that is finished.
921  * @good_bytes: number of processed bytes.
922  *
923  * We will finish off the specified number of sectors. If we are done, the
924  * command block will be released and the queue function will be goosed. If we
925  * are not done then we have to figure out what to do next:
926  *
927  *   a) We can call scsi_io_completion_reprep().  The request will be
928  *      unprepared and put back on the queue.  Then a new command will
929  *      be created for it.  This should be used if we made forward
930  *      progress, or if we want to switch from READ(10) to READ(6) for
931  *      example.
932  *
933  *   b) We can call scsi_io_completion_action().  The request will be
934  *      put back on the queue and retried using the same command as
935  *      before, possibly after a delay.
936  *
937  *   c) We can call scsi_end_request() with blk_stat other than
938  *      BLK_STS_OK, to fail the remainder of the request.
939  */
940 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
941 {
942         int result = cmd->result;
943         struct request_queue *q = cmd->device->request_queue;
944         struct request *req = cmd->request;
945         blk_status_t blk_stat = BLK_STS_OK;
946
947         if (unlikely(result))   /* a nz result may or may not be an error */
948                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
949
950         if (unlikely(blk_rq_is_passthrough(req))) {
951                 /*
952                  * scsi_result_to_blk_status may have reset the host_byte
953                  */
954                 scsi_req(req)->result = cmd->result;
955         }
956
957         /*
958          * Next deal with any sectors which we were able to correctly
959          * handle.
960          */
961         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
962                 "%u sectors total, %d bytes done.\n",
963                 blk_rq_sectors(req), good_bytes));
964
965         /*
966          * Failed, zero length commands always need to drop down
967          * to retry code. Fast path should return in this block.
968          */
969         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
970                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
971                         return; /* no bytes remaining */
972         }
973
974         /* Kill remainder if no retries. */
975         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
976                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
977                         WARN_ONCE(true,
978                             "Bytes remaining after failed, no-retry command");
979                 return;
980         }
981
982         /*
983          * If there had been no error, but we have leftover bytes in the
984          * requeues just queue the command up again.
985          */
986         if (likely(result == 0))
987                 scsi_io_completion_reprep(cmd, q);
988         else
989                 scsi_io_completion_action(cmd, result);
990 }
991
992 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
993                 struct request *rq)
994 {
995         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
996                !op_is_write(req_op(rq)) &&
997                sdev->host->hostt->dma_need_drain(rq);
998 }
999
1000 /**
1001  * scsi_alloc_sgtables - allocate S/G tables for a command
1002  * @cmd:  command descriptor we wish to initialize
1003  *
1004  * Returns:
1005  * * BLK_STS_OK       - on success
1006  * * BLK_STS_RESOURCE - if the failure is retryable
1007  * * BLK_STS_IOERR    - if the failure is fatal
1008  */
1009 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1010 {
1011         struct scsi_device *sdev = cmd->device;
1012         struct request *rq = cmd->request;
1013         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1014         struct scatterlist *last_sg = NULL;
1015         blk_status_t ret;
1016         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1017         int count;
1018
1019         if (WARN_ON_ONCE(!nr_segs))
1020                 return BLK_STS_IOERR;
1021
1022         /*
1023          * Make sure there is space for the drain.  The driver must adjust
1024          * max_hw_segments to be prepared for this.
1025          */
1026         if (need_drain)
1027                 nr_segs++;
1028
1029         /*
1030          * If sg table allocation fails, requeue request later.
1031          */
1032         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1033                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1034                 return BLK_STS_RESOURCE;
1035
1036         /*
1037          * Next, walk the list, and fill in the addresses and sizes of
1038          * each segment.
1039          */
1040         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1041
1042         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1043                 unsigned int pad_len =
1044                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1045
1046                 last_sg->length += pad_len;
1047                 cmd->extra_len += pad_len;
1048         }
1049
1050         if (need_drain) {
1051                 sg_unmark_end(last_sg);
1052                 last_sg = sg_next(last_sg);
1053                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1054                 sg_mark_end(last_sg);
1055
1056                 cmd->extra_len += sdev->dma_drain_len;
1057                 count++;
1058         }
1059
1060         BUG_ON(count > cmd->sdb.table.nents);
1061         cmd->sdb.table.nents = count;
1062         cmd->sdb.length = blk_rq_payload_bytes(rq);
1063
1064         if (blk_integrity_rq(rq)) {
1065                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1066                 int ivecs;
1067
1068                 if (WARN_ON_ONCE(!prot_sdb)) {
1069                         /*
1070                          * This can happen if someone (e.g. multipath)
1071                          * queues a command to a device on an adapter
1072                          * that does not support DIX.
1073                          */
1074                         ret = BLK_STS_IOERR;
1075                         goto out_free_sgtables;
1076                 }
1077
1078                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1079
1080                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1081                                 prot_sdb->table.sgl,
1082                                 SCSI_INLINE_PROT_SG_CNT)) {
1083                         ret = BLK_STS_RESOURCE;
1084                         goto out_free_sgtables;
1085                 }
1086
1087                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1088                                                 prot_sdb->table.sgl);
1089                 BUG_ON(count > ivecs);
1090                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1091
1092                 cmd->prot_sdb = prot_sdb;
1093                 cmd->prot_sdb->table.nents = count;
1094         }
1095
1096         return BLK_STS_OK;
1097 out_free_sgtables:
1098         scsi_free_sgtables(cmd);
1099         return ret;
1100 }
1101 EXPORT_SYMBOL(scsi_alloc_sgtables);
1102
1103 /**
1104  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1105  * @rq: Request associated with the SCSI command to be initialized.
1106  *
1107  * This function initializes the members of struct scsi_cmnd that must be
1108  * initialized before request processing starts and that won't be
1109  * reinitialized if a SCSI command is requeued.
1110  *
1111  * Called from inside blk_get_request() for pass-through requests and from
1112  * inside scsi_init_command() for filesystem requests.
1113  */
1114 static void scsi_initialize_rq(struct request *rq)
1115 {
1116         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1117
1118         scsi_req_init(&cmd->req);
1119         init_rcu_head(&cmd->rcu);
1120         cmd->jiffies_at_alloc = jiffies;
1121         cmd->retries = 0;
1122 }
1123
1124 /*
1125  * Only called when the request isn't completed by SCSI, and not freed by
1126  * SCSI
1127  */
1128 static void scsi_cleanup_rq(struct request *rq)
1129 {
1130         if (rq->rq_flags & RQF_DONTPREP) {
1131                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1132                 rq->rq_flags &= ~RQF_DONTPREP;
1133         }
1134 }
1135
1136 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1137 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1138 {
1139         void *buf = cmd->sense_buffer;
1140         void *prot = cmd->prot_sdb;
1141         struct request *rq = blk_mq_rq_from_pdu(cmd);
1142         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1143         unsigned long jiffies_at_alloc;
1144         int retries, to_clear;
1145         bool in_flight;
1146
1147         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1148                 flags |= SCMD_INITIALIZED;
1149                 scsi_initialize_rq(rq);
1150         }
1151
1152         jiffies_at_alloc = cmd->jiffies_at_alloc;
1153         retries = cmd->retries;
1154         in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1155         /*
1156          * Zero out the cmd, except for the embedded scsi_request. Only clear
1157          * the driver-private command data if the LLD does not supply a
1158          * function to initialize that data.
1159          */
1160         to_clear = sizeof(*cmd) - sizeof(cmd->req);
1161         if (!dev->host->hostt->init_cmd_priv)
1162                 to_clear += dev->host->hostt->cmd_size;
1163         memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1164
1165         cmd->device = dev;
1166         cmd->sense_buffer = buf;
1167         cmd->prot_sdb = prot;
1168         cmd->flags = flags;
1169         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1170         cmd->jiffies_at_alloc = jiffies_at_alloc;
1171         cmd->retries = retries;
1172         if (in_flight)
1173                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1174
1175 }
1176
1177 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1178                 struct request *req)
1179 {
1180         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1181
1182         /*
1183          * Passthrough requests may transfer data, in which case they must
1184          * a bio attached to them.  Or they might contain a SCSI command
1185          * that does not transfer data, in which case they may optionally
1186          * submit a request without an attached bio.
1187          */
1188         if (req->bio) {
1189                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1190                 if (unlikely(ret != BLK_STS_OK))
1191                         return ret;
1192         } else {
1193                 BUG_ON(blk_rq_bytes(req));
1194
1195                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1196         }
1197
1198         cmd->cmd_len = scsi_req(req)->cmd_len;
1199         if (cmd->cmd_len == 0)
1200                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
1201         cmd->cmnd = scsi_req(req)->cmd;
1202         cmd->transfersize = blk_rq_bytes(req);
1203         cmd->allowed = scsi_req(req)->retries;
1204         return BLK_STS_OK;
1205 }
1206
1207 static blk_status_t
1208 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1209 {
1210         switch (sdev->sdev_state) {
1211         case SDEV_CREATED:
1212                 return BLK_STS_OK;
1213         case SDEV_OFFLINE:
1214         case SDEV_TRANSPORT_OFFLINE:
1215                 /*
1216                  * If the device is offline we refuse to process any
1217                  * commands.  The device must be brought online
1218                  * before trying any recovery commands.
1219                  */
1220                 if (!sdev->offline_already) {
1221                         sdev->offline_already = true;
1222                         sdev_printk(KERN_ERR, sdev,
1223                                     "rejecting I/O to offline device\n");
1224                 }
1225                 return BLK_STS_IOERR;
1226         case SDEV_DEL:
1227                 /*
1228                  * If the device is fully deleted, we refuse to
1229                  * process any commands as well.
1230                  */
1231                 sdev_printk(KERN_ERR, sdev,
1232                             "rejecting I/O to dead device\n");
1233                 return BLK_STS_IOERR;
1234         case SDEV_BLOCK:
1235         case SDEV_CREATED_BLOCK:
1236                 return BLK_STS_RESOURCE;
1237         case SDEV_QUIESCE:
1238                 /*
1239                  * If the device is blocked we only accept power management
1240                  * commands.
1241                  */
1242                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1243                         return BLK_STS_RESOURCE;
1244                 return BLK_STS_OK;
1245         default:
1246                 /*
1247                  * For any other not fully online state we only allow
1248                  * power management commands.
1249                  */
1250                 if (req && !(req->rq_flags & RQF_PM))
1251                         return BLK_STS_IOERR;
1252                 return BLK_STS_OK;
1253         }
1254 }
1255
1256 /*
1257  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1258  * return 0.
1259  *
1260  * Called with the queue_lock held.
1261  */
1262 static inline int scsi_dev_queue_ready(struct request_queue *q,
1263                                   struct scsi_device *sdev)
1264 {
1265         unsigned int busy;
1266
1267         busy = atomic_inc_return(&sdev->device_busy) - 1;
1268         if (atomic_read(&sdev->device_blocked)) {
1269                 if (busy)
1270                         goto out_dec;
1271
1272                 /*
1273                  * unblock after device_blocked iterates to zero
1274                  */
1275                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1276                         goto out_dec;
1277                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1278                                    "unblocking device at zero depth\n"));
1279         }
1280
1281         if (busy >= sdev->queue_depth)
1282                 goto out_dec;
1283
1284         return 1;
1285 out_dec:
1286         atomic_dec(&sdev->device_busy);
1287         return 0;
1288 }
1289
1290 /*
1291  * scsi_target_queue_ready: checks if there we can send commands to target
1292  * @sdev: scsi device on starget to check.
1293  */
1294 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1295                                            struct scsi_device *sdev)
1296 {
1297         struct scsi_target *starget = scsi_target(sdev);
1298         unsigned int busy;
1299
1300         if (starget->single_lun) {
1301                 spin_lock_irq(shost->host_lock);
1302                 if (starget->starget_sdev_user &&
1303                     starget->starget_sdev_user != sdev) {
1304                         spin_unlock_irq(shost->host_lock);
1305                         return 0;
1306                 }
1307                 starget->starget_sdev_user = sdev;
1308                 spin_unlock_irq(shost->host_lock);
1309         }
1310
1311         if (starget->can_queue <= 0)
1312                 return 1;
1313
1314         busy = atomic_inc_return(&starget->target_busy) - 1;
1315         if (atomic_read(&starget->target_blocked) > 0) {
1316                 if (busy)
1317                         goto starved;
1318
1319                 /*
1320                  * unblock after target_blocked iterates to zero
1321                  */
1322                 if (atomic_dec_return(&starget->target_blocked) > 0)
1323                         goto out_dec;
1324
1325                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1326                                  "unblocking target at zero depth\n"));
1327         }
1328
1329         if (busy >= starget->can_queue)
1330                 goto starved;
1331
1332         return 1;
1333
1334 starved:
1335         spin_lock_irq(shost->host_lock);
1336         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1337         spin_unlock_irq(shost->host_lock);
1338 out_dec:
1339         if (starget->can_queue > 0)
1340                 atomic_dec(&starget->target_busy);
1341         return 0;
1342 }
1343
1344 /*
1345  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1346  * return 0. We must end up running the queue again whenever 0 is
1347  * returned, else IO can hang.
1348  */
1349 static inline int scsi_host_queue_ready(struct request_queue *q,
1350                                    struct Scsi_Host *shost,
1351                                    struct scsi_device *sdev,
1352                                    struct scsi_cmnd *cmd)
1353 {
1354         if (scsi_host_in_recovery(shost))
1355                 return 0;
1356
1357         if (atomic_read(&shost->host_blocked) > 0) {
1358                 if (scsi_host_busy(shost) > 0)
1359                         goto starved;
1360
1361                 /*
1362                  * unblock after host_blocked iterates to zero
1363                  */
1364                 if (atomic_dec_return(&shost->host_blocked) > 0)
1365                         goto out_dec;
1366
1367                 SCSI_LOG_MLQUEUE(3,
1368                         shost_printk(KERN_INFO, shost,
1369                                      "unblocking host at zero depth\n"));
1370         }
1371
1372         if (shost->host_self_blocked)
1373                 goto starved;
1374
1375         /* We're OK to process the command, so we can't be starved */
1376         if (!list_empty(&sdev->starved_entry)) {
1377                 spin_lock_irq(shost->host_lock);
1378                 if (!list_empty(&sdev->starved_entry))
1379                         list_del_init(&sdev->starved_entry);
1380                 spin_unlock_irq(shost->host_lock);
1381         }
1382
1383         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1384
1385         return 1;
1386
1387 starved:
1388         spin_lock_irq(shost->host_lock);
1389         if (list_empty(&sdev->starved_entry))
1390                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1391         spin_unlock_irq(shost->host_lock);
1392 out_dec:
1393         scsi_dec_host_busy(shost, cmd);
1394         return 0;
1395 }
1396
1397 /*
1398  * Busy state exporting function for request stacking drivers.
1399  *
1400  * For efficiency, no lock is taken to check the busy state of
1401  * shost/starget/sdev, since the returned value is not guaranteed and
1402  * may be changed after request stacking drivers call the function,
1403  * regardless of taking lock or not.
1404  *
1405  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1406  * needs to return 'not busy'. Otherwise, request stacking drivers
1407  * may hold requests forever.
1408  */
1409 static bool scsi_mq_lld_busy(struct request_queue *q)
1410 {
1411         struct scsi_device *sdev = q->queuedata;
1412         struct Scsi_Host *shost;
1413
1414         if (blk_queue_dying(q))
1415                 return false;
1416
1417         shost = sdev->host;
1418
1419         /*
1420          * Ignore host/starget busy state.
1421          * Since block layer does not have a concept of fairness across
1422          * multiple queues, congestion of host/starget needs to be handled
1423          * in SCSI layer.
1424          */
1425         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1426                 return true;
1427
1428         return false;
1429 }
1430
1431 static void scsi_softirq_done(struct request *rq)
1432 {
1433         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1434         int disposition;
1435
1436         INIT_LIST_HEAD(&cmd->eh_entry);
1437
1438         atomic_inc(&cmd->device->iodone_cnt);
1439         if (cmd->result)
1440                 atomic_inc(&cmd->device->ioerr_cnt);
1441
1442         disposition = scsi_decide_disposition(cmd);
1443         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1444                 disposition = SUCCESS;
1445
1446         scsi_log_completion(cmd, disposition);
1447
1448         switch (disposition) {
1449         case SUCCESS:
1450                 scsi_finish_command(cmd);
1451                 break;
1452         case NEEDS_RETRY:
1453                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1454                 break;
1455         case ADD_TO_MLQUEUE:
1456                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1457                 break;
1458         default:
1459                 scsi_eh_scmd_add(cmd);
1460                 break;
1461         }
1462 }
1463
1464 /**
1465  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1466  * @cmd: command block we are dispatching.
1467  *
1468  * Return: nonzero return request was rejected and device's queue needs to be
1469  * plugged.
1470  */
1471 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1472 {
1473         struct Scsi_Host *host = cmd->device->host;
1474         int rtn = 0;
1475
1476         atomic_inc(&cmd->device->iorequest_cnt);
1477
1478         /* check if the device is still usable */
1479         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1480                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1481                  * returns an immediate error upwards, and signals
1482                  * that the device is no longer present */
1483                 cmd->result = DID_NO_CONNECT << 16;
1484                 goto done;
1485         }
1486
1487         /* Check to see if the scsi lld made this device blocked. */
1488         if (unlikely(scsi_device_blocked(cmd->device))) {
1489                 /*
1490                  * in blocked state, the command is just put back on
1491                  * the device queue.  The suspend state has already
1492                  * blocked the queue so future requests should not
1493                  * occur until the device transitions out of the
1494                  * suspend state.
1495                  */
1496                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1497                         "queuecommand : device blocked\n"));
1498                 return SCSI_MLQUEUE_DEVICE_BUSY;
1499         }
1500
1501         /* Store the LUN value in cmnd, if needed. */
1502         if (cmd->device->lun_in_cdb)
1503                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1504                                (cmd->device->lun << 5 & 0xe0);
1505
1506         scsi_log_send(cmd);
1507
1508         /*
1509          * Before we queue this command, check if the command
1510          * length exceeds what the host adapter can handle.
1511          */
1512         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1513                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1514                                "queuecommand : command too long. "
1515                                "cdb_size=%d host->max_cmd_len=%d\n",
1516                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1517                 cmd->result = (DID_ABORT << 16);
1518                 goto done;
1519         }
1520
1521         if (unlikely(host->shost_state == SHOST_DEL)) {
1522                 cmd->result = (DID_NO_CONNECT << 16);
1523                 goto done;
1524
1525         }
1526
1527         trace_scsi_dispatch_cmd_start(cmd);
1528         rtn = host->hostt->queuecommand(host, cmd);
1529         if (rtn) {
1530                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1531                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1532                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1533                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1534
1535                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1536                         "queuecommand : request rejected\n"));
1537         }
1538
1539         return rtn;
1540  done:
1541         cmd->scsi_done(cmd);
1542         return 0;
1543 }
1544
1545 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1546 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1547 {
1548         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1549                 sizeof(struct scatterlist);
1550 }
1551
1552 static blk_status_t scsi_prepare_cmd(struct request *req)
1553 {
1554         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1555         struct scsi_device *sdev = req->q->queuedata;
1556         struct Scsi_Host *shost = sdev->host;
1557         struct scatterlist *sg;
1558
1559         scsi_init_command(sdev, cmd);
1560
1561         cmd->request = req;
1562         cmd->tag = req->tag;
1563         cmd->prot_op = SCSI_PROT_NORMAL;
1564         if (blk_rq_bytes(req))
1565                 cmd->sc_data_direction = rq_dma_dir(req);
1566         else
1567                 cmd->sc_data_direction = DMA_NONE;
1568
1569         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1570         cmd->sdb.table.sgl = sg;
1571
1572         if (scsi_host_get_prot(shost)) {
1573                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1574
1575                 cmd->prot_sdb->table.sgl =
1576                         (struct scatterlist *)(cmd->prot_sdb + 1);
1577         }
1578
1579         /*
1580          * Special handling for passthrough commands, which don't go to the ULP
1581          * at all:
1582          */
1583         if (blk_rq_is_scsi(req))
1584                 return scsi_setup_scsi_cmnd(sdev, req);
1585
1586         if (sdev->handler && sdev->handler->prep_fn) {
1587                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1588
1589                 if (ret != BLK_STS_OK)
1590                         return ret;
1591         }
1592
1593         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1594         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1595         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1596 }
1597
1598 static void scsi_mq_done(struct scsi_cmnd *cmd)
1599 {
1600         if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1601                 return;
1602         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1603                 return;
1604         trace_scsi_dispatch_cmd_done(cmd);
1605         blk_mq_complete_request(cmd->request);
1606 }
1607
1608 static void scsi_mq_put_budget(struct request_queue *q)
1609 {
1610         struct scsi_device *sdev = q->queuedata;
1611
1612         atomic_dec(&sdev->device_busy);
1613 }
1614
1615 static bool scsi_mq_get_budget(struct request_queue *q)
1616 {
1617         struct scsi_device *sdev = q->queuedata;
1618
1619         if (scsi_dev_queue_ready(q, sdev))
1620                 return true;
1621
1622         atomic_inc(&sdev->restarts);
1623
1624         /*
1625          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1626          * .restarts must be incremented before .device_busy is read because the
1627          * code in scsi_run_queue_async() depends on the order of these operations.
1628          */
1629         smp_mb__after_atomic();
1630
1631         /*
1632          * If all in-flight requests originated from this LUN are completed
1633          * before reading .device_busy, sdev->device_busy will be observed as
1634          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1635          * soon. Otherwise, completion of one of these requests will observe
1636          * the .restarts flag, and the request queue will be run for handling
1637          * this request, see scsi_end_request().
1638          */
1639         if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1640                                 !scsi_device_blocked(sdev)))
1641                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1642         return false;
1643 }
1644
1645 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1646                          const struct blk_mq_queue_data *bd)
1647 {
1648         struct request *req = bd->rq;
1649         struct request_queue *q = req->q;
1650         struct scsi_device *sdev = q->queuedata;
1651         struct Scsi_Host *shost = sdev->host;
1652         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1653         blk_status_t ret;
1654         int reason;
1655
1656         /*
1657          * If the device is not in running state we will reject some or all
1658          * commands.
1659          */
1660         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1661                 ret = scsi_device_state_check(sdev, req);
1662                 if (ret != BLK_STS_OK)
1663                         goto out_put_budget;
1664         }
1665
1666         ret = BLK_STS_RESOURCE;
1667         if (!scsi_target_queue_ready(shost, sdev))
1668                 goto out_put_budget;
1669         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1670                 goto out_dec_target_busy;
1671
1672         if (!(req->rq_flags & RQF_DONTPREP)) {
1673                 ret = scsi_prepare_cmd(req);
1674                 if (ret != BLK_STS_OK)
1675                         goto out_dec_host_busy;
1676                 req->rq_flags |= RQF_DONTPREP;
1677         } else {
1678                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1679         }
1680
1681         cmd->flags &= SCMD_PRESERVED_FLAGS;
1682         if (sdev->simple_tags)
1683                 cmd->flags |= SCMD_TAGGED;
1684         if (bd->last)
1685                 cmd->flags |= SCMD_LAST;
1686
1687         scsi_set_resid(cmd, 0);
1688         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1689         cmd->scsi_done = scsi_mq_done;
1690
1691         blk_mq_start_request(req);
1692         reason = scsi_dispatch_cmd(cmd);
1693         if (reason) {
1694                 scsi_set_blocked(cmd, reason);
1695                 ret = BLK_STS_RESOURCE;
1696                 goto out_dec_host_busy;
1697         }
1698
1699         return BLK_STS_OK;
1700
1701 out_dec_host_busy:
1702         scsi_dec_host_busy(shost, cmd);
1703 out_dec_target_busy:
1704         if (scsi_target(sdev)->can_queue > 0)
1705                 atomic_dec(&scsi_target(sdev)->target_busy);
1706 out_put_budget:
1707         scsi_mq_put_budget(q);
1708         switch (ret) {
1709         case BLK_STS_OK:
1710                 break;
1711         case BLK_STS_RESOURCE:
1712         case BLK_STS_ZONE_RESOURCE:
1713                 if (scsi_device_blocked(sdev))
1714                         ret = BLK_STS_DEV_RESOURCE;
1715                 break;
1716         case BLK_STS_AGAIN:
1717                 scsi_req(req)->result = DID_BUS_BUSY << 16;
1718                 if (req->rq_flags & RQF_DONTPREP)
1719                         scsi_mq_uninit_cmd(cmd);
1720                 break;
1721         default:
1722                 if (unlikely(!scsi_device_online(sdev)))
1723                         scsi_req(req)->result = DID_NO_CONNECT << 16;
1724                 else
1725                         scsi_req(req)->result = DID_ERROR << 16;
1726                 /*
1727                  * Make sure to release all allocated resources when
1728                  * we hit an error, as we will never see this command
1729                  * again.
1730                  */
1731                 if (req->rq_flags & RQF_DONTPREP)
1732                         scsi_mq_uninit_cmd(cmd);
1733                 scsi_run_queue_async(sdev);
1734                 break;
1735         }
1736         return ret;
1737 }
1738
1739 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1740                 bool reserved)
1741 {
1742         if (reserved)
1743                 return BLK_EH_RESET_TIMER;
1744         return scsi_times_out(req);
1745 }
1746
1747 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1748                                 unsigned int hctx_idx, unsigned int numa_node)
1749 {
1750         struct Scsi_Host *shost = set->driver_data;
1751         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1752         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1753         struct scatterlist *sg;
1754         int ret = 0;
1755
1756         if (unchecked_isa_dma)
1757                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1758         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1759                                                     GFP_KERNEL, numa_node);
1760         if (!cmd->sense_buffer)
1761                 return -ENOMEM;
1762         cmd->req.sense = cmd->sense_buffer;
1763
1764         if (scsi_host_get_prot(shost)) {
1765                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1766                         shost->hostt->cmd_size;
1767                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1768         }
1769
1770         if (shost->hostt->init_cmd_priv) {
1771                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1772                 if (ret < 0)
1773                         scsi_free_sense_buffer(unchecked_isa_dma,
1774                                                cmd->sense_buffer);
1775         }
1776
1777         return ret;
1778 }
1779
1780 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1781                                  unsigned int hctx_idx)
1782 {
1783         struct Scsi_Host *shost = set->driver_data;
1784         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1785
1786         if (shost->hostt->exit_cmd_priv)
1787                 shost->hostt->exit_cmd_priv(shost, cmd);
1788         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1789                                cmd->sense_buffer);
1790 }
1791
1792 static int scsi_map_queues(struct blk_mq_tag_set *set)
1793 {
1794         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1795
1796         if (shost->hostt->map_queues)
1797                 return shost->hostt->map_queues(shost);
1798         return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1799 }
1800
1801 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1802 {
1803         struct device *dev = shost->dma_dev;
1804
1805         /*
1806          * this limit is imposed by hardware restrictions
1807          */
1808         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1809                                         SG_MAX_SEGMENTS));
1810
1811         if (scsi_host_prot_dma(shost)) {
1812                 shost->sg_prot_tablesize =
1813                         min_not_zero(shost->sg_prot_tablesize,
1814                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1815                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1816                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1817         }
1818
1819         if (dev->dma_mask) {
1820                 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1821                                 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1822         }
1823         blk_queue_max_hw_sectors(q, shost->max_sectors);
1824         if (shost->unchecked_isa_dma)
1825                 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1826         blk_queue_segment_boundary(q, shost->dma_boundary);
1827         dma_set_seg_boundary(dev, shost->dma_boundary);
1828
1829         blk_queue_max_segment_size(q, shost->max_segment_size);
1830         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1831         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1832
1833         /*
1834          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1835          * which is a common minimum for HBAs, and the minimum DMA alignment,
1836          * which is set by the platform.
1837          *
1838          * Devices that require a bigger alignment can increase it later.
1839          */
1840         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1841 }
1842 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1843
1844 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1845         .get_budget     = scsi_mq_get_budget,
1846         .put_budget     = scsi_mq_put_budget,
1847         .queue_rq       = scsi_queue_rq,
1848         .complete       = scsi_softirq_done,
1849         .timeout        = scsi_timeout,
1850 #ifdef CONFIG_BLK_DEBUG_FS
1851         .show_rq        = scsi_show_rq,
1852 #endif
1853         .init_request   = scsi_mq_init_request,
1854         .exit_request   = scsi_mq_exit_request,
1855         .initialize_rq_fn = scsi_initialize_rq,
1856         .cleanup_rq     = scsi_cleanup_rq,
1857         .busy           = scsi_mq_lld_busy,
1858         .map_queues     = scsi_map_queues,
1859 };
1860
1861
1862 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1863 {
1864         struct request_queue *q = hctx->queue;
1865         struct scsi_device *sdev = q->queuedata;
1866         struct Scsi_Host *shost = sdev->host;
1867
1868         shost->hostt->commit_rqs(shost, hctx->queue_num);
1869 }
1870
1871 static const struct blk_mq_ops scsi_mq_ops = {
1872         .get_budget     = scsi_mq_get_budget,
1873         .put_budget     = scsi_mq_put_budget,
1874         .queue_rq       = scsi_queue_rq,
1875         .commit_rqs     = scsi_commit_rqs,
1876         .complete       = scsi_softirq_done,
1877         .timeout        = scsi_timeout,
1878 #ifdef CONFIG_BLK_DEBUG_FS
1879         .show_rq        = scsi_show_rq,
1880 #endif
1881         .init_request   = scsi_mq_init_request,
1882         .exit_request   = scsi_mq_exit_request,
1883         .initialize_rq_fn = scsi_initialize_rq,
1884         .cleanup_rq     = scsi_cleanup_rq,
1885         .busy           = scsi_mq_lld_busy,
1886         .map_queues     = scsi_map_queues,
1887 };
1888
1889 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1890 {
1891         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1892         if (IS_ERR(sdev->request_queue))
1893                 return NULL;
1894
1895         sdev->request_queue->queuedata = sdev;
1896         __scsi_init_queue(sdev->host, sdev->request_queue);
1897         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1898         return sdev->request_queue;
1899 }
1900
1901 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1902 {
1903         unsigned int cmd_size, sgl_size;
1904         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1905
1906         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1907                                 scsi_mq_inline_sgl_size(shost));
1908         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1909         if (scsi_host_get_prot(shost))
1910                 cmd_size += sizeof(struct scsi_data_buffer) +
1911                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1912
1913         memset(tag_set, 0, sizeof(*tag_set));
1914         if (shost->hostt->commit_rqs)
1915                 tag_set->ops = &scsi_mq_ops;
1916         else
1917                 tag_set->ops = &scsi_mq_ops_no_commit;
1918         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1919         tag_set->queue_depth = shost->can_queue;
1920         tag_set->cmd_size = cmd_size;
1921         tag_set->numa_node = NUMA_NO_NODE;
1922         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1923         tag_set->flags |=
1924                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1925         tag_set->driver_data = shost;
1926         if (shost->host_tagset)
1927                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1928
1929         return blk_mq_alloc_tag_set(tag_set);
1930 }
1931
1932 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1933 {
1934         blk_mq_free_tag_set(&shost->tag_set);
1935 }
1936
1937 /**
1938  * scsi_device_from_queue - return sdev associated with a request_queue
1939  * @q: The request queue to return the sdev from
1940  *
1941  * Return the sdev associated with a request queue or NULL if the
1942  * request_queue does not reference a SCSI device.
1943  */
1944 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1945 {
1946         struct scsi_device *sdev = NULL;
1947
1948         if (q->mq_ops == &scsi_mq_ops_no_commit ||
1949             q->mq_ops == &scsi_mq_ops)
1950                 sdev = q->queuedata;
1951         if (!sdev || !get_device(&sdev->sdev_gendev))
1952                 sdev = NULL;
1953
1954         return sdev;
1955 }
1956
1957 /**
1958  * scsi_block_requests - Utility function used by low-level drivers to prevent
1959  * further commands from being queued to the device.
1960  * @shost:  host in question
1961  *
1962  * There is no timer nor any other means by which the requests get unblocked
1963  * other than the low-level driver calling scsi_unblock_requests().
1964  */
1965 void scsi_block_requests(struct Scsi_Host *shost)
1966 {
1967         shost->host_self_blocked = 1;
1968 }
1969 EXPORT_SYMBOL(scsi_block_requests);
1970
1971 /**
1972  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1973  * further commands to be queued to the device.
1974  * @shost:  host in question
1975  *
1976  * There is no timer nor any other means by which the requests get unblocked
1977  * other than the low-level driver calling scsi_unblock_requests(). This is done
1978  * as an API function so that changes to the internals of the scsi mid-layer
1979  * won't require wholesale changes to drivers that use this feature.
1980  */
1981 void scsi_unblock_requests(struct Scsi_Host *shost)
1982 {
1983         shost->host_self_blocked = 0;
1984         scsi_run_host_queues(shost);
1985 }
1986 EXPORT_SYMBOL(scsi_unblock_requests);
1987
1988 void scsi_exit_queue(void)
1989 {
1990         kmem_cache_destroy(scsi_sense_cache);
1991         kmem_cache_destroy(scsi_sense_isadma_cache);
1992 }
1993
1994 /**
1995  *      scsi_mode_select - issue a mode select
1996  *      @sdev:  SCSI device to be queried
1997  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1998  *      @sp:    Save page bit (0 == don't save, 1 == save)
1999  *      @modepage: mode page being requested
2000  *      @buffer: request buffer (may not be smaller than eight bytes)
2001  *      @len:   length of request buffer.
2002  *      @timeout: command timeout
2003  *      @retries: number of retries before failing
2004  *      @data: returns a structure abstracting the mode header data
2005  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2006  *              must be SCSI_SENSE_BUFFERSIZE big.
2007  *
2008  *      Returns zero if successful; negative error number or scsi
2009  *      status on error
2010  *
2011  */
2012 int
2013 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2014                  unsigned char *buffer, int len, int timeout, int retries,
2015                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2016 {
2017         unsigned char cmd[10];
2018         unsigned char *real_buffer;
2019         int ret;
2020
2021         memset(cmd, 0, sizeof(cmd));
2022         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2023
2024         if (sdev->use_10_for_ms) {
2025                 if (len > 65535)
2026                         return -EINVAL;
2027                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2028                 if (!real_buffer)
2029                         return -ENOMEM;
2030                 memcpy(real_buffer + 8, buffer, len);
2031                 len += 8;
2032                 real_buffer[0] = 0;
2033                 real_buffer[1] = 0;
2034                 real_buffer[2] = data->medium_type;
2035                 real_buffer[3] = data->device_specific;
2036                 real_buffer[4] = data->longlba ? 0x01 : 0;
2037                 real_buffer[5] = 0;
2038                 real_buffer[6] = data->block_descriptor_length >> 8;
2039                 real_buffer[7] = data->block_descriptor_length;
2040
2041                 cmd[0] = MODE_SELECT_10;
2042                 cmd[7] = len >> 8;
2043                 cmd[8] = len;
2044         } else {
2045                 if (len > 255 || data->block_descriptor_length > 255 ||
2046                     data->longlba)
2047                         return -EINVAL;
2048
2049                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2050                 if (!real_buffer)
2051                         return -ENOMEM;
2052                 memcpy(real_buffer + 4, buffer, len);
2053                 len += 4;
2054                 real_buffer[0] = 0;
2055                 real_buffer[1] = data->medium_type;
2056                 real_buffer[2] = data->device_specific;
2057                 real_buffer[3] = data->block_descriptor_length;
2058
2059                 cmd[0] = MODE_SELECT;
2060                 cmd[4] = len;
2061         }
2062
2063         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2064                                sshdr, timeout, retries, NULL);
2065         kfree(real_buffer);
2066         return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(scsi_mode_select);
2069
2070 /**
2071  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2072  *      @sdev:  SCSI device to be queried
2073  *      @dbd:   set if mode sense will allow block descriptors to be returned
2074  *      @modepage: mode page being requested
2075  *      @buffer: request buffer (may not be smaller than eight bytes)
2076  *      @len:   length of request buffer.
2077  *      @timeout: command timeout
2078  *      @retries: number of retries before failing
2079  *      @data: returns a structure abstracting the mode header data
2080  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2081  *              must be SCSI_SENSE_BUFFERSIZE big.
2082  *
2083  *      Returns zero if unsuccessful, or the header offset (either 4
2084  *      or 8 depending on whether a six or ten byte command was
2085  *      issued) if successful.
2086  */
2087 int
2088 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2089                   unsigned char *buffer, int len, int timeout, int retries,
2090                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2091 {
2092         unsigned char cmd[12];
2093         int use_10_for_ms;
2094         int header_length;
2095         int result, retry_count = retries;
2096         struct scsi_sense_hdr my_sshdr;
2097
2098         memset(data, 0, sizeof(*data));
2099         memset(&cmd[0], 0, 12);
2100
2101         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2102         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2103         cmd[2] = modepage;
2104
2105         /* caller might not be interested in sense, but we need it */
2106         if (!sshdr)
2107                 sshdr = &my_sshdr;
2108
2109  retry:
2110         use_10_for_ms = sdev->use_10_for_ms;
2111
2112         if (use_10_for_ms) {
2113                 if (len < 8)
2114                         len = 8;
2115
2116                 cmd[0] = MODE_SENSE_10;
2117                 cmd[8] = len;
2118                 header_length = 8;
2119         } else {
2120                 if (len < 4)
2121                         len = 4;
2122
2123                 cmd[0] = MODE_SENSE;
2124                 cmd[4] = len;
2125                 header_length = 4;
2126         }
2127
2128         memset(buffer, 0, len);
2129
2130         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2131                                   sshdr, timeout, retries, NULL);
2132
2133         /* This code looks awful: what it's doing is making sure an
2134          * ILLEGAL REQUEST sense return identifies the actual command
2135          * byte as the problem.  MODE_SENSE commands can return
2136          * ILLEGAL REQUEST if the code page isn't supported */
2137
2138         if (use_10_for_ms && !scsi_status_is_good(result) &&
2139             driver_byte(result) == DRIVER_SENSE) {
2140                 if (scsi_sense_valid(sshdr)) {
2141                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2142                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2143                                 /*
2144                                  * Invalid command operation code
2145                                  */
2146                                 sdev->use_10_for_ms = 0;
2147                                 goto retry;
2148                         }
2149                 }
2150         }
2151
2152         if (scsi_status_is_good(result)) {
2153                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2154                              (modepage == 6 || modepage == 8))) {
2155                         /* Initio breakage? */
2156                         header_length = 0;
2157                         data->length = 13;
2158                         data->medium_type = 0;
2159                         data->device_specific = 0;
2160                         data->longlba = 0;
2161                         data->block_descriptor_length = 0;
2162                 } else if (use_10_for_ms) {
2163                         data->length = buffer[0]*256 + buffer[1] + 2;
2164                         data->medium_type = buffer[2];
2165                         data->device_specific = buffer[3];
2166                         data->longlba = buffer[4] & 0x01;
2167                         data->block_descriptor_length = buffer[6]*256
2168                                 + buffer[7];
2169                 } else {
2170                         data->length = buffer[0] + 1;
2171                         data->medium_type = buffer[1];
2172                         data->device_specific = buffer[2];
2173                         data->block_descriptor_length = buffer[3];
2174                 }
2175                 data->header_length = header_length;
2176         } else if ((status_byte(result) == CHECK_CONDITION) &&
2177                    scsi_sense_valid(sshdr) &&
2178                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2179                 retry_count--;
2180                 goto retry;
2181         }
2182
2183         return result;
2184 }
2185 EXPORT_SYMBOL(scsi_mode_sense);
2186
2187 /**
2188  *      scsi_test_unit_ready - test if unit is ready
2189  *      @sdev:  scsi device to change the state of.
2190  *      @timeout: command timeout
2191  *      @retries: number of retries before failing
2192  *      @sshdr: outpout pointer for decoded sense information.
2193  *
2194  *      Returns zero if unsuccessful or an error if TUR failed.  For
2195  *      removable media, UNIT_ATTENTION sets ->changed flag.
2196  **/
2197 int
2198 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2199                      struct scsi_sense_hdr *sshdr)
2200 {
2201         char cmd[] = {
2202                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2203         };
2204         int result;
2205
2206         /* try to eat the UNIT_ATTENTION if there are enough retries */
2207         do {
2208                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2209                                           timeout, 1, NULL);
2210                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2211                     sshdr->sense_key == UNIT_ATTENTION)
2212                         sdev->changed = 1;
2213         } while (scsi_sense_valid(sshdr) &&
2214                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2215
2216         return result;
2217 }
2218 EXPORT_SYMBOL(scsi_test_unit_ready);
2219
2220 /**
2221  *      scsi_device_set_state - Take the given device through the device state model.
2222  *      @sdev:  scsi device to change the state of.
2223  *      @state: state to change to.
2224  *
2225  *      Returns zero if successful or an error if the requested
2226  *      transition is illegal.
2227  */
2228 int
2229 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2230 {
2231         enum scsi_device_state oldstate = sdev->sdev_state;
2232
2233         if (state == oldstate)
2234                 return 0;
2235
2236         switch (state) {
2237         case SDEV_CREATED:
2238                 switch (oldstate) {
2239                 case SDEV_CREATED_BLOCK:
2240                         break;
2241                 default:
2242                         goto illegal;
2243                 }
2244                 break;
2245
2246         case SDEV_RUNNING:
2247                 switch (oldstate) {
2248                 case SDEV_CREATED:
2249                 case SDEV_OFFLINE:
2250                 case SDEV_TRANSPORT_OFFLINE:
2251                 case SDEV_QUIESCE:
2252                 case SDEV_BLOCK:
2253                         break;
2254                 default:
2255                         goto illegal;
2256                 }
2257                 break;
2258
2259         case SDEV_QUIESCE:
2260                 switch (oldstate) {
2261                 case SDEV_RUNNING:
2262                 case SDEV_OFFLINE:
2263                 case SDEV_TRANSPORT_OFFLINE:
2264                         break;
2265                 default:
2266                         goto illegal;
2267                 }
2268                 break;
2269
2270         case SDEV_OFFLINE:
2271         case SDEV_TRANSPORT_OFFLINE:
2272                 switch (oldstate) {
2273                 case SDEV_CREATED:
2274                 case SDEV_RUNNING:
2275                 case SDEV_QUIESCE:
2276                 case SDEV_BLOCK:
2277                         break;
2278                 default:
2279                         goto illegal;
2280                 }
2281                 break;
2282
2283         case SDEV_BLOCK:
2284                 switch (oldstate) {
2285                 case SDEV_RUNNING:
2286                 case SDEV_CREATED_BLOCK:
2287                 case SDEV_QUIESCE:
2288                 case SDEV_OFFLINE:
2289                         break;
2290                 default:
2291                         goto illegal;
2292                 }
2293                 break;
2294
2295         case SDEV_CREATED_BLOCK:
2296                 switch (oldstate) {
2297                 case SDEV_CREATED:
2298                         break;
2299                 default:
2300                         goto illegal;
2301                 }
2302                 break;
2303
2304         case SDEV_CANCEL:
2305                 switch (oldstate) {
2306                 case SDEV_CREATED:
2307                 case SDEV_RUNNING:
2308                 case SDEV_QUIESCE:
2309                 case SDEV_OFFLINE:
2310                 case SDEV_TRANSPORT_OFFLINE:
2311                         break;
2312                 default:
2313                         goto illegal;
2314                 }
2315                 break;
2316
2317         case SDEV_DEL:
2318                 switch (oldstate) {
2319                 case SDEV_CREATED:
2320                 case SDEV_RUNNING:
2321                 case SDEV_OFFLINE:
2322                 case SDEV_TRANSPORT_OFFLINE:
2323                 case SDEV_CANCEL:
2324                 case SDEV_BLOCK:
2325                 case SDEV_CREATED_BLOCK:
2326                         break;
2327                 default:
2328                         goto illegal;
2329                 }
2330                 break;
2331
2332         }
2333         sdev->offline_already = false;
2334         sdev->sdev_state = state;
2335         return 0;
2336
2337  illegal:
2338         SCSI_LOG_ERROR_RECOVERY(1,
2339                                 sdev_printk(KERN_ERR, sdev,
2340                                             "Illegal state transition %s->%s",
2341                                             scsi_device_state_name(oldstate),
2342                                             scsi_device_state_name(state))
2343                                 );
2344         return -EINVAL;
2345 }
2346 EXPORT_SYMBOL(scsi_device_set_state);
2347
2348 /**
2349  *      scsi_evt_emit - emit a single SCSI device uevent
2350  *      @sdev: associated SCSI device
2351  *      @evt: event to emit
2352  *
2353  *      Send a single uevent (scsi_event) to the associated scsi_device.
2354  */
2355 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2356 {
2357         int idx = 0;
2358         char *envp[3];
2359
2360         switch (evt->evt_type) {
2361         case SDEV_EVT_MEDIA_CHANGE:
2362                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2363                 break;
2364         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2365                 scsi_rescan_device(&sdev->sdev_gendev);
2366                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2367                 break;
2368         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2369                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2370                 break;
2371         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2372                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2373                 break;
2374         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2375                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2376                 break;
2377         case SDEV_EVT_LUN_CHANGE_REPORTED:
2378                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2379                 break;
2380         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2381                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2382                 break;
2383         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2384                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2385                 break;
2386         default:
2387                 /* do nothing */
2388                 break;
2389         }
2390
2391         envp[idx++] = NULL;
2392
2393         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2394 }
2395
2396 /**
2397  *      scsi_evt_thread - send a uevent for each scsi event
2398  *      @work: work struct for scsi_device
2399  *
2400  *      Dispatch queued events to their associated scsi_device kobjects
2401  *      as uevents.
2402  */
2403 void scsi_evt_thread(struct work_struct *work)
2404 {
2405         struct scsi_device *sdev;
2406         enum scsi_device_event evt_type;
2407         LIST_HEAD(event_list);
2408
2409         sdev = container_of(work, struct scsi_device, event_work);
2410
2411         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2412                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2413                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2414
2415         while (1) {
2416                 struct scsi_event *evt;
2417                 struct list_head *this, *tmp;
2418                 unsigned long flags;
2419
2420                 spin_lock_irqsave(&sdev->list_lock, flags);
2421                 list_splice_init(&sdev->event_list, &event_list);
2422                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2423
2424                 if (list_empty(&event_list))
2425                         break;
2426
2427                 list_for_each_safe(this, tmp, &event_list) {
2428                         evt = list_entry(this, struct scsi_event, node);
2429                         list_del(&evt->node);
2430                         scsi_evt_emit(sdev, evt);
2431                         kfree(evt);
2432                 }
2433         }
2434 }
2435
2436 /**
2437  *      sdev_evt_send - send asserted event to uevent thread
2438  *      @sdev: scsi_device event occurred on
2439  *      @evt: event to send
2440  *
2441  *      Assert scsi device event asynchronously.
2442  */
2443 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2444 {
2445         unsigned long flags;
2446
2447 #if 0
2448         /* FIXME: currently this check eliminates all media change events
2449          * for polled devices.  Need to update to discriminate between AN
2450          * and polled events */
2451         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2452                 kfree(evt);
2453                 return;
2454         }
2455 #endif
2456
2457         spin_lock_irqsave(&sdev->list_lock, flags);
2458         list_add_tail(&evt->node, &sdev->event_list);
2459         schedule_work(&sdev->event_work);
2460         spin_unlock_irqrestore(&sdev->list_lock, flags);
2461 }
2462 EXPORT_SYMBOL_GPL(sdev_evt_send);
2463
2464 /**
2465  *      sdev_evt_alloc - allocate a new scsi event
2466  *      @evt_type: type of event to allocate
2467  *      @gfpflags: GFP flags for allocation
2468  *
2469  *      Allocates and returns a new scsi_event.
2470  */
2471 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2472                                   gfp_t gfpflags)
2473 {
2474         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2475         if (!evt)
2476                 return NULL;
2477
2478         evt->evt_type = evt_type;
2479         INIT_LIST_HEAD(&evt->node);
2480
2481         /* evt_type-specific initialization, if any */
2482         switch (evt_type) {
2483         case SDEV_EVT_MEDIA_CHANGE:
2484         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2485         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2486         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2487         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2488         case SDEV_EVT_LUN_CHANGE_REPORTED:
2489         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2490         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2491         default:
2492                 /* do nothing */
2493                 break;
2494         }
2495
2496         return evt;
2497 }
2498 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2499
2500 /**
2501  *      sdev_evt_send_simple - send asserted event to uevent thread
2502  *      @sdev: scsi_device event occurred on
2503  *      @evt_type: type of event to send
2504  *      @gfpflags: GFP flags for allocation
2505  *
2506  *      Assert scsi device event asynchronously, given an event type.
2507  */
2508 void sdev_evt_send_simple(struct scsi_device *sdev,
2509                           enum scsi_device_event evt_type, gfp_t gfpflags)
2510 {
2511         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2512         if (!evt) {
2513                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2514                             evt_type);
2515                 return;
2516         }
2517
2518         sdev_evt_send(sdev, evt);
2519 }
2520 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2521
2522 /**
2523  *      scsi_device_quiesce - Block all commands except power management.
2524  *      @sdev:  scsi device to quiesce.
2525  *
2526  *      This works by trying to transition to the SDEV_QUIESCE state
2527  *      (which must be a legal transition).  When the device is in this
2528  *      state, only power management requests will be accepted, all others will
2529  *      be deferred.
2530  *
2531  *      Must be called with user context, may sleep.
2532  *
2533  *      Returns zero if unsuccessful or an error if not.
2534  */
2535 int
2536 scsi_device_quiesce(struct scsi_device *sdev)
2537 {
2538         struct request_queue *q = sdev->request_queue;
2539         int err;
2540
2541         /*
2542          * It is allowed to call scsi_device_quiesce() multiple times from
2543          * the same context but concurrent scsi_device_quiesce() calls are
2544          * not allowed.
2545          */
2546         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2547
2548         if (sdev->quiesced_by == current)
2549                 return 0;
2550
2551         blk_set_pm_only(q);
2552
2553         blk_mq_freeze_queue(q);
2554         /*
2555          * Ensure that the effect of blk_set_pm_only() will be visible
2556          * for percpu_ref_tryget() callers that occur after the queue
2557          * unfreeze even if the queue was already frozen before this function
2558          * was called. See also https://lwn.net/Articles/573497/.
2559          */
2560         synchronize_rcu();
2561         blk_mq_unfreeze_queue(q);
2562
2563         mutex_lock(&sdev->state_mutex);
2564         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2565         if (err == 0)
2566                 sdev->quiesced_by = current;
2567         else
2568                 blk_clear_pm_only(q);
2569         mutex_unlock(&sdev->state_mutex);
2570
2571         return err;
2572 }
2573 EXPORT_SYMBOL(scsi_device_quiesce);
2574
2575 /**
2576  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2577  *      @sdev:  scsi device to resume.
2578  *
2579  *      Moves the device from quiesced back to running and restarts the
2580  *      queues.
2581  *
2582  *      Must be called with user context, may sleep.
2583  */
2584 void scsi_device_resume(struct scsi_device *sdev)
2585 {
2586         /* check if the device state was mutated prior to resume, and if
2587          * so assume the state is being managed elsewhere (for example
2588          * device deleted during suspend)
2589          */
2590         mutex_lock(&sdev->state_mutex);
2591         if (sdev->sdev_state == SDEV_QUIESCE)
2592                 scsi_device_set_state(sdev, SDEV_RUNNING);
2593         if (sdev->quiesced_by) {
2594                 sdev->quiesced_by = NULL;
2595                 blk_clear_pm_only(sdev->request_queue);
2596         }
2597         mutex_unlock(&sdev->state_mutex);
2598 }
2599 EXPORT_SYMBOL(scsi_device_resume);
2600
2601 static void
2602 device_quiesce_fn(struct scsi_device *sdev, void *data)
2603 {
2604         scsi_device_quiesce(sdev);
2605 }
2606
2607 void
2608 scsi_target_quiesce(struct scsi_target *starget)
2609 {
2610         starget_for_each_device(starget, NULL, device_quiesce_fn);
2611 }
2612 EXPORT_SYMBOL(scsi_target_quiesce);
2613
2614 static void
2615 device_resume_fn(struct scsi_device *sdev, void *data)
2616 {
2617         scsi_device_resume(sdev);
2618 }
2619
2620 void
2621 scsi_target_resume(struct scsi_target *starget)
2622 {
2623         starget_for_each_device(starget, NULL, device_resume_fn);
2624 }
2625 EXPORT_SYMBOL(scsi_target_resume);
2626
2627 /**
2628  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2629  * @sdev: device to block
2630  *
2631  * Pause SCSI command processing on the specified device. Does not sleep.
2632  *
2633  * Returns zero if successful or a negative error code upon failure.
2634  *
2635  * Notes:
2636  * This routine transitions the device to the SDEV_BLOCK state (which must be
2637  * a legal transition). When the device is in this state, command processing
2638  * is paused until the device leaves the SDEV_BLOCK state. See also
2639  * scsi_internal_device_unblock_nowait().
2640  */
2641 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2642 {
2643         struct request_queue *q = sdev->request_queue;
2644         int err = 0;
2645
2646         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2647         if (err) {
2648                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2649
2650                 if (err)
2651                         return err;
2652         }
2653
2654         /*
2655          * The device has transitioned to SDEV_BLOCK.  Stop the
2656          * block layer from calling the midlayer with this device's
2657          * request queue.
2658          */
2659         blk_mq_quiesce_queue_nowait(q);
2660         return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2663
2664 /**
2665  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2666  * @sdev: device to block
2667  *
2668  * Pause SCSI command processing on the specified device and wait until all
2669  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2670  *
2671  * Returns zero if successful or a negative error code upon failure.
2672  *
2673  * Note:
2674  * This routine transitions the device to the SDEV_BLOCK state (which must be
2675  * a legal transition). When the device is in this state, command processing
2676  * is paused until the device leaves the SDEV_BLOCK state. See also
2677  * scsi_internal_device_unblock().
2678  */
2679 static int scsi_internal_device_block(struct scsi_device *sdev)
2680 {
2681         struct request_queue *q = sdev->request_queue;
2682         int err;
2683
2684         mutex_lock(&sdev->state_mutex);
2685         err = scsi_internal_device_block_nowait(sdev);
2686         if (err == 0)
2687                 blk_mq_quiesce_queue(q);
2688         mutex_unlock(&sdev->state_mutex);
2689
2690         return err;
2691 }
2692
2693 void scsi_start_queue(struct scsi_device *sdev)
2694 {
2695         struct request_queue *q = sdev->request_queue;
2696
2697         blk_mq_unquiesce_queue(q);
2698 }
2699
2700 /**
2701  * scsi_internal_device_unblock_nowait - resume a device after a block request
2702  * @sdev:       device to resume
2703  * @new_state:  state to set the device to after unblocking
2704  *
2705  * Restart the device queue for a previously suspended SCSI device. Does not
2706  * sleep.
2707  *
2708  * Returns zero if successful or a negative error code upon failure.
2709  *
2710  * Notes:
2711  * This routine transitions the device to the SDEV_RUNNING state or to one of
2712  * the offline states (which must be a legal transition) allowing the midlayer
2713  * to goose the queue for this device.
2714  */
2715 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2716                                         enum scsi_device_state new_state)
2717 {
2718         switch (new_state) {
2719         case SDEV_RUNNING:
2720         case SDEV_TRANSPORT_OFFLINE:
2721                 break;
2722         default:
2723                 return -EINVAL;
2724         }
2725
2726         /*
2727          * Try to transition the scsi device to SDEV_RUNNING or one of the
2728          * offlined states and goose the device queue if successful.
2729          */
2730         switch (sdev->sdev_state) {
2731         case SDEV_BLOCK:
2732         case SDEV_TRANSPORT_OFFLINE:
2733                 sdev->sdev_state = new_state;
2734                 break;
2735         case SDEV_CREATED_BLOCK:
2736                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2737                     new_state == SDEV_OFFLINE)
2738                         sdev->sdev_state = new_state;
2739                 else
2740                         sdev->sdev_state = SDEV_CREATED;
2741                 break;
2742         case SDEV_CANCEL:
2743         case SDEV_OFFLINE:
2744                 break;
2745         default:
2746                 return -EINVAL;
2747         }
2748         scsi_start_queue(sdev);
2749
2750         return 0;
2751 }
2752 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2753
2754 /**
2755  * scsi_internal_device_unblock - resume a device after a block request
2756  * @sdev:       device to resume
2757  * @new_state:  state to set the device to after unblocking
2758  *
2759  * Restart the device queue for a previously suspended SCSI device. May sleep.
2760  *
2761  * Returns zero if successful or a negative error code upon failure.
2762  *
2763  * Notes:
2764  * This routine transitions the device to the SDEV_RUNNING state or to one of
2765  * the offline states (which must be a legal transition) allowing the midlayer
2766  * to goose the queue for this device.
2767  */
2768 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2769                                         enum scsi_device_state new_state)
2770 {
2771         int ret;
2772
2773         mutex_lock(&sdev->state_mutex);
2774         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2775         mutex_unlock(&sdev->state_mutex);
2776
2777         return ret;
2778 }
2779
2780 static void
2781 device_block(struct scsi_device *sdev, void *data)
2782 {
2783         int ret;
2784
2785         ret = scsi_internal_device_block(sdev);
2786
2787         WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2788                   dev_name(&sdev->sdev_gendev), ret);
2789 }
2790
2791 static int
2792 target_block(struct device *dev, void *data)
2793 {
2794         if (scsi_is_target_device(dev))
2795                 starget_for_each_device(to_scsi_target(dev), NULL,
2796                                         device_block);
2797         return 0;
2798 }
2799
2800 void
2801 scsi_target_block(struct device *dev)
2802 {
2803         if (scsi_is_target_device(dev))
2804                 starget_for_each_device(to_scsi_target(dev), NULL,
2805                                         device_block);
2806         else
2807                 device_for_each_child(dev, NULL, target_block);
2808 }
2809 EXPORT_SYMBOL_GPL(scsi_target_block);
2810
2811 static void
2812 device_unblock(struct scsi_device *sdev, void *data)
2813 {
2814         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2815 }
2816
2817 static int
2818 target_unblock(struct device *dev, void *data)
2819 {
2820         if (scsi_is_target_device(dev))
2821                 starget_for_each_device(to_scsi_target(dev), data,
2822                                         device_unblock);
2823         return 0;
2824 }
2825
2826 void
2827 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2828 {
2829         if (scsi_is_target_device(dev))
2830                 starget_for_each_device(to_scsi_target(dev), &new_state,
2831                                         device_unblock);
2832         else
2833                 device_for_each_child(dev, &new_state, target_unblock);
2834 }
2835 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2836
2837 int
2838 scsi_host_block(struct Scsi_Host *shost)
2839 {
2840         struct scsi_device *sdev;
2841         int ret = 0;
2842
2843         /*
2844          * Call scsi_internal_device_block_nowait so we can avoid
2845          * calling synchronize_rcu() for each LUN.
2846          */
2847         shost_for_each_device(sdev, shost) {
2848                 mutex_lock(&sdev->state_mutex);
2849                 ret = scsi_internal_device_block_nowait(sdev);
2850                 mutex_unlock(&sdev->state_mutex);
2851                 if (ret) {
2852                         scsi_device_put(sdev);
2853                         break;
2854                 }
2855         }
2856
2857         /*
2858          * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2859          * calling synchronize_rcu() once is enough.
2860          */
2861         WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2862
2863         if (!ret)
2864                 synchronize_rcu();
2865
2866         return ret;
2867 }
2868 EXPORT_SYMBOL_GPL(scsi_host_block);
2869
2870 int
2871 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2872 {
2873         struct scsi_device *sdev;
2874         int ret = 0;
2875
2876         shost_for_each_device(sdev, shost) {
2877                 ret = scsi_internal_device_unblock(sdev, new_state);
2878                 if (ret) {
2879                         scsi_device_put(sdev);
2880                         break;
2881                 }
2882         }
2883         return ret;
2884 }
2885 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2886
2887 /**
2888  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2889  * @sgl:        scatter-gather list
2890  * @sg_count:   number of segments in sg
2891  * @offset:     offset in bytes into sg, on return offset into the mapped area
2892  * @len:        bytes to map, on return number of bytes mapped
2893  *
2894  * Returns virtual address of the start of the mapped page
2895  */
2896 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2897                           size_t *offset, size_t *len)
2898 {
2899         int i;
2900         size_t sg_len = 0, len_complete = 0;
2901         struct scatterlist *sg;
2902         struct page *page;
2903
2904         WARN_ON(!irqs_disabled());
2905
2906         for_each_sg(sgl, sg, sg_count, i) {
2907                 len_complete = sg_len; /* Complete sg-entries */
2908                 sg_len += sg->length;
2909                 if (sg_len > *offset)
2910                         break;
2911         }
2912
2913         if (unlikely(i == sg_count)) {
2914                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2915                         "elements %d\n",
2916                        __func__, sg_len, *offset, sg_count);
2917                 WARN_ON(1);
2918                 return NULL;
2919         }
2920
2921         /* Offset starting from the beginning of first page in this sg-entry */
2922         *offset = *offset - len_complete + sg->offset;
2923
2924         /* Assumption: contiguous pages can be accessed as "page + i" */
2925         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2926         *offset &= ~PAGE_MASK;
2927
2928         /* Bytes in this sg-entry from *offset to the end of the page */
2929         sg_len = PAGE_SIZE - *offset;
2930         if (*len > sg_len)
2931                 *len = sg_len;
2932
2933         return kmap_atomic(page);
2934 }
2935 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2936
2937 /**
2938  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2939  * @virt:       virtual address to be unmapped
2940  */
2941 void scsi_kunmap_atomic_sg(void *virt)
2942 {
2943         kunmap_atomic(virt);
2944 }
2945 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2946
2947 void sdev_disable_disk_events(struct scsi_device *sdev)
2948 {
2949         atomic_inc(&sdev->disk_events_disable_depth);
2950 }
2951 EXPORT_SYMBOL(sdev_disable_disk_events);
2952
2953 void sdev_enable_disk_events(struct scsi_device *sdev)
2954 {
2955         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2956                 return;
2957         atomic_dec(&sdev->disk_events_disable_depth);
2958 }
2959 EXPORT_SYMBOL(sdev_enable_disk_events);
2960
2961 static unsigned char designator_prio(const unsigned char *d)
2962 {
2963         if (d[1] & 0x30)
2964                 /* not associated with LUN */
2965                 return 0;
2966
2967         if (d[3] == 0)
2968                 /* invalid length */
2969                 return 0;
2970
2971         /*
2972          * Order of preference for lun descriptor:
2973          * - SCSI name string
2974          * - NAA IEEE Registered Extended
2975          * - EUI-64 based 16-byte
2976          * - EUI-64 based 12-byte
2977          * - NAA IEEE Registered
2978          * - NAA IEEE Extended
2979          * - EUI-64 based 8-byte
2980          * - SCSI name string (truncated)
2981          * - T10 Vendor ID
2982          * as longer descriptors reduce the likelyhood
2983          * of identification clashes.
2984          */
2985
2986         switch (d[1] & 0xf) {
2987         case 8:
2988                 /* SCSI name string, variable-length UTF-8 */
2989                 return 9;
2990         case 3:
2991                 switch (d[4] >> 4) {
2992                 case 6:
2993                         /* NAA registered extended */
2994                         return 8;
2995                 case 5:
2996                         /* NAA registered */
2997                         return 5;
2998                 case 4:
2999                         /* NAA extended */
3000                         return 4;
3001                 case 3:
3002                         /* NAA locally assigned */
3003                         return 1;
3004                 default:
3005                         break;
3006                 }
3007                 break;
3008         case 2:
3009                 switch (d[3]) {
3010                 case 16:
3011                         /* EUI64-based, 16 byte */
3012                         return 7;
3013                 case 12:
3014                         /* EUI64-based, 12 byte */
3015                         return 6;
3016                 case 8:
3017                         /* EUI64-based, 8 byte */
3018                         return 3;
3019                 default:
3020                         break;
3021                 }
3022                 break;
3023         case 1:
3024                 /* T10 vendor ID */
3025                 return 1;
3026         default:
3027                 break;
3028         }
3029
3030         return 0;
3031 }
3032
3033 /**
3034  * scsi_vpd_lun_id - return a unique device identification
3035  * @sdev: SCSI device
3036  * @id:   buffer for the identification
3037  * @id_len:  length of the buffer
3038  *
3039  * Copies a unique device identification into @id based
3040  * on the information in the VPD page 0x83 of the device.
3041  * The string will be formatted as a SCSI name string.
3042  *
3043  * Returns the length of the identification or error on failure.
3044  * If the identifier is longer than the supplied buffer the actual
3045  * identifier length is returned and the buffer is not zero-padded.
3046  */
3047 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3048 {
3049         u8 cur_id_prio = 0;
3050         u8 cur_id_size = 0;
3051         const unsigned char *d, *cur_id_str;
3052         const struct scsi_vpd *vpd_pg83;
3053         int id_size = -EINVAL;
3054
3055         rcu_read_lock();
3056         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3057         if (!vpd_pg83) {
3058                 rcu_read_unlock();
3059                 return -ENXIO;
3060         }
3061
3062         /* The id string must be at least 20 bytes + terminating NULL byte */
3063         if (id_len < 21) {
3064                 rcu_read_unlock();
3065                 return -EINVAL;
3066         }
3067
3068         memset(id, 0, id_len);
3069         for (d = vpd_pg83->data + 4;
3070              d < vpd_pg83->data + vpd_pg83->len;
3071              d += d[3] + 4) {
3072                 u8 prio = designator_prio(d);
3073
3074                 if (prio == 0 || cur_id_prio > prio)
3075                         continue;
3076
3077                 switch (d[1] & 0xf) {
3078                 case 0x1:
3079                         /* T10 Vendor ID */
3080                         if (cur_id_size > d[3])
3081                                 break;
3082                         cur_id_prio = prio;
3083                         cur_id_size = d[3];
3084                         if (cur_id_size + 4 > id_len)
3085                                 cur_id_size = id_len - 4;
3086                         cur_id_str = d + 4;
3087                         id_size = snprintf(id, id_len, "t10.%*pE",
3088                                            cur_id_size, cur_id_str);
3089                         break;
3090                 case 0x2:
3091                         /* EUI-64 */
3092                         cur_id_prio = prio;
3093                         cur_id_size = d[3];
3094                         cur_id_str = d + 4;
3095                         switch (cur_id_size) {
3096                         case 8:
3097                                 id_size = snprintf(id, id_len,
3098                                                    "eui.%8phN",
3099                                                    cur_id_str);
3100                                 break;
3101                         case 12:
3102                                 id_size = snprintf(id, id_len,
3103                                                    "eui.%12phN",
3104                                                    cur_id_str);
3105                                 break;
3106                         case 16:
3107                                 id_size = snprintf(id, id_len,
3108                                                    "eui.%16phN",
3109                                                    cur_id_str);
3110                                 break;
3111                         default:
3112                                 break;
3113                         }
3114                         break;
3115                 case 0x3:
3116                         /* NAA */
3117                         cur_id_prio = prio;
3118                         cur_id_size = d[3];
3119                         cur_id_str = d + 4;
3120                         switch (cur_id_size) {
3121                         case 8:
3122                                 id_size = snprintf(id, id_len,
3123                                                    "naa.%8phN",
3124                                                    cur_id_str);
3125                                 break;
3126                         case 16:
3127                                 id_size = snprintf(id, id_len,
3128                                                    "naa.%16phN",
3129                                                    cur_id_str);
3130                                 break;
3131                         default:
3132                                 break;
3133                         }
3134                         break;
3135                 case 0x8:
3136                         /* SCSI name string */
3137                         if (cur_id_size > d[3])
3138                                 break;
3139                         /* Prefer others for truncated descriptor */
3140                         if (d[3] > id_len) {
3141                                 prio = 2;
3142                                 if (cur_id_prio > prio)
3143                                         break;
3144                         }
3145                         cur_id_prio = prio;
3146                         cur_id_size = id_size = d[3];
3147                         cur_id_str = d + 4;
3148                         if (cur_id_size >= id_len)
3149                                 cur_id_size = id_len - 1;
3150                         memcpy(id, cur_id_str, cur_id_size);
3151                         break;
3152                 default:
3153                         break;
3154                 }
3155         }
3156         rcu_read_unlock();
3157
3158         return id_size;
3159 }
3160 EXPORT_SYMBOL(scsi_vpd_lun_id);
3161
3162 /*
3163  * scsi_vpd_tpg_id - return a target port group identifier
3164  * @sdev: SCSI device
3165  *
3166  * Returns the Target Port Group identifier from the information
3167  * froom VPD page 0x83 of the device.
3168  *
3169  * Returns the identifier or error on failure.
3170  */
3171 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3172 {
3173         const unsigned char *d;
3174         const struct scsi_vpd *vpd_pg83;
3175         int group_id = -EAGAIN, rel_port = -1;
3176
3177         rcu_read_lock();
3178         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3179         if (!vpd_pg83) {
3180                 rcu_read_unlock();
3181                 return -ENXIO;
3182         }
3183
3184         d = vpd_pg83->data + 4;
3185         while (d < vpd_pg83->data + vpd_pg83->len) {
3186                 switch (d[1] & 0xf) {
3187                 case 0x4:
3188                         /* Relative target port */
3189                         rel_port = get_unaligned_be16(&d[6]);
3190                         break;
3191                 case 0x5:
3192                         /* Target port group */
3193                         group_id = get_unaligned_be16(&d[6]);
3194                         break;
3195                 default:
3196                         break;
3197                 }
3198                 d += d[3] + 4;
3199         }
3200         rcu_read_unlock();
3201
3202         if (group_id >= 0 && rel_id && rel_port != -1)
3203                 *rel_id = rel_port;
3204
3205         return group_id;
3206 }
3207 EXPORT_SYMBOL(scsi_vpd_tpg_id);