Merge branches 'pm-cpuidle', 'pm-core' and 'pm-sleep'
[linux-2.6-microblaze.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100         "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104         " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109         "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110         "0 - balanced: high iops mode is enabled &\n\t\t"
111         "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112         "1 - iops: high iops mode is disabled &\n\t\t"
113         "interrupt coalescing is enabled on all queues,\n\t\t"
114         "2 - latency: high iops mode is disabled &\n\t\t"
115         "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116         "\t\tdefault - default perf_mode is 'balanced'"
117         );
118
119 static int poll_queues;
120 module_param(poll_queues, int, 0444);
121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
122         "This parameter is effective only if host_tagset_enable=1. &\n\t\t"
123         "when poll_queues are enabled then &\n\t\t"
124         "perf_mode is set to latency mode. &\n\t\t"
125         );
126
127 enum mpt3sas_perf_mode {
128         MPT_PERF_MODE_DEFAULT   = -1,
129         MPT_PERF_MODE_BALANCED  = 0,
130         MPT_PERF_MODE_IOPS      = 1,
131         MPT_PERF_MODE_LATENCY   = 2,
132 };
133
134 static int
135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
136                 u32 ioc_state, int timeout);
137 static int
138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 static void
140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
141
142 /**
143  * mpt3sas_base_check_cmd_timeout - Function
144  *              to check timeout and command termination due
145  *              to Host reset.
146  *
147  * @ioc:        per adapter object.
148  * @status:     Status of issued command.
149  * @mpi_request:mf request pointer.
150  * @sz:         size of buffer.
151  *
152  * Return: 1/0 Reset to be done or Not
153  */
154 u8
155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
156                 u8 status, void *mpi_request, int sz)
157 {
158         u8 issue_reset = 0;
159
160         if (!(status & MPT3_CMD_RESET))
161                 issue_reset = 1;
162
163         ioc_err(ioc, "Command %s\n",
164                 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
165         _debug_dump_mf(mpi_request, sz);
166
167         return issue_reset;
168 }
169
170 /**
171  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
172  * @val: ?
173  * @kp: ?
174  *
175  * Return: ?
176  */
177 static int
178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
179 {
180         int ret = param_set_int(val, kp);
181         struct MPT3SAS_ADAPTER *ioc;
182
183         if (ret)
184                 return ret;
185
186         /* global ioc spinlock to protect controller list on list operations */
187         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
188         spin_lock(&gioc_lock);
189         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
190                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
191         spin_unlock(&gioc_lock);
192         return 0;
193 }
194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
195         param_get_int, &mpt3sas_fwfault_debug, 0644);
196
197 /**
198  * _base_readl_aero - retry readl for max three times.
199  * @addr: MPT Fusion system interface register address
200  *
201  * Retry the readl() for max three times if it gets zero value
202  * while reading the system interface register.
203  */
204 static inline u32
205 _base_readl_aero(const volatile void __iomem *addr)
206 {
207         u32 i = 0, ret_val;
208
209         do {
210                 ret_val = readl(addr);
211                 i++;
212         } while (ret_val == 0 && i < 3);
213
214         return ret_val;
215 }
216
217 static inline u32
218 _base_readl(const volatile void __iomem *addr)
219 {
220         return readl(addr);
221 }
222
223 /**
224  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
225  *                                in BAR0 space.
226  *
227  * @ioc: per adapter object
228  * @reply: reply message frame(lower 32bit addr)
229  * @index: System request message index.
230  */
231 static void
232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
233                 u32 index)
234 {
235         /*
236          * 256 is offset within sys register.
237          * 256 offset MPI frame starts. Max MPI frame supported is 32.
238          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
239          */
240         u16 cmd_credit = ioc->facts.RequestCredit + 1;
241         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
242                         MPI_FRAME_START_OFFSET +
243                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
244
245         writel(reply, reply_free_iomem);
246 }
247
248 /**
249  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
250  *                              to system/BAR0 region.
251  *
252  * @dst_iomem: Pointer to the destination location in BAR0 space.
253  * @src: Pointer to the Source data.
254  * @size: Size of data to be copied.
255  */
256 static void
257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
258 {
259         int i;
260         u32 *src_virt_mem = (u32 *)src;
261
262         for (i = 0; i < size/4; i++)
263                 writel((u32)src_virt_mem[i],
264                                 (void __iomem *)dst_iomem + (i * 4));
265 }
266
267 /**
268  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
269  *
270  * @dst_iomem: Pointer to the destination location in BAR0 space.
271  * @src: Pointer to the Source data.
272  * @size: Size of data to be copied.
273  */
274 static void
275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
276 {
277         int i;
278         u32 *src_virt_mem = (u32 *)(src);
279
280         for (i = 0; i < size/4; i++)
281                 writel((u32)src_virt_mem[i],
282                         (void __iomem *)dst_iomem + (i * 4));
283 }
284
285 /**
286  * _base_get_chain - Calculates and Returns virtual chain address
287  *                       for the provided smid in BAR0 space.
288  *
289  * @ioc: per adapter object
290  * @smid: system request message index
291  * @sge_chain_count: Scatter gather chain count.
292  *
293  * Return: the chain address.
294  */
295 static inline void __iomem*
296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
297                 u8 sge_chain_count)
298 {
299         void __iomem *base_chain, *chain_virt;
300         u16 cmd_credit = ioc->facts.RequestCredit + 1;
301
302         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
303                 (cmd_credit * ioc->request_sz) +
304                 REPLY_FREE_POOL_SIZE;
305         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
306                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
307         return chain_virt;
308 }
309
310 /**
311  * _base_get_chain_phys - Calculates and Returns physical address
312  *                      in BAR0 for scatter gather chains, for
313  *                      the provided smid.
314  *
315  * @ioc: per adapter object
316  * @smid: system request message index
317  * @sge_chain_count: Scatter gather chain count.
318  *
319  * Return: Physical chain address.
320  */
321 static inline phys_addr_t
322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
323                 u8 sge_chain_count)
324 {
325         phys_addr_t base_chain_phys, chain_phys;
326         u16 cmd_credit = ioc->facts.RequestCredit + 1;
327
328         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
329                 (cmd_credit * ioc->request_sz) +
330                 REPLY_FREE_POOL_SIZE;
331         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
332                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
333         return chain_phys;
334 }
335
336 /**
337  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
338  *                      buffer address for the provided smid.
339  *                      (Each smid can have 64K starts from 17024)
340  *
341  * @ioc: per adapter object
342  * @smid: system request message index
343  *
344  * Return: Pointer to buffer location in BAR0.
345  */
346
347 static void __iomem *
348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
349 {
350         u16 cmd_credit = ioc->facts.RequestCredit + 1;
351         // Added extra 1 to reach end of chain.
352         void __iomem *chain_end = _base_get_chain(ioc,
353                         cmd_credit + 1,
354                         ioc->facts.MaxChainDepth);
355         return chain_end + (smid * 64 * 1024);
356 }
357
358 /**
359  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
360  *              Host buffer Physical address for the provided smid.
361  *              (Each smid can have 64K starts from 17024)
362  *
363  * @ioc: per adapter object
364  * @smid: system request message index
365  *
366  * Return: Pointer to buffer location in BAR0.
367  */
368 static phys_addr_t
369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
370 {
371         u16 cmd_credit = ioc->facts.RequestCredit + 1;
372         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
373                         cmd_credit + 1,
374                         ioc->facts.MaxChainDepth);
375         return chain_end_phys + (smid * 64 * 1024);
376 }
377
378 /**
379  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
380  *                      lookup list and Provides chain_buffer
381  *                      address for the matching dma address.
382  *                      (Each smid can have 64K starts from 17024)
383  *
384  * @ioc: per adapter object
385  * @chain_buffer_dma: Chain buffer dma address.
386  *
387  * Return: Pointer to chain buffer. Or Null on Failure.
388  */
389 static void *
390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
391                 dma_addr_t chain_buffer_dma)
392 {
393         u16 index, j;
394         struct chain_tracker *ct;
395
396         for (index = 0; index < ioc->scsiio_depth; index++) {
397                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
398                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
399                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
400                                 return ct->chain_buffer;
401                 }
402         }
403         ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
404         return NULL;
405 }
406
407 /**
408  * _clone_sg_entries -  MPI EP's scsiio and config requests
409  *                      are handled here. Base function for
410  *                      double buffering, before submitting
411  *                      the requests.
412  *
413  * @ioc: per adapter object.
414  * @mpi_request: mf request pointer.
415  * @smid: system request message index.
416  */
417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
418                 void *mpi_request, u16 smid)
419 {
420         Mpi2SGESimple32_t *sgel, *sgel_next;
421         u32  sgl_flags, sge_chain_count = 0;
422         bool is_write = false;
423         u16 i = 0;
424         void __iomem *buffer_iomem;
425         phys_addr_t buffer_iomem_phys;
426         void __iomem *buff_ptr;
427         phys_addr_t buff_ptr_phys;
428         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
429         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
430         phys_addr_t dst_addr_phys;
431         MPI2RequestHeader_t *request_hdr;
432         struct scsi_cmnd *scmd;
433         struct scatterlist *sg_scmd = NULL;
434         int is_scsiio_req = 0;
435
436         request_hdr = (MPI2RequestHeader_t *) mpi_request;
437
438         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
439                 Mpi25SCSIIORequest_t *scsiio_request =
440                         (Mpi25SCSIIORequest_t *)mpi_request;
441                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
442                 is_scsiio_req = 1;
443         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
444                 Mpi2ConfigRequest_t  *config_req =
445                         (Mpi2ConfigRequest_t *)mpi_request;
446                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
447         } else
448                 return;
449
450         /* From smid we can get scsi_cmd, once we have sg_scmd,
451          * we just need to get sg_virt and sg_next to get virtual
452          * address associated with sgel->Address.
453          */
454
455         if (is_scsiio_req) {
456                 /* Get scsi_cmd using smid */
457                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
458                 if (scmd == NULL) {
459                         ioc_err(ioc, "scmd is NULL\n");
460                         return;
461                 }
462
463                 /* Get sg_scmd from scmd provided */
464                 sg_scmd = scsi_sglist(scmd);
465         }
466
467         /*
468          * 0 - 255      System register
469          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
470          * 4352 - 4864  Reply_free pool (512 byte is reserved
471          *              considering maxCredit 32. Reply need extra
472          *              room, for mCPU case kept four times of
473          *              maxCredit).
474          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
475          *              128 byte size = 12288)
476          * 17152 - x    Host buffer mapped with smid.
477          *              (Each smid can have 64K Max IO.)
478          * BAR0+Last 1K MSIX Addr and Data
479          * Total size in use 2113664 bytes of 4MB BAR0
480          */
481
482         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
483         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
484
485         buff_ptr = buffer_iomem;
486         buff_ptr_phys = buffer_iomem_phys;
487         WARN_ON(buff_ptr_phys > U32_MAX);
488
489         if (le32_to_cpu(sgel->FlagsLength) &
490                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
491                 is_write = true;
492
493         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
494
495                 sgl_flags =
496                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
497
498                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
499                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
500                         /*
501                          * Helper function which on passing
502                          * chain_buffer_dma returns chain_buffer. Get
503                          * the virtual address for sgel->Address
504                          */
505                         sgel_next =
506                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
507                                                 le32_to_cpu(sgel->Address));
508                         if (sgel_next == NULL)
509                                 return;
510                         /*
511                          * This is coping 128 byte chain
512                          * frame (not a host buffer)
513                          */
514                         dst_chain_addr[sge_chain_count] =
515                                 _base_get_chain(ioc,
516                                         smid, sge_chain_count);
517                         src_chain_addr[sge_chain_count] =
518                                                 (void *) sgel_next;
519                         dst_addr_phys = _base_get_chain_phys(ioc,
520                                                 smid, sge_chain_count);
521                         WARN_ON(dst_addr_phys > U32_MAX);
522                         sgel->Address =
523                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
524                         sgel = sgel_next;
525                         sge_chain_count++;
526                         break;
527                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
528                         if (is_write) {
529                                 if (is_scsiio_req) {
530                                         _base_clone_to_sys_mem(buff_ptr,
531                                             sg_virt(sg_scmd),
532                                             (le32_to_cpu(sgel->FlagsLength) &
533                                             0x00ffffff));
534                                         /*
535                                          * FIXME: this relies on a a zero
536                                          * PCI mem_offset.
537                                          */
538                                         sgel->Address =
539                                             cpu_to_le32((u32)buff_ptr_phys);
540                                 } else {
541                                         _base_clone_to_sys_mem(buff_ptr,
542                                             ioc->config_vaddr,
543                                             (le32_to_cpu(sgel->FlagsLength) &
544                                             0x00ffffff));
545                                         sgel->Address =
546                                             cpu_to_le32((u32)buff_ptr_phys);
547                                 }
548                         }
549                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
550                             0x00ffffff);
551                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
552                             0x00ffffff);
553                         if ((le32_to_cpu(sgel->FlagsLength) &
554                             (MPI2_SGE_FLAGS_END_OF_BUFFER
555                                         << MPI2_SGE_FLAGS_SHIFT)))
556                                 goto eob_clone_chain;
557                         else {
558                                 /*
559                                  * Every single element in MPT will have
560                                  * associated sg_next. Better to sanity that
561                                  * sg_next is not NULL, but it will be a bug
562                                  * if it is null.
563                                  */
564                                 if (is_scsiio_req) {
565                                         sg_scmd = sg_next(sg_scmd);
566                                         if (sg_scmd)
567                                                 sgel++;
568                                         else
569                                                 goto eob_clone_chain;
570                                 }
571                         }
572                         break;
573                 }
574         }
575
576 eob_clone_chain:
577         for (i = 0; i < sge_chain_count; i++) {
578                 if (is_scsiio_req)
579                         _base_clone_to_sys_mem(dst_chain_addr[i],
580                                 src_chain_addr[i], ioc->request_sz);
581         }
582 }
583
584 /**
585  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
586  * @arg: input argument, used to derive ioc
587  *
588  * Return:
589  * 0 if controller is removed from pci subsystem.
590  * -1 for other case.
591  */
592 static int mpt3sas_remove_dead_ioc_func(void *arg)
593 {
594         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
595         struct pci_dev *pdev;
596
597         if (!ioc)
598                 return -1;
599
600         pdev = ioc->pdev;
601         if (!pdev)
602                 return -1;
603         pci_stop_and_remove_bus_device_locked(pdev);
604         return 0;
605 }
606
607 /**
608  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
609  * @ioc: Per Adapter Object
610  *
611  * Return: nothing.
612  */
613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
614 {
615         Mpi26IoUnitControlRequest_t *mpi_request;
616         Mpi26IoUnitControlReply_t *mpi_reply;
617         u16 smid;
618         ktime_t current_time;
619         u64 TimeStamp = 0;
620         u8 issue_reset = 0;
621
622         mutex_lock(&ioc->scsih_cmds.mutex);
623         if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
624                 ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
625                 goto out;
626         }
627         ioc->scsih_cmds.status = MPT3_CMD_PENDING;
628         smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
629         if (!smid) {
630                 ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
631                 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
632                 goto out;
633         }
634         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
635         ioc->scsih_cmds.smid = smid;
636         memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
637         mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
638         mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
639         mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
640         current_time = ktime_get_real();
641         TimeStamp = ktime_to_ms(current_time);
642         mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
643         mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
644         init_completion(&ioc->scsih_cmds.done);
645         ioc->put_smid_default(ioc, smid);
646         dinitprintk(ioc, ioc_info(ioc,
647             "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
648             TimeStamp));
649         wait_for_completion_timeout(&ioc->scsih_cmds.done,
650                 MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
651         if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
652                 mpt3sas_check_cmd_timeout(ioc,
653                     ioc->scsih_cmds.status, mpi_request,
654                     sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
655                 goto issue_host_reset;
656         }
657         if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
658                 mpi_reply = ioc->scsih_cmds.reply;
659                 dinitprintk(ioc, ioc_info(ioc,
660                     "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
661                     le16_to_cpu(mpi_reply->IOCStatus),
662                     le32_to_cpu(mpi_reply->IOCLogInfo)));
663         }
664 issue_host_reset:
665         if (issue_reset)
666                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
667         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
668 out:
669         mutex_unlock(&ioc->scsih_cmds.mutex);
670 }
671
672 /**
673  * _base_fault_reset_work - workq handling ioc fault conditions
674  * @work: input argument, used to derive ioc
675  *
676  * Context: sleep.
677  */
678 static void
679 _base_fault_reset_work(struct work_struct *work)
680 {
681         struct MPT3SAS_ADAPTER *ioc =
682             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
683         unsigned long    flags;
684         u32 doorbell;
685         int rc;
686         struct task_struct *p;
687
688
689         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
690         if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
691                         ioc->pci_error_recovery)
692                 goto rearm_timer;
693         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
694
695         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
696         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
697                 ioc_err(ioc, "SAS host is non-operational !!!!\n");
698
699                 /* It may be possible that EEH recovery can resolve some of
700                  * pci bus failure issues rather removing the dead ioc function
701                  * by considering controller is in a non-operational state. So
702                  * here priority is given to the EEH recovery. If it doesn't
703                  * not resolve this issue, mpt3sas driver will consider this
704                  * controller to non-operational state and remove the dead ioc
705                  * function.
706                  */
707                 if (ioc->non_operational_loop++ < 5) {
708                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
709                                                          flags);
710                         goto rearm_timer;
711                 }
712
713                 /*
714                  * Call _scsih_flush_pending_cmds callback so that we flush all
715                  * pending commands back to OS. This call is required to avoid
716                  * deadlock at block layer. Dead IOC will fail to do diag reset,
717                  * and this call is safe since dead ioc will never return any
718                  * command back from HW.
719                  */
720                 mpt3sas_base_pause_mq_polling(ioc);
721                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
722                 /*
723                  * Set remove_host flag early since kernel thread will
724                  * take some time to execute.
725                  */
726                 ioc->remove_host = 1;
727                 /*Remove the Dead Host */
728                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
729                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
730                 if (IS_ERR(p))
731                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
732                                 __func__);
733                 else
734                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
735                                 __func__);
736                 return; /* don't rearm timer */
737         }
738
739         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
740                 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
741                     ioc->manu_pg11.CoreDumpTOSec :
742                     MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
743
744                 timeout /= (FAULT_POLLING_INTERVAL/1000);
745
746                 if (ioc->ioc_coredump_loop == 0) {
747                         mpt3sas_print_coredump_info(ioc,
748                             doorbell & MPI2_DOORBELL_DATA_MASK);
749                         /* do not accept any IOs and disable the interrupts */
750                         spin_lock_irqsave(
751                             &ioc->ioc_reset_in_progress_lock, flags);
752                         ioc->shost_recovery = 1;
753                         spin_unlock_irqrestore(
754                             &ioc->ioc_reset_in_progress_lock, flags);
755                         mpt3sas_base_mask_interrupts(ioc);
756                         mpt3sas_base_pause_mq_polling(ioc);
757                         _base_clear_outstanding_commands(ioc);
758                 }
759
760                 ioc_info(ioc, "%s: CoreDump loop %d.",
761                     __func__, ioc->ioc_coredump_loop);
762
763                 /* Wait until CoreDump completes or times out */
764                 if (ioc->ioc_coredump_loop++ < timeout) {
765                         spin_lock_irqsave(
766                             &ioc->ioc_reset_in_progress_lock, flags);
767                         goto rearm_timer;
768                 }
769         }
770
771         if (ioc->ioc_coredump_loop) {
772                 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
773                         ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
774                             __func__, ioc->ioc_coredump_loop);
775                 else
776                         ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
777                             __func__, ioc->ioc_coredump_loop);
778                 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
779         }
780         ioc->non_operational_loop = 0;
781         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
782                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
783                 ioc_warn(ioc, "%s: hard reset: %s\n",
784                          __func__, rc == 0 ? "success" : "failed");
785                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
786                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
787                         mpt3sas_print_fault_code(ioc, doorbell &
788                             MPI2_DOORBELL_DATA_MASK);
789                 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
790                     MPI2_IOC_STATE_COREDUMP)
791                         mpt3sas_print_coredump_info(ioc, doorbell &
792                             MPI2_DOORBELL_DATA_MASK);
793                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
794                     MPI2_IOC_STATE_OPERATIONAL)
795                         return; /* don't rearm timer */
796         }
797         ioc->ioc_coredump_loop = 0;
798         if (ioc->time_sync_interval &&
799             ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
800                 ioc->timestamp_update_count = 0;
801                 _base_sync_drv_fw_timestamp(ioc);
802         }
803         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
804  rearm_timer:
805         if (ioc->fault_reset_work_q)
806                 queue_delayed_work(ioc->fault_reset_work_q,
807                     &ioc->fault_reset_work,
808                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
809         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
810 }
811
812 /**
813  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
814  * @ioc: per adapter object
815  *
816  * Context: sleep.
817  */
818 void
819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
820 {
821         unsigned long    flags;
822
823         if (ioc->fault_reset_work_q)
824                 return;
825
826         ioc->timestamp_update_count = 0;
827         /* initialize fault polling */
828
829         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
830         snprintf(ioc->fault_reset_work_q_name,
831             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
832             ioc->driver_name, ioc->id);
833         ioc->fault_reset_work_q =
834                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
835         if (!ioc->fault_reset_work_q) {
836                 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
837                 return;
838         }
839         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
840         if (ioc->fault_reset_work_q)
841                 queue_delayed_work(ioc->fault_reset_work_q,
842                     &ioc->fault_reset_work,
843                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
844         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
845 }
846
847 /**
848  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
849  * @ioc: per adapter object
850  *
851  * Context: sleep.
852  */
853 void
854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
855 {
856         unsigned long flags;
857         struct workqueue_struct *wq;
858
859         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
860         wq = ioc->fault_reset_work_q;
861         ioc->fault_reset_work_q = NULL;
862         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
863         if (wq) {
864                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
865                         flush_workqueue(wq);
866                 destroy_workqueue(wq);
867         }
868 }
869
870 /**
871  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
872  * @ioc: per adapter object
873  * @fault_code: fault code
874  */
875 void
876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
877 {
878         ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
879 }
880
881 /**
882  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
883  * @ioc: per adapter object
884  * @fault_code: fault code
885  *
886  * Return: nothing.
887  */
888 void
889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
890 {
891         ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
892 }
893
894 /**
895  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
896  * completes or times out
897  * @ioc: per adapter object
898  * @caller: caller function name
899  *
900  * Return: 0 for success, non-zero for failure.
901  */
902 int
903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
904                 const char *caller)
905 {
906         u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
907                         ioc->manu_pg11.CoreDumpTOSec :
908                         MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
909
910         int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
911                                         timeout);
912
913         if (ioc_state)
914                 ioc_err(ioc,
915                     "%s: CoreDump timed out. (ioc_state=0x%x)\n",
916                     caller, ioc_state);
917         else
918                 ioc_info(ioc,
919                     "%s: CoreDump completed. (ioc_state=0x%x)\n",
920                     caller, ioc_state);
921
922         return ioc_state;
923 }
924
925 /**
926  * mpt3sas_halt_firmware - halt's mpt controller firmware
927  * @ioc: per adapter object
928  *
929  * For debugging timeout related issues.  Writing 0xCOFFEE00
930  * to the doorbell register will halt controller firmware. With
931  * the purpose to stop both driver and firmware, the enduser can
932  * obtain a ring buffer from controller UART.
933  */
934 void
935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
936 {
937         u32 doorbell;
938
939         if (!ioc->fwfault_debug)
940                 return;
941
942         dump_stack();
943
944         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
945         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
946                 mpt3sas_print_fault_code(ioc, doorbell &
947                     MPI2_DOORBELL_DATA_MASK);
948         } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
949             MPI2_IOC_STATE_COREDUMP) {
950                 mpt3sas_print_coredump_info(ioc, doorbell &
951                     MPI2_DOORBELL_DATA_MASK);
952         } else {
953                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
954                 ioc_err(ioc, "Firmware is halted due to command timeout\n");
955         }
956
957         if (ioc->fwfault_debug == 2)
958                 for (;;)
959                         ;
960         else
961                 panic("panic in %s\n", __func__);
962 }
963
964 /**
965  * _base_sas_ioc_info - verbose translation of the ioc status
966  * @ioc: per adapter object
967  * @mpi_reply: reply mf payload returned from firmware
968  * @request_hdr: request mf
969  */
970 static void
971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
972         MPI2RequestHeader_t *request_hdr)
973 {
974         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
975             MPI2_IOCSTATUS_MASK;
976         char *desc = NULL;
977         u16 frame_sz;
978         char *func_str = NULL;
979
980         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
981         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
982             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
983             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
984                 return;
985
986         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
987                 return;
988         /*
989          * Older Firmware version doesn't support driver trigger pages.
990          * So, skip displaying 'config invalid type' type
991          * of error message.
992          */
993         if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
994                 Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
995
996                 if ((rqst->ExtPageType ==
997                     MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
998                     !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
999                         return;
1000                 }
1001         }
1002
1003         switch (ioc_status) {
1004
1005 /****************************************************************************
1006 *  Common IOCStatus values for all replies
1007 ****************************************************************************/
1008
1009         case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010                 desc = "invalid function";
1011                 break;
1012         case MPI2_IOCSTATUS_BUSY:
1013                 desc = "busy";
1014                 break;
1015         case MPI2_IOCSTATUS_INVALID_SGL:
1016                 desc = "invalid sgl";
1017                 break;
1018         case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019                 desc = "internal error";
1020                 break;
1021         case MPI2_IOCSTATUS_INVALID_VPID:
1022                 desc = "invalid vpid";
1023                 break;
1024         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025                 desc = "insufficient resources";
1026                 break;
1027         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028                 desc = "insufficient power";
1029                 break;
1030         case MPI2_IOCSTATUS_INVALID_FIELD:
1031                 desc = "invalid field";
1032                 break;
1033         case MPI2_IOCSTATUS_INVALID_STATE:
1034                 desc = "invalid state";
1035                 break;
1036         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037                 desc = "op state not supported";
1038                 break;
1039
1040 /****************************************************************************
1041 *  Config IOCStatus values
1042 ****************************************************************************/
1043
1044         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045                 desc = "config invalid action";
1046                 break;
1047         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048                 desc = "config invalid type";
1049                 break;
1050         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051                 desc = "config invalid page";
1052                 break;
1053         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054                 desc = "config invalid data";
1055                 break;
1056         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057                 desc = "config no defaults";
1058                 break;
1059         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060                 desc = "config can't commit";
1061                 break;
1062
1063 /****************************************************************************
1064 *  SCSI IO Reply
1065 ****************************************************************************/
1066
1067         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079                 break;
1080
1081 /****************************************************************************
1082 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1083 ****************************************************************************/
1084
1085         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086                 desc = "eedp guard error";
1087                 break;
1088         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089                 desc = "eedp ref tag error";
1090                 break;
1091         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092                 desc = "eedp app tag error";
1093                 break;
1094
1095 /****************************************************************************
1096 *  SCSI Target values
1097 ****************************************************************************/
1098
1099         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100                 desc = "target invalid io index";
1101                 break;
1102         case MPI2_IOCSTATUS_TARGET_ABORTED:
1103                 desc = "target aborted";
1104                 break;
1105         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106                 desc = "target no conn retryable";
1107                 break;
1108         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109                 desc = "target no connection";
1110                 break;
1111         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112                 desc = "target xfer count mismatch";
1113                 break;
1114         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115                 desc = "target data offset error";
1116                 break;
1117         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118                 desc = "target too much write data";
1119                 break;
1120         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121                 desc = "target iu too short";
1122                 break;
1123         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124                 desc = "target ack nak timeout";
1125                 break;
1126         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127                 desc = "target nak received";
1128                 break;
1129
1130 /****************************************************************************
1131 *  Serial Attached SCSI values
1132 ****************************************************************************/
1133
1134         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135                 desc = "smp request failed";
1136                 break;
1137         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138                 desc = "smp data overrun";
1139                 break;
1140
1141 /****************************************************************************
1142 *  Diagnostic Buffer Post / Diagnostic Release values
1143 ****************************************************************************/
1144
1145         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146                 desc = "diagnostic released";
1147                 break;
1148         default:
1149                 break;
1150         }
1151
1152         if (!desc)
1153                 return;
1154
1155         switch (request_hdr->Function) {
1156         case MPI2_FUNCTION_CONFIG:
1157                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158                 func_str = "config_page";
1159                 break;
1160         case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162                 func_str = "task_mgmt";
1163                 break;
1164         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166                 func_str = "sas_iounit_ctl";
1167                 break;
1168         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169                 frame_sz = sizeof(Mpi2SepRequest_t);
1170                 func_str = "enclosure";
1171                 break;
1172         case MPI2_FUNCTION_IOC_INIT:
1173                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174                 func_str = "ioc_init";
1175                 break;
1176         case MPI2_FUNCTION_PORT_ENABLE:
1177                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178                 func_str = "port_enable";
1179                 break;
1180         case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182                 func_str = "smp_passthru";
1183                 break;
1184         case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186                     ioc->sge_size;
1187                 func_str = "nvme_encapsulated";
1188                 break;
1189         default:
1190                 frame_sz = 32;
1191                 func_str = "unknown";
1192                 break;
1193         }
1194
1195         ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196                  desc, ioc_status, request_hdr, func_str);
1197
1198         _debug_dump_mf(request_hdr, frame_sz/4);
1199 }
1200
1201 /**
1202  * _base_display_event_data - verbose translation of firmware asyn events
1203  * @ioc: per adapter object
1204  * @mpi_reply: reply mf payload returned from firmware
1205  */
1206 static void
1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208         Mpi2EventNotificationReply_t *mpi_reply)
1209 {
1210         char *desc = NULL;
1211         u16 event;
1212
1213         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214                 return;
1215
1216         event = le16_to_cpu(mpi_reply->Event);
1217
1218         switch (event) {
1219         case MPI2_EVENT_LOG_DATA:
1220                 desc = "Log Data";
1221                 break;
1222         case MPI2_EVENT_STATE_CHANGE:
1223                 desc = "Status Change";
1224                 break;
1225         case MPI2_EVENT_HARD_RESET_RECEIVED:
1226                 desc = "Hard Reset Received";
1227                 break;
1228         case MPI2_EVENT_EVENT_CHANGE:
1229                 desc = "Event Change";
1230                 break;
1231         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232                 desc = "Device Status Change";
1233                 break;
1234         case MPI2_EVENT_IR_OPERATION_STATUS:
1235                 if (!ioc->hide_ir_msg)
1236                         desc = "IR Operation Status";
1237                 break;
1238         case MPI2_EVENT_SAS_DISCOVERY:
1239         {
1240                 Mpi2EventDataSasDiscovery_t *event_data =
1241                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242                 ioc_info(ioc, "Discovery: (%s)",
1243                          event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244                          "start" : "stop");
1245                 if (event_data->DiscoveryStatus)
1246                         pr_cont(" discovery_status(0x%08x)",
1247                             le32_to_cpu(event_data->DiscoveryStatus));
1248                 pr_cont("\n");
1249                 return;
1250         }
1251         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252                 desc = "SAS Broadcast Primitive";
1253                 break;
1254         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255                 desc = "SAS Init Device Status Change";
1256                 break;
1257         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258                 desc = "SAS Init Table Overflow";
1259                 break;
1260         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261                 desc = "SAS Topology Change List";
1262                 break;
1263         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264                 desc = "SAS Enclosure Device Status Change";
1265                 break;
1266         case MPI2_EVENT_IR_VOLUME:
1267                 if (!ioc->hide_ir_msg)
1268                         desc = "IR Volume";
1269                 break;
1270         case MPI2_EVENT_IR_PHYSICAL_DISK:
1271                 if (!ioc->hide_ir_msg)
1272                         desc = "IR Physical Disk";
1273                 break;
1274         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275                 if (!ioc->hide_ir_msg)
1276                         desc = "IR Configuration Change List";
1277                 break;
1278         case MPI2_EVENT_LOG_ENTRY_ADDED:
1279                 if (!ioc->hide_ir_msg)
1280                         desc = "Log Entry Added";
1281                 break;
1282         case MPI2_EVENT_TEMP_THRESHOLD:
1283                 desc = "Temperature Threshold";
1284                 break;
1285         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286                 desc = "Cable Event";
1287                 break;
1288         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289                 desc = "SAS Device Discovery Error";
1290                 break;
1291         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292                 desc = "PCIE Device Status Change";
1293                 break;
1294         case MPI2_EVENT_PCIE_ENUMERATION:
1295         {
1296                 Mpi26EventDataPCIeEnumeration_t *event_data =
1297                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298                 ioc_info(ioc, "PCIE Enumeration: (%s)",
1299                          event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300                          "start" : "stop");
1301                 if (event_data->EnumerationStatus)
1302                         pr_cont("enumeration_status(0x%08x)",
1303                                 le32_to_cpu(event_data->EnumerationStatus));
1304                 pr_cont("\n");
1305                 return;
1306         }
1307         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308                 desc = "PCIE Topology Change List";
1309                 break;
1310         }
1311
1312         if (!desc)
1313                 return;
1314
1315         ioc_info(ioc, "%s\n", desc);
1316 }
1317
1318 /**
1319  * _base_sas_log_info - verbose translation of firmware log info
1320  * @ioc: per adapter object
1321  * @log_info: log info
1322  */
1323 static void
1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1325 {
1326         union loginfo_type {
1327                 u32     loginfo;
1328                 struct {
1329                         u32     subcode:16;
1330                         u32     code:8;
1331                         u32     originator:4;
1332                         u32     bus_type:4;
1333                 } dw;
1334         };
1335         union loginfo_type sas_loginfo;
1336         char *originator_str = NULL;
1337
1338         sas_loginfo.loginfo = log_info;
1339         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340                 return;
1341
1342         /* each nexus loss loginfo */
1343         if (log_info == 0x31170000)
1344                 return;
1345
1346         /* eat the loginfos associated with task aborts */
1347         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348             0x31140000 || log_info == 0x31130000))
1349                 return;
1350
1351         switch (sas_loginfo.dw.originator) {
1352         case 0:
1353                 originator_str = "IOP";
1354                 break;
1355         case 1:
1356                 originator_str = "PL";
1357                 break;
1358         case 2:
1359                 if (!ioc->hide_ir_msg)
1360                         originator_str = "IR";
1361                 else
1362                         originator_str = "WarpDrive";
1363                 break;
1364         }
1365
1366         ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367                  log_info,
1368                  originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369 }
1370
1371 /**
1372  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373  * @ioc: per adapter object
1374  * @smid: system request message index
1375  * @msix_index: MSIX table index supplied by the OS
1376  * @reply: reply message frame (lower 32bit addr)
1377  */
1378 static void
1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380         u32 reply)
1381 {
1382         MPI2DefaultReply_t *mpi_reply;
1383         u16 ioc_status;
1384         u32 loginfo = 0;
1385
1386         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387         if (unlikely(!mpi_reply)) {
1388                 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389                         __FILE__, __LINE__, __func__);
1390                 return;
1391         }
1392         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393
1394         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396                 _base_sas_ioc_info(ioc, mpi_reply,
1397                    mpt3sas_base_get_msg_frame(ioc, smid));
1398         }
1399
1400         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402                 _base_sas_log_info(ioc, loginfo);
1403         }
1404
1405         if (ioc_status || loginfo) {
1406                 ioc_status &= MPI2_IOCSTATUS_MASK;
1407                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408         }
1409 }
1410
1411 /**
1412  * mpt3sas_base_done - base internal command completion routine
1413  * @ioc: per adapter object
1414  * @smid: system request message index
1415  * @msix_index: MSIX table index supplied by the OS
1416  * @reply: reply message frame(lower 32bit addr)
1417  *
1418  * Return:
1419  * 1 meaning mf should be freed from _base_interrupt
1420  * 0 means the mf is freed from this function.
1421  */
1422 u8
1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424         u32 reply)
1425 {
1426         MPI2DefaultReply_t *mpi_reply;
1427
1428         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431
1432         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433                 return 1;
1434
1435         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436         if (mpi_reply) {
1437                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439         }
1440         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441
1442         complete(&ioc->base_cmds.done);
1443         return 1;
1444 }
1445
1446 /**
1447  * _base_async_event - main callback handler for firmware asyn events
1448  * @ioc: per adapter object
1449  * @msix_index: MSIX table index supplied by the OS
1450  * @reply: reply message frame(lower 32bit addr)
1451  *
1452  * Return:
1453  * 1 meaning mf should be freed from _base_interrupt
1454  * 0 means the mf is freed from this function.
1455  */
1456 static u8
1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 {
1459         Mpi2EventNotificationReply_t *mpi_reply;
1460         Mpi2EventAckRequest_t *ack_request;
1461         u16 smid;
1462         struct _event_ack_list *delayed_event_ack;
1463
1464         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465         if (!mpi_reply)
1466                 return 1;
1467         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468                 return 1;
1469
1470         _base_display_event_data(ioc, mpi_reply);
1471
1472         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473                 goto out;
1474         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475         if (!smid) {
1476                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477                                         GFP_ATOMIC);
1478                 if (!delayed_event_ack)
1479                         goto out;
1480                 INIT_LIST_HEAD(&delayed_event_ack->list);
1481                 delayed_event_ack->Event = mpi_reply->Event;
1482                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1483                 list_add_tail(&delayed_event_ack->list,
1484                                 &ioc->delayed_event_ack_list);
1485                 dewtprintk(ioc,
1486                            ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487                                     le16_to_cpu(mpi_reply->Event)));
1488                 goto out;
1489         }
1490
1491         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494         ack_request->Event = mpi_reply->Event;
1495         ack_request->EventContext = mpi_reply->EventContext;
1496         ack_request->VF_ID = 0;  /* TODO */
1497         ack_request->VP_ID = 0;
1498         ioc->put_smid_default(ioc, smid);
1499
1500  out:
1501
1502         /* scsih callback handler */
1503         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504
1505         /* ctl callback handler */
1506         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507
1508         return 1;
1509 }
1510
1511 static struct scsiio_tracker *
1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 {
1514         struct scsi_cmnd *cmd;
1515
1516         if (WARN_ON(!smid) ||
1517             WARN_ON(smid >= ioc->hi_priority_smid))
1518                 return NULL;
1519
1520         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521         if (cmd)
1522                 return scsi_cmd_priv(cmd);
1523
1524         return NULL;
1525 }
1526
1527 /**
1528  * _base_get_cb_idx - obtain the callback index
1529  * @ioc: per adapter object
1530  * @smid: system request message index
1531  *
1532  * Return: callback index.
1533  */
1534 static u8
1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536 {
1537         int i;
1538         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539         u8 cb_idx = 0xFF;
1540
1541         if (smid < ioc->hi_priority_smid) {
1542                 struct scsiio_tracker *st;
1543
1544                 if (smid < ctl_smid) {
1545                         st = _get_st_from_smid(ioc, smid);
1546                         if (st)
1547                                 cb_idx = st->cb_idx;
1548                 } else if (smid == ctl_smid)
1549                         cb_idx = ioc->ctl_cb_idx;
1550         } else if (smid < ioc->internal_smid) {
1551                 i = smid - ioc->hi_priority_smid;
1552                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1553         } else if (smid <= ioc->hba_queue_depth) {
1554                 i = smid - ioc->internal_smid;
1555                 cb_idx = ioc->internal_lookup[i].cb_idx;
1556         }
1557         return cb_idx;
1558 }
1559
1560 /**
1561  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562  *                              when driver is flushing out the IOs.
1563  * @ioc: per adapter object
1564  *
1565  * Pause polling on the mq poll (io uring) queues when driver is flushing
1566  * out the IOs. Otherwise we may see the race condition of completing the same
1567  * IO from two paths.
1568  *
1569  * Returns nothing.
1570  */
1571 void
1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 {
1574         int iopoll_q_count =
1575             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576         int qid;
1577
1578         for (qid = 0; qid < iopoll_q_count; qid++)
1579                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580
1581         /*
1582          * wait for current poll to complete.
1583          */
1584         for (qid = 0; qid < iopoll_q_count; qid++) {
1585                 while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1586                         cpu_relax();
1587                         udelay(500);
1588                 }
1589         }
1590 }
1591
1592 /**
1593  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1594  * @ioc: per adapter object
1595  *
1596  * Returns nothing.
1597  */
1598 void
1599 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1600 {
1601         int iopoll_q_count =
1602             ioc->reply_queue_count - ioc->iopoll_q_start_index;
1603         int qid;
1604
1605         for (qid = 0; qid < iopoll_q_count; qid++)
1606                 atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1607 }
1608
1609 /**
1610  * mpt3sas_base_mask_interrupts - disable interrupts
1611  * @ioc: per adapter object
1612  *
1613  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1614  */
1615 void
1616 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1617 {
1618         u32 him_register;
1619
1620         ioc->mask_interrupts = 1;
1621         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1622         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1623         writel(him_register, &ioc->chip->HostInterruptMask);
1624         ioc->base_readl(&ioc->chip->HostInterruptMask);
1625 }
1626
1627 /**
1628  * mpt3sas_base_unmask_interrupts - enable interrupts
1629  * @ioc: per adapter object
1630  *
1631  * Enabling only Reply Interrupts
1632  */
1633 void
1634 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1635 {
1636         u32 him_register;
1637
1638         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1639         him_register &= ~MPI2_HIM_RIM;
1640         writel(him_register, &ioc->chip->HostInterruptMask);
1641         ioc->mask_interrupts = 0;
1642 }
1643
1644 union reply_descriptor {
1645         u64 word;
1646         struct {
1647                 u32 low;
1648                 u32 high;
1649         } u;
1650 };
1651
1652 static u32 base_mod64(u64 dividend, u32 divisor)
1653 {
1654         u32 remainder;
1655
1656         if (!divisor)
1657                 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1658         remainder = do_div(dividend, divisor);
1659         return remainder;
1660 }
1661
1662 /**
1663  * _base_process_reply_queue - Process reply descriptors from reply
1664  *              descriptor post queue.
1665  * @reply_q: per IRQ's reply queue object.
1666  *
1667  * Return: number of reply descriptors processed from reply
1668  *              descriptor queue.
1669  */
1670 static int
1671 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1672 {
1673         union reply_descriptor rd;
1674         u64 completed_cmds;
1675         u8 request_descript_type;
1676         u16 smid;
1677         u8 cb_idx;
1678         u32 reply;
1679         u8 msix_index = reply_q->msix_index;
1680         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1681         Mpi2ReplyDescriptorsUnion_t *rpf;
1682         u8 rc;
1683
1684         completed_cmds = 0;
1685         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1686                 return completed_cmds;
1687
1688         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1689         request_descript_type = rpf->Default.ReplyFlags
1690              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1691         if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1692                 atomic_dec(&reply_q->busy);
1693                 return completed_cmds;
1694         }
1695
1696         cb_idx = 0xFF;
1697         do {
1698                 rd.word = le64_to_cpu(rpf->Words);
1699                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1700                         goto out;
1701                 reply = 0;
1702                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1703                 if (request_descript_type ==
1704                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1705                     request_descript_type ==
1706                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1707                     request_descript_type ==
1708                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1709                         cb_idx = _base_get_cb_idx(ioc, smid);
1710                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1711                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1712                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1713                                     msix_index, 0);
1714                                 if (rc)
1715                                         mpt3sas_base_free_smid(ioc, smid);
1716                         }
1717                 } else if (request_descript_type ==
1718                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1719                         reply = le32_to_cpu(
1720                             rpf->AddressReply.ReplyFrameAddress);
1721                         if (reply > ioc->reply_dma_max_address ||
1722                             reply < ioc->reply_dma_min_address)
1723                                 reply = 0;
1724                         if (smid) {
1725                                 cb_idx = _base_get_cb_idx(ioc, smid);
1726                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1728                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1729                                             msix_index, reply);
1730                                         if (reply)
1731                                                 _base_display_reply_info(ioc,
1732                                                     smid, msix_index, reply);
1733                                         if (rc)
1734                                                 mpt3sas_base_free_smid(ioc,
1735                                                     smid);
1736                                 }
1737                         } else {
1738                                 _base_async_event(ioc, msix_index, reply);
1739                         }
1740
1741                         /* reply free queue handling */
1742                         if (reply) {
1743                                 ioc->reply_free_host_index =
1744                                     (ioc->reply_free_host_index ==
1745                                     (ioc->reply_free_queue_depth - 1)) ?
1746                                     0 : ioc->reply_free_host_index + 1;
1747                                 ioc->reply_free[ioc->reply_free_host_index] =
1748                                     cpu_to_le32(reply);
1749                                 if (ioc->is_mcpu_endpoint)
1750                                         _base_clone_reply_to_sys_mem(ioc,
1751                                                 reply,
1752                                                 ioc->reply_free_host_index);
1753                                 writel(ioc->reply_free_host_index,
1754                                     &ioc->chip->ReplyFreeHostIndex);
1755                         }
1756                 }
1757
1758                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1759                 reply_q->reply_post_host_index =
1760                     (reply_q->reply_post_host_index ==
1761                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1762                     reply_q->reply_post_host_index + 1;
1763                 request_descript_type =
1764                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1765                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1766                 completed_cmds++;
1767                 /* Update the reply post host index after continuously
1768                  * processing the threshold number of Reply Descriptors.
1769                  * So that FW can find enough entries to post the Reply
1770                  * Descriptors in the reply descriptor post queue.
1771                  */
1772                 if (completed_cmds >= ioc->thresh_hold) {
1773                         if (ioc->combined_reply_queue) {
1774                                 writel(reply_q->reply_post_host_index |
1775                                                 ((msix_index  & 7) <<
1776                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1777                                     ioc->replyPostRegisterIndex[msix_index/8]);
1778                         } else {
1779                                 writel(reply_q->reply_post_host_index |
1780                                                 (msix_index <<
1781                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1782                                                 &ioc->chip->ReplyPostHostIndex);
1783                         }
1784                         if (!reply_q->is_iouring_poll_q &&
1785                             !reply_q->irq_poll_scheduled) {
1786                                 reply_q->irq_poll_scheduled = true;
1787                                 irq_poll_sched(&reply_q->irqpoll);
1788                         }
1789                         atomic_dec(&reply_q->busy);
1790                         return completed_cmds;
1791                 }
1792                 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1793                         goto out;
1794                 if (!reply_q->reply_post_host_index)
1795                         rpf = reply_q->reply_post_free;
1796                 else
1797                         rpf++;
1798         } while (1);
1799
1800  out:
1801
1802         if (!completed_cmds) {
1803                 atomic_dec(&reply_q->busy);
1804                 return completed_cmds;
1805         }
1806
1807         if (ioc->is_warpdrive) {
1808                 writel(reply_q->reply_post_host_index,
1809                 ioc->reply_post_host_index[msix_index]);
1810                 atomic_dec(&reply_q->busy);
1811                 return completed_cmds;
1812         }
1813
1814         /* Update Reply Post Host Index.
1815          * For those HBA's which support combined reply queue feature
1816          * 1. Get the correct Supplemental Reply Post Host Index Register.
1817          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1818          *    Index Register address bank i.e replyPostRegisterIndex[],
1819          * 2. Then update this register with new reply host index value
1820          *    in ReplyPostIndex field and the MSIxIndex field with
1821          *    msix_index value reduced to a value between 0 and 7,
1822          *    using a modulo 8 operation. Since each Supplemental Reply Post
1823          *    Host Index Register supports 8 MSI-X vectors.
1824          *
1825          * For other HBA's just update the Reply Post Host Index register with
1826          * new reply host index value in ReplyPostIndex Field and msix_index
1827          * value in MSIxIndex field.
1828          */
1829         if (ioc->combined_reply_queue)
1830                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1831                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1832                         ioc->replyPostRegisterIndex[msix_index/8]);
1833         else
1834                 writel(reply_q->reply_post_host_index | (msix_index <<
1835                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1836                         &ioc->chip->ReplyPostHostIndex);
1837         atomic_dec(&reply_q->busy);
1838         return completed_cmds;
1839 }
1840
1841 /**
1842  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1843  * @shost: Scsi_Host object
1844  * @queue_num: hw ctx queue number
1845  *
1846  * Return number of entries that has been processed from poll queue.
1847  */
1848 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1849 {
1850         struct MPT3SAS_ADAPTER *ioc =
1851             (struct MPT3SAS_ADAPTER *)shost->hostdata;
1852         struct adapter_reply_queue *reply_q;
1853         int num_entries = 0;
1854         int qid = queue_num - ioc->iopoll_q_start_index;
1855
1856         if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1857             !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1858                 return 0;
1859
1860         reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1861
1862         num_entries = _base_process_reply_queue(reply_q);
1863         atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1864
1865         return num_entries;
1866 }
1867
1868 /**
1869  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1870  * @irq: irq number (not used)
1871  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1872  *
1873  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1874  */
1875 static irqreturn_t
1876 _base_interrupt(int irq, void *bus_id)
1877 {
1878         struct adapter_reply_queue *reply_q = bus_id;
1879         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1880
1881         if (ioc->mask_interrupts)
1882                 return IRQ_NONE;
1883         if (reply_q->irq_poll_scheduled)
1884                 return IRQ_HANDLED;
1885         return ((_base_process_reply_queue(reply_q) > 0) ?
1886                         IRQ_HANDLED : IRQ_NONE);
1887 }
1888
1889 /**
1890  * _base_irqpoll - IRQ poll callback handler
1891  * @irqpoll: irq_poll object
1892  * @budget: irq poll weight
1893  *
1894  * Return: number of reply descriptors processed
1895  */
1896 static int
1897 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1898 {
1899         struct adapter_reply_queue *reply_q;
1900         int num_entries = 0;
1901
1902         reply_q = container_of(irqpoll, struct adapter_reply_queue,
1903                         irqpoll);
1904         if (reply_q->irq_line_enable) {
1905                 disable_irq_nosync(reply_q->os_irq);
1906                 reply_q->irq_line_enable = false;
1907         }
1908         num_entries = _base_process_reply_queue(reply_q);
1909         if (num_entries < budget) {
1910                 irq_poll_complete(irqpoll);
1911                 reply_q->irq_poll_scheduled = false;
1912                 reply_q->irq_line_enable = true;
1913                 enable_irq(reply_q->os_irq);
1914                 /*
1915                  * Go for one more round of processing the
1916                  * reply descriptor post queue in case the HBA
1917                  * Firmware has posted some reply descriptors
1918                  * while reenabling the IRQ.
1919                  */
1920                 _base_process_reply_queue(reply_q);
1921         }
1922
1923         return num_entries;
1924 }
1925
1926 /**
1927  * _base_init_irqpolls - initliaze IRQ polls
1928  * @ioc: per adapter object
1929  *
1930  * Return: nothing
1931  */
1932 static void
1933 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1934 {
1935         struct adapter_reply_queue *reply_q, *next;
1936
1937         if (list_empty(&ioc->reply_queue_list))
1938                 return;
1939
1940         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1941                 if (reply_q->is_iouring_poll_q)
1942                         continue;
1943                 irq_poll_init(&reply_q->irqpoll,
1944                         ioc->hba_queue_depth/4, _base_irqpoll);
1945                 reply_q->irq_poll_scheduled = false;
1946                 reply_q->irq_line_enable = true;
1947                 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1948                     reply_q->msix_index);
1949         }
1950 }
1951
1952 /**
1953  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1954  * @ioc: per adapter object
1955  *
1956  * Return: Whether or not MSI/X is enabled.
1957  */
1958 static inline int
1959 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1960 {
1961         return (ioc->facts.IOCCapabilities &
1962             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1963 }
1964
1965 /**
1966  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1967  * @ioc: per adapter object
1968  * @poll: poll over reply descriptor pools incase interrupt for
1969  *              timed-out SCSI command got delayed
1970  * Context: non-ISR context
1971  *
1972  * Called when a Task Management request has completed.
1973  */
1974 void
1975 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1976 {
1977         struct adapter_reply_queue *reply_q;
1978
1979         /* If MSIX capability is turned off
1980          * then multi-queues are not enabled
1981          */
1982         if (!_base_is_controller_msix_enabled(ioc))
1983                 return;
1984
1985         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1986                 if (ioc->shost_recovery || ioc->remove_host ||
1987                                 ioc->pci_error_recovery)
1988                         return;
1989                 /* TMs are on msix_index == 0 */
1990                 if (reply_q->msix_index == 0)
1991                         continue;
1992
1993                 if (reply_q->is_iouring_poll_q) {
1994                         _base_process_reply_queue(reply_q);
1995                         continue;
1996                 }
1997
1998                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1999                 if (reply_q->irq_poll_scheduled) {
2000                         /* Calling irq_poll_disable will wait for any pending
2001                          * callbacks to have completed.
2002                          */
2003                         irq_poll_disable(&reply_q->irqpoll);
2004                         irq_poll_enable(&reply_q->irqpoll);
2005                         /* check how the scheduled poll has ended,
2006                          * clean up only if necessary
2007                          */
2008                         if (reply_q->irq_poll_scheduled) {
2009                                 reply_q->irq_poll_scheduled = false;
2010                                 reply_q->irq_line_enable = true;
2011                                 enable_irq(reply_q->os_irq);
2012                         }
2013                 }
2014
2015                 if (poll)
2016                         _base_process_reply_queue(reply_q);
2017         }
2018 }
2019
2020 /**
2021  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2022  * @cb_idx: callback index
2023  */
2024 void
2025 mpt3sas_base_release_callback_handler(u8 cb_idx)
2026 {
2027         mpt_callbacks[cb_idx] = NULL;
2028 }
2029
2030 /**
2031  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2032  * @cb_func: callback function
2033  *
2034  * Return: Index of @cb_func.
2035  */
2036 u8
2037 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2038 {
2039         u8 cb_idx;
2040
2041         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2042                 if (mpt_callbacks[cb_idx] == NULL)
2043                         break;
2044
2045         mpt_callbacks[cb_idx] = cb_func;
2046         return cb_idx;
2047 }
2048
2049 /**
2050  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2051  */
2052 void
2053 mpt3sas_base_initialize_callback_handler(void)
2054 {
2055         u8 cb_idx;
2056
2057         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2058                 mpt3sas_base_release_callback_handler(cb_idx);
2059 }
2060
2061
2062 /**
2063  * _base_build_zero_len_sge - build zero length sg entry
2064  * @ioc: per adapter object
2065  * @paddr: virtual address for SGE
2066  *
2067  * Create a zero length scatter gather entry to insure the IOCs hardware has
2068  * something to use if the target device goes brain dead and tries
2069  * to send data even when none is asked for.
2070  */
2071 static void
2072 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2073 {
2074         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2075             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2076             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2077             MPI2_SGE_FLAGS_SHIFT);
2078         ioc->base_add_sg_single(paddr, flags_length, -1);
2079 }
2080
2081 /**
2082  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2083  * @paddr: virtual address for SGE
2084  * @flags_length: SGE flags and data transfer length
2085  * @dma_addr: Physical address
2086  */
2087 static void
2088 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2089 {
2090         Mpi2SGESimple32_t *sgel = paddr;
2091
2092         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2093             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2094         sgel->FlagsLength = cpu_to_le32(flags_length);
2095         sgel->Address = cpu_to_le32(dma_addr);
2096 }
2097
2098
2099 /**
2100  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2101  * @paddr: virtual address for SGE
2102  * @flags_length: SGE flags and data transfer length
2103  * @dma_addr: Physical address
2104  */
2105 static void
2106 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2107 {
2108         Mpi2SGESimple64_t *sgel = paddr;
2109
2110         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2111             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2112         sgel->FlagsLength = cpu_to_le32(flags_length);
2113         sgel->Address = cpu_to_le64(dma_addr);
2114 }
2115
2116 /**
2117  * _base_get_chain_buffer_tracker - obtain chain tracker
2118  * @ioc: per adapter object
2119  * @scmd: SCSI commands of the IO request
2120  *
2121  * Return: chain tracker from chain_lookup table using key as
2122  * smid and smid's chain_offset.
2123  */
2124 static struct chain_tracker *
2125 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2126                                struct scsi_cmnd *scmd)
2127 {
2128         struct chain_tracker *chain_req;
2129         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2130         u16 smid = st->smid;
2131         u8 chain_offset =
2132            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2133
2134         if (chain_offset == ioc->chains_needed_per_io)
2135                 return NULL;
2136
2137         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2138         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2139         return chain_req;
2140 }
2141
2142
2143 /**
2144  * _base_build_sg - build generic sg
2145  * @ioc: per adapter object
2146  * @psge: virtual address for SGE
2147  * @data_out_dma: physical address for WRITES
2148  * @data_out_sz: data xfer size for WRITES
2149  * @data_in_dma: physical address for READS
2150  * @data_in_sz: data xfer size for READS
2151  */
2152 static void
2153 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2154         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2155         size_t data_in_sz)
2156 {
2157         u32 sgl_flags;
2158
2159         if (!data_out_sz && !data_in_sz) {
2160                 _base_build_zero_len_sge(ioc, psge);
2161                 return;
2162         }
2163
2164         if (data_out_sz && data_in_sz) {
2165                 /* WRITE sgel first */
2166                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2167                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2168                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2169                 ioc->base_add_sg_single(psge, sgl_flags |
2170                     data_out_sz, data_out_dma);
2171
2172                 /* incr sgel */
2173                 psge += ioc->sge_size;
2174
2175                 /* READ sgel last */
2176                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2177                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2178                     MPI2_SGE_FLAGS_END_OF_LIST);
2179                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2180                 ioc->base_add_sg_single(psge, sgl_flags |
2181                     data_in_sz, data_in_dma);
2182         } else if (data_out_sz) /* WRITE */ {
2183                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2184                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2185                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2186                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2187                 ioc->base_add_sg_single(psge, sgl_flags |
2188                     data_out_sz, data_out_dma);
2189         } else if (data_in_sz) /* READ */ {
2190                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2191                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2192                     MPI2_SGE_FLAGS_END_OF_LIST);
2193                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2194                 ioc->base_add_sg_single(psge, sgl_flags |
2195                     data_in_sz, data_in_dma);
2196         }
2197 }
2198
2199 /* IEEE format sgls */
2200
2201 /**
2202  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2203  *                        a native SGL (NVMe PRP).
2204  * @ioc: per adapter object
2205  * @smid: system request message index for getting asscociated SGL
2206  * @nvme_encap_request: the NVMe request msg frame pointer
2207  * @data_out_dma: physical address for WRITES
2208  * @data_out_sz: data xfer size for WRITES
2209  * @data_in_dma: physical address for READS
2210  * @data_in_sz: data xfer size for READS
2211  *
2212  * The native SGL is built starting in the first PRP
2213  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2214  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2215  * used to describe a larger data buffer.  If the data buffer is too large to
2216  * describe using the two PRP entriess inside the NVMe message, then PRP1
2217  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2218  * list located elsewhere in memory to describe the remaining data memory
2219  * segments.  The PRP list will be contiguous.
2220  *
2221  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2222  * consists of a list of PRP entries to describe a number of noncontigous
2223  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2224  * however, that this function is only used by the IOCTL call, so the memory
2225  * given will be guaranteed to be contiguous.  There is no need to translate
2226  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2227  * contiguous space that is one page size each.
2228  *
2229  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2230  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2231  * contains the second PRP element if the memory being described fits within 2
2232  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2233  *
2234  * A PRP list pointer contains the address of a PRP list, structured as a linear
2235  * array of PRP entries.  Each PRP entry in this list describes a segment of
2236  * physical memory.
2237  *
2238  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2239  * always points at the beginning of a 4KB physical memory page, and the offset
2240  * describes where within that 4KB page the memory segment begins.  Only the
2241  * first element in a PRP list may contain a non-zero offset, implying that all
2242  * memory segments following the first begin at the start of a 4KB page.
2243  *
2244  * Each PRP element normally describes 4KB of physical memory, with exceptions
2245  * for the first and last elements in the list.  If the memory being described
2246  * by the list begins at a non-zero offset within the first 4KB page, then the
2247  * first PRP element will contain a non-zero offset indicating where the region
2248  * begins within the 4KB page.  The last memory segment may end before the end
2249  * of the 4KB segment, depending upon the overall size of the memory being
2250  * described by the PRP list.
2251  *
2252  * Since PRP entries lack any indication of size, the overall data buffer length
2253  * is used to determine where the end of the data memory buffer is located, and
2254  * how many PRP entries are required to describe it.
2255  */
2256 static void
2257 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2258         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2259         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2260         size_t data_in_sz)
2261 {
2262         int             prp_size = NVME_PRP_SIZE;
2263         __le64          *prp_entry, *prp1_entry, *prp2_entry;
2264         __le64          *prp_page;
2265         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
2266         u32             offset, entry_len;
2267         u32             page_mask_result, page_mask;
2268         size_t          length;
2269         struct mpt3sas_nvme_cmd *nvme_cmd =
2270                 (void *)nvme_encap_request->NVMe_Command;
2271
2272         /*
2273          * Not all commands require a data transfer. If no data, just return
2274          * without constructing any PRP.
2275          */
2276         if (!data_in_sz && !data_out_sz)
2277                 return;
2278         prp1_entry = &nvme_cmd->prp1;
2279         prp2_entry = &nvme_cmd->prp2;
2280         prp_entry = prp1_entry;
2281         /*
2282          * For the PRP entries, use the specially allocated buffer of
2283          * contiguous memory.
2284          */
2285         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2286         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2287
2288         /*
2289          * Check if we are within 1 entry of a page boundary we don't
2290          * want our first entry to be a PRP List entry.
2291          */
2292         page_mask = ioc->page_size - 1;
2293         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2294         if (!page_mask_result) {
2295                 /* Bump up to next page boundary. */
2296                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2297                 prp_page_dma = prp_page_dma + prp_size;
2298         }
2299
2300         /*
2301          * Set PRP physical pointer, which initially points to the current PRP
2302          * DMA memory page.
2303          */
2304         prp_entry_dma = prp_page_dma;
2305
2306         /* Get physical address and length of the data buffer. */
2307         if (data_in_sz) {
2308                 dma_addr = data_in_dma;
2309                 length = data_in_sz;
2310         } else {
2311                 dma_addr = data_out_dma;
2312                 length = data_out_sz;
2313         }
2314
2315         /* Loop while the length is not zero. */
2316         while (length) {
2317                 /*
2318                  * Check if we need to put a list pointer here if we are at
2319                  * page boundary - prp_size (8 bytes).
2320                  */
2321                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2322                 if (!page_mask_result) {
2323                         /*
2324                          * This is the last entry in a PRP List, so we need to
2325                          * put a PRP list pointer here.  What this does is:
2326                          *   - bump the current memory pointer to the next
2327                          *     address, which will be the next full page.
2328                          *   - set the PRP Entry to point to that page.  This
2329                          *     is now the PRP List pointer.
2330                          *   - bump the PRP Entry pointer the start of the
2331                          *     next page.  Since all of this PRP memory is
2332                          *     contiguous, no need to get a new page - it's
2333                          *     just the next address.
2334                          */
2335                         prp_entry_dma++;
2336                         *prp_entry = cpu_to_le64(prp_entry_dma);
2337                         prp_entry++;
2338                 }
2339
2340                 /* Need to handle if entry will be part of a page. */
2341                 offset = dma_addr & page_mask;
2342                 entry_len = ioc->page_size - offset;
2343
2344                 if (prp_entry == prp1_entry) {
2345                         /*
2346                          * Must fill in the first PRP pointer (PRP1) before
2347                          * moving on.
2348                          */
2349                         *prp1_entry = cpu_to_le64(dma_addr);
2350
2351                         /*
2352                          * Now point to the second PRP entry within the
2353                          * command (PRP2).
2354                          */
2355                         prp_entry = prp2_entry;
2356                 } else if (prp_entry == prp2_entry) {
2357                         /*
2358                          * Should the PRP2 entry be a PRP List pointer or just
2359                          * a regular PRP pointer?  If there is more than one
2360                          * more page of data, must use a PRP List pointer.
2361                          */
2362                         if (length > ioc->page_size) {
2363                                 /*
2364                                  * PRP2 will contain a PRP List pointer because
2365                                  * more PRP's are needed with this command. The
2366                                  * list will start at the beginning of the
2367                                  * contiguous buffer.
2368                                  */
2369                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2370
2371                                 /*
2372                                  * The next PRP Entry will be the start of the
2373                                  * first PRP List.
2374                                  */
2375                                 prp_entry = prp_page;
2376                         } else {
2377                                 /*
2378                                  * After this, the PRP Entries are complete.
2379                                  * This command uses 2 PRP's and no PRP list.
2380                                  */
2381                                 *prp2_entry = cpu_to_le64(dma_addr);
2382                         }
2383                 } else {
2384                         /*
2385                          * Put entry in list and bump the addresses.
2386                          *
2387                          * After PRP1 and PRP2 are filled in, this will fill in
2388                          * all remaining PRP entries in a PRP List, one per
2389                          * each time through the loop.
2390                          */
2391                         *prp_entry = cpu_to_le64(dma_addr);
2392                         prp_entry++;
2393                         prp_entry_dma++;
2394                 }
2395
2396                 /*
2397                  * Bump the phys address of the command's data buffer by the
2398                  * entry_len.
2399                  */
2400                 dma_addr += entry_len;
2401
2402                 /* Decrement length accounting for last partial page. */
2403                 if (entry_len > length)
2404                         length = 0;
2405                 else
2406                         length -= entry_len;
2407         }
2408 }
2409
2410 /**
2411  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2412  *                      SGLs specific to NVMe drives only
2413  *
2414  * @ioc:                per adapter object
2415  * @scmd:               SCSI command from the mid-layer
2416  * @mpi_request:        mpi request
2417  * @smid:               msg Index
2418  * @sge_count:          scatter gather element count.
2419  *
2420  * Return:              true: PRPs are built
2421  *                      false: IEEE SGLs needs to be built
2422  */
2423 static void
2424 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2425                 struct scsi_cmnd *scmd,
2426                 Mpi25SCSIIORequest_t *mpi_request,
2427                 u16 smid, int sge_count)
2428 {
2429         int sge_len, num_prp_in_chain = 0;
2430         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2431         __le64 *curr_buff;
2432         dma_addr_t msg_dma, sge_addr, offset;
2433         u32 page_mask, page_mask_result;
2434         struct scatterlist *sg_scmd;
2435         u32 first_prp_len;
2436         int data_len = scsi_bufflen(scmd);
2437         u32 nvme_pg_size;
2438
2439         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2440         /*
2441          * Nvme has a very convoluted prp format.  One prp is required
2442          * for each page or partial page. Driver need to split up OS sg_list
2443          * entries if it is longer than one page or cross a page
2444          * boundary.  Driver also have to insert a PRP list pointer entry as
2445          * the last entry in each physical page of the PRP list.
2446          *
2447          * NOTE: The first PRP "entry" is actually placed in the first
2448          * SGL entry in the main message as IEEE 64 format.  The 2nd
2449          * entry in the main message is the chain element, and the rest
2450          * of the PRP entries are built in the contiguous pcie buffer.
2451          */
2452         page_mask = nvme_pg_size - 1;
2453
2454         /*
2455          * Native SGL is needed.
2456          * Put a chain element in main message frame that points to the first
2457          * chain buffer.
2458          *
2459          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2460          *        a native SGL.
2461          */
2462
2463         /* Set main message chain element pointer */
2464         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2465         /*
2466          * For NVMe the chain element needs to be the 2nd SG entry in the main
2467          * message.
2468          */
2469         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2470                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2471
2472         /*
2473          * For the PRP entries, use the specially allocated buffer of
2474          * contiguous memory.  Normal chain buffers can't be used
2475          * because each chain buffer would need to be the size of an OS
2476          * page (4k).
2477          */
2478         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2479         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2480
2481         main_chain_element->Address = cpu_to_le64(msg_dma);
2482         main_chain_element->NextChainOffset = 0;
2483         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2484                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2485                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2486
2487         /* Build first prp, sge need not to be page aligned*/
2488         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2489         sg_scmd = scsi_sglist(scmd);
2490         sge_addr = sg_dma_address(sg_scmd);
2491         sge_len = sg_dma_len(sg_scmd);
2492
2493         offset = sge_addr & page_mask;
2494         first_prp_len = nvme_pg_size - offset;
2495
2496         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2497         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2498
2499         data_len -= first_prp_len;
2500
2501         if (sge_len > first_prp_len) {
2502                 sge_addr += first_prp_len;
2503                 sge_len -= first_prp_len;
2504         } else if (data_len && (sge_len == first_prp_len)) {
2505                 sg_scmd = sg_next(sg_scmd);
2506                 sge_addr = sg_dma_address(sg_scmd);
2507                 sge_len = sg_dma_len(sg_scmd);
2508         }
2509
2510         for (;;) {
2511                 offset = sge_addr & page_mask;
2512
2513                 /* Put PRP pointer due to page boundary*/
2514                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2515                 if (unlikely(!page_mask_result)) {
2516                         scmd_printk(KERN_NOTICE,
2517                                 scmd, "page boundary curr_buff: 0x%p\n",
2518                                 curr_buff);
2519                         msg_dma += 8;
2520                         *curr_buff = cpu_to_le64(msg_dma);
2521                         curr_buff++;
2522                         num_prp_in_chain++;
2523                 }
2524
2525                 *curr_buff = cpu_to_le64(sge_addr);
2526                 curr_buff++;
2527                 msg_dma += 8;
2528                 num_prp_in_chain++;
2529
2530                 sge_addr += nvme_pg_size;
2531                 sge_len -= nvme_pg_size;
2532                 data_len -= nvme_pg_size;
2533
2534                 if (data_len <= 0)
2535                         break;
2536
2537                 if (sge_len > 0)
2538                         continue;
2539
2540                 sg_scmd = sg_next(sg_scmd);
2541                 sge_addr = sg_dma_address(sg_scmd);
2542                 sge_len = sg_dma_len(sg_scmd);
2543         }
2544
2545         main_chain_element->Length =
2546                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2547         return;
2548 }
2549
2550 static bool
2551 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2552         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2553 {
2554         u32 data_length = 0;
2555         bool build_prp = true;
2556
2557         data_length = scsi_bufflen(scmd);
2558         if (pcie_device &&
2559             (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2560                 build_prp = false;
2561                 return build_prp;
2562         }
2563
2564         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2565          * we built IEEE SGL
2566          */
2567         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2568                 build_prp = false;
2569
2570         return build_prp;
2571 }
2572
2573 /**
2574  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2575  * determine if the driver needs to build a native SGL.  If so, that native
2576  * SGL is built in the special contiguous buffers allocated especially for
2577  * PCIe SGL creation.  If the driver will not build a native SGL, return
2578  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2579  * supports NVMe.
2580  * @ioc: per adapter object
2581  * @mpi_request: mf request pointer
2582  * @smid: system request message index
2583  * @scmd: scsi command
2584  * @pcie_device: points to the PCIe device's info
2585  *
2586  * Return: 0 if native SGL was built, 1 if no SGL was built
2587  */
2588 static int
2589 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2590         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2591         struct _pcie_device *pcie_device)
2592 {
2593         int sges_left;
2594
2595         /* Get the SG list pointer and info. */
2596         sges_left = scsi_dma_map(scmd);
2597         if (sges_left < 0)
2598                 return 1;
2599
2600         /* Check if we need to build a native SG list. */
2601         if (!base_is_prp_possible(ioc, pcie_device,
2602                                 scmd, sges_left)) {
2603                 /* We built a native SG list, just return. */
2604                 goto out;
2605         }
2606
2607         /*
2608          * Build native NVMe PRP.
2609          */
2610         base_make_prp_nvme(ioc, scmd, mpi_request,
2611                         smid, sges_left);
2612
2613         return 0;
2614 out:
2615         scsi_dma_unmap(scmd);
2616         return 1;
2617 }
2618
2619 /**
2620  * _base_add_sg_single_ieee - add sg element for IEEE format
2621  * @paddr: virtual address for SGE
2622  * @flags: SGE flags
2623  * @chain_offset: number of 128 byte elements from start of segment
2624  * @length: data transfer length
2625  * @dma_addr: Physical address
2626  */
2627 static void
2628 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2629         dma_addr_t dma_addr)
2630 {
2631         Mpi25IeeeSgeChain64_t *sgel = paddr;
2632
2633         sgel->Flags = flags;
2634         sgel->NextChainOffset = chain_offset;
2635         sgel->Length = cpu_to_le32(length);
2636         sgel->Address = cpu_to_le64(dma_addr);
2637 }
2638
2639 /**
2640  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2641  * @ioc: per adapter object
2642  * @paddr: virtual address for SGE
2643  *
2644  * Create a zero length scatter gather entry to insure the IOCs hardware has
2645  * something to use if the target device goes brain dead and tries
2646  * to send data even when none is asked for.
2647  */
2648 static void
2649 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2650 {
2651         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2652                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2653                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2654
2655         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2656 }
2657
2658 /**
2659  * _base_build_sg_scmd - main sg creation routine
2660  *              pcie_device is unused here!
2661  * @ioc: per adapter object
2662  * @scmd: scsi command
2663  * @smid: system request message index
2664  * @unused: unused pcie_device pointer
2665  * Context: none.
2666  *
2667  * The main routine that builds scatter gather table from a given
2668  * scsi request sent via the .queuecommand main handler.
2669  *
2670  * Return: 0 success, anything else error
2671  */
2672 static int
2673 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2674         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2675 {
2676         Mpi2SCSIIORequest_t *mpi_request;
2677         dma_addr_t chain_dma;
2678         struct scatterlist *sg_scmd;
2679         void *sg_local, *chain;
2680         u32 chain_offset;
2681         u32 chain_length;
2682         u32 chain_flags;
2683         int sges_left;
2684         u32 sges_in_segment;
2685         u32 sgl_flags;
2686         u32 sgl_flags_last_element;
2687         u32 sgl_flags_end_buffer;
2688         struct chain_tracker *chain_req;
2689
2690         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2691
2692         /* init scatter gather flags */
2693         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2694         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2695                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2696         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2697             << MPI2_SGE_FLAGS_SHIFT;
2698         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2699             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2700             << MPI2_SGE_FLAGS_SHIFT;
2701         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2702
2703         sg_scmd = scsi_sglist(scmd);
2704         sges_left = scsi_dma_map(scmd);
2705         if (sges_left < 0)
2706                 return -ENOMEM;
2707
2708         sg_local = &mpi_request->SGL;
2709         sges_in_segment = ioc->max_sges_in_main_message;
2710         if (sges_left <= sges_in_segment)
2711                 goto fill_in_last_segment;
2712
2713         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2714             (sges_in_segment * ioc->sge_size))/4;
2715
2716         /* fill in main message segment when there is a chain following */
2717         while (sges_in_segment) {
2718                 if (sges_in_segment == 1)
2719                         ioc->base_add_sg_single(sg_local,
2720                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2721                             sg_dma_address(sg_scmd));
2722                 else
2723                         ioc->base_add_sg_single(sg_local, sgl_flags |
2724                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2725                 sg_scmd = sg_next(sg_scmd);
2726                 sg_local += ioc->sge_size;
2727                 sges_left--;
2728                 sges_in_segment--;
2729         }
2730
2731         /* initializing the chain flags and pointers */
2732         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2733         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2734         if (!chain_req)
2735                 return -1;
2736         chain = chain_req->chain_buffer;
2737         chain_dma = chain_req->chain_buffer_dma;
2738         do {
2739                 sges_in_segment = (sges_left <=
2740                     ioc->max_sges_in_chain_message) ? sges_left :
2741                     ioc->max_sges_in_chain_message;
2742                 chain_offset = (sges_left == sges_in_segment) ?
2743                     0 : (sges_in_segment * ioc->sge_size)/4;
2744                 chain_length = sges_in_segment * ioc->sge_size;
2745                 if (chain_offset) {
2746                         chain_offset = chain_offset <<
2747                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2748                         chain_length += ioc->sge_size;
2749                 }
2750                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2751                     chain_length, chain_dma);
2752                 sg_local = chain;
2753                 if (!chain_offset)
2754                         goto fill_in_last_segment;
2755
2756                 /* fill in chain segments */
2757                 while (sges_in_segment) {
2758                         if (sges_in_segment == 1)
2759                                 ioc->base_add_sg_single(sg_local,
2760                                     sgl_flags_last_element |
2761                                     sg_dma_len(sg_scmd),
2762                                     sg_dma_address(sg_scmd));
2763                         else
2764                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2765                                     sg_dma_len(sg_scmd),
2766                                     sg_dma_address(sg_scmd));
2767                         sg_scmd = sg_next(sg_scmd);
2768                         sg_local += ioc->sge_size;
2769                         sges_left--;
2770                         sges_in_segment--;
2771                 }
2772
2773                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2774                 if (!chain_req)
2775                         return -1;
2776                 chain = chain_req->chain_buffer;
2777                 chain_dma = chain_req->chain_buffer_dma;
2778         } while (1);
2779
2780
2781  fill_in_last_segment:
2782
2783         /* fill the last segment */
2784         while (sges_left) {
2785                 if (sges_left == 1)
2786                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2787                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2788                 else
2789                         ioc->base_add_sg_single(sg_local, sgl_flags |
2790                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2791                 sg_scmd = sg_next(sg_scmd);
2792                 sg_local += ioc->sge_size;
2793                 sges_left--;
2794         }
2795
2796         return 0;
2797 }
2798
2799 /**
2800  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2801  * @ioc: per adapter object
2802  * @scmd: scsi command
2803  * @smid: system request message index
2804  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2805  * constructed on need.
2806  * Context: none.
2807  *
2808  * The main routine that builds scatter gather table from a given
2809  * scsi request sent via the .queuecommand main handler.
2810  *
2811  * Return: 0 success, anything else error
2812  */
2813 static int
2814 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2815         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2816 {
2817         Mpi25SCSIIORequest_t *mpi_request;
2818         dma_addr_t chain_dma;
2819         struct scatterlist *sg_scmd;
2820         void *sg_local, *chain;
2821         u32 chain_offset;
2822         u32 chain_length;
2823         int sges_left;
2824         u32 sges_in_segment;
2825         u8 simple_sgl_flags;
2826         u8 simple_sgl_flags_last;
2827         u8 chain_sgl_flags;
2828         struct chain_tracker *chain_req;
2829
2830         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2831
2832         /* init scatter gather flags */
2833         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2834             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2835         simple_sgl_flags_last = simple_sgl_flags |
2836             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2837         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2838             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2839
2840         /* Check if we need to build a native SG list. */
2841         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2842                         smid, scmd, pcie_device) == 0)) {
2843                 /* We built a native SG list, just return. */
2844                 return 0;
2845         }
2846
2847         sg_scmd = scsi_sglist(scmd);
2848         sges_left = scsi_dma_map(scmd);
2849         if (sges_left < 0)
2850                 return -ENOMEM;
2851
2852         sg_local = &mpi_request->SGL;
2853         sges_in_segment = (ioc->request_sz -
2854                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2855         if (sges_left <= sges_in_segment)
2856                 goto fill_in_last_segment;
2857
2858         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2859             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2860
2861         /* fill in main message segment when there is a chain following */
2862         while (sges_in_segment > 1) {
2863                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2864                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2865                 sg_scmd = sg_next(sg_scmd);
2866                 sg_local += ioc->sge_size_ieee;
2867                 sges_left--;
2868                 sges_in_segment--;
2869         }
2870
2871         /* initializing the pointers */
2872         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2873         if (!chain_req)
2874                 return -1;
2875         chain = chain_req->chain_buffer;
2876         chain_dma = chain_req->chain_buffer_dma;
2877         do {
2878                 sges_in_segment = (sges_left <=
2879                     ioc->max_sges_in_chain_message) ? sges_left :
2880                     ioc->max_sges_in_chain_message;
2881                 chain_offset = (sges_left == sges_in_segment) ?
2882                     0 : sges_in_segment;
2883                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2884                 if (chain_offset)
2885                         chain_length += ioc->sge_size_ieee;
2886                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2887                     chain_offset, chain_length, chain_dma);
2888
2889                 sg_local = chain;
2890                 if (!chain_offset)
2891                         goto fill_in_last_segment;
2892
2893                 /* fill in chain segments */
2894                 while (sges_in_segment) {
2895                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2896                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2897                         sg_scmd = sg_next(sg_scmd);
2898                         sg_local += ioc->sge_size_ieee;
2899                         sges_left--;
2900                         sges_in_segment--;
2901                 }
2902
2903                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2904                 if (!chain_req)
2905                         return -1;
2906                 chain = chain_req->chain_buffer;
2907                 chain_dma = chain_req->chain_buffer_dma;
2908         } while (1);
2909
2910
2911  fill_in_last_segment:
2912
2913         /* fill the last segment */
2914         while (sges_left > 0) {
2915                 if (sges_left == 1)
2916                         _base_add_sg_single_ieee(sg_local,
2917                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2918                             sg_dma_address(sg_scmd));
2919                 else
2920                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2921                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2922                 sg_scmd = sg_next(sg_scmd);
2923                 sg_local += ioc->sge_size_ieee;
2924                 sges_left--;
2925         }
2926
2927         return 0;
2928 }
2929
2930 /**
2931  * _base_build_sg_ieee - build generic sg for IEEE format
2932  * @ioc: per adapter object
2933  * @psge: virtual address for SGE
2934  * @data_out_dma: physical address for WRITES
2935  * @data_out_sz: data xfer size for WRITES
2936  * @data_in_dma: physical address for READS
2937  * @data_in_sz: data xfer size for READS
2938  */
2939 static void
2940 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2941         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2942         size_t data_in_sz)
2943 {
2944         u8 sgl_flags;
2945
2946         if (!data_out_sz && !data_in_sz) {
2947                 _base_build_zero_len_sge_ieee(ioc, psge);
2948                 return;
2949         }
2950
2951         if (data_out_sz && data_in_sz) {
2952                 /* WRITE sgel first */
2953                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2954                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2955                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2956                     data_out_dma);
2957
2958                 /* incr sgel */
2959                 psge += ioc->sge_size_ieee;
2960
2961                 /* READ sgel last */
2962                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2963                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2964                     data_in_dma);
2965         } else if (data_out_sz) /* WRITE */ {
2966                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2967                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2968                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2969                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2970                     data_out_dma);
2971         } else if (data_in_sz) /* READ */ {
2972                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2973                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2974                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2975                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2976                     data_in_dma);
2977         }
2978 }
2979
2980 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2981
2982 /**
2983  * _base_config_dma_addressing - set dma addressing
2984  * @ioc: per adapter object
2985  * @pdev: PCI device struct
2986  *
2987  * Return: 0 for success, non-zero for failure.
2988  */
2989 static int
2990 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2991 {
2992         struct sysinfo s;
2993         u64 coherent_dma_mask, dma_mask;
2994
2995         if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
2996                 ioc->dma_mask = 32;
2997                 coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
2998         /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2999         } else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3000                 ioc->dma_mask = 63;
3001                 coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3002         } else {
3003                 ioc->dma_mask = 64;
3004                 coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3005         }
3006
3007         if (ioc->use_32bit_dma)
3008                 coherent_dma_mask = DMA_BIT_MASK(32);
3009
3010         if (dma_set_mask(&pdev->dev, dma_mask) ||
3011             dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
3012                 return -ENODEV;
3013
3014         if (ioc->dma_mask > 32) {
3015                 ioc->base_add_sg_single = &_base_add_sg_single_64;
3016                 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3017         } else {
3018                 ioc->base_add_sg_single = &_base_add_sg_single_32;
3019                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3020         }
3021
3022         si_meminfo(&s);
3023         ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3024                 ioc->dma_mask, convert_to_kb(s.totalram));
3025
3026         return 0;
3027 }
3028
3029 /**
3030  * _base_check_enable_msix - checks MSIX capabable.
3031  * @ioc: per adapter object
3032  *
3033  * Check to see if card is capable of MSIX, and set number
3034  * of available msix vectors
3035  */
3036 static int
3037 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3038 {
3039         int base;
3040         u16 message_control;
3041
3042         /* Check whether controller SAS2008 B0 controller,
3043          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3044          */
3045         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3046             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3047                 return -EINVAL;
3048         }
3049
3050         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3051         if (!base) {
3052                 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3053                 return -EINVAL;
3054         }
3055
3056         /* get msix vector count */
3057         /* NUMA_IO not supported for older controllers */
3058         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3059             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3060             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3061             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3062             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3063             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3064             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3065                 ioc->msix_vector_count = 1;
3066         else {
3067                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
3068                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3069         }
3070         dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3071                                   ioc->msix_vector_count));
3072         return 0;
3073 }
3074
3075 /**
3076  * mpt3sas_base_free_irq - free irq
3077  * @ioc: per adapter object
3078  *
3079  * Freeing respective reply_queue from the list.
3080  */
3081 void
3082 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3083 {
3084         unsigned int irq;
3085         struct adapter_reply_queue *reply_q, *next;
3086
3087         if (list_empty(&ioc->reply_queue_list))
3088                 return;
3089
3090         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3091                 list_del(&reply_q->list);
3092                 if (reply_q->is_iouring_poll_q) {
3093                         kfree(reply_q);
3094                         continue;
3095                 }
3096
3097                 if (ioc->smp_affinity_enable) {
3098                         irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3099                         irq_update_affinity_hint(irq, NULL);
3100                 }
3101                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3102                          reply_q);
3103                 kfree(reply_q);
3104         }
3105 }
3106
3107 /**
3108  * _base_request_irq - request irq
3109  * @ioc: per adapter object
3110  * @index: msix index into vector table
3111  *
3112  * Inserting respective reply_queue into the list.
3113  */
3114 static int
3115 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3116 {
3117         struct pci_dev *pdev = ioc->pdev;
3118         struct adapter_reply_queue *reply_q;
3119         int r, qid;
3120
3121         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3122         if (!reply_q) {
3123                 ioc_err(ioc, "unable to allocate memory %zu!\n",
3124                         sizeof(struct adapter_reply_queue));
3125                 return -ENOMEM;
3126         }
3127         reply_q->ioc = ioc;
3128         reply_q->msix_index = index;
3129
3130         atomic_set(&reply_q->busy, 0);
3131
3132         if (index >= ioc->iopoll_q_start_index) {
3133                 qid = index - ioc->iopoll_q_start_index;
3134                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3135                     ioc->driver_name, ioc->id, qid);
3136                 reply_q->is_iouring_poll_q = 1;
3137                 ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3138                 goto out;
3139         }
3140
3141
3142         if (ioc->msix_enable)
3143                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3144                     ioc->driver_name, ioc->id, index);
3145         else
3146                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3147                     ioc->driver_name, ioc->id);
3148         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3149                         IRQF_SHARED, reply_q->name, reply_q);
3150         if (r) {
3151                 pr_err("%s: unable to allocate interrupt %d!\n",
3152                        reply_q->name, pci_irq_vector(pdev, index));
3153                 kfree(reply_q);
3154                 return -EBUSY;
3155         }
3156 out:
3157         INIT_LIST_HEAD(&reply_q->list);
3158         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3159         return 0;
3160 }
3161
3162 /**
3163  * _base_assign_reply_queues - assigning msix index for each cpu
3164  * @ioc: per adapter object
3165  *
3166  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3167  */
3168 static void
3169 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3170 {
3171         unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3172         struct adapter_reply_queue *reply_q;
3173         int iopoll_q_count = ioc->reply_queue_count -
3174             ioc->iopoll_q_start_index;
3175         const struct cpumask *mask;
3176
3177         if (!_base_is_controller_msix_enabled(ioc))
3178                 return;
3179
3180         if (ioc->msix_load_balance)
3181                 return;
3182
3183         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3184
3185         nr_cpus = num_online_cpus();
3186         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3187                                                ioc->facts.MaxMSIxVectors);
3188         if (!nr_msix)
3189                 return;
3190
3191         if (ioc->smp_affinity_enable) {
3192
3193                 /*
3194                  * set irq affinity to local numa node for those irqs
3195                  * corresponding to high iops queues.
3196                  */
3197                 if (ioc->high_iops_queues) {
3198                         mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3199                         for (index = 0; index < ioc->high_iops_queues;
3200                             index++) {
3201                                 irq = pci_irq_vector(ioc->pdev, index);
3202                                 irq_set_affinity_and_hint(irq, mask);
3203                         }
3204                 }
3205
3206                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3207                         const cpumask_t *mask;
3208
3209                         if (reply_q->msix_index < ioc->high_iops_queues ||
3210                             reply_q->msix_index >= ioc->iopoll_q_start_index)
3211                                 continue;
3212
3213                         mask = pci_irq_get_affinity(ioc->pdev,
3214                             reply_q->msix_index);
3215                         if (!mask) {
3216                                 ioc_warn(ioc, "no affinity for msi %x\n",
3217                                          reply_q->msix_index);
3218                                 goto fall_back;
3219                         }
3220
3221                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
3222                                 if (cpu >= ioc->cpu_msix_table_sz)
3223                                         break;
3224                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3225                         }
3226                 }
3227                 return;
3228         }
3229
3230 fall_back:
3231         cpu = cpumask_first(cpu_online_mask);
3232         nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3233         index = 0;
3234
3235         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3236                 unsigned int i, group = nr_cpus / nr_msix;
3237
3238                 if (reply_q->msix_index < ioc->high_iops_queues ||
3239                     reply_q->msix_index >= ioc->iopoll_q_start_index)
3240                         continue;
3241
3242                 if (cpu >= nr_cpus)
3243                         break;
3244
3245                 if (index < nr_cpus % nr_msix)
3246                         group++;
3247
3248                 for (i = 0 ; i < group ; i++) {
3249                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3250                         cpu = cpumask_next(cpu, cpu_online_mask);
3251                 }
3252                 index++;
3253         }
3254 }
3255
3256 /**
3257  * _base_check_and_enable_high_iops_queues - enable high iops mode
3258  * @ioc: per adapter object
3259  * @hba_msix_vector_count: msix vectors supported by HBA
3260  *
3261  * Enable high iops queues only if
3262  *  - HBA is a SEA/AERO controller and
3263  *  - MSI-Xs vector supported by the HBA is 128 and
3264  *  - total CPU count in the system >=16 and
3265  *  - loaded driver with default max_msix_vectors module parameter and
3266  *  - system booted in non kdump mode
3267  *
3268  * Return: nothing.
3269  */
3270 static void
3271 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3272                 int hba_msix_vector_count)
3273 {
3274         u16 lnksta, speed;
3275
3276         /*
3277          * Disable high iops queues if io uring poll queues are enabled.
3278          */
3279         if (perf_mode == MPT_PERF_MODE_IOPS ||
3280             perf_mode == MPT_PERF_MODE_LATENCY ||
3281             ioc->io_uring_poll_queues) {
3282                 ioc->high_iops_queues = 0;
3283                 return;
3284         }
3285
3286         if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3287
3288                 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3289                 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3290
3291                 if (speed < 0x4) {
3292                         ioc->high_iops_queues = 0;
3293                         return;
3294                 }
3295         }
3296
3297         if (!reset_devices && ioc->is_aero_ioc &&
3298             hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3299             num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3300             max_msix_vectors == -1)
3301                 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3302         else
3303                 ioc->high_iops_queues = 0;
3304 }
3305
3306 /**
3307  * mpt3sas_base_disable_msix - disables msix
3308  * @ioc: per adapter object
3309  *
3310  */
3311 void
3312 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3313 {
3314         if (!ioc->msix_enable)
3315                 return;
3316         pci_free_irq_vectors(ioc->pdev);
3317         ioc->msix_enable = 0;
3318         kfree(ioc->io_uring_poll_queues);
3319 }
3320
3321 /**
3322  * _base_alloc_irq_vectors - allocate msix vectors
3323  * @ioc: per adapter object
3324  *
3325  */
3326 static int
3327 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3328 {
3329         int i, irq_flags = PCI_IRQ_MSIX;
3330         struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3331         struct irq_affinity *descp = &desc;
3332         /*
3333          * Don't allocate msix vectors for poll_queues.
3334          * msix_vectors is always within a range of FW supported reply queue.
3335          */
3336         int nr_msix_vectors = ioc->iopoll_q_start_index;
3337
3338
3339         if (ioc->smp_affinity_enable)
3340                 irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3341         else
3342                 descp = NULL;
3343
3344         ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3345             ioc->reply_queue_count, nr_msix_vectors);
3346
3347         i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3348             ioc->high_iops_queues,
3349             nr_msix_vectors, irq_flags, descp);
3350
3351         return i;
3352 }
3353
3354 /**
3355  * _base_enable_msix - enables msix, failback to io_apic
3356  * @ioc: per adapter object
3357  *
3358  */
3359 static int
3360 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3361 {
3362         int r;
3363         int i, local_max_msix_vectors;
3364         u8 try_msix = 0;
3365         int iopoll_q_count = 0;
3366
3367         ioc->msix_load_balance = false;
3368
3369         if (msix_disable == -1 || msix_disable == 0)
3370                 try_msix = 1;
3371
3372         if (!try_msix)
3373                 goto try_ioapic;
3374
3375         if (_base_check_enable_msix(ioc) != 0)
3376                 goto try_ioapic;
3377
3378         ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3379         pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3380                 ioc->cpu_count, max_msix_vectors);
3381
3382         ioc->reply_queue_count =
3383                 min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3384
3385         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3386                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3387         else
3388                 local_max_msix_vectors = max_msix_vectors;
3389
3390         if (local_max_msix_vectors == 0)
3391                 goto try_ioapic;
3392
3393         /*
3394          * Enable msix_load_balance only if combined reply queue mode is
3395          * disabled on SAS3 & above generation HBA devices.
3396          */
3397         if (!ioc->combined_reply_queue &&
3398             ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3399                 ioc_info(ioc,
3400                     "combined ReplyQueue is off, Enabling msix load balance\n");
3401                 ioc->msix_load_balance = true;
3402         }
3403
3404         /*
3405          * smp affinity setting is not need when msix load balance
3406          * is enabled.
3407          */
3408         if (ioc->msix_load_balance)
3409                 ioc->smp_affinity_enable = 0;
3410
3411         if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3412                 ioc->shost->host_tagset = 0;
3413
3414         /*
3415          * Enable io uring poll queues only if host_tagset is enabled.
3416          */
3417         if (ioc->shost->host_tagset)
3418                 iopoll_q_count = poll_queues;
3419
3420         if (iopoll_q_count) {
3421                 ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3422                     sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3423                 if (!ioc->io_uring_poll_queues)
3424                         iopoll_q_count = 0;
3425         }
3426
3427         if (ioc->is_aero_ioc)
3428                 _base_check_and_enable_high_iops_queues(ioc,
3429                     ioc->msix_vector_count);
3430
3431         /*
3432          * Add high iops queues count to reply queue count if high iops queues
3433          * are enabled.
3434          */
3435         ioc->reply_queue_count = min_t(int,
3436             ioc->reply_queue_count + ioc->high_iops_queues,
3437             ioc->msix_vector_count);
3438
3439         /*
3440          * Adjust the reply queue count incase reply queue count
3441          * exceeds the user provided MSIx vectors count.
3442          */
3443         if (local_max_msix_vectors > 0)
3444                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3445                     ioc->reply_queue_count);
3446         /*
3447          * Add io uring poll queues count to reply queues count
3448          * if io uring is enabled in driver.
3449          */
3450         if (iopoll_q_count) {
3451                 if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3452                         iopoll_q_count = 0;
3453                 ioc->reply_queue_count = min_t(int,
3454                     ioc->reply_queue_count + iopoll_q_count,
3455                     ioc->msix_vector_count);
3456         }
3457
3458         /*
3459          * Starting index of io uring poll queues in reply queue list.
3460          */
3461         ioc->iopoll_q_start_index =
3462             ioc->reply_queue_count - iopoll_q_count;
3463
3464         r = _base_alloc_irq_vectors(ioc);
3465         if (r < 0) {
3466                 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3467                 goto try_ioapic;
3468         }
3469
3470         /*
3471          * Adjust the reply queue count if the allocated
3472          * MSIx vectors is less then the requested number
3473          * of MSIx vectors.
3474          */
3475         if (r < ioc->iopoll_q_start_index) {
3476                 ioc->reply_queue_count = r + iopoll_q_count;
3477                 ioc->iopoll_q_start_index =
3478                     ioc->reply_queue_count - iopoll_q_count;
3479         }
3480
3481         ioc->msix_enable = 1;
3482         for (i = 0; i < ioc->reply_queue_count; i++) {
3483                 r = _base_request_irq(ioc, i);
3484                 if (r) {
3485                         mpt3sas_base_free_irq(ioc);
3486                         mpt3sas_base_disable_msix(ioc);
3487                         goto try_ioapic;
3488                 }
3489         }
3490
3491         ioc_info(ioc, "High IOPs queues : %s\n",
3492                         ioc->high_iops_queues ? "enabled" : "disabled");
3493
3494         return 0;
3495
3496 /* failback to io_apic interrupt routing */
3497  try_ioapic:
3498         ioc->high_iops_queues = 0;
3499         ioc_info(ioc, "High IOPs queues : disabled\n");
3500         ioc->reply_queue_count = 1;
3501         ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3502         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3503         if (r < 0) {
3504                 dfailprintk(ioc,
3505                             ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3506                                      r));
3507         } else
3508                 r = _base_request_irq(ioc, 0);
3509
3510         return r;
3511 }
3512
3513 /**
3514  * mpt3sas_base_unmap_resources - free controller resources
3515  * @ioc: per adapter object
3516  */
3517 static void
3518 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3519 {
3520         struct pci_dev *pdev = ioc->pdev;
3521
3522         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3523
3524         mpt3sas_base_free_irq(ioc);
3525         mpt3sas_base_disable_msix(ioc);
3526
3527         kfree(ioc->replyPostRegisterIndex);
3528         ioc->replyPostRegisterIndex = NULL;
3529
3530
3531         if (ioc->chip_phys) {
3532                 iounmap(ioc->chip);
3533                 ioc->chip_phys = 0;
3534         }
3535
3536         if (pci_is_enabled(pdev)) {
3537                 pci_release_selected_regions(ioc->pdev, ioc->bars);
3538                 pci_disable_pcie_error_reporting(pdev);
3539                 pci_disable_device(pdev);
3540         }
3541 }
3542
3543 static int
3544 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3545
3546 /**
3547  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3548  *     and if it is in fault state then issue diag reset.
3549  * @ioc: per adapter object
3550  *
3551  * Return: 0 for success, non-zero for failure.
3552  */
3553 int
3554 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3555 {
3556         u32 ioc_state;
3557         int rc = -EFAULT;
3558
3559         dinitprintk(ioc, pr_info("%s\n", __func__));
3560         if (ioc->pci_error_recovery)
3561                 return 0;
3562         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3563         dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3564
3565         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3566                 mpt3sas_print_fault_code(ioc, ioc_state &
3567                     MPI2_DOORBELL_DATA_MASK);
3568                 mpt3sas_base_mask_interrupts(ioc);
3569                 rc = _base_diag_reset(ioc);
3570         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3571             MPI2_IOC_STATE_COREDUMP) {
3572                 mpt3sas_print_coredump_info(ioc, ioc_state &
3573                      MPI2_DOORBELL_DATA_MASK);
3574                 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3575                 mpt3sas_base_mask_interrupts(ioc);
3576                 rc = _base_diag_reset(ioc);
3577         }
3578
3579         return rc;
3580 }
3581
3582 /**
3583  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3584  * @ioc: per adapter object
3585  *
3586  * Return: 0 for success, non-zero for failure.
3587  */
3588 int
3589 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3590 {
3591         struct pci_dev *pdev = ioc->pdev;
3592         u32 memap_sz;
3593         u32 pio_sz;
3594         int i, r = 0, rc;
3595         u64 pio_chip = 0;
3596         phys_addr_t chip_phys = 0;
3597         struct adapter_reply_queue *reply_q;
3598         int iopoll_q_count = 0;
3599
3600         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3601
3602         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3603         if (pci_enable_device_mem(pdev)) {
3604                 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3605                 ioc->bars = 0;
3606                 return -ENODEV;
3607         }
3608
3609
3610         if (pci_request_selected_regions(pdev, ioc->bars,
3611             ioc->driver_name)) {
3612                 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3613                 ioc->bars = 0;
3614                 r = -ENODEV;
3615                 goto out_fail;
3616         }
3617
3618 /* AER (Advanced Error Reporting) hooks */
3619         pci_enable_pcie_error_reporting(pdev);
3620
3621         pci_set_master(pdev);
3622
3623
3624         if (_base_config_dma_addressing(ioc, pdev) != 0) {
3625                 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3626                 r = -ENODEV;
3627                 goto out_fail;
3628         }
3629
3630         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3631              (!memap_sz || !pio_sz); i++) {
3632                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3633                         if (pio_sz)
3634                                 continue;
3635                         pio_chip = (u64)pci_resource_start(pdev, i);
3636                         pio_sz = pci_resource_len(pdev, i);
3637                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3638                         if (memap_sz)
3639                                 continue;
3640                         ioc->chip_phys = pci_resource_start(pdev, i);
3641                         chip_phys = ioc->chip_phys;
3642                         memap_sz = pci_resource_len(pdev, i);
3643                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3644                 }
3645         }
3646
3647         if (ioc->chip == NULL) {
3648                 ioc_err(ioc,
3649                     "unable to map adapter memory! or resource not found\n");
3650                 r = -EINVAL;
3651                 goto out_fail;
3652         }
3653
3654         mpt3sas_base_mask_interrupts(ioc);
3655
3656         r = _base_get_ioc_facts(ioc);
3657         if (r) {
3658                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3659                 if (rc || (_base_get_ioc_facts(ioc)))
3660                         goto out_fail;
3661         }
3662
3663         if (!ioc->rdpq_array_enable_assigned) {
3664                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3665                 ioc->rdpq_array_enable_assigned = 1;
3666         }
3667
3668         r = _base_enable_msix(ioc);
3669         if (r)
3670                 goto out_fail;
3671
3672         iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3673         for (i = 0; i < iopoll_q_count; i++) {
3674                 atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3675                 atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3676         }
3677
3678         if (!ioc->is_driver_loading)
3679                 _base_init_irqpolls(ioc);
3680         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3681          * revision HBAs and also only when reply queue count is greater than 8
3682          */
3683         if (ioc->combined_reply_queue) {
3684                 /* Determine the Supplemental Reply Post Host Index Registers
3685                  * Addresse. Supplemental Reply Post Host Index Registers
3686                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3687                  * each register is at offset bytes of
3688                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3689                  */
3690                 ioc->replyPostRegisterIndex = kcalloc(
3691                      ioc->combined_reply_index_count,
3692                      sizeof(resource_size_t *), GFP_KERNEL);
3693                 if (!ioc->replyPostRegisterIndex) {
3694                         ioc_err(ioc,
3695                             "allocation for replyPostRegisterIndex failed!\n");
3696                         r = -ENOMEM;
3697                         goto out_fail;
3698                 }
3699
3700                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3701                         ioc->replyPostRegisterIndex[i] =
3702                                 (resource_size_t __iomem *)
3703                                 ((u8 __force *)&ioc->chip->Doorbell +
3704                                  MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3705                                  (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3706                 }
3707         }
3708
3709         if (ioc->is_warpdrive) {
3710                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3711                     &ioc->chip->ReplyPostHostIndex;
3712
3713                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3714                         ioc->reply_post_host_index[i] =
3715                         (resource_size_t __iomem *)
3716                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3717                         * 4)));
3718         }
3719
3720         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3721                 if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3722                         pr_info("%s: enabled: index: %d\n",
3723                             reply_q->name, reply_q->msix_index);
3724                         continue;
3725                 }
3726
3727                 pr_info("%s: %s enabled: IRQ %d\n",
3728                         reply_q->name,
3729                         ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3730                         pci_irq_vector(ioc->pdev, reply_q->msix_index));
3731         }
3732
3733         ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3734                  &chip_phys, ioc->chip, memap_sz);
3735         ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3736                  (unsigned long long)pio_chip, pio_sz);
3737
3738         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3739         pci_save_state(pdev);
3740         return 0;
3741
3742  out_fail:
3743         mpt3sas_base_unmap_resources(ioc);
3744         return r;
3745 }
3746
3747 /**
3748  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3749  * @ioc: per adapter object
3750  * @smid: system request message index(smid zero is invalid)
3751  *
3752  * Return: virt pointer to message frame.
3753  */
3754 void *
3755 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3756 {
3757         return (void *)(ioc->request + (smid * ioc->request_sz));
3758 }
3759
3760 /**
3761  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3762  * @ioc: per adapter object
3763  * @smid: system request message index
3764  *
3765  * Return: virt pointer to sense buffer.
3766  */
3767 void *
3768 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3769 {
3770         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3771 }
3772
3773 /**
3774  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3775  * @ioc: per adapter object
3776  * @smid: system request message index
3777  *
3778  * Return: phys pointer to the low 32bit address of the sense buffer.
3779  */
3780 __le32
3781 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3782 {
3783         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3784             SCSI_SENSE_BUFFERSIZE));
3785 }
3786
3787 /**
3788  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3789  * @ioc: per adapter object
3790  * @smid: system request message index
3791  *
3792  * Return: virt pointer to a PCIe SGL.
3793  */
3794 void *
3795 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3796 {
3797         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3798 }
3799
3800 /**
3801  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3802  * @ioc: per adapter object
3803  * @smid: system request message index
3804  *
3805  * Return: phys pointer to the address of the PCIe buffer.
3806  */
3807 dma_addr_t
3808 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3809 {
3810         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3811 }
3812
3813 /**
3814  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3815  * @ioc: per adapter object
3816  * @phys_addr: lower 32 physical addr of the reply
3817  *
3818  * Converts 32bit lower physical addr into a virt address.
3819  */
3820 void *
3821 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3822 {
3823         if (!phys_addr)
3824                 return NULL;
3825         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3826 }
3827
3828 /**
3829  * _base_get_msix_index - get the msix index
3830  * @ioc: per adapter object
3831  * @scmd: scsi_cmnd object
3832  *
3833  * Return: msix index of general reply queues,
3834  * i.e. reply queue on which IO request's reply
3835  * should be posted by the HBA firmware.
3836  */
3837 static inline u8
3838 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3839         struct scsi_cmnd *scmd)
3840 {
3841         /* Enables reply_queue load balancing */
3842         if (ioc->msix_load_balance)
3843                 return ioc->reply_queue_count ?
3844                     base_mod64(atomic64_add_return(1,
3845                     &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3846
3847         if (scmd && ioc->shost->nr_hw_queues > 1) {
3848                 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3849
3850                 return blk_mq_unique_tag_to_hwq(tag) +
3851                         ioc->high_iops_queues;
3852         }
3853
3854         return ioc->cpu_msix_table[raw_smp_processor_id()];
3855 }
3856
3857 /**
3858  * _base_get_high_iops_msix_index - get the msix index of
3859  *                              high iops queues
3860  * @ioc: per adapter object
3861  * @scmd: scsi_cmnd object
3862  *
3863  * Return: msix index of high iops reply queues.
3864  * i.e. high iops reply queue on which IO request's
3865  * reply should be posted by the HBA firmware.
3866  */
3867 static inline u8
3868 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3869         struct scsi_cmnd *scmd)
3870 {
3871         /**
3872          * Round robin the IO interrupts among the high iops
3873          * reply queues in terms of batch count 16 when outstanding
3874          * IOs on the target device is >=8.
3875          */
3876
3877         if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3878                 return base_mod64((
3879                     atomic64_add_return(1, &ioc->high_iops_outstanding) /
3880                     MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3881                     MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3882
3883         return _base_get_msix_index(ioc, scmd);
3884 }
3885
3886 /**
3887  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3888  * @ioc: per adapter object
3889  * @cb_idx: callback index
3890  *
3891  * Return: smid (zero is invalid)
3892  */
3893 u16
3894 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3895 {
3896         unsigned long flags;
3897         struct request_tracker *request;
3898         u16 smid;
3899
3900         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3901         if (list_empty(&ioc->internal_free_list)) {
3902                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3903                 ioc_err(ioc, "%s: smid not available\n", __func__);
3904                 return 0;
3905         }
3906
3907         request = list_entry(ioc->internal_free_list.next,
3908             struct request_tracker, tracker_list);
3909         request->cb_idx = cb_idx;
3910         smid = request->smid;
3911         list_del(&request->tracker_list);
3912         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3913         return smid;
3914 }
3915
3916 /**
3917  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3918  * @ioc: per adapter object
3919  * @cb_idx: callback index
3920  * @scmd: pointer to scsi command object
3921  *
3922  * Return: smid (zero is invalid)
3923  */
3924 u16
3925 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3926         struct scsi_cmnd *scmd)
3927 {
3928         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3929         u16 smid;
3930         u32 tag, unique_tag;
3931
3932         unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3933         tag = blk_mq_unique_tag_to_tag(unique_tag);
3934
3935         /*
3936          * Store hw queue number corresponding to the tag.
3937          * This hw queue number is used later to determine
3938          * the unique_tag using the logic below. This unique_tag
3939          * is used to retrieve the scmd pointer corresponding
3940          * to tag using scsi_host_find_tag() API.
3941          *
3942          * tag = smid - 1;
3943          * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3944          */
3945         ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3946
3947         smid = tag + 1;
3948         request->cb_idx = cb_idx;
3949         request->smid = smid;
3950         request->scmd = scmd;
3951         INIT_LIST_HEAD(&request->chain_list);
3952         return smid;
3953 }
3954
3955 /**
3956  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3957  * @ioc: per adapter object
3958  * @cb_idx: callback index
3959  *
3960  * Return: smid (zero is invalid)
3961  */
3962 u16
3963 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3964 {
3965         unsigned long flags;
3966         struct request_tracker *request;
3967         u16 smid;
3968
3969         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3970         if (list_empty(&ioc->hpr_free_list)) {
3971                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3972                 return 0;
3973         }
3974
3975         request = list_entry(ioc->hpr_free_list.next,
3976             struct request_tracker, tracker_list);
3977         request->cb_idx = cb_idx;
3978         smid = request->smid;
3979         list_del(&request->tracker_list);
3980         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3981         return smid;
3982 }
3983
3984 static void
3985 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3986 {
3987         /*
3988          * See _wait_for_commands_to_complete() call with regards to this code.
3989          */
3990         if (ioc->shost_recovery && ioc->pending_io_count) {
3991                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3992                 if (ioc->pending_io_count == 0)
3993                         wake_up(&ioc->reset_wq);
3994         }
3995 }
3996
3997 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3998                            struct scsiio_tracker *st)
3999 {
4000         if (WARN_ON(st->smid == 0))
4001                 return;
4002         st->cb_idx = 0xFF;
4003         st->direct_io = 0;
4004         st->scmd = NULL;
4005         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4006         st->smid = 0;
4007 }
4008
4009 /**
4010  * mpt3sas_base_free_smid - put smid back on free_list
4011  * @ioc: per adapter object
4012  * @smid: system request message index
4013  */
4014 void
4015 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4016 {
4017         unsigned long flags;
4018         int i;
4019
4020         if (smid < ioc->hi_priority_smid) {
4021                 struct scsiio_tracker *st;
4022                 void *request;
4023
4024                 st = _get_st_from_smid(ioc, smid);
4025                 if (!st) {
4026                         _base_recovery_check(ioc);
4027                         return;
4028                 }
4029
4030                 /* Clear MPI request frame */
4031                 request = mpt3sas_base_get_msg_frame(ioc, smid);
4032                 memset(request, 0, ioc->request_sz);
4033
4034                 mpt3sas_base_clear_st(ioc, st);
4035                 _base_recovery_check(ioc);
4036                 ioc->io_queue_num[smid - 1] = 0;
4037                 return;
4038         }
4039
4040         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4041         if (smid < ioc->internal_smid) {
4042                 /* hi-priority */
4043                 i = smid - ioc->hi_priority_smid;
4044                 ioc->hpr_lookup[i].cb_idx = 0xFF;
4045                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4046         } else if (smid <= ioc->hba_queue_depth) {
4047                 /* internal queue */
4048                 i = smid - ioc->internal_smid;
4049                 ioc->internal_lookup[i].cb_idx = 0xFF;
4050                 list_add(&ioc->internal_lookup[i].tracker_list,
4051                     &ioc->internal_free_list);
4052         }
4053         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4054 }
4055
4056 /**
4057  * _base_mpi_ep_writeq - 32 bit write to MMIO
4058  * @b: data payload
4059  * @addr: address in MMIO space
4060  * @writeq_lock: spin lock
4061  *
4062  * This special handling for MPI EP to take care of 32 bit
4063  * environment where its not quarenteed to send the entire word
4064  * in one transfer.
4065  */
4066 static inline void
4067 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4068                                         spinlock_t *writeq_lock)
4069 {
4070         unsigned long flags;
4071
4072         spin_lock_irqsave(writeq_lock, flags);
4073         __raw_writel((u32)(b), addr);
4074         __raw_writel((u32)(b >> 32), (addr + 4));
4075         spin_unlock_irqrestore(writeq_lock, flags);
4076 }
4077
4078 /**
4079  * _base_writeq - 64 bit write to MMIO
4080  * @b: data payload
4081  * @addr: address in MMIO space
4082  * @writeq_lock: spin lock
4083  *
4084  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4085  * care of 32 bit environment where its not quarenteed to send the entire word
4086  * in one transfer.
4087  */
4088 #if defined(writeq) && defined(CONFIG_64BIT)
4089 static inline void
4090 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4091 {
4092         wmb();
4093         __raw_writeq(b, addr);
4094         barrier();
4095 }
4096 #else
4097 static inline void
4098 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4099 {
4100         _base_mpi_ep_writeq(b, addr, writeq_lock);
4101 }
4102 #endif
4103
4104 /**
4105  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4106  *                                variable of scsi tracker
4107  * @ioc: per adapter object
4108  * @smid: system request message index
4109  *
4110  * Return: msix index.
4111  */
4112 static u8
4113 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4114 {
4115         struct scsiio_tracker *st = NULL;
4116
4117         if (smid < ioc->hi_priority_smid)
4118                 st = _get_st_from_smid(ioc, smid);
4119
4120         if (st == NULL)
4121                 return  _base_get_msix_index(ioc, NULL);
4122
4123         st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4124         return st->msix_io;
4125 }
4126
4127 /**
4128  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4129  * @ioc: per adapter object
4130  * @smid: system request message index
4131  * @handle: device handle
4132  */
4133 static void
4134 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4135         u16 smid, u16 handle)
4136 {
4137         Mpi2RequestDescriptorUnion_t descriptor;
4138         u64 *request = (u64 *)&descriptor;
4139         void *mpi_req_iomem;
4140         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4141
4142         _clone_sg_entries(ioc, (void *) mfp, smid);
4143         mpi_req_iomem = (void __force *)ioc->chip +
4144                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4145         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4146                                         ioc->request_sz);
4147         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4148         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4149         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4150         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4151         descriptor.SCSIIO.LMID = 0;
4152         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4153             &ioc->scsi_lookup_lock);
4154 }
4155
4156 /**
4157  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4158  * @ioc: per adapter object
4159  * @smid: system request message index
4160  * @handle: device handle
4161  */
4162 static void
4163 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4164 {
4165         Mpi2RequestDescriptorUnion_t descriptor;
4166         u64 *request = (u64 *)&descriptor;
4167
4168
4169         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4170         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4171         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4172         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4173         descriptor.SCSIIO.LMID = 0;
4174         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4175             &ioc->scsi_lookup_lock);
4176 }
4177
4178 /**
4179  * _base_put_smid_fast_path - send fast path request to firmware
4180  * @ioc: per adapter object
4181  * @smid: system request message index
4182  * @handle: device handle
4183  */
4184 static void
4185 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4186         u16 handle)
4187 {
4188         Mpi2RequestDescriptorUnion_t descriptor;
4189         u64 *request = (u64 *)&descriptor;
4190
4191         descriptor.SCSIIO.RequestFlags =
4192             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4193         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4194         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4195         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4196         descriptor.SCSIIO.LMID = 0;
4197         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4198             &ioc->scsi_lookup_lock);
4199 }
4200
4201 /**
4202  * _base_put_smid_hi_priority - send Task Management request to firmware
4203  * @ioc: per adapter object
4204  * @smid: system request message index
4205  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4206  */
4207 static void
4208 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4209         u16 msix_task)
4210 {
4211         Mpi2RequestDescriptorUnion_t descriptor;
4212         void *mpi_req_iomem;
4213         u64 *request;
4214
4215         if (ioc->is_mcpu_endpoint) {
4216                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4217
4218                 /* TBD 256 is offset within sys register. */
4219                 mpi_req_iomem = (void __force *)ioc->chip
4220                                         + MPI_FRAME_START_OFFSET
4221                                         + (smid * ioc->request_sz);
4222                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4223                                                         ioc->request_sz);
4224         }
4225
4226         request = (u64 *)&descriptor;
4227
4228         descriptor.HighPriority.RequestFlags =
4229             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4230         descriptor.HighPriority.MSIxIndex =  msix_task;
4231         descriptor.HighPriority.SMID = cpu_to_le16(smid);
4232         descriptor.HighPriority.LMID = 0;
4233         descriptor.HighPriority.Reserved1 = 0;
4234         if (ioc->is_mcpu_endpoint)
4235                 _base_mpi_ep_writeq(*request,
4236                                 &ioc->chip->RequestDescriptorPostLow,
4237                                 &ioc->scsi_lookup_lock);
4238         else
4239                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4240                     &ioc->scsi_lookup_lock);
4241 }
4242
4243 /**
4244  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4245  *  firmware
4246  * @ioc: per adapter object
4247  * @smid: system request message index
4248  */
4249 void
4250 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4251 {
4252         Mpi2RequestDescriptorUnion_t descriptor;
4253         u64 *request = (u64 *)&descriptor;
4254
4255         descriptor.Default.RequestFlags =
4256                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4257         descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4258         descriptor.Default.SMID = cpu_to_le16(smid);
4259         descriptor.Default.LMID = 0;
4260         descriptor.Default.DescriptorTypeDependent = 0;
4261         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4262             &ioc->scsi_lookup_lock);
4263 }
4264
4265 /**
4266  * _base_put_smid_default - Default, primarily used for config pages
4267  * @ioc: per adapter object
4268  * @smid: system request message index
4269  */
4270 static void
4271 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4272 {
4273         Mpi2RequestDescriptorUnion_t descriptor;
4274         void *mpi_req_iomem;
4275         u64 *request;
4276
4277         if (ioc->is_mcpu_endpoint) {
4278                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4279
4280                 _clone_sg_entries(ioc, (void *) mfp, smid);
4281                 /* TBD 256 is offset within sys register */
4282                 mpi_req_iomem = (void __force *)ioc->chip +
4283                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4284                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4285                                                         ioc->request_sz);
4286         }
4287         request = (u64 *)&descriptor;
4288         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4289         descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4290         descriptor.Default.SMID = cpu_to_le16(smid);
4291         descriptor.Default.LMID = 0;
4292         descriptor.Default.DescriptorTypeDependent = 0;
4293         if (ioc->is_mcpu_endpoint)
4294                 _base_mpi_ep_writeq(*request,
4295                                 &ioc->chip->RequestDescriptorPostLow,
4296                                 &ioc->scsi_lookup_lock);
4297         else
4298                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4299                                 &ioc->scsi_lookup_lock);
4300 }
4301
4302 /**
4303  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4304  *   Atomic Request Descriptor
4305  * @ioc: per adapter object
4306  * @smid: system request message index
4307  * @handle: device handle, unused in this function, for function type match
4308  *
4309  * Return: nothing.
4310  */
4311 static void
4312 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4313         u16 handle)
4314 {
4315         Mpi26AtomicRequestDescriptor_t descriptor;
4316         u32 *request = (u32 *)&descriptor;
4317
4318         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4319         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4320         descriptor.SMID = cpu_to_le16(smid);
4321
4322         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4323 }
4324
4325 /**
4326  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4327  * using Atomic Request Descriptor
4328  * @ioc: per adapter object
4329  * @smid: system request message index
4330  * @handle: device handle, unused in this function, for function type match
4331  * Return: nothing
4332  */
4333 static void
4334 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4335         u16 handle)
4336 {
4337         Mpi26AtomicRequestDescriptor_t descriptor;
4338         u32 *request = (u32 *)&descriptor;
4339
4340         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4341         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4342         descriptor.SMID = cpu_to_le16(smid);
4343
4344         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4345 }
4346
4347 /**
4348  * _base_put_smid_hi_priority_atomic - send Task Management request to
4349  * firmware using Atomic Request Descriptor
4350  * @ioc: per adapter object
4351  * @smid: system request message index
4352  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4353  *
4354  * Return: nothing.
4355  */
4356 static void
4357 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4358         u16 msix_task)
4359 {
4360         Mpi26AtomicRequestDescriptor_t descriptor;
4361         u32 *request = (u32 *)&descriptor;
4362
4363         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4364         descriptor.MSIxIndex = msix_task;
4365         descriptor.SMID = cpu_to_le16(smid);
4366
4367         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4368 }
4369
4370 /**
4371  * _base_put_smid_default_atomic - Default, primarily used for config pages
4372  * use Atomic Request Descriptor
4373  * @ioc: per adapter object
4374  * @smid: system request message index
4375  *
4376  * Return: nothing.
4377  */
4378 static void
4379 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4380 {
4381         Mpi26AtomicRequestDescriptor_t descriptor;
4382         u32 *request = (u32 *)&descriptor;
4383
4384         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4385         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4386         descriptor.SMID = cpu_to_le16(smid);
4387
4388         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4389 }
4390
4391 /**
4392  * _base_display_OEMs_branding - Display branding string
4393  * @ioc: per adapter object
4394  */
4395 static void
4396 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4397 {
4398         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4399                 return;
4400
4401         switch (ioc->pdev->subsystem_vendor) {
4402         case PCI_VENDOR_ID_INTEL:
4403                 switch (ioc->pdev->device) {
4404                 case MPI2_MFGPAGE_DEVID_SAS2008:
4405                         switch (ioc->pdev->subsystem_device) {
4406                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
4407                                 ioc_info(ioc, "%s\n",
4408                                          MPT2SAS_INTEL_RMS2LL080_BRANDING);
4409                                 break;
4410                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
4411                                 ioc_info(ioc, "%s\n",
4412                                          MPT2SAS_INTEL_RMS2LL040_BRANDING);
4413                                 break;
4414                         case MPT2SAS_INTEL_SSD910_SSDID:
4415                                 ioc_info(ioc, "%s\n",
4416                                          MPT2SAS_INTEL_SSD910_BRANDING);
4417                                 break;
4418                         default:
4419                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4420                                          ioc->pdev->subsystem_device);
4421                                 break;
4422                         }
4423                         break;
4424                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4425                         switch (ioc->pdev->subsystem_device) {
4426                         case MPT2SAS_INTEL_RS25GB008_SSDID:
4427                                 ioc_info(ioc, "%s\n",
4428                                          MPT2SAS_INTEL_RS25GB008_BRANDING);
4429                                 break;
4430                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
4431                                 ioc_info(ioc, "%s\n",
4432                                          MPT2SAS_INTEL_RMS25JB080_BRANDING);
4433                                 break;
4434                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
4435                                 ioc_info(ioc, "%s\n",
4436                                          MPT2SAS_INTEL_RMS25JB040_BRANDING);
4437                                 break;
4438                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
4439                                 ioc_info(ioc, "%s\n",
4440                                          MPT2SAS_INTEL_RMS25KB080_BRANDING);
4441                                 break;
4442                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
4443                                 ioc_info(ioc, "%s\n",
4444                                          MPT2SAS_INTEL_RMS25KB040_BRANDING);
4445                                 break;
4446                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
4447                                 ioc_info(ioc, "%s\n",
4448                                          MPT2SAS_INTEL_RMS25LB040_BRANDING);
4449                                 break;
4450                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
4451                                 ioc_info(ioc, "%s\n",
4452                                          MPT2SAS_INTEL_RMS25LB080_BRANDING);
4453                                 break;
4454                         default:
4455                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4456                                          ioc->pdev->subsystem_device);
4457                                 break;
4458                         }
4459                         break;
4460                 case MPI25_MFGPAGE_DEVID_SAS3008:
4461                         switch (ioc->pdev->subsystem_device) {
4462                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
4463                                 ioc_info(ioc, "%s\n",
4464                                          MPT3SAS_INTEL_RMS3JC080_BRANDING);
4465                                 break;
4466
4467                         case MPT3SAS_INTEL_RS3GC008_SSDID:
4468                                 ioc_info(ioc, "%s\n",
4469                                          MPT3SAS_INTEL_RS3GC008_BRANDING);
4470                                 break;
4471                         case MPT3SAS_INTEL_RS3FC044_SSDID:
4472                                 ioc_info(ioc, "%s\n",
4473                                          MPT3SAS_INTEL_RS3FC044_BRANDING);
4474                                 break;
4475                         case MPT3SAS_INTEL_RS3UC080_SSDID:
4476                                 ioc_info(ioc, "%s\n",
4477                                          MPT3SAS_INTEL_RS3UC080_BRANDING);
4478                                 break;
4479                         default:
4480                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4481                                          ioc->pdev->subsystem_device);
4482                                 break;
4483                         }
4484                         break;
4485                 default:
4486                         ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4487                                  ioc->pdev->subsystem_device);
4488                         break;
4489                 }
4490                 break;
4491         case PCI_VENDOR_ID_DELL:
4492                 switch (ioc->pdev->device) {
4493                 case MPI2_MFGPAGE_DEVID_SAS2008:
4494                         switch (ioc->pdev->subsystem_device) {
4495                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4496                                 ioc_info(ioc, "%s\n",
4497                                          MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4498                                 break;
4499                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4500                                 ioc_info(ioc, "%s\n",
4501                                          MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4502                                 break;
4503                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4504                                 ioc_info(ioc, "%s\n",
4505                                          MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4506                                 break;
4507                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4508                                 ioc_info(ioc, "%s\n",
4509                                          MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4510                                 break;
4511                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4512                                 ioc_info(ioc, "%s\n",
4513                                          MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4514                                 break;
4515                         case MPT2SAS_DELL_PERC_H200_SSDID:
4516                                 ioc_info(ioc, "%s\n",
4517                                          MPT2SAS_DELL_PERC_H200_BRANDING);
4518                                 break;
4519                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4520                                 ioc_info(ioc, "%s\n",
4521                                          MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4522                                 break;
4523                         default:
4524                                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4525                                          ioc->pdev->subsystem_device);
4526                                 break;
4527                         }
4528                         break;
4529                 case MPI25_MFGPAGE_DEVID_SAS3008:
4530                         switch (ioc->pdev->subsystem_device) {
4531                         case MPT3SAS_DELL_12G_HBA_SSDID:
4532                                 ioc_info(ioc, "%s\n",
4533                                          MPT3SAS_DELL_12G_HBA_BRANDING);
4534                                 break;
4535                         default:
4536                                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4537                                          ioc->pdev->subsystem_device);
4538                                 break;
4539                         }
4540                         break;
4541                 default:
4542                         ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4543                                  ioc->pdev->subsystem_device);
4544                         break;
4545                 }
4546                 break;
4547         case PCI_VENDOR_ID_CISCO:
4548                 switch (ioc->pdev->device) {
4549                 case MPI25_MFGPAGE_DEVID_SAS3008:
4550                         switch (ioc->pdev->subsystem_device) {
4551                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4552                                 ioc_info(ioc, "%s\n",
4553                                          MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4554                                 break;
4555                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4556                                 ioc_info(ioc, "%s\n",
4557                                          MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4558                                 break;
4559                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4560                                 ioc_info(ioc, "%s\n",
4561                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4562                                 break;
4563                         default:
4564                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4565                                          ioc->pdev->subsystem_device);
4566                                 break;
4567                         }
4568                         break;
4569                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4570                         switch (ioc->pdev->subsystem_device) {
4571                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4572                                 ioc_info(ioc, "%s\n",
4573                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4574                                 break;
4575                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4576                                 ioc_info(ioc, "%s\n",
4577                                          MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4578                                 break;
4579                         default:
4580                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4581                                          ioc->pdev->subsystem_device);
4582                                 break;
4583                         }
4584                         break;
4585                 default:
4586                         ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4587                                  ioc->pdev->subsystem_device);
4588                         break;
4589                 }
4590                 break;
4591         case MPT2SAS_HP_3PAR_SSVID:
4592                 switch (ioc->pdev->device) {
4593                 case MPI2_MFGPAGE_DEVID_SAS2004:
4594                         switch (ioc->pdev->subsystem_device) {
4595                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4596                                 ioc_info(ioc, "%s\n",
4597                                          MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4598                                 break;
4599                         default:
4600                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4601                                          ioc->pdev->subsystem_device);
4602                                 break;
4603                         }
4604                         break;
4605                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4606                         switch (ioc->pdev->subsystem_device) {
4607                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4608                                 ioc_info(ioc, "%s\n",
4609                                          MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4610                                 break;
4611                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4612                                 ioc_info(ioc, "%s\n",
4613                                          MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4614                                 break;
4615                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4616                                 ioc_info(ioc, "%s\n",
4617                                          MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4618                                 break;
4619                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4620                                 ioc_info(ioc, "%s\n",
4621                                          MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4622                                 break;
4623                         default:
4624                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4625                                          ioc->pdev->subsystem_device);
4626                                 break;
4627                         }
4628                         break;
4629                 default:
4630                         ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4631                                  ioc->pdev->subsystem_device);
4632                         break;
4633                 }
4634                 break;
4635         default:
4636                 break;
4637         }
4638 }
4639
4640 /**
4641  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4642  *                              version from FW Image Header.
4643  * @ioc: per adapter object
4644  *
4645  * Return: 0 for success, non-zero for failure.
4646  */
4647         static int
4648 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4649 {
4650         Mpi2FWImageHeader_t *fw_img_hdr;
4651         Mpi26ComponentImageHeader_t *cmp_img_hdr;
4652         Mpi25FWUploadRequest_t *mpi_request;
4653         Mpi2FWUploadReply_t mpi_reply;
4654         int r = 0, issue_diag_reset = 0;
4655         u32  package_version = 0;
4656         void *fwpkg_data = NULL;
4657         dma_addr_t fwpkg_data_dma;
4658         u16 smid, ioc_status;
4659         size_t data_length;
4660
4661         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4662
4663         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4664                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4665                 return -EAGAIN;
4666         }
4667
4668         data_length = sizeof(Mpi2FWImageHeader_t);
4669         fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4670                         &fwpkg_data_dma, GFP_KERNEL);
4671         if (!fwpkg_data) {
4672                 ioc_err(ioc,
4673                     "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4674                         __FILE__, __LINE__, __func__);
4675                 return -ENOMEM;
4676         }
4677
4678         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4679         if (!smid) {
4680                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4681                 r = -EAGAIN;
4682                 goto out;
4683         }
4684
4685         ioc->base_cmds.status = MPT3_CMD_PENDING;
4686         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4687         ioc->base_cmds.smid = smid;
4688         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4689         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4690         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4691         mpi_request->ImageSize = cpu_to_le32(data_length);
4692         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4693                         data_length);
4694         init_completion(&ioc->base_cmds.done);
4695         ioc->put_smid_default(ioc, smid);
4696         /* Wait for 15 seconds */
4697         wait_for_completion_timeout(&ioc->base_cmds.done,
4698                         FW_IMG_HDR_READ_TIMEOUT*HZ);
4699         ioc_info(ioc, "%s: complete\n", __func__);
4700         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4701                 ioc_err(ioc, "%s: timeout\n", __func__);
4702                 _debug_dump_mf(mpi_request,
4703                                 sizeof(Mpi25FWUploadRequest_t)/4);
4704                 issue_diag_reset = 1;
4705         } else {
4706                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4707                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4708                         memcpy(&mpi_reply, ioc->base_cmds.reply,
4709                                         sizeof(Mpi2FWUploadReply_t));
4710                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4711                                                 MPI2_IOCSTATUS_MASK;
4712                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4713                                 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4714                                 if (le32_to_cpu(fw_img_hdr->Signature) ==
4715                                     MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4716                                         cmp_img_hdr =
4717                                             (Mpi26ComponentImageHeader_t *)
4718                                             (fwpkg_data);
4719                                         package_version =
4720                                             le32_to_cpu(
4721                                             cmp_img_hdr->ApplicationSpecific);
4722                                 } else
4723                                         package_version =
4724                                             le32_to_cpu(
4725                                             fw_img_hdr->PackageVersion.Word);
4726                                 if (package_version)
4727                                         ioc_info(ioc,
4728                                         "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4729                                         ((package_version) & 0xFF000000) >> 24,
4730                                         ((package_version) & 0x00FF0000) >> 16,
4731                                         ((package_version) & 0x0000FF00) >> 8,
4732                                         (package_version) & 0x000000FF);
4733                         } else {
4734                                 _debug_dump_mf(&mpi_reply,
4735                                                 sizeof(Mpi2FWUploadReply_t)/4);
4736                         }
4737                 }
4738         }
4739         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4740 out:
4741         if (fwpkg_data)
4742                 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4743                                 fwpkg_data_dma);
4744         if (issue_diag_reset) {
4745                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4746                         return -EFAULT;
4747                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4748                         return -EFAULT;
4749                 r = -EAGAIN;
4750         }
4751         return r;
4752 }
4753
4754 /**
4755  * _base_display_ioc_capabilities - Display IOC's capabilities.
4756  * @ioc: per adapter object
4757  */
4758 static void
4759 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4760 {
4761         int i = 0;
4762         char desc[17] = {0};
4763         u32 iounit_pg1_flags;
4764         u32 bios_version;
4765
4766         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4767         strncpy(desc, ioc->manu_pg0.ChipName, 16);
4768         ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4769                  desc,
4770                  (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4771                  (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4772                  (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4773                  ioc->facts.FWVersion.Word & 0x000000FF,
4774                  ioc->pdev->revision,
4775                  (bios_version & 0xFF000000) >> 24,
4776                  (bios_version & 0x00FF0000) >> 16,
4777                  (bios_version & 0x0000FF00) >> 8,
4778                  bios_version & 0x000000FF);
4779
4780         _base_display_OEMs_branding(ioc);
4781
4782         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4783                 pr_info("%sNVMe", i ? "," : "");
4784                 i++;
4785         }
4786
4787         ioc_info(ioc, "Protocol=(");
4788
4789         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4790                 pr_cont("Initiator");
4791                 i++;
4792         }
4793
4794         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4795                 pr_cont("%sTarget", i ? "," : "");
4796                 i++;
4797         }
4798
4799         i = 0;
4800         pr_cont("), Capabilities=(");
4801
4802         if (!ioc->hide_ir_msg) {
4803                 if (ioc->facts.IOCCapabilities &
4804                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4805                         pr_cont("Raid");
4806                         i++;
4807                 }
4808         }
4809
4810         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4811                 pr_cont("%sTLR", i ? "," : "");
4812                 i++;
4813         }
4814
4815         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4816                 pr_cont("%sMulticast", i ? "," : "");
4817                 i++;
4818         }
4819
4820         if (ioc->facts.IOCCapabilities &
4821             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4822                 pr_cont("%sBIDI Target", i ? "," : "");
4823                 i++;
4824         }
4825
4826         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4827                 pr_cont("%sEEDP", i ? "," : "");
4828                 i++;
4829         }
4830
4831         if (ioc->facts.IOCCapabilities &
4832             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4833                 pr_cont("%sSnapshot Buffer", i ? "," : "");
4834                 i++;
4835         }
4836
4837         if (ioc->facts.IOCCapabilities &
4838             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4839                 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4840                 i++;
4841         }
4842
4843         if (ioc->facts.IOCCapabilities &
4844             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4845                 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4846                 i++;
4847         }
4848
4849         if (ioc->facts.IOCCapabilities &
4850             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4851                 pr_cont("%sTask Set Full", i ? "," : "");
4852                 i++;
4853         }
4854
4855         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4856         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4857                 pr_cont("%sNCQ", i ? "," : "");
4858                 i++;
4859         }
4860
4861         pr_cont(")\n");
4862 }
4863
4864 /**
4865  * mpt3sas_base_update_missing_delay - change the missing delay timers
4866  * @ioc: per adapter object
4867  * @device_missing_delay: amount of time till device is reported missing
4868  * @io_missing_delay: interval IO is returned when there is a missing device
4869  *
4870  * Passed on the command line, this function will modify the device missing
4871  * delay, as well as the io missing delay. This should be called at driver
4872  * load time.
4873  */
4874 void
4875 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4876         u16 device_missing_delay, u8 io_missing_delay)
4877 {
4878         u16 dmd, dmd_new, dmd_orignal;
4879         u8 io_missing_delay_original;
4880         u16 sz;
4881         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4882         Mpi2ConfigReply_t mpi_reply;
4883         u8 num_phys = 0;
4884         u16 ioc_status;
4885
4886         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4887         if (!num_phys)
4888                 return;
4889
4890         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4891             sizeof(Mpi2SasIOUnit1PhyData_t));
4892         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4893         if (!sas_iounit_pg1) {
4894                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4895                         __FILE__, __LINE__, __func__);
4896                 goto out;
4897         }
4898         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4899             sas_iounit_pg1, sz))) {
4900                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4901                         __FILE__, __LINE__, __func__);
4902                 goto out;
4903         }
4904         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4905             MPI2_IOCSTATUS_MASK;
4906         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4907                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4908                         __FILE__, __LINE__, __func__);
4909                 goto out;
4910         }
4911
4912         /* device missing delay */
4913         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4914         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4915                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4916         else
4917                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4918         dmd_orignal = dmd;
4919         if (device_missing_delay > 0x7F) {
4920                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4921                     device_missing_delay;
4922                 dmd = dmd / 16;
4923                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4924         } else
4925                 dmd = device_missing_delay;
4926         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4927
4928         /* io missing delay */
4929         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4930         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4931
4932         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4933             sz)) {
4934                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4935                         dmd_new = (dmd &
4936                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4937                 else
4938                         dmd_new =
4939                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4940                 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4941                          dmd_orignal, dmd_new);
4942                 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4943                          io_missing_delay_original,
4944                          io_missing_delay);
4945                 ioc->device_missing_delay = dmd_new;
4946                 ioc->io_missing_delay = io_missing_delay;
4947         }
4948
4949 out:
4950         kfree(sas_iounit_pg1);
4951 }
4952
4953 /**
4954  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4955  *    according to performance mode.
4956  * @ioc : per adapter object
4957  *
4958  * Return: zero on success; otherwise return EAGAIN error code asking the
4959  * caller to retry.
4960  */
4961 static int
4962 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4963 {
4964         Mpi2IOCPage1_t ioc_pg1;
4965         Mpi2ConfigReply_t mpi_reply;
4966         int rc;
4967
4968         rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4969         if (rc)
4970                 return rc;
4971         memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4972
4973         switch (perf_mode) {
4974         case MPT_PERF_MODE_DEFAULT:
4975         case MPT_PERF_MODE_BALANCED:
4976                 if (ioc->high_iops_queues) {
4977                         ioc_info(ioc,
4978                                 "Enable interrupt coalescing only for first\t"
4979                                 "%d reply queues\n",
4980                                 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4981                         /*
4982                          * If 31st bit is zero then interrupt coalescing is
4983                          * enabled for all reply descriptor post queues.
4984                          * If 31st bit is set to one then user can
4985                          * enable/disable interrupt coalescing on per reply
4986                          * descriptor post queue group(8) basis. So to enable
4987                          * interrupt coalescing only on first reply descriptor
4988                          * post queue group 31st bit and zero th bit is enabled.
4989                          */
4990                         ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4991                             ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4992                         rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4993                         if (rc)
4994                                 return rc;
4995                         ioc_info(ioc, "performance mode: balanced\n");
4996                         return 0;
4997                 }
4998                 fallthrough;
4999         case MPT_PERF_MODE_LATENCY:
5000                 /*
5001                  * Enable interrupt coalescing on all reply queues
5002                  * with timeout value 0xA
5003                  */
5004                 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5005                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5006                 ioc_pg1.ProductSpecific = 0;
5007                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5008                 if (rc)
5009                         return rc;
5010                 ioc_info(ioc, "performance mode: latency\n");
5011                 break;
5012         case MPT_PERF_MODE_IOPS:
5013                 /*
5014                  * Enable interrupt coalescing on all reply queues.
5015                  */
5016                 ioc_info(ioc,
5017                     "performance mode: iops with coalescing timeout: 0x%x\n",
5018                     le32_to_cpu(ioc_pg1.CoalescingTimeout));
5019                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5020                 ioc_pg1.ProductSpecific = 0;
5021                 rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5022                 if (rc)
5023                         return rc;
5024                 break;
5025         }
5026         return 0;
5027 }
5028
5029 /**
5030  * _base_get_event_diag_triggers - get event diag trigger values from
5031  *                              persistent pages
5032  * @ioc : per adapter object
5033  *
5034  * Return: nothing.
5035  */
5036 static int
5037 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5038 {
5039         Mpi26DriverTriggerPage2_t trigger_pg2;
5040         struct SL_WH_EVENT_TRIGGER_T *event_tg;
5041         MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5042         Mpi2ConfigReply_t mpi_reply;
5043         int r = 0, i = 0;
5044         u16 count = 0;
5045         u16 ioc_status;
5046
5047         r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5048             &trigger_pg2);
5049         if (r)
5050                 return r;
5051
5052         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5053             MPI2_IOCSTATUS_MASK;
5054         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5055                 dinitprintk(ioc,
5056                     ioc_err(ioc,
5057                     "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5058                    __func__, ioc_status));
5059                 return 0;
5060         }
5061
5062         if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5063                 count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5064                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5065                 ioc->diag_trigger_event.ValidEntries = count;
5066
5067                 event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5068                 mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5069                 for (i = 0; i < count; i++) {
5070                         event_tg->EventValue = le16_to_cpu(
5071                             mpi_event_tg->MPIEventCode);
5072                         event_tg->LogEntryQualifier = le16_to_cpu(
5073                             mpi_event_tg->MPIEventCodeSpecific);
5074                         event_tg++;
5075                         mpi_event_tg++;
5076                 }
5077         }
5078         return 0;
5079 }
5080
5081 /**
5082  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5083  *                              persistent pages
5084  * @ioc : per adapter object
5085  *
5086  * Return: 0 on success; otherwise return failure status.
5087  */
5088 static int
5089 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5090 {
5091         Mpi26DriverTriggerPage3_t trigger_pg3;
5092         struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5093         MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5094         Mpi2ConfigReply_t mpi_reply;
5095         int r = 0, i = 0;
5096         u16 count = 0;
5097         u16 ioc_status;
5098
5099         r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5100             &trigger_pg3);
5101         if (r)
5102                 return r;
5103
5104         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5105             MPI2_IOCSTATUS_MASK;
5106         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5107                 dinitprintk(ioc,
5108                     ioc_err(ioc,
5109                     "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5110                     __func__, ioc_status));
5111                 return 0;
5112         }
5113
5114         if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5115                 count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5116                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5117                 ioc->diag_trigger_scsi.ValidEntries = count;
5118
5119                 scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5120                 mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5121                 for (i = 0; i < count; i++) {
5122                         scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5123                         scsi_tg->ASC = mpi_scsi_tg->ASC;
5124                         scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5125
5126                         scsi_tg++;
5127                         mpi_scsi_tg++;
5128                 }
5129         }
5130         return 0;
5131 }
5132
5133 /**
5134  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5135  *                              persistent pages
5136  * @ioc : per adapter object
5137  *
5138  * Return: 0 on success; otherwise return failure status.
5139  */
5140 static int
5141 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5142 {
5143         Mpi26DriverTriggerPage4_t trigger_pg4;
5144         struct SL_WH_MPI_TRIGGER_T *status_tg;
5145         MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5146         Mpi2ConfigReply_t mpi_reply;
5147         int r = 0, i = 0;
5148         u16 count = 0;
5149         u16 ioc_status;
5150
5151         r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5152             &trigger_pg4);
5153         if (r)
5154                 return r;
5155
5156         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5157             MPI2_IOCSTATUS_MASK;
5158         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5159                 dinitprintk(ioc,
5160                     ioc_err(ioc,
5161                     "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5162                     __func__, ioc_status));
5163                 return 0;
5164         }
5165
5166         if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5167                 count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5168                 count = min_t(u16, NUM_VALID_ENTRIES, count);
5169                 ioc->diag_trigger_mpi.ValidEntries = count;
5170
5171                 status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5172                 mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5173
5174                 for (i = 0; i < count; i++) {
5175                         status_tg->IOCStatus = le16_to_cpu(
5176                             mpi_status_tg->IOCStatus);
5177                         status_tg->IocLogInfo = le32_to_cpu(
5178                             mpi_status_tg->LogInfo);
5179
5180                         status_tg++;
5181                         mpi_status_tg++;
5182                 }
5183         }
5184         return 0;
5185 }
5186
5187 /**
5188  * _base_get_master_diag_triggers - get master diag trigger values from
5189  *                              persistent pages
5190  * @ioc : per adapter object
5191  *
5192  * Return: nothing.
5193  */
5194 static int
5195 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5196 {
5197         Mpi26DriverTriggerPage1_t trigger_pg1;
5198         Mpi2ConfigReply_t mpi_reply;
5199         int r;
5200         u16 ioc_status;
5201
5202         r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5203             &trigger_pg1);
5204         if (r)
5205                 return r;
5206
5207         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5208             MPI2_IOCSTATUS_MASK;
5209         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5210                 dinitprintk(ioc,
5211                     ioc_err(ioc,
5212                     "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5213                    __func__, ioc_status));
5214                 return 0;
5215         }
5216
5217         if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5218                 ioc->diag_trigger_master.MasterData |=
5219                     le32_to_cpu(
5220                     trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5221         return 0;
5222 }
5223
5224 /**
5225  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5226  *                                      driver trigger pages or not
5227  * @ioc : per adapter object
5228  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5229  *
5230  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5231  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5232  * return EAGAIN if diag reset occurred due to FW fault and asking the
5233  * caller to retry the command.
5234  *
5235  */
5236 static int
5237 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5238 {
5239         Mpi26DriverTriggerPage0_t trigger_pg0;
5240         int r = 0;
5241         Mpi2ConfigReply_t mpi_reply;
5242         u16 ioc_status;
5243
5244         r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5245             &trigger_pg0);
5246         if (r)
5247                 return r;
5248
5249         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5250             MPI2_IOCSTATUS_MASK;
5251         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5252                 return -EFAULT;
5253
5254         *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5255         return 0;
5256 }
5257
5258 /**
5259  * _base_get_diag_triggers - Retrieve diag trigger values from
5260  *                              persistent pages.
5261  * @ioc : per adapter object
5262  *
5263  * Return: zero on success; otherwise return EAGAIN error codes
5264  * asking the caller to retry.
5265  */
5266 static int
5267 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5268 {
5269         int trigger_flags;
5270         int r;
5271
5272         /*
5273          * Default setting of master trigger.
5274          */
5275         ioc->diag_trigger_master.MasterData =
5276             (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5277
5278         r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5279         if (r) {
5280                 if (r == -EAGAIN)
5281                         return r;
5282                 /*
5283                  * Don't go for error handling when FW doesn't support
5284                  * driver trigger pages.
5285                  */
5286                 return 0;
5287         }
5288
5289         ioc->supports_trigger_pages = 1;
5290
5291         /*
5292          * Retrieve master diag trigger values from driver trigger pg1
5293          * if master trigger bit enabled in TriggerFlags.
5294          */
5295         if ((u16)trigger_flags &
5296             MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5297                 r = _base_get_master_diag_triggers(ioc);
5298                 if (r)
5299                         return r;
5300         }
5301
5302         /*
5303          * Retrieve event diag trigger values from driver trigger pg2
5304          * if event trigger bit enabled in TriggerFlags.
5305          */
5306         if ((u16)trigger_flags &
5307             MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5308                 r = _base_get_event_diag_triggers(ioc);
5309                 if (r)
5310                         return r;
5311         }
5312
5313         /*
5314          * Retrieve scsi diag trigger values from driver trigger pg3
5315          * if scsi trigger bit enabled in TriggerFlags.
5316          */
5317         if ((u16)trigger_flags &
5318             MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5319                 r = _base_get_scsi_diag_triggers(ioc);
5320                 if (r)
5321                         return r;
5322         }
5323         /*
5324          * Retrieve mpi error diag trigger values from driver trigger pg4
5325          * if loginfo trigger bit enabled in TriggerFlags.
5326          */
5327         if ((u16)trigger_flags &
5328             MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5329                 r = _base_get_mpi_diag_triggers(ioc);
5330                 if (r)
5331                         return r;
5332         }
5333         return 0;
5334 }
5335
5336 /**
5337  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5338  *                      online FW update, in case updated FW supports driver
5339  *                      trigger pages.
5340  * @ioc : per adapter object
5341  *
5342  * Return: nothing.
5343  */
5344 static void
5345 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5346 {
5347
5348         if (ioc->diag_trigger_master.MasterData)
5349                 mpt3sas_config_update_driver_trigger_pg1(ioc,
5350                     &ioc->diag_trigger_master, 1);
5351
5352         if (ioc->diag_trigger_event.ValidEntries)
5353                 mpt3sas_config_update_driver_trigger_pg2(ioc,
5354                     &ioc->diag_trigger_event, 1);
5355
5356         if (ioc->diag_trigger_scsi.ValidEntries)
5357                 mpt3sas_config_update_driver_trigger_pg3(ioc,
5358                     &ioc->diag_trigger_scsi, 1);
5359
5360         if (ioc->diag_trigger_mpi.ValidEntries)
5361                 mpt3sas_config_update_driver_trigger_pg4(ioc,
5362                     &ioc->diag_trigger_mpi, 1);
5363 }
5364
5365 /**
5366  * _base_assign_fw_reported_qd  - Get FW reported QD for SAS/SATA devices.
5367  *                              - On failure set default QD values.
5368  * @ioc : per adapter object
5369  *
5370  * Returns 0 for success, non-zero for failure.
5371  *
5372  */
5373 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5374 {
5375         Mpi2ConfigReply_t mpi_reply;
5376         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5377         Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5378         u16 depth;
5379         int sz;
5380         int rc = 0;
5381
5382         ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5383         ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5384         ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5385         ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5386         if (!ioc->is_gen35_ioc)
5387                 goto out;
5388         /* sas iounit page 1 */
5389         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5390         sas_iounit_pg1 = kzalloc(sizeof(Mpi2SasIOUnitPage1_t), GFP_KERNEL);
5391         if (!sas_iounit_pg1) {
5392                 pr_err("%s: failure at %s:%d/%s()!\n",
5393                     ioc->name, __FILE__, __LINE__, __func__);
5394                 return rc;
5395         }
5396         rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5397             sas_iounit_pg1, sz);
5398         if (rc) {
5399                 pr_err("%s: failure at %s:%d/%s()!\n",
5400                     ioc->name, __FILE__, __LINE__, __func__);
5401                 goto out;
5402         }
5403
5404         depth = le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth);
5405         ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5406
5407         depth = le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth);
5408         ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5409
5410         depth = sas_iounit_pg1->SATAMaxQDepth;
5411         ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5412
5413         /* pcie iounit page 1 */
5414         rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5415             &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5416         if (rc) {
5417                 pr_err("%s: failure at %s:%d/%s()!\n",
5418                     ioc->name, __FILE__, __LINE__, __func__);
5419                 goto out;
5420         }
5421         ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5422             (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5423             MPT3SAS_NVME_QUEUE_DEPTH;
5424 out:
5425         dinitprintk(ioc, pr_err(
5426             "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5427             ioc->max_wideport_qd, ioc->max_narrowport_qd,
5428             ioc->max_sata_qd, ioc->max_nvme_qd));
5429         kfree(sas_iounit_pg1);
5430         return rc;
5431 }
5432
5433 /**
5434  * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1
5435  *
5436  * @ioc : per adapter object
5437  * @n   : ptr to the ATTO nvram structure
5438  * Return: 0 for success, non-zero for failure.
5439  */
5440 static int
5441 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc,
5442                             struct ATTO_SAS_NVRAM *n)
5443 {
5444         int r = -EINVAL;
5445         union ATTO_SAS_ADDRESS *s1;
5446         u32 len;
5447         u8 *pb;
5448         u8 ckSum;
5449
5450         /* validate nvram checksum */
5451         pb = (u8 *) n;
5452         ckSum = ATTO_SASNVR_CKSUM_SEED;
5453         len = sizeof(struct ATTO_SAS_NVRAM);
5454
5455         while (len--)
5456                 ckSum = ckSum + pb[len];
5457
5458         if (ckSum) {
5459                 ioc_err(ioc, "Invalid ATTO NVRAM checksum\n");
5460                 return r;
5461         }
5462
5463         s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr;
5464
5465         if (n->Signature[0] != 'E'
5466         || n->Signature[1] != 'S'
5467         || n->Signature[2] != 'A'
5468         || n->Signature[3] != 'S')
5469                 ioc_err(ioc, "Invalid ATTO NVRAM signature\n");
5470         else if (n->Version > ATTO_SASNVR_VERSION)
5471                 ioc_info(ioc, "Invalid ATTO NVRAM version");
5472         else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1))
5473                         || s1->b[0] != 0x50
5474                         || s1->b[1] != 0x01
5475                         || s1->b[2] != 0x08
5476                         || (s1->b[3] & 0xF0) != 0x60
5477                         || ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) {
5478                 ioc_err(ioc, "Invalid ATTO SAS address\n");
5479         } else
5480                 r = 0;
5481         return r;
5482 }
5483
5484 /**
5485  * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1
5486  *
5487  * @ioc : per adapter object
5488  * @*sas_addr : return sas address
5489  * Return: 0 for success, non-zero for failure.
5490  */
5491 static int
5492 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr)
5493 {
5494         Mpi2ManufacturingPage1_t mfg_pg1;
5495         Mpi2ConfigReply_t mpi_reply;
5496         struct ATTO_SAS_NVRAM *nvram;
5497         int r;
5498         __be64 addr;
5499
5500         r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1);
5501         if (r) {
5502                 ioc_err(ioc, "Failed to read manufacturing page 1\n");
5503                 return r;
5504         }
5505
5506         /* validate nvram */
5507         nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD;
5508         r = mpt3sas_atto_validate_nvram(ioc, nvram);
5509         if (r)
5510                 return r;
5511
5512         addr = *((__be64 *) nvram->SasAddr);
5513         sas_addr->q = cpu_to_le64(be64_to_cpu(addr));
5514         return r;
5515 }
5516
5517 /**
5518  * mpt3sas_atto_init - perform initializaion for ATTO branded
5519  *                                      adapter.
5520  * @ioc : per adapter object
5521  *5
5522  * Return: 0 for success, non-zero for failure.
5523  */
5524 static int
5525 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc)
5526 {
5527         int sz = 0;
5528         Mpi2BiosPage4_t *bios_pg4 = NULL;
5529         Mpi2ConfigReply_t mpi_reply;
5530         int r;
5531         int ix;
5532         union ATTO_SAS_ADDRESS sas_addr;
5533         union ATTO_SAS_ADDRESS temp;
5534         union ATTO_SAS_ADDRESS bias;
5535
5536         r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr);
5537         if (r)
5538                 return r;
5539
5540         /* get header first to get size */
5541         r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0);
5542         if (r) {
5543                 ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n");
5544                 return r;
5545         }
5546
5547         sz = mpi_reply.Header.PageLength * sizeof(u32);
5548         bios_pg4 = kzalloc(sz, GFP_KERNEL);
5549         if (!bios_pg4) {
5550                 ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n");
5551                 return -ENOMEM;
5552         }
5553
5554         /* read bios page 4 */
5555         r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5556         if (r) {
5557                 ioc_err(ioc, "Failed to read ATTO bios page 4\n");
5558                 goto out;
5559         }
5560
5561         /* Update bios page 4 with the ATTO WWID */
5562         bias.q = sas_addr.q;
5563         bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS;
5564
5565         for (ix = 0; ix < bios_pg4->NumPhys; ix++) {
5566                 temp.q = sas_addr.q;
5567                 temp.b[7] += ix;
5568                 bios_pg4->Phy[ix].ReassignmentWWID = temp.q;
5569                 bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q;
5570         }
5571         r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5572
5573 out:
5574         kfree(bios_pg4);
5575         return r;
5576 }
5577
5578 /**
5579  * _base_static_config_pages - static start of day config pages
5580  * @ioc: per adapter object
5581  */
5582 static int
5583 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5584 {
5585         Mpi2ConfigReply_t mpi_reply;
5586         u32 iounit_pg1_flags;
5587         int tg_flags = 0;
5588         int rc;
5589         ioc->nvme_abort_timeout = 30;
5590
5591         rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5592             &ioc->manu_pg0);
5593         if (rc)
5594                 return rc;
5595         if (ioc->ir_firmware) {
5596                 rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5597                     &ioc->manu_pg10);
5598                 if (rc)
5599                         return rc;
5600         }
5601
5602         if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) {
5603                 rc = mpt3sas_atto_init(ioc);
5604                 if (rc)
5605                         return rc;
5606         }
5607
5608         /*
5609          * Ensure correct T10 PI operation if vendor left EEDPTagMode
5610          * flag unset in NVDATA.
5611          */
5612         rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5613             &ioc->manu_pg11);
5614         if (rc)
5615                 return rc;
5616         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5617                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5618                     ioc->name);
5619                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
5620                 ioc->manu_pg11.EEDPTagMode |= 0x1;
5621                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5622                     &ioc->manu_pg11);
5623         }
5624         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5625                 ioc->tm_custom_handling = 1;
5626         else {
5627                 ioc->tm_custom_handling = 0;
5628                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5629                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5630                 else if (ioc->manu_pg11.NVMeAbortTO >
5631                                         NVME_TASK_ABORT_MAX_TIMEOUT)
5632                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5633                 else
5634                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5635         }
5636         ioc->time_sync_interval =
5637             ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5638         if (ioc->time_sync_interval) {
5639                 if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5640                         ioc->time_sync_interval =
5641                             ioc->time_sync_interval * SECONDS_PER_HOUR;
5642                 else
5643                         ioc->time_sync_interval =
5644                             ioc->time_sync_interval * SECONDS_PER_MIN;
5645                 dinitprintk(ioc, ioc_info(ioc,
5646                     "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5647                     ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5648                     MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5649         } else {
5650                 if (ioc->is_gen35_ioc)
5651                         ioc_warn(ioc,
5652                             "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5653         }
5654         rc = _base_assign_fw_reported_qd(ioc);
5655         if (rc)
5656                 return rc;
5657
5658         /*
5659          * ATTO doesn't use bios page 2 and 3 for bios settings.
5660          */
5661         if (ioc->pdev->vendor ==  MPI2_MFGPAGE_VENDORID_ATTO)
5662                 ioc->bios_pg3.BiosVersion = 0;
5663         else {
5664                 rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5665                 if (rc)
5666                         return rc;
5667                 rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5668                 if (rc)
5669                         return rc;
5670         }
5671
5672         rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5673         if (rc)
5674                 return rc;
5675         rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5676         if (rc)
5677                 return rc;
5678         rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5679         if (rc)
5680                 return rc;
5681         rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5682         if (rc)
5683                 return rc;
5684         _base_display_ioc_capabilities(ioc);
5685
5686         /*
5687          * Enable task_set_full handling in iounit_pg1 when the
5688          * facts capabilities indicate that its supported.
5689          */
5690         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5691         if ((ioc->facts.IOCCapabilities &
5692             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5693                 iounit_pg1_flags &=
5694                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5695         else
5696                 iounit_pg1_flags |=
5697                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5698         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5699         rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5700         if (rc)
5701                 return rc;
5702
5703         if (ioc->iounit_pg8.NumSensors)
5704                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5705         if (ioc->is_aero_ioc) {
5706                 rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5707                 if (rc)
5708                         return rc;
5709         }
5710         if (ioc->is_gen35_ioc) {
5711                 if (ioc->is_driver_loading) {
5712                         rc = _base_get_diag_triggers(ioc);
5713                         if (rc)
5714                                 return rc;
5715                 } else {
5716                         /*
5717                          * In case of online HBA FW update operation,
5718                          * check whether updated FW supports the driver trigger
5719                          * pages or not.
5720                          * - If previous FW has not supported driver trigger
5721                          *   pages and newer FW supports them then update these
5722                          *   pages with current diag trigger values.
5723                          * - If previous FW has supported driver trigger pages
5724                          *   and new FW doesn't support them then disable
5725                          *   support_trigger_pages flag.
5726                          */
5727                         _base_check_for_trigger_pages_support(ioc, &tg_flags);
5728                         if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5729                                 _base_update_diag_trigger_pages(ioc);
5730                         else if (ioc->supports_trigger_pages &&
5731                             tg_flags == -EFAULT)
5732                                 ioc->supports_trigger_pages = 0;
5733                 }
5734         }
5735         return 0;
5736 }
5737
5738 /**
5739  * mpt3sas_free_enclosure_list - release memory
5740  * @ioc: per adapter object
5741  *
5742  * Free memory allocated during enclosure add.
5743  */
5744 void
5745 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5746 {
5747         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5748
5749         /* Free enclosure list */
5750         list_for_each_entry_safe(enclosure_dev,
5751                         enclosure_dev_next, &ioc->enclosure_list, list) {
5752                 list_del(&enclosure_dev->list);
5753                 kfree(enclosure_dev);
5754         }
5755 }
5756
5757 /**
5758  * _base_release_memory_pools - release memory
5759  * @ioc: per adapter object
5760  *
5761  * Free memory allocated from _base_allocate_memory_pools.
5762  */
5763 static void
5764 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5765 {
5766         int i = 0;
5767         int j = 0;
5768         int dma_alloc_count = 0;
5769         struct chain_tracker *ct;
5770         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5771
5772         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5773
5774         if (ioc->request) {
5775                 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5776                     ioc->request,  ioc->request_dma);
5777                 dexitprintk(ioc,
5778                             ioc_info(ioc, "request_pool(0x%p): free\n",
5779                                      ioc->request));
5780                 ioc->request = NULL;
5781         }
5782
5783         if (ioc->sense) {
5784                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5785                 dma_pool_destroy(ioc->sense_dma_pool);
5786                 dexitprintk(ioc,
5787                             ioc_info(ioc, "sense_pool(0x%p): free\n",
5788                                      ioc->sense));
5789                 ioc->sense = NULL;
5790         }
5791
5792         if (ioc->reply) {
5793                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5794                 dma_pool_destroy(ioc->reply_dma_pool);
5795                 dexitprintk(ioc,
5796                             ioc_info(ioc, "reply_pool(0x%p): free\n",
5797                                      ioc->reply));
5798                 ioc->reply = NULL;
5799         }
5800
5801         if (ioc->reply_free) {
5802                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5803                     ioc->reply_free_dma);
5804                 dma_pool_destroy(ioc->reply_free_dma_pool);
5805                 dexitprintk(ioc,
5806                             ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5807                                      ioc->reply_free));
5808                 ioc->reply_free = NULL;
5809         }
5810
5811         if (ioc->reply_post) {
5812                 dma_alloc_count = DIV_ROUND_UP(count,
5813                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5814                 for (i = 0; i < count; i++) {
5815                         if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5816                             && dma_alloc_count) {
5817                                 if (ioc->reply_post[i].reply_post_free) {
5818                                         dma_pool_free(
5819                                             ioc->reply_post_free_dma_pool,
5820                                             ioc->reply_post[i].reply_post_free,
5821                                         ioc->reply_post[i].reply_post_free_dma);
5822                                         dexitprintk(ioc, ioc_info(ioc,
5823                                            "reply_post_free_pool(0x%p): free\n",
5824                                            ioc->reply_post[i].reply_post_free));
5825                                         ioc->reply_post[i].reply_post_free =
5826                                                                         NULL;
5827                                 }
5828                                 --dma_alloc_count;
5829                         }
5830                 }
5831                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
5832                 if (ioc->reply_post_free_array &&
5833                         ioc->rdpq_array_enable) {
5834                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
5835                             ioc->reply_post_free_array,
5836                             ioc->reply_post_free_array_dma);
5837                         ioc->reply_post_free_array = NULL;
5838                 }
5839                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5840                 kfree(ioc->reply_post);
5841         }
5842
5843         if (ioc->pcie_sgl_dma_pool) {
5844                 for (i = 0; i < ioc->scsiio_depth; i++) {
5845                         dma_pool_free(ioc->pcie_sgl_dma_pool,
5846                                         ioc->pcie_sg_lookup[i].pcie_sgl,
5847                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5848                         ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5849                 }
5850                 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5851         }
5852         if (ioc->config_page) {
5853                 dexitprintk(ioc,
5854                             ioc_info(ioc, "config_page(0x%p): free\n",
5855                                      ioc->config_page));
5856                 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5857                     ioc->config_page, ioc->config_page_dma);
5858         }
5859
5860         kfree(ioc->hpr_lookup);
5861         ioc->hpr_lookup = NULL;
5862         kfree(ioc->internal_lookup);
5863         ioc->internal_lookup = NULL;
5864         if (ioc->chain_lookup) {
5865                 for (i = 0; i < ioc->scsiio_depth; i++) {
5866                         for (j = ioc->chains_per_prp_buffer;
5867                             j < ioc->chains_needed_per_io; j++) {
5868                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5869                                 if (ct && ct->chain_buffer)
5870                                         dma_pool_free(ioc->chain_dma_pool,
5871                                                 ct->chain_buffer,
5872                                                 ct->chain_buffer_dma);
5873                         }
5874                         kfree(ioc->chain_lookup[i].chains_per_smid);
5875                 }
5876                 dma_pool_destroy(ioc->chain_dma_pool);
5877                 kfree(ioc->chain_lookup);
5878                 ioc->chain_lookup = NULL;
5879         }
5880
5881         kfree(ioc->io_queue_num);
5882         ioc->io_queue_num = NULL;
5883 }
5884
5885 /**
5886  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5887  *      having same upper 32bits in their base memory address.
5888  * @start_address: Base address of a reply queue set
5889  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5890  *
5891  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5892  * memory address, else 0.
5893  */
5894 static int
5895 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5896 {
5897         dma_addr_t end_address;
5898
5899         end_address = start_address + pool_sz - 1;
5900
5901         if (upper_32_bits(start_address) == upper_32_bits(end_address))
5902                 return 1;
5903         else
5904                 return 0;
5905 }
5906
5907 /**
5908  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5909  * @ioc: Adapter object
5910  *
5911  * Return: 0 for success, non-zero for failure.
5912  **/
5913 static inline int
5914 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5915 {
5916         int reduce_sz = 64;
5917
5918         if ((ioc->hba_queue_depth - reduce_sz) >
5919             (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5920                 ioc->hba_queue_depth -= reduce_sz;
5921                 return 0;
5922         } else
5923                 return -ENOMEM;
5924 }
5925
5926 /**
5927  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5928  *                      for pcie sgl pools.
5929  * @ioc: Adapter object
5930  * @sz: DMA Pool size
5931  *
5932  * Return: 0 for success, non-zero for failure.
5933  */
5934
5935 static int
5936 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5937 {
5938         int i = 0, j = 0;
5939         struct chain_tracker *ct;
5940
5941         ioc->pcie_sgl_dma_pool =
5942             dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5943             ioc->page_size, 0);
5944         if (!ioc->pcie_sgl_dma_pool) {
5945                 ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5946                 return -ENOMEM;
5947         }
5948
5949         ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5950         ioc->chains_per_prp_buffer =
5951             min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5952         for (i = 0; i < ioc->scsiio_depth; i++) {
5953                 ioc->pcie_sg_lookup[i].pcie_sgl =
5954                     dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5955                     &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5956                 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5957                         ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5958                         return -EAGAIN;
5959                 }
5960
5961                 if (!mpt3sas_check_same_4gb_region(
5962                     ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5963                         ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5964                             ioc->pcie_sg_lookup[i].pcie_sgl,
5965                             (unsigned long long)
5966                             ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5967                         ioc->use_32bit_dma = true;
5968                         return -EAGAIN;
5969                 }
5970
5971                 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5972                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
5973                         ct->chain_buffer =
5974                             ioc->pcie_sg_lookup[i].pcie_sgl +
5975                             (j * ioc->chain_segment_sz);
5976                         ct->chain_buffer_dma =
5977                             ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5978                             (j * ioc->chain_segment_sz);
5979                 }
5980         }
5981         dinitprintk(ioc, ioc_info(ioc,
5982             "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5983             ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5984         dinitprintk(ioc, ioc_info(ioc,
5985             "Number of chains can fit in a PRP page(%d)\n",
5986             ioc->chains_per_prp_buffer));
5987         return 0;
5988 }
5989
5990 /**
5991  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5992  *                      for chain dma pool.
5993  * @ioc: Adapter object
5994  * @sz: DMA Pool size
5995  *
5996  * Return: 0 for success, non-zero for failure.
5997  */
5998 static int
5999 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6000 {
6001         int i = 0, j = 0;
6002         struct chain_tracker *ctr;
6003
6004         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
6005             ioc->chain_segment_sz, 16, 0);
6006         if (!ioc->chain_dma_pool)
6007                 return -ENOMEM;
6008
6009         for (i = 0; i < ioc->scsiio_depth; i++) {
6010                 for (j = ioc->chains_per_prp_buffer;
6011                     j < ioc->chains_needed_per_io; j++) {
6012                         ctr = &ioc->chain_lookup[i].chains_per_smid[j];
6013                         ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
6014                             GFP_KERNEL, &ctr->chain_buffer_dma);
6015                         if (!ctr->chain_buffer)
6016                                 return -EAGAIN;
6017                         if (!mpt3sas_check_same_4gb_region(
6018                             ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
6019                                 ioc_err(ioc,
6020                                     "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
6021                                     ctr->chain_buffer,
6022                                     (unsigned long long)ctr->chain_buffer_dma);
6023                                 ioc->use_32bit_dma = true;
6024                                 return -EAGAIN;
6025                         }
6026                 }
6027         }
6028         dinitprintk(ioc, ioc_info(ioc,
6029             "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
6030             ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
6031             (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
6032             ioc->chain_segment_sz))/1024));
6033         return 0;
6034 }
6035
6036 /**
6037  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
6038  *                      for sense dma pool.
6039  * @ioc: Adapter object
6040  * @sz: DMA Pool size
6041  * Return: 0 for success, non-zero for failure.
6042  */
6043 static int
6044 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6045 {
6046         ioc->sense_dma_pool =
6047             dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
6048         if (!ioc->sense_dma_pool)
6049                 return -ENOMEM;
6050         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
6051             GFP_KERNEL, &ioc->sense_dma);
6052         if (!ioc->sense)
6053                 return -EAGAIN;
6054         if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
6055                 dinitprintk(ioc, pr_err(
6056                     "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
6057                     ioc->sense, (unsigned long long) ioc->sense_dma));
6058                 ioc->use_32bit_dma = true;
6059                 return -EAGAIN;
6060         }
6061         ioc_info(ioc,
6062             "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
6063             ioc->sense, (unsigned long long)ioc->sense_dma,
6064             ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
6065         return 0;
6066 }
6067
6068 /**
6069  * _base_allocate_reply_pool - Allocating DMA'able memory
6070  *                      for reply pool.
6071  * @ioc: Adapter object
6072  * @sz: DMA Pool size
6073  * Return: 0 for success, non-zero for failure.
6074  */
6075 static int
6076 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6077 {
6078         /* reply pool, 4 byte align */
6079         ioc->reply_dma_pool = dma_pool_create("reply pool",
6080             &ioc->pdev->dev, sz, 4, 0);
6081         if (!ioc->reply_dma_pool)
6082                 return -ENOMEM;
6083         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
6084             &ioc->reply_dma);
6085         if (!ioc->reply)
6086                 return -EAGAIN;
6087         if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
6088                 dinitprintk(ioc, pr_err(
6089                     "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
6090                     ioc->reply, (unsigned long long) ioc->reply_dma));
6091                 ioc->use_32bit_dma = true;
6092                 return -EAGAIN;
6093         }
6094         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
6095         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
6096         ioc_info(ioc,
6097             "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
6098             ioc->reply, (unsigned long long)ioc->reply_dma,
6099             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
6100         return 0;
6101 }
6102
6103 /**
6104  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
6105  *                      for reply free dma pool.
6106  * @ioc: Adapter object
6107  * @sz: DMA Pool size
6108  * Return: 0 for success, non-zero for failure.
6109  */
6110 static int
6111 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6112 {
6113         /* reply free queue, 16 byte align */
6114         ioc->reply_free_dma_pool = dma_pool_create(
6115             "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
6116         if (!ioc->reply_free_dma_pool)
6117                 return -ENOMEM;
6118         ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
6119             GFP_KERNEL, &ioc->reply_free_dma);
6120         if (!ioc->reply_free)
6121                 return -EAGAIN;
6122         if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
6123                 dinitprintk(ioc,
6124                     pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6125                     ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
6126                 ioc->use_32bit_dma = true;
6127                 return -EAGAIN;
6128         }
6129         memset(ioc->reply_free, 0, sz);
6130         dinitprintk(ioc, ioc_info(ioc,
6131             "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
6132             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
6133         dinitprintk(ioc, ioc_info(ioc,
6134             "reply_free_dma (0x%llx)\n",
6135             (unsigned long long)ioc->reply_free_dma));
6136         return 0;
6137 }
6138
6139 /**
6140  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6141  *                      for reply post free array.
6142  * @ioc: Adapter object
6143  * @reply_post_free_array_sz: DMA Pool size
6144  * Return: 0 for success, non-zero for failure.
6145  */
6146
6147 static int
6148 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6149         u32 reply_post_free_array_sz)
6150 {
6151         ioc->reply_post_free_array_dma_pool =
6152             dma_pool_create("reply_post_free_array pool",
6153             &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
6154         if (!ioc->reply_post_free_array_dma_pool)
6155                 return -ENOMEM;
6156         ioc->reply_post_free_array =
6157             dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6158             GFP_KERNEL, &ioc->reply_post_free_array_dma);
6159         if (!ioc->reply_post_free_array)
6160                 return -EAGAIN;
6161         if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
6162             reply_post_free_array_sz)) {
6163                 dinitprintk(ioc, pr_err(
6164                     "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6165                     ioc->reply_free,
6166                     (unsigned long long) ioc->reply_free_dma));
6167                 ioc->use_32bit_dma = true;
6168                 return -EAGAIN;
6169         }
6170         return 0;
6171 }
6172 /**
6173  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6174  *                     for reply queues.
6175  * @ioc: per adapter object
6176  * @sz: DMA Pool size
6177  * Return: 0 for success, non-zero for failure.
6178  */
6179 static int
6180 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6181 {
6182         int i = 0;
6183         u32 dma_alloc_count = 0;
6184         int reply_post_free_sz = ioc->reply_post_queue_depth *
6185                 sizeof(Mpi2DefaultReplyDescriptor_t);
6186         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6187
6188         ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6189                         GFP_KERNEL);
6190         if (!ioc->reply_post)
6191                 return -ENOMEM;
6192         /*
6193          *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6194          *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6195          *  be within 4GB boundary i.e reply queues in a set must have same
6196          *  upper 32-bits in their memory address. so here driver is allocating
6197          *  the DMA'able memory for reply queues according.
6198          *  Driver uses limitation of
6199          *  VENTURA_SERIES to manage INVADER_SERIES as well.
6200          */
6201         dma_alloc_count = DIV_ROUND_UP(count,
6202                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6203         ioc->reply_post_free_dma_pool =
6204                 dma_pool_create("reply_post_free pool",
6205                     &ioc->pdev->dev, sz, 16, 0);
6206         if (!ioc->reply_post_free_dma_pool)
6207                 return -ENOMEM;
6208         for (i = 0; i < count; i++) {
6209                 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6210                         ioc->reply_post[i].reply_post_free =
6211                             dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6212                                 GFP_KERNEL,
6213                                 &ioc->reply_post[i].reply_post_free_dma);
6214                         if (!ioc->reply_post[i].reply_post_free)
6215                                 return -ENOMEM;
6216                         /*
6217                          * Each set of RDPQ pool must satisfy 4gb boundary
6218                          * restriction.
6219                          * 1) Check if allocated resources for RDPQ pool are in
6220                          *      the same 4GB range.
6221                          * 2) If #1 is true, continue with 64 bit DMA.
6222                          * 3) If #1 is false, return 1. which means free all the
6223                          * resources and set DMA mask to 32 and allocate.
6224                          */
6225                         if (!mpt3sas_check_same_4gb_region(
6226                                 ioc->reply_post[i].reply_post_free_dma, sz)) {
6227                                 dinitprintk(ioc,
6228                                     ioc_err(ioc, "bad Replypost free pool(0x%p)"
6229                                     "reply_post_free_dma = (0x%llx)\n",
6230                                     ioc->reply_post[i].reply_post_free,
6231                                     (unsigned long long)
6232                                     ioc->reply_post[i].reply_post_free_dma));
6233                                 return -EAGAIN;
6234                         }
6235                         dma_alloc_count--;
6236
6237                 } else {
6238                         ioc->reply_post[i].reply_post_free =
6239                             (Mpi2ReplyDescriptorsUnion_t *)
6240                             ((long)ioc->reply_post[i-1].reply_post_free
6241                             + reply_post_free_sz);
6242                         ioc->reply_post[i].reply_post_free_dma =
6243                             (dma_addr_t)
6244                             (ioc->reply_post[i-1].reply_post_free_dma +
6245                             reply_post_free_sz);
6246                 }
6247         }
6248         return 0;
6249 }
6250
6251 /**
6252  * _base_allocate_memory_pools - allocate start of day memory pools
6253  * @ioc: per adapter object
6254  *
6255  * Return: 0 success, anything else error.
6256  */
6257 static int
6258 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6259 {
6260         struct mpt3sas_facts *facts;
6261         u16 max_sge_elements;
6262         u16 chains_needed_per_io;
6263         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6264         u32 retry_sz;
6265         u32 rdpq_sz = 0, sense_sz = 0;
6266         u16 max_request_credit, nvme_blocks_needed;
6267         unsigned short sg_tablesize;
6268         u16 sge_size;
6269         int i;
6270         int ret = 0, rc = 0;
6271
6272         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6273
6274
6275         retry_sz = 0;
6276         facts = &ioc->facts;
6277
6278         /* command line tunables for max sgl entries */
6279         if (max_sgl_entries != -1)
6280                 sg_tablesize = max_sgl_entries;
6281         else {
6282                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6283                         sg_tablesize = MPT2SAS_SG_DEPTH;
6284                 else
6285                         sg_tablesize = MPT3SAS_SG_DEPTH;
6286         }
6287
6288         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6289         if (reset_devices)
6290                 sg_tablesize = min_t(unsigned short, sg_tablesize,
6291                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
6292
6293         if (ioc->is_mcpu_endpoint)
6294                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6295         else {
6296                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6297                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6298                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6299                         sg_tablesize = min_t(unsigned short, sg_tablesize,
6300                                         SG_MAX_SEGMENTS);
6301                         ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6302                                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6303                 }
6304                 ioc->shost->sg_tablesize = sg_tablesize;
6305         }
6306
6307         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6308                 (facts->RequestCredit / 4));
6309         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6310                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6311                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
6312                         ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6313                                 facts->RequestCredit);
6314                         return -ENOMEM;
6315                 }
6316                 ioc->internal_depth = 10;
6317         }
6318
6319         ioc->hi_priority_depth = ioc->internal_depth - (5);
6320         /* command line tunables  for max controller queue depth */
6321         if (max_queue_depth != -1 && max_queue_depth != 0) {
6322                 max_request_credit = min_t(u16, max_queue_depth +
6323                         ioc->internal_depth, facts->RequestCredit);
6324                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6325                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6326         } else if (reset_devices)
6327                 max_request_credit = min_t(u16, facts->RequestCredit,
6328                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6329         else
6330                 max_request_credit = min_t(u16, facts->RequestCredit,
6331                     MAX_HBA_QUEUE_DEPTH);
6332
6333         /* Firmware maintains additional facts->HighPriorityCredit number of
6334          * credits for HiPriprity Request messages, so hba queue depth will be
6335          * sum of max_request_credit and high priority queue depth.
6336          */
6337         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6338
6339         /* request frame size */
6340         ioc->request_sz = facts->IOCRequestFrameSize * 4;
6341
6342         /* reply frame size */
6343         ioc->reply_sz = facts->ReplyFrameSize * 4;
6344
6345         /* chain segment size */
6346         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6347                 if (facts->IOCMaxChainSegmentSize)
6348                         ioc->chain_segment_sz =
6349                                         facts->IOCMaxChainSegmentSize *
6350                                         MAX_CHAIN_ELEMT_SZ;
6351                 else
6352                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6353                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6354                                                     MAX_CHAIN_ELEMT_SZ;
6355         } else
6356                 ioc->chain_segment_sz = ioc->request_sz;
6357
6358         /* calculate the max scatter element size */
6359         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6360
6361  retry_allocation:
6362         total_sz = 0;
6363         /* calculate number of sg elements left over in the 1st frame */
6364         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6365             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6366         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6367
6368         /* now do the same for a chain buffer */
6369         max_sge_elements = ioc->chain_segment_sz - sge_size;
6370         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6371
6372         /*
6373          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6374          */
6375         chains_needed_per_io = ((ioc->shost->sg_tablesize -
6376            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6377             + 1;
6378         if (chains_needed_per_io > facts->MaxChainDepth) {
6379                 chains_needed_per_io = facts->MaxChainDepth;
6380                 ioc->shost->sg_tablesize = min_t(u16,
6381                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6382                 * chains_needed_per_io), ioc->shost->sg_tablesize);
6383         }
6384         ioc->chains_needed_per_io = chains_needed_per_io;
6385
6386         /* reply free queue sizing - taking into account for 64 FW events */
6387         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6388
6389         /* mCPU manage single counters for simplicity */
6390         if (ioc->is_mcpu_endpoint)
6391                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6392         else {
6393                 /* calculate reply descriptor post queue depth */
6394                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6395                         ioc->reply_free_queue_depth +  1;
6396                 /* align the reply post queue on the next 16 count boundary */
6397                 if (ioc->reply_post_queue_depth % 16)
6398                         ioc->reply_post_queue_depth += 16 -
6399                                 (ioc->reply_post_queue_depth % 16);
6400         }
6401
6402         if (ioc->reply_post_queue_depth >
6403             facts->MaxReplyDescriptorPostQueueDepth) {
6404                 ioc->reply_post_queue_depth =
6405                                 facts->MaxReplyDescriptorPostQueueDepth -
6406                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
6407                 ioc->hba_queue_depth =
6408                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
6409                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6410         }
6411
6412         ioc_info(ioc,
6413             "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6414             "sge_per_io(%d), chains_per_io(%d)\n",
6415             ioc->max_sges_in_main_message,
6416             ioc->max_sges_in_chain_message,
6417             ioc->shost->sg_tablesize,
6418             ioc->chains_needed_per_io);
6419
6420         /* reply post queue, 16 byte align */
6421         reply_post_free_sz = ioc->reply_post_queue_depth *
6422             sizeof(Mpi2DefaultReplyDescriptor_t);
6423         rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6424         if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6425             || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6426                 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6427         ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6428         if (ret == -EAGAIN) {
6429                 /*
6430                  * Free allocated bad RDPQ memory pools.
6431                  * Change dma coherent mask to 32 bit and reallocate RDPQ
6432                  */
6433                 _base_release_memory_pools(ioc);
6434                 ioc->use_32bit_dma = true;
6435                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6436                         ioc_err(ioc,
6437                             "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6438                         return -ENODEV;
6439                 }
6440                 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6441                         return -ENOMEM;
6442         } else if (ret == -ENOMEM)
6443                 return -ENOMEM;
6444         total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6445             DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6446         ioc->scsiio_depth = ioc->hba_queue_depth -
6447             ioc->hi_priority_depth - ioc->internal_depth;
6448
6449         /* set the scsi host can_queue depth
6450          * with some internal commands that could be outstanding
6451          */
6452         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6453         dinitprintk(ioc,
6454                     ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6455                              ioc->shost->can_queue));
6456
6457         /* contiguous pool for request and chains, 16 byte align, one extra "
6458          * "frame for smid=0
6459          */
6460         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6461         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6462
6463         /* hi-priority queue */
6464         sz += (ioc->hi_priority_depth * ioc->request_sz);
6465
6466         /* internal queue */
6467         sz += (ioc->internal_depth * ioc->request_sz);
6468
6469         ioc->request_dma_sz = sz;
6470         ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6471                         &ioc->request_dma, GFP_KERNEL);
6472         if (!ioc->request) {
6473                 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6474                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6475                         ioc->request_sz, sz / 1024);
6476                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6477                         goto out;
6478                 retry_sz = 64;
6479                 ioc->hba_queue_depth -= retry_sz;
6480                 _base_release_memory_pools(ioc);
6481                 goto retry_allocation;
6482         }
6483
6484         if (retry_sz)
6485                 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6486                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
6487                         ioc->request_sz, sz / 1024);
6488
6489         /* hi-priority queue */
6490         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6491             ioc->request_sz);
6492         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6493             ioc->request_sz);
6494
6495         /* internal queue */
6496         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6497             ioc->request_sz);
6498         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6499             ioc->request_sz);
6500
6501         ioc_info(ioc,
6502             "request pool(0x%p) - dma(0x%llx): "
6503             "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6504             ioc->request, (unsigned long long) ioc->request_dma,
6505             ioc->hba_queue_depth, ioc->request_sz,
6506             (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6507
6508         total_sz += sz;
6509
6510         dinitprintk(ioc,
6511                     ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6512                              ioc->request, ioc->scsiio_depth));
6513
6514         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6515         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6516         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6517         if (!ioc->chain_lookup) {
6518                 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6519                 goto out;
6520         }
6521
6522         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6523         for (i = 0; i < ioc->scsiio_depth; i++) {
6524                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6525                 if (!ioc->chain_lookup[i].chains_per_smid) {
6526                         ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6527                         goto out;
6528                 }
6529         }
6530
6531         /* initialize hi-priority queue smid's */
6532         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6533             sizeof(struct request_tracker), GFP_KERNEL);
6534         if (!ioc->hpr_lookup) {
6535                 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6536                 goto out;
6537         }
6538         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6539         dinitprintk(ioc,
6540                     ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6541                              ioc->hi_priority,
6542                              ioc->hi_priority_depth, ioc->hi_priority_smid));
6543
6544         /* initialize internal queue smid's */
6545         ioc->internal_lookup = kcalloc(ioc->internal_depth,
6546             sizeof(struct request_tracker), GFP_KERNEL);
6547         if (!ioc->internal_lookup) {
6548                 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6549                 goto out;
6550         }
6551         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6552         dinitprintk(ioc,
6553                     ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6554                              ioc->internal,
6555                              ioc->internal_depth, ioc->internal_smid));
6556
6557         ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6558             sizeof(u16), GFP_KERNEL);
6559         if (!ioc->io_queue_num)
6560                 goto out;
6561         /*
6562          * The number of NVMe page sized blocks needed is:
6563          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6564          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6565          * that is placed in the main message frame.  8 is the size of each PRP
6566          * entry or PRP list pointer entry.  8 is subtracted from page_size
6567          * because of the PRP list pointer entry at the end of a page, so this
6568          * is not counted as a PRP entry.  The 1 added page is a round up.
6569          *
6570          * To avoid allocation failures due to the amount of memory that could
6571          * be required for NVMe PRP's, only each set of NVMe blocks will be
6572          * contiguous, so a new set is allocated for each possible I/O.
6573          */
6574
6575         ioc->chains_per_prp_buffer = 0;
6576         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6577                 nvme_blocks_needed =
6578                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6579                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6580                 nvme_blocks_needed++;
6581
6582                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6583                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6584                 if (!ioc->pcie_sg_lookup) {
6585                         ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6586                         goto out;
6587                 }
6588                 sz = nvme_blocks_needed * ioc->page_size;
6589                 rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6590                 if (rc == -ENOMEM)
6591                         return -ENOMEM;
6592                 else if (rc == -EAGAIN)
6593                         goto try_32bit_dma;
6594                 total_sz += sz * ioc->scsiio_depth;
6595         }
6596
6597         rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6598         if (rc == -ENOMEM)
6599                 return -ENOMEM;
6600         else if (rc == -EAGAIN)
6601                 goto try_32bit_dma;
6602         total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6603                 ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6604         dinitprintk(ioc,
6605             ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6606             ioc->chain_depth, ioc->chain_segment_sz,
6607             (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6608         /* sense buffers, 4 byte align */
6609         sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6610         rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6611         if (rc  == -ENOMEM)
6612                 return -ENOMEM;
6613         else if (rc == -EAGAIN)
6614                 goto try_32bit_dma;
6615         total_sz += sense_sz;
6616         ioc_info(ioc,
6617             "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6618             "element_size(%d), pool_size(%d kB)\n",
6619             ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6620             SCSI_SENSE_BUFFERSIZE, sz / 1024);
6621         /* reply pool, 4 byte align */
6622         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6623         rc = _base_allocate_reply_pool(ioc, sz);
6624         if (rc == -ENOMEM)
6625                 return -ENOMEM;
6626         else if (rc == -EAGAIN)
6627                 goto try_32bit_dma;
6628         total_sz += sz;
6629
6630         /* reply free queue, 16 byte align */
6631         sz = ioc->reply_free_queue_depth * 4;
6632         rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6633         if (rc  == -ENOMEM)
6634                 return -ENOMEM;
6635         else if (rc == -EAGAIN)
6636                 goto try_32bit_dma;
6637         dinitprintk(ioc,
6638                     ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6639                              (unsigned long long)ioc->reply_free_dma));
6640         total_sz += sz;
6641         if (ioc->rdpq_array_enable) {
6642                 reply_post_free_array_sz = ioc->reply_queue_count *
6643                     sizeof(Mpi2IOCInitRDPQArrayEntry);
6644                 rc = _base_allocate_reply_post_free_array(ioc,
6645                     reply_post_free_array_sz);
6646                 if (rc == -ENOMEM)
6647                         return -ENOMEM;
6648                 else if (rc == -EAGAIN)
6649                         goto try_32bit_dma;
6650         }
6651         ioc->config_page_sz = 512;
6652         ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6653                         ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6654         if (!ioc->config_page) {
6655                 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6656                 goto out;
6657         }
6658
6659         ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6660             ioc->config_page, (unsigned long long)ioc->config_page_dma,
6661             ioc->config_page_sz);
6662         total_sz += ioc->config_page_sz;
6663
6664         ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6665                  total_sz / 1024);
6666         ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6667                  ioc->shost->can_queue, facts->RequestCredit);
6668         ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6669                  ioc->shost->sg_tablesize);
6670         return 0;
6671
6672 try_32bit_dma:
6673         _base_release_memory_pools(ioc);
6674         if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6675                 /* Change dma coherent mask to 32 bit and reallocate */
6676                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6677                         pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6678                             pci_name(ioc->pdev));
6679                         return -ENODEV;
6680                 }
6681         } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6682                 return -ENOMEM;
6683         goto retry_allocation;
6684
6685  out:
6686         return -ENOMEM;
6687 }
6688
6689 /**
6690  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6691  * @ioc: Pointer to MPT_ADAPTER structure
6692  * @cooked: Request raw or cooked IOC state
6693  *
6694  * Return: all IOC Doorbell register bits if cooked==0, else just the
6695  * Doorbell bits in MPI_IOC_STATE_MASK.
6696  */
6697 u32
6698 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6699 {
6700         u32 s, sc;
6701
6702         s = ioc->base_readl(&ioc->chip->Doorbell);
6703         sc = s & MPI2_IOC_STATE_MASK;
6704         return cooked ? sc : s;
6705 }
6706
6707 /**
6708  * _base_wait_on_iocstate - waiting on a particular ioc state
6709  * @ioc: ?
6710  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6711  * @timeout: timeout in second
6712  *
6713  * Return: 0 for success, non-zero for failure.
6714  */
6715 static int
6716 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6717 {
6718         u32 count, cntdn;
6719         u32 current_state;
6720
6721         count = 0;
6722         cntdn = 1000 * timeout;
6723         do {
6724                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
6725                 if (current_state == ioc_state)
6726                         return 0;
6727                 if (count && current_state == MPI2_IOC_STATE_FAULT)
6728                         break;
6729                 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6730                         break;
6731
6732                 usleep_range(1000, 1500);
6733                 count++;
6734         } while (--cntdn);
6735
6736         return current_state;
6737 }
6738
6739 /**
6740  * _base_dump_reg_set - This function will print hexdump of register set.
6741  * @ioc: per adapter object
6742  *
6743  * Return: nothing.
6744  */
6745 static inline void
6746 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6747 {
6748         unsigned int i, sz = 256;
6749         u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6750
6751         ioc_info(ioc, "System Register set:\n");
6752         for (i = 0; i < (sz / sizeof(u32)); i++)
6753                 pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6754 }
6755
6756 /**
6757  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6758  * a write to the doorbell)
6759  * @ioc: per adapter object
6760  * @timeout: timeout in seconds
6761  *
6762  * Return: 0 for success, non-zero for failure.
6763  *
6764  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6765  */
6766
6767 static int
6768 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6769 {
6770         u32 cntdn, count;
6771         u32 int_status;
6772
6773         count = 0;
6774         cntdn = 1000 * timeout;
6775         do {
6776                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6777                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6778                         dhsprintk(ioc,
6779                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6780                                            __func__, count, timeout));
6781                         return 0;
6782                 }
6783
6784                 usleep_range(1000, 1500);
6785                 count++;
6786         } while (--cntdn);
6787
6788         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6789                 __func__, count, int_status);
6790         return -EFAULT;
6791 }
6792
6793 static int
6794 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6795 {
6796         u32 cntdn, count;
6797         u32 int_status;
6798
6799         count = 0;
6800         cntdn = 2000 * timeout;
6801         do {
6802                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6803                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6804                         dhsprintk(ioc,
6805                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6806                                            __func__, count, timeout));
6807                         return 0;
6808                 }
6809
6810                 udelay(500);
6811                 count++;
6812         } while (--cntdn);
6813
6814         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6815                 __func__, count, int_status);
6816         return -EFAULT;
6817
6818 }
6819
6820 /**
6821  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6822  * @ioc: per adapter object
6823  * @timeout: timeout in second
6824  *
6825  * Return: 0 for success, non-zero for failure.
6826  *
6827  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6828  * doorbell.
6829  */
6830 static int
6831 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6832 {
6833         u32 cntdn, count;
6834         u32 int_status;
6835         u32 doorbell;
6836
6837         count = 0;
6838         cntdn = 1000 * timeout;
6839         do {
6840                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6841                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6842                         dhsprintk(ioc,
6843                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6844                                            __func__, count, timeout));
6845                         return 0;
6846                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6847                         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6848                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6849                             MPI2_IOC_STATE_FAULT) {
6850                                 mpt3sas_print_fault_code(ioc, doorbell);
6851                                 return -EFAULT;
6852                         }
6853                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
6854                             MPI2_IOC_STATE_COREDUMP) {
6855                                 mpt3sas_print_coredump_info(ioc, doorbell);
6856                                 return -EFAULT;
6857                         }
6858                 } else if (int_status == 0xFFFFFFFF)
6859                         goto out;
6860
6861                 usleep_range(1000, 1500);
6862                 count++;
6863         } while (--cntdn);
6864
6865  out:
6866         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6867                 __func__, count, int_status);
6868         return -EFAULT;
6869 }
6870
6871 /**
6872  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6873  * @ioc: per adapter object
6874  * @timeout: timeout in second
6875  *
6876  * Return: 0 for success, non-zero for failure.
6877  */
6878 static int
6879 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6880 {
6881         u32 cntdn, count;
6882         u32 doorbell_reg;
6883
6884         count = 0;
6885         cntdn = 1000 * timeout;
6886         do {
6887                 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6888                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6889                         dhsprintk(ioc,
6890                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6891                                            __func__, count, timeout));
6892                         return 0;
6893                 }
6894
6895                 usleep_range(1000, 1500);
6896                 count++;
6897         } while (--cntdn);
6898
6899         ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6900                 __func__, count, doorbell_reg);
6901         return -EFAULT;
6902 }
6903
6904 /**
6905  * _base_send_ioc_reset - send doorbell reset
6906  * @ioc: per adapter object
6907  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6908  * @timeout: timeout in second
6909  *
6910  * Return: 0 for success, non-zero for failure.
6911  */
6912 static int
6913 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6914 {
6915         u32 ioc_state;
6916         int r = 0;
6917         unsigned long flags;
6918
6919         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6920                 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6921                 return -EFAULT;
6922         }
6923
6924         if (!(ioc->facts.IOCCapabilities &
6925            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6926                 return -EFAULT;
6927
6928         ioc_info(ioc, "sending message unit reset !!\n");
6929
6930         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6931             &ioc->chip->Doorbell);
6932         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6933                 r = -EFAULT;
6934                 goto out;
6935         }
6936
6937         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6938         if (ioc_state) {
6939                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6940                         __func__, ioc_state);
6941                 r = -EFAULT;
6942                 goto out;
6943         }
6944  out:
6945         if (r != 0) {
6946                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6947                 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6948                 /*
6949                  * Wait for IOC state CoreDump to clear only during
6950                  * HBA initialization & release time.
6951                  */
6952                 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6953                     MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6954                     ioc->fault_reset_work_q == NULL)) {
6955                         spin_unlock_irqrestore(
6956                             &ioc->ioc_reset_in_progress_lock, flags);
6957                         mpt3sas_print_coredump_info(ioc, ioc_state);
6958                         mpt3sas_base_wait_for_coredump_completion(ioc,
6959                             __func__);
6960                         spin_lock_irqsave(
6961                             &ioc->ioc_reset_in_progress_lock, flags);
6962                 }
6963                 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6964         }
6965         ioc_info(ioc, "message unit reset: %s\n",
6966                  r == 0 ? "SUCCESS" : "FAILED");
6967         return r;
6968 }
6969
6970 /**
6971  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6972  * @ioc: per adapter object
6973  * @timeout: timeout in seconds
6974  *
6975  * Return: Waits up to timeout seconds for the IOC to
6976  * become operational. Returns 0 if IOC is present
6977  * and operational; otherwise returns %-EFAULT.
6978  */
6979
6980 int
6981 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6982 {
6983         int wait_state_count = 0;
6984         u32 ioc_state;
6985
6986         do {
6987                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6988                 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6989                         break;
6990
6991                 /*
6992                  * Watchdog thread will be started after IOC Initialization, so
6993                  * no need to wait here for IOC state to become operational
6994                  * when IOC Initialization is on. Instead the driver will
6995                  * return ETIME status, so that calling function can issue
6996                  * diag reset operation and retry the command.
6997                  */
6998                 if (ioc->is_driver_loading)
6999                         return -ETIME;
7000
7001                 ssleep(1);
7002                 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
7003                                 __func__, ++wait_state_count);
7004         } while (--timeout);
7005         if (!timeout) {
7006                 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
7007                 return -EFAULT;
7008         }
7009         if (wait_state_count)
7010                 ioc_info(ioc, "ioc is operational\n");
7011         return 0;
7012 }
7013
7014 /**
7015  * _base_handshake_req_reply_wait - send request thru doorbell interface
7016  * @ioc: per adapter object
7017  * @request_bytes: request length
7018  * @request: pointer having request payload
7019  * @reply_bytes: reply length
7020  * @reply: pointer to reply payload
7021  * @timeout: timeout in second
7022  *
7023  * Return: 0 for success, non-zero for failure.
7024  */
7025 static int
7026 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
7027         u32 *request, int reply_bytes, u16 *reply, int timeout)
7028 {
7029         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
7030         int i;
7031         u8 failed;
7032         __le32 *mfp;
7033
7034         /* make sure doorbell is not in use */
7035         if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
7036                 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
7037                 return -EFAULT;
7038         }
7039
7040         /* clear pending doorbell interrupts from previous state changes */
7041         if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
7042             MPI2_HIS_IOC2SYS_DB_STATUS)
7043                 writel(0, &ioc->chip->HostInterruptStatus);
7044
7045         /* send message to ioc */
7046         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
7047             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
7048             &ioc->chip->Doorbell);
7049
7050         if ((_base_spin_on_doorbell_int(ioc, 5))) {
7051                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7052                         __LINE__);
7053                 return -EFAULT;
7054         }
7055         writel(0, &ioc->chip->HostInterruptStatus);
7056
7057         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
7058                 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
7059                         __LINE__);
7060                 return -EFAULT;
7061         }
7062
7063         /* send message 32-bits at a time */
7064         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
7065                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
7066                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
7067                         failed = 1;
7068         }
7069
7070         if (failed) {
7071                 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
7072                         __LINE__);
7073                 return -EFAULT;
7074         }
7075
7076         /* now wait for the reply */
7077         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
7078                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7079                         __LINE__);
7080                 return -EFAULT;
7081         }
7082
7083         /* read the first two 16-bits, it gives the total length of the reply */
7084         reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
7085             & MPI2_DOORBELL_DATA_MASK);
7086         writel(0, &ioc->chip->HostInterruptStatus);
7087         if ((_base_wait_for_doorbell_int(ioc, 5))) {
7088                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7089                         __LINE__);
7090                 return -EFAULT;
7091         }
7092         reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
7093             & MPI2_DOORBELL_DATA_MASK);
7094         writel(0, &ioc->chip->HostInterruptStatus);
7095
7096         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
7097                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
7098                         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7099                                 __LINE__);
7100                         return -EFAULT;
7101                 }
7102                 if (i >=  reply_bytes/2) /* overflow case */
7103                         ioc->base_readl(&ioc->chip->Doorbell);
7104                 else
7105                         reply[i] = le16_to_cpu(
7106                             ioc->base_readl(&ioc->chip->Doorbell)
7107                             & MPI2_DOORBELL_DATA_MASK);
7108                 writel(0, &ioc->chip->HostInterruptStatus);
7109         }
7110
7111         _base_wait_for_doorbell_int(ioc, 5);
7112         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
7113                 dhsprintk(ioc,
7114                           ioc_info(ioc, "doorbell is in use (line=%d)\n",
7115                                    __LINE__));
7116         }
7117         writel(0, &ioc->chip->HostInterruptStatus);
7118
7119         if (ioc->logging_level & MPT_DEBUG_INIT) {
7120                 mfp = (__le32 *)reply;
7121                 pr_info("\toffset:data\n");
7122                 for (i = 0; i < reply_bytes/4; i++)
7123                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7124                             le32_to_cpu(mfp[i]));
7125         }
7126         return 0;
7127 }
7128
7129 /**
7130  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
7131  * @ioc: per adapter object
7132  * @mpi_reply: the reply payload from FW
7133  * @mpi_request: the request payload sent to FW
7134  *
7135  * The SAS IO Unit Control Request message allows the host to perform low-level
7136  * operations, such as resets on the PHYs of the IO Unit, also allows the host
7137  * to obtain the IOC assigned device handles for a device if it has other
7138  * identifying information about the device, in addition allows the host to
7139  * remove IOC resources associated with the device.
7140  *
7141  * Return: 0 for success, non-zero for failure.
7142  */
7143 int
7144 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7145         Mpi2SasIoUnitControlReply_t *mpi_reply,
7146         Mpi2SasIoUnitControlRequest_t *mpi_request)
7147 {
7148         u16 smid;
7149         u8 issue_reset = 0;
7150         int rc;
7151         void *request;
7152
7153         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7154
7155         mutex_lock(&ioc->base_cmds.mutex);
7156
7157         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7158                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7159                 rc = -EAGAIN;
7160                 goto out;
7161         }
7162
7163         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7164         if (rc)
7165                 goto out;
7166
7167         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7168         if (!smid) {
7169                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7170                 rc = -EAGAIN;
7171                 goto out;
7172         }
7173
7174         rc = 0;
7175         ioc->base_cmds.status = MPT3_CMD_PENDING;
7176         request = mpt3sas_base_get_msg_frame(ioc, smid);
7177         ioc->base_cmds.smid = smid;
7178         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7179         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7180             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7181                 ioc->ioc_link_reset_in_progress = 1;
7182         init_completion(&ioc->base_cmds.done);
7183         ioc->put_smid_default(ioc, smid);
7184         wait_for_completion_timeout(&ioc->base_cmds.done,
7185             msecs_to_jiffies(10000));
7186         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7187             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7188             ioc->ioc_link_reset_in_progress)
7189                 ioc->ioc_link_reset_in_progress = 0;
7190         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7191                 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7192                     mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7193                     issue_reset);
7194                 goto issue_host_reset;
7195         }
7196         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7197                 memcpy(mpi_reply, ioc->base_cmds.reply,
7198                     sizeof(Mpi2SasIoUnitControlReply_t));
7199         else
7200                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7201         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7202         goto out;
7203
7204  issue_host_reset:
7205         if (issue_reset)
7206                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7207         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7208         rc = -EFAULT;
7209  out:
7210         mutex_unlock(&ioc->base_cmds.mutex);
7211         return rc;
7212 }
7213
7214 /**
7215  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7216  * @ioc: per adapter object
7217  * @mpi_reply: the reply payload from FW
7218  * @mpi_request: the request payload sent to FW
7219  *
7220  * The SCSI Enclosure Processor request message causes the IOC to
7221  * communicate with SES devices to control LED status signals.
7222  *
7223  * Return: 0 for success, non-zero for failure.
7224  */
7225 int
7226 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7227         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7228 {
7229         u16 smid;
7230         u8 issue_reset = 0;
7231         int rc;
7232         void *request;
7233
7234         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7235
7236         mutex_lock(&ioc->base_cmds.mutex);
7237
7238         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7239                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7240                 rc = -EAGAIN;
7241                 goto out;
7242         }
7243
7244         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7245         if (rc)
7246                 goto out;
7247
7248         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7249         if (!smid) {
7250                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7251                 rc = -EAGAIN;
7252                 goto out;
7253         }
7254
7255         rc = 0;
7256         ioc->base_cmds.status = MPT3_CMD_PENDING;
7257         request = mpt3sas_base_get_msg_frame(ioc, smid);
7258         ioc->base_cmds.smid = smid;
7259         memset(request, 0, ioc->request_sz);
7260         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7261         init_completion(&ioc->base_cmds.done);
7262         ioc->put_smid_default(ioc, smid);
7263         wait_for_completion_timeout(&ioc->base_cmds.done,
7264             msecs_to_jiffies(10000));
7265         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7266                 mpt3sas_check_cmd_timeout(ioc,
7267                     ioc->base_cmds.status, mpi_request,
7268                     sizeof(Mpi2SepRequest_t)/4, issue_reset);
7269                 goto issue_host_reset;
7270         }
7271         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7272                 memcpy(mpi_reply, ioc->base_cmds.reply,
7273                     sizeof(Mpi2SepReply_t));
7274         else
7275                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7276         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7277         goto out;
7278
7279  issue_host_reset:
7280         if (issue_reset)
7281                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7282         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7283         rc = -EFAULT;
7284  out:
7285         mutex_unlock(&ioc->base_cmds.mutex);
7286         return rc;
7287 }
7288
7289 /**
7290  * _base_get_port_facts - obtain port facts reply and save in ioc
7291  * @ioc: per adapter object
7292  * @port: ?
7293  *
7294  * Return: 0 for success, non-zero for failure.
7295  */
7296 static int
7297 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7298 {
7299         Mpi2PortFactsRequest_t mpi_request;
7300         Mpi2PortFactsReply_t mpi_reply;
7301         struct mpt3sas_port_facts *pfacts;
7302         int mpi_reply_sz, mpi_request_sz, r;
7303
7304         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7305
7306         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7307         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7308         memset(&mpi_request, 0, mpi_request_sz);
7309         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7310         mpi_request.PortNumber = port;
7311         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7312             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7313
7314         if (r != 0) {
7315                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7316                 return r;
7317         }
7318
7319         pfacts = &ioc->pfacts[port];
7320         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7321         pfacts->PortNumber = mpi_reply.PortNumber;
7322         pfacts->VP_ID = mpi_reply.VP_ID;
7323         pfacts->VF_ID = mpi_reply.VF_ID;
7324         pfacts->MaxPostedCmdBuffers =
7325             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7326
7327         return 0;
7328 }
7329
7330 /**
7331  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7332  * @ioc: per adapter object
7333  * @timeout:
7334  *
7335  * Return: 0 for success, non-zero for failure.
7336  */
7337 static int
7338 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7339 {
7340         u32 ioc_state;
7341         int rc;
7342
7343         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7344
7345         if (ioc->pci_error_recovery) {
7346                 dfailprintk(ioc,
7347                             ioc_info(ioc, "%s: host in pci error recovery\n",
7348                                      __func__));
7349                 return -EFAULT;
7350         }
7351
7352         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7353         dhsprintk(ioc,
7354                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7355                            __func__, ioc_state));
7356
7357         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7358             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7359                 return 0;
7360
7361         if (ioc_state & MPI2_DOORBELL_USED) {
7362                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7363                 goto issue_diag_reset;
7364         }
7365
7366         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7367                 mpt3sas_print_fault_code(ioc, ioc_state &
7368                     MPI2_DOORBELL_DATA_MASK);
7369                 goto issue_diag_reset;
7370         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7371             MPI2_IOC_STATE_COREDUMP) {
7372                 ioc_info(ioc,
7373                     "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7374                     __func__, ioc_state);
7375                 return -EFAULT;
7376         }
7377
7378         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7379         if (ioc_state) {
7380                 dfailprintk(ioc,
7381                             ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7382                                      __func__, ioc_state));
7383                 return -EFAULT;
7384         }
7385
7386  issue_diag_reset:
7387         rc = _base_diag_reset(ioc);
7388         return rc;
7389 }
7390
7391 /**
7392  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7393  * @ioc: per adapter object
7394  *
7395  * Return: 0 for success, non-zero for failure.
7396  */
7397 static int
7398 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7399 {
7400         Mpi2IOCFactsRequest_t mpi_request;
7401         Mpi2IOCFactsReply_t mpi_reply;
7402         struct mpt3sas_facts *facts;
7403         int mpi_reply_sz, mpi_request_sz, r;
7404
7405         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7406
7407         r = _base_wait_for_iocstate(ioc, 10);
7408         if (r) {
7409                 dfailprintk(ioc,
7410                             ioc_info(ioc, "%s: failed getting to correct state\n",
7411                                      __func__));
7412                 return r;
7413         }
7414         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7415         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7416         memset(&mpi_request, 0, mpi_request_sz);
7417         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7418         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7419             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7420
7421         if (r != 0) {
7422                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7423                 return r;
7424         }
7425
7426         facts = &ioc->facts;
7427         memset(facts, 0, sizeof(struct mpt3sas_facts));
7428         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7429         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7430         facts->VP_ID = mpi_reply.VP_ID;
7431         facts->VF_ID = mpi_reply.VF_ID;
7432         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7433         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7434         facts->WhoInit = mpi_reply.WhoInit;
7435         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7436         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7437         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7438             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7439                 ioc->combined_reply_queue = 0;
7440         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7441         facts->MaxReplyDescriptorPostQueueDepth =
7442             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7443         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7444         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7445         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7446                 ioc->ir_firmware = 1;
7447         if ((facts->IOCCapabilities &
7448               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7449                 ioc->rdpq_array_capable = 1;
7450         if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7451             && ioc->is_aero_ioc)
7452                 ioc->atomic_desc_capable = 1;
7453         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7454         facts->IOCRequestFrameSize =
7455             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7456         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7457                 facts->IOCMaxChainSegmentSize =
7458                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7459         }
7460         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7461         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7462         ioc->shost->max_id = -1;
7463         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7464         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7465         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7466         facts->HighPriorityCredit =
7467             le16_to_cpu(mpi_reply.HighPriorityCredit);
7468         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7469         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7470         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7471
7472         /*
7473          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7474          */
7475         ioc->page_size = 1 << facts->CurrentHostPageSize;
7476         if (ioc->page_size == 1) {
7477                 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7478                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7479         }
7480         dinitprintk(ioc,
7481                     ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7482                              facts->CurrentHostPageSize));
7483
7484         dinitprintk(ioc,
7485                     ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7486                              facts->RequestCredit, facts->MaxChainDepth));
7487         dinitprintk(ioc,
7488                     ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7489                              facts->IOCRequestFrameSize * 4,
7490                              facts->ReplyFrameSize * 4));
7491         return 0;
7492 }
7493
7494 /**
7495  * _base_send_ioc_init - send ioc_init to firmware
7496  * @ioc: per adapter object
7497  *
7498  * Return: 0 for success, non-zero for failure.
7499  */
7500 static int
7501 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7502 {
7503         Mpi2IOCInitRequest_t mpi_request;
7504         Mpi2IOCInitReply_t mpi_reply;
7505         int i, r = 0;
7506         ktime_t current_time;
7507         u16 ioc_status;
7508         u32 reply_post_free_array_sz = 0;
7509
7510         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7511
7512         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7513         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7514         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7515         mpi_request.VF_ID = 0; /* TODO */
7516         mpi_request.VP_ID = 0;
7517         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7518         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7519         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7520
7521         if (_base_is_controller_msix_enabled(ioc))
7522                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7523         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7524         mpi_request.ReplyDescriptorPostQueueDepth =
7525             cpu_to_le16(ioc->reply_post_queue_depth);
7526         mpi_request.ReplyFreeQueueDepth =
7527             cpu_to_le16(ioc->reply_free_queue_depth);
7528
7529         mpi_request.SenseBufferAddressHigh =
7530             cpu_to_le32((u64)ioc->sense_dma >> 32);
7531         mpi_request.SystemReplyAddressHigh =
7532             cpu_to_le32((u64)ioc->reply_dma >> 32);
7533         mpi_request.SystemRequestFrameBaseAddress =
7534             cpu_to_le64((u64)ioc->request_dma);
7535         mpi_request.ReplyFreeQueueAddress =
7536             cpu_to_le64((u64)ioc->reply_free_dma);
7537
7538         if (ioc->rdpq_array_enable) {
7539                 reply_post_free_array_sz = ioc->reply_queue_count *
7540                     sizeof(Mpi2IOCInitRDPQArrayEntry);
7541                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7542                 for (i = 0; i < ioc->reply_queue_count; i++)
7543                         ioc->reply_post_free_array[i].RDPQBaseAddress =
7544                             cpu_to_le64(
7545                                 (u64)ioc->reply_post[i].reply_post_free_dma);
7546                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7547                 mpi_request.ReplyDescriptorPostQueueAddress =
7548                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7549         } else {
7550                 mpi_request.ReplyDescriptorPostQueueAddress =
7551                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7552         }
7553
7554         /*
7555          * Set the flag to enable CoreDump state feature in IOC firmware.
7556          */
7557         mpi_request.ConfigurationFlags |=
7558             cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7559
7560         /* This time stamp specifies number of milliseconds
7561          * since epoch ~ midnight January 1, 1970.
7562          */
7563         current_time = ktime_get_real();
7564         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7565
7566         if (ioc->logging_level & MPT_DEBUG_INIT) {
7567                 __le32 *mfp;
7568                 int i;
7569
7570                 mfp = (__le32 *)&mpi_request;
7571                 ioc_info(ioc, "\toffset:data\n");
7572                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7573                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7574                             le32_to_cpu(mfp[i]));
7575         }
7576
7577         r = _base_handshake_req_reply_wait(ioc,
7578             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7579             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7580
7581         if (r != 0) {
7582                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7583                 return r;
7584         }
7585
7586         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7587         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7588             mpi_reply.IOCLogInfo) {
7589                 ioc_err(ioc, "%s: failed\n", __func__);
7590                 r = -EIO;
7591         }
7592
7593         /* Reset TimeSync Counter*/
7594         ioc->timestamp_update_count = 0;
7595         return r;
7596 }
7597
7598 /**
7599  * mpt3sas_port_enable_done - command completion routine for port enable
7600  * @ioc: per adapter object
7601  * @smid: system request message index
7602  * @msix_index: MSIX table index supplied by the OS
7603  * @reply: reply message frame(lower 32bit addr)
7604  *
7605  * Return: 1 meaning mf should be freed from _base_interrupt
7606  *          0 means the mf is freed from this function.
7607  */
7608 u8
7609 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7610         u32 reply)
7611 {
7612         MPI2DefaultReply_t *mpi_reply;
7613         u16 ioc_status;
7614
7615         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7616                 return 1;
7617
7618         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7619         if (!mpi_reply)
7620                 return 1;
7621
7622         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7623                 return 1;
7624
7625         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7626         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7627         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7628         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7629         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7630         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7631                 ioc->port_enable_failed = 1;
7632
7633         if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7634                 ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7635                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7636                         mpt3sas_port_enable_complete(ioc);
7637                         return 1;
7638                 } else {
7639                         ioc->start_scan_failed = ioc_status;
7640                         ioc->start_scan = 0;
7641                         return 1;
7642                 }
7643         }
7644         complete(&ioc->port_enable_cmds.done);
7645         return 1;
7646 }
7647
7648 /**
7649  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7650  * @ioc: per adapter object
7651  *
7652  * Return: 0 for success, non-zero for failure.
7653  */
7654 static int
7655 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7656 {
7657         Mpi2PortEnableRequest_t *mpi_request;
7658         Mpi2PortEnableReply_t *mpi_reply;
7659         int r = 0;
7660         u16 smid;
7661         u16 ioc_status;
7662
7663         ioc_info(ioc, "sending port enable !!\n");
7664
7665         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7666                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7667                 return -EAGAIN;
7668         }
7669
7670         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7671         if (!smid) {
7672                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7673                 return -EAGAIN;
7674         }
7675
7676         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7677         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7678         ioc->port_enable_cmds.smid = smid;
7679         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7680         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7681
7682         init_completion(&ioc->port_enable_cmds.done);
7683         ioc->put_smid_default(ioc, smid);
7684         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7685         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7686                 ioc_err(ioc, "%s: timeout\n", __func__);
7687                 _debug_dump_mf(mpi_request,
7688                     sizeof(Mpi2PortEnableRequest_t)/4);
7689                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7690                         r = -EFAULT;
7691                 else
7692                         r = -ETIME;
7693                 goto out;
7694         }
7695
7696         mpi_reply = ioc->port_enable_cmds.reply;
7697         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7698         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7699                 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7700                         __func__, ioc_status);
7701                 r = -EFAULT;
7702                 goto out;
7703         }
7704
7705  out:
7706         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7707         ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7708         return r;
7709 }
7710
7711 /**
7712  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7713  * @ioc: per adapter object
7714  *
7715  * Return: 0 for success, non-zero for failure.
7716  */
7717 int
7718 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7719 {
7720         Mpi2PortEnableRequest_t *mpi_request;
7721         u16 smid;
7722
7723         ioc_info(ioc, "sending port enable !!\n");
7724
7725         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7726                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7727                 return -EAGAIN;
7728         }
7729
7730         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7731         if (!smid) {
7732                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7733                 return -EAGAIN;
7734         }
7735         ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7736         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7737         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7738         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7739         ioc->port_enable_cmds.smid = smid;
7740         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7741         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7742
7743         ioc->put_smid_default(ioc, smid);
7744         return 0;
7745 }
7746
7747 /**
7748  * _base_determine_wait_on_discovery - desposition
7749  * @ioc: per adapter object
7750  *
7751  * Decide whether to wait on discovery to complete. Used to either
7752  * locate boot device, or report volumes ahead of physical devices.
7753  *
7754  * Return: 1 for wait, 0 for don't wait.
7755  */
7756 static int
7757 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7758 {
7759         /* We wait for discovery to complete if IR firmware is loaded.
7760          * The sas topology events arrive before PD events, so we need time to
7761          * turn on the bit in ioc->pd_handles to indicate PD
7762          * Also, it maybe required to report Volumes ahead of physical
7763          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7764          */
7765         if (ioc->ir_firmware)
7766                 return 1;
7767
7768         /* if no Bios, then we don't need to wait */
7769         if (!ioc->bios_pg3.BiosVersion)
7770                 return 0;
7771
7772         /* Bios is present, then we drop down here.
7773          *
7774          * If there any entries in the Bios Page 2, then we wait
7775          * for discovery to complete.
7776          */
7777
7778         /* Current Boot Device */
7779         if ((ioc->bios_pg2.CurrentBootDeviceForm &
7780             MPI2_BIOSPAGE2_FORM_MASK) ==
7781             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7782         /* Request Boot Device */
7783            (ioc->bios_pg2.ReqBootDeviceForm &
7784             MPI2_BIOSPAGE2_FORM_MASK) ==
7785             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7786         /* Alternate Request Boot Device */
7787            (ioc->bios_pg2.ReqAltBootDeviceForm &
7788             MPI2_BIOSPAGE2_FORM_MASK) ==
7789             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7790                 return 0;
7791
7792         return 1;
7793 }
7794
7795 /**
7796  * _base_unmask_events - turn on notification for this event
7797  * @ioc: per adapter object
7798  * @event: firmware event
7799  *
7800  * The mask is stored in ioc->event_masks.
7801  */
7802 static void
7803 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7804 {
7805         u32 desired_event;
7806
7807         if (event >= 128)
7808                 return;
7809
7810         desired_event = (1 << (event % 32));
7811
7812         if (event < 32)
7813                 ioc->event_masks[0] &= ~desired_event;
7814         else if (event < 64)
7815                 ioc->event_masks[1] &= ~desired_event;
7816         else if (event < 96)
7817                 ioc->event_masks[2] &= ~desired_event;
7818         else if (event < 128)
7819                 ioc->event_masks[3] &= ~desired_event;
7820 }
7821
7822 /**
7823  * _base_event_notification - send event notification
7824  * @ioc: per adapter object
7825  *
7826  * Return: 0 for success, non-zero for failure.
7827  */
7828 static int
7829 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7830 {
7831         Mpi2EventNotificationRequest_t *mpi_request;
7832         u16 smid;
7833         int r = 0;
7834         int i, issue_diag_reset = 0;
7835
7836         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7837
7838         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7839                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
7840                 return -EAGAIN;
7841         }
7842
7843         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7844         if (!smid) {
7845                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7846                 return -EAGAIN;
7847         }
7848         ioc->base_cmds.status = MPT3_CMD_PENDING;
7849         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7850         ioc->base_cmds.smid = smid;
7851         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7852         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7853         mpi_request->VF_ID = 0; /* TODO */
7854         mpi_request->VP_ID = 0;
7855         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7856                 mpi_request->EventMasks[i] =
7857                     cpu_to_le32(ioc->event_masks[i]);
7858         init_completion(&ioc->base_cmds.done);
7859         ioc->put_smid_default(ioc, smid);
7860         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7861         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7862                 ioc_err(ioc, "%s: timeout\n", __func__);
7863                 _debug_dump_mf(mpi_request,
7864                     sizeof(Mpi2EventNotificationRequest_t)/4);
7865                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
7866                         r = -EFAULT;
7867                 else
7868                         issue_diag_reset = 1;
7869
7870         } else
7871                 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7872         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7873
7874         if (issue_diag_reset) {
7875                 if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7876                         return -EFAULT;
7877                 if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7878                         return -EFAULT;
7879                 r = -EAGAIN;
7880         }
7881         return r;
7882 }
7883
7884 /**
7885  * mpt3sas_base_validate_event_type - validating event types
7886  * @ioc: per adapter object
7887  * @event_type: firmware event
7888  *
7889  * This will turn on firmware event notification when application
7890  * ask for that event. We don't mask events that are already enabled.
7891  */
7892 void
7893 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7894 {
7895         int i, j;
7896         u32 event_mask, desired_event;
7897         u8 send_update_to_fw;
7898
7899         for (i = 0, send_update_to_fw = 0; i <
7900             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7901                 event_mask = ~event_type[i];
7902                 desired_event = 1;
7903                 for (j = 0; j < 32; j++) {
7904                         if (!(event_mask & desired_event) &&
7905                             (ioc->event_masks[i] & desired_event)) {
7906                                 ioc->event_masks[i] &= ~desired_event;
7907                                 send_update_to_fw = 1;
7908                         }
7909                         desired_event = (desired_event << 1);
7910                 }
7911         }
7912
7913         if (!send_update_to_fw)
7914                 return;
7915
7916         mutex_lock(&ioc->base_cmds.mutex);
7917         _base_event_notification(ioc);
7918         mutex_unlock(&ioc->base_cmds.mutex);
7919 }
7920
7921 /**
7922  * _base_diag_reset - the "big hammer" start of day reset
7923  * @ioc: per adapter object
7924  *
7925  * Return: 0 for success, non-zero for failure.
7926  */
7927 static int
7928 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7929 {
7930         u32 host_diagnostic;
7931         u32 ioc_state;
7932         u32 count;
7933         u32 hcb_size;
7934
7935         ioc_info(ioc, "sending diag reset !!\n");
7936
7937         pci_cfg_access_lock(ioc->pdev);
7938
7939         drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7940
7941         count = 0;
7942         do {
7943                 /* Write magic sequence to WriteSequence register
7944                  * Loop until in diagnostic mode
7945                  */
7946                 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7947                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7948                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7949                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7950                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7951                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7952                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7953                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7954
7955                 /* wait 100 msec */
7956                 msleep(100);
7957
7958                 if (count++ > 20) {
7959                         ioc_info(ioc,
7960                             "Stop writing magic sequence after 20 retries\n");
7961                         _base_dump_reg_set(ioc);
7962                         goto out;
7963                 }
7964
7965                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7966                 drsprintk(ioc,
7967                           ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7968                                    count, host_diagnostic));
7969
7970         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7971
7972         hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7973
7974         drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7975         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7976              &ioc->chip->HostDiagnostic);
7977
7978         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7979         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7980
7981         /* Approximately 300 second max wait */
7982         for (count = 0; count < (300000000 /
7983                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7984
7985                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7986
7987                 if (host_diagnostic == 0xFFFFFFFF) {
7988                         ioc_info(ioc,
7989                             "Invalid host diagnostic register value\n");
7990                         _base_dump_reg_set(ioc);
7991                         goto out;
7992                 }
7993                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7994                         break;
7995
7996                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7997         }
7998
7999         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
8000
8001                 drsprintk(ioc,
8002                           ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
8003                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
8004                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
8005                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
8006
8007                 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
8008                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
8009                     &ioc->chip->HCBSize);
8010         }
8011
8012         drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
8013         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
8014             &ioc->chip->HostDiagnostic);
8015
8016         drsprintk(ioc,
8017                   ioc_info(ioc, "disable writes to the diagnostic register\n"));
8018         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
8019
8020         drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
8021         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
8022         if (ioc_state) {
8023                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8024                         __func__, ioc_state);
8025                 _base_dump_reg_set(ioc);
8026                 goto out;
8027         }
8028
8029         pci_cfg_access_unlock(ioc->pdev);
8030         ioc_info(ioc, "diag reset: SUCCESS\n");
8031         return 0;
8032
8033  out:
8034         pci_cfg_access_unlock(ioc->pdev);
8035         ioc_err(ioc, "diag reset: FAILED\n");
8036         return -EFAULT;
8037 }
8038
8039 /**
8040  * mpt3sas_base_make_ioc_ready - put controller in READY state
8041  * @ioc: per adapter object
8042  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8043  *
8044  * Return: 0 for success, non-zero for failure.
8045  */
8046 int
8047 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
8048 {
8049         u32 ioc_state;
8050         int rc;
8051         int count;
8052
8053         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8054
8055         if (ioc->pci_error_recovery)
8056                 return 0;
8057
8058         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8059         dhsprintk(ioc,
8060                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
8061                            __func__, ioc_state));
8062
8063         /* if in RESET state, it should move to READY state shortly */
8064         count = 0;
8065         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
8066                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
8067                     MPI2_IOC_STATE_READY) {
8068                         if (count++ == 10) {
8069                                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8070                                         __func__, ioc_state);
8071                                 return -EFAULT;
8072                         }
8073                         ssleep(1);
8074                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8075                 }
8076         }
8077
8078         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
8079                 return 0;
8080
8081         if (ioc_state & MPI2_DOORBELL_USED) {
8082                 ioc_info(ioc, "unexpected doorbell active!\n");
8083                 goto issue_diag_reset;
8084         }
8085
8086         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
8087                 mpt3sas_print_fault_code(ioc, ioc_state &
8088                     MPI2_DOORBELL_DATA_MASK);
8089                 goto issue_diag_reset;
8090         }
8091
8092         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
8093                 /*
8094                  * if host reset is invoked while watch dog thread is waiting
8095                  * for IOC state to be changed to Fault state then driver has
8096                  * to wait here for CoreDump state to clear otherwise reset
8097                  * will be issued to the FW and FW move the IOC state to
8098                  * reset state without copying the FW logs to coredump region.
8099                  */
8100                 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
8101                         mpt3sas_print_coredump_info(ioc, ioc_state &
8102                             MPI2_DOORBELL_DATA_MASK);
8103                         mpt3sas_base_wait_for_coredump_completion(ioc,
8104                             __func__);
8105                 }
8106                 goto issue_diag_reset;
8107         }
8108
8109         if (type == FORCE_BIG_HAMMER)
8110                 goto issue_diag_reset;
8111
8112         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
8113                 if (!(_base_send_ioc_reset(ioc,
8114                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
8115                         return 0;
8116         }
8117
8118  issue_diag_reset:
8119         rc = _base_diag_reset(ioc);
8120         return rc;
8121 }
8122
8123 /**
8124  * _base_make_ioc_operational - put controller in OPERATIONAL state
8125  * @ioc: per adapter object
8126  *
8127  * Return: 0 for success, non-zero for failure.
8128  */
8129 static int
8130 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
8131 {
8132         int r, i, index, rc;
8133         unsigned long   flags;
8134         u32 reply_address;
8135         u16 smid;
8136         struct _tr_list *delayed_tr, *delayed_tr_next;
8137         struct _sc_list *delayed_sc, *delayed_sc_next;
8138         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
8139         u8 hide_flag;
8140         struct adapter_reply_queue *reply_q;
8141         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
8142
8143         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8144
8145         /* clean the delayed target reset list */
8146         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8147             &ioc->delayed_tr_list, list) {
8148                 list_del(&delayed_tr->list);
8149                 kfree(delayed_tr);
8150         }
8151
8152
8153         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8154             &ioc->delayed_tr_volume_list, list) {
8155                 list_del(&delayed_tr->list);
8156                 kfree(delayed_tr);
8157         }
8158
8159         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8160             &ioc->delayed_sc_list, list) {
8161                 list_del(&delayed_sc->list);
8162                 kfree(delayed_sc);
8163         }
8164
8165         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8166             &ioc->delayed_event_ack_list, list) {
8167                 list_del(&delayed_event_ack->list);
8168                 kfree(delayed_event_ack);
8169         }
8170
8171         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8172
8173         /* hi-priority queue */
8174         INIT_LIST_HEAD(&ioc->hpr_free_list);
8175         smid = ioc->hi_priority_smid;
8176         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8177                 ioc->hpr_lookup[i].cb_idx = 0xFF;
8178                 ioc->hpr_lookup[i].smid = smid;
8179                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8180                     &ioc->hpr_free_list);
8181         }
8182
8183         /* internal queue */
8184         INIT_LIST_HEAD(&ioc->internal_free_list);
8185         smid = ioc->internal_smid;
8186         for (i = 0; i < ioc->internal_depth; i++, smid++) {
8187                 ioc->internal_lookup[i].cb_idx = 0xFF;
8188                 ioc->internal_lookup[i].smid = smid;
8189                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
8190                     &ioc->internal_free_list);
8191         }
8192
8193         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8194
8195         /* initialize Reply Free Queue */
8196         for (i = 0, reply_address = (u32)ioc->reply_dma ;
8197             i < ioc->reply_free_queue_depth ; i++, reply_address +=
8198             ioc->reply_sz) {
8199                 ioc->reply_free[i] = cpu_to_le32(reply_address);
8200                 if (ioc->is_mcpu_endpoint)
8201                         _base_clone_reply_to_sys_mem(ioc,
8202                                         reply_address, i);
8203         }
8204
8205         /* initialize reply queues */
8206         if (ioc->is_driver_loading)
8207                 _base_assign_reply_queues(ioc);
8208
8209         /* initialize Reply Post Free Queue */
8210         index = 0;
8211         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8212         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8213                 /*
8214                  * If RDPQ is enabled, switch to the next allocation.
8215                  * Otherwise advance within the contiguous region.
8216                  */
8217                 if (ioc->rdpq_array_enable) {
8218                         reply_q->reply_post_free =
8219                                 ioc->reply_post[index++].reply_post_free;
8220                 } else {
8221                         reply_q->reply_post_free = reply_post_free_contig;
8222                         reply_post_free_contig += ioc->reply_post_queue_depth;
8223                 }
8224
8225                 reply_q->reply_post_host_index = 0;
8226                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
8227                         reply_q->reply_post_free[i].Words =
8228                             cpu_to_le64(ULLONG_MAX);
8229                 if (!_base_is_controller_msix_enabled(ioc))
8230                         goto skip_init_reply_post_free_queue;
8231         }
8232  skip_init_reply_post_free_queue:
8233
8234         r = _base_send_ioc_init(ioc);
8235         if (r) {
8236                 /*
8237                  * No need to check IOC state for fault state & issue
8238                  * diag reset during host reset. This check is need
8239                  * only during driver load time.
8240                  */
8241                 if (!ioc->is_driver_loading)
8242                         return r;
8243
8244                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8245                 if (rc || (_base_send_ioc_init(ioc)))
8246                         return r;
8247         }
8248
8249         /* initialize reply free host index */
8250         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8251         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8252
8253         /* initialize reply post host index */
8254         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8255                 if (ioc->combined_reply_queue)
8256                         writel((reply_q->msix_index & 7)<<
8257                            MPI2_RPHI_MSIX_INDEX_SHIFT,
8258                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8259                 else
8260                         writel(reply_q->msix_index <<
8261                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
8262                                 &ioc->chip->ReplyPostHostIndex);
8263
8264                 if (!_base_is_controller_msix_enabled(ioc))
8265                         goto skip_init_reply_post_host_index;
8266         }
8267
8268  skip_init_reply_post_host_index:
8269
8270         mpt3sas_base_unmask_interrupts(ioc);
8271
8272         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8273                 r = _base_display_fwpkg_version(ioc);
8274                 if (r)
8275                         return r;
8276         }
8277
8278         r = _base_static_config_pages(ioc);
8279         if (r)
8280                 return r;
8281
8282         r = _base_event_notification(ioc);
8283         if (r)
8284                 return r;
8285
8286         if (!ioc->shost_recovery) {
8287
8288                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8289                     == 0x80) {
8290                         hide_flag = (u8) (
8291                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8292                             MFG_PAGE10_HIDE_SSDS_MASK);
8293                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8294                                 ioc->mfg_pg10_hide_flag = hide_flag;
8295                 }
8296
8297                 ioc->wait_for_discovery_to_complete =
8298                     _base_determine_wait_on_discovery(ioc);
8299
8300                 return r; /* scan_start and scan_finished support */
8301         }
8302
8303         r = _base_send_port_enable(ioc);
8304         if (r)
8305                 return r;
8306
8307         return r;
8308 }
8309
8310 /**
8311  * mpt3sas_base_free_resources - free resources controller resources
8312  * @ioc: per adapter object
8313  */
8314 void
8315 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8316 {
8317         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8318
8319         /* synchronizing freeing resource with pci_access_mutex lock */
8320         mutex_lock(&ioc->pci_access_mutex);
8321         if (ioc->chip_phys && ioc->chip) {
8322                 mpt3sas_base_mask_interrupts(ioc);
8323                 ioc->shost_recovery = 1;
8324                 mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8325                 ioc->shost_recovery = 0;
8326         }
8327
8328         mpt3sas_base_unmap_resources(ioc);
8329         mutex_unlock(&ioc->pci_access_mutex);
8330         return;
8331 }
8332
8333 /**
8334  * mpt3sas_base_attach - attach controller instance
8335  * @ioc: per adapter object
8336  *
8337  * Return: 0 for success, non-zero for failure.
8338  */
8339 int
8340 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8341 {
8342         int r, i, rc;
8343         int cpu_id, last_cpu_id = 0;
8344
8345         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8346
8347         /* setup cpu_msix_table */
8348         ioc->cpu_count = num_online_cpus();
8349         for_each_online_cpu(cpu_id)
8350                 last_cpu_id = cpu_id;
8351         ioc->cpu_msix_table_sz = last_cpu_id + 1;
8352         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8353         ioc->reply_queue_count = 1;
8354         if (!ioc->cpu_msix_table) {
8355                 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8356                 r = -ENOMEM;
8357                 goto out_free_resources;
8358         }
8359
8360         if (ioc->is_warpdrive) {
8361                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8362                     sizeof(resource_size_t *), GFP_KERNEL);
8363                 if (!ioc->reply_post_host_index) {
8364                         ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8365                         r = -ENOMEM;
8366                         goto out_free_resources;
8367                 }
8368         }
8369
8370         ioc->smp_affinity_enable = smp_affinity_enable;
8371
8372         ioc->rdpq_array_enable_assigned = 0;
8373         ioc->use_32bit_dma = false;
8374         ioc->dma_mask = 64;
8375         if (ioc->is_aero_ioc)
8376                 ioc->base_readl = &_base_readl_aero;
8377         else
8378                 ioc->base_readl = &_base_readl;
8379         r = mpt3sas_base_map_resources(ioc);
8380         if (r)
8381                 goto out_free_resources;
8382
8383         pci_set_drvdata(ioc->pdev, ioc->shost);
8384         r = _base_get_ioc_facts(ioc);
8385         if (r) {
8386                 rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8387                 if (rc || (_base_get_ioc_facts(ioc)))
8388                         goto out_free_resources;
8389         }
8390
8391         switch (ioc->hba_mpi_version_belonged) {
8392         case MPI2_VERSION:
8393                 ioc->build_sg_scmd = &_base_build_sg_scmd;
8394                 ioc->build_sg = &_base_build_sg;
8395                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8396                 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8397                 break;
8398         case MPI25_VERSION:
8399         case MPI26_VERSION:
8400                 /*
8401                  * In SAS3.0,
8402                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8403                  * Target Status - all require the IEEE formatted scatter gather
8404                  * elements.
8405                  */
8406                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8407                 ioc->build_sg = &_base_build_sg_ieee;
8408                 ioc->build_nvme_prp = &_base_build_nvme_prp;
8409                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8410                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8411                 if (ioc->high_iops_queues)
8412                         ioc->get_msix_index_for_smlio =
8413                                         &_base_get_high_iops_msix_index;
8414                 else
8415                         ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8416                 break;
8417         }
8418         if (ioc->atomic_desc_capable) {
8419                 ioc->put_smid_default = &_base_put_smid_default_atomic;
8420                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8421                 ioc->put_smid_fast_path =
8422                                 &_base_put_smid_fast_path_atomic;
8423                 ioc->put_smid_hi_priority =
8424                                 &_base_put_smid_hi_priority_atomic;
8425         } else {
8426                 ioc->put_smid_default = &_base_put_smid_default;
8427                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8428                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8429                 if (ioc->is_mcpu_endpoint)
8430                         ioc->put_smid_scsi_io =
8431                                 &_base_put_smid_mpi_ep_scsi_io;
8432                 else
8433                         ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8434         }
8435         /*
8436          * These function pointers for other requests that don't
8437          * the require IEEE scatter gather elements.
8438          *
8439          * For example Configuration Pages and SAS IOUNIT Control don't.
8440          */
8441         ioc->build_sg_mpi = &_base_build_sg;
8442         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8443
8444         r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8445         if (r)
8446                 goto out_free_resources;
8447
8448         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8449             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8450         if (!ioc->pfacts) {
8451                 r = -ENOMEM;
8452                 goto out_free_resources;
8453         }
8454
8455         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8456                 r = _base_get_port_facts(ioc, i);
8457                 if (r) {
8458                         rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8459                         if (rc || (_base_get_port_facts(ioc, i)))
8460                                 goto out_free_resources;
8461                 }
8462         }
8463
8464         r = _base_allocate_memory_pools(ioc);
8465         if (r)
8466                 goto out_free_resources;
8467
8468         if (irqpoll_weight > 0)
8469                 ioc->thresh_hold = irqpoll_weight;
8470         else
8471                 ioc->thresh_hold = ioc->hba_queue_depth/4;
8472
8473         _base_init_irqpolls(ioc);
8474         init_waitqueue_head(&ioc->reset_wq);
8475
8476         /* allocate memory pd handle bitmask list */
8477         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8478         if (ioc->facts.MaxDevHandle % 8)
8479                 ioc->pd_handles_sz++;
8480         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8481             GFP_KERNEL);
8482         if (!ioc->pd_handles) {
8483                 r = -ENOMEM;
8484                 goto out_free_resources;
8485         }
8486         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8487             GFP_KERNEL);
8488         if (!ioc->blocking_handles) {
8489                 r = -ENOMEM;
8490                 goto out_free_resources;
8491         }
8492
8493         /* allocate memory for pending OS device add list */
8494         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8495         if (ioc->facts.MaxDevHandle % 8)
8496                 ioc->pend_os_device_add_sz++;
8497         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8498             GFP_KERNEL);
8499         if (!ioc->pend_os_device_add) {
8500                 r = -ENOMEM;
8501                 goto out_free_resources;
8502         }
8503
8504         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8505         ioc->device_remove_in_progress =
8506                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8507         if (!ioc->device_remove_in_progress) {
8508                 r = -ENOMEM;
8509                 goto out_free_resources;
8510         }
8511
8512         ioc->fwfault_debug = mpt3sas_fwfault_debug;
8513
8514         /* base internal command bits */
8515         mutex_init(&ioc->base_cmds.mutex);
8516         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8517         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8518
8519         /* port_enable command bits */
8520         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8521         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8522
8523         /* transport internal command bits */
8524         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8525         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8526         mutex_init(&ioc->transport_cmds.mutex);
8527
8528         /* scsih internal command bits */
8529         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8530         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8531         mutex_init(&ioc->scsih_cmds.mutex);
8532
8533         /* task management internal command bits */
8534         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8535         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8536         mutex_init(&ioc->tm_cmds.mutex);
8537
8538         /* config page internal command bits */
8539         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8540         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8541         mutex_init(&ioc->config_cmds.mutex);
8542
8543         /* ctl module internal command bits */
8544         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8545         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8546         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8547         mutex_init(&ioc->ctl_cmds.mutex);
8548
8549         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8550             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8551             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8552             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8553                 r = -ENOMEM;
8554                 goto out_free_resources;
8555         }
8556
8557         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8558                 ioc->event_masks[i] = -1;
8559
8560         /* here we enable the events we care about */
8561         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8562         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8563         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8564         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8565         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8566         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8567         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8568         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8569         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8570         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8571         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8572         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8573         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8574         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8575                 if (ioc->is_gen35_ioc) {
8576                         _base_unmask_events(ioc,
8577                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8578                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8579                         _base_unmask_events(ioc,
8580                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8581                 }
8582         }
8583         r = _base_make_ioc_operational(ioc);
8584         if (r == -EAGAIN) {
8585                 r = _base_make_ioc_operational(ioc);
8586                 if (r)
8587                         goto out_free_resources;
8588         }
8589
8590         /*
8591          * Copy current copy of IOCFacts in prev_fw_facts
8592          * and it will be used during online firmware upgrade.
8593          */
8594         memcpy(&ioc->prev_fw_facts, &ioc->facts,
8595             sizeof(struct mpt3sas_facts));
8596
8597         ioc->non_operational_loop = 0;
8598         ioc->ioc_coredump_loop = 0;
8599         ioc->got_task_abort_from_ioctl = 0;
8600         return 0;
8601
8602  out_free_resources:
8603
8604         ioc->remove_host = 1;
8605
8606         mpt3sas_base_free_resources(ioc);
8607         _base_release_memory_pools(ioc);
8608         pci_set_drvdata(ioc->pdev, NULL);
8609         kfree(ioc->cpu_msix_table);
8610         if (ioc->is_warpdrive)
8611                 kfree(ioc->reply_post_host_index);
8612         kfree(ioc->pd_handles);
8613         kfree(ioc->blocking_handles);
8614         kfree(ioc->device_remove_in_progress);
8615         kfree(ioc->pend_os_device_add);
8616         kfree(ioc->tm_cmds.reply);
8617         kfree(ioc->transport_cmds.reply);
8618         kfree(ioc->scsih_cmds.reply);
8619         kfree(ioc->config_cmds.reply);
8620         kfree(ioc->base_cmds.reply);
8621         kfree(ioc->port_enable_cmds.reply);
8622         kfree(ioc->ctl_cmds.reply);
8623         kfree(ioc->ctl_cmds.sense);
8624         kfree(ioc->pfacts);
8625         ioc->ctl_cmds.reply = NULL;
8626         ioc->base_cmds.reply = NULL;
8627         ioc->tm_cmds.reply = NULL;
8628         ioc->scsih_cmds.reply = NULL;
8629         ioc->transport_cmds.reply = NULL;
8630         ioc->config_cmds.reply = NULL;
8631         ioc->pfacts = NULL;
8632         return r;
8633 }
8634
8635
8636 /**
8637  * mpt3sas_base_detach - remove controller instance
8638  * @ioc: per adapter object
8639  */
8640 void
8641 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8642 {
8643         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8644
8645         mpt3sas_base_stop_watchdog(ioc);
8646         mpt3sas_base_free_resources(ioc);
8647         _base_release_memory_pools(ioc);
8648         mpt3sas_free_enclosure_list(ioc);
8649         pci_set_drvdata(ioc->pdev, NULL);
8650         kfree(ioc->cpu_msix_table);
8651         if (ioc->is_warpdrive)
8652                 kfree(ioc->reply_post_host_index);
8653         kfree(ioc->pd_handles);
8654         kfree(ioc->blocking_handles);
8655         kfree(ioc->device_remove_in_progress);
8656         kfree(ioc->pend_os_device_add);
8657         kfree(ioc->pfacts);
8658         kfree(ioc->ctl_cmds.reply);
8659         kfree(ioc->ctl_cmds.sense);
8660         kfree(ioc->base_cmds.reply);
8661         kfree(ioc->port_enable_cmds.reply);
8662         kfree(ioc->tm_cmds.reply);
8663         kfree(ioc->transport_cmds.reply);
8664         kfree(ioc->scsih_cmds.reply);
8665         kfree(ioc->config_cmds.reply);
8666 }
8667
8668 /**
8669  * _base_pre_reset_handler - pre reset handler
8670  * @ioc: per adapter object
8671  */
8672 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8673 {
8674         mpt3sas_scsih_pre_reset_handler(ioc);
8675         mpt3sas_ctl_pre_reset_handler(ioc);
8676         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8677 }
8678
8679 /**
8680  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8681  * @ioc: per adapter object
8682  */
8683 static void
8684 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8685 {
8686         dtmprintk(ioc,
8687             ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8688         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8689                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
8690                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8691                 complete(&ioc->transport_cmds.done);
8692         }
8693         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8694                 ioc->base_cmds.status |= MPT3_CMD_RESET;
8695                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8696                 complete(&ioc->base_cmds.done);
8697         }
8698         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8699                 ioc->port_enable_failed = 1;
8700                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8701                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8702                 if (ioc->is_driver_loading) {
8703                         ioc->start_scan_failed =
8704                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
8705                         ioc->start_scan = 0;
8706                 } else {
8707                         complete(&ioc->port_enable_cmds.done);
8708                 }
8709         }
8710         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8711                 ioc->config_cmds.status |= MPT3_CMD_RESET;
8712                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8713                 ioc->config_cmds.smid = USHRT_MAX;
8714                 complete(&ioc->config_cmds.done);
8715         }
8716 }
8717
8718 /**
8719  * _base_clear_outstanding_commands - clear all outstanding commands
8720  * @ioc: per adapter object
8721  */
8722 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8723 {
8724         mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8725         mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8726         _base_clear_outstanding_mpt_commands(ioc);
8727 }
8728
8729 /**
8730  * _base_reset_done_handler - reset done handler
8731  * @ioc: per adapter object
8732  */
8733 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8734 {
8735         mpt3sas_scsih_reset_done_handler(ioc);
8736         mpt3sas_ctl_reset_done_handler(ioc);
8737         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8738 }
8739
8740 /**
8741  * mpt3sas_wait_for_commands_to_complete - reset controller
8742  * @ioc: Pointer to MPT_ADAPTER structure
8743  *
8744  * This function is waiting 10s for all pending commands to complete
8745  * prior to putting controller in reset.
8746  */
8747 void
8748 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8749 {
8750         u32 ioc_state;
8751
8752         ioc->pending_io_count = 0;
8753
8754         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8755         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8756                 return;
8757
8758         /* pending command count */
8759         ioc->pending_io_count = scsi_host_busy(ioc->shost);
8760
8761         if (!ioc->pending_io_count)
8762                 return;
8763
8764         /* wait for pending commands to complete */
8765         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8766 }
8767
8768 /**
8769  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8770  *     attributes during online firmware upgrade and update the corresponding
8771  *     IOC variables accordingly.
8772  *
8773  * @ioc: Pointer to MPT_ADAPTER structure
8774  */
8775 static int
8776 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8777 {
8778         u16 pd_handles_sz;
8779         void *pd_handles = NULL, *blocking_handles = NULL;
8780         void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8781         struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8782
8783         if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8784                 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8785                 if (ioc->facts.MaxDevHandle % 8)
8786                         pd_handles_sz++;
8787
8788                 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8789                     GFP_KERNEL);
8790                 if (!pd_handles) {
8791                         ioc_info(ioc,
8792                             "Unable to allocate the memory for pd_handles of sz: %d\n",
8793                             pd_handles_sz);
8794                         return -ENOMEM;
8795                 }
8796                 memset(pd_handles + ioc->pd_handles_sz, 0,
8797                     (pd_handles_sz - ioc->pd_handles_sz));
8798                 ioc->pd_handles = pd_handles;
8799
8800                 blocking_handles = krealloc(ioc->blocking_handles,
8801                     pd_handles_sz, GFP_KERNEL);
8802                 if (!blocking_handles) {
8803                         ioc_info(ioc,
8804                             "Unable to allocate the memory for "
8805                             "blocking_handles of sz: %d\n",
8806                             pd_handles_sz);
8807                         return -ENOMEM;
8808                 }
8809                 memset(blocking_handles + ioc->pd_handles_sz, 0,
8810                     (pd_handles_sz - ioc->pd_handles_sz));
8811                 ioc->blocking_handles = blocking_handles;
8812                 ioc->pd_handles_sz = pd_handles_sz;
8813
8814                 pend_os_device_add = krealloc(ioc->pend_os_device_add,
8815                     pd_handles_sz, GFP_KERNEL);
8816                 if (!pend_os_device_add) {
8817                         ioc_info(ioc,
8818                             "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8819                             pd_handles_sz);
8820                         return -ENOMEM;
8821                 }
8822                 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8823                     (pd_handles_sz - ioc->pend_os_device_add_sz));
8824                 ioc->pend_os_device_add = pend_os_device_add;
8825                 ioc->pend_os_device_add_sz = pd_handles_sz;
8826
8827                 device_remove_in_progress = krealloc(
8828                     ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8829                 if (!device_remove_in_progress) {
8830                         ioc_info(ioc,
8831                             "Unable to allocate the memory for "
8832                             "device_remove_in_progress of sz: %d\n "
8833                             , pd_handles_sz);
8834                         return -ENOMEM;
8835                 }
8836                 memset(device_remove_in_progress +
8837                     ioc->device_remove_in_progress_sz, 0,
8838                     (pd_handles_sz - ioc->device_remove_in_progress_sz));
8839                 ioc->device_remove_in_progress = device_remove_in_progress;
8840                 ioc->device_remove_in_progress_sz = pd_handles_sz;
8841         }
8842
8843         memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8844         return 0;
8845 }
8846
8847 /**
8848  * mpt3sas_base_hard_reset_handler - reset controller
8849  * @ioc: Pointer to MPT_ADAPTER structure
8850  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8851  *
8852  * Return: 0 for success, non-zero for failure.
8853  */
8854 int
8855 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8856         enum reset_type type)
8857 {
8858         int r;
8859         unsigned long flags;
8860         u32 ioc_state;
8861         u8 is_fault = 0, is_trigger = 0;
8862
8863         dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8864
8865         if (ioc->pci_error_recovery) {
8866                 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8867                 r = 0;
8868                 goto out_unlocked;
8869         }
8870
8871         if (mpt3sas_fwfault_debug)
8872                 mpt3sas_halt_firmware(ioc);
8873
8874         /* wait for an active reset in progress to complete */
8875         mutex_lock(&ioc->reset_in_progress_mutex);
8876
8877         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8878         ioc->shost_recovery = 1;
8879         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8880
8881         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8882             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8883             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8884             MPT3_DIAG_BUFFER_IS_RELEASED))) {
8885                 is_trigger = 1;
8886                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8887                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8888                     (ioc_state & MPI2_IOC_STATE_MASK) ==
8889                     MPI2_IOC_STATE_COREDUMP) {
8890                         is_fault = 1;
8891                         ioc->htb_rel.trigger_info_dwords[1] =
8892                             (ioc_state & MPI2_DOORBELL_DATA_MASK);
8893                 }
8894         }
8895         _base_pre_reset_handler(ioc);
8896         mpt3sas_wait_for_commands_to_complete(ioc);
8897         mpt3sas_base_mask_interrupts(ioc);
8898         mpt3sas_base_pause_mq_polling(ioc);
8899         r = mpt3sas_base_make_ioc_ready(ioc, type);
8900         if (r)
8901                 goto out;
8902         _base_clear_outstanding_commands(ioc);
8903
8904         /* If this hard reset is called while port enable is active, then
8905          * there is no reason to call make_ioc_operational
8906          */
8907         if (ioc->is_driver_loading && ioc->port_enable_failed) {
8908                 ioc->remove_host = 1;
8909                 r = -EFAULT;
8910                 goto out;
8911         }
8912         r = _base_get_ioc_facts(ioc);
8913         if (r)
8914                 goto out;
8915
8916         r = _base_check_ioc_facts_changes(ioc);
8917         if (r) {
8918                 ioc_info(ioc,
8919                     "Some of the parameters got changed in this new firmware"
8920                     " image and it requires system reboot\n");
8921                 goto out;
8922         }
8923         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8924                 panic("%s: Issue occurred with flashing controller firmware."
8925                       "Please reboot the system and ensure that the correct"
8926                       " firmware version is running\n", ioc->name);
8927
8928         r = _base_make_ioc_operational(ioc);
8929         if (!r)
8930                 _base_reset_done_handler(ioc);
8931
8932  out:
8933         ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8934
8935         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8936         ioc->shost_recovery = 0;
8937         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8938         ioc->ioc_reset_count++;
8939         mutex_unlock(&ioc->reset_in_progress_mutex);
8940         mpt3sas_base_resume_mq_polling(ioc);
8941
8942  out_unlocked:
8943         if ((r == 0) && is_trigger) {
8944                 if (is_fault)
8945                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8946                 else
8947                         mpt3sas_trigger_master(ioc,
8948                             MASTER_TRIGGER_ADAPTER_RESET);
8949         }
8950         dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8951         return r;
8952 }