Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[linux-2.6-microblaze.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39                              u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
44 static void smp_task_timedout(unsigned long _task)
45 {
46         struct sas_task *task = (void *) _task;
47         unsigned long flags;
48
49         spin_lock_irqsave(&task->task_state_lock, flags);
50         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52         spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54         complete(&task->slow_task->completion);
55 }
56
57 static void smp_task_done(struct sas_task *task)
58 {
59         if (!del_timer(&task->slow_task->timer))
60                 return;
61         complete(&task->slow_task->completion);
62 }
63
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66
67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68                             void *resp, int resp_size)
69 {
70         int res, retry;
71         struct sas_task *task = NULL;
72         struct sas_internal *i =
73                 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75         mutex_lock(&dev->ex_dev.cmd_mutex);
76         for (retry = 0; retry < 3; retry++) {
77                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78                         res = -ECOMM;
79                         break;
80                 }
81
82                 task = sas_alloc_slow_task(GFP_KERNEL);
83                 if (!task) {
84                         res = -ENOMEM;
85                         break;
86                 }
87                 task->dev = dev;
88                 task->task_proto = dev->tproto;
89                 sg_init_one(&task->smp_task.smp_req, req, req_size);
90                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92                 task->task_done = smp_task_done;
93
94                 task->slow_task->timer.data = (unsigned long) task;
95                 task->slow_task->timer.function = smp_task_timedout;
96                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97                 add_timer(&task->slow_task->timer);
98
99                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100
101                 if (res) {
102                         del_timer(&task->slow_task->timer);
103                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
104                         break;
105                 }
106
107                 wait_for_completion(&task->slow_task->completion);
108                 res = -ECOMM;
109                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110                         SAS_DPRINTK("smp task timed out or aborted\n");
111                         i->dft->lldd_abort_task(task);
112                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113                                 SAS_DPRINTK("SMP task aborted and not done\n");
114                                 break;
115                         }
116                 }
117                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118                     task->task_status.stat == SAM_STAT_GOOD) {
119                         res = 0;
120                         break;
121                 }
122                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123                     task->task_status.stat == SAS_DATA_UNDERRUN) {
124                         /* no error, but return the number of bytes of
125                          * underrun */
126                         res = task->task_status.residual;
127                         break;
128                 }
129                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130                     task->task_status.stat == SAS_DATA_OVERRUN) {
131                         res = -EMSGSIZE;
132                         break;
133                 }
134                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
136                         break;
137                 else {
138                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139                                     "status 0x%x\n", __func__,
140                                     SAS_ADDR(dev->sas_addr),
141                                     task->task_status.resp,
142                                     task->task_status.stat);
143                         sas_free_task(task);
144                         task = NULL;
145                 }
146         }
147         mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149         BUG_ON(retry == 3 && task != NULL);
150         sas_free_task(task);
151         return res;
152 }
153
154 /* ---------- Allocations ---------- */
155
156 static inline void *alloc_smp_req(int size)
157 {
158         u8 *p = kzalloc(size, GFP_KERNEL);
159         if (p)
160                 p[0] = SMP_REQUEST;
161         return p;
162 }
163
164 static inline void *alloc_smp_resp(int size)
165 {
166         return kzalloc(size, GFP_KERNEL);
167 }
168
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171         switch (phy->routing_attr) {
172         case TABLE_ROUTING:
173                 if (dev->ex_dev.t2t_supp)
174                         return 'U';
175                 else
176                         return 'T';
177         case DIRECT_ROUTING:
178                 return 'D';
179         case SUBTRACTIVE_ROUTING:
180                 return 'S';
181         default:
182                 return '?';
183         }
184 }
185
186 static enum sas_device_type to_dev_type(struct discover_resp *dr)
187 {
188         /* This is detecting a failure to transmit initial dev to host
189          * FIS as described in section J.5 of sas-2 r16
190          */
191         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
192             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193                 return SAS_SATA_PENDING;
194         else
195                 return dr->attached_dev_type;
196 }
197
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200         enum sas_device_type dev_type;
201         enum sas_linkrate linkrate;
202         u8 sas_addr[SAS_ADDR_SIZE];
203         struct smp_resp *resp = rsp;
204         struct discover_resp *dr = &resp->disc;
205         struct sas_ha_struct *ha = dev->port->ha;
206         struct expander_device *ex = &dev->ex_dev;
207         struct ex_phy *phy = &ex->ex_phy[phy_id];
208         struct sas_rphy *rphy = dev->rphy;
209         bool new_phy = !phy->phy;
210         char *type;
211
212         if (new_phy) {
213                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214                         return;
215                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216
217                 /* FIXME: error_handling */
218                 BUG_ON(!phy->phy);
219         }
220
221         switch (resp->result) {
222         case SMP_RESP_PHY_VACANT:
223                 phy->phy_state = PHY_VACANT;
224                 break;
225         default:
226                 phy->phy_state = PHY_NOT_PRESENT;
227                 break;
228         case SMP_RESP_FUNC_ACC:
229                 phy->phy_state = PHY_EMPTY; /* do not know yet */
230                 break;
231         }
232
233         /* check if anything important changed to squelch debug */
234         dev_type = phy->attached_dev_type;
235         linkrate  = phy->linkrate;
236         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237
238         /* Handle vacant phy - rest of dr data is not valid so skip it */
239         if (phy->phy_state == PHY_VACANT) {
240                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
241                 phy->attached_dev_type = SAS_PHY_UNUSED;
242                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
243                         phy->phy_id = phy_id;
244                         goto skip;
245                 } else
246                         goto out;
247         }
248
249         phy->attached_dev_type = to_dev_type(dr);
250         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
251                 goto out;
252         phy->phy_id = phy_id;
253         phy->linkrate = dr->linkrate;
254         phy->attached_sata_host = dr->attached_sata_host;
255         phy->attached_sata_dev  = dr->attached_sata_dev;
256         phy->attached_sata_ps   = dr->attached_sata_ps;
257         phy->attached_iproto = dr->iproto << 1;
258         phy->attached_tproto = dr->tproto << 1;
259         /* help some expanders that fail to zero sas_address in the 'no
260          * device' case
261          */
262         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
263             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
264                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
265         else
266                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
267         phy->attached_phy_id = dr->attached_phy_id;
268         phy->phy_change_count = dr->change_count;
269         phy->routing_attr = dr->routing_attr;
270         phy->virtual = dr->virtual;
271         phy->last_da_index = -1;
272
273         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
274         phy->phy->identify.device_type = dr->attached_dev_type;
275         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
276         phy->phy->identify.target_port_protocols = phy->attached_tproto;
277         if (!phy->attached_tproto && dr->attached_sata_dev)
278                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
279         phy->phy->identify.phy_identifier = phy_id;
280         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
281         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
282         phy->phy->minimum_linkrate = dr->pmin_linkrate;
283         phy->phy->maximum_linkrate = dr->pmax_linkrate;
284         phy->phy->negotiated_linkrate = phy->linkrate;
285
286  skip:
287         if (new_phy)
288                 if (sas_phy_add(phy->phy)) {
289                         sas_phy_free(phy->phy);
290                         return;
291                 }
292
293  out:
294         switch (phy->attached_dev_type) {
295         case SAS_SATA_PENDING:
296                 type = "stp pending";
297                 break;
298         case SAS_PHY_UNUSED:
299                 type = "no device";
300                 break;
301         case SAS_END_DEVICE:
302                 if (phy->attached_iproto) {
303                         if (phy->attached_tproto)
304                                 type = "host+target";
305                         else
306                                 type = "host";
307                 } else {
308                         if (dr->attached_sata_dev)
309                                 type = "stp";
310                         else
311                                 type = "ssp";
312                 }
313                 break;
314         case SAS_EDGE_EXPANDER_DEVICE:
315         case SAS_FANOUT_EXPANDER_DEVICE:
316                 type = "smp";
317                 break;
318         default:
319                 type = "unknown";
320         }
321
322         /* this routine is polled by libata error recovery so filter
323          * unimportant messages
324          */
325         if (new_phy || phy->attached_dev_type != dev_type ||
326             phy->linkrate != linkrate ||
327             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
328                 /* pass */;
329         else
330                 return;
331
332         /* if the attached device type changed and ata_eh is active,
333          * make sure we run revalidation when eh completes (see:
334          * sas_enable_revalidation)
335          */
336         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
337                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
338
339         SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
340                     test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
341                     SAS_ADDR(dev->sas_addr), phy->phy_id,
342                     sas_route_char(dev, phy), phy->linkrate,
343                     SAS_ADDR(phy->attached_sas_addr), type);
344 }
345
346 /* check if we have an existing attached ata device on this expander phy */
347 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
348 {
349         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
350         struct domain_device *dev;
351         struct sas_rphy *rphy;
352
353         if (!ex_phy->port)
354                 return NULL;
355
356         rphy = ex_phy->port->rphy;
357         if (!rphy)
358                 return NULL;
359
360         dev = sas_find_dev_by_rphy(rphy);
361
362         if (dev && dev_is_sata(dev))
363                 return dev;
364
365         return NULL;
366 }
367
368 #define DISCOVER_REQ_SIZE  16
369 #define DISCOVER_RESP_SIZE 56
370
371 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
372                                       u8 *disc_resp, int single)
373 {
374         struct discover_resp *dr;
375         int res;
376
377         disc_req[9] = single;
378
379         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
380                                disc_resp, DISCOVER_RESP_SIZE);
381         if (res)
382                 return res;
383         dr = &((struct smp_resp *)disc_resp)->disc;
384         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
385                 sas_printk("Found loopback topology, just ignore it!\n");
386                 return 0;
387         }
388         sas_set_ex_phy(dev, single, disc_resp);
389         return 0;
390 }
391
392 int sas_ex_phy_discover(struct domain_device *dev, int single)
393 {
394         struct expander_device *ex = &dev->ex_dev;
395         int  res = 0;
396         u8   *disc_req;
397         u8   *disc_resp;
398
399         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
400         if (!disc_req)
401                 return -ENOMEM;
402
403         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
404         if (!disc_resp) {
405                 kfree(disc_req);
406                 return -ENOMEM;
407         }
408
409         disc_req[1] = SMP_DISCOVER;
410
411         if (0 <= single && single < ex->num_phys) {
412                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
413         } else {
414                 int i;
415
416                 for (i = 0; i < ex->num_phys; i++) {
417                         res = sas_ex_phy_discover_helper(dev, disc_req,
418                                                          disc_resp, i);
419                         if (res)
420                                 goto out_err;
421                 }
422         }
423 out_err:
424         kfree(disc_resp);
425         kfree(disc_req);
426         return res;
427 }
428
429 static int sas_expander_discover(struct domain_device *dev)
430 {
431         struct expander_device *ex = &dev->ex_dev;
432         int res = -ENOMEM;
433
434         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
435         if (!ex->ex_phy)
436                 return -ENOMEM;
437
438         res = sas_ex_phy_discover(dev, -1);
439         if (res)
440                 goto out_err;
441
442         return 0;
443  out_err:
444         kfree(ex->ex_phy);
445         ex->ex_phy = NULL;
446         return res;
447 }
448
449 #define MAX_EXPANDER_PHYS 128
450
451 static void ex_assign_report_general(struct domain_device *dev,
452                                             struct smp_resp *resp)
453 {
454         struct report_general_resp *rg = &resp->rg;
455
456         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
457         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
458         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
459         dev->ex_dev.t2t_supp = rg->t2t_supp;
460         dev->ex_dev.conf_route_table = rg->conf_route_table;
461         dev->ex_dev.configuring = rg->configuring;
462         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
463 }
464
465 #define RG_REQ_SIZE   8
466 #define RG_RESP_SIZE 32
467
468 static int sas_ex_general(struct domain_device *dev)
469 {
470         u8 *rg_req;
471         struct smp_resp *rg_resp;
472         int res;
473         int i;
474
475         rg_req = alloc_smp_req(RG_REQ_SIZE);
476         if (!rg_req)
477                 return -ENOMEM;
478
479         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
480         if (!rg_resp) {
481                 kfree(rg_req);
482                 return -ENOMEM;
483         }
484
485         rg_req[1] = SMP_REPORT_GENERAL;
486
487         for (i = 0; i < 5; i++) {
488                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
489                                        RG_RESP_SIZE);
490
491                 if (res) {
492                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
493                                     SAS_ADDR(dev->sas_addr), res);
494                         goto out;
495                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
496                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
497                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
498                         res = rg_resp->result;
499                         goto out;
500                 }
501
502                 ex_assign_report_general(dev, rg_resp);
503
504                 if (dev->ex_dev.configuring) {
505                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
506                                     SAS_ADDR(dev->sas_addr));
507                         schedule_timeout_interruptible(5*HZ);
508                 } else
509                         break;
510         }
511 out:
512         kfree(rg_req);
513         kfree(rg_resp);
514         return res;
515 }
516
517 static void ex_assign_manuf_info(struct domain_device *dev, void
518                                         *_mi_resp)
519 {
520         u8 *mi_resp = _mi_resp;
521         struct sas_rphy *rphy = dev->rphy;
522         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
523
524         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
525         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
526         memcpy(edev->product_rev, mi_resp + 36,
527                SAS_EXPANDER_PRODUCT_REV_LEN);
528
529         if (mi_resp[8] & 1) {
530                 memcpy(edev->component_vendor_id, mi_resp + 40,
531                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
532                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
533                 edev->component_revision_id = mi_resp[50];
534         }
535 }
536
537 #define MI_REQ_SIZE   8
538 #define MI_RESP_SIZE 64
539
540 static int sas_ex_manuf_info(struct domain_device *dev)
541 {
542         u8 *mi_req;
543         u8 *mi_resp;
544         int res;
545
546         mi_req = alloc_smp_req(MI_REQ_SIZE);
547         if (!mi_req)
548                 return -ENOMEM;
549
550         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
551         if (!mi_resp) {
552                 kfree(mi_req);
553                 return -ENOMEM;
554         }
555
556         mi_req[1] = SMP_REPORT_MANUF_INFO;
557
558         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
559         if (res) {
560                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
561                             SAS_ADDR(dev->sas_addr), res);
562                 goto out;
563         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
564                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
565                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
566                 goto out;
567         }
568
569         ex_assign_manuf_info(dev, mi_resp);
570 out:
571         kfree(mi_req);
572         kfree(mi_resp);
573         return res;
574 }
575
576 #define PC_REQ_SIZE  44
577 #define PC_RESP_SIZE 8
578
579 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
580                         enum phy_func phy_func,
581                         struct sas_phy_linkrates *rates)
582 {
583         u8 *pc_req;
584         u8 *pc_resp;
585         int res;
586
587         pc_req = alloc_smp_req(PC_REQ_SIZE);
588         if (!pc_req)
589                 return -ENOMEM;
590
591         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
592         if (!pc_resp) {
593                 kfree(pc_req);
594                 return -ENOMEM;
595         }
596
597         pc_req[1] = SMP_PHY_CONTROL;
598         pc_req[9] = phy_id;
599         pc_req[10]= phy_func;
600         if (rates) {
601                 pc_req[32] = rates->minimum_linkrate << 4;
602                 pc_req[33] = rates->maximum_linkrate << 4;
603         }
604
605         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
606
607         kfree(pc_resp);
608         kfree(pc_req);
609         return res;
610 }
611
612 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
613 {
614         struct expander_device *ex = &dev->ex_dev;
615         struct ex_phy *phy = &ex->ex_phy[phy_id];
616
617         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
618         phy->linkrate = SAS_PHY_DISABLED;
619 }
620
621 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
622 {
623         struct expander_device *ex = &dev->ex_dev;
624         int i;
625
626         for (i = 0; i < ex->num_phys; i++) {
627                 struct ex_phy *phy = &ex->ex_phy[i];
628
629                 if (phy->phy_state == PHY_VACANT ||
630                     phy->phy_state == PHY_NOT_PRESENT)
631                         continue;
632
633                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
634                         sas_ex_disable_phy(dev, i);
635         }
636 }
637
638 static int sas_dev_present_in_domain(struct asd_sas_port *port,
639                                             u8 *sas_addr)
640 {
641         struct domain_device *dev;
642
643         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
644                 return 1;
645         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
646                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
647                         return 1;
648         }
649         return 0;
650 }
651
652 #define RPEL_REQ_SIZE   16
653 #define RPEL_RESP_SIZE  32
654 int sas_smp_get_phy_events(struct sas_phy *phy)
655 {
656         int res;
657         u8 *req;
658         u8 *resp;
659         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
660         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
661
662         req = alloc_smp_req(RPEL_REQ_SIZE);
663         if (!req)
664                 return -ENOMEM;
665
666         resp = alloc_smp_resp(RPEL_RESP_SIZE);
667         if (!resp) {
668                 kfree(req);
669                 return -ENOMEM;
670         }
671
672         req[1] = SMP_REPORT_PHY_ERR_LOG;
673         req[9] = phy->number;
674
675         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
676                                     resp, RPEL_RESP_SIZE);
677
678         if (!res)
679                 goto out;
680
681         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
682         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
683         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
684         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
685
686  out:
687         kfree(resp);
688         return res;
689
690 }
691
692 #ifdef CONFIG_SCSI_SAS_ATA
693
694 #define RPS_REQ_SIZE  16
695 #define RPS_RESP_SIZE 60
696
697 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
698                             struct smp_resp *rps_resp)
699 {
700         int res;
701         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
702         u8 *resp = (u8 *)rps_resp;
703
704         if (!rps_req)
705                 return -ENOMEM;
706
707         rps_req[1] = SMP_REPORT_PHY_SATA;
708         rps_req[9] = phy_id;
709
710         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
711                                     rps_resp, RPS_RESP_SIZE);
712
713         /* 0x34 is the FIS type for the D2H fis.  There's a potential
714          * standards cockup here.  sas-2 explicitly specifies the FIS
715          * should be encoded so that FIS type is in resp[24].
716          * However, some expanders endian reverse this.  Undo the
717          * reversal here */
718         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
719                 int i;
720
721                 for (i = 0; i < 5; i++) {
722                         int j = 24 + (i*4);
723                         u8 a, b;
724                         a = resp[j + 0];
725                         b = resp[j + 1];
726                         resp[j + 0] = resp[j + 3];
727                         resp[j + 1] = resp[j + 2];
728                         resp[j + 2] = b;
729                         resp[j + 3] = a;
730                 }
731         }
732
733         kfree(rps_req);
734         return res;
735 }
736 #endif
737
738 static void sas_ex_get_linkrate(struct domain_device *parent,
739                                        struct domain_device *child,
740                                        struct ex_phy *parent_phy)
741 {
742         struct expander_device *parent_ex = &parent->ex_dev;
743         struct sas_port *port;
744         int i;
745
746         child->pathways = 0;
747
748         port = parent_phy->port;
749
750         for (i = 0; i < parent_ex->num_phys; i++) {
751                 struct ex_phy *phy = &parent_ex->ex_phy[i];
752
753                 if (phy->phy_state == PHY_VACANT ||
754                     phy->phy_state == PHY_NOT_PRESENT)
755                         continue;
756
757                 if (SAS_ADDR(phy->attached_sas_addr) ==
758                     SAS_ADDR(child->sas_addr)) {
759
760                         child->min_linkrate = min(parent->min_linkrate,
761                                                   phy->linkrate);
762                         child->max_linkrate = max(parent->max_linkrate,
763                                                   phy->linkrate);
764                         child->pathways++;
765                         sas_port_add_phy(port, phy->phy);
766                 }
767         }
768         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
769         child->pathways = min(child->pathways, parent->pathways);
770 }
771
772 static struct domain_device *sas_ex_discover_end_dev(
773         struct domain_device *parent, int phy_id)
774 {
775         struct expander_device *parent_ex = &parent->ex_dev;
776         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
777         struct domain_device *child = NULL;
778         struct sas_rphy *rphy;
779         int res;
780
781         if (phy->attached_sata_host || phy->attached_sata_ps)
782                 return NULL;
783
784         child = sas_alloc_device();
785         if (!child)
786                 return NULL;
787
788         kref_get(&parent->kref);
789         child->parent = parent;
790         child->port   = parent->port;
791         child->iproto = phy->attached_iproto;
792         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
793         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
794         if (!phy->port) {
795                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
796                 if (unlikely(!phy->port))
797                         goto out_err;
798                 if (unlikely(sas_port_add(phy->port) != 0)) {
799                         sas_port_free(phy->port);
800                         goto out_err;
801                 }
802         }
803         sas_ex_get_linkrate(parent, child, phy);
804         sas_device_set_phy(child, phy->port);
805
806 #ifdef CONFIG_SCSI_SAS_ATA
807         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
808                 res = sas_get_ata_info(child, phy);
809                 if (res)
810                         goto out_free;
811
812                 sas_init_dev(child);
813                 res = sas_ata_init(child);
814                 if (res)
815                         goto out_free;
816                 rphy = sas_end_device_alloc(phy->port);
817                 if (!rphy)
818                         goto out_free;
819
820                 child->rphy = rphy;
821                 get_device(&rphy->dev);
822
823                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
824
825                 res = sas_discover_sata(child);
826                 if (res) {
827                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
828                                     "%016llx:0x%x returned 0x%x\n",
829                                     SAS_ADDR(child->sas_addr),
830                                     SAS_ADDR(parent->sas_addr), phy_id, res);
831                         goto out_list_del;
832                 }
833         } else
834 #endif
835           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
836                 child->dev_type = SAS_END_DEVICE;
837                 rphy = sas_end_device_alloc(phy->port);
838                 /* FIXME: error handling */
839                 if (unlikely(!rphy))
840                         goto out_free;
841                 child->tproto = phy->attached_tproto;
842                 sas_init_dev(child);
843
844                 child->rphy = rphy;
845                 get_device(&rphy->dev);
846                 sas_fill_in_rphy(child, rphy);
847
848                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
849
850                 res = sas_discover_end_dev(child);
851                 if (res) {
852                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
853                                     "at %016llx:0x%x returned 0x%x\n",
854                                     SAS_ADDR(child->sas_addr),
855                                     SAS_ADDR(parent->sas_addr), phy_id, res);
856                         goto out_list_del;
857                 }
858         } else {
859                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
860                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
861                             phy_id);
862                 goto out_free;
863         }
864
865         list_add_tail(&child->siblings, &parent_ex->children);
866         return child;
867
868  out_list_del:
869         sas_rphy_free(child->rphy);
870         list_del(&child->disco_list_node);
871         spin_lock_irq(&parent->port->dev_list_lock);
872         list_del(&child->dev_list_node);
873         spin_unlock_irq(&parent->port->dev_list_lock);
874  out_free:
875         sas_port_delete(phy->port);
876  out_err:
877         phy->port = NULL;
878         sas_put_device(child);
879         return NULL;
880 }
881
882 /* See if this phy is part of a wide port */
883 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
884 {
885         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
886         int i;
887
888         for (i = 0; i < parent->ex_dev.num_phys; i++) {
889                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
890
891                 if (ephy == phy)
892                         continue;
893
894                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
895                             SAS_ADDR_SIZE) && ephy->port) {
896                         sas_port_add_phy(ephy->port, phy->phy);
897                         phy->port = ephy->port;
898                         phy->phy_state = PHY_DEVICE_DISCOVERED;
899                         return true;
900                 }
901         }
902
903         return false;
904 }
905
906 static struct domain_device *sas_ex_discover_expander(
907         struct domain_device *parent, int phy_id)
908 {
909         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
910         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
911         struct domain_device *child = NULL;
912         struct sas_rphy *rphy;
913         struct sas_expander_device *edev;
914         struct asd_sas_port *port;
915         int res;
916
917         if (phy->routing_attr == DIRECT_ROUTING) {
918                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
919                             "allowed\n",
920                             SAS_ADDR(parent->sas_addr), phy_id,
921                             SAS_ADDR(phy->attached_sas_addr),
922                             phy->attached_phy_id);
923                 return NULL;
924         }
925         child = sas_alloc_device();
926         if (!child)
927                 return NULL;
928
929         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
930         /* FIXME: better error handling */
931         BUG_ON(sas_port_add(phy->port) != 0);
932
933
934         switch (phy->attached_dev_type) {
935         case SAS_EDGE_EXPANDER_DEVICE:
936                 rphy = sas_expander_alloc(phy->port,
937                                           SAS_EDGE_EXPANDER_DEVICE);
938                 break;
939         case SAS_FANOUT_EXPANDER_DEVICE:
940                 rphy = sas_expander_alloc(phy->port,
941                                           SAS_FANOUT_EXPANDER_DEVICE);
942                 break;
943         default:
944                 rphy = NULL;    /* shut gcc up */
945                 BUG();
946         }
947         port = parent->port;
948         child->rphy = rphy;
949         get_device(&rphy->dev);
950         edev = rphy_to_expander_device(rphy);
951         child->dev_type = phy->attached_dev_type;
952         kref_get(&parent->kref);
953         child->parent = parent;
954         child->port = port;
955         child->iproto = phy->attached_iproto;
956         child->tproto = phy->attached_tproto;
957         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
958         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
959         sas_ex_get_linkrate(parent, child, phy);
960         edev->level = parent_ex->level + 1;
961         parent->port->disc.max_level = max(parent->port->disc.max_level,
962                                            edev->level);
963         sas_init_dev(child);
964         sas_fill_in_rphy(child, rphy);
965         sas_rphy_add(rphy);
966
967         spin_lock_irq(&parent->port->dev_list_lock);
968         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
969         spin_unlock_irq(&parent->port->dev_list_lock);
970
971         res = sas_discover_expander(child);
972         if (res) {
973                 sas_rphy_delete(rphy);
974                 spin_lock_irq(&parent->port->dev_list_lock);
975                 list_del(&child->dev_list_node);
976                 spin_unlock_irq(&parent->port->dev_list_lock);
977                 sas_put_device(child);
978                 return NULL;
979         }
980         list_add_tail(&child->siblings, &parent->ex_dev.children);
981         return child;
982 }
983
984 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
985 {
986         struct expander_device *ex = &dev->ex_dev;
987         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
988         struct domain_device *child = NULL;
989         int res = 0;
990
991         /* Phy state */
992         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
993                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
994                         res = sas_ex_phy_discover(dev, phy_id);
995                 if (res)
996                         return res;
997         }
998
999         /* Parent and domain coherency */
1000         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1001                              SAS_ADDR(dev->port->sas_addr))) {
1002                 sas_add_parent_port(dev, phy_id);
1003                 return 0;
1004         }
1005         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1006                             SAS_ADDR(dev->parent->sas_addr))) {
1007                 sas_add_parent_port(dev, phy_id);
1008                 if (ex_phy->routing_attr == TABLE_ROUTING)
1009                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1010                 return 0;
1011         }
1012
1013         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1014                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1015
1016         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1017                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1018                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1019                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1020                 }
1021                 return 0;
1022         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1023                 return 0;
1024
1025         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1026             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1027             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1028             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1029                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1030                             "phy 0x%x\n", ex_phy->attached_dev_type,
1031                             SAS_ADDR(dev->sas_addr),
1032                             phy_id);
1033                 return 0;
1034         }
1035
1036         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1037         if (res) {
1038                 SAS_DPRINTK("configure routing for dev %016llx "
1039                             "reported 0x%x. Forgotten\n",
1040                             SAS_ADDR(ex_phy->attached_sas_addr), res);
1041                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1042                 return res;
1043         }
1044
1045         if (sas_ex_join_wide_port(dev, phy_id)) {
1046                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1047                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1048                 return res;
1049         }
1050
1051         switch (ex_phy->attached_dev_type) {
1052         case SAS_END_DEVICE:
1053         case SAS_SATA_PENDING:
1054                 child = sas_ex_discover_end_dev(dev, phy_id);
1055                 break;
1056         case SAS_FANOUT_EXPANDER_DEVICE:
1057                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1058                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1059                                     "attached to ex %016llx phy 0x%x\n",
1060                                     SAS_ADDR(ex_phy->attached_sas_addr),
1061                                     ex_phy->attached_phy_id,
1062                                     SAS_ADDR(dev->sas_addr),
1063                                     phy_id);
1064                         sas_ex_disable_phy(dev, phy_id);
1065                         break;
1066                 } else
1067                         memcpy(dev->port->disc.fanout_sas_addr,
1068                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1069                 /* fallthrough */
1070         case SAS_EDGE_EXPANDER_DEVICE:
1071                 child = sas_ex_discover_expander(dev, phy_id);
1072                 break;
1073         default:
1074                 break;
1075         }
1076
1077         if (child) {
1078                 int i;
1079
1080                 for (i = 0; i < ex->num_phys; i++) {
1081                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1082                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1083                                 continue;
1084                         /*
1085                          * Due to races, the phy might not get added to the
1086                          * wide port, so we add the phy to the wide port here.
1087                          */
1088                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1089                             SAS_ADDR(child->sas_addr)) {
1090                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1091                                 if (sas_ex_join_wide_port(dev, i))
1092                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1093                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1094
1095                         }
1096                 }
1097         }
1098
1099         return res;
1100 }
1101
1102 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1103 {
1104         struct expander_device *ex = &dev->ex_dev;
1105         int i;
1106
1107         for (i = 0; i < ex->num_phys; i++) {
1108                 struct ex_phy *phy = &ex->ex_phy[i];
1109
1110                 if (phy->phy_state == PHY_VACANT ||
1111                     phy->phy_state == PHY_NOT_PRESENT)
1112                         continue;
1113
1114                 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1115                      phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1116                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1117
1118                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1119
1120                         return 1;
1121                 }
1122         }
1123         return 0;
1124 }
1125
1126 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1127 {
1128         struct expander_device *ex = &dev->ex_dev;
1129         struct domain_device *child;
1130         u8 sub_addr[8] = {0, };
1131
1132         list_for_each_entry(child, &ex->children, siblings) {
1133                 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1134                     child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1135                         continue;
1136                 if (sub_addr[0] == 0) {
1137                         sas_find_sub_addr(child, sub_addr);
1138                         continue;
1139                 } else {
1140                         u8 s2[8];
1141
1142                         if (sas_find_sub_addr(child, s2) &&
1143                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1144
1145                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1146                                             "diverges from subtractive "
1147                                             "boundary %016llx\n",
1148                                             SAS_ADDR(dev->sas_addr),
1149                                             SAS_ADDR(child->sas_addr),
1150                                             SAS_ADDR(s2),
1151                                             SAS_ADDR(sub_addr));
1152
1153                                 sas_ex_disable_port(child, s2);
1154                         }
1155                 }
1156         }
1157         return 0;
1158 }
1159 /**
1160  * sas_ex_discover_devices -- discover devices attached to this expander
1161  * dev: pointer to the expander domain device
1162  * single: if you want to do a single phy, else set to -1;
1163  *
1164  * Configure this expander for use with its devices and register the
1165  * devices of this expander.
1166  */
1167 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1168 {
1169         struct expander_device *ex = &dev->ex_dev;
1170         int i = 0, end = ex->num_phys;
1171         int res = 0;
1172
1173         if (0 <= single && single < end) {
1174                 i = single;
1175                 end = i+1;
1176         }
1177
1178         for ( ; i < end; i++) {
1179                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1180
1181                 if (ex_phy->phy_state == PHY_VACANT ||
1182                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1183                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1184                         continue;
1185
1186                 switch (ex_phy->linkrate) {
1187                 case SAS_PHY_DISABLED:
1188                 case SAS_PHY_RESET_PROBLEM:
1189                 case SAS_SATA_PORT_SELECTOR:
1190                         continue;
1191                 default:
1192                         res = sas_ex_discover_dev(dev, i);
1193                         if (res)
1194                                 break;
1195                         continue;
1196                 }
1197         }
1198
1199         if (!res)
1200                 sas_check_level_subtractive_boundary(dev);
1201
1202         return res;
1203 }
1204
1205 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1206 {
1207         struct expander_device *ex = &dev->ex_dev;
1208         int i;
1209         u8  *sub_sas_addr = NULL;
1210
1211         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1212                 return 0;
1213
1214         for (i = 0; i < ex->num_phys; i++) {
1215                 struct ex_phy *phy = &ex->ex_phy[i];
1216
1217                 if (phy->phy_state == PHY_VACANT ||
1218                     phy->phy_state == PHY_NOT_PRESENT)
1219                         continue;
1220
1221                 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1222                      phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1223                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224
1225                         if (!sub_sas_addr)
1226                                 sub_sas_addr = &phy->attached_sas_addr[0];
1227                         else if (SAS_ADDR(sub_sas_addr) !=
1228                                  SAS_ADDR(phy->attached_sas_addr)) {
1229
1230                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1231                                             "diverges(%016llx) on subtractive "
1232                                             "boundary(%016llx). Disabled\n",
1233                                             SAS_ADDR(dev->sas_addr), i,
1234                                             SAS_ADDR(phy->attached_sas_addr),
1235                                             SAS_ADDR(sub_sas_addr));
1236                                 sas_ex_disable_phy(dev, i);
1237                         }
1238                 }
1239         }
1240         return 0;
1241 }
1242
1243 static void sas_print_parent_topology_bug(struct domain_device *child,
1244                                                  struct ex_phy *parent_phy,
1245                                                  struct ex_phy *child_phy)
1246 {
1247         static const char *ex_type[] = {
1248                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1249                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1250         };
1251         struct domain_device *parent = child->parent;
1252
1253         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1254                    "phy 0x%x has %c:%c routing link!\n",
1255
1256                    ex_type[parent->dev_type],
1257                    SAS_ADDR(parent->sas_addr),
1258                    parent_phy->phy_id,
1259
1260                    ex_type[child->dev_type],
1261                    SAS_ADDR(child->sas_addr),
1262                    child_phy->phy_id,
1263
1264                    sas_route_char(parent, parent_phy),
1265                    sas_route_char(child, child_phy));
1266 }
1267
1268 static int sas_check_eeds(struct domain_device *child,
1269                                  struct ex_phy *parent_phy,
1270                                  struct ex_phy *child_phy)
1271 {
1272         int res = 0;
1273         struct domain_device *parent = child->parent;
1274
1275         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276                 res = -ENODEV;
1277                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1278                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1279                             SAS_ADDR(parent->sas_addr),
1280                             parent_phy->phy_id,
1281                             SAS_ADDR(child->sas_addr),
1282                             child_phy->phy_id,
1283                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1284         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1285                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1286                        SAS_ADDR_SIZE);
1287                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1288                        SAS_ADDR_SIZE);
1289         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1290                     SAS_ADDR(parent->sas_addr)) ||
1291                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1292                     SAS_ADDR(child->sas_addr)))
1293                    &&
1294                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1295                      SAS_ADDR(parent->sas_addr)) ||
1296                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1297                      SAS_ADDR(child->sas_addr))))
1298                 ;
1299         else {
1300                 res = -ENODEV;
1301                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1302                             "phy 0x%x link forms a third EEDS!\n",
1303                             SAS_ADDR(parent->sas_addr),
1304                             parent_phy->phy_id,
1305                             SAS_ADDR(child->sas_addr),
1306                             child_phy->phy_id);
1307         }
1308
1309         return res;
1310 }
1311
1312 /* Here we spill over 80 columns.  It is intentional.
1313  */
1314 static int sas_check_parent_topology(struct domain_device *child)
1315 {
1316         struct expander_device *child_ex = &child->ex_dev;
1317         struct expander_device *parent_ex;
1318         int i;
1319         int res = 0;
1320
1321         if (!child->parent)
1322                 return 0;
1323
1324         if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1325             child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1326                 return 0;
1327
1328         parent_ex = &child->parent->ex_dev;
1329
1330         for (i = 0; i < parent_ex->num_phys; i++) {
1331                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1332                 struct ex_phy *child_phy;
1333
1334                 if (parent_phy->phy_state == PHY_VACANT ||
1335                     parent_phy->phy_state == PHY_NOT_PRESENT)
1336                         continue;
1337
1338                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1339                         continue;
1340
1341                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1342
1343                 switch (child->parent->dev_type) {
1344                 case SAS_EDGE_EXPANDER_DEVICE:
1345                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1346                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1347                                     child_phy->routing_attr != TABLE_ROUTING) {
1348                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1349                                         res = -ENODEV;
1350                                 }
1351                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1353                                         res = sas_check_eeds(child, parent_phy, child_phy);
1354                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1355                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1356                                         res = -ENODEV;
1357                                 }
1358                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1359                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1360                                     (child_phy->routing_attr == TABLE_ROUTING &&
1361                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1362                                         /* All good */;
1363                                 } else {
1364                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1365                                         res = -ENODEV;
1366                                 }
1367                         }
1368                         break;
1369                 case SAS_FANOUT_EXPANDER_DEVICE:
1370                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1371                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1372                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1373                                 res = -ENODEV;
1374                         }
1375                         break;
1376                 default:
1377                         break;
1378                 }
1379         }
1380
1381         return res;
1382 }
1383
1384 #define RRI_REQ_SIZE  16
1385 #define RRI_RESP_SIZE 44
1386
1387 static int sas_configure_present(struct domain_device *dev, int phy_id,
1388                                  u8 *sas_addr, int *index, int *present)
1389 {
1390         int i, res = 0;
1391         struct expander_device *ex = &dev->ex_dev;
1392         struct ex_phy *phy = &ex->ex_phy[phy_id];
1393         u8 *rri_req;
1394         u8 *rri_resp;
1395
1396         *present = 0;
1397         *index = 0;
1398
1399         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1400         if (!rri_req)
1401                 return -ENOMEM;
1402
1403         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1404         if (!rri_resp) {
1405                 kfree(rri_req);
1406                 return -ENOMEM;
1407         }
1408
1409         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1410         rri_req[9] = phy_id;
1411
1412         for (i = 0; i < ex->max_route_indexes ; i++) {
1413                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1414                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1415                                        RRI_RESP_SIZE);
1416                 if (res)
1417                         goto out;
1418                 res = rri_resp[2];
1419                 if (res == SMP_RESP_NO_INDEX) {
1420                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1421                                     "phy 0x%x index 0x%x\n",
1422                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1423                         goto out;
1424                 } else if (res != SMP_RESP_FUNC_ACC) {
1425                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1426                                     "result 0x%x\n", __func__,
1427                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1428                         goto out;
1429                 }
1430                 if (SAS_ADDR(sas_addr) != 0) {
1431                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1432                                 *index = i;
1433                                 if ((rri_resp[12] & 0x80) == 0x80)
1434                                         *present = 0;
1435                                 else
1436                                         *present = 1;
1437                                 goto out;
1438                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1439                                 *index = i;
1440                                 *present = 0;
1441                                 goto out;
1442                         }
1443                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1444                            phy->last_da_index < i) {
1445                         phy->last_da_index = i;
1446                         *index = i;
1447                         *present = 0;
1448                         goto out;
1449                 }
1450         }
1451         res = -1;
1452 out:
1453         kfree(rri_req);
1454         kfree(rri_resp);
1455         return res;
1456 }
1457
1458 #define CRI_REQ_SIZE  44
1459 #define CRI_RESP_SIZE  8
1460
1461 static int sas_configure_set(struct domain_device *dev, int phy_id,
1462                              u8 *sas_addr, int index, int include)
1463 {
1464         int res;
1465         u8 *cri_req;
1466         u8 *cri_resp;
1467
1468         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1469         if (!cri_req)
1470                 return -ENOMEM;
1471
1472         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1473         if (!cri_resp) {
1474                 kfree(cri_req);
1475                 return -ENOMEM;
1476         }
1477
1478         cri_req[1] = SMP_CONF_ROUTE_INFO;
1479         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1480         cri_req[9] = phy_id;
1481         if (SAS_ADDR(sas_addr) == 0 || !include)
1482                 cri_req[12] |= 0x80;
1483         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1484
1485         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1486                                CRI_RESP_SIZE);
1487         if (res)
1488                 goto out;
1489         res = cri_resp[2];
1490         if (res == SMP_RESP_NO_INDEX) {
1491                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1492                             "index 0x%x\n",
1493                             SAS_ADDR(dev->sas_addr), phy_id, index);
1494         }
1495 out:
1496         kfree(cri_req);
1497         kfree(cri_resp);
1498         return res;
1499 }
1500
1501 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502                                     u8 *sas_addr, int include)
1503 {
1504         int index;
1505         int present;
1506         int res;
1507
1508         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509         if (res)
1510                 return res;
1511         if (include ^ present)
1512                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1513
1514         return res;
1515 }
1516
1517 /**
1518  * sas_configure_parent -- configure routing table of parent
1519  * parent: parent expander
1520  * child: child expander
1521  * sas_addr: SAS port identifier of device directly attached to child
1522  */
1523 static int sas_configure_parent(struct domain_device *parent,
1524                                 struct domain_device *child,
1525                                 u8 *sas_addr, int include)
1526 {
1527         struct expander_device *ex_parent = &parent->ex_dev;
1528         int res = 0;
1529         int i;
1530
1531         if (parent->parent) {
1532                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1533                                            include);
1534                 if (res)
1535                         return res;
1536         }
1537
1538         if (ex_parent->conf_route_table == 0) {
1539                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1540                             SAS_ADDR(parent->sas_addr));
1541                 return 0;
1542         }
1543
1544         for (i = 0; i < ex_parent->num_phys; i++) {
1545                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1546
1547                 if ((phy->routing_attr == TABLE_ROUTING) &&
1548                     (SAS_ADDR(phy->attached_sas_addr) ==
1549                      SAS_ADDR(child->sas_addr))) {
1550                         res = sas_configure_phy(parent, i, sas_addr, include);
1551                         if (res)
1552                                 return res;
1553                 }
1554         }
1555
1556         return res;
1557 }
1558
1559 /**
1560  * sas_configure_routing -- configure routing
1561  * dev: expander device
1562  * sas_addr: port identifier of device directly attached to the expander device
1563  */
1564 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1565 {
1566         if (dev->parent)
1567                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1568         return 0;
1569 }
1570
1571 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1572 {
1573         if (dev->parent)
1574                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1575         return 0;
1576 }
1577
1578 /**
1579  * sas_discover_expander -- expander discovery
1580  * @ex: pointer to expander domain device
1581  *
1582  * See comment in sas_discover_sata().
1583  */
1584 static int sas_discover_expander(struct domain_device *dev)
1585 {
1586         int res;
1587
1588         res = sas_notify_lldd_dev_found(dev);
1589         if (res)
1590                 return res;
1591
1592         res = sas_ex_general(dev);
1593         if (res)
1594                 goto out_err;
1595         res = sas_ex_manuf_info(dev);
1596         if (res)
1597                 goto out_err;
1598
1599         res = sas_expander_discover(dev);
1600         if (res) {
1601                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1602                             SAS_ADDR(dev->sas_addr), res);
1603                 goto out_err;
1604         }
1605
1606         sas_check_ex_subtractive_boundary(dev);
1607         res = sas_check_parent_topology(dev);
1608         if (res)
1609                 goto out_err;
1610         return 0;
1611 out_err:
1612         sas_notify_lldd_dev_gone(dev);
1613         return res;
1614 }
1615
1616 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1617 {
1618         int res = 0;
1619         struct domain_device *dev;
1620
1621         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1622                 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1623                     dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1624                         struct sas_expander_device *ex =
1625                                 rphy_to_expander_device(dev->rphy);
1626
1627                         if (level == ex->level)
1628                                 res = sas_ex_discover_devices(dev, -1);
1629                         else if (level > 0)
1630                                 res = sas_ex_discover_devices(port->port_dev, -1);
1631
1632                 }
1633         }
1634
1635         return res;
1636 }
1637
1638 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1639 {
1640         int res;
1641         int level;
1642
1643         do {
1644                 level = port->disc.max_level;
1645                 res = sas_ex_level_discovery(port, level);
1646                 mb();
1647         } while (level < port->disc.max_level);
1648
1649         return res;
1650 }
1651
1652 int sas_discover_root_expander(struct domain_device *dev)
1653 {
1654         int res;
1655         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1656
1657         res = sas_rphy_add(dev->rphy);
1658         if (res)
1659                 goto out_err;
1660
1661         ex->level = dev->port->disc.max_level; /* 0 */
1662         res = sas_discover_expander(dev);
1663         if (res)
1664                 goto out_err2;
1665
1666         sas_ex_bfs_disc(dev->port);
1667
1668         return res;
1669
1670 out_err2:
1671         sas_rphy_remove(dev->rphy);
1672 out_err:
1673         return res;
1674 }
1675
1676 /* ---------- Domain revalidation ---------- */
1677
1678 static int sas_get_phy_discover(struct domain_device *dev,
1679                                 int phy_id, struct smp_resp *disc_resp)
1680 {
1681         int res;
1682         u8 *disc_req;
1683
1684         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1685         if (!disc_req)
1686                 return -ENOMEM;
1687
1688         disc_req[1] = SMP_DISCOVER;
1689         disc_req[9] = phy_id;
1690
1691         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1692                                disc_resp, DISCOVER_RESP_SIZE);
1693         if (res)
1694                 goto out;
1695         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1696                 res = disc_resp->result;
1697                 goto out;
1698         }
1699 out:
1700         kfree(disc_req);
1701         return res;
1702 }
1703
1704 static int sas_get_phy_change_count(struct domain_device *dev,
1705                                     int phy_id, int *pcc)
1706 {
1707         int res;
1708         struct smp_resp *disc_resp;
1709
1710         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711         if (!disc_resp)
1712                 return -ENOMEM;
1713
1714         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1715         if (!res)
1716                 *pcc = disc_resp->disc.change_count;
1717
1718         kfree(disc_resp);
1719         return res;
1720 }
1721
1722 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1723                                     u8 *sas_addr, enum sas_device_type *type)
1724 {
1725         int res;
1726         struct smp_resp *disc_resp;
1727         struct discover_resp *dr;
1728
1729         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1730         if (!disc_resp)
1731                 return -ENOMEM;
1732         dr = &disc_resp->disc;
1733
1734         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1735         if (res == 0) {
1736                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1737                 *type = to_dev_type(dr);
1738                 if (*type == 0)
1739                         memset(sas_addr, 0, 8);
1740         }
1741         kfree(disc_resp);
1742         return res;
1743 }
1744
1745 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1746                               int from_phy, bool update)
1747 {
1748         struct expander_device *ex = &dev->ex_dev;
1749         int res = 0;
1750         int i;
1751
1752         for (i = from_phy; i < ex->num_phys; i++) {
1753                 int phy_change_count = 0;
1754
1755                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1756                 switch (res) {
1757                 case SMP_RESP_PHY_VACANT:
1758                 case SMP_RESP_NO_PHY:
1759                         continue;
1760                 case SMP_RESP_FUNC_ACC:
1761                         break;
1762                 default:
1763                         return res;
1764                 }
1765
1766                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1767                         if (update)
1768                                 ex->ex_phy[i].phy_change_count =
1769                                         phy_change_count;
1770                         *phy_id = i;
1771                         return 0;
1772                 }
1773         }
1774         return 0;
1775 }
1776
1777 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1778 {
1779         int res;
1780         u8  *rg_req;
1781         struct smp_resp  *rg_resp;
1782
1783         rg_req = alloc_smp_req(RG_REQ_SIZE);
1784         if (!rg_req)
1785                 return -ENOMEM;
1786
1787         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1788         if (!rg_resp) {
1789                 kfree(rg_req);
1790                 return -ENOMEM;
1791         }
1792
1793         rg_req[1] = SMP_REPORT_GENERAL;
1794
1795         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1796                                RG_RESP_SIZE);
1797         if (res)
1798                 goto out;
1799         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1800                 res = rg_resp->result;
1801                 goto out;
1802         }
1803
1804         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1805 out:
1806         kfree(rg_resp);
1807         kfree(rg_req);
1808         return res;
1809 }
1810 /**
1811  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1812  * @dev:domain device to be detect.
1813  * @src_dev: the device which originated BROADCAST(CHANGE).
1814  *
1815  * Add self-configuration expander support. Suppose two expander cascading,
1816  * when the first level expander is self-configuring, hotplug the disks in
1817  * second level expander, BROADCAST(CHANGE) will not only be originated
1818  * in the second level expander, but also be originated in the first level
1819  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1820  * expander changed count in two level expanders will all increment at least
1821  * once, but the phy which chang count has changed is the source device which
1822  * we concerned.
1823  */
1824
1825 static int sas_find_bcast_dev(struct domain_device *dev,
1826                               struct domain_device **src_dev)
1827 {
1828         struct expander_device *ex = &dev->ex_dev;
1829         int ex_change_count = -1;
1830         int phy_id = -1;
1831         int res;
1832         struct domain_device *ch;
1833
1834         res = sas_get_ex_change_count(dev, &ex_change_count);
1835         if (res)
1836                 goto out;
1837         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1838                 /* Just detect if this expander phys phy change count changed,
1839                 * in order to determine if this expander originate BROADCAST,
1840                 * and do not update phy change count field in our structure.
1841                 */
1842                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1843                 if (phy_id != -1) {
1844                         *src_dev = dev;
1845                         ex->ex_change_count = ex_change_count;
1846                         SAS_DPRINTK("Expander phy change count has changed\n");
1847                         return res;
1848                 } else
1849                         SAS_DPRINTK("Expander phys DID NOT change\n");
1850         }
1851         list_for_each_entry(ch, &ex->children, siblings) {
1852                 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1853                         res = sas_find_bcast_dev(ch, src_dev);
1854                         if (*src_dev)
1855                                 return res;
1856                 }
1857         }
1858 out:
1859         return res;
1860 }
1861
1862 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863 {
1864         struct expander_device *ex = &dev->ex_dev;
1865         struct domain_device *child, *n;
1866
1867         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868                 set_bit(SAS_DEV_GONE, &child->state);
1869                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1870                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1871                         sas_unregister_ex_tree(port, child);
1872                 else
1873                         sas_unregister_dev(port, child);
1874         }
1875         sas_unregister_dev(port, dev);
1876 }
1877
1878 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1879                                          int phy_id, bool last)
1880 {
1881         struct expander_device *ex_dev = &parent->ex_dev;
1882         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1883         struct domain_device *child, *n, *found = NULL;
1884         if (last) {
1885                 list_for_each_entry_safe(child, n,
1886                         &ex_dev->children, siblings) {
1887                         if (SAS_ADDR(child->sas_addr) ==
1888                             SAS_ADDR(phy->attached_sas_addr)) {
1889                                 set_bit(SAS_DEV_GONE, &child->state);
1890                                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1891                                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1892                                         sas_unregister_ex_tree(parent->port, child);
1893                                 else
1894                                         sas_unregister_dev(parent->port, child);
1895                                 found = child;
1896                                 break;
1897                         }
1898                 }
1899                 sas_disable_routing(parent, phy->attached_sas_addr);
1900         }
1901         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1902         if (phy->port) {
1903                 sas_port_delete_phy(phy->port, phy->phy);
1904                 sas_device_set_phy(found, phy->port);
1905                 if (phy->port->num_phys == 0)
1906                         sas_port_delete(phy->port);
1907                 phy->port = NULL;
1908         }
1909 }
1910
1911 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1912                                           const int level)
1913 {
1914         struct expander_device *ex_root = &root->ex_dev;
1915         struct domain_device *child;
1916         int res = 0;
1917
1918         list_for_each_entry(child, &ex_root->children, siblings) {
1919                 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1920                     child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1921                         struct sas_expander_device *ex =
1922                                 rphy_to_expander_device(child->rphy);
1923
1924                         if (level > ex->level)
1925                                 res = sas_discover_bfs_by_root_level(child,
1926                                                                      level);
1927                         else if (level == ex->level)
1928                                 res = sas_ex_discover_devices(child, -1);
1929                 }
1930         }
1931         return res;
1932 }
1933
1934 static int sas_discover_bfs_by_root(struct domain_device *dev)
1935 {
1936         int res;
1937         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1938         int level = ex->level+1;
1939
1940         res = sas_ex_discover_devices(dev, -1);
1941         if (res)
1942                 goto out;
1943         do {
1944                 res = sas_discover_bfs_by_root_level(dev, level);
1945                 mb();
1946                 level += 1;
1947         } while (level <= dev->port->disc.max_level);
1948 out:
1949         return res;
1950 }
1951
1952 static int sas_discover_new(struct domain_device *dev, int phy_id)
1953 {
1954         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1955         struct domain_device *child;
1956         int res;
1957
1958         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1959                     SAS_ADDR(dev->sas_addr), phy_id);
1960         res = sas_ex_phy_discover(dev, phy_id);
1961         if (res)
1962                 return res;
1963
1964         if (sas_ex_join_wide_port(dev, phy_id))
1965                 return 0;
1966
1967         res = sas_ex_discover_devices(dev, phy_id);
1968         if (res)
1969                 return res;
1970         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1971                 if (SAS_ADDR(child->sas_addr) ==
1972                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1973                         if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1974                             child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1975                                 res = sas_discover_bfs_by_root(child);
1976                         break;
1977                 }
1978         }
1979         return res;
1980 }
1981
1982 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1983 {
1984         if (old == new)
1985                 return true;
1986
1987         /* treat device directed resets as flutter, if we went
1988          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1989          */
1990         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1991             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1992                 return true;
1993
1994         return false;
1995 }
1996
1997 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1998 {
1999         struct expander_device *ex = &dev->ex_dev;
2000         struct ex_phy *phy = &ex->ex_phy[phy_id];
2001         enum sas_device_type type = SAS_PHY_UNUSED;
2002         u8 sas_addr[8];
2003         int res;
2004
2005         memset(sas_addr, 0, 8);
2006         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2007         switch (res) {
2008         case SMP_RESP_NO_PHY:
2009                 phy->phy_state = PHY_NOT_PRESENT;
2010                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2011                 return res;
2012         case SMP_RESP_PHY_VACANT:
2013                 phy->phy_state = PHY_VACANT;
2014                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2015                 return res;
2016         case SMP_RESP_FUNC_ACC:
2017                 break;
2018         case -ECOMM:
2019                 break;
2020         default:
2021                 return res;
2022         }
2023
2024         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2025                 phy->phy_state = PHY_EMPTY;
2026                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2027                 return res;
2028         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2029                    dev_type_flutter(type, phy->attached_dev_type)) {
2030                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2031                 char *action = "";
2032
2033                 sas_ex_phy_discover(dev, phy_id);
2034
2035                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2036                         action = ", needs recovery";
2037                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2038                             SAS_ADDR(dev->sas_addr), phy_id, action);
2039                 return res;
2040         }
2041
2042         /* delete the old link */
2043         if (SAS_ADDR(phy->attached_sas_addr) &&
2044             SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2045                 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2046                             SAS_ADDR(dev->sas_addr), phy_id,
2047                             SAS_ADDR(phy->attached_sas_addr));
2048                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2049         }
2050
2051         return sas_discover_new(dev, phy_id);
2052 }
2053
2054 /**
2055  * sas_rediscover - revalidate the domain.
2056  * @dev:domain device to be detect.
2057  * @phy_id: the phy id will be detected.
2058  *
2059  * NOTE: this process _must_ quit (return) as soon as any connection
2060  * errors are encountered.  Connection recovery is done elsewhere.
2061  * Discover process only interrogates devices in order to discover the
2062  * domain.For plugging out, we un-register the device only when it is
2063  * the last phy in the port, for other phys in this port, we just delete it
2064  * from the port.For inserting, we do discovery when it is the
2065  * first phy,for other phys in this port, we add it to the port to
2066  * forming the wide-port.
2067  */
2068 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2069 {
2070         struct expander_device *ex = &dev->ex_dev;
2071         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2072         int res = 0;
2073         int i;
2074         bool last = true;       /* is this the last phy of the port */
2075
2076         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2077                     SAS_ADDR(dev->sas_addr), phy_id);
2078
2079         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2080                 for (i = 0; i < ex->num_phys; i++) {
2081                         struct ex_phy *phy = &ex->ex_phy[i];
2082
2083                         if (i == phy_id)
2084                                 continue;
2085                         if (SAS_ADDR(phy->attached_sas_addr) ==
2086                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2087                                 SAS_DPRINTK("phy%d part of wide port with "
2088                                             "phy%d\n", phy_id, i);
2089                                 last = false;
2090                                 break;
2091                         }
2092                 }
2093                 res = sas_rediscover_dev(dev, phy_id, last);
2094         } else
2095                 res = sas_discover_new(dev, phy_id);
2096         return res;
2097 }
2098
2099 /**
2100  * sas_revalidate_domain -- revalidate the domain
2101  * @port: port to the domain of interest
2102  *
2103  * NOTE: this process _must_ quit (return) as soon as any connection
2104  * errors are encountered.  Connection recovery is done elsewhere.
2105  * Discover process only interrogates devices in order to discover the
2106  * domain.
2107  */
2108 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2109 {
2110         int res;
2111         struct domain_device *dev = NULL;
2112
2113         res = sas_find_bcast_dev(port_dev, &dev);
2114         while (res == 0 && dev) {
2115                 struct expander_device *ex = &dev->ex_dev;
2116                 int i = 0, phy_id;
2117
2118                 do {
2119                         phy_id = -1;
2120                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2121                         if (phy_id == -1)
2122                                 break;
2123                         res = sas_rediscover(dev, phy_id);
2124                         i = phy_id + 1;
2125                 } while (i < ex->num_phys);
2126
2127                 dev = NULL;
2128                 res = sas_find_bcast_dev(port_dev, &dev);
2129         }
2130         return res;
2131 }
2132
2133 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2134                     struct request *req)
2135 {
2136         struct domain_device *dev;
2137         int ret, type;
2138         struct request *rsp = req->next_rq;
2139
2140         if (!rsp) {
2141                 printk("%s: space for a smp response is missing\n",
2142                        __func__);
2143                 return -EINVAL;
2144         }
2145
2146         /* no rphy means no smp target support (ie aic94xx host) */
2147         if (!rphy)
2148                 return sas_smp_host_handler(shost, req, rsp);
2149
2150         type = rphy->identify.device_type;
2151
2152         if (type != SAS_EDGE_EXPANDER_DEVICE &&
2153             type != SAS_FANOUT_EXPANDER_DEVICE) {
2154                 printk("%s: can we send a smp request to a device?\n",
2155                        __func__);
2156                 return -EINVAL;
2157         }
2158
2159         dev = sas_find_dev_by_rphy(rphy);
2160         if (!dev) {
2161                 printk("%s: fail to find a domain_device?\n", __func__);
2162                 return -EINVAL;
2163         }
2164
2165         /* do we need to support multiple segments? */
2166         if (bio_multiple_segments(req->bio) ||
2167             bio_multiple_segments(rsp->bio)) {
2168                 printk("%s: multiple segments req %u, rsp %u\n",
2169                        __func__, blk_rq_bytes(req), blk_rq_bytes(rsp));
2170                 return -EINVAL;
2171         }
2172
2173         ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2174                                bio_data(rsp->bio), blk_rq_bytes(rsp));
2175         if (ret > 0) {
2176                 /* positive number is the untransferred residual */
2177                 rsp->resid_len = ret;
2178                 req->resid_len = 0;
2179                 ret = 0;
2180         } else if (ret == 0) {
2181                 rsp->resid_len = 0;
2182                 req->resid_len = 0;
2183         }
2184
2185         return ret;
2186 }