Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63         int ret = 0;
64
65         mutex_lock(&scsi_sense_cache_mutex);
66         if (!scsi_sense_cache) {
67                 scsi_sense_cache =
68                         kmem_cache_create_usercopy("scsi_sense_cache",
69                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
71                 if (!scsi_sense_cache)
72                         ret = -ENOMEM;
73         }
74         mutex_unlock(&scsi_sense_cache_mutex);
75         return ret;
76 }
77
78 /*
79  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
80  * not change behaviour from the previous unplug mechanism, experimentation
81  * may prove this needs changing.
82  */
83 #define SCSI_QUEUE_DELAY        3
84
85 static void
86 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
87 {
88         struct Scsi_Host *host = cmd->device->host;
89         struct scsi_device *device = cmd->device;
90         struct scsi_target *starget = scsi_target(device);
91
92         /*
93          * Set the appropriate busy bit for the device/host.
94          *
95          * If the host/device isn't busy, assume that something actually
96          * completed, and that we should be able to queue a command now.
97          *
98          * Note that the prior mid-layer assumption that any host could
99          * always queue at least one command is now broken.  The mid-layer
100          * will implement a user specifiable stall (see
101          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
102          * if a command is requeued with no other commands outstanding
103          * either for the device or for the host.
104          */
105         switch (reason) {
106         case SCSI_MLQUEUE_HOST_BUSY:
107                 atomic_set(&host->host_blocked, host->max_host_blocked);
108                 break;
109         case SCSI_MLQUEUE_DEVICE_BUSY:
110         case SCSI_MLQUEUE_EH_RETRY:
111                 atomic_set(&device->device_blocked,
112                            device->max_device_blocked);
113                 break;
114         case SCSI_MLQUEUE_TARGET_BUSY:
115                 atomic_set(&starget->target_blocked,
116                            starget->max_target_blocked);
117                 break;
118         }
119 }
120
121 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
122 {
123         struct request *rq = scsi_cmd_to_rq(cmd);
124
125         if (rq->rq_flags & RQF_DONTPREP) {
126                 rq->rq_flags &= ~RQF_DONTPREP;
127                 scsi_mq_uninit_cmd(cmd);
128         } else {
129                 WARN_ON_ONCE(true);
130         }
131         blk_mq_requeue_request(rq, true);
132 }
133
134 /**
135  * __scsi_queue_insert - private queue insertion
136  * @cmd: The SCSI command being requeued
137  * @reason:  The reason for the requeue
138  * @unbusy: Whether the queue should be unbusied
139  *
140  * This is a private queue insertion.  The public interface
141  * scsi_queue_insert() always assumes the queue should be unbusied
142  * because it's always called before the completion.  This function is
143  * for a requeue after completion, which should only occur in this
144  * file.
145  */
146 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
147 {
148         struct scsi_device *device = cmd->device;
149
150         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
151                 "Inserting command %p into mlqueue\n", cmd));
152
153         scsi_set_blocked(cmd, reason);
154
155         /*
156          * Decrement the counters, since these commands are no longer
157          * active on the host/device.
158          */
159         if (unbusy)
160                 scsi_device_unbusy(device, cmd);
161
162         /*
163          * Requeue this command.  It will go before all other commands
164          * that are already in the queue. Schedule requeue work under
165          * lock such that the kblockd_schedule_work() call happens
166          * before blk_cleanup_queue() finishes.
167          */
168         cmd->result = 0;
169
170         blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
171 }
172
173 /**
174  * scsi_queue_insert - Reinsert a command in the queue.
175  * @cmd:    command that we are adding to queue.
176  * @reason: why we are inserting command to queue.
177  *
178  * We do this for one of two cases. Either the host is busy and it cannot accept
179  * any more commands for the time being, or the device returned QUEUE_FULL and
180  * can accept no more commands.
181  *
182  * Context: This could be called either from an interrupt context or a normal
183  * process context.
184  */
185 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
186 {
187         __scsi_queue_insert(cmd, reason, true);
188 }
189
190
191 /**
192  * __scsi_execute - insert request and wait for the result
193  * @sdev:       scsi device
194  * @cmd:        scsi command
195  * @data_direction: data direction
196  * @buffer:     data buffer
197  * @bufflen:    len of buffer
198  * @sense:      optional sense buffer
199  * @sshdr:      optional decoded sense header
200  * @timeout:    request timeout in HZ
201  * @retries:    number of times to retry request
202  * @flags:      flags for ->cmd_flags
203  * @rq_flags:   flags for ->rq_flags
204  * @resid:      optional residual length
205  *
206  * Returns the scsi_cmnd result field if a command was executed, or a negative
207  * Linux error code if we didn't get that far.
208  */
209 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
210                  int data_direction, void *buffer, unsigned bufflen,
211                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
212                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
213                  int *resid)
214 {
215         struct request *req;
216         struct scsi_cmnd *scmd;
217         int ret;
218
219         req = scsi_alloc_request(sdev->request_queue,
220                         data_direction == DMA_TO_DEVICE ?
221                         REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
222                         rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
223         if (IS_ERR(req))
224                 return PTR_ERR(req);
225
226         if (bufflen) {
227                 ret = blk_rq_map_kern(sdev->request_queue, req,
228                                       buffer, bufflen, GFP_NOIO);
229                 if (ret)
230                         goto out;
231         }
232         scmd = blk_mq_rq_to_pdu(req);
233         scmd->cmd_len = COMMAND_SIZE(cmd[0]);
234         memcpy(scmd->cmnd, cmd, scmd->cmd_len);
235         scmd->allowed = retries;
236         req->timeout = timeout;
237         req->cmd_flags |= flags;
238         req->rq_flags |= rq_flags | RQF_QUIET;
239
240         /*
241          * head injection *required* here otherwise quiesce won't work
242          */
243         blk_execute_rq(req, true);
244
245         /*
246          * Some devices (USB mass-storage in particular) may transfer
247          * garbage data together with a residue indicating that the data
248          * is invalid.  Prevent the garbage from being misinterpreted
249          * and prevent security leaks by zeroing out the excess data.
250          */
251         if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
252                 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
253
254         if (resid)
255                 *resid = scmd->resid_len;
256         if (sense && scmd->sense_len)
257                 memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
258         if (sshdr)
259                 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
260                                      sshdr);
261         ret = scmd->result;
262  out:
263         blk_mq_free_request(req);
264
265         return ret;
266 }
267 EXPORT_SYMBOL(__scsi_execute);
268
269 /*
270  * Wake up the error handler if necessary. Avoid as follows that the error
271  * handler is not woken up if host in-flight requests number ==
272  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
273  * with an RCU read lock in this function to ensure that this function in
274  * its entirety either finishes before scsi_eh_scmd_add() increases the
275  * host_failed counter or that it notices the shost state change made by
276  * scsi_eh_scmd_add().
277  */
278 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
279 {
280         unsigned long flags;
281
282         rcu_read_lock();
283         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
284         if (unlikely(scsi_host_in_recovery(shost))) {
285                 spin_lock_irqsave(shost->host_lock, flags);
286                 if (shost->host_failed || shost->host_eh_scheduled)
287                         scsi_eh_wakeup(shost);
288                 spin_unlock_irqrestore(shost->host_lock, flags);
289         }
290         rcu_read_unlock();
291 }
292
293 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
294 {
295         struct Scsi_Host *shost = sdev->host;
296         struct scsi_target *starget = scsi_target(sdev);
297
298         scsi_dec_host_busy(shost, cmd);
299
300         if (starget->can_queue > 0)
301                 atomic_dec(&starget->target_busy);
302
303         sbitmap_put(&sdev->budget_map, cmd->budget_token);
304         cmd->budget_token = -1;
305 }
306
307 static void scsi_kick_queue(struct request_queue *q)
308 {
309         blk_mq_run_hw_queues(q, false);
310 }
311
312 /*
313  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
314  * and call blk_run_queue for all the scsi_devices on the target -
315  * including current_sdev first.
316  *
317  * Called with *no* scsi locks held.
318  */
319 static void scsi_single_lun_run(struct scsi_device *current_sdev)
320 {
321         struct Scsi_Host *shost = current_sdev->host;
322         struct scsi_device *sdev, *tmp;
323         struct scsi_target *starget = scsi_target(current_sdev);
324         unsigned long flags;
325
326         spin_lock_irqsave(shost->host_lock, flags);
327         starget->starget_sdev_user = NULL;
328         spin_unlock_irqrestore(shost->host_lock, flags);
329
330         /*
331          * Call blk_run_queue for all LUNs on the target, starting with
332          * current_sdev. We race with others (to set starget_sdev_user),
333          * but in most cases, we will be first. Ideally, each LU on the
334          * target would get some limited time or requests on the target.
335          */
336         scsi_kick_queue(current_sdev->request_queue);
337
338         spin_lock_irqsave(shost->host_lock, flags);
339         if (starget->starget_sdev_user)
340                 goto out;
341         list_for_each_entry_safe(sdev, tmp, &starget->devices,
342                         same_target_siblings) {
343                 if (sdev == current_sdev)
344                         continue;
345                 if (scsi_device_get(sdev))
346                         continue;
347
348                 spin_unlock_irqrestore(shost->host_lock, flags);
349                 scsi_kick_queue(sdev->request_queue);
350                 spin_lock_irqsave(shost->host_lock, flags);
351
352                 scsi_device_put(sdev);
353         }
354  out:
355         spin_unlock_irqrestore(shost->host_lock, flags);
356 }
357
358 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
359 {
360         if (scsi_device_busy(sdev) >= sdev->queue_depth)
361                 return true;
362         if (atomic_read(&sdev->device_blocked) > 0)
363                 return true;
364         return false;
365 }
366
367 static inline bool scsi_target_is_busy(struct scsi_target *starget)
368 {
369         if (starget->can_queue > 0) {
370                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
371                         return true;
372                 if (atomic_read(&starget->target_blocked) > 0)
373                         return true;
374         }
375         return false;
376 }
377
378 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
379 {
380         if (atomic_read(&shost->host_blocked) > 0)
381                 return true;
382         if (shost->host_self_blocked)
383                 return true;
384         return false;
385 }
386
387 static void scsi_starved_list_run(struct Scsi_Host *shost)
388 {
389         LIST_HEAD(starved_list);
390         struct scsi_device *sdev;
391         unsigned long flags;
392
393         spin_lock_irqsave(shost->host_lock, flags);
394         list_splice_init(&shost->starved_list, &starved_list);
395
396         while (!list_empty(&starved_list)) {
397                 struct request_queue *slq;
398
399                 /*
400                  * As long as shost is accepting commands and we have
401                  * starved queues, call blk_run_queue. scsi_request_fn
402                  * drops the queue_lock and can add us back to the
403                  * starved_list.
404                  *
405                  * host_lock protects the starved_list and starved_entry.
406                  * scsi_request_fn must get the host_lock before checking
407                  * or modifying starved_list or starved_entry.
408                  */
409                 if (scsi_host_is_busy(shost))
410                         break;
411
412                 sdev = list_entry(starved_list.next,
413                                   struct scsi_device, starved_entry);
414                 list_del_init(&sdev->starved_entry);
415                 if (scsi_target_is_busy(scsi_target(sdev))) {
416                         list_move_tail(&sdev->starved_entry,
417                                        &shost->starved_list);
418                         continue;
419                 }
420
421                 /*
422                  * Once we drop the host lock, a racing scsi_remove_device()
423                  * call may remove the sdev from the starved list and destroy
424                  * it and the queue.  Mitigate by taking a reference to the
425                  * queue and never touching the sdev again after we drop the
426                  * host lock.  Note: if __scsi_remove_device() invokes
427                  * blk_cleanup_queue() before the queue is run from this
428                  * function then blk_run_queue() will return immediately since
429                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
430                  */
431                 slq = sdev->request_queue;
432                 if (!blk_get_queue(slq))
433                         continue;
434                 spin_unlock_irqrestore(shost->host_lock, flags);
435
436                 scsi_kick_queue(slq);
437                 blk_put_queue(slq);
438
439                 spin_lock_irqsave(shost->host_lock, flags);
440         }
441         /* put any unprocessed entries back */
442         list_splice(&starved_list, &shost->starved_list);
443         spin_unlock_irqrestore(shost->host_lock, flags);
444 }
445
446 /**
447  * scsi_run_queue - Select a proper request queue to serve next.
448  * @q:  last request's queue
449  *
450  * The previous command was completely finished, start a new one if possible.
451  */
452 static void scsi_run_queue(struct request_queue *q)
453 {
454         struct scsi_device *sdev = q->queuedata;
455
456         if (scsi_target(sdev)->single_lun)
457                 scsi_single_lun_run(sdev);
458         if (!list_empty(&sdev->host->starved_list))
459                 scsi_starved_list_run(sdev->host);
460
461         blk_mq_run_hw_queues(q, false);
462 }
463
464 void scsi_requeue_run_queue(struct work_struct *work)
465 {
466         struct scsi_device *sdev;
467         struct request_queue *q;
468
469         sdev = container_of(work, struct scsi_device, requeue_work);
470         q = sdev->request_queue;
471         scsi_run_queue(q);
472 }
473
474 void scsi_run_host_queues(struct Scsi_Host *shost)
475 {
476         struct scsi_device *sdev;
477
478         shost_for_each_device(sdev, shost)
479                 scsi_run_queue(sdev->request_queue);
480 }
481
482 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
483 {
484         if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
485                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
486
487                 if (drv->uninit_command)
488                         drv->uninit_command(cmd);
489         }
490 }
491
492 void scsi_free_sgtables(struct scsi_cmnd *cmd)
493 {
494         if (cmd->sdb.table.nents)
495                 sg_free_table_chained(&cmd->sdb.table,
496                                 SCSI_INLINE_SG_CNT);
497         if (scsi_prot_sg_count(cmd))
498                 sg_free_table_chained(&cmd->prot_sdb->table,
499                                 SCSI_INLINE_PROT_SG_CNT);
500 }
501 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
502
503 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
504 {
505         scsi_free_sgtables(cmd);
506         scsi_uninit_cmd(cmd);
507 }
508
509 static void scsi_run_queue_async(struct scsi_device *sdev)
510 {
511         if (scsi_target(sdev)->single_lun ||
512             !list_empty(&sdev->host->starved_list)) {
513                 kblockd_schedule_work(&sdev->requeue_work);
514         } else {
515                 /*
516                  * smp_mb() present in sbitmap_queue_clear() or implied in
517                  * .end_io is for ordering writing .device_busy in
518                  * scsi_device_unbusy() and reading sdev->restarts.
519                  */
520                 int old = atomic_read(&sdev->restarts);
521
522                 /*
523                  * ->restarts has to be kept as non-zero if new budget
524                  *  contention occurs.
525                  *
526                  *  No need to run queue when either another re-run
527                  *  queue wins in updating ->restarts or a new budget
528                  *  contention occurs.
529                  */
530                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
531                         blk_mq_run_hw_queues(sdev->request_queue, true);
532         }
533 }
534
535 /* Returns false when no more bytes to process, true if there are more */
536 static bool scsi_end_request(struct request *req, blk_status_t error,
537                 unsigned int bytes)
538 {
539         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
540         struct scsi_device *sdev = cmd->device;
541         struct request_queue *q = sdev->request_queue;
542
543         if (blk_update_request(req, error, bytes))
544                 return true;
545
546         // XXX:
547         if (blk_queue_add_random(q))
548                 add_disk_randomness(req->q->disk);
549
550         if (!blk_rq_is_passthrough(req)) {
551                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
552                 cmd->flags &= ~SCMD_INITIALIZED;
553         }
554
555         /*
556          * Calling rcu_barrier() is not necessary here because the
557          * SCSI error handler guarantees that the function called by
558          * call_rcu() has been called before scsi_end_request() is
559          * called.
560          */
561         destroy_rcu_head(&cmd->rcu);
562
563         /*
564          * In the MQ case the command gets freed by __blk_mq_end_request,
565          * so we have to do all cleanup that depends on it earlier.
566          *
567          * We also can't kick the queues from irq context, so we
568          * will have to defer it to a workqueue.
569          */
570         scsi_mq_uninit_cmd(cmd);
571
572         /*
573          * queue is still alive, so grab the ref for preventing it
574          * from being cleaned up during running queue.
575          */
576         percpu_ref_get(&q->q_usage_counter);
577
578         __blk_mq_end_request(req, error);
579
580         scsi_run_queue_async(sdev);
581
582         percpu_ref_put(&q->q_usage_counter);
583         return false;
584 }
585
586 /**
587  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
588  * @cmd:        SCSI command
589  * @result:     scsi error code
590  *
591  * Translate a SCSI result code into a blk_status_t value. May reset the host
592  * byte of @cmd->result.
593  */
594 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
595 {
596         switch (host_byte(result)) {
597         case DID_OK:
598                 if (scsi_status_is_good(result))
599                         return BLK_STS_OK;
600                 return BLK_STS_IOERR;
601         case DID_TRANSPORT_FAILFAST:
602         case DID_TRANSPORT_MARGINAL:
603                 return BLK_STS_TRANSPORT;
604         case DID_TARGET_FAILURE:
605                 set_host_byte(cmd, DID_OK);
606                 return BLK_STS_TARGET;
607         case DID_NEXUS_FAILURE:
608                 set_host_byte(cmd, DID_OK);
609                 return BLK_STS_NEXUS;
610         case DID_ALLOC_FAILURE:
611                 set_host_byte(cmd, DID_OK);
612                 return BLK_STS_NOSPC;
613         case DID_MEDIUM_ERROR:
614                 set_host_byte(cmd, DID_OK);
615                 return BLK_STS_MEDIUM;
616         default:
617                 return BLK_STS_IOERR;
618         }
619 }
620
621 /**
622  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
623  * @rq: request to examine
624  *
625  * Description:
626  *     A request could be merge of IOs which require different failure
627  *     handling.  This function determines the number of bytes which
628  *     can be failed from the beginning of the request without
629  *     crossing into area which need to be retried further.
630  *
631  * Return:
632  *     The number of bytes to fail.
633  */
634 static unsigned int scsi_rq_err_bytes(const struct request *rq)
635 {
636         unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
637         unsigned int bytes = 0;
638         struct bio *bio;
639
640         if (!(rq->rq_flags & RQF_MIXED_MERGE))
641                 return blk_rq_bytes(rq);
642
643         /*
644          * Currently the only 'mixing' which can happen is between
645          * different fastfail types.  We can safely fail portions
646          * which have all the failfast bits that the first one has -
647          * the ones which are at least as eager to fail as the first
648          * one.
649          */
650         for (bio = rq->bio; bio; bio = bio->bi_next) {
651                 if ((bio->bi_opf & ff) != ff)
652                         break;
653                 bytes += bio->bi_iter.bi_size;
654         }
655
656         /* this could lead to infinite loop */
657         BUG_ON(blk_rq_bytes(rq) && !bytes);
658         return bytes;
659 }
660
661 /* Helper for scsi_io_completion() when "reprep" action required. */
662 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
663                                       struct request_queue *q)
664 {
665         /* A new command will be prepared and issued. */
666         scsi_mq_requeue_cmd(cmd);
667 }
668
669 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
670 {
671         struct request *req = scsi_cmd_to_rq(cmd);
672         unsigned long wait_for;
673
674         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
675                 return false;
676
677         wait_for = (cmd->allowed + 1) * req->timeout;
678         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
679                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
680                             wait_for/HZ);
681                 return true;
682         }
683         return false;
684 }
685
686 /* Helper for scsi_io_completion() when special action required. */
687 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
688 {
689         struct request_queue *q = cmd->device->request_queue;
690         struct request *req = scsi_cmd_to_rq(cmd);
691         int level = 0;
692         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
693               ACTION_DELAYED_RETRY} action;
694         struct scsi_sense_hdr sshdr;
695         bool sense_valid;
696         bool sense_current = true;      /* false implies "deferred sense" */
697         blk_status_t blk_stat;
698
699         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
700         if (sense_valid)
701                 sense_current = !scsi_sense_is_deferred(&sshdr);
702
703         blk_stat = scsi_result_to_blk_status(cmd, result);
704
705         if (host_byte(result) == DID_RESET) {
706                 /* Third party bus reset or reset for error recovery
707                  * reasons.  Just retry the command and see what
708                  * happens.
709                  */
710                 action = ACTION_RETRY;
711         } else if (sense_valid && sense_current) {
712                 switch (sshdr.sense_key) {
713                 case UNIT_ATTENTION:
714                         if (cmd->device->removable) {
715                                 /* Detected disc change.  Set a bit
716                                  * and quietly refuse further access.
717                                  */
718                                 cmd->device->changed = 1;
719                                 action = ACTION_FAIL;
720                         } else {
721                                 /* Must have been a power glitch, or a
722                                  * bus reset.  Could not have been a
723                                  * media change, so we just retry the
724                                  * command and see what happens.
725                                  */
726                                 action = ACTION_RETRY;
727                         }
728                         break;
729                 case ILLEGAL_REQUEST:
730                         /* If we had an ILLEGAL REQUEST returned, then
731                          * we may have performed an unsupported
732                          * command.  The only thing this should be
733                          * would be a ten byte read where only a six
734                          * byte read was supported.  Also, on a system
735                          * where READ CAPACITY failed, we may have
736                          * read past the end of the disk.
737                          */
738                         if ((cmd->device->use_10_for_rw &&
739                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
740                             (cmd->cmnd[0] == READ_10 ||
741                              cmd->cmnd[0] == WRITE_10)) {
742                                 /* This will issue a new 6-byte command. */
743                                 cmd->device->use_10_for_rw = 0;
744                                 action = ACTION_REPREP;
745                         } else if (sshdr.asc == 0x10) /* DIX */ {
746                                 action = ACTION_FAIL;
747                                 blk_stat = BLK_STS_PROTECTION;
748                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
749                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
750                                 action = ACTION_FAIL;
751                                 blk_stat = BLK_STS_TARGET;
752                         } else
753                                 action = ACTION_FAIL;
754                         break;
755                 case ABORTED_COMMAND:
756                         action = ACTION_FAIL;
757                         if (sshdr.asc == 0x10) /* DIF */
758                                 blk_stat = BLK_STS_PROTECTION;
759                         break;
760                 case NOT_READY:
761                         /* If the device is in the process of becoming
762                          * ready, or has a temporary blockage, retry.
763                          */
764                         if (sshdr.asc == 0x04) {
765                                 switch (sshdr.ascq) {
766                                 case 0x01: /* becoming ready */
767                                 case 0x04: /* format in progress */
768                                 case 0x05: /* rebuild in progress */
769                                 case 0x06: /* recalculation in progress */
770                                 case 0x07: /* operation in progress */
771                                 case 0x08: /* Long write in progress */
772                                 case 0x09: /* self test in progress */
773                                 case 0x11: /* notify (enable spinup) required */
774                                 case 0x14: /* space allocation in progress */
775                                 case 0x1a: /* start stop unit in progress */
776                                 case 0x1b: /* sanitize in progress */
777                                 case 0x1d: /* configuration in progress */
778                                 case 0x24: /* depopulation in progress */
779                                         action = ACTION_DELAYED_RETRY;
780                                         break;
781                                 case 0x0a: /* ALUA state transition */
782                                         blk_stat = BLK_STS_AGAIN;
783                                         fallthrough;
784                                 default:
785                                         action = ACTION_FAIL;
786                                         break;
787                                 }
788                         } else
789                                 action = ACTION_FAIL;
790                         break;
791                 case VOLUME_OVERFLOW:
792                         /* See SSC3rXX or current. */
793                         action = ACTION_FAIL;
794                         break;
795                 case DATA_PROTECT:
796                         action = ACTION_FAIL;
797                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
798                             (sshdr.asc == 0x55 &&
799                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
800                                 /* Insufficient zone resources */
801                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
802                         }
803                         break;
804                 default:
805                         action = ACTION_FAIL;
806                         break;
807                 }
808         } else
809                 action = ACTION_FAIL;
810
811         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
812                 action = ACTION_FAIL;
813
814         switch (action) {
815         case ACTION_FAIL:
816                 /* Give up and fail the remainder of the request */
817                 if (!(req->rq_flags & RQF_QUIET)) {
818                         static DEFINE_RATELIMIT_STATE(_rs,
819                                         DEFAULT_RATELIMIT_INTERVAL,
820                                         DEFAULT_RATELIMIT_BURST);
821
822                         if (unlikely(scsi_logging_level))
823                                 level =
824                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
825                                                     SCSI_LOG_MLCOMPLETE_BITS);
826
827                         /*
828                          * if logging is enabled the failure will be printed
829                          * in scsi_log_completion(), so avoid duplicate messages
830                          */
831                         if (!level && __ratelimit(&_rs)) {
832                                 scsi_print_result(cmd, NULL, FAILED);
833                                 if (sense_valid)
834                                         scsi_print_sense(cmd);
835                                 scsi_print_command(cmd);
836                         }
837                 }
838                 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
839                         return;
840                 fallthrough;
841         case ACTION_REPREP:
842                 scsi_io_completion_reprep(cmd, q);
843                 break;
844         case ACTION_RETRY:
845                 /* Retry the same command immediately */
846                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
847                 break;
848         case ACTION_DELAYED_RETRY:
849                 /* Retry the same command after a delay */
850                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
851                 break;
852         }
853 }
854
855 /*
856  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
857  * new result that may suppress further error checking. Also modifies
858  * *blk_statp in some cases.
859  */
860 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
861                                         blk_status_t *blk_statp)
862 {
863         bool sense_valid;
864         bool sense_current = true;      /* false implies "deferred sense" */
865         struct request *req = scsi_cmd_to_rq(cmd);
866         struct scsi_sense_hdr sshdr;
867
868         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
869         if (sense_valid)
870                 sense_current = !scsi_sense_is_deferred(&sshdr);
871
872         if (blk_rq_is_passthrough(req)) {
873                 if (sense_valid) {
874                         /*
875                          * SG_IO wants current and deferred errors
876                          */
877                         cmd->sense_len = min(8 + cmd->sense_buffer[7],
878                                              SCSI_SENSE_BUFFERSIZE);
879                 }
880                 if (sense_current)
881                         *blk_statp = scsi_result_to_blk_status(cmd, result);
882         } else if (blk_rq_bytes(req) == 0 && sense_current) {
883                 /*
884                  * Flush commands do not transfers any data, and thus cannot use
885                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
886                  * This sets *blk_statp explicitly for the problem case.
887                  */
888                 *blk_statp = scsi_result_to_blk_status(cmd, result);
889         }
890         /*
891          * Recovered errors need reporting, but they're always treated as
892          * success, so fiddle the result code here.  For passthrough requests
893          * we already took a copy of the original into sreq->result which
894          * is what gets returned to the user
895          */
896         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
897                 bool do_print = true;
898                 /*
899                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
900                  * skip print since caller wants ATA registers. Only occurs
901                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
902                  */
903                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904                         do_print = false;
905                 else if (req->rq_flags & RQF_QUIET)
906                         do_print = false;
907                 if (do_print)
908                         scsi_print_sense(cmd);
909                 result = 0;
910                 /* for passthrough, *blk_statp may be set */
911                 *blk_statp = BLK_STS_OK;
912         }
913         /*
914          * Another corner case: the SCSI status byte is non-zero but 'good'.
915          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
916          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
917          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
918          * intermediate statuses (both obsolete in SAM-4) as good.
919          */
920         if ((result & 0xff) && scsi_status_is_good(result)) {
921                 result = 0;
922                 *blk_statp = BLK_STS_OK;
923         }
924         return result;
925 }
926
927 /**
928  * scsi_io_completion - Completion processing for SCSI commands.
929  * @cmd:        command that is finished.
930  * @good_bytes: number of processed bytes.
931  *
932  * We will finish off the specified number of sectors. If we are done, the
933  * command block will be released and the queue function will be goosed. If we
934  * are not done then we have to figure out what to do next:
935  *
936  *   a) We can call scsi_io_completion_reprep().  The request will be
937  *      unprepared and put back on the queue.  Then a new command will
938  *      be created for it.  This should be used if we made forward
939  *      progress, or if we want to switch from READ(10) to READ(6) for
940  *      example.
941  *
942  *   b) We can call scsi_io_completion_action().  The request will be
943  *      put back on the queue and retried using the same command as
944  *      before, possibly after a delay.
945  *
946  *   c) We can call scsi_end_request() with blk_stat other than
947  *      BLK_STS_OK, to fail the remainder of the request.
948  */
949 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
950 {
951         int result = cmd->result;
952         struct request_queue *q = cmd->device->request_queue;
953         struct request *req = scsi_cmd_to_rq(cmd);
954         blk_status_t blk_stat = BLK_STS_OK;
955
956         if (unlikely(result))   /* a nz result may or may not be an error */
957                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
958
959         /*
960          * Next deal with any sectors which we were able to correctly
961          * handle.
962          */
963         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
964                 "%u sectors total, %d bytes done.\n",
965                 blk_rq_sectors(req), good_bytes));
966
967         /*
968          * Failed, zero length commands always need to drop down
969          * to retry code. Fast path should return in this block.
970          */
971         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
972                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
973                         return; /* no bytes remaining */
974         }
975
976         /* Kill remainder if no retries. */
977         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
978                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
979                         WARN_ONCE(true,
980                             "Bytes remaining after failed, no-retry command");
981                 return;
982         }
983
984         /*
985          * If there had been no error, but we have leftover bytes in the
986          * request just queue the command up again.
987          */
988         if (likely(result == 0))
989                 scsi_io_completion_reprep(cmd, q);
990         else
991                 scsi_io_completion_action(cmd, result);
992 }
993
994 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
995                 struct request *rq)
996 {
997         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
998                !op_is_write(req_op(rq)) &&
999                sdev->host->hostt->dma_need_drain(rq);
1000 }
1001
1002 /**
1003  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1004  * @cmd: SCSI command data structure to initialize.
1005  *
1006  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1007  * for @cmd.
1008  *
1009  * Returns:
1010  * * BLK_STS_OK       - on success
1011  * * BLK_STS_RESOURCE - if the failure is retryable
1012  * * BLK_STS_IOERR    - if the failure is fatal
1013  */
1014 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1015 {
1016         struct scsi_device *sdev = cmd->device;
1017         struct request *rq = scsi_cmd_to_rq(cmd);
1018         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1019         struct scatterlist *last_sg = NULL;
1020         blk_status_t ret;
1021         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1022         int count;
1023
1024         if (WARN_ON_ONCE(!nr_segs))
1025                 return BLK_STS_IOERR;
1026
1027         /*
1028          * Make sure there is space for the drain.  The driver must adjust
1029          * max_hw_segments to be prepared for this.
1030          */
1031         if (need_drain)
1032                 nr_segs++;
1033
1034         /*
1035          * If sg table allocation fails, requeue request later.
1036          */
1037         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1038                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1039                 return BLK_STS_RESOURCE;
1040
1041         /*
1042          * Next, walk the list, and fill in the addresses and sizes of
1043          * each segment.
1044          */
1045         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1046
1047         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1048                 unsigned int pad_len =
1049                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1050
1051                 last_sg->length += pad_len;
1052                 cmd->extra_len += pad_len;
1053         }
1054
1055         if (need_drain) {
1056                 sg_unmark_end(last_sg);
1057                 last_sg = sg_next(last_sg);
1058                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1059                 sg_mark_end(last_sg);
1060
1061                 cmd->extra_len += sdev->dma_drain_len;
1062                 count++;
1063         }
1064
1065         BUG_ON(count > cmd->sdb.table.nents);
1066         cmd->sdb.table.nents = count;
1067         cmd->sdb.length = blk_rq_payload_bytes(rq);
1068
1069         if (blk_integrity_rq(rq)) {
1070                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1071                 int ivecs;
1072
1073                 if (WARN_ON_ONCE(!prot_sdb)) {
1074                         /*
1075                          * This can happen if someone (e.g. multipath)
1076                          * queues a command to a device on an adapter
1077                          * that does not support DIX.
1078                          */
1079                         ret = BLK_STS_IOERR;
1080                         goto out_free_sgtables;
1081                 }
1082
1083                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1084
1085                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1086                                 prot_sdb->table.sgl,
1087                                 SCSI_INLINE_PROT_SG_CNT)) {
1088                         ret = BLK_STS_RESOURCE;
1089                         goto out_free_sgtables;
1090                 }
1091
1092                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1093                                                 prot_sdb->table.sgl);
1094                 BUG_ON(count > ivecs);
1095                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1096
1097                 cmd->prot_sdb = prot_sdb;
1098                 cmd->prot_sdb->table.nents = count;
1099         }
1100
1101         return BLK_STS_OK;
1102 out_free_sgtables:
1103         scsi_free_sgtables(cmd);
1104         return ret;
1105 }
1106 EXPORT_SYMBOL(scsi_alloc_sgtables);
1107
1108 /**
1109  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1110  * @rq: Request associated with the SCSI command to be initialized.
1111  *
1112  * This function initializes the members of struct scsi_cmnd that must be
1113  * initialized before request processing starts and that won't be
1114  * reinitialized if a SCSI command is requeued.
1115  */
1116 static void scsi_initialize_rq(struct request *rq)
1117 {
1118         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1119
1120         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1121         cmd->cmd_len = MAX_COMMAND_SIZE;
1122         cmd->sense_len = 0;
1123         init_rcu_head(&cmd->rcu);
1124         cmd->jiffies_at_alloc = jiffies;
1125         cmd->retries = 0;
1126 }
1127
1128 struct request *scsi_alloc_request(struct request_queue *q,
1129                 unsigned int op, blk_mq_req_flags_t flags)
1130 {
1131         struct request *rq;
1132
1133         rq = blk_mq_alloc_request(q, op, flags);
1134         if (!IS_ERR(rq))
1135                 scsi_initialize_rq(rq);
1136         return rq;
1137 }
1138 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1139
1140 /*
1141  * Only called when the request isn't completed by SCSI, and not freed by
1142  * SCSI
1143  */
1144 static void scsi_cleanup_rq(struct request *rq)
1145 {
1146         if (rq->rq_flags & RQF_DONTPREP) {
1147                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1148                 rq->rq_flags &= ~RQF_DONTPREP;
1149         }
1150 }
1151
1152 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1153 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1154 {
1155         struct request *rq = scsi_cmd_to_rq(cmd);
1156
1157         if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1158                 cmd->flags |= SCMD_INITIALIZED;
1159                 scsi_initialize_rq(rq);
1160         }
1161
1162         cmd->device = dev;
1163         INIT_LIST_HEAD(&cmd->eh_entry);
1164         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1165 }
1166
1167 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1168                 struct request *req)
1169 {
1170         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1171
1172         /*
1173          * Passthrough requests may transfer data, in which case they must
1174          * a bio attached to them.  Or they might contain a SCSI command
1175          * that does not transfer data, in which case they may optionally
1176          * submit a request without an attached bio.
1177          */
1178         if (req->bio) {
1179                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1180                 if (unlikely(ret != BLK_STS_OK))
1181                         return ret;
1182         } else {
1183                 BUG_ON(blk_rq_bytes(req));
1184
1185                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1186         }
1187
1188         cmd->transfersize = blk_rq_bytes(req);
1189         return BLK_STS_OK;
1190 }
1191
1192 static blk_status_t
1193 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1194 {
1195         switch (sdev->sdev_state) {
1196         case SDEV_CREATED:
1197                 return BLK_STS_OK;
1198         case SDEV_OFFLINE:
1199         case SDEV_TRANSPORT_OFFLINE:
1200                 /*
1201                  * If the device is offline we refuse to process any
1202                  * commands.  The device must be brought online
1203                  * before trying any recovery commands.
1204                  */
1205                 if (!sdev->offline_already) {
1206                         sdev->offline_already = true;
1207                         sdev_printk(KERN_ERR, sdev,
1208                                     "rejecting I/O to offline device\n");
1209                 }
1210                 return BLK_STS_IOERR;
1211         case SDEV_DEL:
1212                 /*
1213                  * If the device is fully deleted, we refuse to
1214                  * process any commands as well.
1215                  */
1216                 sdev_printk(KERN_ERR, sdev,
1217                             "rejecting I/O to dead device\n");
1218                 return BLK_STS_IOERR;
1219         case SDEV_BLOCK:
1220         case SDEV_CREATED_BLOCK:
1221                 return BLK_STS_RESOURCE;
1222         case SDEV_QUIESCE:
1223                 /*
1224                  * If the device is blocked we only accept power management
1225                  * commands.
1226                  */
1227                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1228                         return BLK_STS_RESOURCE;
1229                 return BLK_STS_OK;
1230         default:
1231                 /*
1232                  * For any other not fully online state we only allow
1233                  * power management commands.
1234                  */
1235                 if (req && !(req->rq_flags & RQF_PM))
1236                         return BLK_STS_OFFLINE;
1237                 return BLK_STS_OK;
1238         }
1239 }
1240
1241 /*
1242  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1243  * and return the token else return -1.
1244  */
1245 static inline int scsi_dev_queue_ready(struct request_queue *q,
1246                                   struct scsi_device *sdev)
1247 {
1248         int token;
1249
1250         token = sbitmap_get(&sdev->budget_map);
1251         if (atomic_read(&sdev->device_blocked)) {
1252                 if (token < 0)
1253                         goto out;
1254
1255                 if (scsi_device_busy(sdev) > 1)
1256                         goto out_dec;
1257
1258                 /*
1259                  * unblock after device_blocked iterates to zero
1260                  */
1261                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1262                         goto out_dec;
1263                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1264                                    "unblocking device at zero depth\n"));
1265         }
1266
1267         return token;
1268 out_dec:
1269         if (token >= 0)
1270                 sbitmap_put(&sdev->budget_map, token);
1271 out:
1272         return -1;
1273 }
1274
1275 /*
1276  * scsi_target_queue_ready: checks if there we can send commands to target
1277  * @sdev: scsi device on starget to check.
1278  */
1279 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1280                                            struct scsi_device *sdev)
1281 {
1282         struct scsi_target *starget = scsi_target(sdev);
1283         unsigned int busy;
1284
1285         if (starget->single_lun) {
1286                 spin_lock_irq(shost->host_lock);
1287                 if (starget->starget_sdev_user &&
1288                     starget->starget_sdev_user != sdev) {
1289                         spin_unlock_irq(shost->host_lock);
1290                         return 0;
1291                 }
1292                 starget->starget_sdev_user = sdev;
1293                 spin_unlock_irq(shost->host_lock);
1294         }
1295
1296         if (starget->can_queue <= 0)
1297                 return 1;
1298
1299         busy = atomic_inc_return(&starget->target_busy) - 1;
1300         if (atomic_read(&starget->target_blocked) > 0) {
1301                 if (busy)
1302                         goto starved;
1303
1304                 /*
1305                  * unblock after target_blocked iterates to zero
1306                  */
1307                 if (atomic_dec_return(&starget->target_blocked) > 0)
1308                         goto out_dec;
1309
1310                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1311                                  "unblocking target at zero depth\n"));
1312         }
1313
1314         if (busy >= starget->can_queue)
1315                 goto starved;
1316
1317         return 1;
1318
1319 starved:
1320         spin_lock_irq(shost->host_lock);
1321         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1322         spin_unlock_irq(shost->host_lock);
1323 out_dec:
1324         if (starget->can_queue > 0)
1325                 atomic_dec(&starget->target_busy);
1326         return 0;
1327 }
1328
1329 /*
1330  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1331  * return 0. We must end up running the queue again whenever 0 is
1332  * returned, else IO can hang.
1333  */
1334 static inline int scsi_host_queue_ready(struct request_queue *q,
1335                                    struct Scsi_Host *shost,
1336                                    struct scsi_device *sdev,
1337                                    struct scsi_cmnd *cmd)
1338 {
1339         if (scsi_host_in_recovery(shost))
1340                 return 0;
1341
1342         if (atomic_read(&shost->host_blocked) > 0) {
1343                 if (scsi_host_busy(shost) > 0)
1344                         goto starved;
1345
1346                 /*
1347                  * unblock after host_blocked iterates to zero
1348                  */
1349                 if (atomic_dec_return(&shost->host_blocked) > 0)
1350                         goto out_dec;
1351
1352                 SCSI_LOG_MLQUEUE(3,
1353                         shost_printk(KERN_INFO, shost,
1354                                      "unblocking host at zero depth\n"));
1355         }
1356
1357         if (shost->host_self_blocked)
1358                 goto starved;
1359
1360         /* We're OK to process the command, so we can't be starved */
1361         if (!list_empty(&sdev->starved_entry)) {
1362                 spin_lock_irq(shost->host_lock);
1363                 if (!list_empty(&sdev->starved_entry))
1364                         list_del_init(&sdev->starved_entry);
1365                 spin_unlock_irq(shost->host_lock);
1366         }
1367
1368         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1369
1370         return 1;
1371
1372 starved:
1373         spin_lock_irq(shost->host_lock);
1374         if (list_empty(&sdev->starved_entry))
1375                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1376         spin_unlock_irq(shost->host_lock);
1377 out_dec:
1378         scsi_dec_host_busy(shost, cmd);
1379         return 0;
1380 }
1381
1382 /*
1383  * Busy state exporting function for request stacking drivers.
1384  *
1385  * For efficiency, no lock is taken to check the busy state of
1386  * shost/starget/sdev, since the returned value is not guaranteed and
1387  * may be changed after request stacking drivers call the function,
1388  * regardless of taking lock or not.
1389  *
1390  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1391  * needs to return 'not busy'. Otherwise, request stacking drivers
1392  * may hold requests forever.
1393  */
1394 static bool scsi_mq_lld_busy(struct request_queue *q)
1395 {
1396         struct scsi_device *sdev = q->queuedata;
1397         struct Scsi_Host *shost;
1398
1399         if (blk_queue_dying(q))
1400                 return false;
1401
1402         shost = sdev->host;
1403
1404         /*
1405          * Ignore host/starget busy state.
1406          * Since block layer does not have a concept of fairness across
1407          * multiple queues, congestion of host/starget needs to be handled
1408          * in SCSI layer.
1409          */
1410         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1411                 return true;
1412
1413         return false;
1414 }
1415
1416 /*
1417  * Block layer request completion callback. May be called from interrupt
1418  * context.
1419  */
1420 static void scsi_complete(struct request *rq)
1421 {
1422         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1423         enum scsi_disposition disposition;
1424
1425         INIT_LIST_HEAD(&cmd->eh_entry);
1426
1427         atomic_inc(&cmd->device->iodone_cnt);
1428         if (cmd->result)
1429                 atomic_inc(&cmd->device->ioerr_cnt);
1430
1431         disposition = scsi_decide_disposition(cmd);
1432         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1433                 disposition = SUCCESS;
1434
1435         scsi_log_completion(cmd, disposition);
1436
1437         switch (disposition) {
1438         case SUCCESS:
1439                 scsi_finish_command(cmd);
1440                 break;
1441         case NEEDS_RETRY:
1442                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1443                 break;
1444         case ADD_TO_MLQUEUE:
1445                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1446                 break;
1447         default:
1448                 scsi_eh_scmd_add(cmd);
1449                 break;
1450         }
1451 }
1452
1453 /**
1454  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1455  * @cmd: command block we are dispatching.
1456  *
1457  * Return: nonzero return request was rejected and device's queue needs to be
1458  * plugged.
1459  */
1460 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1461 {
1462         struct Scsi_Host *host = cmd->device->host;
1463         int rtn = 0;
1464
1465         atomic_inc(&cmd->device->iorequest_cnt);
1466
1467         /* check if the device is still usable */
1468         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1469                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1470                  * returns an immediate error upwards, and signals
1471                  * that the device is no longer present */
1472                 cmd->result = DID_NO_CONNECT << 16;
1473                 goto done;
1474         }
1475
1476         /* Check to see if the scsi lld made this device blocked. */
1477         if (unlikely(scsi_device_blocked(cmd->device))) {
1478                 /*
1479                  * in blocked state, the command is just put back on
1480                  * the device queue.  The suspend state has already
1481                  * blocked the queue so future requests should not
1482                  * occur until the device transitions out of the
1483                  * suspend state.
1484                  */
1485                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1486                         "queuecommand : device blocked\n"));
1487                 return SCSI_MLQUEUE_DEVICE_BUSY;
1488         }
1489
1490         /* Store the LUN value in cmnd, if needed. */
1491         if (cmd->device->lun_in_cdb)
1492                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1493                                (cmd->device->lun << 5 & 0xe0);
1494
1495         scsi_log_send(cmd);
1496
1497         /*
1498          * Before we queue this command, check if the command
1499          * length exceeds what the host adapter can handle.
1500          */
1501         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1502                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1503                                "queuecommand : command too long. "
1504                                "cdb_size=%d host->max_cmd_len=%d\n",
1505                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1506                 cmd->result = (DID_ABORT << 16);
1507                 goto done;
1508         }
1509
1510         if (unlikely(host->shost_state == SHOST_DEL)) {
1511                 cmd->result = (DID_NO_CONNECT << 16);
1512                 goto done;
1513
1514         }
1515
1516         trace_scsi_dispatch_cmd_start(cmd);
1517         rtn = host->hostt->queuecommand(host, cmd);
1518         if (rtn) {
1519                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1520                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1521                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1522                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1523
1524                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1525                         "queuecommand : request rejected\n"));
1526         }
1527
1528         return rtn;
1529  done:
1530         scsi_done(cmd);
1531         return 0;
1532 }
1533
1534 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1535 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1536 {
1537         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1538                 sizeof(struct scatterlist);
1539 }
1540
1541 static blk_status_t scsi_prepare_cmd(struct request *req)
1542 {
1543         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1544         struct scsi_device *sdev = req->q->queuedata;
1545         struct Scsi_Host *shost = sdev->host;
1546         bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1547         struct scatterlist *sg;
1548
1549         scsi_init_command(sdev, cmd);
1550
1551         cmd->eh_eflags = 0;
1552         cmd->allowed = 0;
1553         cmd->prot_type = 0;
1554         cmd->prot_flags = 0;
1555         cmd->submitter = 0;
1556         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1557         cmd->underflow = 0;
1558         cmd->transfersize = 0;
1559         cmd->host_scribble = NULL;
1560         cmd->result = 0;
1561         cmd->extra_len = 0;
1562         cmd->state = 0;
1563         if (in_flight)
1564                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1565
1566         /*
1567          * Only clear the driver-private command data if the LLD does not supply
1568          * a function to initialize that data.
1569          */
1570         if (!shost->hostt->init_cmd_priv)
1571                 memset(cmd + 1, 0, shost->hostt->cmd_size);
1572
1573         cmd->prot_op = SCSI_PROT_NORMAL;
1574         if (blk_rq_bytes(req))
1575                 cmd->sc_data_direction = rq_dma_dir(req);
1576         else
1577                 cmd->sc_data_direction = DMA_NONE;
1578
1579         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1580         cmd->sdb.table.sgl = sg;
1581
1582         if (scsi_host_get_prot(shost)) {
1583                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1584
1585                 cmd->prot_sdb->table.sgl =
1586                         (struct scatterlist *)(cmd->prot_sdb + 1);
1587         }
1588
1589         /*
1590          * Special handling for passthrough commands, which don't go to the ULP
1591          * at all:
1592          */
1593         if (blk_rq_is_passthrough(req))
1594                 return scsi_setup_scsi_cmnd(sdev, req);
1595
1596         if (sdev->handler && sdev->handler->prep_fn) {
1597                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1598
1599                 if (ret != BLK_STS_OK)
1600                         return ret;
1601         }
1602
1603         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1604         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1605 }
1606
1607 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1608 {
1609         struct request *req = scsi_cmd_to_rq(cmd);
1610
1611         switch (cmd->submitter) {
1612         case SUBMITTED_BY_BLOCK_LAYER:
1613                 break;
1614         case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1615                 return scsi_eh_done(cmd);
1616         case SUBMITTED_BY_SCSI_RESET_IOCTL:
1617                 return;
1618         }
1619
1620         if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1621                 return;
1622         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1623                 return;
1624         trace_scsi_dispatch_cmd_done(cmd);
1625
1626         if (complete_directly)
1627                 blk_mq_complete_request_direct(req, scsi_complete);
1628         else
1629                 blk_mq_complete_request(req);
1630 }
1631
1632 void scsi_done(struct scsi_cmnd *cmd)
1633 {
1634         scsi_done_internal(cmd, false);
1635 }
1636 EXPORT_SYMBOL(scsi_done);
1637
1638 void scsi_done_direct(struct scsi_cmnd *cmd)
1639 {
1640         scsi_done_internal(cmd, true);
1641 }
1642 EXPORT_SYMBOL(scsi_done_direct);
1643
1644 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1645 {
1646         struct scsi_device *sdev = q->queuedata;
1647
1648         sbitmap_put(&sdev->budget_map, budget_token);
1649 }
1650
1651 static int scsi_mq_get_budget(struct request_queue *q)
1652 {
1653         struct scsi_device *sdev = q->queuedata;
1654         int token = scsi_dev_queue_ready(q, sdev);
1655
1656         if (token >= 0)
1657                 return token;
1658
1659         atomic_inc(&sdev->restarts);
1660
1661         /*
1662          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1663          * .restarts must be incremented before .device_busy is read because the
1664          * code in scsi_run_queue_async() depends on the order of these operations.
1665          */
1666         smp_mb__after_atomic();
1667
1668         /*
1669          * If all in-flight requests originated from this LUN are completed
1670          * before reading .device_busy, sdev->device_busy will be observed as
1671          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1672          * soon. Otherwise, completion of one of these requests will observe
1673          * the .restarts flag, and the request queue will be run for handling
1674          * this request, see scsi_end_request().
1675          */
1676         if (unlikely(scsi_device_busy(sdev) == 0 &&
1677                                 !scsi_device_blocked(sdev)))
1678                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1679         return -1;
1680 }
1681
1682 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1683 {
1684         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1685
1686         cmd->budget_token = token;
1687 }
1688
1689 static int scsi_mq_get_rq_budget_token(struct request *req)
1690 {
1691         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1692
1693         return cmd->budget_token;
1694 }
1695
1696 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1697                          const struct blk_mq_queue_data *bd)
1698 {
1699         struct request *req = bd->rq;
1700         struct request_queue *q = req->q;
1701         struct scsi_device *sdev = q->queuedata;
1702         struct Scsi_Host *shost = sdev->host;
1703         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1704         blk_status_t ret;
1705         int reason;
1706
1707         WARN_ON_ONCE(cmd->budget_token < 0);
1708
1709         /*
1710          * If the device is not in running state we will reject some or all
1711          * commands.
1712          */
1713         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1714                 ret = scsi_device_state_check(sdev, req);
1715                 if (ret != BLK_STS_OK)
1716                         goto out_put_budget;
1717         }
1718
1719         ret = BLK_STS_RESOURCE;
1720         if (!scsi_target_queue_ready(shost, sdev))
1721                 goto out_put_budget;
1722         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1723                 goto out_dec_target_busy;
1724
1725         if (!(req->rq_flags & RQF_DONTPREP)) {
1726                 ret = scsi_prepare_cmd(req);
1727                 if (ret != BLK_STS_OK)
1728                         goto out_dec_host_busy;
1729                 req->rq_flags |= RQF_DONTPREP;
1730         } else {
1731                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1732         }
1733
1734         cmd->flags &= SCMD_PRESERVED_FLAGS;
1735         if (sdev->simple_tags)
1736                 cmd->flags |= SCMD_TAGGED;
1737         if (bd->last)
1738                 cmd->flags |= SCMD_LAST;
1739
1740         scsi_set_resid(cmd, 0);
1741         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1742         cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1743
1744         blk_mq_start_request(req);
1745         reason = scsi_dispatch_cmd(cmd);
1746         if (reason) {
1747                 scsi_set_blocked(cmd, reason);
1748                 ret = BLK_STS_RESOURCE;
1749                 goto out_dec_host_busy;
1750         }
1751
1752         return BLK_STS_OK;
1753
1754 out_dec_host_busy:
1755         scsi_dec_host_busy(shost, cmd);
1756 out_dec_target_busy:
1757         if (scsi_target(sdev)->can_queue > 0)
1758                 atomic_dec(&scsi_target(sdev)->target_busy);
1759 out_put_budget:
1760         scsi_mq_put_budget(q, cmd->budget_token);
1761         cmd->budget_token = -1;
1762         switch (ret) {
1763         case BLK_STS_OK:
1764                 break;
1765         case BLK_STS_RESOURCE:
1766         case BLK_STS_ZONE_RESOURCE:
1767                 if (scsi_device_blocked(sdev))
1768                         ret = BLK_STS_DEV_RESOURCE;
1769                 break;
1770         case BLK_STS_AGAIN:
1771                 cmd->result = DID_BUS_BUSY << 16;
1772                 if (req->rq_flags & RQF_DONTPREP)
1773                         scsi_mq_uninit_cmd(cmd);
1774                 break;
1775         default:
1776                 if (unlikely(!scsi_device_online(sdev)))
1777                         cmd->result = DID_NO_CONNECT << 16;
1778                 else
1779                         cmd->result = DID_ERROR << 16;
1780                 /*
1781                  * Make sure to release all allocated resources when
1782                  * we hit an error, as we will never see this command
1783                  * again.
1784                  */
1785                 if (req->rq_flags & RQF_DONTPREP)
1786                         scsi_mq_uninit_cmd(cmd);
1787                 scsi_run_queue_async(sdev);
1788                 break;
1789         }
1790         return ret;
1791 }
1792
1793 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1794                 bool reserved)
1795 {
1796         if (reserved)
1797                 return BLK_EH_RESET_TIMER;
1798         return scsi_times_out(req);
1799 }
1800
1801 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1802                                 unsigned int hctx_idx, unsigned int numa_node)
1803 {
1804         struct Scsi_Host *shost = set->driver_data;
1805         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1806         struct scatterlist *sg;
1807         int ret = 0;
1808
1809         cmd->sense_buffer =
1810                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1811         if (!cmd->sense_buffer)
1812                 return -ENOMEM;
1813
1814         if (scsi_host_get_prot(shost)) {
1815                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1816                         shost->hostt->cmd_size;
1817                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1818         }
1819
1820         if (shost->hostt->init_cmd_priv) {
1821                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1822                 if (ret < 0)
1823                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1824         }
1825
1826         return ret;
1827 }
1828
1829 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1830                                  unsigned int hctx_idx)
1831 {
1832         struct Scsi_Host *shost = set->driver_data;
1833         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1834
1835         if (shost->hostt->exit_cmd_priv)
1836                 shost->hostt->exit_cmd_priv(shost, cmd);
1837         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1838 }
1839
1840
1841 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1842 {
1843         struct Scsi_Host *shost = hctx->driver_data;
1844
1845         if (shost->hostt->mq_poll)
1846                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1847
1848         return 0;
1849 }
1850
1851 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1852                           unsigned int hctx_idx)
1853 {
1854         struct Scsi_Host *shost = data;
1855
1856         hctx->driver_data = shost;
1857         return 0;
1858 }
1859
1860 static int scsi_map_queues(struct blk_mq_tag_set *set)
1861 {
1862         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1863
1864         if (shost->hostt->map_queues)
1865                 return shost->hostt->map_queues(shost);
1866         return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1867 }
1868
1869 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1870 {
1871         struct device *dev = shost->dma_dev;
1872
1873         /*
1874          * this limit is imposed by hardware restrictions
1875          */
1876         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1877                                         SG_MAX_SEGMENTS));
1878
1879         if (scsi_host_prot_dma(shost)) {
1880                 shost->sg_prot_tablesize =
1881                         min_not_zero(shost->sg_prot_tablesize,
1882                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1883                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1884                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1885         }
1886
1887         if (dev->dma_mask) {
1888                 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1889                                 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1890         }
1891         blk_queue_max_hw_sectors(q, shost->max_sectors);
1892         blk_queue_segment_boundary(q, shost->dma_boundary);
1893         dma_set_seg_boundary(dev, shost->dma_boundary);
1894
1895         blk_queue_max_segment_size(q, shost->max_segment_size);
1896         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1897         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1898
1899         /*
1900          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1901          * which is a common minimum for HBAs, and the minimum DMA alignment,
1902          * which is set by the platform.
1903          *
1904          * Devices that require a bigger alignment can increase it later.
1905          */
1906         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1907 }
1908 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1909
1910 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1911         .get_budget     = scsi_mq_get_budget,
1912         .put_budget     = scsi_mq_put_budget,
1913         .queue_rq       = scsi_queue_rq,
1914         .complete       = scsi_complete,
1915         .timeout        = scsi_timeout,
1916 #ifdef CONFIG_BLK_DEBUG_FS
1917         .show_rq        = scsi_show_rq,
1918 #endif
1919         .init_request   = scsi_mq_init_request,
1920         .exit_request   = scsi_mq_exit_request,
1921         .cleanup_rq     = scsi_cleanup_rq,
1922         .busy           = scsi_mq_lld_busy,
1923         .map_queues     = scsi_map_queues,
1924         .init_hctx      = scsi_init_hctx,
1925         .poll           = scsi_mq_poll,
1926         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1927         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1928 };
1929
1930
1931 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1932 {
1933         struct Scsi_Host *shost = hctx->driver_data;
1934
1935         shost->hostt->commit_rqs(shost, hctx->queue_num);
1936 }
1937
1938 static const struct blk_mq_ops scsi_mq_ops = {
1939         .get_budget     = scsi_mq_get_budget,
1940         .put_budget     = scsi_mq_put_budget,
1941         .queue_rq       = scsi_queue_rq,
1942         .commit_rqs     = scsi_commit_rqs,
1943         .complete       = scsi_complete,
1944         .timeout        = scsi_timeout,
1945 #ifdef CONFIG_BLK_DEBUG_FS
1946         .show_rq        = scsi_show_rq,
1947 #endif
1948         .init_request   = scsi_mq_init_request,
1949         .exit_request   = scsi_mq_exit_request,
1950         .cleanup_rq     = scsi_cleanup_rq,
1951         .busy           = scsi_mq_lld_busy,
1952         .map_queues     = scsi_map_queues,
1953         .init_hctx      = scsi_init_hctx,
1954         .poll           = scsi_mq_poll,
1955         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1956         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1957 };
1958
1959 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1960 {
1961         unsigned int cmd_size, sgl_size;
1962         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1963
1964         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1965                                 scsi_mq_inline_sgl_size(shost));
1966         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1967         if (scsi_host_get_prot(shost))
1968                 cmd_size += sizeof(struct scsi_data_buffer) +
1969                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1970
1971         memset(tag_set, 0, sizeof(*tag_set));
1972         if (shost->hostt->commit_rqs)
1973                 tag_set->ops = &scsi_mq_ops;
1974         else
1975                 tag_set->ops = &scsi_mq_ops_no_commit;
1976         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1977         tag_set->nr_maps = shost->nr_maps ? : 1;
1978         tag_set->queue_depth = shost->can_queue;
1979         tag_set->cmd_size = cmd_size;
1980         tag_set->numa_node = NUMA_NO_NODE;
1981         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1982         tag_set->flags |=
1983                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1984         tag_set->driver_data = shost;
1985         if (shost->host_tagset)
1986                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1987
1988         return blk_mq_alloc_tag_set(tag_set);
1989 }
1990
1991 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1992 {
1993         blk_mq_free_tag_set(&shost->tag_set);
1994 }
1995
1996 /**
1997  * scsi_device_from_queue - return sdev associated with a request_queue
1998  * @q: The request queue to return the sdev from
1999  *
2000  * Return the sdev associated with a request queue or NULL if the
2001  * request_queue does not reference a SCSI device.
2002  */
2003 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2004 {
2005         struct scsi_device *sdev = NULL;
2006
2007         if (q->mq_ops == &scsi_mq_ops_no_commit ||
2008             q->mq_ops == &scsi_mq_ops)
2009                 sdev = q->queuedata;
2010         if (!sdev || !get_device(&sdev->sdev_gendev))
2011                 sdev = NULL;
2012
2013         return sdev;
2014 }
2015 /*
2016  * pktcdvd should have been integrated into the SCSI layers, but for historical
2017  * reasons like the old IDE driver it isn't.  This export allows it to safely
2018  * probe if a given device is a SCSI one and only attach to that.
2019  */
2020 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2021 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2022 #endif
2023
2024 /**
2025  * scsi_block_requests - Utility function used by low-level drivers to prevent
2026  * further commands from being queued to the device.
2027  * @shost:  host in question
2028  *
2029  * There is no timer nor any other means by which the requests get unblocked
2030  * other than the low-level driver calling scsi_unblock_requests().
2031  */
2032 void scsi_block_requests(struct Scsi_Host *shost)
2033 {
2034         shost->host_self_blocked = 1;
2035 }
2036 EXPORT_SYMBOL(scsi_block_requests);
2037
2038 /**
2039  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2040  * further commands to be queued to the device.
2041  * @shost:  host in question
2042  *
2043  * There is no timer nor any other means by which the requests get unblocked
2044  * other than the low-level driver calling scsi_unblock_requests(). This is done
2045  * as an API function so that changes to the internals of the scsi mid-layer
2046  * won't require wholesale changes to drivers that use this feature.
2047  */
2048 void scsi_unblock_requests(struct Scsi_Host *shost)
2049 {
2050         shost->host_self_blocked = 0;
2051         scsi_run_host_queues(shost);
2052 }
2053 EXPORT_SYMBOL(scsi_unblock_requests);
2054
2055 void scsi_exit_queue(void)
2056 {
2057         kmem_cache_destroy(scsi_sense_cache);
2058 }
2059
2060 /**
2061  *      scsi_mode_select - issue a mode select
2062  *      @sdev:  SCSI device to be queried
2063  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2064  *      @sp:    Save page bit (0 == don't save, 1 == save)
2065  *      @buffer: request buffer (may not be smaller than eight bytes)
2066  *      @len:   length of request buffer.
2067  *      @timeout: command timeout
2068  *      @retries: number of retries before failing
2069  *      @data: returns a structure abstracting the mode header data
2070  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2071  *              must be SCSI_SENSE_BUFFERSIZE big.
2072  *
2073  *      Returns zero if successful; negative error number or scsi
2074  *      status on error
2075  *
2076  */
2077 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2078                      unsigned char *buffer, int len, int timeout, int retries,
2079                      struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2080 {
2081         unsigned char cmd[10];
2082         unsigned char *real_buffer;
2083         int ret;
2084
2085         memset(cmd, 0, sizeof(cmd));
2086         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2087
2088         /*
2089          * Use MODE SELECT(10) if the device asked for it or if the mode page
2090          * and the mode select header cannot fit within the maximumm 255 bytes
2091          * of the MODE SELECT(6) command.
2092          */
2093         if (sdev->use_10_for_ms ||
2094             len + 4 > 255 ||
2095             data->block_descriptor_length > 255) {
2096                 if (len > 65535 - 8)
2097                         return -EINVAL;
2098                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2099                 if (!real_buffer)
2100                         return -ENOMEM;
2101                 memcpy(real_buffer + 8, buffer, len);
2102                 len += 8;
2103                 real_buffer[0] = 0;
2104                 real_buffer[1] = 0;
2105                 real_buffer[2] = data->medium_type;
2106                 real_buffer[3] = data->device_specific;
2107                 real_buffer[4] = data->longlba ? 0x01 : 0;
2108                 real_buffer[5] = 0;
2109                 put_unaligned_be16(data->block_descriptor_length,
2110                                    &real_buffer[6]);
2111
2112                 cmd[0] = MODE_SELECT_10;
2113                 put_unaligned_be16(len, &cmd[7]);
2114         } else {
2115                 if (data->longlba)
2116                         return -EINVAL;
2117
2118                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2119                 if (!real_buffer)
2120                         return -ENOMEM;
2121                 memcpy(real_buffer + 4, buffer, len);
2122                 len += 4;
2123                 real_buffer[0] = 0;
2124                 real_buffer[1] = data->medium_type;
2125                 real_buffer[2] = data->device_specific;
2126                 real_buffer[3] = data->block_descriptor_length;
2127
2128                 cmd[0] = MODE_SELECT;
2129                 cmd[4] = len;
2130         }
2131
2132         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2133                                sshdr, timeout, retries, NULL);
2134         kfree(real_buffer);
2135         return ret;
2136 }
2137 EXPORT_SYMBOL_GPL(scsi_mode_select);
2138
2139 /**
2140  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2141  *      @sdev:  SCSI device to be queried
2142  *      @dbd:   set to prevent mode sense from returning block descriptors
2143  *      @modepage: mode page being requested
2144  *      @buffer: request buffer (may not be smaller than eight bytes)
2145  *      @len:   length of request buffer.
2146  *      @timeout: command timeout
2147  *      @retries: number of retries before failing
2148  *      @data: returns a structure abstracting the mode header data
2149  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2150  *              must be SCSI_SENSE_BUFFERSIZE big.
2151  *
2152  *      Returns zero if successful, or a negative error number on failure
2153  */
2154 int
2155 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2156                   unsigned char *buffer, int len, int timeout, int retries,
2157                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2158 {
2159         unsigned char cmd[12];
2160         int use_10_for_ms;
2161         int header_length;
2162         int result, retry_count = retries;
2163         struct scsi_sense_hdr my_sshdr;
2164
2165         memset(data, 0, sizeof(*data));
2166         memset(&cmd[0], 0, 12);
2167
2168         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2169         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2170         cmd[2] = modepage;
2171
2172         /* caller might not be interested in sense, but we need it */
2173         if (!sshdr)
2174                 sshdr = &my_sshdr;
2175
2176  retry:
2177         use_10_for_ms = sdev->use_10_for_ms || len > 255;
2178
2179         if (use_10_for_ms) {
2180                 if (len < 8 || len > 65535)
2181                         return -EINVAL;
2182
2183                 cmd[0] = MODE_SENSE_10;
2184                 put_unaligned_be16(len, &cmd[7]);
2185                 header_length = 8;
2186         } else {
2187                 if (len < 4)
2188                         return -EINVAL;
2189
2190                 cmd[0] = MODE_SENSE;
2191                 cmd[4] = len;
2192                 header_length = 4;
2193         }
2194
2195         memset(buffer, 0, len);
2196
2197         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2198                                   sshdr, timeout, retries, NULL);
2199         if (result < 0)
2200                 return result;
2201
2202         /* This code looks awful: what it's doing is making sure an
2203          * ILLEGAL REQUEST sense return identifies the actual command
2204          * byte as the problem.  MODE_SENSE commands can return
2205          * ILLEGAL REQUEST if the code page isn't supported */
2206
2207         if (!scsi_status_is_good(result)) {
2208                 if (scsi_sense_valid(sshdr)) {
2209                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2210                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2211                                 /*
2212                                  * Invalid command operation code: retry using
2213                                  * MODE SENSE(6) if this was a MODE SENSE(10)
2214                                  * request, except if the request mode page is
2215                                  * too large for MODE SENSE single byte
2216                                  * allocation length field.
2217                                  */
2218                                 if (use_10_for_ms) {
2219                                         if (len > 255)
2220                                                 return -EIO;
2221                                         sdev->use_10_for_ms = 0;
2222                                         goto retry;
2223                                 }
2224                         }
2225                         if (scsi_status_is_check_condition(result) &&
2226                             sshdr->sense_key == UNIT_ATTENTION &&
2227                             retry_count) {
2228                                 retry_count--;
2229                                 goto retry;
2230                         }
2231                 }
2232                 return -EIO;
2233         }
2234         if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2235                      (modepage == 6 || modepage == 8))) {
2236                 /* Initio breakage? */
2237                 header_length = 0;
2238                 data->length = 13;
2239                 data->medium_type = 0;
2240                 data->device_specific = 0;
2241                 data->longlba = 0;
2242                 data->block_descriptor_length = 0;
2243         } else if (use_10_for_ms) {
2244                 data->length = get_unaligned_be16(&buffer[0]) + 2;
2245                 data->medium_type = buffer[2];
2246                 data->device_specific = buffer[3];
2247                 data->longlba = buffer[4] & 0x01;
2248                 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2249         } else {
2250                 data->length = buffer[0] + 1;
2251                 data->medium_type = buffer[1];
2252                 data->device_specific = buffer[2];
2253                 data->block_descriptor_length = buffer[3];
2254         }
2255         data->header_length = header_length;
2256
2257         return 0;
2258 }
2259 EXPORT_SYMBOL(scsi_mode_sense);
2260
2261 /**
2262  *      scsi_test_unit_ready - test if unit is ready
2263  *      @sdev:  scsi device to change the state of.
2264  *      @timeout: command timeout
2265  *      @retries: number of retries before failing
2266  *      @sshdr: outpout pointer for decoded sense information.
2267  *
2268  *      Returns zero if unsuccessful or an error if TUR failed.  For
2269  *      removable media, UNIT_ATTENTION sets ->changed flag.
2270  **/
2271 int
2272 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2273                      struct scsi_sense_hdr *sshdr)
2274 {
2275         char cmd[] = {
2276                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2277         };
2278         int result;
2279
2280         /* try to eat the UNIT_ATTENTION if there are enough retries */
2281         do {
2282                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2283                                           timeout, 1, NULL);
2284                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2285                     sshdr->sense_key == UNIT_ATTENTION)
2286                         sdev->changed = 1;
2287         } while (scsi_sense_valid(sshdr) &&
2288                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2289
2290         return result;
2291 }
2292 EXPORT_SYMBOL(scsi_test_unit_ready);
2293
2294 /**
2295  *      scsi_device_set_state - Take the given device through the device state model.
2296  *      @sdev:  scsi device to change the state of.
2297  *      @state: state to change to.
2298  *
2299  *      Returns zero if successful or an error if the requested
2300  *      transition is illegal.
2301  */
2302 int
2303 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2304 {
2305         enum scsi_device_state oldstate = sdev->sdev_state;
2306
2307         if (state == oldstate)
2308                 return 0;
2309
2310         switch (state) {
2311         case SDEV_CREATED:
2312                 switch (oldstate) {
2313                 case SDEV_CREATED_BLOCK:
2314                         break;
2315                 default:
2316                         goto illegal;
2317                 }
2318                 break;
2319
2320         case SDEV_RUNNING:
2321                 switch (oldstate) {
2322                 case SDEV_CREATED:
2323                 case SDEV_OFFLINE:
2324                 case SDEV_TRANSPORT_OFFLINE:
2325                 case SDEV_QUIESCE:
2326                 case SDEV_BLOCK:
2327                         break;
2328                 default:
2329                         goto illegal;
2330                 }
2331                 break;
2332
2333         case SDEV_QUIESCE:
2334                 switch (oldstate) {
2335                 case SDEV_RUNNING:
2336                 case SDEV_OFFLINE:
2337                 case SDEV_TRANSPORT_OFFLINE:
2338                         break;
2339                 default:
2340                         goto illegal;
2341                 }
2342                 break;
2343
2344         case SDEV_OFFLINE:
2345         case SDEV_TRANSPORT_OFFLINE:
2346                 switch (oldstate) {
2347                 case SDEV_CREATED:
2348                 case SDEV_RUNNING:
2349                 case SDEV_QUIESCE:
2350                 case SDEV_BLOCK:
2351                         break;
2352                 default:
2353                         goto illegal;
2354                 }
2355                 break;
2356
2357         case SDEV_BLOCK:
2358                 switch (oldstate) {
2359                 case SDEV_RUNNING:
2360                 case SDEV_CREATED_BLOCK:
2361                 case SDEV_QUIESCE:
2362                 case SDEV_OFFLINE:
2363                         break;
2364                 default:
2365                         goto illegal;
2366                 }
2367                 break;
2368
2369         case SDEV_CREATED_BLOCK:
2370                 switch (oldstate) {
2371                 case SDEV_CREATED:
2372                         break;
2373                 default:
2374                         goto illegal;
2375                 }
2376                 break;
2377
2378         case SDEV_CANCEL:
2379                 switch (oldstate) {
2380                 case SDEV_CREATED:
2381                 case SDEV_RUNNING:
2382                 case SDEV_QUIESCE:
2383                 case SDEV_OFFLINE:
2384                 case SDEV_TRANSPORT_OFFLINE:
2385                         break;
2386                 default:
2387                         goto illegal;
2388                 }
2389                 break;
2390
2391         case SDEV_DEL:
2392                 switch (oldstate) {
2393                 case SDEV_CREATED:
2394                 case SDEV_RUNNING:
2395                 case SDEV_OFFLINE:
2396                 case SDEV_TRANSPORT_OFFLINE:
2397                 case SDEV_CANCEL:
2398                 case SDEV_BLOCK:
2399                 case SDEV_CREATED_BLOCK:
2400                         break;
2401                 default:
2402                         goto illegal;
2403                 }
2404                 break;
2405
2406         }
2407         sdev->offline_already = false;
2408         sdev->sdev_state = state;
2409         return 0;
2410
2411  illegal:
2412         SCSI_LOG_ERROR_RECOVERY(1,
2413                                 sdev_printk(KERN_ERR, sdev,
2414                                             "Illegal state transition %s->%s",
2415                                             scsi_device_state_name(oldstate),
2416                                             scsi_device_state_name(state))
2417                                 );
2418         return -EINVAL;
2419 }
2420 EXPORT_SYMBOL(scsi_device_set_state);
2421
2422 /**
2423  *      scsi_evt_emit - emit a single SCSI device uevent
2424  *      @sdev: associated SCSI device
2425  *      @evt: event to emit
2426  *
2427  *      Send a single uevent (scsi_event) to the associated scsi_device.
2428  */
2429 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2430 {
2431         int idx = 0;
2432         char *envp[3];
2433
2434         switch (evt->evt_type) {
2435         case SDEV_EVT_MEDIA_CHANGE:
2436                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2437                 break;
2438         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2439                 scsi_rescan_device(&sdev->sdev_gendev);
2440                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2441                 break;
2442         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2443                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2444                 break;
2445         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2446                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2447                 break;
2448         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2449                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2450                 break;
2451         case SDEV_EVT_LUN_CHANGE_REPORTED:
2452                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2453                 break;
2454         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2455                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2456                 break;
2457         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2458                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2459                 break;
2460         default:
2461                 /* do nothing */
2462                 break;
2463         }
2464
2465         envp[idx++] = NULL;
2466
2467         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2468 }
2469
2470 /**
2471  *      scsi_evt_thread - send a uevent for each scsi event
2472  *      @work: work struct for scsi_device
2473  *
2474  *      Dispatch queued events to their associated scsi_device kobjects
2475  *      as uevents.
2476  */
2477 void scsi_evt_thread(struct work_struct *work)
2478 {
2479         struct scsi_device *sdev;
2480         enum scsi_device_event evt_type;
2481         LIST_HEAD(event_list);
2482
2483         sdev = container_of(work, struct scsi_device, event_work);
2484
2485         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2486                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2487                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2488
2489         while (1) {
2490                 struct scsi_event *evt;
2491                 struct list_head *this, *tmp;
2492                 unsigned long flags;
2493
2494                 spin_lock_irqsave(&sdev->list_lock, flags);
2495                 list_splice_init(&sdev->event_list, &event_list);
2496                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2497
2498                 if (list_empty(&event_list))
2499                         break;
2500
2501                 list_for_each_safe(this, tmp, &event_list) {
2502                         evt = list_entry(this, struct scsi_event, node);
2503                         list_del(&evt->node);
2504                         scsi_evt_emit(sdev, evt);
2505                         kfree(evt);
2506                 }
2507         }
2508 }
2509
2510 /**
2511  *      sdev_evt_send - send asserted event to uevent thread
2512  *      @sdev: scsi_device event occurred on
2513  *      @evt: event to send
2514  *
2515  *      Assert scsi device event asynchronously.
2516  */
2517 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2518 {
2519         unsigned long flags;
2520
2521 #if 0
2522         /* FIXME: currently this check eliminates all media change events
2523          * for polled devices.  Need to update to discriminate between AN
2524          * and polled events */
2525         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2526                 kfree(evt);
2527                 return;
2528         }
2529 #endif
2530
2531         spin_lock_irqsave(&sdev->list_lock, flags);
2532         list_add_tail(&evt->node, &sdev->event_list);
2533         schedule_work(&sdev->event_work);
2534         spin_unlock_irqrestore(&sdev->list_lock, flags);
2535 }
2536 EXPORT_SYMBOL_GPL(sdev_evt_send);
2537
2538 /**
2539  *      sdev_evt_alloc - allocate a new scsi event
2540  *      @evt_type: type of event to allocate
2541  *      @gfpflags: GFP flags for allocation
2542  *
2543  *      Allocates and returns a new scsi_event.
2544  */
2545 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2546                                   gfp_t gfpflags)
2547 {
2548         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2549         if (!evt)
2550                 return NULL;
2551
2552         evt->evt_type = evt_type;
2553         INIT_LIST_HEAD(&evt->node);
2554
2555         /* evt_type-specific initialization, if any */
2556         switch (evt_type) {
2557         case SDEV_EVT_MEDIA_CHANGE:
2558         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2559         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2560         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2561         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2562         case SDEV_EVT_LUN_CHANGE_REPORTED:
2563         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2564         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2565         default:
2566                 /* do nothing */
2567                 break;
2568         }
2569
2570         return evt;
2571 }
2572 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2573
2574 /**
2575  *      sdev_evt_send_simple - send asserted event to uevent thread
2576  *      @sdev: scsi_device event occurred on
2577  *      @evt_type: type of event to send
2578  *      @gfpflags: GFP flags for allocation
2579  *
2580  *      Assert scsi device event asynchronously, given an event type.
2581  */
2582 void sdev_evt_send_simple(struct scsi_device *sdev,
2583                           enum scsi_device_event evt_type, gfp_t gfpflags)
2584 {
2585         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2586         if (!evt) {
2587                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2588                             evt_type);
2589                 return;
2590         }
2591
2592         sdev_evt_send(sdev, evt);
2593 }
2594 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2595
2596 /**
2597  *      scsi_device_quiesce - Block all commands except power management.
2598  *      @sdev:  scsi device to quiesce.
2599  *
2600  *      This works by trying to transition to the SDEV_QUIESCE state
2601  *      (which must be a legal transition).  When the device is in this
2602  *      state, only power management requests will be accepted, all others will
2603  *      be deferred.
2604  *
2605  *      Must be called with user context, may sleep.
2606  *
2607  *      Returns zero if unsuccessful or an error if not.
2608  */
2609 int
2610 scsi_device_quiesce(struct scsi_device *sdev)
2611 {
2612         struct request_queue *q = sdev->request_queue;
2613         int err;
2614
2615         /*
2616          * It is allowed to call scsi_device_quiesce() multiple times from
2617          * the same context but concurrent scsi_device_quiesce() calls are
2618          * not allowed.
2619          */
2620         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2621
2622         if (sdev->quiesced_by == current)
2623                 return 0;
2624
2625         blk_set_pm_only(q);
2626
2627         blk_mq_freeze_queue(q);
2628         /*
2629          * Ensure that the effect of blk_set_pm_only() will be visible
2630          * for percpu_ref_tryget() callers that occur after the queue
2631          * unfreeze even if the queue was already frozen before this function
2632          * was called. See also https://lwn.net/Articles/573497/.
2633          */
2634         synchronize_rcu();
2635         blk_mq_unfreeze_queue(q);
2636
2637         mutex_lock(&sdev->state_mutex);
2638         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2639         if (err == 0)
2640                 sdev->quiesced_by = current;
2641         else
2642                 blk_clear_pm_only(q);
2643         mutex_unlock(&sdev->state_mutex);
2644
2645         return err;
2646 }
2647 EXPORT_SYMBOL(scsi_device_quiesce);
2648
2649 /**
2650  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2651  *      @sdev:  scsi device to resume.
2652  *
2653  *      Moves the device from quiesced back to running and restarts the
2654  *      queues.
2655  *
2656  *      Must be called with user context, may sleep.
2657  */
2658 void scsi_device_resume(struct scsi_device *sdev)
2659 {
2660         /* check if the device state was mutated prior to resume, and if
2661          * so assume the state is being managed elsewhere (for example
2662          * device deleted during suspend)
2663          */
2664         mutex_lock(&sdev->state_mutex);
2665         if (sdev->sdev_state == SDEV_QUIESCE)
2666                 scsi_device_set_state(sdev, SDEV_RUNNING);
2667         if (sdev->quiesced_by) {
2668                 sdev->quiesced_by = NULL;
2669                 blk_clear_pm_only(sdev->request_queue);
2670         }
2671         mutex_unlock(&sdev->state_mutex);
2672 }
2673 EXPORT_SYMBOL(scsi_device_resume);
2674
2675 static void
2676 device_quiesce_fn(struct scsi_device *sdev, void *data)
2677 {
2678         scsi_device_quiesce(sdev);
2679 }
2680
2681 void
2682 scsi_target_quiesce(struct scsi_target *starget)
2683 {
2684         starget_for_each_device(starget, NULL, device_quiesce_fn);
2685 }
2686 EXPORT_SYMBOL(scsi_target_quiesce);
2687
2688 static void
2689 device_resume_fn(struct scsi_device *sdev, void *data)
2690 {
2691         scsi_device_resume(sdev);
2692 }
2693
2694 void
2695 scsi_target_resume(struct scsi_target *starget)
2696 {
2697         starget_for_each_device(starget, NULL, device_resume_fn);
2698 }
2699 EXPORT_SYMBOL(scsi_target_resume);
2700
2701 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2702 {
2703         if (scsi_device_set_state(sdev, SDEV_BLOCK))
2704                 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2705
2706         return 0;
2707 }
2708
2709 void scsi_start_queue(struct scsi_device *sdev)
2710 {
2711         if (cmpxchg(&sdev->queue_stopped, 1, 0))
2712                 blk_mq_unquiesce_queue(sdev->request_queue);
2713 }
2714
2715 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2716 {
2717         /*
2718          * The atomic variable of ->queue_stopped covers that
2719          * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2720          *
2721          * However, we still need to wait until quiesce is done
2722          * in case that queue has been stopped.
2723          */
2724         if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2725                 if (nowait)
2726                         blk_mq_quiesce_queue_nowait(sdev->request_queue);
2727                 else
2728                         blk_mq_quiesce_queue(sdev->request_queue);
2729         } else {
2730                 if (!nowait)
2731                         blk_mq_wait_quiesce_done(sdev->request_queue);
2732         }
2733 }
2734
2735 /**
2736  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2737  * @sdev: device to block
2738  *
2739  * Pause SCSI command processing on the specified device. Does not sleep.
2740  *
2741  * Returns zero if successful or a negative error code upon failure.
2742  *
2743  * Notes:
2744  * This routine transitions the device to the SDEV_BLOCK state (which must be
2745  * a legal transition). When the device is in this state, command processing
2746  * is paused until the device leaves the SDEV_BLOCK state. See also
2747  * scsi_internal_device_unblock_nowait().
2748  */
2749 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2750 {
2751         int ret = __scsi_internal_device_block_nowait(sdev);
2752
2753         /*
2754          * The device has transitioned to SDEV_BLOCK.  Stop the
2755          * block layer from calling the midlayer with this device's
2756          * request queue.
2757          */
2758         if (!ret)
2759                 scsi_stop_queue(sdev, true);
2760         return ret;
2761 }
2762 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2763
2764 /**
2765  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2766  * @sdev: device to block
2767  *
2768  * Pause SCSI command processing on the specified device and wait until all
2769  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2770  *
2771  * Returns zero if successful or a negative error code upon failure.
2772  *
2773  * Note:
2774  * This routine transitions the device to the SDEV_BLOCK state (which must be
2775  * a legal transition). When the device is in this state, command processing
2776  * is paused until the device leaves the SDEV_BLOCK state. See also
2777  * scsi_internal_device_unblock().
2778  */
2779 static int scsi_internal_device_block(struct scsi_device *sdev)
2780 {
2781         int err;
2782
2783         mutex_lock(&sdev->state_mutex);
2784         err = __scsi_internal_device_block_nowait(sdev);
2785         if (err == 0)
2786                 scsi_stop_queue(sdev, false);
2787         mutex_unlock(&sdev->state_mutex);
2788
2789         return err;
2790 }
2791
2792 /**
2793  * scsi_internal_device_unblock_nowait - resume a device after a block request
2794  * @sdev:       device to resume
2795  * @new_state:  state to set the device to after unblocking
2796  *
2797  * Restart the device queue for a previously suspended SCSI device. Does not
2798  * sleep.
2799  *
2800  * Returns zero if successful or a negative error code upon failure.
2801  *
2802  * Notes:
2803  * This routine transitions the device to the SDEV_RUNNING state or to one of
2804  * the offline states (which must be a legal transition) allowing the midlayer
2805  * to goose the queue for this device.
2806  */
2807 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2808                                         enum scsi_device_state new_state)
2809 {
2810         switch (new_state) {
2811         case SDEV_RUNNING:
2812         case SDEV_TRANSPORT_OFFLINE:
2813                 break;
2814         default:
2815                 return -EINVAL;
2816         }
2817
2818         /*
2819          * Try to transition the scsi device to SDEV_RUNNING or one of the
2820          * offlined states and goose the device queue if successful.
2821          */
2822         switch (sdev->sdev_state) {
2823         case SDEV_BLOCK:
2824         case SDEV_TRANSPORT_OFFLINE:
2825                 sdev->sdev_state = new_state;
2826                 break;
2827         case SDEV_CREATED_BLOCK:
2828                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2829                     new_state == SDEV_OFFLINE)
2830                         sdev->sdev_state = new_state;
2831                 else
2832                         sdev->sdev_state = SDEV_CREATED;
2833                 break;
2834         case SDEV_CANCEL:
2835         case SDEV_OFFLINE:
2836                 break;
2837         default:
2838                 return -EINVAL;
2839         }
2840         scsi_start_queue(sdev);
2841
2842         return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2845
2846 /**
2847  * scsi_internal_device_unblock - resume a device after a block request
2848  * @sdev:       device to resume
2849  * @new_state:  state to set the device to after unblocking
2850  *
2851  * Restart the device queue for a previously suspended SCSI device. May sleep.
2852  *
2853  * Returns zero if successful or a negative error code upon failure.
2854  *
2855  * Notes:
2856  * This routine transitions the device to the SDEV_RUNNING state or to one of
2857  * the offline states (which must be a legal transition) allowing the midlayer
2858  * to goose the queue for this device.
2859  */
2860 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2861                                         enum scsi_device_state new_state)
2862 {
2863         int ret;
2864
2865         mutex_lock(&sdev->state_mutex);
2866         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2867         mutex_unlock(&sdev->state_mutex);
2868
2869         return ret;
2870 }
2871
2872 static void
2873 device_block(struct scsi_device *sdev, void *data)
2874 {
2875         int ret;
2876
2877         ret = scsi_internal_device_block(sdev);
2878
2879         WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2880                   dev_name(&sdev->sdev_gendev), ret);
2881 }
2882
2883 static int
2884 target_block(struct device *dev, void *data)
2885 {
2886         if (scsi_is_target_device(dev))
2887                 starget_for_each_device(to_scsi_target(dev), NULL,
2888                                         device_block);
2889         return 0;
2890 }
2891
2892 void
2893 scsi_target_block(struct device *dev)
2894 {
2895         if (scsi_is_target_device(dev))
2896                 starget_for_each_device(to_scsi_target(dev), NULL,
2897                                         device_block);
2898         else
2899                 device_for_each_child(dev, NULL, target_block);
2900 }
2901 EXPORT_SYMBOL_GPL(scsi_target_block);
2902
2903 static void
2904 device_unblock(struct scsi_device *sdev, void *data)
2905 {
2906         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2907 }
2908
2909 static int
2910 target_unblock(struct device *dev, void *data)
2911 {
2912         if (scsi_is_target_device(dev))
2913                 starget_for_each_device(to_scsi_target(dev), data,
2914                                         device_unblock);
2915         return 0;
2916 }
2917
2918 void
2919 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2920 {
2921         if (scsi_is_target_device(dev))
2922                 starget_for_each_device(to_scsi_target(dev), &new_state,
2923                                         device_unblock);
2924         else
2925                 device_for_each_child(dev, &new_state, target_unblock);
2926 }
2927 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2928
2929 int
2930 scsi_host_block(struct Scsi_Host *shost)
2931 {
2932         struct scsi_device *sdev;
2933         int ret = 0;
2934
2935         /*
2936          * Call scsi_internal_device_block_nowait so we can avoid
2937          * calling synchronize_rcu() for each LUN.
2938          */
2939         shost_for_each_device(sdev, shost) {
2940                 mutex_lock(&sdev->state_mutex);
2941                 ret = scsi_internal_device_block_nowait(sdev);
2942                 mutex_unlock(&sdev->state_mutex);
2943                 if (ret) {
2944                         scsi_device_put(sdev);
2945                         break;
2946                 }
2947         }
2948
2949         /*
2950          * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2951          * calling synchronize_rcu() once is enough.
2952          */
2953         WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2954
2955         if (!ret)
2956                 synchronize_rcu();
2957
2958         return ret;
2959 }
2960 EXPORT_SYMBOL_GPL(scsi_host_block);
2961
2962 int
2963 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2964 {
2965         struct scsi_device *sdev;
2966         int ret = 0;
2967
2968         shost_for_each_device(sdev, shost) {
2969                 ret = scsi_internal_device_unblock(sdev, new_state);
2970                 if (ret) {
2971                         scsi_device_put(sdev);
2972                         break;
2973                 }
2974         }
2975         return ret;
2976 }
2977 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2978
2979 /**
2980  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2981  * @sgl:        scatter-gather list
2982  * @sg_count:   number of segments in sg
2983  * @offset:     offset in bytes into sg, on return offset into the mapped area
2984  * @len:        bytes to map, on return number of bytes mapped
2985  *
2986  * Returns virtual address of the start of the mapped page
2987  */
2988 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2989                           size_t *offset, size_t *len)
2990 {
2991         int i;
2992         size_t sg_len = 0, len_complete = 0;
2993         struct scatterlist *sg;
2994         struct page *page;
2995
2996         WARN_ON(!irqs_disabled());
2997
2998         for_each_sg(sgl, sg, sg_count, i) {
2999                 len_complete = sg_len; /* Complete sg-entries */
3000                 sg_len += sg->length;
3001                 if (sg_len > *offset)
3002                         break;
3003         }
3004
3005         if (unlikely(i == sg_count)) {
3006                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3007                         "elements %d\n",
3008                        __func__, sg_len, *offset, sg_count);
3009                 WARN_ON(1);
3010                 return NULL;
3011         }
3012
3013         /* Offset starting from the beginning of first page in this sg-entry */
3014         *offset = *offset - len_complete + sg->offset;
3015
3016         /* Assumption: contiguous pages can be accessed as "page + i" */
3017         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3018         *offset &= ~PAGE_MASK;
3019
3020         /* Bytes in this sg-entry from *offset to the end of the page */
3021         sg_len = PAGE_SIZE - *offset;
3022         if (*len > sg_len)
3023                 *len = sg_len;
3024
3025         return kmap_atomic(page);
3026 }
3027 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3028
3029 /**
3030  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3031  * @virt:       virtual address to be unmapped
3032  */
3033 void scsi_kunmap_atomic_sg(void *virt)
3034 {
3035         kunmap_atomic(virt);
3036 }
3037 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3038
3039 void sdev_disable_disk_events(struct scsi_device *sdev)
3040 {
3041         atomic_inc(&sdev->disk_events_disable_depth);
3042 }
3043 EXPORT_SYMBOL(sdev_disable_disk_events);
3044
3045 void sdev_enable_disk_events(struct scsi_device *sdev)
3046 {
3047         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3048                 return;
3049         atomic_dec(&sdev->disk_events_disable_depth);
3050 }
3051 EXPORT_SYMBOL(sdev_enable_disk_events);
3052
3053 static unsigned char designator_prio(const unsigned char *d)
3054 {
3055         if (d[1] & 0x30)
3056                 /* not associated with LUN */
3057                 return 0;
3058
3059         if (d[3] == 0)
3060                 /* invalid length */
3061                 return 0;
3062
3063         /*
3064          * Order of preference for lun descriptor:
3065          * - SCSI name string
3066          * - NAA IEEE Registered Extended
3067          * - EUI-64 based 16-byte
3068          * - EUI-64 based 12-byte
3069          * - NAA IEEE Registered
3070          * - NAA IEEE Extended
3071          * - EUI-64 based 8-byte
3072          * - SCSI name string (truncated)
3073          * - T10 Vendor ID
3074          * as longer descriptors reduce the likelyhood
3075          * of identification clashes.
3076          */
3077
3078         switch (d[1] & 0xf) {
3079         case 8:
3080                 /* SCSI name string, variable-length UTF-8 */
3081                 return 9;
3082         case 3:
3083                 switch (d[4] >> 4) {
3084                 case 6:
3085                         /* NAA registered extended */
3086                         return 8;
3087                 case 5:
3088                         /* NAA registered */
3089                         return 5;
3090                 case 4:
3091                         /* NAA extended */
3092                         return 4;
3093                 case 3:
3094                         /* NAA locally assigned */
3095                         return 1;
3096                 default:
3097                         break;
3098                 }
3099                 break;
3100         case 2:
3101                 switch (d[3]) {
3102                 case 16:
3103                         /* EUI64-based, 16 byte */
3104                         return 7;
3105                 case 12:
3106                         /* EUI64-based, 12 byte */
3107                         return 6;
3108                 case 8:
3109                         /* EUI64-based, 8 byte */
3110                         return 3;
3111                 default:
3112                         break;
3113                 }
3114                 break;
3115         case 1:
3116                 /* T10 vendor ID */
3117                 return 1;
3118         default:
3119                 break;
3120         }
3121
3122         return 0;
3123 }
3124
3125 /**
3126  * scsi_vpd_lun_id - return a unique device identification
3127  * @sdev: SCSI device
3128  * @id:   buffer for the identification
3129  * @id_len:  length of the buffer
3130  *
3131  * Copies a unique device identification into @id based
3132  * on the information in the VPD page 0x83 of the device.
3133  * The string will be formatted as a SCSI name string.
3134  *
3135  * Returns the length of the identification or error on failure.
3136  * If the identifier is longer than the supplied buffer the actual
3137  * identifier length is returned and the buffer is not zero-padded.
3138  */
3139 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3140 {
3141         u8 cur_id_prio = 0;
3142         u8 cur_id_size = 0;
3143         const unsigned char *d, *cur_id_str;
3144         const struct scsi_vpd *vpd_pg83;
3145         int id_size = -EINVAL;
3146
3147         rcu_read_lock();
3148         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3149         if (!vpd_pg83) {
3150                 rcu_read_unlock();
3151                 return -ENXIO;
3152         }
3153
3154         /* The id string must be at least 20 bytes + terminating NULL byte */
3155         if (id_len < 21) {
3156                 rcu_read_unlock();
3157                 return -EINVAL;
3158         }
3159
3160         memset(id, 0, id_len);
3161         for (d = vpd_pg83->data + 4;
3162              d < vpd_pg83->data + vpd_pg83->len;
3163              d += d[3] + 4) {
3164                 u8 prio = designator_prio(d);
3165
3166                 if (prio == 0 || cur_id_prio > prio)
3167                         continue;
3168
3169                 switch (d[1] & 0xf) {
3170                 case 0x1:
3171                         /* T10 Vendor ID */
3172                         if (cur_id_size > d[3])
3173                                 break;
3174                         cur_id_prio = prio;
3175                         cur_id_size = d[3];
3176                         if (cur_id_size + 4 > id_len)
3177                                 cur_id_size = id_len - 4;
3178                         cur_id_str = d + 4;
3179                         id_size = snprintf(id, id_len, "t10.%*pE",
3180                                            cur_id_size, cur_id_str);
3181                         break;
3182                 case 0x2:
3183                         /* EUI-64 */
3184                         cur_id_prio = prio;
3185                         cur_id_size = d[3];
3186                         cur_id_str = d + 4;
3187                         switch (cur_id_size) {
3188                         case 8:
3189                                 id_size = snprintf(id, id_len,
3190                                                    "eui.%8phN",
3191                                                    cur_id_str);
3192                                 break;
3193                         case 12:
3194                                 id_size = snprintf(id, id_len,
3195                                                    "eui.%12phN",
3196                                                    cur_id_str);
3197                                 break;
3198                         case 16:
3199                                 id_size = snprintf(id, id_len,
3200                                                    "eui.%16phN",
3201                                                    cur_id_str);
3202                                 break;
3203                         default:
3204                                 break;
3205                         }
3206                         break;
3207                 case 0x3:
3208                         /* NAA */
3209                         cur_id_prio = prio;
3210                         cur_id_size = d[3];
3211                         cur_id_str = d + 4;
3212                         switch (cur_id_size) {
3213                         case 8:
3214                                 id_size = snprintf(id, id_len,
3215                                                    "naa.%8phN",
3216                                                    cur_id_str);
3217                                 break;
3218                         case 16:
3219                                 id_size = snprintf(id, id_len,
3220                                                    "naa.%16phN",
3221                                                    cur_id_str);
3222                                 break;
3223                         default:
3224                                 break;
3225                         }
3226                         break;
3227                 case 0x8:
3228                         /* SCSI name string */
3229                         if (cur_id_size > d[3])
3230                                 break;
3231                         /* Prefer others for truncated descriptor */
3232                         if (d[3] > id_len) {
3233                                 prio = 2;
3234                                 if (cur_id_prio > prio)
3235                                         break;
3236                         }
3237                         cur_id_prio = prio;
3238                         cur_id_size = id_size = d[3];
3239                         cur_id_str = d + 4;
3240                         if (cur_id_size >= id_len)
3241                                 cur_id_size = id_len - 1;
3242                         memcpy(id, cur_id_str, cur_id_size);
3243                         break;
3244                 default:
3245                         break;
3246                 }
3247         }
3248         rcu_read_unlock();
3249
3250         return id_size;
3251 }
3252 EXPORT_SYMBOL(scsi_vpd_lun_id);
3253
3254 /*
3255  * scsi_vpd_tpg_id - return a target port group identifier
3256  * @sdev: SCSI device
3257  *
3258  * Returns the Target Port Group identifier from the information
3259  * froom VPD page 0x83 of the device.
3260  *
3261  * Returns the identifier or error on failure.
3262  */
3263 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3264 {
3265         const unsigned char *d;
3266         const struct scsi_vpd *vpd_pg83;
3267         int group_id = -EAGAIN, rel_port = -1;
3268
3269         rcu_read_lock();
3270         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3271         if (!vpd_pg83) {
3272                 rcu_read_unlock();
3273                 return -ENXIO;
3274         }
3275
3276         d = vpd_pg83->data + 4;
3277         while (d < vpd_pg83->data + vpd_pg83->len) {
3278                 switch (d[1] & 0xf) {
3279                 case 0x4:
3280                         /* Relative target port */
3281                         rel_port = get_unaligned_be16(&d[6]);
3282                         break;
3283                 case 0x5:
3284                         /* Target port group */
3285                         group_id = get_unaligned_be16(&d[6]);
3286                         break;
3287                 default:
3288                         break;
3289                 }
3290                 d += d[3] + 4;
3291         }
3292         rcu_read_unlock();
3293
3294         if (group_id >= 0 && rel_id && rel_port != -1)
3295                 *rel_id = rel_port;
3296
3297         return group_id;
3298 }
3299 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3300
3301 /**
3302  * scsi_build_sense - build sense data for a command
3303  * @scmd:       scsi command for which the sense should be formatted
3304  * @desc:       Sense format (non-zero == descriptor format,
3305  *              0 == fixed format)
3306  * @key:        Sense key
3307  * @asc:        Additional sense code
3308  * @ascq:       Additional sense code qualifier
3309  *
3310  **/
3311 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3312 {
3313         scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3314         scmd->result = SAM_STAT_CHECK_CONDITION;
3315 }
3316 EXPORT_SYMBOL_GPL(scsi_build_sense);