Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-microblaze.git] / drivers / scsi / libsas / sas_expander.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Serial Attached SCSI (SAS) Expander discovery and configuration
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  *
8  * This file is licensed under GPLv2.
9  */
10
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15
16 #include "sas_internal.h"
17
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26                              u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28
29 /* ---------- SMP task management ---------- */
30
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
33
34 static int smp_execute_task_sg(struct domain_device *dev,
35                 struct scatterlist *req, struct scatterlist *resp)
36 {
37         int res, retry;
38         struct sas_task *task = NULL;
39         struct sas_internal *i =
40                 to_sas_internal(dev->port->ha->core.shost->transportt);
41         struct sas_ha_struct *ha = dev->port->ha;
42
43         pm_runtime_get_sync(ha->dev);
44         mutex_lock(&dev->ex_dev.cmd_mutex);
45         for (retry = 0; retry < 3; retry++) {
46                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
47                         res = -ECOMM;
48                         break;
49                 }
50
51                 task = sas_alloc_slow_task(GFP_KERNEL);
52                 if (!task) {
53                         res = -ENOMEM;
54                         break;
55                 }
56                 task->dev = dev;
57                 task->task_proto = dev->tproto;
58                 task->smp_task.smp_req = *req;
59                 task->smp_task.smp_resp = *resp;
60
61                 task->task_done = sas_task_internal_done;
62
63                 task->slow_task->timer.function = sas_task_internal_timedout;
64                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65                 add_timer(&task->slow_task->timer);
66
67                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68
69                 if (res) {
70                         del_timer(&task->slow_task->timer);
71                         pr_notice("executing SMP task failed:%d\n", res);
72                         break;
73                 }
74
75                 wait_for_completion(&task->slow_task->completion);
76                 res = -ECOMM;
77                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78                         pr_notice("smp task timed out or aborted\n");
79                         i->dft->lldd_abort_task(task);
80                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81                                 pr_notice("SMP task aborted and not done\n");
82                                 break;
83                         }
84                 }
85                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
86                     task->task_status.stat == SAS_SAM_STAT_GOOD) {
87                         res = 0;
88                         break;
89                 }
90                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
91                     task->task_status.stat == SAS_DATA_UNDERRUN) {
92                         /* no error, but return the number of bytes of
93                          * underrun */
94                         res = task->task_status.residual;
95                         break;
96                 }
97                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
98                     task->task_status.stat == SAS_DATA_OVERRUN) {
99                         res = -EMSGSIZE;
100                         break;
101                 }
102                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
104                         break;
105                 else {
106                         pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107                                   __func__,
108                                   SAS_ADDR(dev->sas_addr),
109                                   task->task_status.resp,
110                                   task->task_status.stat);
111                         sas_free_task(task);
112                         task = NULL;
113                 }
114         }
115         mutex_unlock(&dev->ex_dev.cmd_mutex);
116         pm_runtime_put_sync(ha->dev);
117
118         BUG_ON(retry == 3 && task != NULL);
119         sas_free_task(task);
120         return res;
121 }
122
123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124                             void *resp, int resp_size)
125 {
126         struct scatterlist req_sg;
127         struct scatterlist resp_sg;
128
129         sg_init_one(&req_sg, req, req_size);
130         sg_init_one(&resp_sg, resp, resp_size);
131         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132 }
133
134 /* ---------- Allocations ---------- */
135
136 static inline void *alloc_smp_req(int size)
137 {
138         u8 *p = kzalloc(size, GFP_KERNEL);
139         if (p)
140                 p[0] = SMP_REQUEST;
141         return p;
142 }
143
144 static inline void *alloc_smp_resp(int size)
145 {
146         return kzalloc(size, GFP_KERNEL);
147 }
148
149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150 {
151         switch (phy->routing_attr) {
152         case TABLE_ROUTING:
153                 if (dev->ex_dev.t2t_supp)
154                         return 'U';
155                 else
156                         return 'T';
157         case DIRECT_ROUTING:
158                 return 'D';
159         case SUBTRACTIVE_ROUTING:
160                 return 'S';
161         default:
162                 return '?';
163         }
164 }
165
166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
167 {
168         /* This is detecting a failure to transmit initial dev to host
169          * FIS as described in section J.5 of sas-2 r16
170          */
171         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173                 return SAS_SATA_PENDING;
174         else
175                 return dr->attached_dev_type;
176 }
177
178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
179 {
180         enum sas_device_type dev_type;
181         enum sas_linkrate linkrate;
182         u8 sas_addr[SAS_ADDR_SIZE];
183         struct smp_resp *resp = rsp;
184         struct discover_resp *dr = &resp->disc;
185         struct sas_ha_struct *ha = dev->port->ha;
186         struct expander_device *ex = &dev->ex_dev;
187         struct ex_phy *phy = &ex->ex_phy[phy_id];
188         struct sas_rphy *rphy = dev->rphy;
189         bool new_phy = !phy->phy;
190         char *type;
191
192         if (new_phy) {
193                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194                         return;
195                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196
197                 /* FIXME: error_handling */
198                 BUG_ON(!phy->phy);
199         }
200
201         switch (resp->result) {
202         case SMP_RESP_PHY_VACANT:
203                 phy->phy_state = PHY_VACANT;
204                 break;
205         default:
206                 phy->phy_state = PHY_NOT_PRESENT;
207                 break;
208         case SMP_RESP_FUNC_ACC:
209                 phy->phy_state = PHY_EMPTY; /* do not know yet */
210                 break;
211         }
212
213         /* check if anything important changed to squelch debug */
214         dev_type = phy->attached_dev_type;
215         linkrate  = phy->linkrate;
216         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217
218         /* Handle vacant phy - rest of dr data is not valid so skip it */
219         if (phy->phy_state == PHY_VACANT) {
220                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221                 phy->attached_dev_type = SAS_PHY_UNUSED;
222                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223                         phy->phy_id = phy_id;
224                         goto skip;
225                 } else
226                         goto out;
227         }
228
229         phy->attached_dev_type = to_dev_type(dr);
230         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231                 goto out;
232         phy->phy_id = phy_id;
233         phy->linkrate = dr->linkrate;
234         phy->attached_sata_host = dr->attached_sata_host;
235         phy->attached_sata_dev  = dr->attached_sata_dev;
236         phy->attached_sata_ps   = dr->attached_sata_ps;
237         phy->attached_iproto = dr->iproto << 1;
238         phy->attached_tproto = dr->tproto << 1;
239         /* help some expanders that fail to zero sas_address in the 'no
240          * device' case
241          */
242         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245         else
246                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247         phy->attached_phy_id = dr->attached_phy_id;
248         phy->phy_change_count = dr->change_count;
249         phy->routing_attr = dr->routing_attr;
250         phy->virtual = dr->virtual;
251         phy->last_da_index = -1;
252
253         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254         phy->phy->identify.device_type = dr->attached_dev_type;
255         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256         phy->phy->identify.target_port_protocols = phy->attached_tproto;
257         if (!phy->attached_tproto && dr->attached_sata_dev)
258                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259         phy->phy->identify.phy_identifier = phy_id;
260         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262         phy->phy->minimum_linkrate = dr->pmin_linkrate;
263         phy->phy->maximum_linkrate = dr->pmax_linkrate;
264         phy->phy->negotiated_linkrate = phy->linkrate;
265         phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266
267  skip:
268         if (new_phy)
269                 if (sas_phy_add(phy->phy)) {
270                         sas_phy_free(phy->phy);
271                         return;
272                 }
273
274  out:
275         switch (phy->attached_dev_type) {
276         case SAS_SATA_PENDING:
277                 type = "stp pending";
278                 break;
279         case SAS_PHY_UNUSED:
280                 type = "no device";
281                 break;
282         case SAS_END_DEVICE:
283                 if (phy->attached_iproto) {
284                         if (phy->attached_tproto)
285                                 type = "host+target";
286                         else
287                                 type = "host";
288                 } else {
289                         if (dr->attached_sata_dev)
290                                 type = "stp";
291                         else
292                                 type = "ssp";
293                 }
294                 break;
295         case SAS_EDGE_EXPANDER_DEVICE:
296         case SAS_FANOUT_EXPANDER_DEVICE:
297                 type = "smp";
298                 break;
299         default:
300                 type = "unknown";
301         }
302
303         /* this routine is polled by libata error recovery so filter
304          * unimportant messages
305          */
306         if (new_phy || phy->attached_dev_type != dev_type ||
307             phy->linkrate != linkrate ||
308             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309                 /* pass */;
310         else
311                 return;
312
313         /* if the attached device type changed and ata_eh is active,
314          * make sure we run revalidation when eh completes (see:
315          * sas_enable_revalidation)
316          */
317         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319
320         pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321                  test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322                  SAS_ADDR(dev->sas_addr), phy->phy_id,
323                  sas_route_char(dev, phy), phy->linkrate,
324                  SAS_ADDR(phy->attached_sas_addr), type);
325 }
326
327 /* check if we have an existing attached ata device on this expander phy */
328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329 {
330         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331         struct domain_device *dev;
332         struct sas_rphy *rphy;
333
334         if (!ex_phy->port)
335                 return NULL;
336
337         rphy = ex_phy->port->rphy;
338         if (!rphy)
339                 return NULL;
340
341         dev = sas_find_dev_by_rphy(rphy);
342
343         if (dev && dev_is_sata(dev))
344                 return dev;
345
346         return NULL;
347 }
348
349 #define DISCOVER_REQ_SIZE  16
350 #define DISCOVER_RESP_SIZE 56
351
352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353                                       u8 *disc_resp, int single)
354 {
355         struct discover_resp *dr;
356         int res;
357
358         disc_req[9] = single;
359
360         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
361                                disc_resp, DISCOVER_RESP_SIZE);
362         if (res)
363                 return res;
364         dr = &((struct smp_resp *)disc_resp)->disc;
365         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366                 pr_notice("Found loopback topology, just ignore it!\n");
367                 return 0;
368         }
369         sas_set_ex_phy(dev, single, disc_resp);
370         return 0;
371 }
372
373 int sas_ex_phy_discover(struct domain_device *dev, int single)
374 {
375         struct expander_device *ex = &dev->ex_dev;
376         int  res = 0;
377         u8   *disc_req;
378         u8   *disc_resp;
379
380         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381         if (!disc_req)
382                 return -ENOMEM;
383
384         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385         if (!disc_resp) {
386                 kfree(disc_req);
387                 return -ENOMEM;
388         }
389
390         disc_req[1] = SMP_DISCOVER;
391
392         if (0 <= single && single < ex->num_phys) {
393                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394         } else {
395                 int i;
396
397                 for (i = 0; i < ex->num_phys; i++) {
398                         res = sas_ex_phy_discover_helper(dev, disc_req,
399                                                          disc_resp, i);
400                         if (res)
401                                 goto out_err;
402                 }
403         }
404 out_err:
405         kfree(disc_resp);
406         kfree(disc_req);
407         return res;
408 }
409
410 static int sas_expander_discover(struct domain_device *dev)
411 {
412         struct expander_device *ex = &dev->ex_dev;
413         int res;
414
415         ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416         if (!ex->ex_phy)
417                 return -ENOMEM;
418
419         res = sas_ex_phy_discover(dev, -1);
420         if (res)
421                 goto out_err;
422
423         return 0;
424  out_err:
425         kfree(ex->ex_phy);
426         ex->ex_phy = NULL;
427         return res;
428 }
429
430 #define MAX_EXPANDER_PHYS 128
431
432 static void ex_assign_report_general(struct domain_device *dev,
433                                             struct smp_resp *resp)
434 {
435         struct report_general_resp *rg = &resp->rg;
436
437         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
438         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
439         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
440         dev->ex_dev.t2t_supp = rg->t2t_supp;
441         dev->ex_dev.conf_route_table = rg->conf_route_table;
442         dev->ex_dev.configuring = rg->configuring;
443         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
444 }
445
446 #define RG_REQ_SIZE   8
447 #define RG_RESP_SIZE 32
448
449 static int sas_ex_general(struct domain_device *dev)
450 {
451         u8 *rg_req;
452         struct smp_resp *rg_resp;
453         int res;
454         int i;
455
456         rg_req = alloc_smp_req(RG_REQ_SIZE);
457         if (!rg_req)
458                 return -ENOMEM;
459
460         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
461         if (!rg_resp) {
462                 kfree(rg_req);
463                 return -ENOMEM;
464         }
465
466         rg_req[1] = SMP_REPORT_GENERAL;
467
468         for (i = 0; i < 5; i++) {
469                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
470                                        RG_RESP_SIZE);
471
472                 if (res) {
473                         pr_notice("RG to ex %016llx failed:0x%x\n",
474                                   SAS_ADDR(dev->sas_addr), res);
475                         goto out;
476                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
477                         pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
478                                  SAS_ADDR(dev->sas_addr), rg_resp->result);
479                         res = rg_resp->result;
480                         goto out;
481                 }
482
483                 ex_assign_report_general(dev, rg_resp);
484
485                 if (dev->ex_dev.configuring) {
486                         pr_debug("RG: ex %016llx self-configuring...\n",
487                                  SAS_ADDR(dev->sas_addr));
488                         schedule_timeout_interruptible(5*HZ);
489                 } else
490                         break;
491         }
492 out:
493         kfree(rg_req);
494         kfree(rg_resp);
495         return res;
496 }
497
498 static void ex_assign_manuf_info(struct domain_device *dev, void
499                                         *_mi_resp)
500 {
501         u8 *mi_resp = _mi_resp;
502         struct sas_rphy *rphy = dev->rphy;
503         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
504
505         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
506         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
507         memcpy(edev->product_rev, mi_resp + 36,
508                SAS_EXPANDER_PRODUCT_REV_LEN);
509
510         if (mi_resp[8] & 1) {
511                 memcpy(edev->component_vendor_id, mi_resp + 40,
512                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
513                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
514                 edev->component_revision_id = mi_resp[50];
515         }
516 }
517
518 #define MI_REQ_SIZE   8
519 #define MI_RESP_SIZE 64
520
521 static int sas_ex_manuf_info(struct domain_device *dev)
522 {
523         u8 *mi_req;
524         u8 *mi_resp;
525         int res;
526
527         mi_req = alloc_smp_req(MI_REQ_SIZE);
528         if (!mi_req)
529                 return -ENOMEM;
530
531         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
532         if (!mi_resp) {
533                 kfree(mi_req);
534                 return -ENOMEM;
535         }
536
537         mi_req[1] = SMP_REPORT_MANUF_INFO;
538
539         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
540         if (res) {
541                 pr_notice("MI: ex %016llx failed:0x%x\n",
542                           SAS_ADDR(dev->sas_addr), res);
543                 goto out;
544         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
545                 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
546                          SAS_ADDR(dev->sas_addr), mi_resp[2]);
547                 goto out;
548         }
549
550         ex_assign_manuf_info(dev, mi_resp);
551 out:
552         kfree(mi_req);
553         kfree(mi_resp);
554         return res;
555 }
556
557 #define PC_REQ_SIZE  44
558 #define PC_RESP_SIZE 8
559
560 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
561                         enum phy_func phy_func,
562                         struct sas_phy_linkrates *rates)
563 {
564         u8 *pc_req;
565         u8 *pc_resp;
566         int res;
567
568         pc_req = alloc_smp_req(PC_REQ_SIZE);
569         if (!pc_req)
570                 return -ENOMEM;
571
572         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
573         if (!pc_resp) {
574                 kfree(pc_req);
575                 return -ENOMEM;
576         }
577
578         pc_req[1] = SMP_PHY_CONTROL;
579         pc_req[9] = phy_id;
580         pc_req[10] = phy_func;
581         if (rates) {
582                 pc_req[32] = rates->minimum_linkrate << 4;
583                 pc_req[33] = rates->maximum_linkrate << 4;
584         }
585
586         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
587         if (res) {
588                 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
589                        SAS_ADDR(dev->sas_addr), phy_id, res);
590         } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
591                 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
592                        SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
593                 res = pc_resp[2];
594         }
595         kfree(pc_resp);
596         kfree(pc_req);
597         return res;
598 }
599
600 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
601 {
602         struct expander_device *ex = &dev->ex_dev;
603         struct ex_phy *phy = &ex->ex_phy[phy_id];
604
605         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
606         phy->linkrate = SAS_PHY_DISABLED;
607 }
608
609 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
610 {
611         struct expander_device *ex = &dev->ex_dev;
612         int i;
613
614         for (i = 0; i < ex->num_phys; i++) {
615                 struct ex_phy *phy = &ex->ex_phy[i];
616
617                 if (phy->phy_state == PHY_VACANT ||
618                     phy->phy_state == PHY_NOT_PRESENT)
619                         continue;
620
621                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
622                         sas_ex_disable_phy(dev, i);
623         }
624 }
625
626 static int sas_dev_present_in_domain(struct asd_sas_port *port,
627                                             u8 *sas_addr)
628 {
629         struct domain_device *dev;
630
631         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
632                 return 1;
633         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
634                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
635                         return 1;
636         }
637         return 0;
638 }
639
640 #define RPEL_REQ_SIZE   16
641 #define RPEL_RESP_SIZE  32
642 int sas_smp_get_phy_events(struct sas_phy *phy)
643 {
644         int res;
645         u8 *req;
646         u8 *resp;
647         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
648         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
649
650         req = alloc_smp_req(RPEL_REQ_SIZE);
651         if (!req)
652                 return -ENOMEM;
653
654         resp = alloc_smp_resp(RPEL_RESP_SIZE);
655         if (!resp) {
656                 kfree(req);
657                 return -ENOMEM;
658         }
659
660         req[1] = SMP_REPORT_PHY_ERR_LOG;
661         req[9] = phy->number;
662
663         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
664                                resp, RPEL_RESP_SIZE);
665
666         if (res)
667                 goto out;
668
669         phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
670         phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
671         phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
672         phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
673
674  out:
675         kfree(req);
676         kfree(resp);
677         return res;
678
679 }
680
681 #ifdef CONFIG_SCSI_SAS_ATA
682
683 #define RPS_REQ_SIZE  16
684 #define RPS_RESP_SIZE 60
685
686 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
687                             struct smp_resp *rps_resp)
688 {
689         int res;
690         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
691         u8 *resp = (u8 *)rps_resp;
692
693         if (!rps_req)
694                 return -ENOMEM;
695
696         rps_req[1] = SMP_REPORT_PHY_SATA;
697         rps_req[9] = phy_id;
698
699         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
700                                rps_resp, RPS_RESP_SIZE);
701
702         /* 0x34 is the FIS type for the D2H fis.  There's a potential
703          * standards cockup here.  sas-2 explicitly specifies the FIS
704          * should be encoded so that FIS type is in resp[24].
705          * However, some expanders endian reverse this.  Undo the
706          * reversal here */
707         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
708                 int i;
709
710                 for (i = 0; i < 5; i++) {
711                         int j = 24 + (i*4);
712                         u8 a, b;
713                         a = resp[j + 0];
714                         b = resp[j + 1];
715                         resp[j + 0] = resp[j + 3];
716                         resp[j + 1] = resp[j + 2];
717                         resp[j + 2] = b;
718                         resp[j + 3] = a;
719                 }
720         }
721
722         kfree(rps_req);
723         return res;
724 }
725 #endif
726
727 static void sas_ex_get_linkrate(struct domain_device *parent,
728                                        struct domain_device *child,
729                                        struct ex_phy *parent_phy)
730 {
731         struct expander_device *parent_ex = &parent->ex_dev;
732         struct sas_port *port;
733         int i;
734
735         child->pathways = 0;
736
737         port = parent_phy->port;
738
739         for (i = 0; i < parent_ex->num_phys; i++) {
740                 struct ex_phy *phy = &parent_ex->ex_phy[i];
741
742                 if (phy->phy_state == PHY_VACANT ||
743                     phy->phy_state == PHY_NOT_PRESENT)
744                         continue;
745
746                 if (SAS_ADDR(phy->attached_sas_addr) ==
747                     SAS_ADDR(child->sas_addr)) {
748
749                         child->min_linkrate = min(parent->min_linkrate,
750                                                   phy->linkrate);
751                         child->max_linkrate = max(parent->max_linkrate,
752                                                   phy->linkrate);
753                         child->pathways++;
754                         sas_port_add_phy(port, phy->phy);
755                 }
756         }
757         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
758         child->pathways = min(child->pathways, parent->pathways);
759 }
760
761 static struct domain_device *sas_ex_discover_end_dev(
762         struct domain_device *parent, int phy_id)
763 {
764         struct expander_device *parent_ex = &parent->ex_dev;
765         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
766         struct domain_device *child = NULL;
767         struct sas_rphy *rphy;
768         int res;
769
770         if (phy->attached_sata_host || phy->attached_sata_ps)
771                 return NULL;
772
773         child = sas_alloc_device();
774         if (!child)
775                 return NULL;
776
777         kref_get(&parent->kref);
778         child->parent = parent;
779         child->port   = parent->port;
780         child->iproto = phy->attached_iproto;
781         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
782         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
783         if (!phy->port) {
784                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
785                 if (unlikely(!phy->port))
786                         goto out_err;
787                 if (unlikely(sas_port_add(phy->port) != 0)) {
788                         sas_port_free(phy->port);
789                         goto out_err;
790                 }
791         }
792         sas_ex_get_linkrate(parent, child, phy);
793         sas_device_set_phy(child, phy->port);
794
795 #ifdef CONFIG_SCSI_SAS_ATA
796         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
797                 if (child->linkrate > parent->min_linkrate) {
798                         struct sas_phy *cphy = child->phy;
799                         enum sas_linkrate min_prate = cphy->minimum_linkrate,
800                                 parent_min_lrate = parent->min_linkrate,
801                                 min_linkrate = (min_prate > parent_min_lrate) ?
802                                                parent_min_lrate : 0;
803                         struct sas_phy_linkrates rates = {
804                                 .maximum_linkrate = parent->min_linkrate,
805                                 .minimum_linkrate = min_linkrate,
806                         };
807                         int ret;
808
809                         pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
810                                    SAS_ADDR(child->sas_addr), phy_id);
811                         ret = sas_smp_phy_control(parent, phy_id,
812                                                   PHY_FUNC_LINK_RESET, &rates);
813                         if (ret) {
814                                 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
815                                        SAS_ADDR(child->sas_addr), phy_id, ret);
816                                 goto out_free;
817                         }
818                         pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
819                                   SAS_ADDR(child->sas_addr), phy_id);
820                         child->linkrate = child->min_linkrate;
821                 }
822                 res = sas_get_ata_info(child, phy);
823                 if (res)
824                         goto out_free;
825
826                 sas_init_dev(child);
827                 res = sas_ata_init(child);
828                 if (res)
829                         goto out_free;
830                 rphy = sas_end_device_alloc(phy->port);
831                 if (!rphy)
832                         goto out_free;
833                 rphy->identify.phy_identifier = phy_id;
834
835                 child->rphy = rphy;
836                 get_device(&rphy->dev);
837
838                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
839
840                 res = sas_discover_sata(child);
841                 if (res) {
842                         pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
843                                   SAS_ADDR(child->sas_addr),
844                                   SAS_ADDR(parent->sas_addr), phy_id, res);
845                         goto out_list_del;
846                 }
847         } else
848 #endif
849           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
850                 child->dev_type = SAS_END_DEVICE;
851                 rphy = sas_end_device_alloc(phy->port);
852                 /* FIXME: error handling */
853                 if (unlikely(!rphy))
854                         goto out_free;
855                 child->tproto = phy->attached_tproto;
856                 sas_init_dev(child);
857
858                 child->rphy = rphy;
859                 get_device(&rphy->dev);
860                 rphy->identify.phy_identifier = phy_id;
861                 sas_fill_in_rphy(child, rphy);
862
863                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
864
865                 res = sas_discover_end_dev(child);
866                 if (res) {
867                         pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
868                                   SAS_ADDR(child->sas_addr),
869                                   SAS_ADDR(parent->sas_addr), phy_id, res);
870                         goto out_list_del;
871                 }
872         } else {
873                 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
874                           phy->attached_tproto, SAS_ADDR(parent->sas_addr),
875                           phy_id);
876                 goto out_free;
877         }
878
879         list_add_tail(&child->siblings, &parent_ex->children);
880         return child;
881
882  out_list_del:
883         sas_rphy_free(child->rphy);
884         list_del(&child->disco_list_node);
885         spin_lock_irq(&parent->port->dev_list_lock);
886         list_del(&child->dev_list_node);
887         spin_unlock_irq(&parent->port->dev_list_lock);
888  out_free:
889         sas_port_delete(phy->port);
890  out_err:
891         phy->port = NULL;
892         sas_put_device(child);
893         return NULL;
894 }
895
896 /* See if this phy is part of a wide port */
897 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
898 {
899         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
900         int i;
901
902         for (i = 0; i < parent->ex_dev.num_phys; i++) {
903                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
904
905                 if (ephy == phy)
906                         continue;
907
908                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
909                             SAS_ADDR_SIZE) && ephy->port) {
910                         sas_port_add_phy(ephy->port, phy->phy);
911                         phy->port = ephy->port;
912                         phy->phy_state = PHY_DEVICE_DISCOVERED;
913                         return true;
914                 }
915         }
916
917         return false;
918 }
919
920 static struct domain_device *sas_ex_discover_expander(
921         struct domain_device *parent, int phy_id)
922 {
923         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
924         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
925         struct domain_device *child = NULL;
926         struct sas_rphy *rphy;
927         struct sas_expander_device *edev;
928         struct asd_sas_port *port;
929         int res;
930
931         if (phy->routing_attr == DIRECT_ROUTING) {
932                 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
933                         SAS_ADDR(parent->sas_addr), phy_id,
934                         SAS_ADDR(phy->attached_sas_addr),
935                         phy->attached_phy_id);
936                 return NULL;
937         }
938         child = sas_alloc_device();
939         if (!child)
940                 return NULL;
941
942         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
943         /* FIXME: better error handling */
944         BUG_ON(sas_port_add(phy->port) != 0);
945
946
947         switch (phy->attached_dev_type) {
948         case SAS_EDGE_EXPANDER_DEVICE:
949                 rphy = sas_expander_alloc(phy->port,
950                                           SAS_EDGE_EXPANDER_DEVICE);
951                 break;
952         case SAS_FANOUT_EXPANDER_DEVICE:
953                 rphy = sas_expander_alloc(phy->port,
954                                           SAS_FANOUT_EXPANDER_DEVICE);
955                 break;
956         default:
957                 rphy = NULL;    /* shut gcc up */
958                 BUG();
959         }
960         port = parent->port;
961         child->rphy = rphy;
962         get_device(&rphy->dev);
963         edev = rphy_to_expander_device(rphy);
964         child->dev_type = phy->attached_dev_type;
965         kref_get(&parent->kref);
966         child->parent = parent;
967         child->port = port;
968         child->iproto = phy->attached_iproto;
969         child->tproto = phy->attached_tproto;
970         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
971         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
972         sas_ex_get_linkrate(parent, child, phy);
973         edev->level = parent_ex->level + 1;
974         parent->port->disc.max_level = max(parent->port->disc.max_level,
975                                            edev->level);
976         sas_init_dev(child);
977         sas_fill_in_rphy(child, rphy);
978         sas_rphy_add(rphy);
979
980         spin_lock_irq(&parent->port->dev_list_lock);
981         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
982         spin_unlock_irq(&parent->port->dev_list_lock);
983
984         res = sas_discover_expander(child);
985         if (res) {
986                 sas_rphy_delete(rphy);
987                 spin_lock_irq(&parent->port->dev_list_lock);
988                 list_del(&child->dev_list_node);
989                 spin_unlock_irq(&parent->port->dev_list_lock);
990                 sas_put_device(child);
991                 sas_port_delete(phy->port);
992                 phy->port = NULL;
993                 return NULL;
994         }
995         list_add_tail(&child->siblings, &parent->ex_dev.children);
996         return child;
997 }
998
999 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1000 {
1001         struct expander_device *ex = &dev->ex_dev;
1002         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1003         struct domain_device *child = NULL;
1004         int res = 0;
1005
1006         /* Phy state */
1007         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1008                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1009                         res = sas_ex_phy_discover(dev, phy_id);
1010                 if (res)
1011                         return res;
1012         }
1013
1014         /* Parent and domain coherency */
1015         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1016                              SAS_ADDR(dev->port->sas_addr))) {
1017                 sas_add_parent_port(dev, phy_id);
1018                 return 0;
1019         }
1020         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1021                             SAS_ADDR(dev->parent->sas_addr))) {
1022                 sas_add_parent_port(dev, phy_id);
1023                 if (ex_phy->routing_attr == TABLE_ROUTING)
1024                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1025                 return 0;
1026         }
1027
1028         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1029                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1030
1031         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1032                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1033                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1034                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1035                 }
1036                 return 0;
1037         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1038                 return 0;
1039
1040         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1041             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1042             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1043             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1044                 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1045                         ex_phy->attached_dev_type,
1046                         SAS_ADDR(dev->sas_addr),
1047                         phy_id);
1048                 return 0;
1049         }
1050
1051         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1052         if (res) {
1053                 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1054                           SAS_ADDR(ex_phy->attached_sas_addr), res);
1055                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1056                 return res;
1057         }
1058
1059         if (sas_ex_join_wide_port(dev, phy_id)) {
1060                 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1061                          phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1062                 return res;
1063         }
1064
1065         switch (ex_phy->attached_dev_type) {
1066         case SAS_END_DEVICE:
1067         case SAS_SATA_PENDING:
1068                 child = sas_ex_discover_end_dev(dev, phy_id);
1069                 break;
1070         case SAS_FANOUT_EXPANDER_DEVICE:
1071                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1072                         pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1073                                  SAS_ADDR(ex_phy->attached_sas_addr),
1074                                  ex_phy->attached_phy_id,
1075                                  SAS_ADDR(dev->sas_addr),
1076                                  phy_id);
1077                         sas_ex_disable_phy(dev, phy_id);
1078                         return res;
1079                 } else
1080                         memcpy(dev->port->disc.fanout_sas_addr,
1081                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1082                 fallthrough;
1083         case SAS_EDGE_EXPANDER_DEVICE:
1084                 child = sas_ex_discover_expander(dev, phy_id);
1085                 break;
1086         default:
1087                 break;
1088         }
1089
1090         if (!child)
1091                 pr_notice("ex %016llx phy%02d failed to discover\n",
1092                           SAS_ADDR(dev->sas_addr), phy_id);
1093         return res;
1094 }
1095
1096 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1097 {
1098         struct expander_device *ex = &dev->ex_dev;
1099         int i;
1100
1101         for (i = 0; i < ex->num_phys; i++) {
1102                 struct ex_phy *phy = &ex->ex_phy[i];
1103
1104                 if (phy->phy_state == PHY_VACANT ||
1105                     phy->phy_state == PHY_NOT_PRESENT)
1106                         continue;
1107
1108                 if (dev_is_expander(phy->attached_dev_type) &&
1109                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1110
1111                         memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1112
1113                         return 1;
1114                 }
1115         }
1116         return 0;
1117 }
1118
1119 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1120 {
1121         struct expander_device *ex = &dev->ex_dev;
1122         struct domain_device *child;
1123         u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1124
1125         list_for_each_entry(child, &ex->children, siblings) {
1126                 if (!dev_is_expander(child->dev_type))
1127                         continue;
1128                 if (sub_addr[0] == 0) {
1129                         sas_find_sub_addr(child, sub_addr);
1130                         continue;
1131                 } else {
1132                         u8 s2[SAS_ADDR_SIZE];
1133
1134                         if (sas_find_sub_addr(child, s2) &&
1135                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1136
1137                                 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1138                                           SAS_ADDR(dev->sas_addr),
1139                                           SAS_ADDR(child->sas_addr),
1140                                           SAS_ADDR(s2),
1141                                           SAS_ADDR(sub_addr));
1142
1143                                 sas_ex_disable_port(child, s2);
1144                         }
1145                 }
1146         }
1147         return 0;
1148 }
1149 /**
1150  * sas_ex_discover_devices - discover devices attached to this expander
1151  * @dev: pointer to the expander domain device
1152  * @single: if you want to do a single phy, else set to -1;
1153  *
1154  * Configure this expander for use with its devices and register the
1155  * devices of this expander.
1156  */
1157 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1158 {
1159         struct expander_device *ex = &dev->ex_dev;
1160         int i = 0, end = ex->num_phys;
1161         int res = 0;
1162
1163         if (0 <= single && single < end) {
1164                 i = single;
1165                 end = i+1;
1166         }
1167
1168         for ( ; i < end; i++) {
1169                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1170
1171                 if (ex_phy->phy_state == PHY_VACANT ||
1172                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1173                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1174                         continue;
1175
1176                 switch (ex_phy->linkrate) {
1177                 case SAS_PHY_DISABLED:
1178                 case SAS_PHY_RESET_PROBLEM:
1179                 case SAS_SATA_PORT_SELECTOR:
1180                         continue;
1181                 default:
1182                         res = sas_ex_discover_dev(dev, i);
1183                         if (res)
1184                                 break;
1185                         continue;
1186                 }
1187         }
1188
1189         if (!res)
1190                 sas_check_level_subtractive_boundary(dev);
1191
1192         return res;
1193 }
1194
1195 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1196 {
1197         struct expander_device *ex = &dev->ex_dev;
1198         int i;
1199         u8  *sub_sas_addr = NULL;
1200
1201         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1202                 return 0;
1203
1204         for (i = 0; i < ex->num_phys; i++) {
1205                 struct ex_phy *phy = &ex->ex_phy[i];
1206
1207                 if (phy->phy_state == PHY_VACANT ||
1208                     phy->phy_state == PHY_NOT_PRESENT)
1209                         continue;
1210
1211                 if (dev_is_expander(phy->attached_dev_type) &&
1212                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1213
1214                         if (!sub_sas_addr)
1215                                 sub_sas_addr = &phy->attached_sas_addr[0];
1216                         else if (SAS_ADDR(sub_sas_addr) !=
1217                                  SAS_ADDR(phy->attached_sas_addr)) {
1218
1219                                 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1220                                           SAS_ADDR(dev->sas_addr), i,
1221                                           SAS_ADDR(phy->attached_sas_addr),
1222                                           SAS_ADDR(sub_sas_addr));
1223                                 sas_ex_disable_phy(dev, i);
1224                         }
1225                 }
1226         }
1227         return 0;
1228 }
1229
1230 static void sas_print_parent_topology_bug(struct domain_device *child,
1231                                                  struct ex_phy *parent_phy,
1232                                                  struct ex_phy *child_phy)
1233 {
1234         static const char *ex_type[] = {
1235                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1236                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1237         };
1238         struct domain_device *parent = child->parent;
1239
1240         pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1241                   ex_type[parent->dev_type],
1242                   SAS_ADDR(parent->sas_addr),
1243                   parent_phy->phy_id,
1244
1245                   ex_type[child->dev_type],
1246                   SAS_ADDR(child->sas_addr),
1247                   child_phy->phy_id,
1248
1249                   sas_route_char(parent, parent_phy),
1250                   sas_route_char(child, child_phy));
1251 }
1252
1253 static int sas_check_eeds(struct domain_device *child,
1254                                  struct ex_phy *parent_phy,
1255                                  struct ex_phy *child_phy)
1256 {
1257         int res = 0;
1258         struct domain_device *parent = child->parent;
1259
1260         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1261                 res = -ENODEV;
1262                 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1263                         SAS_ADDR(parent->sas_addr),
1264                         parent_phy->phy_id,
1265                         SAS_ADDR(child->sas_addr),
1266                         child_phy->phy_id,
1267                         SAS_ADDR(parent->port->disc.fanout_sas_addr));
1268         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1269                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1270                        SAS_ADDR_SIZE);
1271                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1272                        SAS_ADDR_SIZE);
1273         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1274                     SAS_ADDR(parent->sas_addr)) ||
1275                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1276                     SAS_ADDR(child->sas_addr)))
1277                    &&
1278                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1279                      SAS_ADDR(parent->sas_addr)) ||
1280                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1281                      SAS_ADDR(child->sas_addr))))
1282                 ;
1283         else {
1284                 res = -ENODEV;
1285                 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1286                         SAS_ADDR(parent->sas_addr),
1287                         parent_phy->phy_id,
1288                         SAS_ADDR(child->sas_addr),
1289                         child_phy->phy_id);
1290         }
1291
1292         return res;
1293 }
1294
1295 /* Here we spill over 80 columns.  It is intentional.
1296  */
1297 static int sas_check_parent_topology(struct domain_device *child)
1298 {
1299         struct expander_device *child_ex = &child->ex_dev;
1300         struct expander_device *parent_ex;
1301         int i;
1302         int res = 0;
1303
1304         if (!child->parent)
1305                 return 0;
1306
1307         if (!dev_is_expander(child->parent->dev_type))
1308                 return 0;
1309
1310         parent_ex = &child->parent->ex_dev;
1311
1312         for (i = 0; i < parent_ex->num_phys; i++) {
1313                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1314                 struct ex_phy *child_phy;
1315
1316                 if (parent_phy->phy_state == PHY_VACANT ||
1317                     parent_phy->phy_state == PHY_NOT_PRESENT)
1318                         continue;
1319
1320                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1321                         continue;
1322
1323                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1324
1325                 switch (child->parent->dev_type) {
1326                 case SAS_EDGE_EXPANDER_DEVICE:
1327                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1328                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1329                                     child_phy->routing_attr != TABLE_ROUTING) {
1330                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1331                                         res = -ENODEV;
1332                                 }
1333                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1334                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1335                                         res = sas_check_eeds(child, parent_phy, child_phy);
1336                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1337                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1338                                         res = -ENODEV;
1339                                 }
1340                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1341                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1342                                     (child_phy->routing_attr == TABLE_ROUTING &&
1343                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1344                                         /* All good */;
1345                                 } else {
1346                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1347                                         res = -ENODEV;
1348                                 }
1349                         }
1350                         break;
1351                 case SAS_FANOUT_EXPANDER_DEVICE:
1352                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1353                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1354                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355                                 res = -ENODEV;
1356                         }
1357                         break;
1358                 default:
1359                         break;
1360                 }
1361         }
1362
1363         return res;
1364 }
1365
1366 #define RRI_REQ_SIZE  16
1367 #define RRI_RESP_SIZE 44
1368
1369 static int sas_configure_present(struct domain_device *dev, int phy_id,
1370                                  u8 *sas_addr, int *index, int *present)
1371 {
1372         int i, res = 0;
1373         struct expander_device *ex = &dev->ex_dev;
1374         struct ex_phy *phy = &ex->ex_phy[phy_id];
1375         u8 *rri_req;
1376         u8 *rri_resp;
1377
1378         *present = 0;
1379         *index = 0;
1380
1381         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1382         if (!rri_req)
1383                 return -ENOMEM;
1384
1385         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1386         if (!rri_resp) {
1387                 kfree(rri_req);
1388                 return -ENOMEM;
1389         }
1390
1391         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1392         rri_req[9] = phy_id;
1393
1394         for (i = 0; i < ex->max_route_indexes ; i++) {
1395                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1396                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1397                                        RRI_RESP_SIZE);
1398                 if (res)
1399                         goto out;
1400                 res = rri_resp[2];
1401                 if (res == SMP_RESP_NO_INDEX) {
1402                         pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1403                                 SAS_ADDR(dev->sas_addr), phy_id, i);
1404                         goto out;
1405                 } else if (res != SMP_RESP_FUNC_ACC) {
1406                         pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1407                                   __func__, SAS_ADDR(dev->sas_addr), phy_id,
1408                                   i, res);
1409                         goto out;
1410                 }
1411                 if (SAS_ADDR(sas_addr) != 0) {
1412                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1413                                 *index = i;
1414                                 if ((rri_resp[12] & 0x80) == 0x80)
1415                                         *present = 0;
1416                                 else
1417                                         *present = 1;
1418                                 goto out;
1419                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1420                                 *index = i;
1421                                 *present = 0;
1422                                 goto out;
1423                         }
1424                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1425                            phy->last_da_index < i) {
1426                         phy->last_da_index = i;
1427                         *index = i;
1428                         *present = 0;
1429                         goto out;
1430                 }
1431         }
1432         res = -1;
1433 out:
1434         kfree(rri_req);
1435         kfree(rri_resp);
1436         return res;
1437 }
1438
1439 #define CRI_REQ_SIZE  44
1440 #define CRI_RESP_SIZE  8
1441
1442 static int sas_configure_set(struct domain_device *dev, int phy_id,
1443                              u8 *sas_addr, int index, int include)
1444 {
1445         int res;
1446         u8 *cri_req;
1447         u8 *cri_resp;
1448
1449         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1450         if (!cri_req)
1451                 return -ENOMEM;
1452
1453         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1454         if (!cri_resp) {
1455                 kfree(cri_req);
1456                 return -ENOMEM;
1457         }
1458
1459         cri_req[1] = SMP_CONF_ROUTE_INFO;
1460         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1461         cri_req[9] = phy_id;
1462         if (SAS_ADDR(sas_addr) == 0 || !include)
1463                 cri_req[12] |= 0x80;
1464         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1465
1466         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1467                                CRI_RESP_SIZE);
1468         if (res)
1469                 goto out;
1470         res = cri_resp[2];
1471         if (res == SMP_RESP_NO_INDEX) {
1472                 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1473                         SAS_ADDR(dev->sas_addr), phy_id, index);
1474         }
1475 out:
1476         kfree(cri_req);
1477         kfree(cri_resp);
1478         return res;
1479 }
1480
1481 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1482                                     u8 *sas_addr, int include)
1483 {
1484         int index;
1485         int present;
1486         int res;
1487
1488         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1489         if (res)
1490                 return res;
1491         if (include ^ present)
1492                 return sas_configure_set(dev, phy_id, sas_addr, index,
1493                                          include);
1494
1495         return res;
1496 }
1497
1498 /**
1499  * sas_configure_parent - configure routing table of parent
1500  * @parent: parent expander
1501  * @child: child expander
1502  * @sas_addr: SAS port identifier of device directly attached to child
1503  * @include: whether or not to include @child in the expander routing table
1504  */
1505 static int sas_configure_parent(struct domain_device *parent,
1506                                 struct domain_device *child,
1507                                 u8 *sas_addr, int include)
1508 {
1509         struct expander_device *ex_parent = &parent->ex_dev;
1510         int res = 0;
1511         int i;
1512
1513         if (parent->parent) {
1514                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1515                                            include);
1516                 if (res)
1517                         return res;
1518         }
1519
1520         if (ex_parent->conf_route_table == 0) {
1521                 pr_debug("ex %016llx has self-configuring routing table\n",
1522                          SAS_ADDR(parent->sas_addr));
1523                 return 0;
1524         }
1525
1526         for (i = 0; i < ex_parent->num_phys; i++) {
1527                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1528
1529                 if ((phy->routing_attr == TABLE_ROUTING) &&
1530                     (SAS_ADDR(phy->attached_sas_addr) ==
1531                      SAS_ADDR(child->sas_addr))) {
1532                         res = sas_configure_phy(parent, i, sas_addr, include);
1533                         if (res)
1534                                 return res;
1535                 }
1536         }
1537
1538         return res;
1539 }
1540
1541 /**
1542  * sas_configure_routing - configure routing
1543  * @dev: expander device
1544  * @sas_addr: port identifier of device directly attached to the expander device
1545  */
1546 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1547 {
1548         if (dev->parent)
1549                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1550         return 0;
1551 }
1552
1553 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1554 {
1555         if (dev->parent)
1556                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1557         return 0;
1558 }
1559
1560 /**
1561  * sas_discover_expander - expander discovery
1562  * @dev: pointer to expander domain device
1563  *
1564  * See comment in sas_discover_sata().
1565  */
1566 static int sas_discover_expander(struct domain_device *dev)
1567 {
1568         int res;
1569
1570         res = sas_notify_lldd_dev_found(dev);
1571         if (res)
1572                 return res;
1573
1574         res = sas_ex_general(dev);
1575         if (res)
1576                 goto out_err;
1577         res = sas_ex_manuf_info(dev);
1578         if (res)
1579                 goto out_err;
1580
1581         res = sas_expander_discover(dev);
1582         if (res) {
1583                 pr_warn("expander %016llx discovery failed(0x%x)\n",
1584                         SAS_ADDR(dev->sas_addr), res);
1585                 goto out_err;
1586         }
1587
1588         sas_check_ex_subtractive_boundary(dev);
1589         res = sas_check_parent_topology(dev);
1590         if (res)
1591                 goto out_err;
1592         return 0;
1593 out_err:
1594         sas_notify_lldd_dev_gone(dev);
1595         return res;
1596 }
1597
1598 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1599 {
1600         int res = 0;
1601         struct domain_device *dev;
1602
1603         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1604                 if (dev_is_expander(dev->dev_type)) {
1605                         struct sas_expander_device *ex =
1606                                 rphy_to_expander_device(dev->rphy);
1607
1608                         if (level == ex->level)
1609                                 res = sas_ex_discover_devices(dev, -1);
1610                         else if (level > 0)
1611                                 res = sas_ex_discover_devices(port->port_dev, -1);
1612
1613                 }
1614         }
1615
1616         return res;
1617 }
1618
1619 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1620 {
1621         int res;
1622         int level;
1623
1624         do {
1625                 level = port->disc.max_level;
1626                 res = sas_ex_level_discovery(port, level);
1627                 mb();
1628         } while (level < port->disc.max_level);
1629
1630         return res;
1631 }
1632
1633 int sas_discover_root_expander(struct domain_device *dev)
1634 {
1635         int res;
1636         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1637
1638         res = sas_rphy_add(dev->rphy);
1639         if (res)
1640                 goto out_err;
1641
1642         ex->level = dev->port->disc.max_level; /* 0 */
1643         res = sas_discover_expander(dev);
1644         if (res)
1645                 goto out_err2;
1646
1647         sas_ex_bfs_disc(dev->port);
1648
1649         return res;
1650
1651 out_err2:
1652         sas_rphy_remove(dev->rphy);
1653 out_err:
1654         return res;
1655 }
1656
1657 /* ---------- Domain revalidation ---------- */
1658
1659 static int sas_get_phy_discover(struct domain_device *dev,
1660                                 int phy_id, struct smp_resp *disc_resp)
1661 {
1662         int res;
1663         u8 *disc_req;
1664
1665         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1666         if (!disc_req)
1667                 return -ENOMEM;
1668
1669         disc_req[1] = SMP_DISCOVER;
1670         disc_req[9] = phy_id;
1671
1672         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1673                                disc_resp, DISCOVER_RESP_SIZE);
1674         if (res)
1675                 goto out;
1676         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1677                 res = disc_resp->result;
1678                 goto out;
1679         }
1680 out:
1681         kfree(disc_req);
1682         return res;
1683 }
1684
1685 static int sas_get_phy_change_count(struct domain_device *dev,
1686                                     int phy_id, int *pcc)
1687 {
1688         int res;
1689         struct smp_resp *disc_resp;
1690
1691         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1692         if (!disc_resp)
1693                 return -ENOMEM;
1694
1695         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1696         if (!res)
1697                 *pcc = disc_resp->disc.change_count;
1698
1699         kfree(disc_resp);
1700         return res;
1701 }
1702
1703 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1704                                     u8 *sas_addr, enum sas_device_type *type)
1705 {
1706         int res;
1707         struct smp_resp *disc_resp;
1708         struct discover_resp *dr;
1709
1710         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711         if (!disc_resp)
1712                 return -ENOMEM;
1713         dr = &disc_resp->disc;
1714
1715         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1716         if (res == 0) {
1717                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1718                        SAS_ADDR_SIZE);
1719                 *type = to_dev_type(dr);
1720                 if (*type == 0)
1721                         memset(sas_addr, 0, SAS_ADDR_SIZE);
1722         }
1723         kfree(disc_resp);
1724         return res;
1725 }
1726
1727 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1728                               int from_phy, bool update)
1729 {
1730         struct expander_device *ex = &dev->ex_dev;
1731         int res = 0;
1732         int i;
1733
1734         for (i = from_phy; i < ex->num_phys; i++) {
1735                 int phy_change_count = 0;
1736
1737                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1738                 switch (res) {
1739                 case SMP_RESP_PHY_VACANT:
1740                 case SMP_RESP_NO_PHY:
1741                         continue;
1742                 case SMP_RESP_FUNC_ACC:
1743                         break;
1744                 default:
1745                         return res;
1746                 }
1747
1748                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1749                         if (update)
1750                                 ex->ex_phy[i].phy_change_count =
1751                                         phy_change_count;
1752                         *phy_id = i;
1753                         return 0;
1754                 }
1755         }
1756         return 0;
1757 }
1758
1759 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1760 {
1761         int res;
1762         u8  *rg_req;
1763         struct smp_resp  *rg_resp;
1764
1765         rg_req = alloc_smp_req(RG_REQ_SIZE);
1766         if (!rg_req)
1767                 return -ENOMEM;
1768
1769         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1770         if (!rg_resp) {
1771                 kfree(rg_req);
1772                 return -ENOMEM;
1773         }
1774
1775         rg_req[1] = SMP_REPORT_GENERAL;
1776
1777         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1778                                RG_RESP_SIZE);
1779         if (res)
1780                 goto out;
1781         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1782                 res = rg_resp->result;
1783                 goto out;
1784         }
1785
1786         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1787 out:
1788         kfree(rg_resp);
1789         kfree(rg_req);
1790         return res;
1791 }
1792 /**
1793  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1794  * @dev:domain device to be detect.
1795  * @src_dev: the device which originated BROADCAST(CHANGE).
1796  *
1797  * Add self-configuration expander support. Suppose two expander cascading,
1798  * when the first level expander is self-configuring, hotplug the disks in
1799  * second level expander, BROADCAST(CHANGE) will not only be originated
1800  * in the second level expander, but also be originated in the first level
1801  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1802  * expander changed count in two level expanders will all increment at least
1803  * once, but the phy which chang count has changed is the source device which
1804  * we concerned.
1805  */
1806
1807 static int sas_find_bcast_dev(struct domain_device *dev,
1808                               struct domain_device **src_dev)
1809 {
1810         struct expander_device *ex = &dev->ex_dev;
1811         int ex_change_count = -1;
1812         int phy_id = -1;
1813         int res;
1814         struct domain_device *ch;
1815
1816         res = sas_get_ex_change_count(dev, &ex_change_count);
1817         if (res)
1818                 goto out;
1819         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1820                 /* Just detect if this expander phys phy change count changed,
1821                 * in order to determine if this expander originate BROADCAST,
1822                 * and do not update phy change count field in our structure.
1823                 */
1824                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1825                 if (phy_id != -1) {
1826                         *src_dev = dev;
1827                         ex->ex_change_count = ex_change_count;
1828                         pr_info("ex %016llx phy%02d change count has changed\n",
1829                                 SAS_ADDR(dev->sas_addr), phy_id);
1830                         return res;
1831                 } else
1832                         pr_info("ex %016llx phys DID NOT change\n",
1833                                 SAS_ADDR(dev->sas_addr));
1834         }
1835         list_for_each_entry(ch, &ex->children, siblings) {
1836                 if (dev_is_expander(ch->dev_type)) {
1837                         res = sas_find_bcast_dev(ch, src_dev);
1838                         if (*src_dev)
1839                                 return res;
1840                 }
1841         }
1842 out:
1843         return res;
1844 }
1845
1846 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1847 {
1848         struct expander_device *ex = &dev->ex_dev;
1849         struct domain_device *child, *n;
1850
1851         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1852                 set_bit(SAS_DEV_GONE, &child->state);
1853                 if (dev_is_expander(child->dev_type))
1854                         sas_unregister_ex_tree(port, child);
1855                 else
1856                         sas_unregister_dev(port, child);
1857         }
1858         sas_unregister_dev(port, dev);
1859 }
1860
1861 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1862                                          int phy_id, bool last)
1863 {
1864         struct expander_device *ex_dev = &parent->ex_dev;
1865         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1866         struct domain_device *child, *n, *found = NULL;
1867         if (last) {
1868                 list_for_each_entry_safe(child, n,
1869                         &ex_dev->children, siblings) {
1870                         if (SAS_ADDR(child->sas_addr) ==
1871                             SAS_ADDR(phy->attached_sas_addr)) {
1872                                 set_bit(SAS_DEV_GONE, &child->state);
1873                                 if (dev_is_expander(child->dev_type))
1874                                         sas_unregister_ex_tree(parent->port, child);
1875                                 else
1876                                         sas_unregister_dev(parent->port, child);
1877                                 found = child;
1878                                 break;
1879                         }
1880                 }
1881                 sas_disable_routing(parent, phy->attached_sas_addr);
1882         }
1883         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1884         if (phy->port) {
1885                 sas_port_delete_phy(phy->port, phy->phy);
1886                 sas_device_set_phy(found, phy->port);
1887                 if (phy->port->num_phys == 0)
1888                         list_add_tail(&phy->port->del_list,
1889                                 &parent->port->sas_port_del_list);
1890                 phy->port = NULL;
1891         }
1892 }
1893
1894 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1895                                           const int level)
1896 {
1897         struct expander_device *ex_root = &root->ex_dev;
1898         struct domain_device *child;
1899         int res = 0;
1900
1901         list_for_each_entry(child, &ex_root->children, siblings) {
1902                 if (dev_is_expander(child->dev_type)) {
1903                         struct sas_expander_device *ex =
1904                                 rphy_to_expander_device(child->rphy);
1905
1906                         if (level > ex->level)
1907                                 res = sas_discover_bfs_by_root_level(child,
1908                                                                      level);
1909                         else if (level == ex->level)
1910                                 res = sas_ex_discover_devices(child, -1);
1911                 }
1912         }
1913         return res;
1914 }
1915
1916 static int sas_discover_bfs_by_root(struct domain_device *dev)
1917 {
1918         int res;
1919         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1920         int level = ex->level+1;
1921
1922         res = sas_ex_discover_devices(dev, -1);
1923         if (res)
1924                 goto out;
1925         do {
1926                 res = sas_discover_bfs_by_root_level(dev, level);
1927                 mb();
1928                 level += 1;
1929         } while (level <= dev->port->disc.max_level);
1930 out:
1931         return res;
1932 }
1933
1934 static int sas_discover_new(struct domain_device *dev, int phy_id)
1935 {
1936         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1937         struct domain_device *child;
1938         int res;
1939
1940         pr_debug("ex %016llx phy%02d new device attached\n",
1941                  SAS_ADDR(dev->sas_addr), phy_id);
1942         res = sas_ex_phy_discover(dev, phy_id);
1943         if (res)
1944                 return res;
1945
1946         if (sas_ex_join_wide_port(dev, phy_id))
1947                 return 0;
1948
1949         res = sas_ex_discover_devices(dev, phy_id);
1950         if (res)
1951                 return res;
1952         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1953                 if (SAS_ADDR(child->sas_addr) ==
1954                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1955                         if (dev_is_expander(child->dev_type))
1956                                 res = sas_discover_bfs_by_root(child);
1957                         break;
1958                 }
1959         }
1960         return res;
1961 }
1962
1963 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1964 {
1965         if (old == new)
1966                 return true;
1967
1968         /* treat device directed resets as flutter, if we went
1969          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1970          */
1971         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1972             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1973                 return true;
1974
1975         return false;
1976 }
1977
1978 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1979                               bool last, int sibling)
1980 {
1981         struct expander_device *ex = &dev->ex_dev;
1982         struct ex_phy *phy = &ex->ex_phy[phy_id];
1983         enum sas_device_type type = SAS_PHY_UNUSED;
1984         u8 sas_addr[SAS_ADDR_SIZE];
1985         char msg[80] = "";
1986         int res;
1987
1988         if (!last)
1989                 sprintf(msg, ", part of a wide port with phy%02d", sibling);
1990
1991         pr_debug("ex %016llx rediscovering phy%02d%s\n",
1992                  SAS_ADDR(dev->sas_addr), phy_id, msg);
1993
1994         memset(sas_addr, 0, SAS_ADDR_SIZE);
1995         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1996         switch (res) {
1997         case SMP_RESP_NO_PHY:
1998                 phy->phy_state = PHY_NOT_PRESENT;
1999                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2000                 return res;
2001         case SMP_RESP_PHY_VACANT:
2002                 phy->phy_state = PHY_VACANT;
2003                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2004                 return res;
2005         case SMP_RESP_FUNC_ACC:
2006                 break;
2007         case -ECOMM:
2008                 break;
2009         default:
2010                 return res;
2011         }
2012
2013         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2014                 phy->phy_state = PHY_EMPTY;
2015                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2016                 /*
2017                  * Even though the PHY is empty, for convenience we discover
2018                  * the PHY to update the PHY info, like negotiated linkrate.
2019                  */
2020                 sas_ex_phy_discover(dev, phy_id);
2021                 return res;
2022         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2023                    dev_type_flutter(type, phy->attached_dev_type)) {
2024                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2025                 char *action = "";
2026
2027                 sas_ex_phy_discover(dev, phy_id);
2028
2029                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2030                         action = ", needs recovery";
2031                 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2032                          SAS_ADDR(dev->sas_addr), phy_id, action);
2033                 return res;
2034         }
2035
2036         /* we always have to delete the old device when we went here */
2037         pr_info("ex %016llx phy%02d replace %016llx\n",
2038                 SAS_ADDR(dev->sas_addr), phy_id,
2039                 SAS_ADDR(phy->attached_sas_addr));
2040         sas_unregister_devs_sas_addr(dev, phy_id, last);
2041
2042         return sas_discover_new(dev, phy_id);
2043 }
2044
2045 /**
2046  * sas_rediscover - revalidate the domain.
2047  * @dev:domain device to be detect.
2048  * @phy_id: the phy id will be detected.
2049  *
2050  * NOTE: this process _must_ quit (return) as soon as any connection
2051  * errors are encountered.  Connection recovery is done elsewhere.
2052  * Discover process only interrogates devices in order to discover the
2053  * domain.For plugging out, we un-register the device only when it is
2054  * the last phy in the port, for other phys in this port, we just delete it
2055  * from the port.For inserting, we do discovery when it is the
2056  * first phy,for other phys in this port, we add it to the port to
2057  * forming the wide-port.
2058  */
2059 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2060 {
2061         struct expander_device *ex = &dev->ex_dev;
2062         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2063         int res = 0;
2064         int i;
2065         bool last = true;       /* is this the last phy of the port */
2066
2067         pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2068                  SAS_ADDR(dev->sas_addr), phy_id);
2069
2070         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2071                 for (i = 0; i < ex->num_phys; i++) {
2072                         struct ex_phy *phy = &ex->ex_phy[i];
2073
2074                         if (i == phy_id)
2075                                 continue;
2076                         if (SAS_ADDR(phy->attached_sas_addr) ==
2077                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2078                                 last = false;
2079                                 break;
2080                         }
2081                 }
2082                 res = sas_rediscover_dev(dev, phy_id, last, i);
2083         } else
2084                 res = sas_discover_new(dev, phy_id);
2085         return res;
2086 }
2087
2088 /**
2089  * sas_ex_revalidate_domain - revalidate the domain
2090  * @port_dev: port domain device.
2091  *
2092  * NOTE: this process _must_ quit (return) as soon as any connection
2093  * errors are encountered.  Connection recovery is done elsewhere.
2094  * Discover process only interrogates devices in order to discover the
2095  * domain.
2096  */
2097 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2098 {
2099         int res;
2100         struct domain_device *dev = NULL;
2101
2102         res = sas_find_bcast_dev(port_dev, &dev);
2103         if (res == 0 && dev) {
2104                 struct expander_device *ex = &dev->ex_dev;
2105                 int i = 0, phy_id;
2106
2107                 do {
2108                         phy_id = -1;
2109                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2110                         if (phy_id == -1)
2111                                 break;
2112                         res = sas_rediscover(dev, phy_id);
2113                         i = phy_id + 1;
2114                 } while (i < ex->num_phys);
2115         }
2116         return res;
2117 }
2118
2119 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2120                 struct sas_rphy *rphy)
2121 {
2122         struct domain_device *dev;
2123         unsigned int rcvlen = 0;
2124         int ret = -EINVAL;
2125
2126         /* no rphy means no smp target support (ie aic94xx host) */
2127         if (!rphy)
2128                 return sas_smp_host_handler(job, shost);
2129
2130         switch (rphy->identify.device_type) {
2131         case SAS_EDGE_EXPANDER_DEVICE:
2132         case SAS_FANOUT_EXPANDER_DEVICE:
2133                 break;
2134         default:
2135                 pr_err("%s: can we send a smp request to a device?\n",
2136                        __func__);
2137                 goto out;
2138         }
2139
2140         dev = sas_find_dev_by_rphy(rphy);
2141         if (!dev) {
2142                 pr_err("%s: fail to find a domain_device?\n", __func__);
2143                 goto out;
2144         }
2145
2146         /* do we need to support multiple segments? */
2147         if (job->request_payload.sg_cnt > 1 ||
2148             job->reply_payload.sg_cnt > 1) {
2149                 pr_info("%s: multiple segments req %u, rsp %u\n",
2150                         __func__, job->request_payload.payload_len,
2151                         job->reply_payload.payload_len);
2152                 goto out;
2153         }
2154
2155         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2156                         job->reply_payload.sg_list);
2157         if (ret >= 0) {
2158                 /* bsg_job_done() requires the length received  */
2159                 rcvlen = job->reply_payload.payload_len - ret;
2160                 ret = 0;
2161         }
2162
2163 out:
2164         bsg_job_done(job, ret, rcvlen);
2165 }