treewide: kzalloc() -> kcalloc()
[linux-2.6-microblaze.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39                              u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
44 static void smp_task_timedout(struct timer_list *t)
45 {
46         struct sas_task_slow *slow = from_timer(slow, t, timer);
47         struct sas_task *task = slow->task;
48         unsigned long flags;
49
50         spin_lock_irqsave(&task->task_state_lock, flags);
51         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
52                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53         spin_unlock_irqrestore(&task->task_state_lock, flags);
54
55         complete(&task->slow_task->completion);
56 }
57
58 static void smp_task_done(struct sas_task *task)
59 {
60         if (!del_timer(&task->slow_task->timer))
61                 return;
62         complete(&task->slow_task->completion);
63 }
64
65 /* Give it some long enough timeout. In seconds. */
66 #define SMP_TIMEOUT 10
67
68 static int smp_execute_task_sg(struct domain_device *dev,
69                 struct scatterlist *req, struct scatterlist *resp)
70 {
71         int res, retry;
72         struct sas_task *task = NULL;
73         struct sas_internal *i =
74                 to_sas_internal(dev->port->ha->core.shost->transportt);
75
76         mutex_lock(&dev->ex_dev.cmd_mutex);
77         for (retry = 0; retry < 3; retry++) {
78                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
79                         res = -ECOMM;
80                         break;
81                 }
82
83                 task = sas_alloc_slow_task(GFP_KERNEL);
84                 if (!task) {
85                         res = -ENOMEM;
86                         break;
87                 }
88                 task->dev = dev;
89                 task->task_proto = dev->tproto;
90                 task->smp_task.smp_req = *req;
91                 task->smp_task.smp_resp = *resp;
92
93                 task->task_done = smp_task_done;
94
95                 task->slow_task->timer.function = smp_task_timedout;
96                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97                 add_timer(&task->slow_task->timer);
98
99                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100
101                 if (res) {
102                         del_timer(&task->slow_task->timer);
103                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
104                         break;
105                 }
106
107                 wait_for_completion(&task->slow_task->completion);
108                 res = -ECOMM;
109                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110                         SAS_DPRINTK("smp task timed out or aborted\n");
111                         i->dft->lldd_abort_task(task);
112                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113                                 SAS_DPRINTK("SMP task aborted and not done\n");
114                                 break;
115                         }
116                 }
117                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118                     task->task_status.stat == SAM_STAT_GOOD) {
119                         res = 0;
120                         break;
121                 }
122                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123                     task->task_status.stat == SAS_DATA_UNDERRUN) {
124                         /* no error, but return the number of bytes of
125                          * underrun */
126                         res = task->task_status.residual;
127                         break;
128                 }
129                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130                     task->task_status.stat == SAS_DATA_OVERRUN) {
131                         res = -EMSGSIZE;
132                         break;
133                 }
134                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
136                         break;
137                 else {
138                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139                                     "status 0x%x\n", __func__,
140                                     SAS_ADDR(dev->sas_addr),
141                                     task->task_status.resp,
142                                     task->task_status.stat);
143                         sas_free_task(task);
144                         task = NULL;
145                 }
146         }
147         mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149         BUG_ON(retry == 3 && task != NULL);
150         sas_free_task(task);
151         return res;
152 }
153
154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
155                             void *resp, int resp_size)
156 {
157         struct scatterlist req_sg;
158         struct scatterlist resp_sg;
159
160         sg_init_one(&req_sg, req, req_size);
161         sg_init_one(&resp_sg, resp, resp_size);
162         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
163 }
164
165 /* ---------- Allocations ---------- */
166
167 static inline void *alloc_smp_req(int size)
168 {
169         u8 *p = kzalloc(size, GFP_KERNEL);
170         if (p)
171                 p[0] = SMP_REQUEST;
172         return p;
173 }
174
175 static inline void *alloc_smp_resp(int size)
176 {
177         return kzalloc(size, GFP_KERNEL);
178 }
179
180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
181 {
182         switch (phy->routing_attr) {
183         case TABLE_ROUTING:
184                 if (dev->ex_dev.t2t_supp)
185                         return 'U';
186                 else
187                         return 'T';
188         case DIRECT_ROUTING:
189                 return 'D';
190         case SUBTRACTIVE_ROUTING:
191                 return 'S';
192         default:
193                 return '?';
194         }
195 }
196
197 static enum sas_device_type to_dev_type(struct discover_resp *dr)
198 {
199         /* This is detecting a failure to transmit initial dev to host
200          * FIS as described in section J.5 of sas-2 r16
201          */
202         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
203             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
204                 return SAS_SATA_PENDING;
205         else
206                 return dr->attached_dev_type;
207 }
208
209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
210 {
211         enum sas_device_type dev_type;
212         enum sas_linkrate linkrate;
213         u8 sas_addr[SAS_ADDR_SIZE];
214         struct smp_resp *resp = rsp;
215         struct discover_resp *dr = &resp->disc;
216         struct sas_ha_struct *ha = dev->port->ha;
217         struct expander_device *ex = &dev->ex_dev;
218         struct ex_phy *phy = &ex->ex_phy[phy_id];
219         struct sas_rphy *rphy = dev->rphy;
220         bool new_phy = !phy->phy;
221         char *type;
222
223         if (new_phy) {
224                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
225                         return;
226                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
227
228                 /* FIXME: error_handling */
229                 BUG_ON(!phy->phy);
230         }
231
232         switch (resp->result) {
233         case SMP_RESP_PHY_VACANT:
234                 phy->phy_state = PHY_VACANT;
235                 break;
236         default:
237                 phy->phy_state = PHY_NOT_PRESENT;
238                 break;
239         case SMP_RESP_FUNC_ACC:
240                 phy->phy_state = PHY_EMPTY; /* do not know yet */
241                 break;
242         }
243
244         /* check if anything important changed to squelch debug */
245         dev_type = phy->attached_dev_type;
246         linkrate  = phy->linkrate;
247         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
248
249         /* Handle vacant phy - rest of dr data is not valid so skip it */
250         if (phy->phy_state == PHY_VACANT) {
251                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
252                 phy->attached_dev_type = SAS_PHY_UNUSED;
253                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
254                         phy->phy_id = phy_id;
255                         goto skip;
256                 } else
257                         goto out;
258         }
259
260         phy->attached_dev_type = to_dev_type(dr);
261         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
262                 goto out;
263         phy->phy_id = phy_id;
264         phy->linkrate = dr->linkrate;
265         phy->attached_sata_host = dr->attached_sata_host;
266         phy->attached_sata_dev  = dr->attached_sata_dev;
267         phy->attached_sata_ps   = dr->attached_sata_ps;
268         phy->attached_iproto = dr->iproto << 1;
269         phy->attached_tproto = dr->tproto << 1;
270         /* help some expanders that fail to zero sas_address in the 'no
271          * device' case
272          */
273         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
274             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
275                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
276         else
277                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
278         phy->attached_phy_id = dr->attached_phy_id;
279         phy->phy_change_count = dr->change_count;
280         phy->routing_attr = dr->routing_attr;
281         phy->virtual = dr->virtual;
282         phy->last_da_index = -1;
283
284         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
285         phy->phy->identify.device_type = dr->attached_dev_type;
286         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
287         phy->phy->identify.target_port_protocols = phy->attached_tproto;
288         if (!phy->attached_tproto && dr->attached_sata_dev)
289                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
290         phy->phy->identify.phy_identifier = phy_id;
291         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
292         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
293         phy->phy->minimum_linkrate = dr->pmin_linkrate;
294         phy->phy->maximum_linkrate = dr->pmax_linkrate;
295         phy->phy->negotiated_linkrate = phy->linkrate;
296         phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
297
298  skip:
299         if (new_phy)
300                 if (sas_phy_add(phy->phy)) {
301                         sas_phy_free(phy->phy);
302                         return;
303                 }
304
305  out:
306         switch (phy->attached_dev_type) {
307         case SAS_SATA_PENDING:
308                 type = "stp pending";
309                 break;
310         case SAS_PHY_UNUSED:
311                 type = "no device";
312                 break;
313         case SAS_END_DEVICE:
314                 if (phy->attached_iproto) {
315                         if (phy->attached_tproto)
316                                 type = "host+target";
317                         else
318                                 type = "host";
319                 } else {
320                         if (dr->attached_sata_dev)
321                                 type = "stp";
322                         else
323                                 type = "ssp";
324                 }
325                 break;
326         case SAS_EDGE_EXPANDER_DEVICE:
327         case SAS_FANOUT_EXPANDER_DEVICE:
328                 type = "smp";
329                 break;
330         default:
331                 type = "unknown";
332         }
333
334         /* this routine is polled by libata error recovery so filter
335          * unimportant messages
336          */
337         if (new_phy || phy->attached_dev_type != dev_type ||
338             phy->linkrate != linkrate ||
339             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
340                 /* pass */;
341         else
342                 return;
343
344         /* if the attached device type changed and ata_eh is active,
345          * make sure we run revalidation when eh completes (see:
346          * sas_enable_revalidation)
347          */
348         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
349                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
350
351         SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
352                     test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
353                     SAS_ADDR(dev->sas_addr), phy->phy_id,
354                     sas_route_char(dev, phy), phy->linkrate,
355                     SAS_ADDR(phy->attached_sas_addr), type);
356 }
357
358 /* check if we have an existing attached ata device on this expander phy */
359 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
360 {
361         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
362         struct domain_device *dev;
363         struct sas_rphy *rphy;
364
365         if (!ex_phy->port)
366                 return NULL;
367
368         rphy = ex_phy->port->rphy;
369         if (!rphy)
370                 return NULL;
371
372         dev = sas_find_dev_by_rphy(rphy);
373
374         if (dev && dev_is_sata(dev))
375                 return dev;
376
377         return NULL;
378 }
379
380 #define DISCOVER_REQ_SIZE  16
381 #define DISCOVER_RESP_SIZE 56
382
383 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
384                                       u8 *disc_resp, int single)
385 {
386         struct discover_resp *dr;
387         int res;
388
389         disc_req[9] = single;
390
391         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
392                                disc_resp, DISCOVER_RESP_SIZE);
393         if (res)
394                 return res;
395         dr = &((struct smp_resp *)disc_resp)->disc;
396         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
397                 sas_printk("Found loopback topology, just ignore it!\n");
398                 return 0;
399         }
400         sas_set_ex_phy(dev, single, disc_resp);
401         return 0;
402 }
403
404 int sas_ex_phy_discover(struct domain_device *dev, int single)
405 {
406         struct expander_device *ex = &dev->ex_dev;
407         int  res = 0;
408         u8   *disc_req;
409         u8   *disc_resp;
410
411         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
412         if (!disc_req)
413                 return -ENOMEM;
414
415         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
416         if (!disc_resp) {
417                 kfree(disc_req);
418                 return -ENOMEM;
419         }
420
421         disc_req[1] = SMP_DISCOVER;
422
423         if (0 <= single && single < ex->num_phys) {
424                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
425         } else {
426                 int i;
427
428                 for (i = 0; i < ex->num_phys; i++) {
429                         res = sas_ex_phy_discover_helper(dev, disc_req,
430                                                          disc_resp, i);
431                         if (res)
432                                 goto out_err;
433                 }
434         }
435 out_err:
436         kfree(disc_resp);
437         kfree(disc_req);
438         return res;
439 }
440
441 static int sas_expander_discover(struct domain_device *dev)
442 {
443         struct expander_device *ex = &dev->ex_dev;
444         int res = -ENOMEM;
445
446         ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
447         if (!ex->ex_phy)
448                 return -ENOMEM;
449
450         res = sas_ex_phy_discover(dev, -1);
451         if (res)
452                 goto out_err;
453
454         return 0;
455  out_err:
456         kfree(ex->ex_phy);
457         ex->ex_phy = NULL;
458         return res;
459 }
460
461 #define MAX_EXPANDER_PHYS 128
462
463 static void ex_assign_report_general(struct domain_device *dev,
464                                             struct smp_resp *resp)
465 {
466         struct report_general_resp *rg = &resp->rg;
467
468         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
469         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
470         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
471         dev->ex_dev.t2t_supp = rg->t2t_supp;
472         dev->ex_dev.conf_route_table = rg->conf_route_table;
473         dev->ex_dev.configuring = rg->configuring;
474         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
475 }
476
477 #define RG_REQ_SIZE   8
478 #define RG_RESP_SIZE 32
479
480 static int sas_ex_general(struct domain_device *dev)
481 {
482         u8 *rg_req;
483         struct smp_resp *rg_resp;
484         int res;
485         int i;
486
487         rg_req = alloc_smp_req(RG_REQ_SIZE);
488         if (!rg_req)
489                 return -ENOMEM;
490
491         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
492         if (!rg_resp) {
493                 kfree(rg_req);
494                 return -ENOMEM;
495         }
496
497         rg_req[1] = SMP_REPORT_GENERAL;
498
499         for (i = 0; i < 5; i++) {
500                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
501                                        RG_RESP_SIZE);
502
503                 if (res) {
504                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
505                                     SAS_ADDR(dev->sas_addr), res);
506                         goto out;
507                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
508                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
509                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
510                         res = rg_resp->result;
511                         goto out;
512                 }
513
514                 ex_assign_report_general(dev, rg_resp);
515
516                 if (dev->ex_dev.configuring) {
517                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
518                                     SAS_ADDR(dev->sas_addr));
519                         schedule_timeout_interruptible(5*HZ);
520                 } else
521                         break;
522         }
523 out:
524         kfree(rg_req);
525         kfree(rg_resp);
526         return res;
527 }
528
529 static void ex_assign_manuf_info(struct domain_device *dev, void
530                                         *_mi_resp)
531 {
532         u8 *mi_resp = _mi_resp;
533         struct sas_rphy *rphy = dev->rphy;
534         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
535
536         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
537         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
538         memcpy(edev->product_rev, mi_resp + 36,
539                SAS_EXPANDER_PRODUCT_REV_LEN);
540
541         if (mi_resp[8] & 1) {
542                 memcpy(edev->component_vendor_id, mi_resp + 40,
543                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
544                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
545                 edev->component_revision_id = mi_resp[50];
546         }
547 }
548
549 #define MI_REQ_SIZE   8
550 #define MI_RESP_SIZE 64
551
552 static int sas_ex_manuf_info(struct domain_device *dev)
553 {
554         u8 *mi_req;
555         u8 *mi_resp;
556         int res;
557
558         mi_req = alloc_smp_req(MI_REQ_SIZE);
559         if (!mi_req)
560                 return -ENOMEM;
561
562         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
563         if (!mi_resp) {
564                 kfree(mi_req);
565                 return -ENOMEM;
566         }
567
568         mi_req[1] = SMP_REPORT_MANUF_INFO;
569
570         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
571         if (res) {
572                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
573                             SAS_ADDR(dev->sas_addr), res);
574                 goto out;
575         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
576                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
577                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
578                 goto out;
579         }
580
581         ex_assign_manuf_info(dev, mi_resp);
582 out:
583         kfree(mi_req);
584         kfree(mi_resp);
585         return res;
586 }
587
588 #define PC_REQ_SIZE  44
589 #define PC_RESP_SIZE 8
590
591 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
592                         enum phy_func phy_func,
593                         struct sas_phy_linkrates *rates)
594 {
595         u8 *pc_req;
596         u8 *pc_resp;
597         int res;
598
599         pc_req = alloc_smp_req(PC_REQ_SIZE);
600         if (!pc_req)
601                 return -ENOMEM;
602
603         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
604         if (!pc_resp) {
605                 kfree(pc_req);
606                 return -ENOMEM;
607         }
608
609         pc_req[1] = SMP_PHY_CONTROL;
610         pc_req[9] = phy_id;
611         pc_req[10]= phy_func;
612         if (rates) {
613                 pc_req[32] = rates->minimum_linkrate << 4;
614                 pc_req[33] = rates->maximum_linkrate << 4;
615         }
616
617         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
618
619         kfree(pc_resp);
620         kfree(pc_req);
621         return res;
622 }
623
624 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
625 {
626         struct expander_device *ex = &dev->ex_dev;
627         struct ex_phy *phy = &ex->ex_phy[phy_id];
628
629         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
630         phy->linkrate = SAS_PHY_DISABLED;
631 }
632
633 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
634 {
635         struct expander_device *ex = &dev->ex_dev;
636         int i;
637
638         for (i = 0; i < ex->num_phys; i++) {
639                 struct ex_phy *phy = &ex->ex_phy[i];
640
641                 if (phy->phy_state == PHY_VACANT ||
642                     phy->phy_state == PHY_NOT_PRESENT)
643                         continue;
644
645                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
646                         sas_ex_disable_phy(dev, i);
647         }
648 }
649
650 static int sas_dev_present_in_domain(struct asd_sas_port *port,
651                                             u8 *sas_addr)
652 {
653         struct domain_device *dev;
654
655         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
656                 return 1;
657         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
658                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
659                         return 1;
660         }
661         return 0;
662 }
663
664 #define RPEL_REQ_SIZE   16
665 #define RPEL_RESP_SIZE  32
666 int sas_smp_get_phy_events(struct sas_phy *phy)
667 {
668         int res;
669         u8 *req;
670         u8 *resp;
671         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
672         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
673
674         req = alloc_smp_req(RPEL_REQ_SIZE);
675         if (!req)
676                 return -ENOMEM;
677
678         resp = alloc_smp_resp(RPEL_RESP_SIZE);
679         if (!resp) {
680                 kfree(req);
681                 return -ENOMEM;
682         }
683
684         req[1] = SMP_REPORT_PHY_ERR_LOG;
685         req[9] = phy->number;
686
687         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
688                                     resp, RPEL_RESP_SIZE);
689
690         if (res)
691                 goto out;
692
693         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
694         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
695         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
696         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
697
698  out:
699         kfree(req);
700         kfree(resp);
701         return res;
702
703 }
704
705 #ifdef CONFIG_SCSI_SAS_ATA
706
707 #define RPS_REQ_SIZE  16
708 #define RPS_RESP_SIZE 60
709
710 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
711                             struct smp_resp *rps_resp)
712 {
713         int res;
714         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
715         u8 *resp = (u8 *)rps_resp;
716
717         if (!rps_req)
718                 return -ENOMEM;
719
720         rps_req[1] = SMP_REPORT_PHY_SATA;
721         rps_req[9] = phy_id;
722
723         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
724                                     rps_resp, RPS_RESP_SIZE);
725
726         /* 0x34 is the FIS type for the D2H fis.  There's a potential
727          * standards cockup here.  sas-2 explicitly specifies the FIS
728          * should be encoded so that FIS type is in resp[24].
729          * However, some expanders endian reverse this.  Undo the
730          * reversal here */
731         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
732                 int i;
733
734                 for (i = 0; i < 5; i++) {
735                         int j = 24 + (i*4);
736                         u8 a, b;
737                         a = resp[j + 0];
738                         b = resp[j + 1];
739                         resp[j + 0] = resp[j + 3];
740                         resp[j + 1] = resp[j + 2];
741                         resp[j + 2] = b;
742                         resp[j + 3] = a;
743                 }
744         }
745
746         kfree(rps_req);
747         return res;
748 }
749 #endif
750
751 static void sas_ex_get_linkrate(struct domain_device *parent,
752                                        struct domain_device *child,
753                                        struct ex_phy *parent_phy)
754 {
755         struct expander_device *parent_ex = &parent->ex_dev;
756         struct sas_port *port;
757         int i;
758
759         child->pathways = 0;
760
761         port = parent_phy->port;
762
763         for (i = 0; i < parent_ex->num_phys; i++) {
764                 struct ex_phy *phy = &parent_ex->ex_phy[i];
765
766                 if (phy->phy_state == PHY_VACANT ||
767                     phy->phy_state == PHY_NOT_PRESENT)
768                         continue;
769
770                 if (SAS_ADDR(phy->attached_sas_addr) ==
771                     SAS_ADDR(child->sas_addr)) {
772
773                         child->min_linkrate = min(parent->min_linkrate,
774                                                   phy->linkrate);
775                         child->max_linkrate = max(parent->max_linkrate,
776                                                   phy->linkrate);
777                         child->pathways++;
778                         sas_port_add_phy(port, phy->phy);
779                 }
780         }
781         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
782         child->pathways = min(child->pathways, parent->pathways);
783 }
784
785 static struct domain_device *sas_ex_discover_end_dev(
786         struct domain_device *parent, int phy_id)
787 {
788         struct expander_device *parent_ex = &parent->ex_dev;
789         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
790         struct domain_device *child = NULL;
791         struct sas_rphy *rphy;
792         int res;
793
794         if (phy->attached_sata_host || phy->attached_sata_ps)
795                 return NULL;
796
797         child = sas_alloc_device();
798         if (!child)
799                 return NULL;
800
801         kref_get(&parent->kref);
802         child->parent = parent;
803         child->port   = parent->port;
804         child->iproto = phy->attached_iproto;
805         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
806         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
807         if (!phy->port) {
808                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
809                 if (unlikely(!phy->port))
810                         goto out_err;
811                 if (unlikely(sas_port_add(phy->port) != 0)) {
812                         sas_port_free(phy->port);
813                         goto out_err;
814                 }
815         }
816         sas_ex_get_linkrate(parent, child, phy);
817         sas_device_set_phy(child, phy->port);
818
819 #ifdef CONFIG_SCSI_SAS_ATA
820         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
821                 res = sas_get_ata_info(child, phy);
822                 if (res)
823                         goto out_free;
824
825                 sas_init_dev(child);
826                 res = sas_ata_init(child);
827                 if (res)
828                         goto out_free;
829                 rphy = sas_end_device_alloc(phy->port);
830                 if (!rphy)
831                         goto out_free;
832
833                 child->rphy = rphy;
834                 get_device(&rphy->dev);
835
836                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837
838                 res = sas_discover_sata(child);
839                 if (res) {
840                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
841                                     "%016llx:0x%x returned 0x%x\n",
842                                     SAS_ADDR(child->sas_addr),
843                                     SAS_ADDR(parent->sas_addr), phy_id, res);
844                         goto out_list_del;
845                 }
846         } else
847 #endif
848           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
849                 child->dev_type = SAS_END_DEVICE;
850                 rphy = sas_end_device_alloc(phy->port);
851                 /* FIXME: error handling */
852                 if (unlikely(!rphy))
853                         goto out_free;
854                 child->tproto = phy->attached_tproto;
855                 sas_init_dev(child);
856
857                 child->rphy = rphy;
858                 get_device(&rphy->dev);
859                 sas_fill_in_rphy(child, rphy);
860
861                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
862
863                 res = sas_discover_end_dev(child);
864                 if (res) {
865                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
866                                     "at %016llx:0x%x returned 0x%x\n",
867                                     SAS_ADDR(child->sas_addr),
868                                     SAS_ADDR(parent->sas_addr), phy_id, res);
869                         goto out_list_del;
870                 }
871         } else {
872                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
873                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
874                             phy_id);
875                 goto out_free;
876         }
877
878         list_add_tail(&child->siblings, &parent_ex->children);
879         return child;
880
881  out_list_del:
882         sas_rphy_free(child->rphy);
883         list_del(&child->disco_list_node);
884         spin_lock_irq(&parent->port->dev_list_lock);
885         list_del(&child->dev_list_node);
886         spin_unlock_irq(&parent->port->dev_list_lock);
887  out_free:
888         sas_port_delete(phy->port);
889  out_err:
890         phy->port = NULL;
891         sas_put_device(child);
892         return NULL;
893 }
894
895 /* See if this phy is part of a wide port */
896 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
897 {
898         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899         int i;
900
901         for (i = 0; i < parent->ex_dev.num_phys; i++) {
902                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
903
904                 if (ephy == phy)
905                         continue;
906
907                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
908                             SAS_ADDR_SIZE) && ephy->port) {
909                         sas_port_add_phy(ephy->port, phy->phy);
910                         phy->port = ephy->port;
911                         phy->phy_state = PHY_DEVICE_DISCOVERED;
912                         return true;
913                 }
914         }
915
916         return false;
917 }
918
919 static struct domain_device *sas_ex_discover_expander(
920         struct domain_device *parent, int phy_id)
921 {
922         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
923         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
924         struct domain_device *child = NULL;
925         struct sas_rphy *rphy;
926         struct sas_expander_device *edev;
927         struct asd_sas_port *port;
928         int res;
929
930         if (phy->routing_attr == DIRECT_ROUTING) {
931                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
932                             "allowed\n",
933                             SAS_ADDR(parent->sas_addr), phy_id,
934                             SAS_ADDR(phy->attached_sas_addr),
935                             phy->attached_phy_id);
936                 return NULL;
937         }
938         child = sas_alloc_device();
939         if (!child)
940                 return NULL;
941
942         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
943         /* FIXME: better error handling */
944         BUG_ON(sas_port_add(phy->port) != 0);
945
946
947         switch (phy->attached_dev_type) {
948         case SAS_EDGE_EXPANDER_DEVICE:
949                 rphy = sas_expander_alloc(phy->port,
950                                           SAS_EDGE_EXPANDER_DEVICE);
951                 break;
952         case SAS_FANOUT_EXPANDER_DEVICE:
953                 rphy = sas_expander_alloc(phy->port,
954                                           SAS_FANOUT_EXPANDER_DEVICE);
955                 break;
956         default:
957                 rphy = NULL;    /* shut gcc up */
958                 BUG();
959         }
960         port = parent->port;
961         child->rphy = rphy;
962         get_device(&rphy->dev);
963         edev = rphy_to_expander_device(rphy);
964         child->dev_type = phy->attached_dev_type;
965         kref_get(&parent->kref);
966         child->parent = parent;
967         child->port = port;
968         child->iproto = phy->attached_iproto;
969         child->tproto = phy->attached_tproto;
970         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
971         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
972         sas_ex_get_linkrate(parent, child, phy);
973         edev->level = parent_ex->level + 1;
974         parent->port->disc.max_level = max(parent->port->disc.max_level,
975                                            edev->level);
976         sas_init_dev(child);
977         sas_fill_in_rphy(child, rphy);
978         sas_rphy_add(rphy);
979
980         spin_lock_irq(&parent->port->dev_list_lock);
981         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
982         spin_unlock_irq(&parent->port->dev_list_lock);
983
984         res = sas_discover_expander(child);
985         if (res) {
986                 sas_rphy_delete(rphy);
987                 spin_lock_irq(&parent->port->dev_list_lock);
988                 list_del(&child->dev_list_node);
989                 spin_unlock_irq(&parent->port->dev_list_lock);
990                 sas_put_device(child);
991                 return NULL;
992         }
993         list_add_tail(&child->siblings, &parent->ex_dev.children);
994         return child;
995 }
996
997 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
998 {
999         struct expander_device *ex = &dev->ex_dev;
1000         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1001         struct domain_device *child = NULL;
1002         int res = 0;
1003
1004         /* Phy state */
1005         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1006                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1007                         res = sas_ex_phy_discover(dev, phy_id);
1008                 if (res)
1009                         return res;
1010         }
1011
1012         /* Parent and domain coherency */
1013         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1014                              SAS_ADDR(dev->port->sas_addr))) {
1015                 sas_add_parent_port(dev, phy_id);
1016                 return 0;
1017         }
1018         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1019                             SAS_ADDR(dev->parent->sas_addr))) {
1020                 sas_add_parent_port(dev, phy_id);
1021                 if (ex_phy->routing_attr == TABLE_ROUTING)
1022                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1023                 return 0;
1024         }
1025
1026         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1027                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1028
1029         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1030                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1031                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1032                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1033                 }
1034                 return 0;
1035         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1036                 return 0;
1037
1038         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1039             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1040             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1041             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1042                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1043                             "phy 0x%x\n", ex_phy->attached_dev_type,
1044                             SAS_ADDR(dev->sas_addr),
1045                             phy_id);
1046                 return 0;
1047         }
1048
1049         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1050         if (res) {
1051                 SAS_DPRINTK("configure routing for dev %016llx "
1052                             "reported 0x%x. Forgotten\n",
1053                             SAS_ADDR(ex_phy->attached_sas_addr), res);
1054                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1055                 return res;
1056         }
1057
1058         if (sas_ex_join_wide_port(dev, phy_id)) {
1059                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1060                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1061                 return res;
1062         }
1063
1064         switch (ex_phy->attached_dev_type) {
1065         case SAS_END_DEVICE:
1066         case SAS_SATA_PENDING:
1067                 child = sas_ex_discover_end_dev(dev, phy_id);
1068                 break;
1069         case SAS_FANOUT_EXPANDER_DEVICE:
1070                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1071                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1072                                     "attached to ex %016llx phy 0x%x\n",
1073                                     SAS_ADDR(ex_phy->attached_sas_addr),
1074                                     ex_phy->attached_phy_id,
1075                                     SAS_ADDR(dev->sas_addr),
1076                                     phy_id);
1077                         sas_ex_disable_phy(dev, phy_id);
1078                         break;
1079                 } else
1080                         memcpy(dev->port->disc.fanout_sas_addr,
1081                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1082                 /* fallthrough */
1083         case SAS_EDGE_EXPANDER_DEVICE:
1084                 child = sas_ex_discover_expander(dev, phy_id);
1085                 break;
1086         default:
1087                 break;
1088         }
1089
1090         if (child) {
1091                 int i;
1092
1093                 for (i = 0; i < ex->num_phys; i++) {
1094                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1095                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1096                                 continue;
1097                         /*
1098                          * Due to races, the phy might not get added to the
1099                          * wide port, so we add the phy to the wide port here.
1100                          */
1101                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1102                             SAS_ADDR(child->sas_addr)) {
1103                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1104                                 if (sas_ex_join_wide_port(dev, i))
1105                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1106                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1107
1108                         }
1109                 }
1110         }
1111
1112         return res;
1113 }
1114
1115 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1116 {
1117         struct expander_device *ex = &dev->ex_dev;
1118         int i;
1119
1120         for (i = 0; i < ex->num_phys; i++) {
1121                 struct ex_phy *phy = &ex->ex_phy[i];
1122
1123                 if (phy->phy_state == PHY_VACANT ||
1124                     phy->phy_state == PHY_NOT_PRESENT)
1125                         continue;
1126
1127                 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1128                      phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1129                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1130
1131                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1132
1133                         return 1;
1134                 }
1135         }
1136         return 0;
1137 }
1138
1139 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1140 {
1141         struct expander_device *ex = &dev->ex_dev;
1142         struct domain_device *child;
1143         u8 sub_addr[8] = {0, };
1144
1145         list_for_each_entry(child, &ex->children, siblings) {
1146                 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1147                     child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1148                         continue;
1149                 if (sub_addr[0] == 0) {
1150                         sas_find_sub_addr(child, sub_addr);
1151                         continue;
1152                 } else {
1153                         u8 s2[8];
1154
1155                         if (sas_find_sub_addr(child, s2) &&
1156                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1157
1158                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1159                                             "diverges from subtractive "
1160                                             "boundary %016llx\n",
1161                                             SAS_ADDR(dev->sas_addr),
1162                                             SAS_ADDR(child->sas_addr),
1163                                             SAS_ADDR(s2),
1164                                             SAS_ADDR(sub_addr));
1165
1166                                 sas_ex_disable_port(child, s2);
1167                         }
1168                 }
1169         }
1170         return 0;
1171 }
1172 /**
1173  * sas_ex_discover_devices - discover devices attached to this expander
1174  * @dev: pointer to the expander domain device
1175  * @single: if you want to do a single phy, else set to -1;
1176  *
1177  * Configure this expander for use with its devices and register the
1178  * devices of this expander.
1179  */
1180 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1181 {
1182         struct expander_device *ex = &dev->ex_dev;
1183         int i = 0, end = ex->num_phys;
1184         int res = 0;
1185
1186         if (0 <= single && single < end) {
1187                 i = single;
1188                 end = i+1;
1189         }
1190
1191         for ( ; i < end; i++) {
1192                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1193
1194                 if (ex_phy->phy_state == PHY_VACANT ||
1195                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1196                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1197                         continue;
1198
1199                 switch (ex_phy->linkrate) {
1200                 case SAS_PHY_DISABLED:
1201                 case SAS_PHY_RESET_PROBLEM:
1202                 case SAS_SATA_PORT_SELECTOR:
1203                         continue;
1204                 default:
1205                         res = sas_ex_discover_dev(dev, i);
1206                         if (res)
1207                                 break;
1208                         continue;
1209                 }
1210         }
1211
1212         if (!res)
1213                 sas_check_level_subtractive_boundary(dev);
1214
1215         return res;
1216 }
1217
1218 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1219 {
1220         struct expander_device *ex = &dev->ex_dev;
1221         int i;
1222         u8  *sub_sas_addr = NULL;
1223
1224         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1225                 return 0;
1226
1227         for (i = 0; i < ex->num_phys; i++) {
1228                 struct ex_phy *phy = &ex->ex_phy[i];
1229
1230                 if (phy->phy_state == PHY_VACANT ||
1231                     phy->phy_state == PHY_NOT_PRESENT)
1232                         continue;
1233
1234                 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1235                      phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1236                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1237
1238                         if (!sub_sas_addr)
1239                                 sub_sas_addr = &phy->attached_sas_addr[0];
1240                         else if (SAS_ADDR(sub_sas_addr) !=
1241                                  SAS_ADDR(phy->attached_sas_addr)) {
1242
1243                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1244                                             "diverges(%016llx) on subtractive "
1245                                             "boundary(%016llx). Disabled\n",
1246                                             SAS_ADDR(dev->sas_addr), i,
1247                                             SAS_ADDR(phy->attached_sas_addr),
1248                                             SAS_ADDR(sub_sas_addr));
1249                                 sas_ex_disable_phy(dev, i);
1250                         }
1251                 }
1252         }
1253         return 0;
1254 }
1255
1256 static void sas_print_parent_topology_bug(struct domain_device *child,
1257                                                  struct ex_phy *parent_phy,
1258                                                  struct ex_phy *child_phy)
1259 {
1260         static const char *ex_type[] = {
1261                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1262                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1263         };
1264         struct domain_device *parent = child->parent;
1265
1266         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1267                    "phy 0x%x has %c:%c routing link!\n",
1268
1269                    ex_type[parent->dev_type],
1270                    SAS_ADDR(parent->sas_addr),
1271                    parent_phy->phy_id,
1272
1273                    ex_type[child->dev_type],
1274                    SAS_ADDR(child->sas_addr),
1275                    child_phy->phy_id,
1276
1277                    sas_route_char(parent, parent_phy),
1278                    sas_route_char(child, child_phy));
1279 }
1280
1281 static int sas_check_eeds(struct domain_device *child,
1282                                  struct ex_phy *parent_phy,
1283                                  struct ex_phy *child_phy)
1284 {
1285         int res = 0;
1286         struct domain_device *parent = child->parent;
1287
1288         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1289                 res = -ENODEV;
1290                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1291                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1292                             SAS_ADDR(parent->sas_addr),
1293                             parent_phy->phy_id,
1294                             SAS_ADDR(child->sas_addr),
1295                             child_phy->phy_id,
1296                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1297         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1298                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1299                        SAS_ADDR_SIZE);
1300                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1301                        SAS_ADDR_SIZE);
1302         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1303                     SAS_ADDR(parent->sas_addr)) ||
1304                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1305                     SAS_ADDR(child->sas_addr)))
1306                    &&
1307                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1308                      SAS_ADDR(parent->sas_addr)) ||
1309                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1310                      SAS_ADDR(child->sas_addr))))
1311                 ;
1312         else {
1313                 res = -ENODEV;
1314                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1315                             "phy 0x%x link forms a third EEDS!\n",
1316                             SAS_ADDR(parent->sas_addr),
1317                             parent_phy->phy_id,
1318                             SAS_ADDR(child->sas_addr),
1319                             child_phy->phy_id);
1320         }
1321
1322         return res;
1323 }
1324
1325 /* Here we spill over 80 columns.  It is intentional.
1326  */
1327 static int sas_check_parent_topology(struct domain_device *child)
1328 {
1329         struct expander_device *child_ex = &child->ex_dev;
1330         struct expander_device *parent_ex;
1331         int i;
1332         int res = 0;
1333
1334         if (!child->parent)
1335                 return 0;
1336
1337         if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1338             child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1339                 return 0;
1340
1341         parent_ex = &child->parent->ex_dev;
1342
1343         for (i = 0; i < parent_ex->num_phys; i++) {
1344                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1345                 struct ex_phy *child_phy;
1346
1347                 if (parent_phy->phy_state == PHY_VACANT ||
1348                     parent_phy->phy_state == PHY_NOT_PRESENT)
1349                         continue;
1350
1351                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1352                         continue;
1353
1354                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1355
1356                 switch (child->parent->dev_type) {
1357                 case SAS_EDGE_EXPANDER_DEVICE:
1358                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1359                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1360                                     child_phy->routing_attr != TABLE_ROUTING) {
1361                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1362                                         res = -ENODEV;
1363                                 }
1364                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1365                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1366                                         res = sas_check_eeds(child, parent_phy, child_phy);
1367                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1368                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1369                                         res = -ENODEV;
1370                                 }
1371                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1372                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1373                                     (child_phy->routing_attr == TABLE_ROUTING &&
1374                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1375                                         /* All good */;
1376                                 } else {
1377                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1378                                         res = -ENODEV;
1379                                 }
1380                         }
1381                         break;
1382                 case SAS_FANOUT_EXPANDER_DEVICE:
1383                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1384                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1385                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1386                                 res = -ENODEV;
1387                         }
1388                         break;
1389                 default:
1390                         break;
1391                 }
1392         }
1393
1394         return res;
1395 }
1396
1397 #define RRI_REQ_SIZE  16
1398 #define RRI_RESP_SIZE 44
1399
1400 static int sas_configure_present(struct domain_device *dev, int phy_id,
1401                                  u8 *sas_addr, int *index, int *present)
1402 {
1403         int i, res = 0;
1404         struct expander_device *ex = &dev->ex_dev;
1405         struct ex_phy *phy = &ex->ex_phy[phy_id];
1406         u8 *rri_req;
1407         u8 *rri_resp;
1408
1409         *present = 0;
1410         *index = 0;
1411
1412         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1413         if (!rri_req)
1414                 return -ENOMEM;
1415
1416         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1417         if (!rri_resp) {
1418                 kfree(rri_req);
1419                 return -ENOMEM;
1420         }
1421
1422         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1423         rri_req[9] = phy_id;
1424
1425         for (i = 0; i < ex->max_route_indexes ; i++) {
1426                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1427                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1428                                        RRI_RESP_SIZE);
1429                 if (res)
1430                         goto out;
1431                 res = rri_resp[2];
1432                 if (res == SMP_RESP_NO_INDEX) {
1433                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1434                                     "phy 0x%x index 0x%x\n",
1435                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1436                         goto out;
1437                 } else if (res != SMP_RESP_FUNC_ACC) {
1438                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1439                                     "result 0x%x\n", __func__,
1440                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1441                         goto out;
1442                 }
1443                 if (SAS_ADDR(sas_addr) != 0) {
1444                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1445                                 *index = i;
1446                                 if ((rri_resp[12] & 0x80) == 0x80)
1447                                         *present = 0;
1448                                 else
1449                                         *present = 1;
1450                                 goto out;
1451                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1452                                 *index = i;
1453                                 *present = 0;
1454                                 goto out;
1455                         }
1456                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1457                            phy->last_da_index < i) {
1458                         phy->last_da_index = i;
1459                         *index = i;
1460                         *present = 0;
1461                         goto out;
1462                 }
1463         }
1464         res = -1;
1465 out:
1466         kfree(rri_req);
1467         kfree(rri_resp);
1468         return res;
1469 }
1470
1471 #define CRI_REQ_SIZE  44
1472 #define CRI_RESP_SIZE  8
1473
1474 static int sas_configure_set(struct domain_device *dev, int phy_id,
1475                              u8 *sas_addr, int index, int include)
1476 {
1477         int res;
1478         u8 *cri_req;
1479         u8 *cri_resp;
1480
1481         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1482         if (!cri_req)
1483                 return -ENOMEM;
1484
1485         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1486         if (!cri_resp) {
1487                 kfree(cri_req);
1488                 return -ENOMEM;
1489         }
1490
1491         cri_req[1] = SMP_CONF_ROUTE_INFO;
1492         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1493         cri_req[9] = phy_id;
1494         if (SAS_ADDR(sas_addr) == 0 || !include)
1495                 cri_req[12] |= 0x80;
1496         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1497
1498         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1499                                CRI_RESP_SIZE);
1500         if (res)
1501                 goto out;
1502         res = cri_resp[2];
1503         if (res == SMP_RESP_NO_INDEX) {
1504                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1505                             "index 0x%x\n",
1506                             SAS_ADDR(dev->sas_addr), phy_id, index);
1507         }
1508 out:
1509         kfree(cri_req);
1510         kfree(cri_resp);
1511         return res;
1512 }
1513
1514 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1515                                     u8 *sas_addr, int include)
1516 {
1517         int index;
1518         int present;
1519         int res;
1520
1521         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1522         if (res)
1523                 return res;
1524         if (include ^ present)
1525                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1526
1527         return res;
1528 }
1529
1530 /**
1531  * sas_configure_parent - configure routing table of parent
1532  * @parent: parent expander
1533  * @child: child expander
1534  * @sas_addr: SAS port identifier of device directly attached to child
1535  * @include: whether or not to include @child in the expander routing table
1536  */
1537 static int sas_configure_parent(struct domain_device *parent,
1538                                 struct domain_device *child,
1539                                 u8 *sas_addr, int include)
1540 {
1541         struct expander_device *ex_parent = &parent->ex_dev;
1542         int res = 0;
1543         int i;
1544
1545         if (parent->parent) {
1546                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1547                                            include);
1548                 if (res)
1549                         return res;
1550         }
1551
1552         if (ex_parent->conf_route_table == 0) {
1553                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1554                             SAS_ADDR(parent->sas_addr));
1555                 return 0;
1556         }
1557
1558         for (i = 0; i < ex_parent->num_phys; i++) {
1559                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1560
1561                 if ((phy->routing_attr == TABLE_ROUTING) &&
1562                     (SAS_ADDR(phy->attached_sas_addr) ==
1563                      SAS_ADDR(child->sas_addr))) {
1564                         res = sas_configure_phy(parent, i, sas_addr, include);
1565                         if (res)
1566                                 return res;
1567                 }
1568         }
1569
1570         return res;
1571 }
1572
1573 /**
1574  * sas_configure_routing - configure routing
1575  * @dev: expander device
1576  * @sas_addr: port identifier of device directly attached to the expander device
1577  */
1578 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1579 {
1580         if (dev->parent)
1581                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1582         return 0;
1583 }
1584
1585 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1586 {
1587         if (dev->parent)
1588                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1589         return 0;
1590 }
1591
1592 /**
1593  * sas_discover_expander - expander discovery
1594  * @dev: pointer to expander domain device
1595  *
1596  * See comment in sas_discover_sata().
1597  */
1598 static int sas_discover_expander(struct domain_device *dev)
1599 {
1600         int res;
1601
1602         res = sas_notify_lldd_dev_found(dev);
1603         if (res)
1604                 return res;
1605
1606         res = sas_ex_general(dev);
1607         if (res)
1608                 goto out_err;
1609         res = sas_ex_manuf_info(dev);
1610         if (res)
1611                 goto out_err;
1612
1613         res = sas_expander_discover(dev);
1614         if (res) {
1615                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1616                             SAS_ADDR(dev->sas_addr), res);
1617                 goto out_err;
1618         }
1619
1620         sas_check_ex_subtractive_boundary(dev);
1621         res = sas_check_parent_topology(dev);
1622         if (res)
1623                 goto out_err;
1624         return 0;
1625 out_err:
1626         sas_notify_lldd_dev_gone(dev);
1627         return res;
1628 }
1629
1630 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1631 {
1632         int res = 0;
1633         struct domain_device *dev;
1634
1635         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1636                 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1637                     dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1638                         struct sas_expander_device *ex =
1639                                 rphy_to_expander_device(dev->rphy);
1640
1641                         if (level == ex->level)
1642                                 res = sas_ex_discover_devices(dev, -1);
1643                         else if (level > 0)
1644                                 res = sas_ex_discover_devices(port->port_dev, -1);
1645
1646                 }
1647         }
1648
1649         return res;
1650 }
1651
1652 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1653 {
1654         int res;
1655         int level;
1656
1657         do {
1658                 level = port->disc.max_level;
1659                 res = sas_ex_level_discovery(port, level);
1660                 mb();
1661         } while (level < port->disc.max_level);
1662
1663         return res;
1664 }
1665
1666 int sas_discover_root_expander(struct domain_device *dev)
1667 {
1668         int res;
1669         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1670
1671         res = sas_rphy_add(dev->rphy);
1672         if (res)
1673                 goto out_err;
1674
1675         ex->level = dev->port->disc.max_level; /* 0 */
1676         res = sas_discover_expander(dev);
1677         if (res)
1678                 goto out_err2;
1679
1680         sas_ex_bfs_disc(dev->port);
1681
1682         return res;
1683
1684 out_err2:
1685         sas_rphy_remove(dev->rphy);
1686 out_err:
1687         return res;
1688 }
1689
1690 /* ---------- Domain revalidation ---------- */
1691
1692 static int sas_get_phy_discover(struct domain_device *dev,
1693                                 int phy_id, struct smp_resp *disc_resp)
1694 {
1695         int res;
1696         u8 *disc_req;
1697
1698         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1699         if (!disc_req)
1700                 return -ENOMEM;
1701
1702         disc_req[1] = SMP_DISCOVER;
1703         disc_req[9] = phy_id;
1704
1705         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1706                                disc_resp, DISCOVER_RESP_SIZE);
1707         if (res)
1708                 goto out;
1709         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1710                 res = disc_resp->result;
1711                 goto out;
1712         }
1713 out:
1714         kfree(disc_req);
1715         return res;
1716 }
1717
1718 static int sas_get_phy_change_count(struct domain_device *dev,
1719                                     int phy_id, int *pcc)
1720 {
1721         int res;
1722         struct smp_resp *disc_resp;
1723
1724         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1725         if (!disc_resp)
1726                 return -ENOMEM;
1727
1728         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1729         if (!res)
1730                 *pcc = disc_resp->disc.change_count;
1731
1732         kfree(disc_resp);
1733         return res;
1734 }
1735
1736 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1737                                     u8 *sas_addr, enum sas_device_type *type)
1738 {
1739         int res;
1740         struct smp_resp *disc_resp;
1741         struct discover_resp *dr;
1742
1743         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1744         if (!disc_resp)
1745                 return -ENOMEM;
1746         dr = &disc_resp->disc;
1747
1748         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1749         if (res == 0) {
1750                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1751                 *type = to_dev_type(dr);
1752                 if (*type == 0)
1753                         memset(sas_addr, 0, 8);
1754         }
1755         kfree(disc_resp);
1756         return res;
1757 }
1758
1759 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1760                               int from_phy, bool update)
1761 {
1762         struct expander_device *ex = &dev->ex_dev;
1763         int res = 0;
1764         int i;
1765
1766         for (i = from_phy; i < ex->num_phys; i++) {
1767                 int phy_change_count = 0;
1768
1769                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1770                 switch (res) {
1771                 case SMP_RESP_PHY_VACANT:
1772                 case SMP_RESP_NO_PHY:
1773                         continue;
1774                 case SMP_RESP_FUNC_ACC:
1775                         break;
1776                 default:
1777                         return res;
1778                 }
1779
1780                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1781                         if (update)
1782                                 ex->ex_phy[i].phy_change_count =
1783                                         phy_change_count;
1784                         *phy_id = i;
1785                         return 0;
1786                 }
1787         }
1788         return 0;
1789 }
1790
1791 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1792 {
1793         int res;
1794         u8  *rg_req;
1795         struct smp_resp  *rg_resp;
1796
1797         rg_req = alloc_smp_req(RG_REQ_SIZE);
1798         if (!rg_req)
1799                 return -ENOMEM;
1800
1801         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1802         if (!rg_resp) {
1803                 kfree(rg_req);
1804                 return -ENOMEM;
1805         }
1806
1807         rg_req[1] = SMP_REPORT_GENERAL;
1808
1809         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1810                                RG_RESP_SIZE);
1811         if (res)
1812                 goto out;
1813         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1814                 res = rg_resp->result;
1815                 goto out;
1816         }
1817
1818         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1819 out:
1820         kfree(rg_resp);
1821         kfree(rg_req);
1822         return res;
1823 }
1824 /**
1825  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1826  * @dev:domain device to be detect.
1827  * @src_dev: the device which originated BROADCAST(CHANGE).
1828  *
1829  * Add self-configuration expander support. Suppose two expander cascading,
1830  * when the first level expander is self-configuring, hotplug the disks in
1831  * second level expander, BROADCAST(CHANGE) will not only be originated
1832  * in the second level expander, but also be originated in the first level
1833  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1834  * expander changed count in two level expanders will all increment at least
1835  * once, but the phy which chang count has changed is the source device which
1836  * we concerned.
1837  */
1838
1839 static int sas_find_bcast_dev(struct domain_device *dev,
1840                               struct domain_device **src_dev)
1841 {
1842         struct expander_device *ex = &dev->ex_dev;
1843         int ex_change_count = -1;
1844         int phy_id = -1;
1845         int res;
1846         struct domain_device *ch;
1847
1848         res = sas_get_ex_change_count(dev, &ex_change_count);
1849         if (res)
1850                 goto out;
1851         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1852                 /* Just detect if this expander phys phy change count changed,
1853                 * in order to determine if this expander originate BROADCAST,
1854                 * and do not update phy change count field in our structure.
1855                 */
1856                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1857                 if (phy_id != -1) {
1858                         *src_dev = dev;
1859                         ex->ex_change_count = ex_change_count;
1860                         SAS_DPRINTK("Expander phy change count has changed\n");
1861                         return res;
1862                 } else
1863                         SAS_DPRINTK("Expander phys DID NOT change\n");
1864         }
1865         list_for_each_entry(ch, &ex->children, siblings) {
1866                 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1867                         res = sas_find_bcast_dev(ch, src_dev);
1868                         if (*src_dev)
1869                                 return res;
1870                 }
1871         }
1872 out:
1873         return res;
1874 }
1875
1876 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1877 {
1878         struct expander_device *ex = &dev->ex_dev;
1879         struct domain_device *child, *n;
1880
1881         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1882                 set_bit(SAS_DEV_GONE, &child->state);
1883                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1884                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1885                         sas_unregister_ex_tree(port, child);
1886                 else
1887                         sas_unregister_dev(port, child);
1888         }
1889         sas_unregister_dev(port, dev);
1890 }
1891
1892 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1893                                          int phy_id, bool last)
1894 {
1895         struct expander_device *ex_dev = &parent->ex_dev;
1896         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1897         struct domain_device *child, *n, *found = NULL;
1898         if (last) {
1899                 list_for_each_entry_safe(child, n,
1900                         &ex_dev->children, siblings) {
1901                         if (SAS_ADDR(child->sas_addr) ==
1902                             SAS_ADDR(phy->attached_sas_addr)) {
1903                                 set_bit(SAS_DEV_GONE, &child->state);
1904                                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1905                                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1906                                         sas_unregister_ex_tree(parent->port, child);
1907                                 else
1908                                         sas_unregister_dev(parent->port, child);
1909                                 found = child;
1910                                 break;
1911                         }
1912                 }
1913                 sas_disable_routing(parent, phy->attached_sas_addr);
1914         }
1915         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1916         if (phy->port) {
1917                 sas_port_delete_phy(phy->port, phy->phy);
1918                 sas_device_set_phy(found, phy->port);
1919                 if (phy->port->num_phys == 0)
1920                         list_add_tail(&phy->port->del_list,
1921                                 &parent->port->sas_port_del_list);
1922                 phy->port = NULL;
1923         }
1924 }
1925
1926 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1927                                           const int level)
1928 {
1929         struct expander_device *ex_root = &root->ex_dev;
1930         struct domain_device *child;
1931         int res = 0;
1932
1933         list_for_each_entry(child, &ex_root->children, siblings) {
1934                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1935                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1936                         struct sas_expander_device *ex =
1937                                 rphy_to_expander_device(child->rphy);
1938
1939                         if (level > ex->level)
1940                                 res = sas_discover_bfs_by_root_level(child,
1941                                                                      level);
1942                         else if (level == ex->level)
1943                                 res = sas_ex_discover_devices(child, -1);
1944                 }
1945         }
1946         return res;
1947 }
1948
1949 static int sas_discover_bfs_by_root(struct domain_device *dev)
1950 {
1951         int res;
1952         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1953         int level = ex->level+1;
1954
1955         res = sas_ex_discover_devices(dev, -1);
1956         if (res)
1957                 goto out;
1958         do {
1959                 res = sas_discover_bfs_by_root_level(dev, level);
1960                 mb();
1961                 level += 1;
1962         } while (level <= dev->port->disc.max_level);
1963 out:
1964         return res;
1965 }
1966
1967 static int sas_discover_new(struct domain_device *dev, int phy_id)
1968 {
1969         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1970         struct domain_device *child;
1971         int res;
1972
1973         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1974                     SAS_ADDR(dev->sas_addr), phy_id);
1975         res = sas_ex_phy_discover(dev, phy_id);
1976         if (res)
1977                 return res;
1978
1979         if (sas_ex_join_wide_port(dev, phy_id))
1980                 return 0;
1981
1982         res = sas_ex_discover_devices(dev, phy_id);
1983         if (res)
1984                 return res;
1985         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1986                 if (SAS_ADDR(child->sas_addr) ==
1987                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1988                         if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1989                             child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1990                                 res = sas_discover_bfs_by_root(child);
1991                         break;
1992                 }
1993         }
1994         return res;
1995 }
1996
1997 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1998 {
1999         if (old == new)
2000                 return true;
2001
2002         /* treat device directed resets as flutter, if we went
2003          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2004          */
2005         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2006             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2007                 return true;
2008
2009         return false;
2010 }
2011
2012 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2013 {
2014         struct expander_device *ex = &dev->ex_dev;
2015         struct ex_phy *phy = &ex->ex_phy[phy_id];
2016         enum sas_device_type type = SAS_PHY_UNUSED;
2017         u8 sas_addr[8];
2018         int res;
2019
2020         memset(sas_addr, 0, 8);
2021         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2022         switch (res) {
2023         case SMP_RESP_NO_PHY:
2024                 phy->phy_state = PHY_NOT_PRESENT;
2025                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2026                 return res;
2027         case SMP_RESP_PHY_VACANT:
2028                 phy->phy_state = PHY_VACANT;
2029                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2030                 return res;
2031         case SMP_RESP_FUNC_ACC:
2032                 break;
2033         case -ECOMM:
2034                 break;
2035         default:
2036                 return res;
2037         }
2038
2039         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2040                 phy->phy_state = PHY_EMPTY;
2041                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2042                 return res;
2043         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2044                    dev_type_flutter(type, phy->attached_dev_type)) {
2045                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2046                 char *action = "";
2047
2048                 sas_ex_phy_discover(dev, phy_id);
2049
2050                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2051                         action = ", needs recovery";
2052                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2053                             SAS_ADDR(dev->sas_addr), phy_id, action);
2054                 return res;
2055         }
2056
2057         /* delete the old link */
2058         if (SAS_ADDR(phy->attached_sas_addr) &&
2059             SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2060                 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2061                             SAS_ADDR(dev->sas_addr), phy_id,
2062                             SAS_ADDR(phy->attached_sas_addr));
2063                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2064         }
2065
2066         return sas_discover_new(dev, phy_id);
2067 }
2068
2069 /**
2070  * sas_rediscover - revalidate the domain.
2071  * @dev:domain device to be detect.
2072  * @phy_id: the phy id will be detected.
2073  *
2074  * NOTE: this process _must_ quit (return) as soon as any connection
2075  * errors are encountered.  Connection recovery is done elsewhere.
2076  * Discover process only interrogates devices in order to discover the
2077  * domain.For plugging out, we un-register the device only when it is
2078  * the last phy in the port, for other phys in this port, we just delete it
2079  * from the port.For inserting, we do discovery when it is the
2080  * first phy,for other phys in this port, we add it to the port to
2081  * forming the wide-port.
2082  */
2083 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2084 {
2085         struct expander_device *ex = &dev->ex_dev;
2086         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2087         int res = 0;
2088         int i;
2089         bool last = true;       /* is this the last phy of the port */
2090
2091         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2092                     SAS_ADDR(dev->sas_addr), phy_id);
2093
2094         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2095                 for (i = 0; i < ex->num_phys; i++) {
2096                         struct ex_phy *phy = &ex->ex_phy[i];
2097
2098                         if (i == phy_id)
2099                                 continue;
2100                         if (SAS_ADDR(phy->attached_sas_addr) ==
2101                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2102                                 SAS_DPRINTK("phy%d part of wide port with "
2103                                             "phy%d\n", phy_id, i);
2104                                 last = false;
2105                                 break;
2106                         }
2107                 }
2108                 res = sas_rediscover_dev(dev, phy_id, last);
2109         } else
2110                 res = sas_discover_new(dev, phy_id);
2111         return res;
2112 }
2113
2114 /**
2115  * sas_ex_revalidate_domain - revalidate the domain
2116  * @port_dev: port domain device.
2117  *
2118  * NOTE: this process _must_ quit (return) as soon as any connection
2119  * errors are encountered.  Connection recovery is done elsewhere.
2120  * Discover process only interrogates devices in order to discover the
2121  * domain.
2122  */
2123 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2124 {
2125         int res;
2126         struct domain_device *dev = NULL;
2127
2128         res = sas_find_bcast_dev(port_dev, &dev);
2129         if (res == 0 && dev) {
2130                 struct expander_device *ex = &dev->ex_dev;
2131                 int i = 0, phy_id;
2132
2133                 do {
2134                         phy_id = -1;
2135                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2136                         if (phy_id == -1)
2137                                 break;
2138                         res = sas_rediscover(dev, phy_id);
2139                         i = phy_id + 1;
2140                 } while (i < ex->num_phys);
2141         }
2142         return res;
2143 }
2144
2145 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2146                 struct sas_rphy *rphy)
2147 {
2148         struct domain_device *dev;
2149         unsigned int rcvlen = 0;
2150         int ret = -EINVAL;
2151
2152         /* no rphy means no smp target support (ie aic94xx host) */
2153         if (!rphy)
2154                 return sas_smp_host_handler(job, shost);
2155
2156         switch (rphy->identify.device_type) {
2157         case SAS_EDGE_EXPANDER_DEVICE:
2158         case SAS_FANOUT_EXPANDER_DEVICE:
2159                 break;
2160         default:
2161                 printk("%s: can we send a smp request to a device?\n",
2162                        __func__);
2163                 goto out;
2164         }
2165
2166         dev = sas_find_dev_by_rphy(rphy);
2167         if (!dev) {
2168                 printk("%s: fail to find a domain_device?\n", __func__);
2169                 goto out;
2170         }
2171
2172         /* do we need to support multiple segments? */
2173         if (job->request_payload.sg_cnt > 1 ||
2174             job->reply_payload.sg_cnt > 1) {
2175                 printk("%s: multiple segments req %u, rsp %u\n",
2176                        __func__, job->request_payload.payload_len,
2177                        job->reply_payload.payload_len);
2178                 goto out;
2179         }
2180
2181         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2182                         job->reply_payload.sg_list);
2183         if (ret >= 0) {
2184                 /* bsg_job_done() requires the length received  */
2185                 rcvlen = job->reply_payload.payload_len - ret;
2186                 ret = 0;
2187         }
2188
2189 out:
2190         bsg_job_done(job, ret, rcvlen);
2191 }