Merge tag 'devfreq-next-for-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54
55 static struct kmem_cache *scsi_sense_cache;
56 static DEFINE_MUTEX(scsi_sense_cache_mutex);
57
58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
59
60 int scsi_init_sense_cache(struct Scsi_Host *shost)
61 {
62         int ret = 0;
63
64         mutex_lock(&scsi_sense_cache_mutex);
65         if (!scsi_sense_cache) {
66                 scsi_sense_cache =
67                         kmem_cache_create_usercopy("scsi_sense_cache",
68                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
69                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
70                 if (!scsi_sense_cache)
71                         ret = -ENOMEM;
72         }
73         mutex_unlock(&scsi_sense_cache_mutex);
74         return ret;
75 }
76
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY        3
83
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87         struct Scsi_Host *host = cmd->device->host;
88         struct scsi_device *device = cmd->device;
89         struct scsi_target *starget = scsi_target(device);
90
91         /*
92          * Set the appropriate busy bit for the device/host.
93          *
94          * If the host/device isn't busy, assume that something actually
95          * completed, and that we should be able to queue a command now.
96          *
97          * Note that the prior mid-layer assumption that any host could
98          * always queue at least one command is now broken.  The mid-layer
99          * will implement a user specifiable stall (see
100          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101          * if a command is requeued with no other commands outstanding
102          * either for the device or for the host.
103          */
104         switch (reason) {
105         case SCSI_MLQUEUE_HOST_BUSY:
106                 atomic_set(&host->host_blocked, host->max_host_blocked);
107                 break;
108         case SCSI_MLQUEUE_DEVICE_BUSY:
109         case SCSI_MLQUEUE_EH_RETRY:
110                 atomic_set(&device->device_blocked,
111                            device->max_device_blocked);
112                 break;
113         case SCSI_MLQUEUE_TARGET_BUSY:
114                 atomic_set(&starget->target_blocked,
115                            starget->max_target_blocked);
116                 break;
117         }
118 }
119
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122         if (cmd->request->rq_flags & RQF_DONTPREP) {
123                 cmd->request->rq_flags &= ~RQF_DONTPREP;
124                 scsi_mq_uninit_cmd(cmd);
125         } else {
126                 WARN_ON_ONCE(true);
127         }
128         blk_mq_requeue_request(cmd->request, true);
129 }
130
131 /**
132  * __scsi_queue_insert - private queue insertion
133  * @cmd: The SCSI command being requeued
134  * @reason:  The reason for the requeue
135  * @unbusy: Whether the queue should be unbusied
136  *
137  * This is a private queue insertion.  The public interface
138  * scsi_queue_insert() always assumes the queue should be unbusied
139  * because it's always called before the completion.  This function is
140  * for a requeue after completion, which should only occur in this
141  * file.
142  */
143 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
144 {
145         struct scsi_device *device = cmd->device;
146
147         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148                 "Inserting command %p into mlqueue\n", cmd));
149
150         scsi_set_blocked(cmd, reason);
151
152         /*
153          * Decrement the counters, since these commands are no longer
154          * active on the host/device.
155          */
156         if (unbusy)
157                 scsi_device_unbusy(device, cmd);
158
159         /*
160          * Requeue this command.  It will go before all other commands
161          * that are already in the queue. Schedule requeue work under
162          * lock such that the kblockd_schedule_work() call happens
163          * before blk_cleanup_queue() finishes.
164          */
165         cmd->result = 0;
166
167         blk_mq_requeue_request(cmd->request, true);
168 }
169
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184         __scsi_queue_insert(cmd, reason, true);
185 }
186
187
188 /**
189  * __scsi_execute - insert request and wait for the result
190  * @sdev:       scsi device
191  * @cmd:        scsi command
192  * @data_direction: data direction
193  * @buffer:     data buffer
194  * @bufflen:    len of buffer
195  * @sense:      optional sense buffer
196  * @sshdr:      optional decoded sense header
197  * @timeout:    request timeout in seconds
198  * @retries:    number of times to retry request
199  * @flags:      flags for ->cmd_flags
200  * @rq_flags:   flags for ->rq_flags
201  * @resid:      optional residual length
202  *
203  * Returns the scsi_cmnd result field if a command was executed, or a negative
204  * Linux error code if we didn't get that far.
205  */
206 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207                  int data_direction, void *buffer, unsigned bufflen,
208                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
209                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
210                  int *resid)
211 {
212         struct request *req;
213         struct scsi_request *rq;
214         int ret = DRIVER_ERROR << 24;
215
216         req = blk_get_request(sdev->request_queue,
217                         data_direction == DMA_TO_DEVICE ?
218                         REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
219                         rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
220         if (IS_ERR(req))
221                 return ret;
222         rq = scsi_req(req);
223
224         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
225                                         buffer, bufflen, GFP_NOIO))
226                 goto out;
227
228         rq->cmd_len = COMMAND_SIZE(cmd[0]);
229         memcpy(rq->cmd, cmd, rq->cmd_len);
230         rq->retries = retries;
231         req->timeout = timeout;
232         req->cmd_flags |= flags;
233         req->rq_flags |= rq_flags | RQF_QUIET;
234
235         /*
236          * head injection *required* here otherwise quiesce won't work
237          */
238         blk_execute_rq(NULL, req, 1);
239
240         /*
241          * Some devices (USB mass-storage in particular) may transfer
242          * garbage data together with a residue indicating that the data
243          * is invalid.  Prevent the garbage from being misinterpreted
244          * and prevent security leaks by zeroing out the excess data.
245          */
246         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
247                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
248
249         if (resid)
250                 *resid = rq->resid_len;
251         if (sense && rq->sense_len)
252                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
253         if (sshdr)
254                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
255         ret = rq->result;
256  out:
257         blk_put_request(req);
258
259         return ret;
260 }
261 EXPORT_SYMBOL(__scsi_execute);
262
263 /*
264  * Wake up the error handler if necessary. Avoid as follows that the error
265  * handler is not woken up if host in-flight requests number ==
266  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
267  * with an RCU read lock in this function to ensure that this function in
268  * its entirety either finishes before scsi_eh_scmd_add() increases the
269  * host_failed counter or that it notices the shost state change made by
270  * scsi_eh_scmd_add().
271  */
272 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
273 {
274         unsigned long flags;
275
276         rcu_read_lock();
277         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
278         if (unlikely(scsi_host_in_recovery(shost))) {
279                 spin_lock_irqsave(shost->host_lock, flags);
280                 if (shost->host_failed || shost->host_eh_scheduled)
281                         scsi_eh_wakeup(shost);
282                 spin_unlock_irqrestore(shost->host_lock, flags);
283         }
284         rcu_read_unlock();
285 }
286
287 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
288 {
289         struct Scsi_Host *shost = sdev->host;
290         struct scsi_target *starget = scsi_target(sdev);
291
292         scsi_dec_host_busy(shost, cmd);
293
294         if (starget->can_queue > 0)
295                 atomic_dec(&starget->target_busy);
296
297         sbitmap_put(&sdev->budget_map, cmd->budget_token);
298         cmd->budget_token = -1;
299 }
300
301 static void scsi_kick_queue(struct request_queue *q)
302 {
303         blk_mq_run_hw_queues(q, false);
304 }
305
306 /*
307  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
308  * and call blk_run_queue for all the scsi_devices on the target -
309  * including current_sdev first.
310  *
311  * Called with *no* scsi locks held.
312  */
313 static void scsi_single_lun_run(struct scsi_device *current_sdev)
314 {
315         struct Scsi_Host *shost = current_sdev->host;
316         struct scsi_device *sdev, *tmp;
317         struct scsi_target *starget = scsi_target(current_sdev);
318         unsigned long flags;
319
320         spin_lock_irqsave(shost->host_lock, flags);
321         starget->starget_sdev_user = NULL;
322         spin_unlock_irqrestore(shost->host_lock, flags);
323
324         /*
325          * Call blk_run_queue for all LUNs on the target, starting with
326          * current_sdev. We race with others (to set starget_sdev_user),
327          * but in most cases, we will be first. Ideally, each LU on the
328          * target would get some limited time or requests on the target.
329          */
330         scsi_kick_queue(current_sdev->request_queue);
331
332         spin_lock_irqsave(shost->host_lock, flags);
333         if (starget->starget_sdev_user)
334                 goto out;
335         list_for_each_entry_safe(sdev, tmp, &starget->devices,
336                         same_target_siblings) {
337                 if (sdev == current_sdev)
338                         continue;
339                 if (scsi_device_get(sdev))
340                         continue;
341
342                 spin_unlock_irqrestore(shost->host_lock, flags);
343                 scsi_kick_queue(sdev->request_queue);
344                 spin_lock_irqsave(shost->host_lock, flags);
345
346                 scsi_device_put(sdev);
347         }
348  out:
349         spin_unlock_irqrestore(shost->host_lock, flags);
350 }
351
352 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
353 {
354         if (scsi_device_busy(sdev) >= sdev->queue_depth)
355                 return true;
356         if (atomic_read(&sdev->device_blocked) > 0)
357                 return true;
358         return false;
359 }
360
361 static inline bool scsi_target_is_busy(struct scsi_target *starget)
362 {
363         if (starget->can_queue > 0) {
364                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
365                         return true;
366                 if (atomic_read(&starget->target_blocked) > 0)
367                         return true;
368         }
369         return false;
370 }
371
372 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
373 {
374         if (atomic_read(&shost->host_blocked) > 0)
375                 return true;
376         if (shost->host_self_blocked)
377                 return true;
378         return false;
379 }
380
381 static void scsi_starved_list_run(struct Scsi_Host *shost)
382 {
383         LIST_HEAD(starved_list);
384         struct scsi_device *sdev;
385         unsigned long flags;
386
387         spin_lock_irqsave(shost->host_lock, flags);
388         list_splice_init(&shost->starved_list, &starved_list);
389
390         while (!list_empty(&starved_list)) {
391                 struct request_queue *slq;
392
393                 /*
394                  * As long as shost is accepting commands and we have
395                  * starved queues, call blk_run_queue. scsi_request_fn
396                  * drops the queue_lock and can add us back to the
397                  * starved_list.
398                  *
399                  * host_lock protects the starved_list and starved_entry.
400                  * scsi_request_fn must get the host_lock before checking
401                  * or modifying starved_list or starved_entry.
402                  */
403                 if (scsi_host_is_busy(shost))
404                         break;
405
406                 sdev = list_entry(starved_list.next,
407                                   struct scsi_device, starved_entry);
408                 list_del_init(&sdev->starved_entry);
409                 if (scsi_target_is_busy(scsi_target(sdev))) {
410                         list_move_tail(&sdev->starved_entry,
411                                        &shost->starved_list);
412                         continue;
413                 }
414
415                 /*
416                  * Once we drop the host lock, a racing scsi_remove_device()
417                  * call may remove the sdev from the starved list and destroy
418                  * it and the queue.  Mitigate by taking a reference to the
419                  * queue and never touching the sdev again after we drop the
420                  * host lock.  Note: if __scsi_remove_device() invokes
421                  * blk_cleanup_queue() before the queue is run from this
422                  * function then blk_run_queue() will return immediately since
423                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
424                  */
425                 slq = sdev->request_queue;
426                 if (!blk_get_queue(slq))
427                         continue;
428                 spin_unlock_irqrestore(shost->host_lock, flags);
429
430                 scsi_kick_queue(slq);
431                 blk_put_queue(slq);
432
433                 spin_lock_irqsave(shost->host_lock, flags);
434         }
435         /* put any unprocessed entries back */
436         list_splice(&starved_list, &shost->starved_list);
437         spin_unlock_irqrestore(shost->host_lock, flags);
438 }
439
440 /**
441  * scsi_run_queue - Select a proper request queue to serve next.
442  * @q:  last request's queue
443  *
444  * The previous command was completely finished, start a new one if possible.
445  */
446 static void scsi_run_queue(struct request_queue *q)
447 {
448         struct scsi_device *sdev = q->queuedata;
449
450         if (scsi_target(sdev)->single_lun)
451                 scsi_single_lun_run(sdev);
452         if (!list_empty(&sdev->host->starved_list))
453                 scsi_starved_list_run(sdev->host);
454
455         blk_mq_run_hw_queues(q, false);
456 }
457
458 void scsi_requeue_run_queue(struct work_struct *work)
459 {
460         struct scsi_device *sdev;
461         struct request_queue *q;
462
463         sdev = container_of(work, struct scsi_device, requeue_work);
464         q = sdev->request_queue;
465         scsi_run_queue(q);
466 }
467
468 void scsi_run_host_queues(struct Scsi_Host *shost)
469 {
470         struct scsi_device *sdev;
471
472         shost_for_each_device(sdev, shost)
473                 scsi_run_queue(sdev->request_queue);
474 }
475
476 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
477 {
478         if (!blk_rq_is_passthrough(cmd->request)) {
479                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
480
481                 if (drv->uninit_command)
482                         drv->uninit_command(cmd);
483         }
484 }
485
486 void scsi_free_sgtables(struct scsi_cmnd *cmd)
487 {
488         if (cmd->sdb.table.nents)
489                 sg_free_table_chained(&cmd->sdb.table,
490                                 SCSI_INLINE_SG_CNT);
491         if (scsi_prot_sg_count(cmd))
492                 sg_free_table_chained(&cmd->prot_sdb->table,
493                                 SCSI_INLINE_PROT_SG_CNT);
494 }
495 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
496
497 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
498 {
499         scsi_free_sgtables(cmd);
500         scsi_uninit_cmd(cmd);
501 }
502
503 static void scsi_run_queue_async(struct scsi_device *sdev)
504 {
505         if (scsi_target(sdev)->single_lun ||
506             !list_empty(&sdev->host->starved_list)) {
507                 kblockd_schedule_work(&sdev->requeue_work);
508         } else {
509                 /*
510                  * smp_mb() present in sbitmap_queue_clear() or implied in
511                  * .end_io is for ordering writing .device_busy in
512                  * scsi_device_unbusy() and reading sdev->restarts.
513                  */
514                 int old = atomic_read(&sdev->restarts);
515
516                 /*
517                  * ->restarts has to be kept as non-zero if new budget
518                  *  contention occurs.
519                  *
520                  *  No need to run queue when either another re-run
521                  *  queue wins in updating ->restarts or a new budget
522                  *  contention occurs.
523                  */
524                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
525                         blk_mq_run_hw_queues(sdev->request_queue, true);
526         }
527 }
528
529 /* Returns false when no more bytes to process, true if there are more */
530 static bool scsi_end_request(struct request *req, blk_status_t error,
531                 unsigned int bytes)
532 {
533         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
534         struct scsi_device *sdev = cmd->device;
535         struct request_queue *q = sdev->request_queue;
536
537         if (blk_update_request(req, error, bytes))
538                 return true;
539
540         if (blk_queue_add_random(q))
541                 add_disk_randomness(req->rq_disk);
542
543         if (!blk_rq_is_scsi(req)) {
544                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
545                 cmd->flags &= ~SCMD_INITIALIZED;
546         }
547
548         /*
549          * Calling rcu_barrier() is not necessary here because the
550          * SCSI error handler guarantees that the function called by
551          * call_rcu() has been called before scsi_end_request() is
552          * called.
553          */
554         destroy_rcu_head(&cmd->rcu);
555
556         /*
557          * In the MQ case the command gets freed by __blk_mq_end_request,
558          * so we have to do all cleanup that depends on it earlier.
559          *
560          * We also can't kick the queues from irq context, so we
561          * will have to defer it to a workqueue.
562          */
563         scsi_mq_uninit_cmd(cmd);
564
565         /*
566          * queue is still alive, so grab the ref for preventing it
567          * from being cleaned up during running queue.
568          */
569         percpu_ref_get(&q->q_usage_counter);
570
571         __blk_mq_end_request(req, error);
572
573         scsi_run_queue_async(sdev);
574
575         percpu_ref_put(&q->q_usage_counter);
576         return false;
577 }
578
579 /**
580  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
581  * @cmd:        SCSI command
582  * @result:     scsi error code
583  *
584  * Translate a SCSI result code into a blk_status_t value. May reset the host
585  * byte of @cmd->result.
586  */
587 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
588 {
589         switch (host_byte(result)) {
590         case DID_OK:
591                 /*
592                  * Also check the other bytes than the status byte in result
593                  * to handle the case when a SCSI LLD sets result to
594                  * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
595                  */
596                 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
597                         return BLK_STS_OK;
598                 return BLK_STS_IOERR;
599         case DID_TRANSPORT_FAILFAST:
600         case DID_TRANSPORT_MARGINAL:
601                 return BLK_STS_TRANSPORT;
602         case DID_TARGET_FAILURE:
603                 set_host_byte(cmd, DID_OK);
604                 return BLK_STS_TARGET;
605         case DID_NEXUS_FAILURE:
606                 set_host_byte(cmd, DID_OK);
607                 return BLK_STS_NEXUS;
608         case DID_ALLOC_FAILURE:
609                 set_host_byte(cmd, DID_OK);
610                 return BLK_STS_NOSPC;
611         case DID_MEDIUM_ERROR:
612                 set_host_byte(cmd, DID_OK);
613                 return BLK_STS_MEDIUM;
614         default:
615                 return BLK_STS_IOERR;
616         }
617 }
618
619 /* Helper for scsi_io_completion() when "reprep" action required. */
620 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
621                                       struct request_queue *q)
622 {
623         /* A new command will be prepared and issued. */
624         scsi_mq_requeue_cmd(cmd);
625 }
626
627 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
628 {
629         struct request *req = cmd->request;
630         unsigned long wait_for;
631
632         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
633                 return false;
634
635         wait_for = (cmd->allowed + 1) * req->timeout;
636         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
637                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
638                             wait_for/HZ);
639                 return true;
640         }
641         return false;
642 }
643
644 /* Helper for scsi_io_completion() when special action required. */
645 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
646 {
647         struct request_queue *q = cmd->device->request_queue;
648         struct request *req = cmd->request;
649         int level = 0;
650         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
651               ACTION_DELAYED_RETRY} action;
652         struct scsi_sense_hdr sshdr;
653         bool sense_valid;
654         bool sense_current = true;      /* false implies "deferred sense" */
655         blk_status_t blk_stat;
656
657         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
658         if (sense_valid)
659                 sense_current = !scsi_sense_is_deferred(&sshdr);
660
661         blk_stat = scsi_result_to_blk_status(cmd, result);
662
663         if (host_byte(result) == DID_RESET) {
664                 /* Third party bus reset or reset for error recovery
665                  * reasons.  Just retry the command and see what
666                  * happens.
667                  */
668                 action = ACTION_RETRY;
669         } else if (sense_valid && sense_current) {
670                 switch (sshdr.sense_key) {
671                 case UNIT_ATTENTION:
672                         if (cmd->device->removable) {
673                                 /* Detected disc change.  Set a bit
674                                  * and quietly refuse further access.
675                                  */
676                                 cmd->device->changed = 1;
677                                 action = ACTION_FAIL;
678                         } else {
679                                 /* Must have been a power glitch, or a
680                                  * bus reset.  Could not have been a
681                                  * media change, so we just retry the
682                                  * command and see what happens.
683                                  */
684                                 action = ACTION_RETRY;
685                         }
686                         break;
687                 case ILLEGAL_REQUEST:
688                         /* If we had an ILLEGAL REQUEST returned, then
689                          * we may have performed an unsupported
690                          * command.  The only thing this should be
691                          * would be a ten byte read where only a six
692                          * byte read was supported.  Also, on a system
693                          * where READ CAPACITY failed, we may have
694                          * read past the end of the disk.
695                          */
696                         if ((cmd->device->use_10_for_rw &&
697                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
698                             (cmd->cmnd[0] == READ_10 ||
699                              cmd->cmnd[0] == WRITE_10)) {
700                                 /* This will issue a new 6-byte command. */
701                                 cmd->device->use_10_for_rw = 0;
702                                 action = ACTION_REPREP;
703                         } else if (sshdr.asc == 0x10) /* DIX */ {
704                                 action = ACTION_FAIL;
705                                 blk_stat = BLK_STS_PROTECTION;
706                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
707                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
708                                 action = ACTION_FAIL;
709                                 blk_stat = BLK_STS_TARGET;
710                         } else
711                                 action = ACTION_FAIL;
712                         break;
713                 case ABORTED_COMMAND:
714                         action = ACTION_FAIL;
715                         if (sshdr.asc == 0x10) /* DIF */
716                                 blk_stat = BLK_STS_PROTECTION;
717                         break;
718                 case NOT_READY:
719                         /* If the device is in the process of becoming
720                          * ready, or has a temporary blockage, retry.
721                          */
722                         if (sshdr.asc == 0x04) {
723                                 switch (sshdr.ascq) {
724                                 case 0x01: /* becoming ready */
725                                 case 0x04: /* format in progress */
726                                 case 0x05: /* rebuild in progress */
727                                 case 0x06: /* recalculation in progress */
728                                 case 0x07: /* operation in progress */
729                                 case 0x08: /* Long write in progress */
730                                 case 0x09: /* self test in progress */
731                                 case 0x14: /* space allocation in progress */
732                                 case 0x1a: /* start stop unit in progress */
733                                 case 0x1b: /* sanitize in progress */
734                                 case 0x1d: /* configuration in progress */
735                                 case 0x24: /* depopulation in progress */
736                                         action = ACTION_DELAYED_RETRY;
737                                         break;
738                                 case 0x0a: /* ALUA state transition */
739                                         blk_stat = BLK_STS_AGAIN;
740                                         fallthrough;
741                                 default:
742                                         action = ACTION_FAIL;
743                                         break;
744                                 }
745                         } else
746                                 action = ACTION_FAIL;
747                         break;
748                 case VOLUME_OVERFLOW:
749                         /* See SSC3rXX or current. */
750                         action = ACTION_FAIL;
751                         break;
752                 case DATA_PROTECT:
753                         action = ACTION_FAIL;
754                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
755                             (sshdr.asc == 0x55 &&
756                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
757                                 /* Insufficient zone resources */
758                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
759                         }
760                         break;
761                 default:
762                         action = ACTION_FAIL;
763                         break;
764                 }
765         } else
766                 action = ACTION_FAIL;
767
768         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
769                 action = ACTION_FAIL;
770
771         switch (action) {
772         case ACTION_FAIL:
773                 /* Give up and fail the remainder of the request */
774                 if (!(req->rq_flags & RQF_QUIET)) {
775                         static DEFINE_RATELIMIT_STATE(_rs,
776                                         DEFAULT_RATELIMIT_INTERVAL,
777                                         DEFAULT_RATELIMIT_BURST);
778
779                         if (unlikely(scsi_logging_level))
780                                 level =
781                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
782                                                     SCSI_LOG_MLCOMPLETE_BITS);
783
784                         /*
785                          * if logging is enabled the failure will be printed
786                          * in scsi_log_completion(), so avoid duplicate messages
787                          */
788                         if (!level && __ratelimit(&_rs)) {
789                                 scsi_print_result(cmd, NULL, FAILED);
790                                 if (driver_byte(result) == DRIVER_SENSE)
791                                         scsi_print_sense(cmd);
792                                 scsi_print_command(cmd);
793                         }
794                 }
795                 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
796                         return;
797                 fallthrough;
798         case ACTION_REPREP:
799                 scsi_io_completion_reprep(cmd, q);
800                 break;
801         case ACTION_RETRY:
802                 /* Retry the same command immediately */
803                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
804                 break;
805         case ACTION_DELAYED_RETRY:
806                 /* Retry the same command after a delay */
807                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
808                 break;
809         }
810 }
811
812 /*
813  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
814  * new result that may suppress further error checking. Also modifies
815  * *blk_statp in some cases.
816  */
817 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
818                                         blk_status_t *blk_statp)
819 {
820         bool sense_valid;
821         bool sense_current = true;      /* false implies "deferred sense" */
822         struct request *req = cmd->request;
823         struct scsi_sense_hdr sshdr;
824
825         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
826         if (sense_valid)
827                 sense_current = !scsi_sense_is_deferred(&sshdr);
828
829         if (blk_rq_is_passthrough(req)) {
830                 if (sense_valid) {
831                         /*
832                          * SG_IO wants current and deferred errors
833                          */
834                         scsi_req(req)->sense_len =
835                                 min(8 + cmd->sense_buffer[7],
836                                     SCSI_SENSE_BUFFERSIZE);
837                 }
838                 if (sense_current)
839                         *blk_statp = scsi_result_to_blk_status(cmd, result);
840         } else if (blk_rq_bytes(req) == 0 && sense_current) {
841                 /*
842                  * Flush commands do not transfers any data, and thus cannot use
843                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
844                  * This sets *blk_statp explicitly for the problem case.
845                  */
846                 *blk_statp = scsi_result_to_blk_status(cmd, result);
847         }
848         /*
849          * Recovered errors need reporting, but they're always treated as
850          * success, so fiddle the result code here.  For passthrough requests
851          * we already took a copy of the original into sreq->result which
852          * is what gets returned to the user
853          */
854         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
855                 bool do_print = true;
856                 /*
857                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
858                  * skip print since caller wants ATA registers. Only occurs
859                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
860                  */
861                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
862                         do_print = false;
863                 else if (req->rq_flags & RQF_QUIET)
864                         do_print = false;
865                 if (do_print)
866                         scsi_print_sense(cmd);
867                 result = 0;
868                 /* for passthrough, *blk_statp may be set */
869                 *blk_statp = BLK_STS_OK;
870         }
871         /*
872          * Another corner case: the SCSI status byte is non-zero but 'good'.
873          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
874          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
875          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
876          * intermediate statuses (both obsolete in SAM-4) as good.
877          */
878         if (status_byte(result) && scsi_status_is_good(result)) {
879                 result = 0;
880                 *blk_statp = BLK_STS_OK;
881         }
882         return result;
883 }
884
885 /**
886  * scsi_io_completion - Completion processing for SCSI commands.
887  * @cmd:        command that is finished.
888  * @good_bytes: number of processed bytes.
889  *
890  * We will finish off the specified number of sectors. If we are done, the
891  * command block will be released and the queue function will be goosed. If we
892  * are not done then we have to figure out what to do next:
893  *
894  *   a) We can call scsi_io_completion_reprep().  The request will be
895  *      unprepared and put back on the queue.  Then a new command will
896  *      be created for it.  This should be used if we made forward
897  *      progress, or if we want to switch from READ(10) to READ(6) for
898  *      example.
899  *
900  *   b) We can call scsi_io_completion_action().  The request will be
901  *      put back on the queue and retried using the same command as
902  *      before, possibly after a delay.
903  *
904  *   c) We can call scsi_end_request() with blk_stat other than
905  *      BLK_STS_OK, to fail the remainder of the request.
906  */
907 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
908 {
909         int result = cmd->result;
910         struct request_queue *q = cmd->device->request_queue;
911         struct request *req = cmd->request;
912         blk_status_t blk_stat = BLK_STS_OK;
913
914         if (unlikely(result))   /* a nz result may or may not be an error */
915                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
916
917         if (unlikely(blk_rq_is_passthrough(req))) {
918                 /*
919                  * scsi_result_to_blk_status may have reset the host_byte
920                  */
921                 scsi_req(req)->result = cmd->result;
922         }
923
924         /*
925          * Next deal with any sectors which we were able to correctly
926          * handle.
927          */
928         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
929                 "%u sectors total, %d bytes done.\n",
930                 blk_rq_sectors(req), good_bytes));
931
932         /*
933          * Failed, zero length commands always need to drop down
934          * to retry code. Fast path should return in this block.
935          */
936         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
937                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
938                         return; /* no bytes remaining */
939         }
940
941         /* Kill remainder if no retries. */
942         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
943                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
944                         WARN_ONCE(true,
945                             "Bytes remaining after failed, no-retry command");
946                 return;
947         }
948
949         /*
950          * If there had been no error, but we have leftover bytes in the
951          * requeues just queue the command up again.
952          */
953         if (likely(result == 0))
954                 scsi_io_completion_reprep(cmd, q);
955         else
956                 scsi_io_completion_action(cmd, result);
957 }
958
959 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
960                 struct request *rq)
961 {
962         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
963                !op_is_write(req_op(rq)) &&
964                sdev->host->hostt->dma_need_drain(rq);
965 }
966
967 /**
968  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
969  * @cmd: SCSI command data structure to initialize.
970  *
971  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
972  * for @cmd.
973  *
974  * Returns:
975  * * BLK_STS_OK       - on success
976  * * BLK_STS_RESOURCE - if the failure is retryable
977  * * BLK_STS_IOERR    - if the failure is fatal
978  */
979 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
980 {
981         struct scsi_device *sdev = cmd->device;
982         struct request *rq = cmd->request;
983         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
984         struct scatterlist *last_sg = NULL;
985         blk_status_t ret;
986         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
987         int count;
988
989         if (WARN_ON_ONCE(!nr_segs))
990                 return BLK_STS_IOERR;
991
992         /*
993          * Make sure there is space for the drain.  The driver must adjust
994          * max_hw_segments to be prepared for this.
995          */
996         if (need_drain)
997                 nr_segs++;
998
999         /*
1000          * If sg table allocation fails, requeue request later.
1001          */
1002         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1003                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1004                 return BLK_STS_RESOURCE;
1005
1006         /*
1007          * Next, walk the list, and fill in the addresses and sizes of
1008          * each segment.
1009          */
1010         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1011
1012         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1013                 unsigned int pad_len =
1014                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1015
1016                 last_sg->length += pad_len;
1017                 cmd->extra_len += pad_len;
1018         }
1019
1020         if (need_drain) {
1021                 sg_unmark_end(last_sg);
1022                 last_sg = sg_next(last_sg);
1023                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1024                 sg_mark_end(last_sg);
1025
1026                 cmd->extra_len += sdev->dma_drain_len;
1027                 count++;
1028         }
1029
1030         BUG_ON(count > cmd->sdb.table.nents);
1031         cmd->sdb.table.nents = count;
1032         cmd->sdb.length = blk_rq_payload_bytes(rq);
1033
1034         if (blk_integrity_rq(rq)) {
1035                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1036                 int ivecs;
1037
1038                 if (WARN_ON_ONCE(!prot_sdb)) {
1039                         /*
1040                          * This can happen if someone (e.g. multipath)
1041                          * queues a command to a device on an adapter
1042                          * that does not support DIX.
1043                          */
1044                         ret = BLK_STS_IOERR;
1045                         goto out_free_sgtables;
1046                 }
1047
1048                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1049
1050                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1051                                 prot_sdb->table.sgl,
1052                                 SCSI_INLINE_PROT_SG_CNT)) {
1053                         ret = BLK_STS_RESOURCE;
1054                         goto out_free_sgtables;
1055                 }
1056
1057                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1058                                                 prot_sdb->table.sgl);
1059                 BUG_ON(count > ivecs);
1060                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1061
1062                 cmd->prot_sdb = prot_sdb;
1063                 cmd->prot_sdb->table.nents = count;
1064         }
1065
1066         return BLK_STS_OK;
1067 out_free_sgtables:
1068         scsi_free_sgtables(cmd);
1069         return ret;
1070 }
1071 EXPORT_SYMBOL(scsi_alloc_sgtables);
1072
1073 /**
1074  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1075  * @rq: Request associated with the SCSI command to be initialized.
1076  *
1077  * This function initializes the members of struct scsi_cmnd that must be
1078  * initialized before request processing starts and that won't be
1079  * reinitialized if a SCSI command is requeued.
1080  *
1081  * Called from inside blk_get_request() for pass-through requests and from
1082  * inside scsi_init_command() for filesystem requests.
1083  */
1084 static void scsi_initialize_rq(struct request *rq)
1085 {
1086         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1087
1088         scsi_req_init(&cmd->req);
1089         init_rcu_head(&cmd->rcu);
1090         cmd->jiffies_at_alloc = jiffies;
1091         cmd->retries = 0;
1092 }
1093
1094 /*
1095  * Only called when the request isn't completed by SCSI, and not freed by
1096  * SCSI
1097  */
1098 static void scsi_cleanup_rq(struct request *rq)
1099 {
1100         if (rq->rq_flags & RQF_DONTPREP) {
1101                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1102                 rq->rq_flags &= ~RQF_DONTPREP;
1103         }
1104 }
1105
1106 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1107 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1108 {
1109         void *buf = cmd->sense_buffer;
1110         void *prot = cmd->prot_sdb;
1111         struct request *rq = blk_mq_rq_from_pdu(cmd);
1112         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1113         unsigned long jiffies_at_alloc;
1114         int retries, to_clear;
1115         bool in_flight;
1116         int budget_token = cmd->budget_token;
1117
1118         if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1119                 flags |= SCMD_INITIALIZED;
1120                 scsi_initialize_rq(rq);
1121         }
1122
1123         jiffies_at_alloc = cmd->jiffies_at_alloc;
1124         retries = cmd->retries;
1125         in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1126         /*
1127          * Zero out the cmd, except for the embedded scsi_request. Only clear
1128          * the driver-private command data if the LLD does not supply a
1129          * function to initialize that data.
1130          */
1131         to_clear = sizeof(*cmd) - sizeof(cmd->req);
1132         if (!dev->host->hostt->init_cmd_priv)
1133                 to_clear += dev->host->hostt->cmd_size;
1134         memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1135
1136         cmd->device = dev;
1137         cmd->sense_buffer = buf;
1138         cmd->prot_sdb = prot;
1139         cmd->flags = flags;
1140         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1141         cmd->jiffies_at_alloc = jiffies_at_alloc;
1142         cmd->retries = retries;
1143         if (in_flight)
1144                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1145         cmd->budget_token = budget_token;
1146
1147 }
1148
1149 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1150                 struct request *req)
1151 {
1152         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1153
1154         /*
1155          * Passthrough requests may transfer data, in which case they must
1156          * a bio attached to them.  Or they might contain a SCSI command
1157          * that does not transfer data, in which case they may optionally
1158          * submit a request without an attached bio.
1159          */
1160         if (req->bio) {
1161                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1162                 if (unlikely(ret != BLK_STS_OK))
1163                         return ret;
1164         } else {
1165                 BUG_ON(blk_rq_bytes(req));
1166
1167                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1168         }
1169
1170         cmd->cmd_len = scsi_req(req)->cmd_len;
1171         if (cmd->cmd_len == 0)
1172                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
1173         cmd->cmnd = scsi_req(req)->cmd;
1174         cmd->transfersize = blk_rq_bytes(req);
1175         cmd->allowed = scsi_req(req)->retries;
1176         return BLK_STS_OK;
1177 }
1178
1179 static blk_status_t
1180 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1181 {
1182         switch (sdev->sdev_state) {
1183         case SDEV_CREATED:
1184                 return BLK_STS_OK;
1185         case SDEV_OFFLINE:
1186         case SDEV_TRANSPORT_OFFLINE:
1187                 /*
1188                  * If the device is offline we refuse to process any
1189                  * commands.  The device must be brought online
1190                  * before trying any recovery commands.
1191                  */
1192                 if (!sdev->offline_already) {
1193                         sdev->offline_already = true;
1194                         sdev_printk(KERN_ERR, sdev,
1195                                     "rejecting I/O to offline device\n");
1196                 }
1197                 return BLK_STS_IOERR;
1198         case SDEV_DEL:
1199                 /*
1200                  * If the device is fully deleted, we refuse to
1201                  * process any commands as well.
1202                  */
1203                 sdev_printk(KERN_ERR, sdev,
1204                             "rejecting I/O to dead device\n");
1205                 return BLK_STS_IOERR;
1206         case SDEV_BLOCK:
1207         case SDEV_CREATED_BLOCK:
1208                 return BLK_STS_RESOURCE;
1209         case SDEV_QUIESCE:
1210                 /*
1211                  * If the device is blocked we only accept power management
1212                  * commands.
1213                  */
1214                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1215                         return BLK_STS_RESOURCE;
1216                 return BLK_STS_OK;
1217         default:
1218                 /*
1219                  * For any other not fully online state we only allow
1220                  * power management commands.
1221                  */
1222                 if (req && !(req->rq_flags & RQF_PM))
1223                         return BLK_STS_IOERR;
1224                 return BLK_STS_OK;
1225         }
1226 }
1227
1228 /*
1229  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1230  * and return the token else return -1.
1231  */
1232 static inline int scsi_dev_queue_ready(struct request_queue *q,
1233                                   struct scsi_device *sdev)
1234 {
1235         int token;
1236
1237         token = sbitmap_get(&sdev->budget_map);
1238         if (atomic_read(&sdev->device_blocked)) {
1239                 if (token < 0)
1240                         goto out;
1241
1242                 if (scsi_device_busy(sdev) > 1)
1243                         goto out_dec;
1244
1245                 /*
1246                  * unblock after device_blocked iterates to zero
1247                  */
1248                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1249                         goto out_dec;
1250                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1251                                    "unblocking device at zero depth\n"));
1252         }
1253
1254         return token;
1255 out_dec:
1256         if (token >= 0)
1257                 sbitmap_put(&sdev->budget_map, token);
1258 out:
1259         return -1;
1260 }
1261
1262 /*
1263  * scsi_target_queue_ready: checks if there we can send commands to target
1264  * @sdev: scsi device on starget to check.
1265  */
1266 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1267                                            struct scsi_device *sdev)
1268 {
1269         struct scsi_target *starget = scsi_target(sdev);
1270         unsigned int busy;
1271
1272         if (starget->single_lun) {
1273                 spin_lock_irq(shost->host_lock);
1274                 if (starget->starget_sdev_user &&
1275                     starget->starget_sdev_user != sdev) {
1276                         spin_unlock_irq(shost->host_lock);
1277                         return 0;
1278                 }
1279                 starget->starget_sdev_user = sdev;
1280                 spin_unlock_irq(shost->host_lock);
1281         }
1282
1283         if (starget->can_queue <= 0)
1284                 return 1;
1285
1286         busy = atomic_inc_return(&starget->target_busy) - 1;
1287         if (atomic_read(&starget->target_blocked) > 0) {
1288                 if (busy)
1289                         goto starved;
1290
1291                 /*
1292                  * unblock after target_blocked iterates to zero
1293                  */
1294                 if (atomic_dec_return(&starget->target_blocked) > 0)
1295                         goto out_dec;
1296
1297                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1298                                  "unblocking target at zero depth\n"));
1299         }
1300
1301         if (busy >= starget->can_queue)
1302                 goto starved;
1303
1304         return 1;
1305
1306 starved:
1307         spin_lock_irq(shost->host_lock);
1308         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1309         spin_unlock_irq(shost->host_lock);
1310 out_dec:
1311         if (starget->can_queue > 0)
1312                 atomic_dec(&starget->target_busy);
1313         return 0;
1314 }
1315
1316 /*
1317  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1318  * return 0. We must end up running the queue again whenever 0 is
1319  * returned, else IO can hang.
1320  */
1321 static inline int scsi_host_queue_ready(struct request_queue *q,
1322                                    struct Scsi_Host *shost,
1323                                    struct scsi_device *sdev,
1324                                    struct scsi_cmnd *cmd)
1325 {
1326         if (scsi_host_in_recovery(shost))
1327                 return 0;
1328
1329         if (atomic_read(&shost->host_blocked) > 0) {
1330                 if (scsi_host_busy(shost) > 0)
1331                         goto starved;
1332
1333                 /*
1334                  * unblock after host_blocked iterates to zero
1335                  */
1336                 if (atomic_dec_return(&shost->host_blocked) > 0)
1337                         goto out_dec;
1338
1339                 SCSI_LOG_MLQUEUE(3,
1340                         shost_printk(KERN_INFO, shost,
1341                                      "unblocking host at zero depth\n"));
1342         }
1343
1344         if (shost->host_self_blocked)
1345                 goto starved;
1346
1347         /* We're OK to process the command, so we can't be starved */
1348         if (!list_empty(&sdev->starved_entry)) {
1349                 spin_lock_irq(shost->host_lock);
1350                 if (!list_empty(&sdev->starved_entry))
1351                         list_del_init(&sdev->starved_entry);
1352                 spin_unlock_irq(shost->host_lock);
1353         }
1354
1355         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1356
1357         return 1;
1358
1359 starved:
1360         spin_lock_irq(shost->host_lock);
1361         if (list_empty(&sdev->starved_entry))
1362                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1363         spin_unlock_irq(shost->host_lock);
1364 out_dec:
1365         scsi_dec_host_busy(shost, cmd);
1366         return 0;
1367 }
1368
1369 /*
1370  * Busy state exporting function for request stacking drivers.
1371  *
1372  * For efficiency, no lock is taken to check the busy state of
1373  * shost/starget/sdev, since the returned value is not guaranteed and
1374  * may be changed after request stacking drivers call the function,
1375  * regardless of taking lock or not.
1376  *
1377  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1378  * needs to return 'not busy'. Otherwise, request stacking drivers
1379  * may hold requests forever.
1380  */
1381 static bool scsi_mq_lld_busy(struct request_queue *q)
1382 {
1383         struct scsi_device *sdev = q->queuedata;
1384         struct Scsi_Host *shost;
1385
1386         if (blk_queue_dying(q))
1387                 return false;
1388
1389         shost = sdev->host;
1390
1391         /*
1392          * Ignore host/starget busy state.
1393          * Since block layer does not have a concept of fairness across
1394          * multiple queues, congestion of host/starget needs to be handled
1395          * in SCSI layer.
1396          */
1397         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1398                 return true;
1399
1400         return false;
1401 }
1402
1403 /*
1404  * Block layer request completion callback. May be called from interrupt
1405  * context.
1406  */
1407 static void scsi_complete(struct request *rq)
1408 {
1409         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1410         enum scsi_disposition disposition;
1411
1412         INIT_LIST_HEAD(&cmd->eh_entry);
1413
1414         atomic_inc(&cmd->device->iodone_cnt);
1415         if (cmd->result)
1416                 atomic_inc(&cmd->device->ioerr_cnt);
1417
1418         disposition = scsi_decide_disposition(cmd);
1419         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1420                 disposition = SUCCESS;
1421
1422         scsi_log_completion(cmd, disposition);
1423
1424         switch (disposition) {
1425         case SUCCESS:
1426                 scsi_finish_command(cmd);
1427                 break;
1428         case NEEDS_RETRY:
1429                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1430                 break;
1431         case ADD_TO_MLQUEUE:
1432                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1433                 break;
1434         default:
1435                 scsi_eh_scmd_add(cmd);
1436                 break;
1437         }
1438 }
1439
1440 /**
1441  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1442  * @cmd: command block we are dispatching.
1443  *
1444  * Return: nonzero return request was rejected and device's queue needs to be
1445  * plugged.
1446  */
1447 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1448 {
1449         struct Scsi_Host *host = cmd->device->host;
1450         int rtn = 0;
1451
1452         atomic_inc(&cmd->device->iorequest_cnt);
1453
1454         /* check if the device is still usable */
1455         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1456                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1457                  * returns an immediate error upwards, and signals
1458                  * that the device is no longer present */
1459                 cmd->result = DID_NO_CONNECT << 16;
1460                 goto done;
1461         }
1462
1463         /* Check to see if the scsi lld made this device blocked. */
1464         if (unlikely(scsi_device_blocked(cmd->device))) {
1465                 /*
1466                  * in blocked state, the command is just put back on
1467                  * the device queue.  The suspend state has already
1468                  * blocked the queue so future requests should not
1469                  * occur until the device transitions out of the
1470                  * suspend state.
1471                  */
1472                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1473                         "queuecommand : device blocked\n"));
1474                 return SCSI_MLQUEUE_DEVICE_BUSY;
1475         }
1476
1477         /* Store the LUN value in cmnd, if needed. */
1478         if (cmd->device->lun_in_cdb)
1479                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1480                                (cmd->device->lun << 5 & 0xe0);
1481
1482         scsi_log_send(cmd);
1483
1484         /*
1485          * Before we queue this command, check if the command
1486          * length exceeds what the host adapter can handle.
1487          */
1488         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1489                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1490                                "queuecommand : command too long. "
1491                                "cdb_size=%d host->max_cmd_len=%d\n",
1492                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1493                 cmd->result = (DID_ABORT << 16);
1494                 goto done;
1495         }
1496
1497         if (unlikely(host->shost_state == SHOST_DEL)) {
1498                 cmd->result = (DID_NO_CONNECT << 16);
1499                 goto done;
1500
1501         }
1502
1503         trace_scsi_dispatch_cmd_start(cmd);
1504         rtn = host->hostt->queuecommand(host, cmd);
1505         if (rtn) {
1506                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1507                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1508                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1509                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1510
1511                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1512                         "queuecommand : request rejected\n"));
1513         }
1514
1515         return rtn;
1516  done:
1517         cmd->scsi_done(cmd);
1518         return 0;
1519 }
1520
1521 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1522 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1523 {
1524         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1525                 sizeof(struct scatterlist);
1526 }
1527
1528 static blk_status_t scsi_prepare_cmd(struct request *req)
1529 {
1530         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1531         struct scsi_device *sdev = req->q->queuedata;
1532         struct Scsi_Host *shost = sdev->host;
1533         struct scatterlist *sg;
1534
1535         scsi_init_command(sdev, cmd);
1536
1537         cmd->request = req;
1538         cmd->tag = req->tag;
1539         cmd->prot_op = SCSI_PROT_NORMAL;
1540         if (blk_rq_bytes(req))
1541                 cmd->sc_data_direction = rq_dma_dir(req);
1542         else
1543                 cmd->sc_data_direction = DMA_NONE;
1544
1545         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1546         cmd->sdb.table.sgl = sg;
1547
1548         if (scsi_host_get_prot(shost)) {
1549                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1550
1551                 cmd->prot_sdb->table.sgl =
1552                         (struct scatterlist *)(cmd->prot_sdb + 1);
1553         }
1554
1555         /*
1556          * Special handling for passthrough commands, which don't go to the ULP
1557          * at all:
1558          */
1559         if (blk_rq_is_scsi(req))
1560                 return scsi_setup_scsi_cmnd(sdev, req);
1561
1562         if (sdev->handler && sdev->handler->prep_fn) {
1563                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1564
1565                 if (ret != BLK_STS_OK)
1566                         return ret;
1567         }
1568
1569         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1570         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1571         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1572 }
1573
1574 static void scsi_mq_done(struct scsi_cmnd *cmd)
1575 {
1576         if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1577                 return;
1578         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1579                 return;
1580         trace_scsi_dispatch_cmd_done(cmd);
1581         blk_mq_complete_request(cmd->request);
1582 }
1583
1584 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1585 {
1586         struct scsi_device *sdev = q->queuedata;
1587
1588         sbitmap_put(&sdev->budget_map, budget_token);
1589 }
1590
1591 static int scsi_mq_get_budget(struct request_queue *q)
1592 {
1593         struct scsi_device *sdev = q->queuedata;
1594         int token = scsi_dev_queue_ready(q, sdev);
1595
1596         if (token >= 0)
1597                 return token;
1598
1599         atomic_inc(&sdev->restarts);
1600
1601         /*
1602          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1603          * .restarts must be incremented before .device_busy is read because the
1604          * code in scsi_run_queue_async() depends on the order of these operations.
1605          */
1606         smp_mb__after_atomic();
1607
1608         /*
1609          * If all in-flight requests originated from this LUN are completed
1610          * before reading .device_busy, sdev->device_busy will be observed as
1611          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1612          * soon. Otherwise, completion of one of these requests will observe
1613          * the .restarts flag, and the request queue will be run for handling
1614          * this request, see scsi_end_request().
1615          */
1616         if (unlikely(scsi_device_busy(sdev) == 0 &&
1617                                 !scsi_device_blocked(sdev)))
1618                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1619         return -1;
1620 }
1621
1622 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1623 {
1624         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1625
1626         cmd->budget_token = token;
1627 }
1628
1629 static int scsi_mq_get_rq_budget_token(struct request *req)
1630 {
1631         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1632
1633         return cmd->budget_token;
1634 }
1635
1636 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1637                          const struct blk_mq_queue_data *bd)
1638 {
1639         struct request *req = bd->rq;
1640         struct request_queue *q = req->q;
1641         struct scsi_device *sdev = q->queuedata;
1642         struct Scsi_Host *shost = sdev->host;
1643         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1644         blk_status_t ret;
1645         int reason;
1646
1647         WARN_ON_ONCE(cmd->budget_token < 0);
1648
1649         /*
1650          * If the device is not in running state we will reject some or all
1651          * commands.
1652          */
1653         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1654                 ret = scsi_device_state_check(sdev, req);
1655                 if (ret != BLK_STS_OK)
1656                         goto out_put_budget;
1657         }
1658
1659         ret = BLK_STS_RESOURCE;
1660         if (!scsi_target_queue_ready(shost, sdev))
1661                 goto out_put_budget;
1662         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1663                 goto out_dec_target_busy;
1664
1665         if (!(req->rq_flags & RQF_DONTPREP)) {
1666                 ret = scsi_prepare_cmd(req);
1667                 if (ret != BLK_STS_OK)
1668                         goto out_dec_host_busy;
1669                 req->rq_flags |= RQF_DONTPREP;
1670         } else {
1671                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1672         }
1673
1674         cmd->flags &= SCMD_PRESERVED_FLAGS;
1675         if (sdev->simple_tags)
1676                 cmd->flags |= SCMD_TAGGED;
1677         if (bd->last)
1678                 cmd->flags |= SCMD_LAST;
1679
1680         scsi_set_resid(cmd, 0);
1681         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1682         cmd->scsi_done = scsi_mq_done;
1683
1684         blk_mq_start_request(req);
1685         reason = scsi_dispatch_cmd(cmd);
1686         if (reason) {
1687                 scsi_set_blocked(cmd, reason);
1688                 ret = BLK_STS_RESOURCE;
1689                 goto out_dec_host_busy;
1690         }
1691
1692         return BLK_STS_OK;
1693
1694 out_dec_host_busy:
1695         scsi_dec_host_busy(shost, cmd);
1696 out_dec_target_busy:
1697         if (scsi_target(sdev)->can_queue > 0)
1698                 atomic_dec(&scsi_target(sdev)->target_busy);
1699 out_put_budget:
1700         scsi_mq_put_budget(q, cmd->budget_token);
1701         cmd->budget_token = -1;
1702         switch (ret) {
1703         case BLK_STS_OK:
1704                 break;
1705         case BLK_STS_RESOURCE:
1706         case BLK_STS_ZONE_RESOURCE:
1707                 if (scsi_device_blocked(sdev))
1708                         ret = BLK_STS_DEV_RESOURCE;
1709                 break;
1710         case BLK_STS_AGAIN:
1711                 scsi_req(req)->result = DID_BUS_BUSY << 16;
1712                 if (req->rq_flags & RQF_DONTPREP)
1713                         scsi_mq_uninit_cmd(cmd);
1714                 break;
1715         default:
1716                 if (unlikely(!scsi_device_online(sdev)))
1717                         scsi_req(req)->result = DID_NO_CONNECT << 16;
1718                 else
1719                         scsi_req(req)->result = DID_ERROR << 16;
1720                 /*
1721                  * Make sure to release all allocated resources when
1722                  * we hit an error, as we will never see this command
1723                  * again.
1724                  */
1725                 if (req->rq_flags & RQF_DONTPREP)
1726                         scsi_mq_uninit_cmd(cmd);
1727                 scsi_run_queue_async(sdev);
1728                 break;
1729         }
1730         return ret;
1731 }
1732
1733 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1734                 bool reserved)
1735 {
1736         if (reserved)
1737                 return BLK_EH_RESET_TIMER;
1738         return scsi_times_out(req);
1739 }
1740
1741 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1742                                 unsigned int hctx_idx, unsigned int numa_node)
1743 {
1744         struct Scsi_Host *shost = set->driver_data;
1745         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1746         struct scatterlist *sg;
1747         int ret = 0;
1748
1749         cmd->sense_buffer =
1750                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1751         if (!cmd->sense_buffer)
1752                 return -ENOMEM;
1753         cmd->req.sense = cmd->sense_buffer;
1754
1755         if (scsi_host_get_prot(shost)) {
1756                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1757                         shost->hostt->cmd_size;
1758                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1759         }
1760
1761         if (shost->hostt->init_cmd_priv) {
1762                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1763                 if (ret < 0)
1764                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1765         }
1766
1767         return ret;
1768 }
1769
1770 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1771                                  unsigned int hctx_idx)
1772 {
1773         struct Scsi_Host *shost = set->driver_data;
1774         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1775
1776         if (shost->hostt->exit_cmd_priv)
1777                 shost->hostt->exit_cmd_priv(shost, cmd);
1778         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1779 }
1780
1781
1782 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1783 {
1784         struct Scsi_Host *shost = hctx->driver_data;
1785
1786         if (shost->hostt->mq_poll)
1787                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1788
1789         return 0;
1790 }
1791
1792 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1793                           unsigned int hctx_idx)
1794 {
1795         struct Scsi_Host *shost = data;
1796
1797         hctx->driver_data = shost;
1798         return 0;
1799 }
1800
1801 static int scsi_map_queues(struct blk_mq_tag_set *set)
1802 {
1803         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1804
1805         if (shost->hostt->map_queues)
1806                 return shost->hostt->map_queues(shost);
1807         return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1808 }
1809
1810 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1811 {
1812         struct device *dev = shost->dma_dev;
1813
1814         /*
1815          * this limit is imposed by hardware restrictions
1816          */
1817         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1818                                         SG_MAX_SEGMENTS));
1819
1820         if (scsi_host_prot_dma(shost)) {
1821                 shost->sg_prot_tablesize =
1822                         min_not_zero(shost->sg_prot_tablesize,
1823                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1824                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1825                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1826         }
1827
1828         if (dev->dma_mask) {
1829                 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1830                                 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1831         }
1832         blk_queue_max_hw_sectors(q, shost->max_sectors);
1833         blk_queue_segment_boundary(q, shost->dma_boundary);
1834         dma_set_seg_boundary(dev, shost->dma_boundary);
1835
1836         blk_queue_max_segment_size(q, shost->max_segment_size);
1837         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1838         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1839
1840         /*
1841          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1842          * which is a common minimum for HBAs, and the minimum DMA alignment,
1843          * which is set by the platform.
1844          *
1845          * Devices that require a bigger alignment can increase it later.
1846          */
1847         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1848 }
1849 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1850
1851 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1852         .get_budget     = scsi_mq_get_budget,
1853         .put_budget     = scsi_mq_put_budget,
1854         .queue_rq       = scsi_queue_rq,
1855         .complete       = scsi_complete,
1856         .timeout        = scsi_timeout,
1857 #ifdef CONFIG_BLK_DEBUG_FS
1858         .show_rq        = scsi_show_rq,
1859 #endif
1860         .init_request   = scsi_mq_init_request,
1861         .exit_request   = scsi_mq_exit_request,
1862         .initialize_rq_fn = scsi_initialize_rq,
1863         .cleanup_rq     = scsi_cleanup_rq,
1864         .busy           = scsi_mq_lld_busy,
1865         .map_queues     = scsi_map_queues,
1866         .init_hctx      = scsi_init_hctx,
1867         .poll           = scsi_mq_poll,
1868         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1869         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1870 };
1871
1872
1873 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1874 {
1875         struct Scsi_Host *shost = hctx->driver_data;
1876
1877         shost->hostt->commit_rqs(shost, hctx->queue_num);
1878 }
1879
1880 static const struct blk_mq_ops scsi_mq_ops = {
1881         .get_budget     = scsi_mq_get_budget,
1882         .put_budget     = scsi_mq_put_budget,
1883         .queue_rq       = scsi_queue_rq,
1884         .commit_rqs     = scsi_commit_rqs,
1885         .complete       = scsi_complete,
1886         .timeout        = scsi_timeout,
1887 #ifdef CONFIG_BLK_DEBUG_FS
1888         .show_rq        = scsi_show_rq,
1889 #endif
1890         .init_request   = scsi_mq_init_request,
1891         .exit_request   = scsi_mq_exit_request,
1892         .initialize_rq_fn = scsi_initialize_rq,
1893         .cleanup_rq     = scsi_cleanup_rq,
1894         .busy           = scsi_mq_lld_busy,
1895         .map_queues     = scsi_map_queues,
1896         .init_hctx      = scsi_init_hctx,
1897         .poll           = scsi_mq_poll,
1898         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1899         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1900 };
1901
1902 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1903 {
1904         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1905         if (IS_ERR(sdev->request_queue))
1906                 return NULL;
1907
1908         sdev->request_queue->queuedata = sdev;
1909         __scsi_init_queue(sdev->host, sdev->request_queue);
1910         blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1911         return sdev->request_queue;
1912 }
1913
1914 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1915 {
1916         unsigned int cmd_size, sgl_size;
1917         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1918
1919         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1920                                 scsi_mq_inline_sgl_size(shost));
1921         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1922         if (scsi_host_get_prot(shost))
1923                 cmd_size += sizeof(struct scsi_data_buffer) +
1924                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1925
1926         memset(tag_set, 0, sizeof(*tag_set));
1927         if (shost->hostt->commit_rqs)
1928                 tag_set->ops = &scsi_mq_ops;
1929         else
1930                 tag_set->ops = &scsi_mq_ops_no_commit;
1931         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1932         tag_set->nr_maps = shost->nr_maps ? : 1;
1933         tag_set->queue_depth = shost->can_queue;
1934         tag_set->cmd_size = cmd_size;
1935         tag_set->numa_node = NUMA_NO_NODE;
1936         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1937         tag_set->flags |=
1938                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1939         tag_set->driver_data = shost;
1940         if (shost->host_tagset)
1941                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1942
1943         return blk_mq_alloc_tag_set(tag_set);
1944 }
1945
1946 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1947 {
1948         blk_mq_free_tag_set(&shost->tag_set);
1949 }
1950
1951 /**
1952  * scsi_device_from_queue - return sdev associated with a request_queue
1953  * @q: The request queue to return the sdev from
1954  *
1955  * Return the sdev associated with a request queue or NULL if the
1956  * request_queue does not reference a SCSI device.
1957  */
1958 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1959 {
1960         struct scsi_device *sdev = NULL;
1961
1962         if (q->mq_ops == &scsi_mq_ops_no_commit ||
1963             q->mq_ops == &scsi_mq_ops)
1964                 sdev = q->queuedata;
1965         if (!sdev || !get_device(&sdev->sdev_gendev))
1966                 sdev = NULL;
1967
1968         return sdev;
1969 }
1970
1971 /**
1972  * scsi_block_requests - Utility function used by low-level drivers to prevent
1973  * further commands from being queued to the device.
1974  * @shost:  host in question
1975  *
1976  * There is no timer nor any other means by which the requests get unblocked
1977  * other than the low-level driver calling scsi_unblock_requests().
1978  */
1979 void scsi_block_requests(struct Scsi_Host *shost)
1980 {
1981         shost->host_self_blocked = 1;
1982 }
1983 EXPORT_SYMBOL(scsi_block_requests);
1984
1985 /**
1986  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1987  * further commands to be queued to the device.
1988  * @shost:  host in question
1989  *
1990  * There is no timer nor any other means by which the requests get unblocked
1991  * other than the low-level driver calling scsi_unblock_requests(). This is done
1992  * as an API function so that changes to the internals of the scsi mid-layer
1993  * won't require wholesale changes to drivers that use this feature.
1994  */
1995 void scsi_unblock_requests(struct Scsi_Host *shost)
1996 {
1997         shost->host_self_blocked = 0;
1998         scsi_run_host_queues(shost);
1999 }
2000 EXPORT_SYMBOL(scsi_unblock_requests);
2001
2002 void scsi_exit_queue(void)
2003 {
2004         kmem_cache_destroy(scsi_sense_cache);
2005 }
2006
2007 /**
2008  *      scsi_mode_select - issue a mode select
2009  *      @sdev:  SCSI device to be queried
2010  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2011  *      @sp:    Save page bit (0 == don't save, 1 == save)
2012  *      @modepage: mode page being requested
2013  *      @buffer: request buffer (may not be smaller than eight bytes)
2014  *      @len:   length of request buffer.
2015  *      @timeout: command timeout
2016  *      @retries: number of retries before failing
2017  *      @data: returns a structure abstracting the mode header data
2018  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2019  *              must be SCSI_SENSE_BUFFERSIZE big.
2020  *
2021  *      Returns zero if successful; negative error number or scsi
2022  *      status on error
2023  *
2024  */
2025 int
2026 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2027                  unsigned char *buffer, int len, int timeout, int retries,
2028                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2029 {
2030         unsigned char cmd[10];
2031         unsigned char *real_buffer;
2032         int ret;
2033
2034         memset(cmd, 0, sizeof(cmd));
2035         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2036
2037         if (sdev->use_10_for_ms) {
2038                 if (len > 65535)
2039                         return -EINVAL;
2040                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2041                 if (!real_buffer)
2042                         return -ENOMEM;
2043                 memcpy(real_buffer + 8, buffer, len);
2044                 len += 8;
2045                 real_buffer[0] = 0;
2046                 real_buffer[1] = 0;
2047                 real_buffer[2] = data->medium_type;
2048                 real_buffer[3] = data->device_specific;
2049                 real_buffer[4] = data->longlba ? 0x01 : 0;
2050                 real_buffer[5] = 0;
2051                 real_buffer[6] = data->block_descriptor_length >> 8;
2052                 real_buffer[7] = data->block_descriptor_length;
2053
2054                 cmd[0] = MODE_SELECT_10;
2055                 cmd[7] = len >> 8;
2056                 cmd[8] = len;
2057         } else {
2058                 if (len > 255 || data->block_descriptor_length > 255 ||
2059                     data->longlba)
2060                         return -EINVAL;
2061
2062                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2063                 if (!real_buffer)
2064                         return -ENOMEM;
2065                 memcpy(real_buffer + 4, buffer, len);
2066                 len += 4;
2067                 real_buffer[0] = 0;
2068                 real_buffer[1] = data->medium_type;
2069                 real_buffer[2] = data->device_specific;
2070                 real_buffer[3] = data->block_descriptor_length;
2071
2072                 cmd[0] = MODE_SELECT;
2073                 cmd[4] = len;
2074         }
2075
2076         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2077                                sshdr, timeout, retries, NULL);
2078         kfree(real_buffer);
2079         return ret;
2080 }
2081 EXPORT_SYMBOL_GPL(scsi_mode_select);
2082
2083 /**
2084  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2085  *      @sdev:  SCSI device to be queried
2086  *      @dbd:   set if mode sense will allow block descriptors to be returned
2087  *      @modepage: mode page being requested
2088  *      @buffer: request buffer (may not be smaller than eight bytes)
2089  *      @len:   length of request buffer.
2090  *      @timeout: command timeout
2091  *      @retries: number of retries before failing
2092  *      @data: returns a structure abstracting the mode header data
2093  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2094  *              must be SCSI_SENSE_BUFFERSIZE big.
2095  *
2096  *      Returns zero if unsuccessful, or the header offset (either 4
2097  *      or 8 depending on whether a six or ten byte command was
2098  *      issued) if successful.
2099  */
2100 int
2101 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2102                   unsigned char *buffer, int len, int timeout, int retries,
2103                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2104 {
2105         unsigned char cmd[12];
2106         int use_10_for_ms;
2107         int header_length;
2108         int result, retry_count = retries;
2109         struct scsi_sense_hdr my_sshdr;
2110
2111         memset(data, 0, sizeof(*data));
2112         memset(&cmd[0], 0, 12);
2113
2114         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2115         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2116         cmd[2] = modepage;
2117
2118         /* caller might not be interested in sense, but we need it */
2119         if (!sshdr)
2120                 sshdr = &my_sshdr;
2121
2122  retry:
2123         use_10_for_ms = sdev->use_10_for_ms;
2124
2125         if (use_10_for_ms) {
2126                 if (len < 8)
2127                         len = 8;
2128
2129                 cmd[0] = MODE_SENSE_10;
2130                 cmd[8] = len;
2131                 header_length = 8;
2132         } else {
2133                 if (len < 4)
2134                         len = 4;
2135
2136                 cmd[0] = MODE_SENSE;
2137                 cmd[4] = len;
2138                 header_length = 4;
2139         }
2140
2141         memset(buffer, 0, len);
2142
2143         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2144                                   sshdr, timeout, retries, NULL);
2145
2146         /* This code looks awful: what it's doing is making sure an
2147          * ILLEGAL REQUEST sense return identifies the actual command
2148          * byte as the problem.  MODE_SENSE commands can return
2149          * ILLEGAL REQUEST if the code page isn't supported */
2150
2151         if (use_10_for_ms && !scsi_status_is_good(result) &&
2152             driver_byte(result) == DRIVER_SENSE) {
2153                 if (scsi_sense_valid(sshdr)) {
2154                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2155                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2156                                 /*
2157                                  * Invalid command operation code
2158                                  */
2159                                 sdev->use_10_for_ms = 0;
2160                                 goto retry;
2161                         }
2162                 }
2163         }
2164
2165         if (scsi_status_is_good(result)) {
2166                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2167                              (modepage == 6 || modepage == 8))) {
2168                         /* Initio breakage? */
2169                         header_length = 0;
2170                         data->length = 13;
2171                         data->medium_type = 0;
2172                         data->device_specific = 0;
2173                         data->longlba = 0;
2174                         data->block_descriptor_length = 0;
2175                 } else if (use_10_for_ms) {
2176                         data->length = buffer[0]*256 + buffer[1] + 2;
2177                         data->medium_type = buffer[2];
2178                         data->device_specific = buffer[3];
2179                         data->longlba = buffer[4] & 0x01;
2180                         data->block_descriptor_length = buffer[6]*256
2181                                 + buffer[7];
2182                 } else {
2183                         data->length = buffer[0] + 1;
2184                         data->medium_type = buffer[1];
2185                         data->device_specific = buffer[2];
2186                         data->block_descriptor_length = buffer[3];
2187                 }
2188                 data->header_length = header_length;
2189         } else if ((status_byte(result) == CHECK_CONDITION) &&
2190                    scsi_sense_valid(sshdr) &&
2191                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2192                 retry_count--;
2193                 goto retry;
2194         }
2195
2196         return result;
2197 }
2198 EXPORT_SYMBOL(scsi_mode_sense);
2199
2200 /**
2201  *      scsi_test_unit_ready - test if unit is ready
2202  *      @sdev:  scsi device to change the state of.
2203  *      @timeout: command timeout
2204  *      @retries: number of retries before failing
2205  *      @sshdr: outpout pointer for decoded sense information.
2206  *
2207  *      Returns zero if unsuccessful or an error if TUR failed.  For
2208  *      removable media, UNIT_ATTENTION sets ->changed flag.
2209  **/
2210 int
2211 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2212                      struct scsi_sense_hdr *sshdr)
2213 {
2214         char cmd[] = {
2215                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2216         };
2217         int result;
2218
2219         /* try to eat the UNIT_ATTENTION if there are enough retries */
2220         do {
2221                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2222                                           timeout, 1, NULL);
2223                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2224                     sshdr->sense_key == UNIT_ATTENTION)
2225                         sdev->changed = 1;
2226         } while (scsi_sense_valid(sshdr) &&
2227                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2228
2229         return result;
2230 }
2231 EXPORT_SYMBOL(scsi_test_unit_ready);
2232
2233 /**
2234  *      scsi_device_set_state - Take the given device through the device state model.
2235  *      @sdev:  scsi device to change the state of.
2236  *      @state: state to change to.
2237  *
2238  *      Returns zero if successful or an error if the requested
2239  *      transition is illegal.
2240  */
2241 int
2242 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2243 {
2244         enum scsi_device_state oldstate = sdev->sdev_state;
2245
2246         if (state == oldstate)
2247                 return 0;
2248
2249         switch (state) {
2250         case SDEV_CREATED:
2251                 switch (oldstate) {
2252                 case SDEV_CREATED_BLOCK:
2253                         break;
2254                 default:
2255                         goto illegal;
2256                 }
2257                 break;
2258
2259         case SDEV_RUNNING:
2260                 switch (oldstate) {
2261                 case SDEV_CREATED:
2262                 case SDEV_OFFLINE:
2263                 case SDEV_TRANSPORT_OFFLINE:
2264                 case SDEV_QUIESCE:
2265                 case SDEV_BLOCK:
2266                         break;
2267                 default:
2268                         goto illegal;
2269                 }
2270                 break;
2271
2272         case SDEV_QUIESCE:
2273                 switch (oldstate) {
2274                 case SDEV_RUNNING:
2275                 case SDEV_OFFLINE:
2276                 case SDEV_TRANSPORT_OFFLINE:
2277                         break;
2278                 default:
2279                         goto illegal;
2280                 }
2281                 break;
2282
2283         case SDEV_OFFLINE:
2284         case SDEV_TRANSPORT_OFFLINE:
2285                 switch (oldstate) {
2286                 case SDEV_CREATED:
2287                 case SDEV_RUNNING:
2288                 case SDEV_QUIESCE:
2289                 case SDEV_BLOCK:
2290                         break;
2291                 default:
2292                         goto illegal;
2293                 }
2294                 break;
2295
2296         case SDEV_BLOCK:
2297                 switch (oldstate) {
2298                 case SDEV_RUNNING:
2299                 case SDEV_CREATED_BLOCK:
2300                 case SDEV_QUIESCE:
2301                 case SDEV_OFFLINE:
2302                         break;
2303                 default:
2304                         goto illegal;
2305                 }
2306                 break;
2307
2308         case SDEV_CREATED_BLOCK:
2309                 switch (oldstate) {
2310                 case SDEV_CREATED:
2311                         break;
2312                 default:
2313                         goto illegal;
2314                 }
2315                 break;
2316
2317         case SDEV_CANCEL:
2318                 switch (oldstate) {
2319                 case SDEV_CREATED:
2320                 case SDEV_RUNNING:
2321                 case SDEV_QUIESCE:
2322                 case SDEV_OFFLINE:
2323                 case SDEV_TRANSPORT_OFFLINE:
2324                         break;
2325                 default:
2326                         goto illegal;
2327                 }
2328                 break;
2329
2330         case SDEV_DEL:
2331                 switch (oldstate) {
2332                 case SDEV_CREATED:
2333                 case SDEV_RUNNING:
2334                 case SDEV_OFFLINE:
2335                 case SDEV_TRANSPORT_OFFLINE:
2336                 case SDEV_CANCEL:
2337                 case SDEV_BLOCK:
2338                 case SDEV_CREATED_BLOCK:
2339                         break;
2340                 default:
2341                         goto illegal;
2342                 }
2343                 break;
2344
2345         }
2346         sdev->offline_already = false;
2347         sdev->sdev_state = state;
2348         return 0;
2349
2350  illegal:
2351         SCSI_LOG_ERROR_RECOVERY(1,
2352                                 sdev_printk(KERN_ERR, sdev,
2353                                             "Illegal state transition %s->%s",
2354                                             scsi_device_state_name(oldstate),
2355                                             scsi_device_state_name(state))
2356                                 );
2357         return -EINVAL;
2358 }
2359 EXPORT_SYMBOL(scsi_device_set_state);
2360
2361 /**
2362  *      scsi_evt_emit - emit a single SCSI device uevent
2363  *      @sdev: associated SCSI device
2364  *      @evt: event to emit
2365  *
2366  *      Send a single uevent (scsi_event) to the associated scsi_device.
2367  */
2368 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2369 {
2370         int idx = 0;
2371         char *envp[3];
2372
2373         switch (evt->evt_type) {
2374         case SDEV_EVT_MEDIA_CHANGE:
2375                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2376                 break;
2377         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2378                 scsi_rescan_device(&sdev->sdev_gendev);
2379                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2380                 break;
2381         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2382                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2383                 break;
2384         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2385                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2386                 break;
2387         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2388                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2389                 break;
2390         case SDEV_EVT_LUN_CHANGE_REPORTED:
2391                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2392                 break;
2393         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2394                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2395                 break;
2396         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2397                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2398                 break;
2399         default:
2400                 /* do nothing */
2401                 break;
2402         }
2403
2404         envp[idx++] = NULL;
2405
2406         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2407 }
2408
2409 /**
2410  *      scsi_evt_thread - send a uevent for each scsi event
2411  *      @work: work struct for scsi_device
2412  *
2413  *      Dispatch queued events to their associated scsi_device kobjects
2414  *      as uevents.
2415  */
2416 void scsi_evt_thread(struct work_struct *work)
2417 {
2418         struct scsi_device *sdev;
2419         enum scsi_device_event evt_type;
2420         LIST_HEAD(event_list);
2421
2422         sdev = container_of(work, struct scsi_device, event_work);
2423
2424         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2425                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2426                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2427
2428         while (1) {
2429                 struct scsi_event *evt;
2430                 struct list_head *this, *tmp;
2431                 unsigned long flags;
2432
2433                 spin_lock_irqsave(&sdev->list_lock, flags);
2434                 list_splice_init(&sdev->event_list, &event_list);
2435                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2436
2437                 if (list_empty(&event_list))
2438                         break;
2439
2440                 list_for_each_safe(this, tmp, &event_list) {
2441                         evt = list_entry(this, struct scsi_event, node);
2442                         list_del(&evt->node);
2443                         scsi_evt_emit(sdev, evt);
2444                         kfree(evt);
2445                 }
2446         }
2447 }
2448
2449 /**
2450  *      sdev_evt_send - send asserted event to uevent thread
2451  *      @sdev: scsi_device event occurred on
2452  *      @evt: event to send
2453  *
2454  *      Assert scsi device event asynchronously.
2455  */
2456 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2457 {
2458         unsigned long flags;
2459
2460 #if 0
2461         /* FIXME: currently this check eliminates all media change events
2462          * for polled devices.  Need to update to discriminate between AN
2463          * and polled events */
2464         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2465                 kfree(evt);
2466                 return;
2467         }
2468 #endif
2469
2470         spin_lock_irqsave(&sdev->list_lock, flags);
2471         list_add_tail(&evt->node, &sdev->event_list);
2472         schedule_work(&sdev->event_work);
2473         spin_unlock_irqrestore(&sdev->list_lock, flags);
2474 }
2475 EXPORT_SYMBOL_GPL(sdev_evt_send);
2476
2477 /**
2478  *      sdev_evt_alloc - allocate a new scsi event
2479  *      @evt_type: type of event to allocate
2480  *      @gfpflags: GFP flags for allocation
2481  *
2482  *      Allocates and returns a new scsi_event.
2483  */
2484 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2485                                   gfp_t gfpflags)
2486 {
2487         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2488         if (!evt)
2489                 return NULL;
2490
2491         evt->evt_type = evt_type;
2492         INIT_LIST_HEAD(&evt->node);
2493
2494         /* evt_type-specific initialization, if any */
2495         switch (evt_type) {
2496         case SDEV_EVT_MEDIA_CHANGE:
2497         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2498         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2499         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2500         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2501         case SDEV_EVT_LUN_CHANGE_REPORTED:
2502         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2503         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2504         default:
2505                 /* do nothing */
2506                 break;
2507         }
2508
2509         return evt;
2510 }
2511 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2512
2513 /**
2514  *      sdev_evt_send_simple - send asserted event to uevent thread
2515  *      @sdev: scsi_device event occurred on
2516  *      @evt_type: type of event to send
2517  *      @gfpflags: GFP flags for allocation
2518  *
2519  *      Assert scsi device event asynchronously, given an event type.
2520  */
2521 void sdev_evt_send_simple(struct scsi_device *sdev,
2522                           enum scsi_device_event evt_type, gfp_t gfpflags)
2523 {
2524         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2525         if (!evt) {
2526                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2527                             evt_type);
2528                 return;
2529         }
2530
2531         sdev_evt_send(sdev, evt);
2532 }
2533 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2534
2535 /**
2536  *      scsi_device_quiesce - Block all commands except power management.
2537  *      @sdev:  scsi device to quiesce.
2538  *
2539  *      This works by trying to transition to the SDEV_QUIESCE state
2540  *      (which must be a legal transition).  When the device is in this
2541  *      state, only power management requests will be accepted, all others will
2542  *      be deferred.
2543  *
2544  *      Must be called with user context, may sleep.
2545  *
2546  *      Returns zero if unsuccessful or an error if not.
2547  */
2548 int
2549 scsi_device_quiesce(struct scsi_device *sdev)
2550 {
2551         struct request_queue *q = sdev->request_queue;
2552         int err;
2553
2554         /*
2555          * It is allowed to call scsi_device_quiesce() multiple times from
2556          * the same context but concurrent scsi_device_quiesce() calls are
2557          * not allowed.
2558          */
2559         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2560
2561         if (sdev->quiesced_by == current)
2562                 return 0;
2563
2564         blk_set_pm_only(q);
2565
2566         blk_mq_freeze_queue(q);
2567         /*
2568          * Ensure that the effect of blk_set_pm_only() will be visible
2569          * for percpu_ref_tryget() callers that occur after the queue
2570          * unfreeze even if the queue was already frozen before this function
2571          * was called. See also https://lwn.net/Articles/573497/.
2572          */
2573         synchronize_rcu();
2574         blk_mq_unfreeze_queue(q);
2575
2576         mutex_lock(&sdev->state_mutex);
2577         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2578         if (err == 0)
2579                 sdev->quiesced_by = current;
2580         else
2581                 blk_clear_pm_only(q);
2582         mutex_unlock(&sdev->state_mutex);
2583
2584         return err;
2585 }
2586 EXPORT_SYMBOL(scsi_device_quiesce);
2587
2588 /**
2589  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2590  *      @sdev:  scsi device to resume.
2591  *
2592  *      Moves the device from quiesced back to running and restarts the
2593  *      queues.
2594  *
2595  *      Must be called with user context, may sleep.
2596  */
2597 void scsi_device_resume(struct scsi_device *sdev)
2598 {
2599         /* check if the device state was mutated prior to resume, and if
2600          * so assume the state is being managed elsewhere (for example
2601          * device deleted during suspend)
2602          */
2603         mutex_lock(&sdev->state_mutex);
2604         if (sdev->sdev_state == SDEV_QUIESCE)
2605                 scsi_device_set_state(sdev, SDEV_RUNNING);
2606         if (sdev->quiesced_by) {
2607                 sdev->quiesced_by = NULL;
2608                 blk_clear_pm_only(sdev->request_queue);
2609         }
2610         mutex_unlock(&sdev->state_mutex);
2611 }
2612 EXPORT_SYMBOL(scsi_device_resume);
2613
2614 static void
2615 device_quiesce_fn(struct scsi_device *sdev, void *data)
2616 {
2617         scsi_device_quiesce(sdev);
2618 }
2619
2620 void
2621 scsi_target_quiesce(struct scsi_target *starget)
2622 {
2623         starget_for_each_device(starget, NULL, device_quiesce_fn);
2624 }
2625 EXPORT_SYMBOL(scsi_target_quiesce);
2626
2627 static void
2628 device_resume_fn(struct scsi_device *sdev, void *data)
2629 {
2630         scsi_device_resume(sdev);
2631 }
2632
2633 void
2634 scsi_target_resume(struct scsi_target *starget)
2635 {
2636         starget_for_each_device(starget, NULL, device_resume_fn);
2637 }
2638 EXPORT_SYMBOL(scsi_target_resume);
2639
2640 /**
2641  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2642  * @sdev: device to block
2643  *
2644  * Pause SCSI command processing on the specified device. Does not sleep.
2645  *
2646  * Returns zero if successful or a negative error code upon failure.
2647  *
2648  * Notes:
2649  * This routine transitions the device to the SDEV_BLOCK state (which must be
2650  * a legal transition). When the device is in this state, command processing
2651  * is paused until the device leaves the SDEV_BLOCK state. See also
2652  * scsi_internal_device_unblock_nowait().
2653  */
2654 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2655 {
2656         struct request_queue *q = sdev->request_queue;
2657         int err = 0;
2658
2659         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2660         if (err) {
2661                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2662
2663                 if (err)
2664                         return err;
2665         }
2666
2667         /*
2668          * The device has transitioned to SDEV_BLOCK.  Stop the
2669          * block layer from calling the midlayer with this device's
2670          * request queue.
2671          */
2672         blk_mq_quiesce_queue_nowait(q);
2673         return 0;
2674 }
2675 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2676
2677 /**
2678  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2679  * @sdev: device to block
2680  *
2681  * Pause SCSI command processing on the specified device and wait until all
2682  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2683  *
2684  * Returns zero if successful or a negative error code upon failure.
2685  *
2686  * Note:
2687  * This routine transitions the device to the SDEV_BLOCK state (which must be
2688  * a legal transition). When the device is in this state, command processing
2689  * is paused until the device leaves the SDEV_BLOCK state. See also
2690  * scsi_internal_device_unblock().
2691  */
2692 static int scsi_internal_device_block(struct scsi_device *sdev)
2693 {
2694         struct request_queue *q = sdev->request_queue;
2695         int err;
2696
2697         mutex_lock(&sdev->state_mutex);
2698         err = scsi_internal_device_block_nowait(sdev);
2699         if (err == 0)
2700                 blk_mq_quiesce_queue(q);
2701         mutex_unlock(&sdev->state_mutex);
2702
2703         return err;
2704 }
2705
2706 void scsi_start_queue(struct scsi_device *sdev)
2707 {
2708         struct request_queue *q = sdev->request_queue;
2709
2710         blk_mq_unquiesce_queue(q);
2711 }
2712
2713 /**
2714  * scsi_internal_device_unblock_nowait - resume a device after a block request
2715  * @sdev:       device to resume
2716  * @new_state:  state to set the device to after unblocking
2717  *
2718  * Restart the device queue for a previously suspended SCSI device. Does not
2719  * sleep.
2720  *
2721  * Returns zero if successful or a negative error code upon failure.
2722  *
2723  * Notes:
2724  * This routine transitions the device to the SDEV_RUNNING state or to one of
2725  * the offline states (which must be a legal transition) allowing the midlayer
2726  * to goose the queue for this device.
2727  */
2728 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2729                                         enum scsi_device_state new_state)
2730 {
2731         switch (new_state) {
2732         case SDEV_RUNNING:
2733         case SDEV_TRANSPORT_OFFLINE:
2734                 break;
2735         default:
2736                 return -EINVAL;
2737         }
2738
2739         /*
2740          * Try to transition the scsi device to SDEV_RUNNING or one of the
2741          * offlined states and goose the device queue if successful.
2742          */
2743         switch (sdev->sdev_state) {
2744         case SDEV_BLOCK:
2745         case SDEV_TRANSPORT_OFFLINE:
2746                 sdev->sdev_state = new_state;
2747                 break;
2748         case SDEV_CREATED_BLOCK:
2749                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2750                     new_state == SDEV_OFFLINE)
2751                         sdev->sdev_state = new_state;
2752                 else
2753                         sdev->sdev_state = SDEV_CREATED;
2754                 break;
2755         case SDEV_CANCEL:
2756         case SDEV_OFFLINE:
2757                 break;
2758         default:
2759                 return -EINVAL;
2760         }
2761         scsi_start_queue(sdev);
2762
2763         return 0;
2764 }
2765 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2766
2767 /**
2768  * scsi_internal_device_unblock - resume a device after a block request
2769  * @sdev:       device to resume
2770  * @new_state:  state to set the device to after unblocking
2771  *
2772  * Restart the device queue for a previously suspended SCSI device. May sleep.
2773  *
2774  * Returns zero if successful or a negative error code upon failure.
2775  *
2776  * Notes:
2777  * This routine transitions the device to the SDEV_RUNNING state or to one of
2778  * the offline states (which must be a legal transition) allowing the midlayer
2779  * to goose the queue for this device.
2780  */
2781 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2782                                         enum scsi_device_state new_state)
2783 {
2784         int ret;
2785
2786         mutex_lock(&sdev->state_mutex);
2787         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2788         mutex_unlock(&sdev->state_mutex);
2789
2790         return ret;
2791 }
2792
2793 static void
2794 device_block(struct scsi_device *sdev, void *data)
2795 {
2796         int ret;
2797
2798         ret = scsi_internal_device_block(sdev);
2799
2800         WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2801                   dev_name(&sdev->sdev_gendev), ret);
2802 }
2803
2804 static int
2805 target_block(struct device *dev, void *data)
2806 {
2807         if (scsi_is_target_device(dev))
2808                 starget_for_each_device(to_scsi_target(dev), NULL,
2809                                         device_block);
2810         return 0;
2811 }
2812
2813 void
2814 scsi_target_block(struct device *dev)
2815 {
2816         if (scsi_is_target_device(dev))
2817                 starget_for_each_device(to_scsi_target(dev), NULL,
2818                                         device_block);
2819         else
2820                 device_for_each_child(dev, NULL, target_block);
2821 }
2822 EXPORT_SYMBOL_GPL(scsi_target_block);
2823
2824 static void
2825 device_unblock(struct scsi_device *sdev, void *data)
2826 {
2827         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2828 }
2829
2830 static int
2831 target_unblock(struct device *dev, void *data)
2832 {
2833         if (scsi_is_target_device(dev))
2834                 starget_for_each_device(to_scsi_target(dev), data,
2835                                         device_unblock);
2836         return 0;
2837 }
2838
2839 void
2840 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2841 {
2842         if (scsi_is_target_device(dev))
2843                 starget_for_each_device(to_scsi_target(dev), &new_state,
2844                                         device_unblock);
2845         else
2846                 device_for_each_child(dev, &new_state, target_unblock);
2847 }
2848 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2849
2850 int
2851 scsi_host_block(struct Scsi_Host *shost)
2852 {
2853         struct scsi_device *sdev;
2854         int ret = 0;
2855
2856         /*
2857          * Call scsi_internal_device_block_nowait so we can avoid
2858          * calling synchronize_rcu() for each LUN.
2859          */
2860         shost_for_each_device(sdev, shost) {
2861                 mutex_lock(&sdev->state_mutex);
2862                 ret = scsi_internal_device_block_nowait(sdev);
2863                 mutex_unlock(&sdev->state_mutex);
2864                 if (ret) {
2865                         scsi_device_put(sdev);
2866                         break;
2867                 }
2868         }
2869
2870         /*
2871          * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2872          * calling synchronize_rcu() once is enough.
2873          */
2874         WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2875
2876         if (!ret)
2877                 synchronize_rcu();
2878
2879         return ret;
2880 }
2881 EXPORT_SYMBOL_GPL(scsi_host_block);
2882
2883 int
2884 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2885 {
2886         struct scsi_device *sdev;
2887         int ret = 0;
2888
2889         shost_for_each_device(sdev, shost) {
2890                 ret = scsi_internal_device_unblock(sdev, new_state);
2891                 if (ret) {
2892                         scsi_device_put(sdev);
2893                         break;
2894                 }
2895         }
2896         return ret;
2897 }
2898 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2899
2900 /**
2901  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2902  * @sgl:        scatter-gather list
2903  * @sg_count:   number of segments in sg
2904  * @offset:     offset in bytes into sg, on return offset into the mapped area
2905  * @len:        bytes to map, on return number of bytes mapped
2906  *
2907  * Returns virtual address of the start of the mapped page
2908  */
2909 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2910                           size_t *offset, size_t *len)
2911 {
2912         int i;
2913         size_t sg_len = 0, len_complete = 0;
2914         struct scatterlist *sg;
2915         struct page *page;
2916
2917         WARN_ON(!irqs_disabled());
2918
2919         for_each_sg(sgl, sg, sg_count, i) {
2920                 len_complete = sg_len; /* Complete sg-entries */
2921                 sg_len += sg->length;
2922                 if (sg_len > *offset)
2923                         break;
2924         }
2925
2926         if (unlikely(i == sg_count)) {
2927                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2928                         "elements %d\n",
2929                        __func__, sg_len, *offset, sg_count);
2930                 WARN_ON(1);
2931                 return NULL;
2932         }
2933
2934         /* Offset starting from the beginning of first page in this sg-entry */
2935         *offset = *offset - len_complete + sg->offset;
2936
2937         /* Assumption: contiguous pages can be accessed as "page + i" */
2938         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2939         *offset &= ~PAGE_MASK;
2940
2941         /* Bytes in this sg-entry from *offset to the end of the page */
2942         sg_len = PAGE_SIZE - *offset;
2943         if (*len > sg_len)
2944                 *len = sg_len;
2945
2946         return kmap_atomic(page);
2947 }
2948 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2949
2950 /**
2951  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2952  * @virt:       virtual address to be unmapped
2953  */
2954 void scsi_kunmap_atomic_sg(void *virt)
2955 {
2956         kunmap_atomic(virt);
2957 }
2958 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2959
2960 void sdev_disable_disk_events(struct scsi_device *sdev)
2961 {
2962         atomic_inc(&sdev->disk_events_disable_depth);
2963 }
2964 EXPORT_SYMBOL(sdev_disable_disk_events);
2965
2966 void sdev_enable_disk_events(struct scsi_device *sdev)
2967 {
2968         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2969                 return;
2970         atomic_dec(&sdev->disk_events_disable_depth);
2971 }
2972 EXPORT_SYMBOL(sdev_enable_disk_events);
2973
2974 static unsigned char designator_prio(const unsigned char *d)
2975 {
2976         if (d[1] & 0x30)
2977                 /* not associated with LUN */
2978                 return 0;
2979
2980         if (d[3] == 0)
2981                 /* invalid length */
2982                 return 0;
2983
2984         /*
2985          * Order of preference for lun descriptor:
2986          * - SCSI name string
2987          * - NAA IEEE Registered Extended
2988          * - EUI-64 based 16-byte
2989          * - EUI-64 based 12-byte
2990          * - NAA IEEE Registered
2991          * - NAA IEEE Extended
2992          * - EUI-64 based 8-byte
2993          * - SCSI name string (truncated)
2994          * - T10 Vendor ID
2995          * as longer descriptors reduce the likelyhood
2996          * of identification clashes.
2997          */
2998
2999         switch (d[1] & 0xf) {
3000         case 8:
3001                 /* SCSI name string, variable-length UTF-8 */
3002                 return 9;
3003         case 3:
3004                 switch (d[4] >> 4) {
3005                 case 6:
3006                         /* NAA registered extended */
3007                         return 8;
3008                 case 5:
3009                         /* NAA registered */
3010                         return 5;
3011                 case 4:
3012                         /* NAA extended */
3013                         return 4;
3014                 case 3:
3015                         /* NAA locally assigned */
3016                         return 1;
3017                 default:
3018                         break;
3019                 }
3020                 break;
3021         case 2:
3022                 switch (d[3]) {
3023                 case 16:
3024                         /* EUI64-based, 16 byte */
3025                         return 7;
3026                 case 12:
3027                         /* EUI64-based, 12 byte */
3028                         return 6;
3029                 case 8:
3030                         /* EUI64-based, 8 byte */
3031                         return 3;
3032                 default:
3033                         break;
3034                 }
3035                 break;
3036         case 1:
3037                 /* T10 vendor ID */
3038                 return 1;
3039         default:
3040                 break;
3041         }
3042
3043         return 0;
3044 }
3045
3046 /**
3047  * scsi_vpd_lun_id - return a unique device identification
3048  * @sdev: SCSI device
3049  * @id:   buffer for the identification
3050  * @id_len:  length of the buffer
3051  *
3052  * Copies a unique device identification into @id based
3053  * on the information in the VPD page 0x83 of the device.
3054  * The string will be formatted as a SCSI name string.
3055  *
3056  * Returns the length of the identification or error on failure.
3057  * If the identifier is longer than the supplied buffer the actual
3058  * identifier length is returned and the buffer is not zero-padded.
3059  */
3060 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3061 {
3062         u8 cur_id_prio = 0;
3063         u8 cur_id_size = 0;
3064         const unsigned char *d, *cur_id_str;
3065         const struct scsi_vpd *vpd_pg83;
3066         int id_size = -EINVAL;
3067
3068         rcu_read_lock();
3069         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3070         if (!vpd_pg83) {
3071                 rcu_read_unlock();
3072                 return -ENXIO;
3073         }
3074
3075         /* The id string must be at least 20 bytes + terminating NULL byte */
3076         if (id_len < 21) {
3077                 rcu_read_unlock();
3078                 return -EINVAL;
3079         }
3080
3081         memset(id, 0, id_len);
3082         for (d = vpd_pg83->data + 4;
3083              d < vpd_pg83->data + vpd_pg83->len;
3084              d += d[3] + 4) {
3085                 u8 prio = designator_prio(d);
3086
3087                 if (prio == 0 || cur_id_prio > prio)
3088                         continue;
3089
3090                 switch (d[1] & 0xf) {
3091                 case 0x1:
3092                         /* T10 Vendor ID */
3093                         if (cur_id_size > d[3])
3094                                 break;
3095                         cur_id_prio = prio;
3096                         cur_id_size = d[3];
3097                         if (cur_id_size + 4 > id_len)
3098                                 cur_id_size = id_len - 4;
3099                         cur_id_str = d + 4;
3100                         id_size = snprintf(id, id_len, "t10.%*pE",
3101                                            cur_id_size, cur_id_str);
3102                         break;
3103                 case 0x2:
3104                         /* EUI-64 */
3105                         cur_id_prio = prio;
3106                         cur_id_size = d[3];
3107                         cur_id_str = d + 4;
3108                         switch (cur_id_size) {
3109                         case 8:
3110                                 id_size = snprintf(id, id_len,
3111                                                    "eui.%8phN",
3112                                                    cur_id_str);
3113                                 break;
3114                         case 12:
3115                                 id_size = snprintf(id, id_len,
3116                                                    "eui.%12phN",
3117                                                    cur_id_str);
3118                                 break;
3119                         case 16:
3120                                 id_size = snprintf(id, id_len,
3121                                                    "eui.%16phN",
3122                                                    cur_id_str);
3123                                 break;
3124                         default:
3125                                 break;
3126                         }
3127                         break;
3128                 case 0x3:
3129                         /* NAA */
3130                         cur_id_prio = prio;
3131                         cur_id_size = d[3];
3132                         cur_id_str = d + 4;
3133                         switch (cur_id_size) {
3134                         case 8:
3135                                 id_size = snprintf(id, id_len,
3136                                                    "naa.%8phN",
3137                                                    cur_id_str);
3138                                 break;
3139                         case 16:
3140                                 id_size = snprintf(id, id_len,
3141                                                    "naa.%16phN",
3142                                                    cur_id_str);
3143                                 break;
3144                         default:
3145                                 break;
3146                         }
3147                         break;
3148                 case 0x8:
3149                         /* SCSI name string */
3150                         if (cur_id_size > d[3])
3151                                 break;
3152                         /* Prefer others for truncated descriptor */
3153                         if (d[3] > id_len) {
3154                                 prio = 2;
3155                                 if (cur_id_prio > prio)
3156                                         break;
3157                         }
3158                         cur_id_prio = prio;
3159                         cur_id_size = id_size = d[3];
3160                         cur_id_str = d + 4;
3161                         if (cur_id_size >= id_len)
3162                                 cur_id_size = id_len - 1;
3163                         memcpy(id, cur_id_str, cur_id_size);
3164                         break;
3165                 default:
3166                         break;
3167                 }
3168         }
3169         rcu_read_unlock();
3170
3171         return id_size;
3172 }
3173 EXPORT_SYMBOL(scsi_vpd_lun_id);
3174
3175 /*
3176  * scsi_vpd_tpg_id - return a target port group identifier
3177  * @sdev: SCSI device
3178  *
3179  * Returns the Target Port Group identifier from the information
3180  * froom VPD page 0x83 of the device.
3181  *
3182  * Returns the identifier or error on failure.
3183  */
3184 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3185 {
3186         const unsigned char *d;
3187         const struct scsi_vpd *vpd_pg83;
3188         int group_id = -EAGAIN, rel_port = -1;
3189
3190         rcu_read_lock();
3191         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3192         if (!vpd_pg83) {
3193                 rcu_read_unlock();
3194                 return -ENXIO;
3195         }
3196
3197         d = vpd_pg83->data + 4;
3198         while (d < vpd_pg83->data + vpd_pg83->len) {
3199                 switch (d[1] & 0xf) {
3200                 case 0x4:
3201                         /* Relative target port */
3202                         rel_port = get_unaligned_be16(&d[6]);
3203                         break;
3204                 case 0x5:
3205                         /* Target port group */
3206                         group_id = get_unaligned_be16(&d[6]);
3207                         break;
3208                 default:
3209                         break;
3210                 }
3211                 d += d[3] + 4;
3212         }
3213         rcu_read_unlock();
3214
3215         if (group_id >= 0 && rel_id && rel_port != -1)
3216                 *rel_id = rel_port;
3217
3218         return group_id;
3219 }
3220 EXPORT_SYMBOL(scsi_vpd_tpg_id);