Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52         return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56                                    unsigned char *sense_buffer)
57 {
58         kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59                         sense_buffer);
60 }
61
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63         gfp_t gfp_mask, int numa_node)
64 {
65         return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66                                      gfp_mask, numa_node);
67 }
68
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71         struct kmem_cache *cache;
72         int ret = 0;
73
74         cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75         if (cache)
76                 return 0;
77
78         mutex_lock(&scsi_sense_cache_mutex);
79         if (shost->unchecked_isa_dma) {
80                 scsi_sense_isadma_cache =
81                         kmem_cache_create("scsi_sense_cache(DMA)",
82                                 SCSI_SENSE_BUFFERSIZE, 0,
83                                 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84                 if (!scsi_sense_isadma_cache)
85                         ret = -ENOMEM;
86         } else {
87                 scsi_sense_cache =
88                         kmem_cache_create_usercopy("scsi_sense_cache",
89                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
91                 if (!scsi_sense_cache)
92                         ret = -ENOMEM;
93         }
94
95         mutex_unlock(&scsi_sense_cache_mutex);
96         return ret;
97 }
98
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY        3
105
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109         struct Scsi_Host *host = cmd->device->host;
110         struct scsi_device *device = cmd->device;
111         struct scsi_target *starget = scsi_target(device);
112
113         /*
114          * Set the appropriate busy bit for the device/host.
115          *
116          * If the host/device isn't busy, assume that something actually
117          * completed, and that we should be able to queue a command now.
118          *
119          * Note that the prior mid-layer assumption that any host could
120          * always queue at least one command is now broken.  The mid-layer
121          * will implement a user specifiable stall (see
122          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123          * if a command is requeued with no other commands outstanding
124          * either for the device or for the host.
125          */
126         switch (reason) {
127         case SCSI_MLQUEUE_HOST_BUSY:
128                 atomic_set(&host->host_blocked, host->max_host_blocked);
129                 break;
130         case SCSI_MLQUEUE_DEVICE_BUSY:
131         case SCSI_MLQUEUE_EH_RETRY:
132                 atomic_set(&device->device_blocked,
133                            device->max_device_blocked);
134                 break;
135         case SCSI_MLQUEUE_TARGET_BUSY:
136                 atomic_set(&starget->target_blocked,
137                            starget->max_target_blocked);
138                 break;
139         }
140 }
141
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144         struct scsi_device *sdev = cmd->device;
145
146         if (cmd->request->rq_flags & RQF_DONTPREP) {
147                 cmd->request->rq_flags &= ~RQF_DONTPREP;
148                 scsi_mq_uninit_cmd(cmd);
149         } else {
150                 WARN_ON_ONCE(true);
151         }
152         blk_mq_requeue_request(cmd->request, true);
153         put_device(&sdev->sdev_gendev);
154 }
155
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170         struct scsi_device *device = cmd->device;
171         struct request_queue *q = device->request_queue;
172         unsigned long flags;
173
174         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175                 "Inserting command %p into mlqueue\n", cmd));
176
177         scsi_set_blocked(cmd, reason);
178
179         /*
180          * Decrement the counters, since these commands are no longer
181          * active on the host/device.
182          */
183         if (unbusy)
184                 scsi_device_unbusy(device);
185
186         /*
187          * Requeue this command.  It will go before all other commands
188          * that are already in the queue. Schedule requeue work under
189          * lock such that the kblockd_schedule_work() call happens
190          * before blk_cleanup_queue() finishes.
191          */
192         cmd->result = 0;
193         if (q->mq_ops) {
194                 /*
195                  * Before a SCSI command is dispatched,
196                  * get_device(&sdev->sdev_gendev) is called and the host,
197                  * target and device busy counters are increased. Since
198                  * requeuing a request causes these actions to be repeated and
199                  * since scsi_device_unbusy() has already been called,
200                  * put_device(&device->sdev_gendev) must still be called. Call
201                  * put_device() after blk_mq_requeue_request() to avoid that
202                  * removal of the SCSI device can start before requeueing has
203                  * happened.
204                  */
205                 blk_mq_requeue_request(cmd->request, true);
206                 put_device(&device->sdev_gendev);
207                 return;
208         }
209         spin_lock_irqsave(q->queue_lock, flags);
210         blk_requeue_request(q, cmd->request);
211         kblockd_schedule_work(&device->requeue_work);
212         spin_unlock_irqrestore(q->queue_lock, flags);
213 }
214
215 /*
216  * Function:    scsi_queue_insert()
217  *
218  * Purpose:     Insert a command in the midlevel queue.
219  *
220  * Arguments:   cmd    - command that we are adding to queue.
221  *              reason - why we are inserting command to queue.
222  *
223  * Lock status: Assumed that lock is not held upon entry.
224  *
225  * Returns:     Nothing.
226  *
227  * Notes:       We do this for one of two cases.  Either the host is busy
228  *              and it cannot accept any more commands for the time being,
229  *              or the device returned QUEUE_FULL and can accept no more
230  *              commands.
231  * Notes:       This could be called either from an interrupt context or a
232  *              normal process context.
233  */
234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
235 {
236         __scsi_queue_insert(cmd, reason, true);
237 }
238
239
240 /**
241  * scsi_execute - insert request and wait for the result
242  * @sdev:       scsi device
243  * @cmd:        scsi command
244  * @data_direction: data direction
245  * @buffer:     data buffer
246  * @bufflen:    len of buffer
247  * @sense:      optional sense buffer
248  * @sshdr:      optional decoded sense header
249  * @timeout:    request timeout in seconds
250  * @retries:    number of times to retry request
251  * @flags:      flags for ->cmd_flags
252  * @rq_flags:   flags for ->rq_flags
253  * @resid:      optional residual length
254  *
255  * Returns the scsi_cmnd result field if a command was executed, or a negative
256  * Linux error code if we didn't get that far.
257  */
258 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259                  int data_direction, void *buffer, unsigned bufflen,
260                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
261                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
262                  int *resid)
263 {
264         struct request *req;
265         struct scsi_request *rq;
266         int ret = DRIVER_ERROR << 24;
267
268         req = blk_get_request(sdev->request_queue,
269                         data_direction == DMA_TO_DEVICE ?
270                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271         if (IS_ERR(req))
272                 return ret;
273         rq = scsi_req(req);
274
275         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
276                                         buffer, bufflen, GFP_NOIO))
277                 goto out;
278
279         rq->cmd_len = COMMAND_SIZE(cmd[0]);
280         memcpy(rq->cmd, cmd, rq->cmd_len);
281         rq->retries = retries;
282         req->timeout = timeout;
283         req->cmd_flags |= flags;
284         req->rq_flags |= rq_flags | RQF_QUIET;
285
286         /*
287          * head injection *required* here otherwise quiesce won't work
288          */
289         blk_execute_rq(req->q, NULL, req, 1);
290
291         /*
292          * Some devices (USB mass-storage in particular) may transfer
293          * garbage data together with a residue indicating that the data
294          * is invalid.  Prevent the garbage from being misinterpreted
295          * and prevent security leaks by zeroing out the excess data.
296          */
297         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
299
300         if (resid)
301                 *resid = rq->resid_len;
302         if (sense && rq->sense_len)
303                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304         if (sshdr)
305                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306         ret = rq->result;
307  out:
308         blk_put_request(req);
309
310         return ret;
311 }
312 EXPORT_SYMBOL(scsi_execute);
313
314 /*
315  * Function:    scsi_init_cmd_errh()
316  *
317  * Purpose:     Initialize cmd fields related to error handling.
318  *
319  * Arguments:   cmd     - command that is ready to be queued.
320  *
321  * Notes:       This function has the job of initializing a number of
322  *              fields related to error handling.   Typically this will
323  *              be called once for each command, as required.
324  */
325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
326 {
327         cmd->serial_number = 0;
328         scsi_set_resid(cmd, 0);
329         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330         if (cmd->cmd_len == 0)
331                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
332 }
333
334 /*
335  * Decrement the host_busy counter and wake up the error handler if necessary.
336  * Avoid as follows that the error handler is not woken up if shost->host_busy
337  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338  * with an RCU read lock in this function to ensure that this function in its
339  * entirety either finishes before scsi_eh_scmd_add() increases the
340  * host_failed counter or that it notices the shost state change made by
341  * scsi_eh_scmd_add().
342  */
343 static void scsi_dec_host_busy(struct Scsi_Host *shost)
344 {
345         unsigned long flags;
346
347         rcu_read_lock();
348         atomic_dec(&shost->host_busy);
349         if (unlikely(scsi_host_in_recovery(shost))) {
350                 spin_lock_irqsave(shost->host_lock, flags);
351                 if (shost->host_failed || shost->host_eh_scheduled)
352                         scsi_eh_wakeup(shost);
353                 spin_unlock_irqrestore(shost->host_lock, flags);
354         }
355         rcu_read_unlock();
356 }
357
358 void scsi_device_unbusy(struct scsi_device *sdev)
359 {
360         struct Scsi_Host *shost = sdev->host;
361         struct scsi_target *starget = scsi_target(sdev);
362
363         scsi_dec_host_busy(shost);
364
365         if (starget->can_queue > 0)
366                 atomic_dec(&starget->target_busy);
367
368         atomic_dec(&sdev->device_busy);
369 }
370
371 static void scsi_kick_queue(struct request_queue *q)
372 {
373         if (q->mq_ops)
374                 blk_mq_start_hw_queues(q);
375         else
376                 blk_run_queue(q);
377 }
378
379 /*
380  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
381  * and call blk_run_queue for all the scsi_devices on the target -
382  * including current_sdev first.
383  *
384  * Called with *no* scsi locks held.
385  */
386 static void scsi_single_lun_run(struct scsi_device *current_sdev)
387 {
388         struct Scsi_Host *shost = current_sdev->host;
389         struct scsi_device *sdev, *tmp;
390         struct scsi_target *starget = scsi_target(current_sdev);
391         unsigned long flags;
392
393         spin_lock_irqsave(shost->host_lock, flags);
394         starget->starget_sdev_user = NULL;
395         spin_unlock_irqrestore(shost->host_lock, flags);
396
397         /*
398          * Call blk_run_queue for all LUNs on the target, starting with
399          * current_sdev. We race with others (to set starget_sdev_user),
400          * but in most cases, we will be first. Ideally, each LU on the
401          * target would get some limited time or requests on the target.
402          */
403         scsi_kick_queue(current_sdev->request_queue);
404
405         spin_lock_irqsave(shost->host_lock, flags);
406         if (starget->starget_sdev_user)
407                 goto out;
408         list_for_each_entry_safe(sdev, tmp, &starget->devices,
409                         same_target_siblings) {
410                 if (sdev == current_sdev)
411                         continue;
412                 if (scsi_device_get(sdev))
413                         continue;
414
415                 spin_unlock_irqrestore(shost->host_lock, flags);
416                 scsi_kick_queue(sdev->request_queue);
417                 spin_lock_irqsave(shost->host_lock, flags);
418         
419                 scsi_device_put(sdev);
420         }
421  out:
422         spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424
425 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
426 {
427         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
428                 return true;
429         if (atomic_read(&sdev->device_blocked) > 0)
430                 return true;
431         return false;
432 }
433
434 static inline bool scsi_target_is_busy(struct scsi_target *starget)
435 {
436         if (starget->can_queue > 0) {
437                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
438                         return true;
439                 if (atomic_read(&starget->target_blocked) > 0)
440                         return true;
441         }
442         return false;
443 }
444
445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
446 {
447         if (shost->can_queue > 0 &&
448             atomic_read(&shost->host_busy) >= shost->can_queue)
449                 return true;
450         if (atomic_read(&shost->host_blocked) > 0)
451                 return true;
452         if (shost->host_self_blocked)
453                 return true;
454         return false;
455 }
456
457 static void scsi_starved_list_run(struct Scsi_Host *shost)
458 {
459         LIST_HEAD(starved_list);
460         struct scsi_device *sdev;
461         unsigned long flags;
462
463         spin_lock_irqsave(shost->host_lock, flags);
464         list_splice_init(&shost->starved_list, &starved_list);
465
466         while (!list_empty(&starved_list)) {
467                 struct request_queue *slq;
468
469                 /*
470                  * As long as shost is accepting commands and we have
471                  * starved queues, call blk_run_queue. scsi_request_fn
472                  * drops the queue_lock and can add us back to the
473                  * starved_list.
474                  *
475                  * host_lock protects the starved_list and starved_entry.
476                  * scsi_request_fn must get the host_lock before checking
477                  * or modifying starved_list or starved_entry.
478                  */
479                 if (scsi_host_is_busy(shost))
480                         break;
481
482                 sdev = list_entry(starved_list.next,
483                                   struct scsi_device, starved_entry);
484                 list_del_init(&sdev->starved_entry);
485                 if (scsi_target_is_busy(scsi_target(sdev))) {
486                         list_move_tail(&sdev->starved_entry,
487                                        &shost->starved_list);
488                         continue;
489                 }
490
491                 /*
492                  * Once we drop the host lock, a racing scsi_remove_device()
493                  * call may remove the sdev from the starved list and destroy
494                  * it and the queue.  Mitigate by taking a reference to the
495                  * queue and never touching the sdev again after we drop the
496                  * host lock.  Note: if __scsi_remove_device() invokes
497                  * blk_cleanup_queue() before the queue is run from this
498                  * function then blk_run_queue() will return immediately since
499                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
500                  */
501                 slq = sdev->request_queue;
502                 if (!blk_get_queue(slq))
503                         continue;
504                 spin_unlock_irqrestore(shost->host_lock, flags);
505
506                 scsi_kick_queue(slq);
507                 blk_put_queue(slq);
508
509                 spin_lock_irqsave(shost->host_lock, flags);
510         }
511         /* put any unprocessed entries back */
512         list_splice(&starved_list, &shost->starved_list);
513         spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515
516 /*
517  * Function:   scsi_run_queue()
518  *
519  * Purpose:    Select a proper request queue to serve next
520  *
521  * Arguments:  q       - last request's queue
522  *
523  * Returns:     Nothing
524  *
525  * Notes:      The previous command was completely finished, start
526  *             a new one if possible.
527  */
528 static void scsi_run_queue(struct request_queue *q)
529 {
530         struct scsi_device *sdev = q->queuedata;
531
532         if (scsi_target(sdev)->single_lun)
533                 scsi_single_lun_run(sdev);
534         if (!list_empty(&sdev->host->starved_list))
535                 scsi_starved_list_run(sdev->host);
536
537         if (q->mq_ops)
538                 blk_mq_run_hw_queues(q, false);
539         else
540                 blk_run_queue(q);
541 }
542
543 void scsi_requeue_run_queue(struct work_struct *work)
544 {
545         struct scsi_device *sdev;
546         struct request_queue *q;
547
548         sdev = container_of(work, struct scsi_device, requeue_work);
549         q = sdev->request_queue;
550         scsi_run_queue(q);
551 }
552
553 /*
554  * Function:    scsi_requeue_command()
555  *
556  * Purpose:     Handle post-processing of completed commands.
557  *
558  * Arguments:   q       - queue to operate on
559  *              cmd     - command that may need to be requeued.
560  *
561  * Returns:     Nothing
562  *
563  * Notes:       After command completion, there may be blocks left
564  *              over which weren't finished by the previous command
565  *              this can be for a number of reasons - the main one is
566  *              I/O errors in the middle of the request, in which case
567  *              we need to request the blocks that come after the bad
568  *              sector.
569  * Notes:       Upon return, cmd is a stale pointer.
570  */
571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
572 {
573         struct scsi_device *sdev = cmd->device;
574         struct request *req = cmd->request;
575         unsigned long flags;
576
577         spin_lock_irqsave(q->queue_lock, flags);
578         blk_unprep_request(req);
579         req->special = NULL;
580         scsi_put_command(cmd);
581         blk_requeue_request(q, req);
582         spin_unlock_irqrestore(q->queue_lock, flags);
583
584         scsi_run_queue(q);
585
586         put_device(&sdev->sdev_gendev);
587 }
588
589 void scsi_run_host_queues(struct Scsi_Host *shost)
590 {
591         struct scsi_device *sdev;
592
593         shost_for_each_device(sdev, shost)
594                 scsi_run_queue(sdev->request_queue);
595 }
596
597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
598 {
599         if (!blk_rq_is_passthrough(cmd->request)) {
600                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
601
602                 if (drv->uninit_command)
603                         drv->uninit_command(cmd);
604         }
605 }
606
607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
608 {
609         struct scsi_data_buffer *sdb;
610
611         if (cmd->sdb.table.nents)
612                 sg_free_table_chained(&cmd->sdb.table, true);
613         if (cmd->request->next_rq) {
614                 sdb = cmd->request->next_rq->special;
615                 if (sdb)
616                         sg_free_table_chained(&sdb->table, true);
617         }
618         if (scsi_prot_sg_count(cmd))
619                 sg_free_table_chained(&cmd->prot_sdb->table, true);
620 }
621
622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
623 {
624         scsi_mq_free_sgtables(cmd);
625         scsi_uninit_cmd(cmd);
626         scsi_del_cmd_from_list(cmd);
627 }
628
629 /*
630  * Function:    scsi_release_buffers()
631  *
632  * Purpose:     Free resources allocate for a scsi_command.
633  *
634  * Arguments:   cmd     - command that we are bailing.
635  *
636  * Lock status: Assumed that no lock is held upon entry.
637  *
638  * Returns:     Nothing
639  *
640  * Notes:       In the event that an upper level driver rejects a
641  *              command, we must release resources allocated during
642  *              the __init_io() function.  Primarily this would involve
643  *              the scatter-gather table.
644  */
645 static void scsi_release_buffers(struct scsi_cmnd *cmd)
646 {
647         if (cmd->sdb.table.nents)
648                 sg_free_table_chained(&cmd->sdb.table, false);
649
650         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
651
652         if (scsi_prot_sg_count(cmd))
653                 sg_free_table_chained(&cmd->prot_sdb->table, false);
654 }
655
656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
657 {
658         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
659
660         sg_free_table_chained(&bidi_sdb->table, false);
661         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
662         cmd->request->next_rq->special = NULL;
663 }
664
665 static bool scsi_end_request(struct request *req, blk_status_t error,
666                 unsigned int bytes, unsigned int bidi_bytes)
667 {
668         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
669         struct scsi_device *sdev = cmd->device;
670         struct request_queue *q = sdev->request_queue;
671
672         if (blk_update_request(req, error, bytes))
673                 return true;
674
675         /* Bidi request must be completed as a whole */
676         if (unlikely(bidi_bytes) &&
677             blk_update_request(req->next_rq, error, bidi_bytes))
678                 return true;
679
680         if (blk_queue_add_random(q))
681                 add_disk_randomness(req->rq_disk);
682
683         if (!blk_rq_is_scsi(req)) {
684                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
685                 cmd->flags &= ~SCMD_INITIALIZED;
686                 destroy_rcu_head(&cmd->rcu);
687         }
688
689         if (req->mq_ctx) {
690                 /*
691                  * In the MQ case the command gets freed by __blk_mq_end_request,
692                  * so we have to do all cleanup that depends on it earlier.
693                  *
694                  * We also can't kick the queues from irq context, so we
695                  * will have to defer it to a workqueue.
696                  */
697                 scsi_mq_uninit_cmd(cmd);
698
699                 __blk_mq_end_request(req, error);
700
701                 if (scsi_target(sdev)->single_lun ||
702                     !list_empty(&sdev->host->starved_list))
703                         kblockd_schedule_work(&sdev->requeue_work);
704                 else
705                         blk_mq_run_hw_queues(q, true);
706         } else {
707                 unsigned long flags;
708
709                 if (bidi_bytes)
710                         scsi_release_bidi_buffers(cmd);
711                 scsi_release_buffers(cmd);
712                 scsi_put_command(cmd);
713
714                 spin_lock_irqsave(q->queue_lock, flags);
715                 blk_finish_request(req, error);
716                 spin_unlock_irqrestore(q->queue_lock, flags);
717
718                 scsi_run_queue(q);
719         }
720
721         put_device(&sdev->sdev_gendev);
722         return false;
723 }
724
725 /**
726  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
727  * @cmd:        SCSI command
728  * @result:     scsi error code
729  *
730  * Translate a SCSI result code into a blk_status_t value. May reset the host
731  * byte of @cmd->result.
732  */
733 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
734 {
735         switch (host_byte(result)) {
736         case DID_OK:
737                 /*
738                  * Also check the other bytes than the status byte in result
739                  * to handle the case when a SCSI LLD sets result to
740                  * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
741                  */
742                 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
743                         return BLK_STS_OK;
744                 return BLK_STS_IOERR;
745         case DID_TRANSPORT_FAILFAST:
746                 return BLK_STS_TRANSPORT;
747         case DID_TARGET_FAILURE:
748                 set_host_byte(cmd, DID_OK);
749                 return BLK_STS_TARGET;
750         case DID_NEXUS_FAILURE:
751                 return BLK_STS_NEXUS;
752         case DID_ALLOC_FAILURE:
753                 set_host_byte(cmd, DID_OK);
754                 return BLK_STS_NOSPC;
755         case DID_MEDIUM_ERROR:
756                 set_host_byte(cmd, DID_OK);
757                 return BLK_STS_MEDIUM;
758         default:
759                 return BLK_STS_IOERR;
760         }
761 }
762
763 /*
764  * Function:    scsi_io_completion()
765  *
766  * Purpose:     Completion processing for block device I/O requests.
767  *
768  * Arguments:   cmd   - command that is finished.
769  *
770  * Lock status: Assumed that no lock is held upon entry.
771  *
772  * Returns:     Nothing
773  *
774  * Notes:       We will finish off the specified number of sectors.  If we
775  *              are done, the command block will be released and the queue
776  *              function will be goosed.  If we are not done then we have to
777  *              figure out what to do next:
778  *
779  *              a) We can call scsi_requeue_command().  The request
780  *                 will be unprepared and put back on the queue.  Then
781  *                 a new command will be created for it.  This should
782  *                 be used if we made forward progress, or if we want
783  *                 to switch from READ(10) to READ(6) for example.
784  *
785  *              b) We can call __scsi_queue_insert().  The request will
786  *                 be put back on the queue and retried using the same
787  *                 command as before, possibly after a delay.
788  *
789  *              c) We can call scsi_end_request() with -EIO to fail
790  *                 the remainder of the request.
791  */
792 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
793 {
794         int result = cmd->result;
795         struct request_queue *q = cmd->device->request_queue;
796         struct request *req = cmd->request;
797         blk_status_t error = BLK_STS_OK;
798         struct scsi_sense_hdr sshdr;
799         bool sense_valid = false;
800         int sense_deferred = 0, level = 0;
801         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
802               ACTION_DELAYED_RETRY} action;
803         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
804
805         if (result) {
806                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
807                 if (sense_valid)
808                         sense_deferred = scsi_sense_is_deferred(&sshdr);
809         }
810
811         if (blk_rq_is_passthrough(req)) {
812                 if (result) {
813                         if (sense_valid) {
814                                 /*
815                                  * SG_IO wants current and deferred errors
816                                  */
817                                 scsi_req(req)->sense_len =
818                                         min(8 + cmd->sense_buffer[7],
819                                             SCSI_SENSE_BUFFERSIZE);
820                         }
821                         if (!sense_deferred)
822                                 error = scsi_result_to_blk_status(cmd, result);
823                 }
824                 /*
825                  * scsi_result_to_blk_status may have reset the host_byte
826                  */
827                 scsi_req(req)->result = cmd->result;
828                 scsi_req(req)->resid_len = scsi_get_resid(cmd);
829
830                 if (scsi_bidi_cmnd(cmd)) {
831                         /*
832                          * Bidi commands Must be complete as a whole,
833                          * both sides at once.
834                          */
835                         scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
836                         if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
837                                         blk_rq_bytes(req->next_rq)))
838                                 BUG();
839                         return;
840                 }
841         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
842                 /*
843                  * Flush commands do not transfers any data, and thus cannot use
844                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
845                  * This sets the error explicitly for the problem case.
846                  */
847                 error = scsi_result_to_blk_status(cmd, result);
848         }
849
850         /* no bidi support for !blk_rq_is_passthrough yet */
851         BUG_ON(blk_bidi_rq(req));
852
853         /*
854          * Next deal with any sectors which we were able to correctly
855          * handle.
856          */
857         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
858                 "%u sectors total, %d bytes done.\n",
859                 blk_rq_sectors(req), good_bytes));
860
861         /*
862          * Recovered errors need reporting, but they're always treated as
863          * success, so fiddle the result code here.  For passthrough requests
864          * we already took a copy of the original into sreq->result which
865          * is what gets returned to the user
866          */
867         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
868                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
869                  * print since caller wants ATA registers. Only occurs on
870                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
871                  */
872                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
873                         ;
874                 else if (!(req->rq_flags & RQF_QUIET))
875                         scsi_print_sense(cmd);
876                 result = 0;
877                 /* for passthrough error may be set */
878                 error = BLK_STS_OK;
879         }
880         /*
881          * Another corner case: the SCSI status byte is non-zero but 'good'.
882          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
883          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
884          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
885          * intermediate statuses (both obsolete in SAM-4) as good.
886          */
887         if (status_byte(result) && scsi_status_is_good(result)) {
888                 result = 0;
889                 error = BLK_STS_OK;
890         }
891
892         /*
893          * special case: failed zero length commands always need to
894          * drop down into the retry code. Otherwise, if we finished
895          * all bytes in the request we are done now.
896          */
897         if (!(blk_rq_bytes(req) == 0 && error) &&
898             !scsi_end_request(req, error, good_bytes, 0))
899                 return;
900
901         /*
902          * Kill remainder if no retrys.
903          */
904         if (error && scsi_noretry_cmd(cmd)) {
905                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
906                         BUG();
907                 return;
908         }
909
910         /*
911          * If there had been no error, but we have leftover bytes in the
912          * requeues just queue the command up again.
913          */
914         if (result == 0)
915                 goto requeue;
916
917         error = scsi_result_to_blk_status(cmd, result);
918
919         if (host_byte(result) == DID_RESET) {
920                 /* Third party bus reset or reset for error recovery
921                  * reasons.  Just retry the command and see what
922                  * happens.
923                  */
924                 action = ACTION_RETRY;
925         } else if (sense_valid && !sense_deferred) {
926                 switch (sshdr.sense_key) {
927                 case UNIT_ATTENTION:
928                         if (cmd->device->removable) {
929                                 /* Detected disc change.  Set a bit
930                                  * and quietly refuse further access.
931                                  */
932                                 cmd->device->changed = 1;
933                                 action = ACTION_FAIL;
934                         } else {
935                                 /* Must have been a power glitch, or a
936                                  * bus reset.  Could not have been a
937                                  * media change, so we just retry the
938                                  * command and see what happens.
939                                  */
940                                 action = ACTION_RETRY;
941                         }
942                         break;
943                 case ILLEGAL_REQUEST:
944                         /* If we had an ILLEGAL REQUEST returned, then
945                          * we may have performed an unsupported
946                          * command.  The only thing this should be
947                          * would be a ten byte read where only a six
948                          * byte read was supported.  Also, on a system
949                          * where READ CAPACITY failed, we may have
950                          * read past the end of the disk.
951                          */
952                         if ((cmd->device->use_10_for_rw &&
953                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
954                             (cmd->cmnd[0] == READ_10 ||
955                              cmd->cmnd[0] == WRITE_10)) {
956                                 /* This will issue a new 6-byte command. */
957                                 cmd->device->use_10_for_rw = 0;
958                                 action = ACTION_REPREP;
959                         } else if (sshdr.asc == 0x10) /* DIX */ {
960                                 action = ACTION_FAIL;
961                                 error = BLK_STS_PROTECTION;
962                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
963                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
964                                 action = ACTION_FAIL;
965                                 error = BLK_STS_TARGET;
966                         } else
967                                 action = ACTION_FAIL;
968                         break;
969                 case ABORTED_COMMAND:
970                         action = ACTION_FAIL;
971                         if (sshdr.asc == 0x10) /* DIF */
972                                 error = BLK_STS_PROTECTION;
973                         break;
974                 case NOT_READY:
975                         /* If the device is in the process of becoming
976                          * ready, or has a temporary blockage, retry.
977                          */
978                         if (sshdr.asc == 0x04) {
979                                 switch (sshdr.ascq) {
980                                 case 0x01: /* becoming ready */
981                                 case 0x04: /* format in progress */
982                                 case 0x05: /* rebuild in progress */
983                                 case 0x06: /* recalculation in progress */
984                                 case 0x07: /* operation in progress */
985                                 case 0x08: /* Long write in progress */
986                                 case 0x09: /* self test in progress */
987                                 case 0x14: /* space allocation in progress */
988                                         action = ACTION_DELAYED_RETRY;
989                                         break;
990                                 default:
991                                         action = ACTION_FAIL;
992                                         break;
993                                 }
994                         } else
995                                 action = ACTION_FAIL;
996                         break;
997                 case VOLUME_OVERFLOW:
998                         /* See SSC3rXX or current. */
999                         action = ACTION_FAIL;
1000                         break;
1001                 default:
1002                         action = ACTION_FAIL;
1003                         break;
1004                 }
1005         } else
1006                 action = ACTION_FAIL;
1007
1008         if (action != ACTION_FAIL &&
1009             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1010                 action = ACTION_FAIL;
1011
1012         switch (action) {
1013         case ACTION_FAIL:
1014                 /* Give up and fail the remainder of the request */
1015                 if (!(req->rq_flags & RQF_QUIET)) {
1016                         static DEFINE_RATELIMIT_STATE(_rs,
1017                                         DEFAULT_RATELIMIT_INTERVAL,
1018                                         DEFAULT_RATELIMIT_BURST);
1019
1020                         if (unlikely(scsi_logging_level))
1021                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1022                                                        SCSI_LOG_MLCOMPLETE_BITS);
1023
1024                         /*
1025                          * if logging is enabled the failure will be printed
1026                          * in scsi_log_completion(), so avoid duplicate messages
1027                          */
1028                         if (!level && __ratelimit(&_rs)) {
1029                                 scsi_print_result(cmd, NULL, FAILED);
1030                                 if (driver_byte(result) & DRIVER_SENSE)
1031                                         scsi_print_sense(cmd);
1032                                 scsi_print_command(cmd);
1033                         }
1034                 }
1035                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1036                         return;
1037                 /*FALLTHRU*/
1038         case ACTION_REPREP:
1039         requeue:
1040                 /* Unprep the request and put it back at the head of the queue.
1041                  * A new command will be prepared and issued.
1042                  */
1043                 if (q->mq_ops) {
1044                         scsi_mq_requeue_cmd(cmd);
1045                 } else {
1046                         scsi_release_buffers(cmd);
1047                         scsi_requeue_command(q, cmd);
1048                 }
1049                 break;
1050         case ACTION_RETRY:
1051                 /* Retry the same command immediately */
1052                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
1053                 break;
1054         case ACTION_DELAYED_RETRY:
1055                 /* Retry the same command after a delay */
1056                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
1057                 break;
1058         }
1059 }
1060
1061 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1062 {
1063         int count;
1064
1065         /*
1066          * If sg table allocation fails, requeue request later.
1067          */
1068         if (unlikely(sg_alloc_table_chained(&sdb->table,
1069                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1070                 return BLKPREP_DEFER;
1071
1072         /* 
1073          * Next, walk the list, and fill in the addresses and sizes of
1074          * each segment.
1075          */
1076         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1077         BUG_ON(count > sdb->table.nents);
1078         sdb->table.nents = count;
1079         sdb->length = blk_rq_payload_bytes(req);
1080         return BLKPREP_OK;
1081 }
1082
1083 /*
1084  * Function:    scsi_init_io()
1085  *
1086  * Purpose:     SCSI I/O initialize function.
1087  *
1088  * Arguments:   cmd   - Command descriptor we wish to initialize
1089  *
1090  * Returns:     0 on success
1091  *              BLKPREP_DEFER if the failure is retryable
1092  *              BLKPREP_KILL if the failure is fatal
1093  */
1094 int scsi_init_io(struct scsi_cmnd *cmd)
1095 {
1096         struct scsi_device *sdev = cmd->device;
1097         struct request *rq = cmd->request;
1098         bool is_mq = (rq->mq_ctx != NULL);
1099         int error = BLKPREP_KILL;
1100
1101         if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1102                 goto err_exit;
1103
1104         error = scsi_init_sgtable(rq, &cmd->sdb);
1105         if (error)
1106                 goto err_exit;
1107
1108         if (blk_bidi_rq(rq)) {
1109                 if (!rq->q->mq_ops) {
1110                         struct scsi_data_buffer *bidi_sdb =
1111                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1112                         if (!bidi_sdb) {
1113                                 error = BLKPREP_DEFER;
1114                                 goto err_exit;
1115                         }
1116
1117                         rq->next_rq->special = bidi_sdb;
1118                 }
1119
1120                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1121                 if (error)
1122                         goto err_exit;
1123         }
1124
1125         if (blk_integrity_rq(rq)) {
1126                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1127                 int ivecs, count;
1128
1129                 if (prot_sdb == NULL) {
1130                         /*
1131                          * This can happen if someone (e.g. multipath)
1132                          * queues a command to a device on an adapter
1133                          * that does not support DIX.
1134                          */
1135                         WARN_ON_ONCE(1);
1136                         error = BLKPREP_KILL;
1137                         goto err_exit;
1138                 }
1139
1140                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1141
1142                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1143                                 prot_sdb->table.sgl)) {
1144                         error = BLKPREP_DEFER;
1145                         goto err_exit;
1146                 }
1147
1148                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1149                                                 prot_sdb->table.sgl);
1150                 BUG_ON(unlikely(count > ivecs));
1151                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1152
1153                 cmd->prot_sdb = prot_sdb;
1154                 cmd->prot_sdb->table.nents = count;
1155         }
1156
1157         return BLKPREP_OK;
1158 err_exit:
1159         if (is_mq) {
1160                 scsi_mq_free_sgtables(cmd);
1161         } else {
1162                 scsi_release_buffers(cmd);
1163                 cmd->request->special = NULL;
1164                 scsi_put_command(cmd);
1165                 put_device(&sdev->sdev_gendev);
1166         }
1167         return error;
1168 }
1169 EXPORT_SYMBOL(scsi_init_io);
1170
1171 /**
1172  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1173  * @rq: Request associated with the SCSI command to be initialized.
1174  *
1175  * This function initializes the members of struct scsi_cmnd that must be
1176  * initialized before request processing starts and that won't be
1177  * reinitialized if a SCSI command is requeued.
1178  *
1179  * Called from inside blk_get_request() for pass-through requests and from
1180  * inside scsi_init_command() for filesystem requests.
1181  */
1182 static void scsi_initialize_rq(struct request *rq)
1183 {
1184         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1185
1186         scsi_req_init(&cmd->req);
1187         init_rcu_head(&cmd->rcu);
1188         cmd->jiffies_at_alloc = jiffies;
1189         cmd->retries = 0;
1190 }
1191
1192 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1193 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1194 {
1195         struct scsi_device *sdev = cmd->device;
1196         struct Scsi_Host *shost = sdev->host;
1197         unsigned long flags;
1198
1199         if (shost->use_cmd_list) {
1200                 spin_lock_irqsave(&sdev->list_lock, flags);
1201                 list_add_tail(&cmd->list, &sdev->cmd_list);
1202                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1203         }
1204 }
1205
1206 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1207 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1208 {
1209         struct scsi_device *sdev = cmd->device;
1210         struct Scsi_Host *shost = sdev->host;
1211         unsigned long flags;
1212
1213         if (shost->use_cmd_list) {
1214                 spin_lock_irqsave(&sdev->list_lock, flags);
1215                 BUG_ON(list_empty(&cmd->list));
1216                 list_del_init(&cmd->list);
1217                 spin_unlock_irqrestore(&sdev->list_lock, flags);
1218         }
1219 }
1220
1221 /* Called after a request has been started. */
1222 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1223 {
1224         void *buf = cmd->sense_buffer;
1225         void *prot = cmd->prot_sdb;
1226         struct request *rq = blk_mq_rq_from_pdu(cmd);
1227         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1228         unsigned long jiffies_at_alloc;
1229         int retries;
1230
1231         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1232                 flags |= SCMD_INITIALIZED;
1233                 scsi_initialize_rq(rq);
1234         }
1235
1236         jiffies_at_alloc = cmd->jiffies_at_alloc;
1237         retries = cmd->retries;
1238         /* zero out the cmd, except for the embedded scsi_request */
1239         memset((char *)cmd + sizeof(cmd->req), 0,
1240                 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1241
1242         cmd->device = dev;
1243         cmd->sense_buffer = buf;
1244         cmd->prot_sdb = prot;
1245         cmd->flags = flags;
1246         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1247         cmd->jiffies_at_alloc = jiffies_at_alloc;
1248         cmd->retries = retries;
1249
1250         scsi_add_cmd_to_list(cmd);
1251 }
1252
1253 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1254 {
1255         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1256
1257         /*
1258          * Passthrough requests may transfer data, in which case they must
1259          * a bio attached to them.  Or they might contain a SCSI command
1260          * that does not transfer data, in which case they may optionally
1261          * submit a request without an attached bio.
1262          */
1263         if (req->bio) {
1264                 int ret = scsi_init_io(cmd);
1265                 if (unlikely(ret))
1266                         return ret;
1267         } else {
1268                 BUG_ON(blk_rq_bytes(req));
1269
1270                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1271         }
1272
1273         cmd->cmd_len = scsi_req(req)->cmd_len;
1274         cmd->cmnd = scsi_req(req)->cmd;
1275         cmd->transfersize = blk_rq_bytes(req);
1276         cmd->allowed = scsi_req(req)->retries;
1277         return BLKPREP_OK;
1278 }
1279
1280 /*
1281  * Setup a normal block command.  These are simple request from filesystems
1282  * that still need to be translated to SCSI CDBs from the ULD.
1283  */
1284 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1285 {
1286         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1287
1288         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1289                 int ret = sdev->handler->prep_fn(sdev, req);
1290                 if (ret != BLKPREP_OK)
1291                         return ret;
1292         }
1293
1294         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1295         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1296         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1297 }
1298
1299 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1300 {
1301         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1302
1303         if (!blk_rq_bytes(req))
1304                 cmd->sc_data_direction = DMA_NONE;
1305         else if (rq_data_dir(req) == WRITE)
1306                 cmd->sc_data_direction = DMA_TO_DEVICE;
1307         else
1308                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1309
1310         if (blk_rq_is_scsi(req))
1311                 return scsi_setup_scsi_cmnd(sdev, req);
1312         else
1313                 return scsi_setup_fs_cmnd(sdev, req);
1314 }
1315
1316 static int
1317 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1318 {
1319         int ret = BLKPREP_OK;
1320
1321         /*
1322          * If the device is not in running state we will reject some
1323          * or all commands.
1324          */
1325         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1326                 switch (sdev->sdev_state) {
1327                 case SDEV_OFFLINE:
1328                 case SDEV_TRANSPORT_OFFLINE:
1329                         /*
1330                          * If the device is offline we refuse to process any
1331                          * commands.  The device must be brought online
1332                          * before trying any recovery commands.
1333                          */
1334                         sdev_printk(KERN_ERR, sdev,
1335                                     "rejecting I/O to offline device\n");
1336                         ret = BLKPREP_KILL;
1337                         break;
1338                 case SDEV_DEL:
1339                         /*
1340                          * If the device is fully deleted, we refuse to
1341                          * process any commands as well.
1342                          */
1343                         sdev_printk(KERN_ERR, sdev,
1344                                     "rejecting I/O to dead device\n");
1345                         ret = BLKPREP_KILL;
1346                         break;
1347                 case SDEV_BLOCK:
1348                 case SDEV_CREATED_BLOCK:
1349                         ret = BLKPREP_DEFER;
1350                         break;
1351                 case SDEV_QUIESCE:
1352                         /*
1353                          * If the devices is blocked we defer normal commands.
1354                          */
1355                         if (req && !(req->rq_flags & RQF_PREEMPT))
1356                                 ret = BLKPREP_DEFER;
1357                         break;
1358                 default:
1359                         /*
1360                          * For any other not fully online state we only allow
1361                          * special commands.  In particular any user initiated
1362                          * command is not allowed.
1363                          */
1364                         if (req && !(req->rq_flags & RQF_PREEMPT))
1365                                 ret = BLKPREP_KILL;
1366                         break;
1367                 }
1368         }
1369         return ret;
1370 }
1371
1372 static int
1373 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1374 {
1375         struct scsi_device *sdev = q->queuedata;
1376
1377         switch (ret) {
1378         case BLKPREP_KILL:
1379         case BLKPREP_INVALID:
1380                 scsi_req(req)->result = DID_NO_CONNECT << 16;
1381                 /* release the command and kill it */
1382                 if (req->special) {
1383                         struct scsi_cmnd *cmd = req->special;
1384                         scsi_release_buffers(cmd);
1385                         scsi_put_command(cmd);
1386                         put_device(&sdev->sdev_gendev);
1387                         req->special = NULL;
1388                 }
1389                 break;
1390         case BLKPREP_DEFER:
1391                 /*
1392                  * If we defer, the blk_peek_request() returns NULL, but the
1393                  * queue must be restarted, so we schedule a callback to happen
1394                  * shortly.
1395                  */
1396                 if (atomic_read(&sdev->device_busy) == 0)
1397                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1398                 break;
1399         default:
1400                 req->rq_flags |= RQF_DONTPREP;
1401         }
1402
1403         return ret;
1404 }
1405
1406 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1407 {
1408         struct scsi_device *sdev = q->queuedata;
1409         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1410         int ret;
1411
1412         ret = scsi_prep_state_check(sdev, req);
1413         if (ret != BLKPREP_OK)
1414                 goto out;
1415
1416         if (!req->special) {
1417                 /* Bail if we can't get a reference to the device */
1418                 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1419                         ret = BLKPREP_DEFER;
1420                         goto out;
1421                 }
1422
1423                 scsi_init_command(sdev, cmd);
1424                 req->special = cmd;
1425         }
1426
1427         cmd->tag = req->tag;
1428         cmd->request = req;
1429         cmd->prot_op = SCSI_PROT_NORMAL;
1430
1431         ret = scsi_setup_cmnd(sdev, req);
1432 out:
1433         return scsi_prep_return(q, req, ret);
1434 }
1435
1436 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1437 {
1438         scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1439 }
1440
1441 /*
1442  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1443  * return 0.
1444  *
1445  * Called with the queue_lock held.
1446  */
1447 static inline int scsi_dev_queue_ready(struct request_queue *q,
1448                                   struct scsi_device *sdev)
1449 {
1450         unsigned int busy;
1451
1452         busy = atomic_inc_return(&sdev->device_busy) - 1;
1453         if (atomic_read(&sdev->device_blocked)) {
1454                 if (busy)
1455                         goto out_dec;
1456
1457                 /*
1458                  * unblock after device_blocked iterates to zero
1459                  */
1460                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1461                         /*
1462                          * For the MQ case we take care of this in the caller.
1463                          */
1464                         if (!q->mq_ops)
1465                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1466                         goto out_dec;
1467                 }
1468                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1469                                    "unblocking device at zero depth\n"));
1470         }
1471
1472         if (busy >= sdev->queue_depth)
1473                 goto out_dec;
1474
1475         return 1;
1476 out_dec:
1477         atomic_dec(&sdev->device_busy);
1478         return 0;
1479 }
1480
1481 /*
1482  * scsi_target_queue_ready: checks if there we can send commands to target
1483  * @sdev: scsi device on starget to check.
1484  */
1485 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1486                                            struct scsi_device *sdev)
1487 {
1488         struct scsi_target *starget = scsi_target(sdev);
1489         unsigned int busy;
1490
1491         if (starget->single_lun) {
1492                 spin_lock_irq(shost->host_lock);
1493                 if (starget->starget_sdev_user &&
1494                     starget->starget_sdev_user != sdev) {
1495                         spin_unlock_irq(shost->host_lock);
1496                         return 0;
1497                 }
1498                 starget->starget_sdev_user = sdev;
1499                 spin_unlock_irq(shost->host_lock);
1500         }
1501
1502         if (starget->can_queue <= 0)
1503                 return 1;
1504
1505         busy = atomic_inc_return(&starget->target_busy) - 1;
1506         if (atomic_read(&starget->target_blocked) > 0) {
1507                 if (busy)
1508                         goto starved;
1509
1510                 /*
1511                  * unblock after target_blocked iterates to zero
1512                  */
1513                 if (atomic_dec_return(&starget->target_blocked) > 0)
1514                         goto out_dec;
1515
1516                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1517                                  "unblocking target at zero depth\n"));
1518         }
1519
1520         if (busy >= starget->can_queue)
1521                 goto starved;
1522
1523         return 1;
1524
1525 starved:
1526         spin_lock_irq(shost->host_lock);
1527         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1528         spin_unlock_irq(shost->host_lock);
1529 out_dec:
1530         if (starget->can_queue > 0)
1531                 atomic_dec(&starget->target_busy);
1532         return 0;
1533 }
1534
1535 /*
1536  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1537  * return 0. We must end up running the queue again whenever 0 is
1538  * returned, else IO can hang.
1539  */
1540 static inline int scsi_host_queue_ready(struct request_queue *q,
1541                                    struct Scsi_Host *shost,
1542                                    struct scsi_device *sdev)
1543 {
1544         unsigned int busy;
1545
1546         if (scsi_host_in_recovery(shost))
1547                 return 0;
1548
1549         busy = atomic_inc_return(&shost->host_busy) - 1;
1550         if (atomic_read(&shost->host_blocked) > 0) {
1551                 if (busy)
1552                         goto starved;
1553
1554                 /*
1555                  * unblock after host_blocked iterates to zero
1556                  */
1557                 if (atomic_dec_return(&shost->host_blocked) > 0)
1558                         goto out_dec;
1559
1560                 SCSI_LOG_MLQUEUE(3,
1561                         shost_printk(KERN_INFO, shost,
1562                                      "unblocking host at zero depth\n"));
1563         }
1564
1565         if (shost->can_queue > 0 && busy >= shost->can_queue)
1566                 goto starved;
1567         if (shost->host_self_blocked)
1568                 goto starved;
1569
1570         /* We're OK to process the command, so we can't be starved */
1571         if (!list_empty(&sdev->starved_entry)) {
1572                 spin_lock_irq(shost->host_lock);
1573                 if (!list_empty(&sdev->starved_entry))
1574                         list_del_init(&sdev->starved_entry);
1575                 spin_unlock_irq(shost->host_lock);
1576         }
1577
1578         return 1;
1579
1580 starved:
1581         spin_lock_irq(shost->host_lock);
1582         if (list_empty(&sdev->starved_entry))
1583                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1584         spin_unlock_irq(shost->host_lock);
1585 out_dec:
1586         scsi_dec_host_busy(shost);
1587         return 0;
1588 }
1589
1590 /*
1591  * Busy state exporting function for request stacking drivers.
1592  *
1593  * For efficiency, no lock is taken to check the busy state of
1594  * shost/starget/sdev, since the returned value is not guaranteed and
1595  * may be changed after request stacking drivers call the function,
1596  * regardless of taking lock or not.
1597  *
1598  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1599  * needs to return 'not busy'. Otherwise, request stacking drivers
1600  * may hold requests forever.
1601  */
1602 static int scsi_lld_busy(struct request_queue *q)
1603 {
1604         struct scsi_device *sdev = q->queuedata;
1605         struct Scsi_Host *shost;
1606
1607         if (blk_queue_dying(q))
1608                 return 0;
1609
1610         shost = sdev->host;
1611
1612         /*
1613          * Ignore host/starget busy state.
1614          * Since block layer does not have a concept of fairness across
1615          * multiple queues, congestion of host/starget needs to be handled
1616          * in SCSI layer.
1617          */
1618         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1619                 return 1;
1620
1621         return 0;
1622 }
1623
1624 /*
1625  * Kill a request for a dead device
1626  */
1627 static void scsi_kill_request(struct request *req, struct request_queue *q)
1628 {
1629         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1630         struct scsi_device *sdev;
1631         struct scsi_target *starget;
1632         struct Scsi_Host *shost;
1633
1634         blk_start_request(req);
1635
1636         scmd_printk(KERN_INFO, cmd, "killing request\n");
1637
1638         sdev = cmd->device;
1639         starget = scsi_target(sdev);
1640         shost = sdev->host;
1641         scsi_init_cmd_errh(cmd);
1642         cmd->result = DID_NO_CONNECT << 16;
1643         atomic_inc(&cmd->device->iorequest_cnt);
1644
1645         /*
1646          * SCSI request completion path will do scsi_device_unbusy(),
1647          * bump busy counts.  To bump the counters, we need to dance
1648          * with the locks as normal issue path does.
1649          */
1650         atomic_inc(&sdev->device_busy);
1651         atomic_inc(&shost->host_busy);
1652         if (starget->can_queue > 0)
1653                 atomic_inc(&starget->target_busy);
1654
1655         blk_complete_request(req);
1656 }
1657
1658 static void scsi_softirq_done(struct request *rq)
1659 {
1660         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1661         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1662         int disposition;
1663
1664         INIT_LIST_HEAD(&cmd->eh_entry);
1665
1666         atomic_inc(&cmd->device->iodone_cnt);
1667         if (cmd->result)
1668                 atomic_inc(&cmd->device->ioerr_cnt);
1669
1670         disposition = scsi_decide_disposition(cmd);
1671         if (disposition != SUCCESS &&
1672             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1673                 sdev_printk(KERN_ERR, cmd->device,
1674                             "timing out command, waited %lus\n",
1675                             wait_for/HZ);
1676                 disposition = SUCCESS;
1677         }
1678
1679         scsi_log_completion(cmd, disposition);
1680
1681         switch (disposition) {
1682                 case SUCCESS:
1683                         scsi_finish_command(cmd);
1684                         break;
1685                 case NEEDS_RETRY:
1686                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1687                         break;
1688                 case ADD_TO_MLQUEUE:
1689                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1690                         break;
1691                 default:
1692                         scsi_eh_scmd_add(cmd);
1693                         break;
1694         }
1695 }
1696
1697 /**
1698  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1699  * @cmd: command block we are dispatching.
1700  *
1701  * Return: nonzero return request was rejected and device's queue needs to be
1702  * plugged.
1703  */
1704 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1705 {
1706         struct Scsi_Host *host = cmd->device->host;
1707         int rtn = 0;
1708
1709         atomic_inc(&cmd->device->iorequest_cnt);
1710
1711         /* check if the device is still usable */
1712         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1713                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1714                  * returns an immediate error upwards, and signals
1715                  * that the device is no longer present */
1716                 cmd->result = DID_NO_CONNECT << 16;
1717                 goto done;
1718         }
1719
1720         /* Check to see if the scsi lld made this device blocked. */
1721         if (unlikely(scsi_device_blocked(cmd->device))) {
1722                 /*
1723                  * in blocked state, the command is just put back on
1724                  * the device queue.  The suspend state has already
1725                  * blocked the queue so future requests should not
1726                  * occur until the device transitions out of the
1727                  * suspend state.
1728                  */
1729                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1730                         "queuecommand : device blocked\n"));
1731                 return SCSI_MLQUEUE_DEVICE_BUSY;
1732         }
1733
1734         /* Store the LUN value in cmnd, if needed. */
1735         if (cmd->device->lun_in_cdb)
1736                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1737                                (cmd->device->lun << 5 & 0xe0);
1738
1739         scsi_log_send(cmd);
1740
1741         /*
1742          * Before we queue this command, check if the command
1743          * length exceeds what the host adapter can handle.
1744          */
1745         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1746                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1747                                "queuecommand : command too long. "
1748                                "cdb_size=%d host->max_cmd_len=%d\n",
1749                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1750                 cmd->result = (DID_ABORT << 16);
1751                 goto done;
1752         }
1753
1754         if (unlikely(host->shost_state == SHOST_DEL)) {
1755                 cmd->result = (DID_NO_CONNECT << 16);
1756                 goto done;
1757
1758         }
1759
1760         trace_scsi_dispatch_cmd_start(cmd);
1761         rtn = host->hostt->queuecommand(host, cmd);
1762         if (rtn) {
1763                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1764                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1765                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1766                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1767
1768                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1769                         "queuecommand : request rejected\n"));
1770         }
1771
1772         return rtn;
1773  done:
1774         cmd->scsi_done(cmd);
1775         return 0;
1776 }
1777
1778 /**
1779  * scsi_done - Invoke completion on finished SCSI command.
1780  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1781  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1782  *
1783  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1784  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1785  * calls blk_complete_request() for further processing.
1786  *
1787  * This function is interrupt context safe.
1788  */
1789 static void scsi_done(struct scsi_cmnd *cmd)
1790 {
1791         trace_scsi_dispatch_cmd_done(cmd);
1792         blk_complete_request(cmd->request);
1793 }
1794
1795 /*
1796  * Function:    scsi_request_fn()
1797  *
1798  * Purpose:     Main strategy routine for SCSI.
1799  *
1800  * Arguments:   q       - Pointer to actual queue.
1801  *
1802  * Returns:     Nothing
1803  *
1804  * Lock status: request queue lock assumed to be held when called.
1805  *
1806  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1807  * protection for ZBC disks.
1808  */
1809 static void scsi_request_fn(struct request_queue *q)
1810         __releases(q->queue_lock)
1811         __acquires(q->queue_lock)
1812 {
1813         struct scsi_device *sdev = q->queuedata;
1814         struct Scsi_Host *shost;
1815         struct scsi_cmnd *cmd;
1816         struct request *req;
1817
1818         /*
1819          * To start with, we keep looping until the queue is empty, or until
1820          * the host is no longer able to accept any more requests.
1821          */
1822         shost = sdev->host;
1823         for (;;) {
1824                 int rtn;
1825                 /*
1826                  * get next queueable request.  We do this early to make sure
1827                  * that the request is fully prepared even if we cannot
1828                  * accept it.
1829                  */
1830                 req = blk_peek_request(q);
1831                 if (!req)
1832                         break;
1833
1834                 if (unlikely(!scsi_device_online(sdev))) {
1835                         sdev_printk(KERN_ERR, sdev,
1836                                     "rejecting I/O to offline device\n");
1837                         scsi_kill_request(req, q);
1838                         continue;
1839                 }
1840
1841                 if (!scsi_dev_queue_ready(q, sdev))
1842                         break;
1843
1844                 /*
1845                  * Remove the request from the request list.
1846                  */
1847                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1848                         blk_start_request(req);
1849
1850                 spin_unlock_irq(q->queue_lock);
1851                 cmd = blk_mq_rq_to_pdu(req);
1852                 if (cmd != req->special) {
1853                         printk(KERN_CRIT "impossible request in %s.\n"
1854                                          "please mail a stack trace to "
1855                                          "linux-scsi@vger.kernel.org\n",
1856                                          __func__);
1857                         blk_dump_rq_flags(req, "foo");
1858                         BUG();
1859                 }
1860
1861                 /*
1862                  * We hit this when the driver is using a host wide
1863                  * tag map. For device level tag maps the queue_depth check
1864                  * in the device ready fn would prevent us from trying
1865                  * to allocate a tag. Since the map is a shared host resource
1866                  * we add the dev to the starved list so it eventually gets
1867                  * a run when a tag is freed.
1868                  */
1869                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1870                         spin_lock_irq(shost->host_lock);
1871                         if (list_empty(&sdev->starved_entry))
1872                                 list_add_tail(&sdev->starved_entry,
1873                                               &shost->starved_list);
1874                         spin_unlock_irq(shost->host_lock);
1875                         goto not_ready;
1876                 }
1877
1878                 if (!scsi_target_queue_ready(shost, sdev))
1879                         goto not_ready;
1880
1881                 if (!scsi_host_queue_ready(q, shost, sdev))
1882                         goto host_not_ready;
1883         
1884                 if (sdev->simple_tags)
1885                         cmd->flags |= SCMD_TAGGED;
1886                 else
1887                         cmd->flags &= ~SCMD_TAGGED;
1888
1889                 /*
1890                  * Finally, initialize any error handling parameters, and set up
1891                  * the timers for timeouts.
1892                  */
1893                 scsi_init_cmd_errh(cmd);
1894
1895                 /*
1896                  * Dispatch the command to the low-level driver.
1897                  */
1898                 cmd->scsi_done = scsi_done;
1899                 rtn = scsi_dispatch_cmd(cmd);
1900                 if (rtn) {
1901                         scsi_queue_insert(cmd, rtn);
1902                         spin_lock_irq(q->queue_lock);
1903                         goto out_delay;
1904                 }
1905                 spin_lock_irq(q->queue_lock);
1906         }
1907
1908         return;
1909
1910  host_not_ready:
1911         if (scsi_target(sdev)->can_queue > 0)
1912                 atomic_dec(&scsi_target(sdev)->target_busy);
1913  not_ready:
1914         /*
1915          * lock q, handle tag, requeue req, and decrement device_busy. We
1916          * must return with queue_lock held.
1917          *
1918          * Decrementing device_busy without checking it is OK, as all such
1919          * cases (host limits or settings) should run the queue at some
1920          * later time.
1921          */
1922         spin_lock_irq(q->queue_lock);
1923         blk_requeue_request(q, req);
1924         atomic_dec(&sdev->device_busy);
1925 out_delay:
1926         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1927                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1928 }
1929
1930 static inline blk_status_t prep_to_mq(int ret)
1931 {
1932         switch (ret) {
1933         case BLKPREP_OK:
1934                 return BLK_STS_OK;
1935         case BLKPREP_DEFER:
1936                 return BLK_STS_RESOURCE;
1937         default:
1938                 return BLK_STS_IOERR;
1939         }
1940 }
1941
1942 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1943 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1944 {
1945         return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1946                 sizeof(struct scatterlist);
1947 }
1948
1949 static int scsi_mq_prep_fn(struct request *req)
1950 {
1951         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1952         struct scsi_device *sdev = req->q->queuedata;
1953         struct Scsi_Host *shost = sdev->host;
1954         struct scatterlist *sg;
1955
1956         scsi_init_command(sdev, cmd);
1957
1958         req->special = cmd;
1959
1960         cmd->request = req;
1961
1962         cmd->tag = req->tag;
1963         cmd->prot_op = SCSI_PROT_NORMAL;
1964
1965         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1966         cmd->sdb.table.sgl = sg;
1967
1968         if (scsi_host_get_prot(shost)) {
1969                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1970
1971                 cmd->prot_sdb->table.sgl =
1972                         (struct scatterlist *)(cmd->prot_sdb + 1);
1973         }
1974
1975         if (blk_bidi_rq(req)) {
1976                 struct request *next_rq = req->next_rq;
1977                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1978
1979                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1980                 bidi_sdb->table.sgl =
1981                         (struct scatterlist *)(bidi_sdb + 1);
1982
1983                 next_rq->special = bidi_sdb;
1984         }
1985
1986         blk_mq_start_request(req);
1987
1988         return scsi_setup_cmnd(sdev, req);
1989 }
1990
1991 static void scsi_mq_done(struct scsi_cmnd *cmd)
1992 {
1993         trace_scsi_dispatch_cmd_done(cmd);
1994         blk_mq_complete_request(cmd->request);
1995 }
1996
1997 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1998 {
1999         struct request_queue *q = hctx->queue;
2000         struct scsi_device *sdev = q->queuedata;
2001
2002         atomic_dec(&sdev->device_busy);
2003         put_device(&sdev->sdev_gendev);
2004 }
2005
2006 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2007 {
2008         struct request_queue *q = hctx->queue;
2009         struct scsi_device *sdev = q->queuedata;
2010
2011         if (!get_device(&sdev->sdev_gendev))
2012                 goto out;
2013         if (!scsi_dev_queue_ready(q, sdev))
2014                 goto out_put_device;
2015
2016         return true;
2017
2018 out_put_device:
2019         put_device(&sdev->sdev_gendev);
2020 out:
2021         if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2022                 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2023         return false;
2024 }
2025
2026 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2027                          const struct blk_mq_queue_data *bd)
2028 {
2029         struct request *req = bd->rq;
2030         struct request_queue *q = req->q;
2031         struct scsi_device *sdev = q->queuedata;
2032         struct Scsi_Host *shost = sdev->host;
2033         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2034         blk_status_t ret;
2035         int reason;
2036
2037         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2038         if (ret != BLK_STS_OK)
2039                 goto out_put_budget;
2040
2041         ret = BLK_STS_RESOURCE;
2042         if (!scsi_target_queue_ready(shost, sdev))
2043                 goto out_put_budget;
2044         if (!scsi_host_queue_ready(q, shost, sdev))
2045                 goto out_dec_target_busy;
2046
2047         if (!(req->rq_flags & RQF_DONTPREP)) {
2048                 ret = prep_to_mq(scsi_mq_prep_fn(req));
2049                 if (ret != BLK_STS_OK)
2050                         goto out_dec_host_busy;
2051                 req->rq_flags |= RQF_DONTPREP;
2052         } else {
2053                 blk_mq_start_request(req);
2054         }
2055
2056         if (sdev->simple_tags)
2057                 cmd->flags |= SCMD_TAGGED;
2058         else
2059                 cmd->flags &= ~SCMD_TAGGED;
2060
2061         scsi_init_cmd_errh(cmd);
2062         cmd->scsi_done = scsi_mq_done;
2063
2064         reason = scsi_dispatch_cmd(cmd);
2065         if (reason) {
2066                 scsi_set_blocked(cmd, reason);
2067                 ret = BLK_STS_RESOURCE;
2068                 goto out_dec_host_busy;
2069         }
2070
2071         return BLK_STS_OK;
2072
2073 out_dec_host_busy:
2074         scsi_dec_host_busy(shost);
2075 out_dec_target_busy:
2076         if (scsi_target(sdev)->can_queue > 0)
2077                 atomic_dec(&scsi_target(sdev)->target_busy);
2078 out_put_budget:
2079         scsi_mq_put_budget(hctx);
2080         switch (ret) {
2081         case BLK_STS_OK:
2082                 break;
2083         case BLK_STS_RESOURCE:
2084                 if (atomic_read(&sdev->device_busy) ||
2085                     scsi_device_blocked(sdev))
2086                         ret = BLK_STS_DEV_RESOURCE;
2087                 break;
2088         default:
2089                 /*
2090                  * Make sure to release all allocated ressources when
2091                  * we hit an error, as we will never see this command
2092                  * again.
2093                  */
2094                 if (req->rq_flags & RQF_DONTPREP)
2095                         scsi_mq_uninit_cmd(cmd);
2096                 break;
2097         }
2098         return ret;
2099 }
2100
2101 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2102                 bool reserved)
2103 {
2104         if (reserved)
2105                 return BLK_EH_RESET_TIMER;
2106         return scsi_times_out(req);
2107 }
2108
2109 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2110                                 unsigned int hctx_idx, unsigned int numa_node)
2111 {
2112         struct Scsi_Host *shost = set->driver_data;
2113         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2114         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2115         struct scatterlist *sg;
2116
2117         if (unchecked_isa_dma)
2118                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2119         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2120                                                     GFP_KERNEL, numa_node);
2121         if (!cmd->sense_buffer)
2122                 return -ENOMEM;
2123         cmd->req.sense = cmd->sense_buffer;
2124
2125         if (scsi_host_get_prot(shost)) {
2126                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2127                         shost->hostt->cmd_size;
2128                 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2129         }
2130
2131         return 0;
2132 }
2133
2134 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2135                                  unsigned int hctx_idx)
2136 {
2137         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2138
2139         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2140                                cmd->sense_buffer);
2141 }
2142
2143 static int scsi_map_queues(struct blk_mq_tag_set *set)
2144 {
2145         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2146
2147         if (shost->hostt->map_queues)
2148                 return shost->hostt->map_queues(shost);
2149         return blk_mq_map_queues(set);
2150 }
2151
2152 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2153 {
2154         struct device *dev = shost->dma_dev;
2155
2156         /*
2157          * this limit is imposed by hardware restrictions
2158          */
2159         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2160                                         SG_MAX_SEGMENTS));
2161
2162         if (scsi_host_prot_dma(shost)) {
2163                 shost->sg_prot_tablesize =
2164                         min_not_zero(shost->sg_prot_tablesize,
2165                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2166                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2167                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2168         }
2169
2170         blk_queue_max_hw_sectors(q, shost->max_sectors);
2171         if (shost->unchecked_isa_dma)
2172                 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
2173         blk_queue_segment_boundary(q, shost->dma_boundary);
2174         dma_set_seg_boundary(dev, shost->dma_boundary);
2175
2176         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2177
2178         if (!shost->use_clustering)
2179                 q->limits.cluster = 0;
2180
2181         /*
2182          * Set a reasonable default alignment:  The larger of 32-byte (dword),
2183          * which is a common minimum for HBAs, and the minimum DMA alignment,
2184          * which is set by the platform.
2185          *
2186          * Devices that require a bigger alignment can increase it later.
2187          */
2188         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2189 }
2190 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2191
2192 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2193                             gfp_t gfp)
2194 {
2195         struct Scsi_Host *shost = q->rq_alloc_data;
2196         const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2197         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2198
2199         memset(cmd, 0, sizeof(*cmd));
2200
2201         if (unchecked_isa_dma)
2202                 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2203         cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2204                                                     NUMA_NO_NODE);
2205         if (!cmd->sense_buffer)
2206                 goto fail;
2207         cmd->req.sense = cmd->sense_buffer;
2208
2209         if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2210                 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2211                 if (!cmd->prot_sdb)
2212                         goto fail_free_sense;
2213         }
2214
2215         return 0;
2216
2217 fail_free_sense:
2218         scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2219 fail:
2220         return -ENOMEM;
2221 }
2222
2223 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2224 {
2225         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2226
2227         if (cmd->prot_sdb)
2228                 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2229         scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2230                                cmd->sense_buffer);
2231 }
2232
2233 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2234 {
2235         struct Scsi_Host *shost = sdev->host;
2236         struct request_queue *q;
2237
2238         q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2239         if (!q)
2240                 return NULL;
2241         q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2242         q->rq_alloc_data = shost;
2243         q->request_fn = scsi_request_fn;
2244         q->init_rq_fn = scsi_old_init_rq;
2245         q->exit_rq_fn = scsi_old_exit_rq;
2246         q->initialize_rq_fn = scsi_initialize_rq;
2247
2248         if (blk_init_allocated_queue(q) < 0) {
2249                 blk_cleanup_queue(q);
2250                 return NULL;
2251         }
2252
2253         __scsi_init_queue(shost, q);
2254         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2255         blk_queue_prep_rq(q, scsi_prep_fn);
2256         blk_queue_unprep_rq(q, scsi_unprep_fn);
2257         blk_queue_softirq_done(q, scsi_softirq_done);
2258         blk_queue_rq_timed_out(q, scsi_times_out);
2259         blk_queue_lld_busy(q, scsi_lld_busy);
2260         return q;
2261 }
2262
2263 static const struct blk_mq_ops scsi_mq_ops = {
2264         .get_budget     = scsi_mq_get_budget,
2265         .put_budget     = scsi_mq_put_budget,
2266         .queue_rq       = scsi_queue_rq,
2267         .complete       = scsi_softirq_done,
2268         .timeout        = scsi_timeout,
2269 #ifdef CONFIG_BLK_DEBUG_FS
2270         .show_rq        = scsi_show_rq,
2271 #endif
2272         .init_request   = scsi_mq_init_request,
2273         .exit_request   = scsi_mq_exit_request,
2274         .initialize_rq_fn = scsi_initialize_rq,
2275         .map_queues     = scsi_map_queues,
2276 };
2277
2278 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2279 {
2280         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2281         if (IS_ERR(sdev->request_queue))
2282                 return NULL;
2283
2284         sdev->request_queue->queuedata = sdev;
2285         __scsi_init_queue(sdev->host, sdev->request_queue);
2286         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2287         return sdev->request_queue;
2288 }
2289
2290 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2291 {
2292         unsigned int cmd_size, sgl_size;
2293
2294         sgl_size = scsi_mq_sgl_size(shost);
2295         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2296         if (scsi_host_get_prot(shost))
2297                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2298
2299         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2300         shost->tag_set.ops = &scsi_mq_ops;
2301         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2302         shost->tag_set.queue_depth = shost->can_queue;
2303         shost->tag_set.cmd_size = cmd_size;
2304         shost->tag_set.numa_node = NUMA_NO_NODE;
2305         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2306         shost->tag_set.flags |=
2307                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2308         shost->tag_set.driver_data = shost;
2309
2310         return blk_mq_alloc_tag_set(&shost->tag_set);
2311 }
2312
2313 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2314 {
2315         blk_mq_free_tag_set(&shost->tag_set);
2316 }
2317
2318 /**
2319  * scsi_device_from_queue - return sdev associated with a request_queue
2320  * @q: The request queue to return the sdev from
2321  *
2322  * Return the sdev associated with a request queue or NULL if the
2323  * request_queue does not reference a SCSI device.
2324  */
2325 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2326 {
2327         struct scsi_device *sdev = NULL;
2328
2329         if (q->mq_ops) {
2330                 if (q->mq_ops == &scsi_mq_ops)
2331                         sdev = q->queuedata;
2332         } else if (q->request_fn == scsi_request_fn)
2333                 sdev = q->queuedata;
2334         if (!sdev || !get_device(&sdev->sdev_gendev))
2335                 sdev = NULL;
2336
2337         return sdev;
2338 }
2339 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2340
2341 /*
2342  * Function:    scsi_block_requests()
2343  *
2344  * Purpose:     Utility function used by low-level drivers to prevent further
2345  *              commands from being queued to the device.
2346  *
2347  * Arguments:   shost       - Host in question
2348  *
2349  * Returns:     Nothing
2350  *
2351  * Lock status: No locks are assumed held.
2352  *
2353  * Notes:       There is no timer nor any other means by which the requests
2354  *              get unblocked other than the low-level driver calling
2355  *              scsi_unblock_requests().
2356  */
2357 void scsi_block_requests(struct Scsi_Host *shost)
2358 {
2359         shost->host_self_blocked = 1;
2360 }
2361 EXPORT_SYMBOL(scsi_block_requests);
2362
2363 /*
2364  * Function:    scsi_unblock_requests()
2365  *
2366  * Purpose:     Utility function used by low-level drivers to allow further
2367  *              commands from being queued to the device.
2368  *
2369  * Arguments:   shost       - Host in question
2370  *
2371  * Returns:     Nothing
2372  *
2373  * Lock status: No locks are assumed held.
2374  *
2375  * Notes:       There is no timer nor any other means by which the requests
2376  *              get unblocked other than the low-level driver calling
2377  *              scsi_unblock_requests().
2378  *
2379  *              This is done as an API function so that changes to the
2380  *              internals of the scsi mid-layer won't require wholesale
2381  *              changes to drivers that use this feature.
2382  */
2383 void scsi_unblock_requests(struct Scsi_Host *shost)
2384 {
2385         shost->host_self_blocked = 0;
2386         scsi_run_host_queues(shost);
2387 }
2388 EXPORT_SYMBOL(scsi_unblock_requests);
2389
2390 int __init scsi_init_queue(void)
2391 {
2392         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2393                                            sizeof(struct scsi_data_buffer),
2394                                            0, 0, NULL);
2395         if (!scsi_sdb_cache) {
2396                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2397                 return -ENOMEM;
2398         }
2399
2400         return 0;
2401 }
2402
2403 void scsi_exit_queue(void)
2404 {
2405         kmem_cache_destroy(scsi_sense_cache);
2406         kmem_cache_destroy(scsi_sense_isadma_cache);
2407         kmem_cache_destroy(scsi_sdb_cache);
2408 }
2409
2410 /**
2411  *      scsi_mode_select - issue a mode select
2412  *      @sdev:  SCSI device to be queried
2413  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2414  *      @sp:    Save page bit (0 == don't save, 1 == save)
2415  *      @modepage: mode page being requested
2416  *      @buffer: request buffer (may not be smaller than eight bytes)
2417  *      @len:   length of request buffer.
2418  *      @timeout: command timeout
2419  *      @retries: number of retries before failing
2420  *      @data: returns a structure abstracting the mode header data
2421  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2422  *              must be SCSI_SENSE_BUFFERSIZE big.
2423  *
2424  *      Returns zero if successful; negative error number or scsi
2425  *      status on error
2426  *
2427  */
2428 int
2429 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2430                  unsigned char *buffer, int len, int timeout, int retries,
2431                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2432 {
2433         unsigned char cmd[10];
2434         unsigned char *real_buffer;
2435         int ret;
2436
2437         memset(cmd, 0, sizeof(cmd));
2438         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2439
2440         if (sdev->use_10_for_ms) {
2441                 if (len > 65535)
2442                         return -EINVAL;
2443                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2444                 if (!real_buffer)
2445                         return -ENOMEM;
2446                 memcpy(real_buffer + 8, buffer, len);
2447                 len += 8;
2448                 real_buffer[0] = 0;
2449                 real_buffer[1] = 0;
2450                 real_buffer[2] = data->medium_type;
2451                 real_buffer[3] = data->device_specific;
2452                 real_buffer[4] = data->longlba ? 0x01 : 0;
2453                 real_buffer[5] = 0;
2454                 real_buffer[6] = data->block_descriptor_length >> 8;
2455                 real_buffer[7] = data->block_descriptor_length;
2456
2457                 cmd[0] = MODE_SELECT_10;
2458                 cmd[7] = len >> 8;
2459                 cmd[8] = len;
2460         } else {
2461                 if (len > 255 || data->block_descriptor_length > 255 ||
2462                     data->longlba)
2463                         return -EINVAL;
2464
2465                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2466                 if (!real_buffer)
2467                         return -ENOMEM;
2468                 memcpy(real_buffer + 4, buffer, len);
2469                 len += 4;
2470                 real_buffer[0] = 0;
2471                 real_buffer[1] = data->medium_type;
2472                 real_buffer[2] = data->device_specific;
2473                 real_buffer[3] = data->block_descriptor_length;
2474                 
2475
2476                 cmd[0] = MODE_SELECT;
2477                 cmd[4] = len;
2478         }
2479
2480         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2481                                sshdr, timeout, retries, NULL);
2482         kfree(real_buffer);
2483         return ret;
2484 }
2485 EXPORT_SYMBOL_GPL(scsi_mode_select);
2486
2487 /**
2488  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2489  *      @sdev:  SCSI device to be queried
2490  *      @dbd:   set if mode sense will allow block descriptors to be returned
2491  *      @modepage: mode page being requested
2492  *      @buffer: request buffer (may not be smaller than eight bytes)
2493  *      @len:   length of request buffer.
2494  *      @timeout: command timeout
2495  *      @retries: number of retries before failing
2496  *      @data: returns a structure abstracting the mode header data
2497  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2498  *              must be SCSI_SENSE_BUFFERSIZE big.
2499  *
2500  *      Returns zero if unsuccessful, or the header offset (either 4
2501  *      or 8 depending on whether a six or ten byte command was
2502  *      issued) if successful.
2503  */
2504 int
2505 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2506                   unsigned char *buffer, int len, int timeout, int retries,
2507                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2508 {
2509         unsigned char cmd[12];
2510         int use_10_for_ms;
2511         int header_length;
2512         int result, retry_count = retries;
2513         struct scsi_sense_hdr my_sshdr;
2514
2515         memset(data, 0, sizeof(*data));
2516         memset(&cmd[0], 0, 12);
2517         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2518         cmd[2] = modepage;
2519
2520         /* caller might not be interested in sense, but we need it */
2521         if (!sshdr)
2522                 sshdr = &my_sshdr;
2523
2524  retry:
2525         use_10_for_ms = sdev->use_10_for_ms;
2526
2527         if (use_10_for_ms) {
2528                 if (len < 8)
2529                         len = 8;
2530
2531                 cmd[0] = MODE_SENSE_10;
2532                 cmd[8] = len;
2533                 header_length = 8;
2534         } else {
2535                 if (len < 4)
2536                         len = 4;
2537
2538                 cmd[0] = MODE_SENSE;
2539                 cmd[4] = len;
2540                 header_length = 4;
2541         }
2542
2543         memset(buffer, 0, len);
2544
2545         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2546                                   sshdr, timeout, retries, NULL);
2547
2548         /* This code looks awful: what it's doing is making sure an
2549          * ILLEGAL REQUEST sense return identifies the actual command
2550          * byte as the problem.  MODE_SENSE commands can return
2551          * ILLEGAL REQUEST if the code page isn't supported */
2552
2553         if (use_10_for_ms && !scsi_status_is_good(result) &&
2554             (driver_byte(result) & DRIVER_SENSE)) {
2555                 if (scsi_sense_valid(sshdr)) {
2556                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2557                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2558                                 /* 
2559                                  * Invalid command operation code
2560                                  */
2561                                 sdev->use_10_for_ms = 0;
2562                                 goto retry;
2563                         }
2564                 }
2565         }
2566
2567         if(scsi_status_is_good(result)) {
2568                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2569                              (modepage == 6 || modepage == 8))) {
2570                         /* Initio breakage? */
2571                         header_length = 0;
2572                         data->length = 13;
2573                         data->medium_type = 0;
2574                         data->device_specific = 0;
2575                         data->longlba = 0;
2576                         data->block_descriptor_length = 0;
2577                 } else if(use_10_for_ms) {
2578                         data->length = buffer[0]*256 + buffer[1] + 2;
2579                         data->medium_type = buffer[2];
2580                         data->device_specific = buffer[3];
2581                         data->longlba = buffer[4] & 0x01;
2582                         data->block_descriptor_length = buffer[6]*256
2583                                 + buffer[7];
2584                 } else {
2585                         data->length = buffer[0] + 1;
2586                         data->medium_type = buffer[1];
2587                         data->device_specific = buffer[2];
2588                         data->block_descriptor_length = buffer[3];
2589                 }
2590                 data->header_length = header_length;
2591         } else if ((status_byte(result) == CHECK_CONDITION) &&
2592                    scsi_sense_valid(sshdr) &&
2593                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2594                 retry_count--;
2595                 goto retry;
2596         }
2597
2598         return result;
2599 }
2600 EXPORT_SYMBOL(scsi_mode_sense);
2601
2602 /**
2603  *      scsi_test_unit_ready - test if unit is ready
2604  *      @sdev:  scsi device to change the state of.
2605  *      @timeout: command timeout
2606  *      @retries: number of retries before failing
2607  *      @sshdr: outpout pointer for decoded sense information.
2608  *
2609  *      Returns zero if unsuccessful or an error if TUR failed.  For
2610  *      removable media, UNIT_ATTENTION sets ->changed flag.
2611  **/
2612 int
2613 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2614                      struct scsi_sense_hdr *sshdr)
2615 {
2616         char cmd[] = {
2617                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2618         };
2619         int result;
2620
2621         /* try to eat the UNIT_ATTENTION if there are enough retries */
2622         do {
2623                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2624                                           timeout, 1, NULL);
2625                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2626                     sshdr->sense_key == UNIT_ATTENTION)
2627                         sdev->changed = 1;
2628         } while (scsi_sense_valid(sshdr) &&
2629                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2630
2631         return result;
2632 }
2633 EXPORT_SYMBOL(scsi_test_unit_ready);
2634
2635 /**
2636  *      scsi_device_set_state - Take the given device through the device state model.
2637  *      @sdev:  scsi device to change the state of.
2638  *      @state: state to change to.
2639  *
2640  *      Returns zero if successful or an error if the requested
2641  *      transition is illegal.
2642  */
2643 int
2644 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2645 {
2646         enum scsi_device_state oldstate = sdev->sdev_state;
2647
2648         if (state == oldstate)
2649                 return 0;
2650
2651         switch (state) {
2652         case SDEV_CREATED:
2653                 switch (oldstate) {
2654                 case SDEV_CREATED_BLOCK:
2655                         break;
2656                 default:
2657                         goto illegal;
2658                 }
2659                 break;
2660                         
2661         case SDEV_RUNNING:
2662                 switch (oldstate) {
2663                 case SDEV_CREATED:
2664                 case SDEV_OFFLINE:
2665                 case SDEV_TRANSPORT_OFFLINE:
2666                 case SDEV_QUIESCE:
2667                 case SDEV_BLOCK:
2668                         break;
2669                 default:
2670                         goto illegal;
2671                 }
2672                 break;
2673
2674         case SDEV_QUIESCE:
2675                 switch (oldstate) {
2676                 case SDEV_RUNNING:
2677                 case SDEV_OFFLINE:
2678                 case SDEV_TRANSPORT_OFFLINE:
2679                         break;
2680                 default:
2681                         goto illegal;
2682                 }
2683                 break;
2684
2685         case SDEV_OFFLINE:
2686         case SDEV_TRANSPORT_OFFLINE:
2687                 switch (oldstate) {
2688                 case SDEV_CREATED:
2689                 case SDEV_RUNNING:
2690                 case SDEV_QUIESCE:
2691                 case SDEV_BLOCK:
2692                         break;
2693                 default:
2694                         goto illegal;
2695                 }
2696                 break;
2697
2698         case SDEV_BLOCK:
2699                 switch (oldstate) {
2700                 case SDEV_RUNNING:
2701                 case SDEV_CREATED_BLOCK:
2702                         break;
2703                 default:
2704                         goto illegal;
2705                 }
2706                 break;
2707
2708         case SDEV_CREATED_BLOCK:
2709                 switch (oldstate) {
2710                 case SDEV_CREATED:
2711                         break;
2712                 default:
2713                         goto illegal;
2714                 }
2715                 break;
2716
2717         case SDEV_CANCEL:
2718                 switch (oldstate) {
2719                 case SDEV_CREATED:
2720                 case SDEV_RUNNING:
2721                 case SDEV_QUIESCE:
2722                 case SDEV_OFFLINE:
2723                 case SDEV_TRANSPORT_OFFLINE:
2724                         break;
2725                 default:
2726                         goto illegal;
2727                 }
2728                 break;
2729
2730         case SDEV_DEL:
2731                 switch (oldstate) {
2732                 case SDEV_CREATED:
2733                 case SDEV_RUNNING:
2734                 case SDEV_OFFLINE:
2735                 case SDEV_TRANSPORT_OFFLINE:
2736                 case SDEV_CANCEL:
2737                 case SDEV_BLOCK:
2738                 case SDEV_CREATED_BLOCK:
2739                         break;
2740                 default:
2741                         goto illegal;
2742                 }
2743                 break;
2744
2745         }
2746         sdev->sdev_state = state;
2747         return 0;
2748
2749  illegal:
2750         SCSI_LOG_ERROR_RECOVERY(1,
2751                                 sdev_printk(KERN_ERR, sdev,
2752                                             "Illegal state transition %s->%s",
2753                                             scsi_device_state_name(oldstate),
2754                                             scsi_device_state_name(state))
2755                                 );
2756         return -EINVAL;
2757 }
2758 EXPORT_SYMBOL(scsi_device_set_state);
2759
2760 /**
2761  *      sdev_evt_emit - emit a single SCSI device uevent
2762  *      @sdev: associated SCSI device
2763  *      @evt: event to emit
2764  *
2765  *      Send a single uevent (scsi_event) to the associated scsi_device.
2766  */
2767 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2768 {
2769         int idx = 0;
2770         char *envp[3];
2771
2772         switch (evt->evt_type) {
2773         case SDEV_EVT_MEDIA_CHANGE:
2774                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2775                 break;
2776         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2777                 scsi_rescan_device(&sdev->sdev_gendev);
2778                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2779                 break;
2780         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2781                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2782                 break;
2783         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2784                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2785                 break;
2786         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2787                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2788                 break;
2789         case SDEV_EVT_LUN_CHANGE_REPORTED:
2790                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2791                 break;
2792         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2793                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2794                 break;
2795         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2796                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2797                 break;
2798         default:
2799                 /* do nothing */
2800                 break;
2801         }
2802
2803         envp[idx++] = NULL;
2804
2805         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2806 }
2807
2808 /**
2809  *      sdev_evt_thread - send a uevent for each scsi event
2810  *      @work: work struct for scsi_device
2811  *
2812  *      Dispatch queued events to their associated scsi_device kobjects
2813  *      as uevents.
2814  */
2815 void scsi_evt_thread(struct work_struct *work)
2816 {
2817         struct scsi_device *sdev;
2818         enum scsi_device_event evt_type;
2819         LIST_HEAD(event_list);
2820
2821         sdev = container_of(work, struct scsi_device, event_work);
2822
2823         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2824                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2825                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2826
2827         while (1) {
2828                 struct scsi_event *evt;
2829                 struct list_head *this, *tmp;
2830                 unsigned long flags;
2831
2832                 spin_lock_irqsave(&sdev->list_lock, flags);
2833                 list_splice_init(&sdev->event_list, &event_list);
2834                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2835
2836                 if (list_empty(&event_list))
2837                         break;
2838
2839                 list_for_each_safe(this, tmp, &event_list) {
2840                         evt = list_entry(this, struct scsi_event, node);
2841                         list_del(&evt->node);
2842                         scsi_evt_emit(sdev, evt);
2843                         kfree(evt);
2844                 }
2845         }
2846 }
2847
2848 /**
2849  *      sdev_evt_send - send asserted event to uevent thread
2850  *      @sdev: scsi_device event occurred on
2851  *      @evt: event to send
2852  *
2853  *      Assert scsi device event asynchronously.
2854  */
2855 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2856 {
2857         unsigned long flags;
2858
2859 #if 0
2860         /* FIXME: currently this check eliminates all media change events
2861          * for polled devices.  Need to update to discriminate between AN
2862          * and polled events */
2863         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2864                 kfree(evt);
2865                 return;
2866         }
2867 #endif
2868
2869         spin_lock_irqsave(&sdev->list_lock, flags);
2870         list_add_tail(&evt->node, &sdev->event_list);
2871         schedule_work(&sdev->event_work);
2872         spin_unlock_irqrestore(&sdev->list_lock, flags);
2873 }
2874 EXPORT_SYMBOL_GPL(sdev_evt_send);
2875
2876 /**
2877  *      sdev_evt_alloc - allocate a new scsi event
2878  *      @evt_type: type of event to allocate
2879  *      @gfpflags: GFP flags for allocation
2880  *
2881  *      Allocates and returns a new scsi_event.
2882  */
2883 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2884                                   gfp_t gfpflags)
2885 {
2886         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2887         if (!evt)
2888                 return NULL;
2889
2890         evt->evt_type = evt_type;
2891         INIT_LIST_HEAD(&evt->node);
2892
2893         /* evt_type-specific initialization, if any */
2894         switch (evt_type) {
2895         case SDEV_EVT_MEDIA_CHANGE:
2896         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2897         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2898         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2899         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2900         case SDEV_EVT_LUN_CHANGE_REPORTED:
2901         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2902         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2903         default:
2904                 /* do nothing */
2905                 break;
2906         }
2907
2908         return evt;
2909 }
2910 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2911
2912 /**
2913  *      sdev_evt_send_simple - send asserted event to uevent thread
2914  *      @sdev: scsi_device event occurred on
2915  *      @evt_type: type of event to send
2916  *      @gfpflags: GFP flags for allocation
2917  *
2918  *      Assert scsi device event asynchronously, given an event type.
2919  */
2920 void sdev_evt_send_simple(struct scsi_device *sdev,
2921                           enum scsi_device_event evt_type, gfp_t gfpflags)
2922 {
2923         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2924         if (!evt) {
2925                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2926                             evt_type);
2927                 return;
2928         }
2929
2930         sdev_evt_send(sdev, evt);
2931 }
2932 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2933
2934 /**
2935  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2936  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2937  */
2938 static int scsi_request_fn_active(struct scsi_device *sdev)
2939 {
2940         struct request_queue *q = sdev->request_queue;
2941         int request_fn_active;
2942
2943         WARN_ON_ONCE(sdev->host->use_blk_mq);
2944
2945         spin_lock_irq(q->queue_lock);
2946         request_fn_active = q->request_fn_active;
2947         spin_unlock_irq(q->queue_lock);
2948
2949         return request_fn_active;
2950 }
2951
2952 /**
2953  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2954  * @sdev: SCSI device pointer.
2955  *
2956  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2957  * invoked from scsi_request_fn() have finished.
2958  */
2959 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2960 {
2961         WARN_ON_ONCE(sdev->host->use_blk_mq);
2962
2963         while (scsi_request_fn_active(sdev))
2964                 msleep(20);
2965 }
2966
2967 /**
2968  *      scsi_device_quiesce - Block user issued commands.
2969  *      @sdev:  scsi device to quiesce.
2970  *
2971  *      This works by trying to transition to the SDEV_QUIESCE state
2972  *      (which must be a legal transition).  When the device is in this
2973  *      state, only special requests will be accepted, all others will
2974  *      be deferred.  Since special requests may also be requeued requests,
2975  *      a successful return doesn't guarantee the device will be 
2976  *      totally quiescent.
2977  *
2978  *      Must be called with user context, may sleep.
2979  *
2980  *      Returns zero if unsuccessful or an error if not.
2981  */
2982 int
2983 scsi_device_quiesce(struct scsi_device *sdev)
2984 {
2985         struct request_queue *q = sdev->request_queue;
2986         int err;
2987
2988         /*
2989          * It is allowed to call scsi_device_quiesce() multiple times from
2990          * the same context but concurrent scsi_device_quiesce() calls are
2991          * not allowed.
2992          */
2993         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2994
2995         blk_set_preempt_only(q);
2996
2997         blk_mq_freeze_queue(q);
2998         /*
2999          * Ensure that the effect of blk_set_preempt_only() will be visible
3000          * for percpu_ref_tryget() callers that occur after the queue
3001          * unfreeze even if the queue was already frozen before this function
3002          * was called. See also https://lwn.net/Articles/573497/.
3003          */
3004         synchronize_rcu();
3005         blk_mq_unfreeze_queue(q);
3006
3007         mutex_lock(&sdev->state_mutex);
3008         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3009         if (err == 0)
3010                 sdev->quiesced_by = current;
3011         else
3012                 blk_clear_preempt_only(q);
3013         mutex_unlock(&sdev->state_mutex);
3014
3015         return err;
3016 }
3017 EXPORT_SYMBOL(scsi_device_quiesce);
3018
3019 /**
3020  *      scsi_device_resume - Restart user issued commands to a quiesced device.
3021  *      @sdev:  scsi device to resume.
3022  *
3023  *      Moves the device from quiesced back to running and restarts the
3024  *      queues.
3025  *
3026  *      Must be called with user context, may sleep.
3027  */
3028 void scsi_device_resume(struct scsi_device *sdev)
3029 {
3030         /* check if the device state was mutated prior to resume, and if
3031          * so assume the state is being managed elsewhere (for example
3032          * device deleted during suspend)
3033          */
3034         mutex_lock(&sdev->state_mutex);
3035         WARN_ON_ONCE(!sdev->quiesced_by);
3036         sdev->quiesced_by = NULL;
3037         blk_clear_preempt_only(sdev->request_queue);
3038         if (sdev->sdev_state == SDEV_QUIESCE)
3039                 scsi_device_set_state(sdev, SDEV_RUNNING);
3040         mutex_unlock(&sdev->state_mutex);
3041 }
3042 EXPORT_SYMBOL(scsi_device_resume);
3043
3044 static void
3045 device_quiesce_fn(struct scsi_device *sdev, void *data)
3046 {
3047         scsi_device_quiesce(sdev);
3048 }
3049
3050 void
3051 scsi_target_quiesce(struct scsi_target *starget)
3052 {
3053         starget_for_each_device(starget, NULL, device_quiesce_fn);
3054 }
3055 EXPORT_SYMBOL(scsi_target_quiesce);
3056
3057 static void
3058 device_resume_fn(struct scsi_device *sdev, void *data)
3059 {
3060         scsi_device_resume(sdev);
3061 }
3062
3063 void
3064 scsi_target_resume(struct scsi_target *starget)
3065 {
3066         starget_for_each_device(starget, NULL, device_resume_fn);
3067 }
3068 EXPORT_SYMBOL(scsi_target_resume);
3069
3070 /**
3071  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3072  * @sdev: device to block
3073  *
3074  * Pause SCSI command processing on the specified device. Does not sleep.
3075  *
3076  * Returns zero if successful or a negative error code upon failure.
3077  *
3078  * Notes:
3079  * This routine transitions the device to the SDEV_BLOCK state (which must be
3080  * a legal transition). When the device is in this state, command processing
3081  * is paused until the device leaves the SDEV_BLOCK state. See also
3082  * scsi_internal_device_unblock_nowait().
3083  */
3084 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3085 {
3086         struct request_queue *q = sdev->request_queue;
3087         unsigned long flags;
3088         int err = 0;
3089
3090         err = scsi_device_set_state(sdev, SDEV_BLOCK);
3091         if (err) {
3092                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3093
3094                 if (err)
3095                         return err;
3096         }
3097
3098         /* 
3099          * The device has transitioned to SDEV_BLOCK.  Stop the
3100          * block layer from calling the midlayer with this device's
3101          * request queue. 
3102          */
3103         if (q->mq_ops) {
3104                 blk_mq_quiesce_queue_nowait(q);
3105         } else {
3106                 spin_lock_irqsave(q->queue_lock, flags);
3107                 blk_stop_queue(q);
3108                 spin_unlock_irqrestore(q->queue_lock, flags);
3109         }
3110
3111         return 0;
3112 }
3113 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3114
3115 /**
3116  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3117  * @sdev: device to block
3118  *
3119  * Pause SCSI command processing on the specified device and wait until all
3120  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3121  *
3122  * Returns zero if successful or a negative error code upon failure.
3123  *
3124  * Note:
3125  * This routine transitions the device to the SDEV_BLOCK state (which must be
3126  * a legal transition). When the device is in this state, command processing
3127  * is paused until the device leaves the SDEV_BLOCK state. See also
3128  * scsi_internal_device_unblock().
3129  *
3130  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3131  * scsi_internal_device_block() has blocked a SCSI device and also
3132  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3133  */
3134 static int scsi_internal_device_block(struct scsi_device *sdev)
3135 {
3136         struct request_queue *q = sdev->request_queue;
3137         int err;
3138
3139         mutex_lock(&sdev->state_mutex);
3140         err = scsi_internal_device_block_nowait(sdev);
3141         if (err == 0) {
3142                 if (q->mq_ops)
3143                         blk_mq_quiesce_queue(q);
3144                 else
3145                         scsi_wait_for_queuecommand(sdev);
3146         }
3147         mutex_unlock(&sdev->state_mutex);
3148
3149         return err;
3150 }
3151  
3152 void scsi_start_queue(struct scsi_device *sdev)
3153 {
3154         struct request_queue *q = sdev->request_queue;
3155         unsigned long flags;
3156
3157         if (q->mq_ops) {
3158                 blk_mq_unquiesce_queue(q);
3159         } else {
3160                 spin_lock_irqsave(q->queue_lock, flags);
3161                 blk_start_queue(q);
3162                 spin_unlock_irqrestore(q->queue_lock, flags);
3163         }
3164 }
3165
3166 /**
3167  * scsi_internal_device_unblock_nowait - resume a device after a block request
3168  * @sdev:       device to resume
3169  * @new_state:  state to set the device to after unblocking
3170  *
3171  * Restart the device queue for a previously suspended SCSI device. Does not
3172  * sleep.
3173  *
3174  * Returns zero if successful or a negative error code upon failure.
3175  *
3176  * Notes:
3177  * This routine transitions the device to the SDEV_RUNNING state or to one of
3178  * the offline states (which must be a legal transition) allowing the midlayer
3179  * to goose the queue for this device.
3180  */
3181 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3182                                         enum scsi_device_state new_state)
3183 {
3184         /*
3185          * Try to transition the scsi device to SDEV_RUNNING or one of the
3186          * offlined states and goose the device queue if successful.
3187          */
3188         switch (sdev->sdev_state) {
3189         case SDEV_BLOCK:
3190         case SDEV_TRANSPORT_OFFLINE:
3191                 sdev->sdev_state = new_state;
3192                 break;
3193         case SDEV_CREATED_BLOCK:
3194                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3195                     new_state == SDEV_OFFLINE)
3196                         sdev->sdev_state = new_state;
3197                 else
3198                         sdev->sdev_state = SDEV_CREATED;
3199                 break;
3200         case SDEV_CANCEL:
3201         case SDEV_OFFLINE:
3202                 break;
3203         default:
3204                 return -EINVAL;
3205         }
3206         scsi_start_queue(sdev);
3207
3208         return 0;
3209 }
3210 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3211
3212 /**
3213  * scsi_internal_device_unblock - resume a device after a block request
3214  * @sdev:       device to resume
3215  * @new_state:  state to set the device to after unblocking
3216  *
3217  * Restart the device queue for a previously suspended SCSI device. May sleep.
3218  *
3219  * Returns zero if successful or a negative error code upon failure.
3220  *
3221  * Notes:
3222  * This routine transitions the device to the SDEV_RUNNING state or to one of
3223  * the offline states (which must be a legal transition) allowing the midlayer
3224  * to goose the queue for this device.
3225  */
3226 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3227                                         enum scsi_device_state new_state)
3228 {
3229         int ret;
3230
3231         mutex_lock(&sdev->state_mutex);
3232         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3233         mutex_unlock(&sdev->state_mutex);
3234
3235         return ret;
3236 }
3237
3238 static void
3239 device_block(struct scsi_device *sdev, void *data)
3240 {
3241         scsi_internal_device_block(sdev);
3242 }
3243
3244 static int
3245 target_block(struct device *dev, void *data)
3246 {
3247         if (scsi_is_target_device(dev))
3248                 starget_for_each_device(to_scsi_target(dev), NULL,
3249                                         device_block);
3250         return 0;
3251 }
3252
3253 void
3254 scsi_target_block(struct device *dev)
3255 {
3256         if (scsi_is_target_device(dev))
3257                 starget_for_each_device(to_scsi_target(dev), NULL,
3258                                         device_block);
3259         else
3260                 device_for_each_child(dev, NULL, target_block);
3261 }
3262 EXPORT_SYMBOL_GPL(scsi_target_block);
3263
3264 static void
3265 device_unblock(struct scsi_device *sdev, void *data)
3266 {
3267         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3268 }
3269
3270 static int
3271 target_unblock(struct device *dev, void *data)
3272 {
3273         if (scsi_is_target_device(dev))
3274                 starget_for_each_device(to_scsi_target(dev), data,
3275                                         device_unblock);
3276         return 0;
3277 }
3278
3279 void
3280 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3281 {
3282         if (scsi_is_target_device(dev))
3283                 starget_for_each_device(to_scsi_target(dev), &new_state,
3284                                         device_unblock);
3285         else
3286                 device_for_each_child(dev, &new_state, target_unblock);
3287 }
3288 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3289
3290 /**
3291  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3292  * @sgl:        scatter-gather list
3293  * @sg_count:   number of segments in sg
3294  * @offset:     offset in bytes into sg, on return offset into the mapped area
3295  * @len:        bytes to map, on return number of bytes mapped
3296  *
3297  * Returns virtual address of the start of the mapped page
3298  */
3299 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3300                           size_t *offset, size_t *len)
3301 {
3302         int i;
3303         size_t sg_len = 0, len_complete = 0;
3304         struct scatterlist *sg;
3305         struct page *page;
3306
3307         WARN_ON(!irqs_disabled());
3308
3309         for_each_sg(sgl, sg, sg_count, i) {
3310                 len_complete = sg_len; /* Complete sg-entries */
3311                 sg_len += sg->length;
3312                 if (sg_len > *offset)
3313                         break;
3314         }
3315
3316         if (unlikely(i == sg_count)) {
3317                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3318                         "elements %d\n",
3319                        __func__, sg_len, *offset, sg_count);
3320                 WARN_ON(1);
3321                 return NULL;
3322         }
3323
3324         /* Offset starting from the beginning of first page in this sg-entry */
3325         *offset = *offset - len_complete + sg->offset;
3326
3327         /* Assumption: contiguous pages can be accessed as "page + i" */
3328         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3329         *offset &= ~PAGE_MASK;
3330
3331         /* Bytes in this sg-entry from *offset to the end of the page */
3332         sg_len = PAGE_SIZE - *offset;
3333         if (*len > sg_len)
3334                 *len = sg_len;
3335
3336         return kmap_atomic(page);
3337 }
3338 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3339
3340 /**
3341  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3342  * @virt:       virtual address to be unmapped
3343  */
3344 void scsi_kunmap_atomic_sg(void *virt)
3345 {
3346         kunmap_atomic(virt);
3347 }
3348 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3349
3350 void sdev_disable_disk_events(struct scsi_device *sdev)
3351 {
3352         atomic_inc(&sdev->disk_events_disable_depth);
3353 }
3354 EXPORT_SYMBOL(sdev_disable_disk_events);
3355
3356 void sdev_enable_disk_events(struct scsi_device *sdev)
3357 {
3358         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3359                 return;
3360         atomic_dec(&sdev->disk_events_disable_depth);
3361 }
3362 EXPORT_SYMBOL(sdev_enable_disk_events);
3363
3364 /**
3365  * scsi_vpd_lun_id - return a unique device identification
3366  * @sdev: SCSI device
3367  * @id:   buffer for the identification
3368  * @id_len:  length of the buffer
3369  *
3370  * Copies a unique device identification into @id based
3371  * on the information in the VPD page 0x83 of the device.
3372  * The string will be formatted as a SCSI name string.
3373  *
3374  * Returns the length of the identification or error on failure.
3375  * If the identifier is longer than the supplied buffer the actual
3376  * identifier length is returned and the buffer is not zero-padded.
3377  */
3378 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3379 {
3380         u8 cur_id_type = 0xff;
3381         u8 cur_id_size = 0;
3382         const unsigned char *d, *cur_id_str;
3383         const struct scsi_vpd *vpd_pg83;
3384         int id_size = -EINVAL;
3385
3386         rcu_read_lock();
3387         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3388         if (!vpd_pg83) {
3389                 rcu_read_unlock();
3390                 return -ENXIO;
3391         }
3392
3393         /*
3394          * Look for the correct descriptor.
3395          * Order of preference for lun descriptor:
3396          * - SCSI name string
3397          * - NAA IEEE Registered Extended
3398          * - EUI-64 based 16-byte
3399          * - EUI-64 based 12-byte
3400          * - NAA IEEE Registered
3401          * - NAA IEEE Extended
3402          * - T10 Vendor ID
3403          * as longer descriptors reduce the likelyhood
3404          * of identification clashes.
3405          */
3406
3407         /* The id string must be at least 20 bytes + terminating NULL byte */
3408         if (id_len < 21) {
3409                 rcu_read_unlock();
3410                 return -EINVAL;
3411         }
3412
3413         memset(id, 0, id_len);
3414         d = vpd_pg83->data + 4;
3415         while (d < vpd_pg83->data + vpd_pg83->len) {
3416                 /* Skip designators not referring to the LUN */
3417                 if ((d[1] & 0x30) != 0x00)
3418                         goto next_desig;
3419
3420                 switch (d[1] & 0xf) {
3421                 case 0x1:
3422                         /* T10 Vendor ID */
3423                         if (cur_id_size > d[3])
3424                                 break;
3425                         /* Prefer anything */
3426                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3427                                 break;
3428                         cur_id_size = d[3];
3429                         if (cur_id_size + 4 > id_len)
3430                                 cur_id_size = id_len - 4;
3431                         cur_id_str = d + 4;
3432                         cur_id_type = d[1] & 0xf;
3433                         id_size = snprintf(id, id_len, "t10.%*pE",
3434                                            cur_id_size, cur_id_str);
3435                         break;
3436                 case 0x2:
3437                         /* EUI-64 */
3438                         if (cur_id_size > d[3])
3439                                 break;
3440                         /* Prefer NAA IEEE Registered Extended */
3441                         if (cur_id_type == 0x3 &&
3442                             cur_id_size == d[3])
3443                                 break;
3444                         cur_id_size = d[3];
3445                         cur_id_str = d + 4;
3446                         cur_id_type = d[1] & 0xf;
3447                         switch (cur_id_size) {
3448                         case 8:
3449                                 id_size = snprintf(id, id_len,
3450                                                    "eui.%8phN",
3451                                                    cur_id_str);
3452                                 break;
3453                         case 12:
3454                                 id_size = snprintf(id, id_len,
3455                                                    "eui.%12phN",
3456                                                    cur_id_str);
3457                                 break;
3458                         case 16:
3459                                 id_size = snprintf(id, id_len,
3460                                                    "eui.%16phN",
3461                                                    cur_id_str);
3462                                 break;
3463                         default:
3464                                 cur_id_size = 0;
3465                                 break;
3466                         }
3467                         break;
3468                 case 0x3:
3469                         /* NAA */
3470                         if (cur_id_size > d[3])
3471                                 break;
3472                         cur_id_size = d[3];
3473                         cur_id_str = d + 4;
3474                         cur_id_type = d[1] & 0xf;
3475                         switch (cur_id_size) {
3476                         case 8:
3477                                 id_size = snprintf(id, id_len,
3478                                                    "naa.%8phN",
3479                                                    cur_id_str);
3480                                 break;
3481                         case 16:
3482                                 id_size = snprintf(id, id_len,
3483                                                    "naa.%16phN",
3484                                                    cur_id_str);
3485                                 break;
3486                         default:
3487                                 cur_id_size = 0;
3488                                 break;
3489                         }
3490                         break;
3491                 case 0x8:
3492                         /* SCSI name string */
3493                         if (cur_id_size + 4 > d[3])
3494                                 break;
3495                         /* Prefer others for truncated descriptor */
3496                         if (cur_id_size && d[3] > id_len)
3497                                 break;
3498                         cur_id_size = id_size = d[3];
3499                         cur_id_str = d + 4;
3500                         cur_id_type = d[1] & 0xf;
3501                         if (cur_id_size >= id_len)
3502                                 cur_id_size = id_len - 1;
3503                         memcpy(id, cur_id_str, cur_id_size);
3504                         /* Decrease priority for truncated descriptor */
3505                         if (cur_id_size != id_size)
3506                                 cur_id_size = 6;
3507                         break;
3508                 default:
3509                         break;
3510                 }
3511 next_desig:
3512                 d += d[3] + 4;
3513         }
3514         rcu_read_unlock();
3515
3516         return id_size;
3517 }
3518 EXPORT_SYMBOL(scsi_vpd_lun_id);
3519
3520 /*
3521  * scsi_vpd_tpg_id - return a target port group identifier
3522  * @sdev: SCSI device
3523  *
3524  * Returns the Target Port Group identifier from the information
3525  * froom VPD page 0x83 of the device.
3526  *
3527  * Returns the identifier or error on failure.
3528  */
3529 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3530 {
3531         const unsigned char *d;
3532         const struct scsi_vpd *vpd_pg83;
3533         int group_id = -EAGAIN, rel_port = -1;
3534
3535         rcu_read_lock();
3536         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3537         if (!vpd_pg83) {
3538                 rcu_read_unlock();
3539                 return -ENXIO;
3540         }
3541
3542         d = vpd_pg83->data + 4;
3543         while (d < vpd_pg83->data + vpd_pg83->len) {
3544                 switch (d[1] & 0xf) {
3545                 case 0x4:
3546                         /* Relative target port */
3547                         rel_port = get_unaligned_be16(&d[6]);
3548                         break;
3549                 case 0x5:
3550                         /* Target port group */
3551                         group_id = get_unaligned_be16(&d[6]);
3552                         break;
3553                 default:
3554                         break;
3555                 }
3556                 d += d[3] + 4;
3557         }
3558         rcu_read_unlock();
3559
3560         if (group_id >= 0 && rel_id && rel_port != -1)
3561                 *rel_id = rel_port;
3562
3563         return group_id;
3564 }
3565 EXPORT_SYMBOL(scsi_vpd_tpg_id);