Merge drm/drm-next into drm-intel-gt-next
[linux-2.6-microblaze.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63         int ret = 0;
64
65         mutex_lock(&scsi_sense_cache_mutex);
66         if (!scsi_sense_cache) {
67                 scsi_sense_cache =
68                         kmem_cache_create_usercopy("scsi_sense_cache",
69                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
71                 if (!scsi_sense_cache)
72                         ret = -ENOMEM;
73         }
74         mutex_unlock(&scsi_sense_cache_mutex);
75         return ret;
76 }
77
78 /*
79  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
80  * not change behaviour from the previous unplug mechanism, experimentation
81  * may prove this needs changing.
82  */
83 #define SCSI_QUEUE_DELAY        3
84
85 static void
86 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
87 {
88         struct Scsi_Host *host = cmd->device->host;
89         struct scsi_device *device = cmd->device;
90         struct scsi_target *starget = scsi_target(device);
91
92         /*
93          * Set the appropriate busy bit for the device/host.
94          *
95          * If the host/device isn't busy, assume that something actually
96          * completed, and that we should be able to queue a command now.
97          *
98          * Note that the prior mid-layer assumption that any host could
99          * always queue at least one command is now broken.  The mid-layer
100          * will implement a user specifiable stall (see
101          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
102          * if a command is requeued with no other commands outstanding
103          * either for the device or for the host.
104          */
105         switch (reason) {
106         case SCSI_MLQUEUE_HOST_BUSY:
107                 atomic_set(&host->host_blocked, host->max_host_blocked);
108                 break;
109         case SCSI_MLQUEUE_DEVICE_BUSY:
110         case SCSI_MLQUEUE_EH_RETRY:
111                 atomic_set(&device->device_blocked,
112                            device->max_device_blocked);
113                 break;
114         case SCSI_MLQUEUE_TARGET_BUSY:
115                 atomic_set(&starget->target_blocked,
116                            starget->max_target_blocked);
117                 break;
118         }
119 }
120
121 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
122 {
123         struct request *rq = scsi_cmd_to_rq(cmd);
124
125         if (rq->rq_flags & RQF_DONTPREP) {
126                 rq->rq_flags &= ~RQF_DONTPREP;
127                 scsi_mq_uninit_cmd(cmd);
128         } else {
129                 WARN_ON_ONCE(true);
130         }
131         blk_mq_requeue_request(rq, true);
132 }
133
134 /**
135  * __scsi_queue_insert - private queue insertion
136  * @cmd: The SCSI command being requeued
137  * @reason:  The reason for the requeue
138  * @unbusy: Whether the queue should be unbusied
139  *
140  * This is a private queue insertion.  The public interface
141  * scsi_queue_insert() always assumes the queue should be unbusied
142  * because it's always called before the completion.  This function is
143  * for a requeue after completion, which should only occur in this
144  * file.
145  */
146 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
147 {
148         struct scsi_device *device = cmd->device;
149
150         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
151                 "Inserting command %p into mlqueue\n", cmd));
152
153         scsi_set_blocked(cmd, reason);
154
155         /*
156          * Decrement the counters, since these commands are no longer
157          * active on the host/device.
158          */
159         if (unbusy)
160                 scsi_device_unbusy(device, cmd);
161
162         /*
163          * Requeue this command.  It will go before all other commands
164          * that are already in the queue. Schedule requeue work under
165          * lock such that the kblockd_schedule_work() call happens
166          * before blk_cleanup_queue() finishes.
167          */
168         cmd->result = 0;
169
170         blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
171 }
172
173 /**
174  * scsi_queue_insert - Reinsert a command in the queue.
175  * @cmd:    command that we are adding to queue.
176  * @reason: why we are inserting command to queue.
177  *
178  * We do this for one of two cases. Either the host is busy and it cannot accept
179  * any more commands for the time being, or the device returned QUEUE_FULL and
180  * can accept no more commands.
181  *
182  * Context: This could be called either from an interrupt context or a normal
183  * process context.
184  */
185 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
186 {
187         __scsi_queue_insert(cmd, reason, true);
188 }
189
190
191 /**
192  * __scsi_execute - insert request and wait for the result
193  * @sdev:       scsi device
194  * @cmd:        scsi command
195  * @data_direction: data direction
196  * @buffer:     data buffer
197  * @bufflen:    len of buffer
198  * @sense:      optional sense buffer
199  * @sshdr:      optional decoded sense header
200  * @timeout:    request timeout in HZ
201  * @retries:    number of times to retry request
202  * @flags:      flags for ->cmd_flags
203  * @rq_flags:   flags for ->rq_flags
204  * @resid:      optional residual length
205  *
206  * Returns the scsi_cmnd result field if a command was executed, or a negative
207  * Linux error code if we didn't get that far.
208  */
209 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
210                  int data_direction, void *buffer, unsigned bufflen,
211                  unsigned char *sense, struct scsi_sense_hdr *sshdr,
212                  int timeout, int retries, u64 flags, req_flags_t rq_flags,
213                  int *resid)
214 {
215         struct request *req;
216         struct scsi_request *rq;
217         int ret;
218
219         req = scsi_alloc_request(sdev->request_queue,
220                         data_direction == DMA_TO_DEVICE ?
221                         REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
222                         rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
223         if (IS_ERR(req))
224                 return PTR_ERR(req);
225
226         rq = scsi_req(req);
227
228         if (bufflen) {
229                 ret = blk_rq_map_kern(sdev->request_queue, req,
230                                       buffer, bufflen, GFP_NOIO);
231                 if (ret)
232                         goto out;
233         }
234         rq->cmd_len = COMMAND_SIZE(cmd[0]);
235         memcpy(rq->cmd, cmd, rq->cmd_len);
236         rq->retries = retries;
237         req->timeout = timeout;
238         req->cmd_flags |= flags;
239         req->rq_flags |= rq_flags | RQF_QUIET;
240
241         /*
242          * head injection *required* here otherwise quiesce won't work
243          */
244         blk_execute_rq(req, true);
245
246         /*
247          * Some devices (USB mass-storage in particular) may transfer
248          * garbage data together with a residue indicating that the data
249          * is invalid.  Prevent the garbage from being misinterpreted
250          * and prevent security leaks by zeroing out the excess data.
251          */
252         if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
253                 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
254
255         if (resid)
256                 *resid = rq->resid_len;
257         if (sense && rq->sense_len)
258                 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
259         if (sshdr)
260                 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
261         ret = rq->result;
262  out:
263         blk_mq_free_request(req);
264
265         return ret;
266 }
267 EXPORT_SYMBOL(__scsi_execute);
268
269 /*
270  * Wake up the error handler if necessary. Avoid as follows that the error
271  * handler is not woken up if host in-flight requests number ==
272  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
273  * with an RCU read lock in this function to ensure that this function in
274  * its entirety either finishes before scsi_eh_scmd_add() increases the
275  * host_failed counter or that it notices the shost state change made by
276  * scsi_eh_scmd_add().
277  */
278 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
279 {
280         unsigned long flags;
281
282         rcu_read_lock();
283         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
284         if (unlikely(scsi_host_in_recovery(shost))) {
285                 spin_lock_irqsave(shost->host_lock, flags);
286                 if (shost->host_failed || shost->host_eh_scheduled)
287                         scsi_eh_wakeup(shost);
288                 spin_unlock_irqrestore(shost->host_lock, flags);
289         }
290         rcu_read_unlock();
291 }
292
293 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
294 {
295         struct Scsi_Host *shost = sdev->host;
296         struct scsi_target *starget = scsi_target(sdev);
297
298         scsi_dec_host_busy(shost, cmd);
299
300         if (starget->can_queue > 0)
301                 atomic_dec(&starget->target_busy);
302
303         sbitmap_put(&sdev->budget_map, cmd->budget_token);
304         cmd->budget_token = -1;
305 }
306
307 static void scsi_kick_queue(struct request_queue *q)
308 {
309         blk_mq_run_hw_queues(q, false);
310 }
311
312 /*
313  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
314  * and call blk_run_queue for all the scsi_devices on the target -
315  * including current_sdev first.
316  *
317  * Called with *no* scsi locks held.
318  */
319 static void scsi_single_lun_run(struct scsi_device *current_sdev)
320 {
321         struct Scsi_Host *shost = current_sdev->host;
322         struct scsi_device *sdev, *tmp;
323         struct scsi_target *starget = scsi_target(current_sdev);
324         unsigned long flags;
325
326         spin_lock_irqsave(shost->host_lock, flags);
327         starget->starget_sdev_user = NULL;
328         spin_unlock_irqrestore(shost->host_lock, flags);
329
330         /*
331          * Call blk_run_queue for all LUNs on the target, starting with
332          * current_sdev. We race with others (to set starget_sdev_user),
333          * but in most cases, we will be first. Ideally, each LU on the
334          * target would get some limited time or requests on the target.
335          */
336         scsi_kick_queue(current_sdev->request_queue);
337
338         spin_lock_irqsave(shost->host_lock, flags);
339         if (starget->starget_sdev_user)
340                 goto out;
341         list_for_each_entry_safe(sdev, tmp, &starget->devices,
342                         same_target_siblings) {
343                 if (sdev == current_sdev)
344                         continue;
345                 if (scsi_device_get(sdev))
346                         continue;
347
348                 spin_unlock_irqrestore(shost->host_lock, flags);
349                 scsi_kick_queue(sdev->request_queue);
350                 spin_lock_irqsave(shost->host_lock, flags);
351
352                 scsi_device_put(sdev);
353         }
354  out:
355         spin_unlock_irqrestore(shost->host_lock, flags);
356 }
357
358 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
359 {
360         if (scsi_device_busy(sdev) >= sdev->queue_depth)
361                 return true;
362         if (atomic_read(&sdev->device_blocked) > 0)
363                 return true;
364         return false;
365 }
366
367 static inline bool scsi_target_is_busy(struct scsi_target *starget)
368 {
369         if (starget->can_queue > 0) {
370                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
371                         return true;
372                 if (atomic_read(&starget->target_blocked) > 0)
373                         return true;
374         }
375         return false;
376 }
377
378 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
379 {
380         if (atomic_read(&shost->host_blocked) > 0)
381                 return true;
382         if (shost->host_self_blocked)
383                 return true;
384         return false;
385 }
386
387 static void scsi_starved_list_run(struct Scsi_Host *shost)
388 {
389         LIST_HEAD(starved_list);
390         struct scsi_device *sdev;
391         unsigned long flags;
392
393         spin_lock_irqsave(shost->host_lock, flags);
394         list_splice_init(&shost->starved_list, &starved_list);
395
396         while (!list_empty(&starved_list)) {
397                 struct request_queue *slq;
398
399                 /*
400                  * As long as shost is accepting commands and we have
401                  * starved queues, call blk_run_queue. scsi_request_fn
402                  * drops the queue_lock and can add us back to the
403                  * starved_list.
404                  *
405                  * host_lock protects the starved_list and starved_entry.
406                  * scsi_request_fn must get the host_lock before checking
407                  * or modifying starved_list or starved_entry.
408                  */
409                 if (scsi_host_is_busy(shost))
410                         break;
411
412                 sdev = list_entry(starved_list.next,
413                                   struct scsi_device, starved_entry);
414                 list_del_init(&sdev->starved_entry);
415                 if (scsi_target_is_busy(scsi_target(sdev))) {
416                         list_move_tail(&sdev->starved_entry,
417                                        &shost->starved_list);
418                         continue;
419                 }
420
421                 /*
422                  * Once we drop the host lock, a racing scsi_remove_device()
423                  * call may remove the sdev from the starved list and destroy
424                  * it and the queue.  Mitigate by taking a reference to the
425                  * queue and never touching the sdev again after we drop the
426                  * host lock.  Note: if __scsi_remove_device() invokes
427                  * blk_cleanup_queue() before the queue is run from this
428                  * function then blk_run_queue() will return immediately since
429                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
430                  */
431                 slq = sdev->request_queue;
432                 if (!blk_get_queue(slq))
433                         continue;
434                 spin_unlock_irqrestore(shost->host_lock, flags);
435
436                 scsi_kick_queue(slq);
437                 blk_put_queue(slq);
438
439                 spin_lock_irqsave(shost->host_lock, flags);
440         }
441         /* put any unprocessed entries back */
442         list_splice(&starved_list, &shost->starved_list);
443         spin_unlock_irqrestore(shost->host_lock, flags);
444 }
445
446 /**
447  * scsi_run_queue - Select a proper request queue to serve next.
448  * @q:  last request's queue
449  *
450  * The previous command was completely finished, start a new one if possible.
451  */
452 static void scsi_run_queue(struct request_queue *q)
453 {
454         struct scsi_device *sdev = q->queuedata;
455
456         if (scsi_target(sdev)->single_lun)
457                 scsi_single_lun_run(sdev);
458         if (!list_empty(&sdev->host->starved_list))
459                 scsi_starved_list_run(sdev->host);
460
461         blk_mq_run_hw_queues(q, false);
462 }
463
464 void scsi_requeue_run_queue(struct work_struct *work)
465 {
466         struct scsi_device *sdev;
467         struct request_queue *q;
468
469         sdev = container_of(work, struct scsi_device, requeue_work);
470         q = sdev->request_queue;
471         scsi_run_queue(q);
472 }
473
474 void scsi_run_host_queues(struct Scsi_Host *shost)
475 {
476         struct scsi_device *sdev;
477
478         shost_for_each_device(sdev, shost)
479                 scsi_run_queue(sdev->request_queue);
480 }
481
482 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
483 {
484         if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
485                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
486
487                 if (drv->uninit_command)
488                         drv->uninit_command(cmd);
489         }
490 }
491
492 void scsi_free_sgtables(struct scsi_cmnd *cmd)
493 {
494         if (cmd->sdb.table.nents)
495                 sg_free_table_chained(&cmd->sdb.table,
496                                 SCSI_INLINE_SG_CNT);
497         if (scsi_prot_sg_count(cmd))
498                 sg_free_table_chained(&cmd->prot_sdb->table,
499                                 SCSI_INLINE_PROT_SG_CNT);
500 }
501 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
502
503 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
504 {
505         scsi_free_sgtables(cmd);
506         scsi_uninit_cmd(cmd);
507 }
508
509 static void scsi_run_queue_async(struct scsi_device *sdev)
510 {
511         if (scsi_target(sdev)->single_lun ||
512             !list_empty(&sdev->host->starved_list)) {
513                 kblockd_schedule_work(&sdev->requeue_work);
514         } else {
515                 /*
516                  * smp_mb() present in sbitmap_queue_clear() or implied in
517                  * .end_io is for ordering writing .device_busy in
518                  * scsi_device_unbusy() and reading sdev->restarts.
519                  */
520                 int old = atomic_read(&sdev->restarts);
521
522                 /*
523                  * ->restarts has to be kept as non-zero if new budget
524                  *  contention occurs.
525                  *
526                  *  No need to run queue when either another re-run
527                  *  queue wins in updating ->restarts or a new budget
528                  *  contention occurs.
529                  */
530                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
531                         blk_mq_run_hw_queues(sdev->request_queue, true);
532         }
533 }
534
535 /* Returns false when no more bytes to process, true if there are more */
536 static bool scsi_end_request(struct request *req, blk_status_t error,
537                 unsigned int bytes)
538 {
539         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
540         struct scsi_device *sdev = cmd->device;
541         struct request_queue *q = sdev->request_queue;
542
543         if (blk_update_request(req, error, bytes))
544                 return true;
545
546         // XXX:
547         if (blk_queue_add_random(q))
548                 add_disk_randomness(req->q->disk);
549
550         if (!blk_rq_is_passthrough(req)) {
551                 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
552                 cmd->flags &= ~SCMD_INITIALIZED;
553         }
554
555         /*
556          * Calling rcu_barrier() is not necessary here because the
557          * SCSI error handler guarantees that the function called by
558          * call_rcu() has been called before scsi_end_request() is
559          * called.
560          */
561         destroy_rcu_head(&cmd->rcu);
562
563         /*
564          * In the MQ case the command gets freed by __blk_mq_end_request,
565          * so we have to do all cleanup that depends on it earlier.
566          *
567          * We also can't kick the queues from irq context, so we
568          * will have to defer it to a workqueue.
569          */
570         scsi_mq_uninit_cmd(cmd);
571
572         /*
573          * queue is still alive, so grab the ref for preventing it
574          * from being cleaned up during running queue.
575          */
576         percpu_ref_get(&q->q_usage_counter);
577
578         __blk_mq_end_request(req, error);
579
580         scsi_run_queue_async(sdev);
581
582         percpu_ref_put(&q->q_usage_counter);
583         return false;
584 }
585
586 /**
587  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
588  * @cmd:        SCSI command
589  * @result:     scsi error code
590  *
591  * Translate a SCSI result code into a blk_status_t value. May reset the host
592  * byte of @cmd->result.
593  */
594 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
595 {
596         switch (host_byte(result)) {
597         case DID_OK:
598                 if (scsi_status_is_good(result))
599                         return BLK_STS_OK;
600                 return BLK_STS_IOERR;
601         case DID_TRANSPORT_FAILFAST:
602         case DID_TRANSPORT_MARGINAL:
603                 return BLK_STS_TRANSPORT;
604         case DID_TARGET_FAILURE:
605                 set_host_byte(cmd, DID_OK);
606                 return BLK_STS_TARGET;
607         case DID_NEXUS_FAILURE:
608                 set_host_byte(cmd, DID_OK);
609                 return BLK_STS_NEXUS;
610         case DID_ALLOC_FAILURE:
611                 set_host_byte(cmd, DID_OK);
612                 return BLK_STS_NOSPC;
613         case DID_MEDIUM_ERROR:
614                 set_host_byte(cmd, DID_OK);
615                 return BLK_STS_MEDIUM;
616         default:
617                 return BLK_STS_IOERR;
618         }
619 }
620
621 /**
622  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
623  * @rq: request to examine
624  *
625  * Description:
626  *     A request could be merge of IOs which require different failure
627  *     handling.  This function determines the number of bytes which
628  *     can be failed from the beginning of the request without
629  *     crossing into area which need to be retried further.
630  *
631  * Return:
632  *     The number of bytes to fail.
633  */
634 static unsigned int scsi_rq_err_bytes(const struct request *rq)
635 {
636         unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
637         unsigned int bytes = 0;
638         struct bio *bio;
639
640         if (!(rq->rq_flags & RQF_MIXED_MERGE))
641                 return blk_rq_bytes(rq);
642
643         /*
644          * Currently the only 'mixing' which can happen is between
645          * different fastfail types.  We can safely fail portions
646          * which have all the failfast bits that the first one has -
647          * the ones which are at least as eager to fail as the first
648          * one.
649          */
650         for (bio = rq->bio; bio; bio = bio->bi_next) {
651                 if ((bio->bi_opf & ff) != ff)
652                         break;
653                 bytes += bio->bi_iter.bi_size;
654         }
655
656         /* this could lead to infinite loop */
657         BUG_ON(blk_rq_bytes(rq) && !bytes);
658         return bytes;
659 }
660
661 /* Helper for scsi_io_completion() when "reprep" action required. */
662 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
663                                       struct request_queue *q)
664 {
665         /* A new command will be prepared and issued. */
666         scsi_mq_requeue_cmd(cmd);
667 }
668
669 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
670 {
671         struct request *req = scsi_cmd_to_rq(cmd);
672         unsigned long wait_for;
673
674         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
675                 return false;
676
677         wait_for = (cmd->allowed + 1) * req->timeout;
678         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
679                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
680                             wait_for/HZ);
681                 return true;
682         }
683         return false;
684 }
685
686 /* Helper for scsi_io_completion() when special action required. */
687 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
688 {
689         struct request_queue *q = cmd->device->request_queue;
690         struct request *req = scsi_cmd_to_rq(cmd);
691         int level = 0;
692         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
693               ACTION_DELAYED_RETRY} action;
694         struct scsi_sense_hdr sshdr;
695         bool sense_valid;
696         bool sense_current = true;      /* false implies "deferred sense" */
697         blk_status_t blk_stat;
698
699         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
700         if (sense_valid)
701                 sense_current = !scsi_sense_is_deferred(&sshdr);
702
703         blk_stat = scsi_result_to_blk_status(cmd, result);
704
705         if (host_byte(result) == DID_RESET) {
706                 /* Third party bus reset or reset for error recovery
707                  * reasons.  Just retry the command and see what
708                  * happens.
709                  */
710                 action = ACTION_RETRY;
711         } else if (sense_valid && sense_current) {
712                 switch (sshdr.sense_key) {
713                 case UNIT_ATTENTION:
714                         if (cmd->device->removable) {
715                                 /* Detected disc change.  Set a bit
716                                  * and quietly refuse further access.
717                                  */
718                                 cmd->device->changed = 1;
719                                 action = ACTION_FAIL;
720                         } else {
721                                 /* Must have been a power glitch, or a
722                                  * bus reset.  Could not have been a
723                                  * media change, so we just retry the
724                                  * command and see what happens.
725                                  */
726                                 action = ACTION_RETRY;
727                         }
728                         break;
729                 case ILLEGAL_REQUEST:
730                         /* If we had an ILLEGAL REQUEST returned, then
731                          * we may have performed an unsupported
732                          * command.  The only thing this should be
733                          * would be a ten byte read where only a six
734                          * byte read was supported.  Also, on a system
735                          * where READ CAPACITY failed, we may have
736                          * read past the end of the disk.
737                          */
738                         if ((cmd->device->use_10_for_rw &&
739                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
740                             (cmd->cmnd[0] == READ_10 ||
741                              cmd->cmnd[0] == WRITE_10)) {
742                                 /* This will issue a new 6-byte command. */
743                                 cmd->device->use_10_for_rw = 0;
744                                 action = ACTION_REPREP;
745                         } else if (sshdr.asc == 0x10) /* DIX */ {
746                                 action = ACTION_FAIL;
747                                 blk_stat = BLK_STS_PROTECTION;
748                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
749                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
750                                 action = ACTION_FAIL;
751                                 blk_stat = BLK_STS_TARGET;
752                         } else
753                                 action = ACTION_FAIL;
754                         break;
755                 case ABORTED_COMMAND:
756                         action = ACTION_FAIL;
757                         if (sshdr.asc == 0x10) /* DIF */
758                                 blk_stat = BLK_STS_PROTECTION;
759                         break;
760                 case NOT_READY:
761                         /* If the device is in the process of becoming
762                          * ready, or has a temporary blockage, retry.
763                          */
764                         if (sshdr.asc == 0x04) {
765                                 switch (sshdr.ascq) {
766                                 case 0x01: /* becoming ready */
767                                 case 0x04: /* format in progress */
768                                 case 0x05: /* rebuild in progress */
769                                 case 0x06: /* recalculation in progress */
770                                 case 0x07: /* operation in progress */
771                                 case 0x08: /* Long write in progress */
772                                 case 0x09: /* self test in progress */
773                                 case 0x11: /* notify (enable spinup) required */
774                                 case 0x14: /* space allocation in progress */
775                                 case 0x1a: /* start stop unit in progress */
776                                 case 0x1b: /* sanitize in progress */
777                                 case 0x1d: /* configuration in progress */
778                                 case 0x24: /* depopulation in progress */
779                                         action = ACTION_DELAYED_RETRY;
780                                         break;
781                                 case 0x0a: /* ALUA state transition */
782                                         blk_stat = BLK_STS_AGAIN;
783                                         fallthrough;
784                                 default:
785                                         action = ACTION_FAIL;
786                                         break;
787                                 }
788                         } else
789                                 action = ACTION_FAIL;
790                         break;
791                 case VOLUME_OVERFLOW:
792                         /* See SSC3rXX or current. */
793                         action = ACTION_FAIL;
794                         break;
795                 case DATA_PROTECT:
796                         action = ACTION_FAIL;
797                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
798                             (sshdr.asc == 0x55 &&
799                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
800                                 /* Insufficient zone resources */
801                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
802                         }
803                         break;
804                 default:
805                         action = ACTION_FAIL;
806                         break;
807                 }
808         } else
809                 action = ACTION_FAIL;
810
811         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
812                 action = ACTION_FAIL;
813
814         switch (action) {
815         case ACTION_FAIL:
816                 /* Give up and fail the remainder of the request */
817                 if (!(req->rq_flags & RQF_QUIET)) {
818                         static DEFINE_RATELIMIT_STATE(_rs,
819                                         DEFAULT_RATELIMIT_INTERVAL,
820                                         DEFAULT_RATELIMIT_BURST);
821
822                         if (unlikely(scsi_logging_level))
823                                 level =
824                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
825                                                     SCSI_LOG_MLCOMPLETE_BITS);
826
827                         /*
828                          * if logging is enabled the failure will be printed
829                          * in scsi_log_completion(), so avoid duplicate messages
830                          */
831                         if (!level && __ratelimit(&_rs)) {
832                                 scsi_print_result(cmd, NULL, FAILED);
833                                 if (sense_valid)
834                                         scsi_print_sense(cmd);
835                                 scsi_print_command(cmd);
836                         }
837                 }
838                 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
839                         return;
840                 fallthrough;
841         case ACTION_REPREP:
842                 scsi_io_completion_reprep(cmd, q);
843                 break;
844         case ACTION_RETRY:
845                 /* Retry the same command immediately */
846                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
847                 break;
848         case ACTION_DELAYED_RETRY:
849                 /* Retry the same command after a delay */
850                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
851                 break;
852         }
853 }
854
855 /*
856  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
857  * new result that may suppress further error checking. Also modifies
858  * *blk_statp in some cases.
859  */
860 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
861                                         blk_status_t *blk_statp)
862 {
863         bool sense_valid;
864         bool sense_current = true;      /* false implies "deferred sense" */
865         struct request *req = scsi_cmd_to_rq(cmd);
866         struct scsi_sense_hdr sshdr;
867
868         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
869         if (sense_valid)
870                 sense_current = !scsi_sense_is_deferred(&sshdr);
871
872         if (blk_rq_is_passthrough(req)) {
873                 if (sense_valid) {
874                         /*
875                          * SG_IO wants current and deferred errors
876                          */
877                         scsi_req(req)->sense_len =
878                                 min(8 + cmd->sense_buffer[7],
879                                     SCSI_SENSE_BUFFERSIZE);
880                 }
881                 if (sense_current)
882                         *blk_statp = scsi_result_to_blk_status(cmd, result);
883         } else if (blk_rq_bytes(req) == 0 && sense_current) {
884                 /*
885                  * Flush commands do not transfers any data, and thus cannot use
886                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
887                  * This sets *blk_statp explicitly for the problem case.
888                  */
889                 *blk_statp = scsi_result_to_blk_status(cmd, result);
890         }
891         /*
892          * Recovered errors need reporting, but they're always treated as
893          * success, so fiddle the result code here.  For passthrough requests
894          * we already took a copy of the original into sreq->result which
895          * is what gets returned to the user
896          */
897         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
898                 bool do_print = true;
899                 /*
900                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
901                  * skip print since caller wants ATA registers. Only occurs
902                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
903                  */
904                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
905                         do_print = false;
906                 else if (req->rq_flags & RQF_QUIET)
907                         do_print = false;
908                 if (do_print)
909                         scsi_print_sense(cmd);
910                 result = 0;
911                 /* for passthrough, *blk_statp may be set */
912                 *blk_statp = BLK_STS_OK;
913         }
914         /*
915          * Another corner case: the SCSI status byte is non-zero but 'good'.
916          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
917          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
918          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
919          * intermediate statuses (both obsolete in SAM-4) as good.
920          */
921         if ((result & 0xff) && scsi_status_is_good(result)) {
922                 result = 0;
923                 *blk_statp = BLK_STS_OK;
924         }
925         return result;
926 }
927
928 /**
929  * scsi_io_completion - Completion processing for SCSI commands.
930  * @cmd:        command that is finished.
931  * @good_bytes: number of processed bytes.
932  *
933  * We will finish off the specified number of sectors. If we are done, the
934  * command block will be released and the queue function will be goosed. If we
935  * are not done then we have to figure out what to do next:
936  *
937  *   a) We can call scsi_io_completion_reprep().  The request will be
938  *      unprepared and put back on the queue.  Then a new command will
939  *      be created for it.  This should be used if we made forward
940  *      progress, or if we want to switch from READ(10) to READ(6) for
941  *      example.
942  *
943  *   b) We can call scsi_io_completion_action().  The request will be
944  *      put back on the queue and retried using the same command as
945  *      before, possibly after a delay.
946  *
947  *   c) We can call scsi_end_request() with blk_stat other than
948  *      BLK_STS_OK, to fail the remainder of the request.
949  */
950 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
951 {
952         int result = cmd->result;
953         struct request_queue *q = cmd->device->request_queue;
954         struct request *req = scsi_cmd_to_rq(cmd);
955         blk_status_t blk_stat = BLK_STS_OK;
956
957         if (unlikely(result))   /* a nz result may or may not be an error */
958                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
959
960         if (unlikely(blk_rq_is_passthrough(req))) {
961                 /*
962                  * scsi_result_to_blk_status may have reset the host_byte
963                  */
964                 scsi_req(req)->result = cmd->result;
965         }
966
967         /*
968          * Next deal with any sectors which we were able to correctly
969          * handle.
970          */
971         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
972                 "%u sectors total, %d bytes done.\n",
973                 blk_rq_sectors(req), good_bytes));
974
975         /*
976          * Failed, zero length commands always need to drop down
977          * to retry code. Fast path should return in this block.
978          */
979         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
980                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
981                         return; /* no bytes remaining */
982         }
983
984         /* Kill remainder if no retries. */
985         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
986                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
987                         WARN_ONCE(true,
988                             "Bytes remaining after failed, no-retry command");
989                 return;
990         }
991
992         /*
993          * If there had been no error, but we have leftover bytes in the
994          * request just queue the command up again.
995          */
996         if (likely(result == 0))
997                 scsi_io_completion_reprep(cmd, q);
998         else
999                 scsi_io_completion_action(cmd, result);
1000 }
1001
1002 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1003                 struct request *rq)
1004 {
1005         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1006                !op_is_write(req_op(rq)) &&
1007                sdev->host->hostt->dma_need_drain(rq);
1008 }
1009
1010 /**
1011  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1012  * @cmd: SCSI command data structure to initialize.
1013  *
1014  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1015  * for @cmd.
1016  *
1017  * Returns:
1018  * * BLK_STS_OK       - on success
1019  * * BLK_STS_RESOURCE - if the failure is retryable
1020  * * BLK_STS_IOERR    - if the failure is fatal
1021  */
1022 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1023 {
1024         struct scsi_device *sdev = cmd->device;
1025         struct request *rq = scsi_cmd_to_rq(cmd);
1026         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1027         struct scatterlist *last_sg = NULL;
1028         blk_status_t ret;
1029         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1030         int count;
1031
1032         if (WARN_ON_ONCE(!nr_segs))
1033                 return BLK_STS_IOERR;
1034
1035         /*
1036          * Make sure there is space for the drain.  The driver must adjust
1037          * max_hw_segments to be prepared for this.
1038          */
1039         if (need_drain)
1040                 nr_segs++;
1041
1042         /*
1043          * If sg table allocation fails, requeue request later.
1044          */
1045         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1046                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1047                 return BLK_STS_RESOURCE;
1048
1049         /*
1050          * Next, walk the list, and fill in the addresses and sizes of
1051          * each segment.
1052          */
1053         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1054
1055         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1056                 unsigned int pad_len =
1057                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1058
1059                 last_sg->length += pad_len;
1060                 cmd->extra_len += pad_len;
1061         }
1062
1063         if (need_drain) {
1064                 sg_unmark_end(last_sg);
1065                 last_sg = sg_next(last_sg);
1066                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1067                 sg_mark_end(last_sg);
1068
1069                 cmd->extra_len += sdev->dma_drain_len;
1070                 count++;
1071         }
1072
1073         BUG_ON(count > cmd->sdb.table.nents);
1074         cmd->sdb.table.nents = count;
1075         cmd->sdb.length = blk_rq_payload_bytes(rq);
1076
1077         if (blk_integrity_rq(rq)) {
1078                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1079                 int ivecs;
1080
1081                 if (WARN_ON_ONCE(!prot_sdb)) {
1082                         /*
1083                          * This can happen if someone (e.g. multipath)
1084                          * queues a command to a device on an adapter
1085                          * that does not support DIX.
1086                          */
1087                         ret = BLK_STS_IOERR;
1088                         goto out_free_sgtables;
1089                 }
1090
1091                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1092
1093                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1094                                 prot_sdb->table.sgl,
1095                                 SCSI_INLINE_PROT_SG_CNT)) {
1096                         ret = BLK_STS_RESOURCE;
1097                         goto out_free_sgtables;
1098                 }
1099
1100                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1101                                                 prot_sdb->table.sgl);
1102                 BUG_ON(count > ivecs);
1103                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1104
1105                 cmd->prot_sdb = prot_sdb;
1106                 cmd->prot_sdb->table.nents = count;
1107         }
1108
1109         return BLK_STS_OK;
1110 out_free_sgtables:
1111         scsi_free_sgtables(cmd);
1112         return ret;
1113 }
1114 EXPORT_SYMBOL(scsi_alloc_sgtables);
1115
1116 /**
1117  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1118  * @rq: Request associated with the SCSI command to be initialized.
1119  *
1120  * This function initializes the members of struct scsi_cmnd that must be
1121  * initialized before request processing starts and that won't be
1122  * reinitialized if a SCSI command is requeued.
1123  */
1124 static void scsi_initialize_rq(struct request *rq)
1125 {
1126         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1127         struct scsi_request *req = &cmd->req;
1128
1129         memset(req->__cmd, 0, sizeof(req->__cmd));
1130         req->cmd = req->__cmd;
1131         req->cmd_len = BLK_MAX_CDB;
1132         req->sense_len = 0;
1133
1134         init_rcu_head(&cmd->rcu);
1135         cmd->jiffies_at_alloc = jiffies;
1136         cmd->retries = 0;
1137 }
1138
1139 struct request *scsi_alloc_request(struct request_queue *q,
1140                 unsigned int op, blk_mq_req_flags_t flags)
1141 {
1142         struct request *rq;
1143
1144         rq = blk_mq_alloc_request(q, op, flags);
1145         if (!IS_ERR(rq))
1146                 scsi_initialize_rq(rq);
1147         return rq;
1148 }
1149 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1150
1151 /*
1152  * Only called when the request isn't completed by SCSI, and not freed by
1153  * SCSI
1154  */
1155 static void scsi_cleanup_rq(struct request *rq)
1156 {
1157         if (rq->rq_flags & RQF_DONTPREP) {
1158                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1159                 rq->rq_flags &= ~RQF_DONTPREP;
1160         }
1161 }
1162
1163 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1164 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1165 {
1166         void *buf = cmd->sense_buffer;
1167         void *prot = cmd->prot_sdb;
1168         struct request *rq = scsi_cmd_to_rq(cmd);
1169         unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1170         unsigned long jiffies_at_alloc;
1171         int retries, to_clear;
1172         bool in_flight;
1173         int budget_token = cmd->budget_token;
1174
1175         if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) {
1176                 flags |= SCMD_INITIALIZED;
1177                 scsi_initialize_rq(rq);
1178         }
1179
1180         jiffies_at_alloc = cmd->jiffies_at_alloc;
1181         retries = cmd->retries;
1182         in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1183         /*
1184          * Zero out the cmd, except for the embedded scsi_request. Only clear
1185          * the driver-private command data if the LLD does not supply a
1186          * function to initialize that data.
1187          */
1188         to_clear = sizeof(*cmd) - sizeof(cmd->req);
1189         if (!dev->host->hostt->init_cmd_priv)
1190                 to_clear += dev->host->hostt->cmd_size;
1191         memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1192
1193         cmd->device = dev;
1194         cmd->sense_buffer = buf;
1195         cmd->prot_sdb = prot;
1196         cmd->flags = flags;
1197         INIT_LIST_HEAD(&cmd->eh_entry);
1198         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1199         cmd->jiffies_at_alloc = jiffies_at_alloc;
1200         cmd->retries = retries;
1201         if (in_flight)
1202                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1203         cmd->budget_token = budget_token;
1204
1205 }
1206
1207 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1208                 struct request *req)
1209 {
1210         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1211
1212         /*
1213          * Passthrough requests may transfer data, in which case they must
1214          * a bio attached to them.  Or they might contain a SCSI command
1215          * that does not transfer data, in which case they may optionally
1216          * submit a request without an attached bio.
1217          */
1218         if (req->bio) {
1219                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1220                 if (unlikely(ret != BLK_STS_OK))
1221                         return ret;
1222         } else {
1223                 BUG_ON(blk_rq_bytes(req));
1224
1225                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1226         }
1227
1228         cmd->cmd_len = scsi_req(req)->cmd_len;
1229         cmd->cmnd = scsi_req(req)->cmd;
1230         cmd->transfersize = blk_rq_bytes(req);
1231         cmd->allowed = scsi_req(req)->retries;
1232         return BLK_STS_OK;
1233 }
1234
1235 static blk_status_t
1236 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1237 {
1238         switch (sdev->sdev_state) {
1239         case SDEV_CREATED:
1240                 return BLK_STS_OK;
1241         case SDEV_OFFLINE:
1242         case SDEV_TRANSPORT_OFFLINE:
1243                 /*
1244                  * If the device is offline we refuse to process any
1245                  * commands.  The device must be brought online
1246                  * before trying any recovery commands.
1247                  */
1248                 if (!sdev->offline_already) {
1249                         sdev->offline_already = true;
1250                         sdev_printk(KERN_ERR, sdev,
1251                                     "rejecting I/O to offline device\n");
1252                 }
1253                 return BLK_STS_IOERR;
1254         case SDEV_DEL:
1255                 /*
1256                  * If the device is fully deleted, we refuse to
1257                  * process any commands as well.
1258                  */
1259                 sdev_printk(KERN_ERR, sdev,
1260                             "rejecting I/O to dead device\n");
1261                 return BLK_STS_IOERR;
1262         case SDEV_BLOCK:
1263         case SDEV_CREATED_BLOCK:
1264                 return BLK_STS_RESOURCE;
1265         case SDEV_QUIESCE:
1266                 /*
1267                  * If the device is blocked we only accept power management
1268                  * commands.
1269                  */
1270                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1271                         return BLK_STS_RESOURCE;
1272                 return BLK_STS_OK;
1273         default:
1274                 /*
1275                  * For any other not fully online state we only allow
1276                  * power management commands.
1277                  */
1278                 if (req && !(req->rq_flags & RQF_PM))
1279                         return BLK_STS_IOERR;
1280                 return BLK_STS_OK;
1281         }
1282 }
1283
1284 /*
1285  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1286  * and return the token else return -1.
1287  */
1288 static inline int scsi_dev_queue_ready(struct request_queue *q,
1289                                   struct scsi_device *sdev)
1290 {
1291         int token;
1292
1293         token = sbitmap_get(&sdev->budget_map);
1294         if (atomic_read(&sdev->device_blocked)) {
1295                 if (token < 0)
1296                         goto out;
1297
1298                 if (scsi_device_busy(sdev) > 1)
1299                         goto out_dec;
1300
1301                 /*
1302                  * unblock after device_blocked iterates to zero
1303                  */
1304                 if (atomic_dec_return(&sdev->device_blocked) > 0)
1305                         goto out_dec;
1306                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1307                                    "unblocking device at zero depth\n"));
1308         }
1309
1310         return token;
1311 out_dec:
1312         if (token >= 0)
1313                 sbitmap_put(&sdev->budget_map, token);
1314 out:
1315         return -1;
1316 }
1317
1318 /*
1319  * scsi_target_queue_ready: checks if there we can send commands to target
1320  * @sdev: scsi device on starget to check.
1321  */
1322 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1323                                            struct scsi_device *sdev)
1324 {
1325         struct scsi_target *starget = scsi_target(sdev);
1326         unsigned int busy;
1327
1328         if (starget->single_lun) {
1329                 spin_lock_irq(shost->host_lock);
1330                 if (starget->starget_sdev_user &&
1331                     starget->starget_sdev_user != sdev) {
1332                         spin_unlock_irq(shost->host_lock);
1333                         return 0;
1334                 }
1335                 starget->starget_sdev_user = sdev;
1336                 spin_unlock_irq(shost->host_lock);
1337         }
1338
1339         if (starget->can_queue <= 0)
1340                 return 1;
1341
1342         busy = atomic_inc_return(&starget->target_busy) - 1;
1343         if (atomic_read(&starget->target_blocked) > 0) {
1344                 if (busy)
1345                         goto starved;
1346
1347                 /*
1348                  * unblock after target_blocked iterates to zero
1349                  */
1350                 if (atomic_dec_return(&starget->target_blocked) > 0)
1351                         goto out_dec;
1352
1353                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1354                                  "unblocking target at zero depth\n"));
1355         }
1356
1357         if (busy >= starget->can_queue)
1358                 goto starved;
1359
1360         return 1;
1361
1362 starved:
1363         spin_lock_irq(shost->host_lock);
1364         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1365         spin_unlock_irq(shost->host_lock);
1366 out_dec:
1367         if (starget->can_queue > 0)
1368                 atomic_dec(&starget->target_busy);
1369         return 0;
1370 }
1371
1372 /*
1373  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1374  * return 0. We must end up running the queue again whenever 0 is
1375  * returned, else IO can hang.
1376  */
1377 static inline int scsi_host_queue_ready(struct request_queue *q,
1378                                    struct Scsi_Host *shost,
1379                                    struct scsi_device *sdev,
1380                                    struct scsi_cmnd *cmd)
1381 {
1382         if (scsi_host_in_recovery(shost))
1383                 return 0;
1384
1385         if (atomic_read(&shost->host_blocked) > 0) {
1386                 if (scsi_host_busy(shost) > 0)
1387                         goto starved;
1388
1389                 /*
1390                  * unblock after host_blocked iterates to zero
1391                  */
1392                 if (atomic_dec_return(&shost->host_blocked) > 0)
1393                         goto out_dec;
1394
1395                 SCSI_LOG_MLQUEUE(3,
1396                         shost_printk(KERN_INFO, shost,
1397                                      "unblocking host at zero depth\n"));
1398         }
1399
1400         if (shost->host_self_blocked)
1401                 goto starved;
1402
1403         /* We're OK to process the command, so we can't be starved */
1404         if (!list_empty(&sdev->starved_entry)) {
1405                 spin_lock_irq(shost->host_lock);
1406                 if (!list_empty(&sdev->starved_entry))
1407                         list_del_init(&sdev->starved_entry);
1408                 spin_unlock_irq(shost->host_lock);
1409         }
1410
1411         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1412
1413         return 1;
1414
1415 starved:
1416         spin_lock_irq(shost->host_lock);
1417         if (list_empty(&sdev->starved_entry))
1418                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1419         spin_unlock_irq(shost->host_lock);
1420 out_dec:
1421         scsi_dec_host_busy(shost, cmd);
1422         return 0;
1423 }
1424
1425 /*
1426  * Busy state exporting function for request stacking drivers.
1427  *
1428  * For efficiency, no lock is taken to check the busy state of
1429  * shost/starget/sdev, since the returned value is not guaranteed and
1430  * may be changed after request stacking drivers call the function,
1431  * regardless of taking lock or not.
1432  *
1433  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1434  * needs to return 'not busy'. Otherwise, request stacking drivers
1435  * may hold requests forever.
1436  */
1437 static bool scsi_mq_lld_busy(struct request_queue *q)
1438 {
1439         struct scsi_device *sdev = q->queuedata;
1440         struct Scsi_Host *shost;
1441
1442         if (blk_queue_dying(q))
1443                 return false;
1444
1445         shost = sdev->host;
1446
1447         /*
1448          * Ignore host/starget busy state.
1449          * Since block layer does not have a concept of fairness across
1450          * multiple queues, congestion of host/starget needs to be handled
1451          * in SCSI layer.
1452          */
1453         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1454                 return true;
1455
1456         return false;
1457 }
1458
1459 /*
1460  * Block layer request completion callback. May be called from interrupt
1461  * context.
1462  */
1463 static void scsi_complete(struct request *rq)
1464 {
1465         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1466         enum scsi_disposition disposition;
1467
1468         INIT_LIST_HEAD(&cmd->eh_entry);
1469
1470         atomic_inc(&cmd->device->iodone_cnt);
1471         if (cmd->result)
1472                 atomic_inc(&cmd->device->ioerr_cnt);
1473
1474         disposition = scsi_decide_disposition(cmd);
1475         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1476                 disposition = SUCCESS;
1477
1478         scsi_log_completion(cmd, disposition);
1479
1480         switch (disposition) {
1481         case SUCCESS:
1482                 scsi_finish_command(cmd);
1483                 break;
1484         case NEEDS_RETRY:
1485                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1486                 break;
1487         case ADD_TO_MLQUEUE:
1488                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1489                 break;
1490         default:
1491                 scsi_eh_scmd_add(cmd);
1492                 break;
1493         }
1494 }
1495
1496 /**
1497  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1498  * @cmd: command block we are dispatching.
1499  *
1500  * Return: nonzero return request was rejected and device's queue needs to be
1501  * plugged.
1502  */
1503 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1504 {
1505         struct Scsi_Host *host = cmd->device->host;
1506         int rtn = 0;
1507
1508         atomic_inc(&cmd->device->iorequest_cnt);
1509
1510         /* check if the device is still usable */
1511         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1512                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1513                  * returns an immediate error upwards, and signals
1514                  * that the device is no longer present */
1515                 cmd->result = DID_NO_CONNECT << 16;
1516                 goto done;
1517         }
1518
1519         /* Check to see if the scsi lld made this device blocked. */
1520         if (unlikely(scsi_device_blocked(cmd->device))) {
1521                 /*
1522                  * in blocked state, the command is just put back on
1523                  * the device queue.  The suspend state has already
1524                  * blocked the queue so future requests should not
1525                  * occur until the device transitions out of the
1526                  * suspend state.
1527                  */
1528                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1529                         "queuecommand : device blocked\n"));
1530                 return SCSI_MLQUEUE_DEVICE_BUSY;
1531         }
1532
1533         /* Store the LUN value in cmnd, if needed. */
1534         if (cmd->device->lun_in_cdb)
1535                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1536                                (cmd->device->lun << 5 & 0xe0);
1537
1538         scsi_log_send(cmd);
1539
1540         /*
1541          * Before we queue this command, check if the command
1542          * length exceeds what the host adapter can handle.
1543          */
1544         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1545                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1546                                "queuecommand : command too long. "
1547                                "cdb_size=%d host->max_cmd_len=%d\n",
1548                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1549                 cmd->result = (DID_ABORT << 16);
1550                 goto done;
1551         }
1552
1553         if (unlikely(host->shost_state == SHOST_DEL)) {
1554                 cmd->result = (DID_NO_CONNECT << 16);
1555                 goto done;
1556
1557         }
1558
1559         trace_scsi_dispatch_cmd_start(cmd);
1560         rtn = host->hostt->queuecommand(host, cmd);
1561         if (rtn) {
1562                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1563                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1564                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1565                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1566
1567                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1568                         "queuecommand : request rejected\n"));
1569         }
1570
1571         return rtn;
1572  done:
1573         scsi_done(cmd);
1574         return 0;
1575 }
1576
1577 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1578 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1579 {
1580         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1581                 sizeof(struct scatterlist);
1582 }
1583
1584 static blk_status_t scsi_prepare_cmd(struct request *req)
1585 {
1586         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1587         struct scsi_device *sdev = req->q->queuedata;
1588         struct Scsi_Host *shost = sdev->host;
1589         struct scatterlist *sg;
1590
1591         scsi_init_command(sdev, cmd);
1592
1593         cmd->prot_op = SCSI_PROT_NORMAL;
1594         if (blk_rq_bytes(req))
1595                 cmd->sc_data_direction = rq_dma_dir(req);
1596         else
1597                 cmd->sc_data_direction = DMA_NONE;
1598
1599         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1600         cmd->sdb.table.sgl = sg;
1601
1602         if (scsi_host_get_prot(shost)) {
1603                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1604
1605                 cmd->prot_sdb->table.sgl =
1606                         (struct scatterlist *)(cmd->prot_sdb + 1);
1607         }
1608
1609         /*
1610          * Special handling for passthrough commands, which don't go to the ULP
1611          * at all:
1612          */
1613         if (blk_rq_is_passthrough(req))
1614                 return scsi_setup_scsi_cmnd(sdev, req);
1615
1616         if (sdev->handler && sdev->handler->prep_fn) {
1617                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1618
1619                 if (ret != BLK_STS_OK)
1620                         return ret;
1621         }
1622
1623         cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1624         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1625         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1626 }
1627
1628 void scsi_done(struct scsi_cmnd *cmd)
1629 {
1630         switch (cmd->submitter) {
1631         case SUBMITTED_BY_BLOCK_LAYER:
1632                 break;
1633         case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1634                 return scsi_eh_done(cmd);
1635         case SUBMITTED_BY_SCSI_RESET_IOCTL:
1636                 return;
1637         }
1638
1639         if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1640                 return;
1641         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1642                 return;
1643         trace_scsi_dispatch_cmd_done(cmd);
1644         blk_mq_complete_request(scsi_cmd_to_rq(cmd));
1645 }
1646 EXPORT_SYMBOL(scsi_done);
1647
1648 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1649 {
1650         struct scsi_device *sdev = q->queuedata;
1651
1652         sbitmap_put(&sdev->budget_map, budget_token);
1653 }
1654
1655 static int scsi_mq_get_budget(struct request_queue *q)
1656 {
1657         struct scsi_device *sdev = q->queuedata;
1658         int token = scsi_dev_queue_ready(q, sdev);
1659
1660         if (token >= 0)
1661                 return token;
1662
1663         atomic_inc(&sdev->restarts);
1664
1665         /*
1666          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1667          * .restarts must be incremented before .device_busy is read because the
1668          * code in scsi_run_queue_async() depends on the order of these operations.
1669          */
1670         smp_mb__after_atomic();
1671
1672         /*
1673          * If all in-flight requests originated from this LUN are completed
1674          * before reading .device_busy, sdev->device_busy will be observed as
1675          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1676          * soon. Otherwise, completion of one of these requests will observe
1677          * the .restarts flag, and the request queue will be run for handling
1678          * this request, see scsi_end_request().
1679          */
1680         if (unlikely(scsi_device_busy(sdev) == 0 &&
1681                                 !scsi_device_blocked(sdev)))
1682                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1683         return -1;
1684 }
1685
1686 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1687 {
1688         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1689
1690         cmd->budget_token = token;
1691 }
1692
1693 static int scsi_mq_get_rq_budget_token(struct request *req)
1694 {
1695         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1696
1697         return cmd->budget_token;
1698 }
1699
1700 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1701                          const struct blk_mq_queue_data *bd)
1702 {
1703         struct request *req = bd->rq;
1704         struct request_queue *q = req->q;
1705         struct scsi_device *sdev = q->queuedata;
1706         struct Scsi_Host *shost = sdev->host;
1707         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1708         blk_status_t ret;
1709         int reason;
1710
1711         WARN_ON_ONCE(cmd->budget_token < 0);
1712
1713         /*
1714          * If the device is not in running state we will reject some or all
1715          * commands.
1716          */
1717         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1718                 ret = scsi_device_state_check(sdev, req);
1719                 if (ret != BLK_STS_OK)
1720                         goto out_put_budget;
1721         }
1722
1723         ret = BLK_STS_RESOURCE;
1724         if (!scsi_target_queue_ready(shost, sdev))
1725                 goto out_put_budget;
1726         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1727                 goto out_dec_target_busy;
1728
1729         if (!(req->rq_flags & RQF_DONTPREP)) {
1730                 ret = scsi_prepare_cmd(req);
1731                 if (ret != BLK_STS_OK)
1732                         goto out_dec_host_busy;
1733                 req->rq_flags |= RQF_DONTPREP;
1734         } else {
1735                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1736         }
1737
1738         cmd->flags &= SCMD_PRESERVED_FLAGS;
1739         if (sdev->simple_tags)
1740                 cmd->flags |= SCMD_TAGGED;
1741         if (bd->last)
1742                 cmd->flags |= SCMD_LAST;
1743
1744         scsi_set_resid(cmd, 0);
1745         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1746         cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1747
1748         blk_mq_start_request(req);
1749         reason = scsi_dispatch_cmd(cmd);
1750         if (reason) {
1751                 scsi_set_blocked(cmd, reason);
1752                 ret = BLK_STS_RESOURCE;
1753                 goto out_dec_host_busy;
1754         }
1755
1756         return BLK_STS_OK;
1757
1758 out_dec_host_busy:
1759         scsi_dec_host_busy(shost, cmd);
1760 out_dec_target_busy:
1761         if (scsi_target(sdev)->can_queue > 0)
1762                 atomic_dec(&scsi_target(sdev)->target_busy);
1763 out_put_budget:
1764         scsi_mq_put_budget(q, cmd->budget_token);
1765         cmd->budget_token = -1;
1766         switch (ret) {
1767         case BLK_STS_OK:
1768                 break;
1769         case BLK_STS_RESOURCE:
1770         case BLK_STS_ZONE_RESOURCE:
1771                 if (scsi_device_blocked(sdev))
1772                         ret = BLK_STS_DEV_RESOURCE;
1773                 break;
1774         case BLK_STS_AGAIN:
1775                 scsi_req(req)->result = DID_BUS_BUSY << 16;
1776                 if (req->rq_flags & RQF_DONTPREP)
1777                         scsi_mq_uninit_cmd(cmd);
1778                 break;
1779         default:
1780                 if (unlikely(!scsi_device_online(sdev)))
1781                         scsi_req(req)->result = DID_NO_CONNECT << 16;
1782                 else
1783                         scsi_req(req)->result = DID_ERROR << 16;
1784                 /*
1785                  * Make sure to release all allocated resources when
1786                  * we hit an error, as we will never see this command
1787                  * again.
1788                  */
1789                 if (req->rq_flags & RQF_DONTPREP)
1790                         scsi_mq_uninit_cmd(cmd);
1791                 scsi_run_queue_async(sdev);
1792                 break;
1793         }
1794         return ret;
1795 }
1796
1797 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1798                 bool reserved)
1799 {
1800         if (reserved)
1801                 return BLK_EH_RESET_TIMER;
1802         return scsi_times_out(req);
1803 }
1804
1805 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1806                                 unsigned int hctx_idx, unsigned int numa_node)
1807 {
1808         struct Scsi_Host *shost = set->driver_data;
1809         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1810         struct scatterlist *sg;
1811         int ret = 0;
1812
1813         cmd->sense_buffer =
1814                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1815         if (!cmd->sense_buffer)
1816                 return -ENOMEM;
1817         cmd->req.sense = cmd->sense_buffer;
1818
1819         if (scsi_host_get_prot(shost)) {
1820                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1821                         shost->hostt->cmd_size;
1822                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1823         }
1824
1825         if (shost->hostt->init_cmd_priv) {
1826                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1827                 if (ret < 0)
1828                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1829         }
1830
1831         return ret;
1832 }
1833
1834 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1835                                  unsigned int hctx_idx)
1836 {
1837         struct Scsi_Host *shost = set->driver_data;
1838         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1839
1840         if (shost->hostt->exit_cmd_priv)
1841                 shost->hostt->exit_cmd_priv(shost, cmd);
1842         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1843 }
1844
1845
1846 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1847 {
1848         struct Scsi_Host *shost = hctx->driver_data;
1849
1850         if (shost->hostt->mq_poll)
1851                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1852
1853         return 0;
1854 }
1855
1856 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1857                           unsigned int hctx_idx)
1858 {
1859         struct Scsi_Host *shost = data;
1860
1861         hctx->driver_data = shost;
1862         return 0;
1863 }
1864
1865 static int scsi_map_queues(struct blk_mq_tag_set *set)
1866 {
1867         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1868
1869         if (shost->hostt->map_queues)
1870                 return shost->hostt->map_queues(shost);
1871         return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1872 }
1873
1874 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1875 {
1876         struct device *dev = shost->dma_dev;
1877
1878         /*
1879          * this limit is imposed by hardware restrictions
1880          */
1881         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1882                                         SG_MAX_SEGMENTS));
1883
1884         if (scsi_host_prot_dma(shost)) {
1885                 shost->sg_prot_tablesize =
1886                         min_not_zero(shost->sg_prot_tablesize,
1887                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1888                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1889                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1890         }
1891
1892         if (dev->dma_mask) {
1893                 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1894                                 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1895         }
1896         blk_queue_max_hw_sectors(q, shost->max_sectors);
1897         blk_queue_segment_boundary(q, shost->dma_boundary);
1898         dma_set_seg_boundary(dev, shost->dma_boundary);
1899
1900         blk_queue_max_segment_size(q, shost->max_segment_size);
1901         blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1902         dma_set_max_seg_size(dev, queue_max_segment_size(q));
1903
1904         /*
1905          * Set a reasonable default alignment:  The larger of 32-byte (dword),
1906          * which is a common minimum for HBAs, and the minimum DMA alignment,
1907          * which is set by the platform.
1908          *
1909          * Devices that require a bigger alignment can increase it later.
1910          */
1911         blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1912 }
1913 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1914
1915 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1916         .get_budget     = scsi_mq_get_budget,
1917         .put_budget     = scsi_mq_put_budget,
1918         .queue_rq       = scsi_queue_rq,
1919         .complete       = scsi_complete,
1920         .timeout        = scsi_timeout,
1921 #ifdef CONFIG_BLK_DEBUG_FS
1922         .show_rq        = scsi_show_rq,
1923 #endif
1924         .init_request   = scsi_mq_init_request,
1925         .exit_request   = scsi_mq_exit_request,
1926         .cleanup_rq     = scsi_cleanup_rq,
1927         .busy           = scsi_mq_lld_busy,
1928         .map_queues     = scsi_map_queues,
1929         .init_hctx      = scsi_init_hctx,
1930         .poll           = scsi_mq_poll,
1931         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1932         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1933 };
1934
1935
1936 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1937 {
1938         struct Scsi_Host *shost = hctx->driver_data;
1939
1940         shost->hostt->commit_rqs(shost, hctx->queue_num);
1941 }
1942
1943 static const struct blk_mq_ops scsi_mq_ops = {
1944         .get_budget     = scsi_mq_get_budget,
1945         .put_budget     = scsi_mq_put_budget,
1946         .queue_rq       = scsi_queue_rq,
1947         .commit_rqs     = scsi_commit_rqs,
1948         .complete       = scsi_complete,
1949         .timeout        = scsi_timeout,
1950 #ifdef CONFIG_BLK_DEBUG_FS
1951         .show_rq        = scsi_show_rq,
1952 #endif
1953         .init_request   = scsi_mq_init_request,
1954         .exit_request   = scsi_mq_exit_request,
1955         .cleanup_rq     = scsi_cleanup_rq,
1956         .busy           = scsi_mq_lld_busy,
1957         .map_queues     = scsi_map_queues,
1958         .init_hctx      = scsi_init_hctx,
1959         .poll           = scsi_mq_poll,
1960         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1961         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1962 };
1963
1964 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1965 {
1966         unsigned int cmd_size, sgl_size;
1967         struct blk_mq_tag_set *tag_set = &shost->tag_set;
1968
1969         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1970                                 scsi_mq_inline_sgl_size(shost));
1971         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1972         if (scsi_host_get_prot(shost))
1973                 cmd_size += sizeof(struct scsi_data_buffer) +
1974                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1975
1976         memset(tag_set, 0, sizeof(*tag_set));
1977         if (shost->hostt->commit_rqs)
1978                 tag_set->ops = &scsi_mq_ops;
1979         else
1980                 tag_set->ops = &scsi_mq_ops_no_commit;
1981         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1982         tag_set->nr_maps = shost->nr_maps ? : 1;
1983         tag_set->queue_depth = shost->can_queue;
1984         tag_set->cmd_size = cmd_size;
1985         tag_set->numa_node = NUMA_NO_NODE;
1986         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1987         tag_set->flags |=
1988                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1989         tag_set->driver_data = shost;
1990         if (shost->host_tagset)
1991                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1992
1993         return blk_mq_alloc_tag_set(tag_set);
1994 }
1995
1996 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1997 {
1998         blk_mq_free_tag_set(&shost->tag_set);
1999 }
2000
2001 /**
2002  * scsi_device_from_queue - return sdev associated with a request_queue
2003  * @q: The request queue to return the sdev from
2004  *
2005  * Return the sdev associated with a request queue or NULL if the
2006  * request_queue does not reference a SCSI device.
2007  */
2008 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2009 {
2010         struct scsi_device *sdev = NULL;
2011
2012         if (q->mq_ops == &scsi_mq_ops_no_commit ||
2013             q->mq_ops == &scsi_mq_ops)
2014                 sdev = q->queuedata;
2015         if (!sdev || !get_device(&sdev->sdev_gendev))
2016                 sdev = NULL;
2017
2018         return sdev;
2019 }
2020 /*
2021  * pktcdvd should have been integrated into the SCSI layers, but for historical
2022  * reasons like the old IDE driver it isn't.  This export allows it to safely
2023  * probe if a given device is a SCSI one and only attach to that.
2024  */
2025 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2026 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2027 #endif
2028
2029 /**
2030  * scsi_block_requests - Utility function used by low-level drivers to prevent
2031  * further commands from being queued to the device.
2032  * @shost:  host in question
2033  *
2034  * There is no timer nor any other means by which the requests get unblocked
2035  * other than the low-level driver calling scsi_unblock_requests().
2036  */
2037 void scsi_block_requests(struct Scsi_Host *shost)
2038 {
2039         shost->host_self_blocked = 1;
2040 }
2041 EXPORT_SYMBOL(scsi_block_requests);
2042
2043 /**
2044  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2045  * further commands to be queued to the device.
2046  * @shost:  host in question
2047  *
2048  * There is no timer nor any other means by which the requests get unblocked
2049  * other than the low-level driver calling scsi_unblock_requests(). This is done
2050  * as an API function so that changes to the internals of the scsi mid-layer
2051  * won't require wholesale changes to drivers that use this feature.
2052  */
2053 void scsi_unblock_requests(struct Scsi_Host *shost)
2054 {
2055         shost->host_self_blocked = 0;
2056         scsi_run_host_queues(shost);
2057 }
2058 EXPORT_SYMBOL(scsi_unblock_requests);
2059
2060 void scsi_exit_queue(void)
2061 {
2062         kmem_cache_destroy(scsi_sense_cache);
2063 }
2064
2065 /**
2066  *      scsi_mode_select - issue a mode select
2067  *      @sdev:  SCSI device to be queried
2068  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2069  *      @sp:    Save page bit (0 == don't save, 1 == save)
2070  *      @buffer: request buffer (may not be smaller than eight bytes)
2071  *      @len:   length of request buffer.
2072  *      @timeout: command timeout
2073  *      @retries: number of retries before failing
2074  *      @data: returns a structure abstracting the mode header data
2075  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2076  *              must be SCSI_SENSE_BUFFERSIZE big.
2077  *
2078  *      Returns zero if successful; negative error number or scsi
2079  *      status on error
2080  *
2081  */
2082 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2083                      unsigned char *buffer, int len, int timeout, int retries,
2084                      struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2085 {
2086         unsigned char cmd[10];
2087         unsigned char *real_buffer;
2088         int ret;
2089
2090         memset(cmd, 0, sizeof(cmd));
2091         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2092
2093         /*
2094          * Use MODE SELECT(10) if the device asked for it or if the mode page
2095          * and the mode select header cannot fit within the maximumm 255 bytes
2096          * of the MODE SELECT(6) command.
2097          */
2098         if (sdev->use_10_for_ms ||
2099             len + 4 > 255 ||
2100             data->block_descriptor_length > 255) {
2101                 if (len > 65535 - 8)
2102                         return -EINVAL;
2103                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2104                 if (!real_buffer)
2105                         return -ENOMEM;
2106                 memcpy(real_buffer + 8, buffer, len);
2107                 len += 8;
2108                 real_buffer[0] = 0;
2109                 real_buffer[1] = 0;
2110                 real_buffer[2] = data->medium_type;
2111                 real_buffer[3] = data->device_specific;
2112                 real_buffer[4] = data->longlba ? 0x01 : 0;
2113                 real_buffer[5] = 0;
2114                 put_unaligned_be16(data->block_descriptor_length,
2115                                    &real_buffer[6]);
2116
2117                 cmd[0] = MODE_SELECT_10;
2118                 put_unaligned_be16(len, &cmd[7]);
2119         } else {
2120                 if (data->longlba)
2121                         return -EINVAL;
2122
2123                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2124                 if (!real_buffer)
2125                         return -ENOMEM;
2126                 memcpy(real_buffer + 4, buffer, len);
2127                 len += 4;
2128                 real_buffer[0] = 0;
2129                 real_buffer[1] = data->medium_type;
2130                 real_buffer[2] = data->device_specific;
2131                 real_buffer[3] = data->block_descriptor_length;
2132
2133                 cmd[0] = MODE_SELECT;
2134                 cmd[4] = len;
2135         }
2136
2137         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2138                                sshdr, timeout, retries, NULL);
2139         kfree(real_buffer);
2140         return ret;
2141 }
2142 EXPORT_SYMBOL_GPL(scsi_mode_select);
2143
2144 /**
2145  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2146  *      @sdev:  SCSI device to be queried
2147  *      @dbd:   set to prevent mode sense from returning block descriptors
2148  *      @modepage: mode page being requested
2149  *      @buffer: request buffer (may not be smaller than eight bytes)
2150  *      @len:   length of request buffer.
2151  *      @timeout: command timeout
2152  *      @retries: number of retries before failing
2153  *      @data: returns a structure abstracting the mode header data
2154  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2155  *              must be SCSI_SENSE_BUFFERSIZE big.
2156  *
2157  *      Returns zero if successful, or a negative error number on failure
2158  */
2159 int
2160 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2161                   unsigned char *buffer, int len, int timeout, int retries,
2162                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2163 {
2164         unsigned char cmd[12];
2165         int use_10_for_ms;
2166         int header_length;
2167         int result, retry_count = retries;
2168         struct scsi_sense_hdr my_sshdr;
2169
2170         memset(data, 0, sizeof(*data));
2171         memset(&cmd[0], 0, 12);
2172
2173         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2174         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2175         cmd[2] = modepage;
2176
2177         /* caller might not be interested in sense, but we need it */
2178         if (!sshdr)
2179                 sshdr = &my_sshdr;
2180
2181  retry:
2182         use_10_for_ms = sdev->use_10_for_ms || len > 255;
2183
2184         if (use_10_for_ms) {
2185                 if (len < 8 || len > 65535)
2186                         return -EINVAL;
2187
2188                 cmd[0] = MODE_SENSE_10;
2189                 put_unaligned_be16(len, &cmd[7]);
2190                 header_length = 8;
2191         } else {
2192                 if (len < 4)
2193                         return -EINVAL;
2194
2195                 cmd[0] = MODE_SENSE;
2196                 cmd[4] = len;
2197                 header_length = 4;
2198         }
2199
2200         memset(buffer, 0, len);
2201
2202         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2203                                   sshdr, timeout, retries, NULL);
2204         if (result < 0)
2205                 return result;
2206
2207         /* This code looks awful: what it's doing is making sure an
2208          * ILLEGAL REQUEST sense return identifies the actual command
2209          * byte as the problem.  MODE_SENSE commands can return
2210          * ILLEGAL REQUEST if the code page isn't supported */
2211
2212         if (!scsi_status_is_good(result)) {
2213                 if (scsi_sense_valid(sshdr)) {
2214                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2215                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2216                                 /*
2217                                  * Invalid command operation code: retry using
2218                                  * MODE SENSE(6) if this was a MODE SENSE(10)
2219                                  * request, except if the request mode page is
2220                                  * too large for MODE SENSE single byte
2221                                  * allocation length field.
2222                                  */
2223                                 if (use_10_for_ms) {
2224                                         if (len > 255)
2225                                                 return -EIO;
2226                                         sdev->use_10_for_ms = 0;
2227                                         goto retry;
2228                                 }
2229                         }
2230                         if (scsi_status_is_check_condition(result) &&
2231                             sshdr->sense_key == UNIT_ATTENTION &&
2232                             retry_count) {
2233                                 retry_count--;
2234                                 goto retry;
2235                         }
2236                 }
2237                 return -EIO;
2238         }
2239         if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2240                      (modepage == 6 || modepage == 8))) {
2241                 /* Initio breakage? */
2242                 header_length = 0;
2243                 data->length = 13;
2244                 data->medium_type = 0;
2245                 data->device_specific = 0;
2246                 data->longlba = 0;
2247                 data->block_descriptor_length = 0;
2248         } else if (use_10_for_ms) {
2249                 data->length = get_unaligned_be16(&buffer[0]) + 2;
2250                 data->medium_type = buffer[2];
2251                 data->device_specific = buffer[3];
2252                 data->longlba = buffer[4] & 0x01;
2253                 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2254         } else {
2255                 data->length = buffer[0] + 1;
2256                 data->medium_type = buffer[1];
2257                 data->device_specific = buffer[2];
2258                 data->block_descriptor_length = buffer[3];
2259         }
2260         data->header_length = header_length;
2261
2262         return 0;
2263 }
2264 EXPORT_SYMBOL(scsi_mode_sense);
2265
2266 /**
2267  *      scsi_test_unit_ready - test if unit is ready
2268  *      @sdev:  scsi device to change the state of.
2269  *      @timeout: command timeout
2270  *      @retries: number of retries before failing
2271  *      @sshdr: outpout pointer for decoded sense information.
2272  *
2273  *      Returns zero if unsuccessful or an error if TUR failed.  For
2274  *      removable media, UNIT_ATTENTION sets ->changed flag.
2275  **/
2276 int
2277 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2278                      struct scsi_sense_hdr *sshdr)
2279 {
2280         char cmd[] = {
2281                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2282         };
2283         int result;
2284
2285         /* try to eat the UNIT_ATTENTION if there are enough retries */
2286         do {
2287                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2288                                           timeout, 1, NULL);
2289                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2290                     sshdr->sense_key == UNIT_ATTENTION)
2291                         sdev->changed = 1;
2292         } while (scsi_sense_valid(sshdr) &&
2293                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2294
2295         return result;
2296 }
2297 EXPORT_SYMBOL(scsi_test_unit_ready);
2298
2299 /**
2300  *      scsi_device_set_state - Take the given device through the device state model.
2301  *      @sdev:  scsi device to change the state of.
2302  *      @state: state to change to.
2303  *
2304  *      Returns zero if successful or an error if the requested
2305  *      transition is illegal.
2306  */
2307 int
2308 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2309 {
2310         enum scsi_device_state oldstate = sdev->sdev_state;
2311
2312         if (state == oldstate)
2313                 return 0;
2314
2315         switch (state) {
2316         case SDEV_CREATED:
2317                 switch (oldstate) {
2318                 case SDEV_CREATED_BLOCK:
2319                         break;
2320                 default:
2321                         goto illegal;
2322                 }
2323                 break;
2324
2325         case SDEV_RUNNING:
2326                 switch (oldstate) {
2327                 case SDEV_CREATED:
2328                 case SDEV_OFFLINE:
2329                 case SDEV_TRANSPORT_OFFLINE:
2330                 case SDEV_QUIESCE:
2331                 case SDEV_BLOCK:
2332                         break;
2333                 default:
2334                         goto illegal;
2335                 }
2336                 break;
2337
2338         case SDEV_QUIESCE:
2339                 switch (oldstate) {
2340                 case SDEV_RUNNING:
2341                 case SDEV_OFFLINE:
2342                 case SDEV_TRANSPORT_OFFLINE:
2343                         break;
2344                 default:
2345                         goto illegal;
2346                 }
2347                 break;
2348
2349         case SDEV_OFFLINE:
2350         case SDEV_TRANSPORT_OFFLINE:
2351                 switch (oldstate) {
2352                 case SDEV_CREATED:
2353                 case SDEV_RUNNING:
2354                 case SDEV_QUIESCE:
2355                 case SDEV_BLOCK:
2356                         break;
2357                 default:
2358                         goto illegal;
2359                 }
2360                 break;
2361
2362         case SDEV_BLOCK:
2363                 switch (oldstate) {
2364                 case SDEV_RUNNING:
2365                 case SDEV_CREATED_BLOCK:
2366                 case SDEV_QUIESCE:
2367                 case SDEV_OFFLINE:
2368                         break;
2369                 default:
2370                         goto illegal;
2371                 }
2372                 break;
2373
2374         case SDEV_CREATED_BLOCK:
2375                 switch (oldstate) {
2376                 case SDEV_CREATED:
2377                         break;
2378                 default:
2379                         goto illegal;
2380                 }
2381                 break;
2382
2383         case SDEV_CANCEL:
2384                 switch (oldstate) {
2385                 case SDEV_CREATED:
2386                 case SDEV_RUNNING:
2387                 case SDEV_QUIESCE:
2388                 case SDEV_OFFLINE:
2389                 case SDEV_TRANSPORT_OFFLINE:
2390                         break;
2391                 default:
2392                         goto illegal;
2393                 }
2394                 break;
2395
2396         case SDEV_DEL:
2397                 switch (oldstate) {
2398                 case SDEV_CREATED:
2399                 case SDEV_RUNNING:
2400                 case SDEV_OFFLINE:
2401                 case SDEV_TRANSPORT_OFFLINE:
2402                 case SDEV_CANCEL:
2403                 case SDEV_BLOCK:
2404                 case SDEV_CREATED_BLOCK:
2405                         break;
2406                 default:
2407                         goto illegal;
2408                 }
2409                 break;
2410
2411         }
2412         sdev->offline_already = false;
2413         sdev->sdev_state = state;
2414         return 0;
2415
2416  illegal:
2417         SCSI_LOG_ERROR_RECOVERY(1,
2418                                 sdev_printk(KERN_ERR, sdev,
2419                                             "Illegal state transition %s->%s",
2420                                             scsi_device_state_name(oldstate),
2421                                             scsi_device_state_name(state))
2422                                 );
2423         return -EINVAL;
2424 }
2425 EXPORT_SYMBOL(scsi_device_set_state);
2426
2427 /**
2428  *      scsi_evt_emit - emit a single SCSI device uevent
2429  *      @sdev: associated SCSI device
2430  *      @evt: event to emit
2431  *
2432  *      Send a single uevent (scsi_event) to the associated scsi_device.
2433  */
2434 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2435 {
2436         int idx = 0;
2437         char *envp[3];
2438
2439         switch (evt->evt_type) {
2440         case SDEV_EVT_MEDIA_CHANGE:
2441                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2442                 break;
2443         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2444                 scsi_rescan_device(&sdev->sdev_gendev);
2445                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2446                 break;
2447         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2448                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2449                 break;
2450         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2451                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2452                 break;
2453         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2454                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2455                 break;
2456         case SDEV_EVT_LUN_CHANGE_REPORTED:
2457                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2458                 break;
2459         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2460                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2461                 break;
2462         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2463                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2464                 break;
2465         default:
2466                 /* do nothing */
2467                 break;
2468         }
2469
2470         envp[idx++] = NULL;
2471
2472         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2473 }
2474
2475 /**
2476  *      scsi_evt_thread - send a uevent for each scsi event
2477  *      @work: work struct for scsi_device
2478  *
2479  *      Dispatch queued events to their associated scsi_device kobjects
2480  *      as uevents.
2481  */
2482 void scsi_evt_thread(struct work_struct *work)
2483 {
2484         struct scsi_device *sdev;
2485         enum scsi_device_event evt_type;
2486         LIST_HEAD(event_list);
2487
2488         sdev = container_of(work, struct scsi_device, event_work);
2489
2490         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2491                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2492                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2493
2494         while (1) {
2495                 struct scsi_event *evt;
2496                 struct list_head *this, *tmp;
2497                 unsigned long flags;
2498
2499                 spin_lock_irqsave(&sdev->list_lock, flags);
2500                 list_splice_init(&sdev->event_list, &event_list);
2501                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2502
2503                 if (list_empty(&event_list))
2504                         break;
2505
2506                 list_for_each_safe(this, tmp, &event_list) {
2507                         evt = list_entry(this, struct scsi_event, node);
2508                         list_del(&evt->node);
2509                         scsi_evt_emit(sdev, evt);
2510                         kfree(evt);
2511                 }
2512         }
2513 }
2514
2515 /**
2516  *      sdev_evt_send - send asserted event to uevent thread
2517  *      @sdev: scsi_device event occurred on
2518  *      @evt: event to send
2519  *
2520  *      Assert scsi device event asynchronously.
2521  */
2522 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2523 {
2524         unsigned long flags;
2525
2526 #if 0
2527         /* FIXME: currently this check eliminates all media change events
2528          * for polled devices.  Need to update to discriminate between AN
2529          * and polled events */
2530         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2531                 kfree(evt);
2532                 return;
2533         }
2534 #endif
2535
2536         spin_lock_irqsave(&sdev->list_lock, flags);
2537         list_add_tail(&evt->node, &sdev->event_list);
2538         schedule_work(&sdev->event_work);
2539         spin_unlock_irqrestore(&sdev->list_lock, flags);
2540 }
2541 EXPORT_SYMBOL_GPL(sdev_evt_send);
2542
2543 /**
2544  *      sdev_evt_alloc - allocate a new scsi event
2545  *      @evt_type: type of event to allocate
2546  *      @gfpflags: GFP flags for allocation
2547  *
2548  *      Allocates and returns a new scsi_event.
2549  */
2550 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2551                                   gfp_t gfpflags)
2552 {
2553         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2554         if (!evt)
2555                 return NULL;
2556
2557         evt->evt_type = evt_type;
2558         INIT_LIST_HEAD(&evt->node);
2559
2560         /* evt_type-specific initialization, if any */
2561         switch (evt_type) {
2562         case SDEV_EVT_MEDIA_CHANGE:
2563         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2564         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2565         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2566         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2567         case SDEV_EVT_LUN_CHANGE_REPORTED:
2568         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2569         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2570         default:
2571                 /* do nothing */
2572                 break;
2573         }
2574
2575         return evt;
2576 }
2577 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2578
2579 /**
2580  *      sdev_evt_send_simple - send asserted event to uevent thread
2581  *      @sdev: scsi_device event occurred on
2582  *      @evt_type: type of event to send
2583  *      @gfpflags: GFP flags for allocation
2584  *
2585  *      Assert scsi device event asynchronously, given an event type.
2586  */
2587 void sdev_evt_send_simple(struct scsi_device *sdev,
2588                           enum scsi_device_event evt_type, gfp_t gfpflags)
2589 {
2590         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2591         if (!evt) {
2592                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2593                             evt_type);
2594                 return;
2595         }
2596
2597         sdev_evt_send(sdev, evt);
2598 }
2599 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2600
2601 /**
2602  *      scsi_device_quiesce - Block all commands except power management.
2603  *      @sdev:  scsi device to quiesce.
2604  *
2605  *      This works by trying to transition to the SDEV_QUIESCE state
2606  *      (which must be a legal transition).  When the device is in this
2607  *      state, only power management requests will be accepted, all others will
2608  *      be deferred.
2609  *
2610  *      Must be called with user context, may sleep.
2611  *
2612  *      Returns zero if unsuccessful or an error if not.
2613  */
2614 int
2615 scsi_device_quiesce(struct scsi_device *sdev)
2616 {
2617         struct request_queue *q = sdev->request_queue;
2618         int err;
2619
2620         /*
2621          * It is allowed to call scsi_device_quiesce() multiple times from
2622          * the same context but concurrent scsi_device_quiesce() calls are
2623          * not allowed.
2624          */
2625         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2626
2627         if (sdev->quiesced_by == current)
2628                 return 0;
2629
2630         blk_set_pm_only(q);
2631
2632         blk_mq_freeze_queue(q);
2633         /*
2634          * Ensure that the effect of blk_set_pm_only() will be visible
2635          * for percpu_ref_tryget() callers that occur after the queue
2636          * unfreeze even if the queue was already frozen before this function
2637          * was called. See also https://lwn.net/Articles/573497/.
2638          */
2639         synchronize_rcu();
2640         blk_mq_unfreeze_queue(q);
2641
2642         mutex_lock(&sdev->state_mutex);
2643         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2644         if (err == 0)
2645                 sdev->quiesced_by = current;
2646         else
2647                 blk_clear_pm_only(q);
2648         mutex_unlock(&sdev->state_mutex);
2649
2650         return err;
2651 }
2652 EXPORT_SYMBOL(scsi_device_quiesce);
2653
2654 /**
2655  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2656  *      @sdev:  scsi device to resume.
2657  *
2658  *      Moves the device from quiesced back to running and restarts the
2659  *      queues.
2660  *
2661  *      Must be called with user context, may sleep.
2662  */
2663 void scsi_device_resume(struct scsi_device *sdev)
2664 {
2665         /* check if the device state was mutated prior to resume, and if
2666          * so assume the state is being managed elsewhere (for example
2667          * device deleted during suspend)
2668          */
2669         mutex_lock(&sdev->state_mutex);
2670         if (sdev->sdev_state == SDEV_QUIESCE)
2671                 scsi_device_set_state(sdev, SDEV_RUNNING);
2672         if (sdev->quiesced_by) {
2673                 sdev->quiesced_by = NULL;
2674                 blk_clear_pm_only(sdev->request_queue);
2675         }
2676         mutex_unlock(&sdev->state_mutex);
2677 }
2678 EXPORT_SYMBOL(scsi_device_resume);
2679
2680 static void
2681 device_quiesce_fn(struct scsi_device *sdev, void *data)
2682 {
2683         scsi_device_quiesce(sdev);
2684 }
2685
2686 void
2687 scsi_target_quiesce(struct scsi_target *starget)
2688 {
2689         starget_for_each_device(starget, NULL, device_quiesce_fn);
2690 }
2691 EXPORT_SYMBOL(scsi_target_quiesce);
2692
2693 static void
2694 device_resume_fn(struct scsi_device *sdev, void *data)
2695 {
2696         scsi_device_resume(sdev);
2697 }
2698
2699 void
2700 scsi_target_resume(struct scsi_target *starget)
2701 {
2702         starget_for_each_device(starget, NULL, device_resume_fn);
2703 }
2704 EXPORT_SYMBOL(scsi_target_resume);
2705
2706 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2707 {
2708         if (scsi_device_set_state(sdev, SDEV_BLOCK))
2709                 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2710
2711         return 0;
2712 }
2713
2714 void scsi_start_queue(struct scsi_device *sdev)
2715 {
2716         if (cmpxchg(&sdev->queue_stopped, 1, 0))
2717                 blk_mq_unquiesce_queue(sdev->request_queue);
2718 }
2719
2720 static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2721 {
2722         /*
2723          * The atomic variable of ->queue_stopped covers that
2724          * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2725          *
2726          * However, we still need to wait until quiesce is done
2727          * in case that queue has been stopped.
2728          */
2729         if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2730                 if (nowait)
2731                         blk_mq_quiesce_queue_nowait(sdev->request_queue);
2732                 else
2733                         blk_mq_quiesce_queue(sdev->request_queue);
2734         } else {
2735                 if (!nowait)
2736                         blk_mq_wait_quiesce_done(sdev->request_queue);
2737         }
2738 }
2739
2740 /**
2741  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2742  * @sdev: device to block
2743  *
2744  * Pause SCSI command processing on the specified device. Does not sleep.
2745  *
2746  * Returns zero if successful or a negative error code upon failure.
2747  *
2748  * Notes:
2749  * This routine transitions the device to the SDEV_BLOCK state (which must be
2750  * a legal transition). When the device is in this state, command processing
2751  * is paused until the device leaves the SDEV_BLOCK state. See also
2752  * scsi_internal_device_unblock_nowait().
2753  */
2754 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2755 {
2756         int ret = __scsi_internal_device_block_nowait(sdev);
2757
2758         /*
2759          * The device has transitioned to SDEV_BLOCK.  Stop the
2760          * block layer from calling the midlayer with this device's
2761          * request queue.
2762          */
2763         if (!ret)
2764                 scsi_stop_queue(sdev, true);
2765         return ret;
2766 }
2767 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2768
2769 /**
2770  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2771  * @sdev: device to block
2772  *
2773  * Pause SCSI command processing on the specified device and wait until all
2774  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2775  *
2776  * Returns zero if successful or a negative error code upon failure.
2777  *
2778  * Note:
2779  * This routine transitions the device to the SDEV_BLOCK state (which must be
2780  * a legal transition). When the device is in this state, command processing
2781  * is paused until the device leaves the SDEV_BLOCK state. See also
2782  * scsi_internal_device_unblock().
2783  */
2784 static int scsi_internal_device_block(struct scsi_device *sdev)
2785 {
2786         int err;
2787
2788         mutex_lock(&sdev->state_mutex);
2789         err = __scsi_internal_device_block_nowait(sdev);
2790         if (err == 0)
2791                 scsi_stop_queue(sdev, false);
2792         mutex_unlock(&sdev->state_mutex);
2793
2794         return err;
2795 }
2796
2797 /**
2798  * scsi_internal_device_unblock_nowait - resume a device after a block request
2799  * @sdev:       device to resume
2800  * @new_state:  state to set the device to after unblocking
2801  *
2802  * Restart the device queue for a previously suspended SCSI device. Does not
2803  * sleep.
2804  *
2805  * Returns zero if successful or a negative error code upon failure.
2806  *
2807  * Notes:
2808  * This routine transitions the device to the SDEV_RUNNING state or to one of
2809  * the offline states (which must be a legal transition) allowing the midlayer
2810  * to goose the queue for this device.
2811  */
2812 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2813                                         enum scsi_device_state new_state)
2814 {
2815         switch (new_state) {
2816         case SDEV_RUNNING:
2817         case SDEV_TRANSPORT_OFFLINE:
2818                 break;
2819         default:
2820                 return -EINVAL;
2821         }
2822
2823         /*
2824          * Try to transition the scsi device to SDEV_RUNNING or one of the
2825          * offlined states and goose the device queue if successful.
2826          */
2827         switch (sdev->sdev_state) {
2828         case SDEV_BLOCK:
2829         case SDEV_TRANSPORT_OFFLINE:
2830                 sdev->sdev_state = new_state;
2831                 break;
2832         case SDEV_CREATED_BLOCK:
2833                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2834                     new_state == SDEV_OFFLINE)
2835                         sdev->sdev_state = new_state;
2836                 else
2837                         sdev->sdev_state = SDEV_CREATED;
2838                 break;
2839         case SDEV_CANCEL:
2840         case SDEV_OFFLINE:
2841                 break;
2842         default:
2843                 return -EINVAL;
2844         }
2845         scsi_start_queue(sdev);
2846
2847         return 0;
2848 }
2849 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2850
2851 /**
2852  * scsi_internal_device_unblock - resume a device after a block request
2853  * @sdev:       device to resume
2854  * @new_state:  state to set the device to after unblocking
2855  *
2856  * Restart the device queue for a previously suspended SCSI device. May sleep.
2857  *
2858  * Returns zero if successful or a negative error code upon failure.
2859  *
2860  * Notes:
2861  * This routine transitions the device to the SDEV_RUNNING state or to one of
2862  * the offline states (which must be a legal transition) allowing the midlayer
2863  * to goose the queue for this device.
2864  */
2865 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2866                                         enum scsi_device_state new_state)
2867 {
2868         int ret;
2869
2870         mutex_lock(&sdev->state_mutex);
2871         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2872         mutex_unlock(&sdev->state_mutex);
2873
2874         return ret;
2875 }
2876
2877 static void
2878 device_block(struct scsi_device *sdev, void *data)
2879 {
2880         int ret;
2881
2882         ret = scsi_internal_device_block(sdev);
2883
2884         WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2885                   dev_name(&sdev->sdev_gendev), ret);
2886 }
2887
2888 static int
2889 target_block(struct device *dev, void *data)
2890 {
2891         if (scsi_is_target_device(dev))
2892                 starget_for_each_device(to_scsi_target(dev), NULL,
2893                                         device_block);
2894         return 0;
2895 }
2896
2897 void
2898 scsi_target_block(struct device *dev)
2899 {
2900         if (scsi_is_target_device(dev))
2901                 starget_for_each_device(to_scsi_target(dev), NULL,
2902                                         device_block);
2903         else
2904                 device_for_each_child(dev, NULL, target_block);
2905 }
2906 EXPORT_SYMBOL_GPL(scsi_target_block);
2907
2908 static void
2909 device_unblock(struct scsi_device *sdev, void *data)
2910 {
2911         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2912 }
2913
2914 static int
2915 target_unblock(struct device *dev, void *data)
2916 {
2917         if (scsi_is_target_device(dev))
2918                 starget_for_each_device(to_scsi_target(dev), data,
2919                                         device_unblock);
2920         return 0;
2921 }
2922
2923 void
2924 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2925 {
2926         if (scsi_is_target_device(dev))
2927                 starget_for_each_device(to_scsi_target(dev), &new_state,
2928                                         device_unblock);
2929         else
2930                 device_for_each_child(dev, &new_state, target_unblock);
2931 }
2932 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2933
2934 int
2935 scsi_host_block(struct Scsi_Host *shost)
2936 {
2937         struct scsi_device *sdev;
2938         int ret = 0;
2939
2940         /*
2941          * Call scsi_internal_device_block_nowait so we can avoid
2942          * calling synchronize_rcu() for each LUN.
2943          */
2944         shost_for_each_device(sdev, shost) {
2945                 mutex_lock(&sdev->state_mutex);
2946                 ret = scsi_internal_device_block_nowait(sdev);
2947                 mutex_unlock(&sdev->state_mutex);
2948                 if (ret) {
2949                         scsi_device_put(sdev);
2950                         break;
2951                 }
2952         }
2953
2954         /*
2955          * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2956          * calling synchronize_rcu() once is enough.
2957          */
2958         WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2959
2960         if (!ret)
2961                 synchronize_rcu();
2962
2963         return ret;
2964 }
2965 EXPORT_SYMBOL_GPL(scsi_host_block);
2966
2967 int
2968 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2969 {
2970         struct scsi_device *sdev;
2971         int ret = 0;
2972
2973         shost_for_each_device(sdev, shost) {
2974                 ret = scsi_internal_device_unblock(sdev, new_state);
2975                 if (ret) {
2976                         scsi_device_put(sdev);
2977                         break;
2978                 }
2979         }
2980         return ret;
2981 }
2982 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2983
2984 /**
2985  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2986  * @sgl:        scatter-gather list
2987  * @sg_count:   number of segments in sg
2988  * @offset:     offset in bytes into sg, on return offset into the mapped area
2989  * @len:        bytes to map, on return number of bytes mapped
2990  *
2991  * Returns virtual address of the start of the mapped page
2992  */
2993 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2994                           size_t *offset, size_t *len)
2995 {
2996         int i;
2997         size_t sg_len = 0, len_complete = 0;
2998         struct scatterlist *sg;
2999         struct page *page;
3000
3001         WARN_ON(!irqs_disabled());
3002
3003         for_each_sg(sgl, sg, sg_count, i) {
3004                 len_complete = sg_len; /* Complete sg-entries */
3005                 sg_len += sg->length;
3006                 if (sg_len > *offset)
3007                         break;
3008         }
3009
3010         if (unlikely(i == sg_count)) {
3011                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3012                         "elements %d\n",
3013                        __func__, sg_len, *offset, sg_count);
3014                 WARN_ON(1);
3015                 return NULL;
3016         }
3017
3018         /* Offset starting from the beginning of first page in this sg-entry */
3019         *offset = *offset - len_complete + sg->offset;
3020
3021         /* Assumption: contiguous pages can be accessed as "page + i" */
3022         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3023         *offset &= ~PAGE_MASK;
3024
3025         /* Bytes in this sg-entry from *offset to the end of the page */
3026         sg_len = PAGE_SIZE - *offset;
3027         if (*len > sg_len)
3028                 *len = sg_len;
3029
3030         return kmap_atomic(page);
3031 }
3032 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3033
3034 /**
3035  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3036  * @virt:       virtual address to be unmapped
3037  */
3038 void scsi_kunmap_atomic_sg(void *virt)
3039 {
3040         kunmap_atomic(virt);
3041 }
3042 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3043
3044 void sdev_disable_disk_events(struct scsi_device *sdev)
3045 {
3046         atomic_inc(&sdev->disk_events_disable_depth);
3047 }
3048 EXPORT_SYMBOL(sdev_disable_disk_events);
3049
3050 void sdev_enable_disk_events(struct scsi_device *sdev)
3051 {
3052         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3053                 return;
3054         atomic_dec(&sdev->disk_events_disable_depth);
3055 }
3056 EXPORT_SYMBOL(sdev_enable_disk_events);
3057
3058 static unsigned char designator_prio(const unsigned char *d)
3059 {
3060         if (d[1] & 0x30)
3061                 /* not associated with LUN */
3062                 return 0;
3063
3064         if (d[3] == 0)
3065                 /* invalid length */
3066                 return 0;
3067
3068         /*
3069          * Order of preference for lun descriptor:
3070          * - SCSI name string
3071          * - NAA IEEE Registered Extended
3072          * - EUI-64 based 16-byte
3073          * - EUI-64 based 12-byte
3074          * - NAA IEEE Registered
3075          * - NAA IEEE Extended
3076          * - EUI-64 based 8-byte
3077          * - SCSI name string (truncated)
3078          * - T10 Vendor ID
3079          * as longer descriptors reduce the likelyhood
3080          * of identification clashes.
3081          */
3082
3083         switch (d[1] & 0xf) {
3084         case 8:
3085                 /* SCSI name string, variable-length UTF-8 */
3086                 return 9;
3087         case 3:
3088                 switch (d[4] >> 4) {
3089                 case 6:
3090                         /* NAA registered extended */
3091                         return 8;
3092                 case 5:
3093                         /* NAA registered */
3094                         return 5;
3095                 case 4:
3096                         /* NAA extended */
3097                         return 4;
3098                 case 3:
3099                         /* NAA locally assigned */
3100                         return 1;
3101                 default:
3102                         break;
3103                 }
3104                 break;
3105         case 2:
3106                 switch (d[3]) {
3107                 case 16:
3108                         /* EUI64-based, 16 byte */
3109                         return 7;
3110                 case 12:
3111                         /* EUI64-based, 12 byte */
3112                         return 6;
3113                 case 8:
3114                         /* EUI64-based, 8 byte */
3115                         return 3;
3116                 default:
3117                         break;
3118                 }
3119                 break;
3120         case 1:
3121                 /* T10 vendor ID */
3122                 return 1;
3123         default:
3124                 break;
3125         }
3126
3127         return 0;
3128 }
3129
3130 /**
3131  * scsi_vpd_lun_id - return a unique device identification
3132  * @sdev: SCSI device
3133  * @id:   buffer for the identification
3134  * @id_len:  length of the buffer
3135  *
3136  * Copies a unique device identification into @id based
3137  * on the information in the VPD page 0x83 of the device.
3138  * The string will be formatted as a SCSI name string.
3139  *
3140  * Returns the length of the identification or error on failure.
3141  * If the identifier is longer than the supplied buffer the actual
3142  * identifier length is returned and the buffer is not zero-padded.
3143  */
3144 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3145 {
3146         u8 cur_id_prio = 0;
3147         u8 cur_id_size = 0;
3148         const unsigned char *d, *cur_id_str;
3149         const struct scsi_vpd *vpd_pg83;
3150         int id_size = -EINVAL;
3151
3152         rcu_read_lock();
3153         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3154         if (!vpd_pg83) {
3155                 rcu_read_unlock();
3156                 return -ENXIO;
3157         }
3158
3159         /* The id string must be at least 20 bytes + terminating NULL byte */
3160         if (id_len < 21) {
3161                 rcu_read_unlock();
3162                 return -EINVAL;
3163         }
3164
3165         memset(id, 0, id_len);
3166         for (d = vpd_pg83->data + 4;
3167              d < vpd_pg83->data + vpd_pg83->len;
3168              d += d[3] + 4) {
3169                 u8 prio = designator_prio(d);
3170
3171                 if (prio == 0 || cur_id_prio > prio)
3172                         continue;
3173
3174                 switch (d[1] & 0xf) {
3175                 case 0x1:
3176                         /* T10 Vendor ID */
3177                         if (cur_id_size > d[3])
3178                                 break;
3179                         cur_id_prio = prio;
3180                         cur_id_size = d[3];
3181                         if (cur_id_size + 4 > id_len)
3182                                 cur_id_size = id_len - 4;
3183                         cur_id_str = d + 4;
3184                         id_size = snprintf(id, id_len, "t10.%*pE",
3185                                            cur_id_size, cur_id_str);
3186                         break;
3187                 case 0x2:
3188                         /* EUI-64 */
3189                         cur_id_prio = prio;
3190                         cur_id_size = d[3];
3191                         cur_id_str = d + 4;
3192                         switch (cur_id_size) {
3193                         case 8:
3194                                 id_size = snprintf(id, id_len,
3195                                                    "eui.%8phN",
3196                                                    cur_id_str);
3197                                 break;
3198                         case 12:
3199                                 id_size = snprintf(id, id_len,
3200                                                    "eui.%12phN",
3201                                                    cur_id_str);
3202                                 break;
3203                         case 16:
3204                                 id_size = snprintf(id, id_len,
3205                                                    "eui.%16phN",
3206                                                    cur_id_str);
3207                                 break;
3208                         default:
3209                                 break;
3210                         }
3211                         break;
3212                 case 0x3:
3213                         /* NAA */
3214                         cur_id_prio = prio;
3215                         cur_id_size = d[3];
3216                         cur_id_str = d + 4;
3217                         switch (cur_id_size) {
3218                         case 8:
3219                                 id_size = snprintf(id, id_len,
3220                                                    "naa.%8phN",
3221                                                    cur_id_str);
3222                                 break;
3223                         case 16:
3224                                 id_size = snprintf(id, id_len,
3225                                                    "naa.%16phN",
3226                                                    cur_id_str);
3227                                 break;
3228                         default:
3229                                 break;
3230                         }
3231                         break;
3232                 case 0x8:
3233                         /* SCSI name string */
3234                         if (cur_id_size > d[3])
3235                                 break;
3236                         /* Prefer others for truncated descriptor */
3237                         if (d[3] > id_len) {
3238                                 prio = 2;
3239                                 if (cur_id_prio > prio)
3240                                         break;
3241                         }
3242                         cur_id_prio = prio;
3243                         cur_id_size = id_size = d[3];
3244                         cur_id_str = d + 4;
3245                         if (cur_id_size >= id_len)
3246                                 cur_id_size = id_len - 1;
3247                         memcpy(id, cur_id_str, cur_id_size);
3248                         break;
3249                 default:
3250                         break;
3251                 }
3252         }
3253         rcu_read_unlock();
3254
3255         return id_size;
3256 }
3257 EXPORT_SYMBOL(scsi_vpd_lun_id);
3258
3259 /*
3260  * scsi_vpd_tpg_id - return a target port group identifier
3261  * @sdev: SCSI device
3262  *
3263  * Returns the Target Port Group identifier from the information
3264  * froom VPD page 0x83 of the device.
3265  *
3266  * Returns the identifier or error on failure.
3267  */
3268 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3269 {
3270         const unsigned char *d;
3271         const struct scsi_vpd *vpd_pg83;
3272         int group_id = -EAGAIN, rel_port = -1;
3273
3274         rcu_read_lock();
3275         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3276         if (!vpd_pg83) {
3277                 rcu_read_unlock();
3278                 return -ENXIO;
3279         }
3280
3281         d = vpd_pg83->data + 4;
3282         while (d < vpd_pg83->data + vpd_pg83->len) {
3283                 switch (d[1] & 0xf) {
3284                 case 0x4:
3285                         /* Relative target port */
3286                         rel_port = get_unaligned_be16(&d[6]);
3287                         break;
3288                 case 0x5:
3289                         /* Target port group */
3290                         group_id = get_unaligned_be16(&d[6]);
3291                         break;
3292                 default:
3293                         break;
3294                 }
3295                 d += d[3] + 4;
3296         }
3297         rcu_read_unlock();
3298
3299         if (group_id >= 0 && rel_id && rel_port != -1)
3300                 *rel_id = rel_port;
3301
3302         return group_id;
3303 }
3304 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3305
3306 /**
3307  * scsi_build_sense - build sense data for a command
3308  * @scmd:       scsi command for which the sense should be formatted
3309  * @desc:       Sense format (non-zero == descriptor format,
3310  *              0 == fixed format)
3311  * @key:        Sense key
3312  * @asc:        Additional sense code
3313  * @ascq:       Additional sense code qualifier
3314  *
3315  **/
3316 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3317 {
3318         scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3319         scmd->result = SAM_STAT_CHECK_CONDITION;
3320 }
3321 EXPORT_SYMBOL_GPL(scsi_build_sense);