2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4 * Copyright 2016 Microsemi Corporation
5 * Copyright 2014-2015 PMC-Sierra, Inc.
6 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; version 2 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 * NON INFRINGEMENT. See the GNU General Public License for more details.
17 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 "Use 'simple mode' rather than 'performant mode'");
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
136 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
149 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
151 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
157 /* board_id = Subsystem Device ID & Vendor ID
158 * product = Marketing Name for the board
159 * access = Address of the struct of function pointers
161 static struct board_type products[] = {
162 {0x40700E11, "Smart Array 5300", &SA5A_access},
163 {0x40800E11, "Smart Array 5i", &SA5B_access},
164 {0x40820E11, "Smart Array 532", &SA5B_access},
165 {0x40830E11, "Smart Array 5312", &SA5B_access},
166 {0x409A0E11, "Smart Array 641", &SA5A_access},
167 {0x409B0E11, "Smart Array 642", &SA5A_access},
168 {0x409C0E11, "Smart Array 6400", &SA5A_access},
169 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170 {0x40910E11, "Smart Array 6i", &SA5A_access},
171 {0x3225103C, "Smart Array P600", &SA5A_access},
172 {0x3223103C, "Smart Array P800", &SA5A_access},
173 {0x3234103C, "Smart Array P400", &SA5A_access},
174 {0x3235103C, "Smart Array P400i", &SA5A_access},
175 {0x3211103C, "Smart Array E200i", &SA5A_access},
176 {0x3212103C, "Smart Array E200", &SA5A_access},
177 {0x3213103C, "Smart Array E200i", &SA5A_access},
178 {0x3214103C, "Smart Array E200i", &SA5A_access},
179 {0x3215103C, "Smart Array E200i", &SA5A_access},
180 {0x3237103C, "Smart Array E500", &SA5A_access},
181 {0x323D103C, "Smart Array P700m", &SA5A_access},
182 {0x3241103C, "Smart Array P212", &SA5_access},
183 {0x3243103C, "Smart Array P410", &SA5_access},
184 {0x3245103C, "Smart Array P410i", &SA5_access},
185 {0x3247103C, "Smart Array P411", &SA5_access},
186 {0x3249103C, "Smart Array P812", &SA5_access},
187 {0x324A103C, "Smart Array P712m", &SA5_access},
188 {0x324B103C, "Smart Array P711m", &SA5_access},
189 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190 {0x3350103C, "Smart Array P222", &SA5_access},
191 {0x3351103C, "Smart Array P420", &SA5_access},
192 {0x3352103C, "Smart Array P421", &SA5_access},
193 {0x3353103C, "Smart Array P822", &SA5_access},
194 {0x3354103C, "Smart Array P420i", &SA5_access},
195 {0x3355103C, "Smart Array P220i", &SA5_access},
196 {0x3356103C, "Smart Array P721m", &SA5_access},
197 {0x1920103C, "Smart Array P430i", &SA5_access},
198 {0x1921103C, "Smart Array P830i", &SA5_access},
199 {0x1922103C, "Smart Array P430", &SA5_access},
200 {0x1923103C, "Smart Array P431", &SA5_access},
201 {0x1924103C, "Smart Array P830", &SA5_access},
202 {0x1925103C, "Smart Array P831", &SA5_access},
203 {0x1926103C, "Smart Array P731m", &SA5_access},
204 {0x1928103C, "Smart Array P230i", &SA5_access},
205 {0x1929103C, "Smart Array P530", &SA5_access},
206 {0x21BD103C, "Smart Array P244br", &SA5_access},
207 {0x21BE103C, "Smart Array P741m", &SA5_access},
208 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
209 {0x21C0103C, "Smart Array P440ar", &SA5_access},
210 {0x21C1103C, "Smart Array P840ar", &SA5_access},
211 {0x21C2103C, "Smart Array P440", &SA5_access},
212 {0x21C3103C, "Smart Array P441", &SA5_access},
213 {0x21C4103C, "Smart Array", &SA5_access},
214 {0x21C5103C, "Smart Array P841", &SA5_access},
215 {0x21C6103C, "Smart HBA H244br", &SA5_access},
216 {0x21C7103C, "Smart HBA H240", &SA5_access},
217 {0x21C8103C, "Smart HBA H241", &SA5_access},
218 {0x21C9103C, "Smart Array", &SA5_access},
219 {0x21CA103C, "Smart Array P246br", &SA5_access},
220 {0x21CB103C, "Smart Array P840", &SA5_access},
221 {0x21CC103C, "Smart Array", &SA5_access},
222 {0x21CD103C, "Smart Array", &SA5_access},
223 {0x21CE103C, "Smart HBA", &SA5_access},
224 {0x05809005, "SmartHBA-SA", &SA5_access},
225 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
226 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
228 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
229 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242 struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246 struct sas_rphy *rphy);
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
258 static int hpsa_passthru_ioctl(struct ctlr_info *h,
259 IOCTL_Command_struct *iocommand);
260 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
261 BIG_IOCTL_Command_struct *ioc);
264 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
268 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
269 static struct CommandList *cmd_alloc(struct ctlr_info *h);
270 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
271 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
272 struct scsi_cmnd *scmd);
273 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
274 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
276 static void hpsa_free_cmd_pool(struct ctlr_info *h);
277 #define VPD_PAGE (1 << 8)
278 #define HPSA_SIMPLE_ERROR_BITS 0x03
280 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
281 static void hpsa_scan_start(struct Scsi_Host *);
282 static int hpsa_scan_finished(struct Scsi_Host *sh,
283 unsigned long elapsed_time);
284 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
286 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
287 static int hpsa_slave_alloc(struct scsi_device *sdev);
288 static int hpsa_slave_configure(struct scsi_device *sdev);
289 static void hpsa_slave_destroy(struct scsi_device *sdev);
291 static void hpsa_update_scsi_devices(struct ctlr_info *h);
292 static int check_for_unit_attention(struct ctlr_info *h,
293 struct CommandList *c);
294 static void check_ioctl_unit_attention(struct ctlr_info *h,
295 struct CommandList *c);
296 /* performant mode helper functions */
297 static void calc_bucket_map(int *bucket, int num_buckets,
298 int nsgs, int min_blocks, u32 *bucket_map);
299 static void hpsa_free_performant_mode(struct ctlr_info *h);
300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
301 static inline u32 next_command(struct ctlr_info *h, u8 q);
302 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
303 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
305 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
306 unsigned long *memory_bar);
307 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
310 unsigned char lunaddr[],
312 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
314 static inline void finish_cmd(struct CommandList *c);
315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
316 #define BOARD_NOT_READY 0
317 #define BOARD_READY 1
318 static void hpsa_drain_accel_commands(struct ctlr_info *h);
319 static void hpsa_flush_cache(struct ctlr_info *h);
320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
321 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
322 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
323 static void hpsa_command_resubmit_worker(struct work_struct *work);
324 static u32 lockup_detected(struct ctlr_info *h);
325 static int detect_controller_lockup(struct ctlr_info *h);
326 static void hpsa_disable_rld_caching(struct ctlr_info *h);
327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
328 struct ReportExtendedLUNdata *buf, int bufsize);
329 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
330 unsigned char scsi3addr[], u8 page);
331 static int hpsa_luns_changed(struct ctlr_info *h);
332 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
333 struct hpsa_scsi_dev_t *dev,
334 unsigned char *scsi3addr);
336 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
338 unsigned long *priv = shost_priv(sdev->host);
339 return (struct ctlr_info *) *priv;
342 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
344 unsigned long *priv = shost_priv(sh);
345 return (struct ctlr_info *) *priv;
348 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
350 return c->scsi_cmd == SCSI_CMD_IDLE;
353 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
354 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
355 u8 *sense_key, u8 *asc, u8 *ascq)
357 struct scsi_sense_hdr sshdr;
364 if (sense_data_len < 1)
367 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
369 *sense_key = sshdr.sense_key;
375 static int check_for_unit_attention(struct ctlr_info *h,
376 struct CommandList *c)
378 u8 sense_key, asc, ascq;
381 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
382 sense_len = sizeof(c->err_info->SenseInfo);
384 sense_len = c->err_info->SenseLen;
386 decode_sense_data(c->err_info->SenseInfo, sense_len,
387 &sense_key, &asc, &ascq);
388 if (sense_key != UNIT_ATTENTION || asc == 0xff)
393 dev_warn(&h->pdev->dev,
394 "%s: a state change detected, command retried\n",
398 dev_warn(&h->pdev->dev,
399 "%s: LUN failure detected\n", h->devname);
401 case REPORT_LUNS_CHANGED:
402 dev_warn(&h->pdev->dev,
403 "%s: report LUN data changed\n", h->devname);
405 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
406 * target (array) devices.
410 dev_warn(&h->pdev->dev,
411 "%s: a power on or device reset detected\n",
414 case UNIT_ATTENTION_CLEARED:
415 dev_warn(&h->pdev->dev,
416 "%s: unit attention cleared by another initiator\n",
420 dev_warn(&h->pdev->dev,
421 "%s: unknown unit attention detected\n",
428 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
430 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
431 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
432 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
434 dev_warn(&h->pdev->dev, HPSA "device busy");
438 static u32 lockup_detected(struct ctlr_info *h);
439 static ssize_t host_show_lockup_detected(struct device *dev,
440 struct device_attribute *attr, char *buf)
444 struct Scsi_Host *shost = class_to_shost(dev);
446 h = shost_to_hba(shost);
447 ld = lockup_detected(h);
449 return sprintf(buf, "ld=%d\n", ld);
452 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
453 struct device_attribute *attr,
454 const char *buf, size_t count)
458 struct Scsi_Host *shost = class_to_shost(dev);
461 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
463 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
464 strncpy(tmpbuf, buf, len);
466 if (sscanf(tmpbuf, "%d", &status) != 1)
468 h = shost_to_hba(shost);
469 h->acciopath_status = !!status;
470 dev_warn(&h->pdev->dev,
471 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
472 h->acciopath_status ? "enabled" : "disabled");
476 static ssize_t host_store_raid_offload_debug(struct device *dev,
477 struct device_attribute *attr,
478 const char *buf, size_t count)
480 int debug_level, len;
482 struct Scsi_Host *shost = class_to_shost(dev);
485 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
487 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
488 strncpy(tmpbuf, buf, len);
490 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
494 h = shost_to_hba(shost);
495 h->raid_offload_debug = debug_level;
496 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
497 h->raid_offload_debug);
501 static ssize_t host_store_rescan(struct device *dev,
502 struct device_attribute *attr,
503 const char *buf, size_t count)
506 struct Scsi_Host *shost = class_to_shost(dev);
507 h = shost_to_hba(shost);
508 hpsa_scan_start(h->scsi_host);
512 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
514 device->offload_enabled = 0;
515 device->offload_to_be_enabled = 0;
518 static ssize_t host_show_firmware_revision(struct device *dev,
519 struct device_attribute *attr, char *buf)
522 struct Scsi_Host *shost = class_to_shost(dev);
523 unsigned char *fwrev;
525 h = shost_to_hba(shost);
526 if (!h->hba_inquiry_data)
528 fwrev = &h->hba_inquiry_data[32];
529 return snprintf(buf, 20, "%c%c%c%c\n",
530 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
533 static ssize_t host_show_commands_outstanding(struct device *dev,
534 struct device_attribute *attr, char *buf)
536 struct Scsi_Host *shost = class_to_shost(dev);
537 struct ctlr_info *h = shost_to_hba(shost);
539 return snprintf(buf, 20, "%d\n",
540 atomic_read(&h->commands_outstanding));
543 static ssize_t host_show_transport_mode(struct device *dev,
544 struct device_attribute *attr, char *buf)
547 struct Scsi_Host *shost = class_to_shost(dev);
549 h = shost_to_hba(shost);
550 return snprintf(buf, 20, "%s\n",
551 h->transMethod & CFGTBL_Trans_Performant ?
552 "performant" : "simple");
555 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
556 struct device_attribute *attr, char *buf)
559 struct Scsi_Host *shost = class_to_shost(dev);
561 h = shost_to_hba(shost);
562 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
563 (h->acciopath_status == 1) ? "enabled" : "disabled");
566 /* List of controllers which cannot be hard reset on kexec with reset_devices */
567 static u32 unresettable_controller[] = {
568 0x324a103C, /* Smart Array P712m */
569 0x324b103C, /* Smart Array P711m */
570 0x3223103C, /* Smart Array P800 */
571 0x3234103C, /* Smart Array P400 */
572 0x3235103C, /* Smart Array P400i */
573 0x3211103C, /* Smart Array E200i */
574 0x3212103C, /* Smart Array E200 */
575 0x3213103C, /* Smart Array E200i */
576 0x3214103C, /* Smart Array E200i */
577 0x3215103C, /* Smart Array E200i */
578 0x3237103C, /* Smart Array E500 */
579 0x323D103C, /* Smart Array P700m */
580 0x40800E11, /* Smart Array 5i */
581 0x409C0E11, /* Smart Array 6400 */
582 0x409D0E11, /* Smart Array 6400 EM */
583 0x40700E11, /* Smart Array 5300 */
584 0x40820E11, /* Smart Array 532 */
585 0x40830E11, /* Smart Array 5312 */
586 0x409A0E11, /* Smart Array 641 */
587 0x409B0E11, /* Smart Array 642 */
588 0x40910E11, /* Smart Array 6i */
591 /* List of controllers which cannot even be soft reset */
592 static u32 soft_unresettable_controller[] = {
593 0x40800E11, /* Smart Array 5i */
594 0x40700E11, /* Smart Array 5300 */
595 0x40820E11, /* Smart Array 532 */
596 0x40830E11, /* Smart Array 5312 */
597 0x409A0E11, /* Smart Array 641 */
598 0x409B0E11, /* Smart Array 642 */
599 0x40910E11, /* Smart Array 6i */
600 /* Exclude 640x boards. These are two pci devices in one slot
601 * which share a battery backed cache module. One controls the
602 * cache, the other accesses the cache through the one that controls
603 * it. If we reset the one controlling the cache, the other will
604 * likely not be happy. Just forbid resetting this conjoined mess.
605 * The 640x isn't really supported by hpsa anyway.
607 0x409C0E11, /* Smart Array 6400 */
608 0x409D0E11, /* Smart Array 6400 EM */
611 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
615 for (i = 0; i < nelems; i++)
616 if (a[i] == board_id)
621 static int ctlr_is_hard_resettable(u32 board_id)
623 return !board_id_in_array(unresettable_controller,
624 ARRAY_SIZE(unresettable_controller), board_id);
627 static int ctlr_is_soft_resettable(u32 board_id)
629 return !board_id_in_array(soft_unresettable_controller,
630 ARRAY_SIZE(soft_unresettable_controller), board_id);
633 static int ctlr_is_resettable(u32 board_id)
635 return ctlr_is_hard_resettable(board_id) ||
636 ctlr_is_soft_resettable(board_id);
639 static ssize_t host_show_resettable(struct device *dev,
640 struct device_attribute *attr, char *buf)
643 struct Scsi_Host *shost = class_to_shost(dev);
645 h = shost_to_hba(shost);
646 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
649 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
651 return (scsi3addr[3] & 0xC0) == 0x40;
654 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
655 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
657 #define HPSA_RAID_0 0
658 #define HPSA_RAID_4 1
659 #define HPSA_RAID_1 2 /* also used for RAID 10 */
660 #define HPSA_RAID_5 3 /* also used for RAID 50 */
661 #define HPSA_RAID_51 4
662 #define HPSA_RAID_6 5 /* also used for RAID 60 */
663 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
664 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
665 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
667 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
669 return !device->physical_device;
672 static ssize_t raid_level_show(struct device *dev,
673 struct device_attribute *attr, char *buf)
676 unsigned char rlevel;
678 struct scsi_device *sdev;
679 struct hpsa_scsi_dev_t *hdev;
682 sdev = to_scsi_device(dev);
683 h = sdev_to_hba(sdev);
684 spin_lock_irqsave(&h->lock, flags);
685 hdev = sdev->hostdata;
687 spin_unlock_irqrestore(&h->lock, flags);
691 /* Is this even a logical drive? */
692 if (!is_logical_device(hdev)) {
693 spin_unlock_irqrestore(&h->lock, flags);
694 l = snprintf(buf, PAGE_SIZE, "N/A\n");
698 rlevel = hdev->raid_level;
699 spin_unlock_irqrestore(&h->lock, flags);
700 if (rlevel > RAID_UNKNOWN)
701 rlevel = RAID_UNKNOWN;
702 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
706 static ssize_t lunid_show(struct device *dev,
707 struct device_attribute *attr, char *buf)
710 struct scsi_device *sdev;
711 struct hpsa_scsi_dev_t *hdev;
713 unsigned char lunid[8];
715 sdev = to_scsi_device(dev);
716 h = sdev_to_hba(sdev);
717 spin_lock_irqsave(&h->lock, flags);
718 hdev = sdev->hostdata;
720 spin_unlock_irqrestore(&h->lock, flags);
723 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
724 spin_unlock_irqrestore(&h->lock, flags);
725 return snprintf(buf, 20, "0x%8phN\n", lunid);
728 static ssize_t unique_id_show(struct device *dev,
729 struct device_attribute *attr, char *buf)
732 struct scsi_device *sdev;
733 struct hpsa_scsi_dev_t *hdev;
735 unsigned char sn[16];
737 sdev = to_scsi_device(dev);
738 h = sdev_to_hba(sdev);
739 spin_lock_irqsave(&h->lock, flags);
740 hdev = sdev->hostdata;
742 spin_unlock_irqrestore(&h->lock, flags);
745 memcpy(sn, hdev->device_id, sizeof(sn));
746 spin_unlock_irqrestore(&h->lock, flags);
747 return snprintf(buf, 16 * 2 + 2,
748 "%02X%02X%02X%02X%02X%02X%02X%02X"
749 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
750 sn[0], sn[1], sn[2], sn[3],
751 sn[4], sn[5], sn[6], sn[7],
752 sn[8], sn[9], sn[10], sn[11],
753 sn[12], sn[13], sn[14], sn[15]);
756 static ssize_t sas_address_show(struct device *dev,
757 struct device_attribute *attr, char *buf)
760 struct scsi_device *sdev;
761 struct hpsa_scsi_dev_t *hdev;
765 sdev = to_scsi_device(dev);
766 h = sdev_to_hba(sdev);
767 spin_lock_irqsave(&h->lock, flags);
768 hdev = sdev->hostdata;
769 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
770 spin_unlock_irqrestore(&h->lock, flags);
773 sas_address = hdev->sas_address;
774 spin_unlock_irqrestore(&h->lock, flags);
776 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
779 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
780 struct device_attribute *attr, char *buf)
783 struct scsi_device *sdev;
784 struct hpsa_scsi_dev_t *hdev;
788 sdev = to_scsi_device(dev);
789 h = sdev_to_hba(sdev);
790 spin_lock_irqsave(&h->lock, flags);
791 hdev = sdev->hostdata;
793 spin_unlock_irqrestore(&h->lock, flags);
796 offload_enabled = hdev->offload_enabled;
797 spin_unlock_irqrestore(&h->lock, flags);
799 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
800 return snprintf(buf, 20, "%d\n", offload_enabled);
802 return snprintf(buf, 40, "%s\n",
803 "Not applicable for a controller");
807 static ssize_t path_info_show(struct device *dev,
808 struct device_attribute *attr, char *buf)
811 struct scsi_device *sdev;
812 struct hpsa_scsi_dev_t *hdev;
818 u8 path_map_index = 0;
820 unsigned char phys_connector[2];
822 sdev = to_scsi_device(dev);
823 h = sdev_to_hba(sdev);
824 spin_lock_irqsave(&h->devlock, flags);
825 hdev = sdev->hostdata;
827 spin_unlock_irqrestore(&h->devlock, flags);
832 for (i = 0; i < MAX_PATHS; i++) {
833 path_map_index = 1<<i;
834 if (i == hdev->active_path_index)
836 else if (hdev->path_map & path_map_index)
841 output_len += scnprintf(buf + output_len,
842 PAGE_SIZE - output_len,
843 "[%d:%d:%d:%d] %20.20s ",
844 h->scsi_host->host_no,
845 hdev->bus, hdev->target, hdev->lun,
846 scsi_device_type(hdev->devtype));
848 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
849 output_len += scnprintf(buf + output_len,
850 PAGE_SIZE - output_len,
856 memcpy(&phys_connector, &hdev->phys_connector[i],
857 sizeof(phys_connector));
858 if (phys_connector[0] < '0')
859 phys_connector[0] = '0';
860 if (phys_connector[1] < '0')
861 phys_connector[1] = '0';
862 output_len += scnprintf(buf + output_len,
863 PAGE_SIZE - output_len,
866 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
867 hdev->expose_device) {
868 if (box == 0 || box == 0xFF) {
869 output_len += scnprintf(buf + output_len,
870 PAGE_SIZE - output_len,
874 output_len += scnprintf(buf + output_len,
875 PAGE_SIZE - output_len,
876 "BOX: %hhu BAY: %hhu %s\n",
879 } else if (box != 0 && box != 0xFF) {
880 output_len += scnprintf(buf + output_len,
881 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
884 output_len += scnprintf(buf + output_len,
885 PAGE_SIZE - output_len, "%s\n", active);
888 spin_unlock_irqrestore(&h->devlock, flags);
892 static ssize_t host_show_ctlr_num(struct device *dev,
893 struct device_attribute *attr, char *buf)
896 struct Scsi_Host *shost = class_to_shost(dev);
898 h = shost_to_hba(shost);
899 return snprintf(buf, 20, "%d\n", h->ctlr);
902 static ssize_t host_show_legacy_board(struct device *dev,
903 struct device_attribute *attr, char *buf)
906 struct Scsi_Host *shost = class_to_shost(dev);
908 h = shost_to_hba(shost);
909 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
912 static DEVICE_ATTR_RO(raid_level);
913 static DEVICE_ATTR_RO(lunid);
914 static DEVICE_ATTR_RO(unique_id);
915 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
916 static DEVICE_ATTR_RO(sas_address);
917 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
918 host_show_hp_ssd_smart_path_enabled, NULL);
919 static DEVICE_ATTR_RO(path_info);
920 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
921 host_show_hp_ssd_smart_path_status,
922 host_store_hp_ssd_smart_path_status);
923 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
924 host_store_raid_offload_debug);
925 static DEVICE_ATTR(firmware_revision, S_IRUGO,
926 host_show_firmware_revision, NULL);
927 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
928 host_show_commands_outstanding, NULL);
929 static DEVICE_ATTR(transport_mode, S_IRUGO,
930 host_show_transport_mode, NULL);
931 static DEVICE_ATTR(resettable, S_IRUGO,
932 host_show_resettable, NULL);
933 static DEVICE_ATTR(lockup_detected, S_IRUGO,
934 host_show_lockup_detected, NULL);
935 static DEVICE_ATTR(ctlr_num, S_IRUGO,
936 host_show_ctlr_num, NULL);
937 static DEVICE_ATTR(legacy_board, S_IRUGO,
938 host_show_legacy_board, NULL);
940 static struct device_attribute *hpsa_sdev_attrs[] = {
941 &dev_attr_raid_level,
944 &dev_attr_hp_ssd_smart_path_enabled,
946 &dev_attr_sas_address,
950 static struct device_attribute *hpsa_shost_attrs[] = {
952 &dev_attr_firmware_revision,
953 &dev_attr_commands_outstanding,
954 &dev_attr_transport_mode,
955 &dev_attr_resettable,
956 &dev_attr_hp_ssd_smart_path_status,
957 &dev_attr_raid_offload_debug,
958 &dev_attr_lockup_detected,
960 &dev_attr_legacy_board,
964 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
965 HPSA_MAX_CONCURRENT_PASSTHRUS)
967 static struct scsi_host_template hpsa_driver_template = {
968 .module = THIS_MODULE,
971 .queuecommand = hpsa_scsi_queue_command,
972 .scan_start = hpsa_scan_start,
973 .scan_finished = hpsa_scan_finished,
974 .change_queue_depth = hpsa_change_queue_depth,
976 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
978 .slave_alloc = hpsa_slave_alloc,
979 .slave_configure = hpsa_slave_configure,
980 .slave_destroy = hpsa_slave_destroy,
982 .compat_ioctl = hpsa_compat_ioctl,
984 .sdev_attrs = hpsa_sdev_attrs,
985 .shost_attrs = hpsa_shost_attrs,
990 static inline u32 next_command(struct ctlr_info *h, u8 q)
993 struct reply_queue_buffer *rq = &h->reply_queue[q];
995 if (h->transMethod & CFGTBL_Trans_io_accel1)
996 return h->access.command_completed(h, q);
998 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
999 return h->access.command_completed(h, q);
1001 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1002 a = rq->head[rq->current_entry];
1003 rq->current_entry++;
1004 atomic_dec(&h->commands_outstanding);
1008 /* Check for wraparound */
1009 if (rq->current_entry == h->max_commands) {
1010 rq->current_entry = 0;
1011 rq->wraparound ^= 1;
1017 * There are some special bits in the bus address of the
1018 * command that we have to set for the controller to know
1019 * how to process the command:
1021 * Normal performant mode:
1022 * bit 0: 1 means performant mode, 0 means simple mode.
1023 * bits 1-3 = block fetch table entry
1024 * bits 4-6 = command type (== 0)
1027 * bit 0 = "performant mode" bit.
1028 * bits 1-3 = block fetch table entry
1029 * bits 4-6 = command type (== 110)
1030 * (command type is needed because ioaccel1 mode
1031 * commands are submitted through the same register as normal
1032 * mode commands, so this is how the controller knows whether
1033 * the command is normal mode or ioaccel1 mode.)
1036 * bit 0 = "performant mode" bit.
1037 * bits 1-4 = block fetch table entry (note extra bit)
1038 * bits 4-6 = not needed, because ioaccel2 mode has
1039 * a separate special register for submitting commands.
1043 * set_performant_mode: Modify the tag for cciss performant
1044 * set bit 0 for pull model, bits 3-1 for block fetch
1047 #define DEFAULT_REPLY_QUEUE (-1)
1048 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1051 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1052 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1053 if (unlikely(!h->msix_vectors))
1055 c->Header.ReplyQueue = reply_queue;
1059 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1060 struct CommandList *c,
1063 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1066 * Tell the controller to post the reply to the queue for this
1067 * processor. This seems to give the best I/O throughput.
1069 cp->ReplyQueue = reply_queue;
1071 * Set the bits in the address sent down to include:
1072 * - performant mode bit (bit 0)
1073 * - pull count (bits 1-3)
1074 * - command type (bits 4-6)
1076 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077 IOACCEL1_BUSADDR_CMDTYPE;
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081 struct CommandList *c,
1084 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085 &h->ioaccel2_cmd_pool[c->cmdindex];
1087 /* Tell the controller to post the reply to the queue for this
1088 * processor. This seems to give the best I/O throughput.
1090 cp->reply_queue = reply_queue;
1091 /* Set the bits in the address sent down to include:
1092 * - performant mode bit not used in ioaccel mode 2
1093 * - pull count (bits 0-3)
1094 * - command type isn't needed for ioaccel2
1096 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1099 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1100 struct CommandList *c,
1103 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1106 * Tell the controller to post the reply to the queue for this
1107 * processor. This seems to give the best I/O throughput.
1109 cp->reply_queue = reply_queue;
1111 * Set the bits in the address sent down to include:
1112 * - performant mode bit not used in ioaccel mode 2
1113 * - pull count (bits 0-3)
1114 * - command type isn't needed for ioaccel2
1116 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1119 static int is_firmware_flash_cmd(u8 *cdb)
1121 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1125 * During firmware flash, the heartbeat register may not update as frequently
1126 * as it should. So we dial down lockup detection during firmware flash. and
1127 * dial it back up when firmware flash completes.
1129 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1130 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1131 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1132 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1133 struct CommandList *c)
1135 if (!is_firmware_flash_cmd(c->Request.CDB))
1137 atomic_inc(&h->firmware_flash_in_progress);
1138 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1141 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1142 struct CommandList *c)
1144 if (is_firmware_flash_cmd(c->Request.CDB) &&
1145 atomic_dec_and_test(&h->firmware_flash_in_progress))
1146 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1149 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1150 struct CommandList *c, int reply_queue)
1152 dial_down_lockup_detection_during_fw_flash(h, c);
1153 atomic_inc(&h->commands_outstanding);
1155 * Check to see if the command is being retried.
1157 if (c->device && !c->retry_pending)
1158 atomic_inc(&c->device->commands_outstanding);
1160 reply_queue = h->reply_map[raw_smp_processor_id()];
1161 switch (c->cmd_type) {
1163 set_ioaccel1_performant_mode(h, c, reply_queue);
1164 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1167 set_ioaccel2_performant_mode(h, c, reply_queue);
1168 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1171 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1172 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1175 set_performant_mode(h, c, reply_queue);
1176 h->access.submit_command(h, c);
1180 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1182 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1185 static inline int is_hba_lunid(unsigned char scsi3addr[])
1187 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1190 static inline int is_scsi_rev_5(struct ctlr_info *h)
1192 if (!h->hba_inquiry_data)
1194 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1199 static int hpsa_find_target_lun(struct ctlr_info *h,
1200 unsigned char scsi3addr[], int bus, int *target, int *lun)
1202 /* finds an unused bus, target, lun for a new physical device
1203 * assumes h->devlock is held
1206 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1208 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1210 for (i = 0; i < h->ndevices; i++) {
1211 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1212 __set_bit(h->dev[i]->target, lun_taken);
1215 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1216 if (i < HPSA_MAX_DEVICES) {
1225 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1226 struct hpsa_scsi_dev_t *dev, char *description)
1228 #define LABEL_SIZE 25
1229 char label[LABEL_SIZE];
1231 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1234 switch (dev->devtype) {
1236 snprintf(label, LABEL_SIZE, "controller");
1238 case TYPE_ENCLOSURE:
1239 snprintf(label, LABEL_SIZE, "enclosure");
1244 snprintf(label, LABEL_SIZE, "external");
1245 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1246 snprintf(label, LABEL_SIZE, "%s",
1247 raid_label[PHYSICAL_DRIVE]);
1249 snprintf(label, LABEL_SIZE, "RAID-%s",
1250 dev->raid_level > RAID_UNKNOWN ? "?" :
1251 raid_label[dev->raid_level]);
1254 snprintf(label, LABEL_SIZE, "rom");
1257 snprintf(label, LABEL_SIZE, "tape");
1259 case TYPE_MEDIUM_CHANGER:
1260 snprintf(label, LABEL_SIZE, "changer");
1263 snprintf(label, LABEL_SIZE, "UNKNOWN");
1267 dev_printk(level, &h->pdev->dev,
1268 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1269 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1271 scsi_device_type(dev->devtype),
1275 dev->offload_config ? '+' : '-',
1276 dev->offload_to_be_enabled ? '+' : '-',
1277 dev->expose_device);
1280 /* Add an entry into h->dev[] array. */
1281 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1282 struct hpsa_scsi_dev_t *device,
1283 struct hpsa_scsi_dev_t *added[], int *nadded)
1285 /* assumes h->devlock is held */
1286 int n = h->ndevices;
1288 unsigned char addr1[8], addr2[8];
1289 struct hpsa_scsi_dev_t *sd;
1291 if (n >= HPSA_MAX_DEVICES) {
1292 dev_err(&h->pdev->dev, "too many devices, some will be "
1297 /* physical devices do not have lun or target assigned until now. */
1298 if (device->lun != -1)
1299 /* Logical device, lun is already assigned. */
1302 /* If this device a non-zero lun of a multi-lun device
1303 * byte 4 of the 8-byte LUN addr will contain the logical
1304 * unit no, zero otherwise.
1306 if (device->scsi3addr[4] == 0) {
1307 /* This is not a non-zero lun of a multi-lun device */
1308 if (hpsa_find_target_lun(h, device->scsi3addr,
1309 device->bus, &device->target, &device->lun) != 0)
1314 /* This is a non-zero lun of a multi-lun device.
1315 * Search through our list and find the device which
1316 * has the same 8 byte LUN address, excepting byte 4 and 5.
1317 * Assign the same bus and target for this new LUN.
1318 * Use the logical unit number from the firmware.
1320 memcpy(addr1, device->scsi3addr, 8);
1323 for (i = 0; i < n; i++) {
1325 memcpy(addr2, sd->scsi3addr, 8);
1328 /* differ only in byte 4 and 5? */
1329 if (memcmp(addr1, addr2, 8) == 0) {
1330 device->bus = sd->bus;
1331 device->target = sd->target;
1332 device->lun = device->scsi3addr[4];
1336 if (device->lun == -1) {
1337 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1338 " suspect firmware bug or unsupported hardware "
1339 "configuration.\n");
1347 added[*nadded] = device;
1349 hpsa_show_dev_msg(KERN_INFO, h, device,
1350 device->expose_device ? "added" : "masked");
1355 * Called during a scan operation.
1357 * Update an entry in h->dev[] array.
1359 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1360 int entry, struct hpsa_scsi_dev_t *new_entry)
1362 /* assumes h->devlock is held */
1363 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1365 /* Raid level changed. */
1366 h->dev[entry]->raid_level = new_entry->raid_level;
1369 * ioacccel_handle may have changed for a dual domain disk
1371 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1373 /* Raid offload parameters changed. Careful about the ordering. */
1374 if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1376 * if drive is newly offload_enabled, we want to copy the
1377 * raid map data first. If previously offload_enabled and
1378 * offload_config were set, raid map data had better be
1379 * the same as it was before. If raid map data has changed
1380 * then it had better be the case that
1381 * h->dev[entry]->offload_enabled is currently 0.
1383 h->dev[entry]->raid_map = new_entry->raid_map;
1384 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1386 if (new_entry->offload_to_be_enabled) {
1387 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1388 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1390 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1391 h->dev[entry]->offload_config = new_entry->offload_config;
1392 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1393 h->dev[entry]->queue_depth = new_entry->queue_depth;
1396 * We can turn off ioaccel offload now, but need to delay turning
1397 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1398 * can't do that until all the devices are updated.
1400 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1403 * turn ioaccel off immediately if told to do so.
1405 if (!new_entry->offload_to_be_enabled)
1406 h->dev[entry]->offload_enabled = 0;
1408 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1411 /* Replace an entry from h->dev[] array. */
1412 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1413 int entry, struct hpsa_scsi_dev_t *new_entry,
1414 struct hpsa_scsi_dev_t *added[], int *nadded,
1415 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1417 /* assumes h->devlock is held */
1418 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1419 removed[*nremoved] = h->dev[entry];
1423 * New physical devices won't have target/lun assigned yet
1424 * so we need to preserve the values in the slot we are replacing.
1426 if (new_entry->target == -1) {
1427 new_entry->target = h->dev[entry]->target;
1428 new_entry->lun = h->dev[entry]->lun;
1431 h->dev[entry] = new_entry;
1432 added[*nadded] = new_entry;
1435 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1438 /* Remove an entry from h->dev[] array. */
1439 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1440 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1442 /* assumes h->devlock is held */
1444 struct hpsa_scsi_dev_t *sd;
1446 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1449 removed[*nremoved] = h->dev[entry];
1452 for (i = entry; i < h->ndevices-1; i++)
1453 h->dev[i] = h->dev[i+1];
1455 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1458 #define SCSI3ADDR_EQ(a, b) ( \
1459 (a)[7] == (b)[7] && \
1460 (a)[6] == (b)[6] && \
1461 (a)[5] == (b)[5] && \
1462 (a)[4] == (b)[4] && \
1463 (a)[3] == (b)[3] && \
1464 (a)[2] == (b)[2] && \
1465 (a)[1] == (b)[1] && \
1468 static void fixup_botched_add(struct ctlr_info *h,
1469 struct hpsa_scsi_dev_t *added)
1471 /* called when scsi_add_device fails in order to re-adjust
1472 * h->dev[] to match the mid layer's view.
1474 unsigned long flags;
1477 spin_lock_irqsave(&h->lock, flags);
1478 for (i = 0; i < h->ndevices; i++) {
1479 if (h->dev[i] == added) {
1480 for (j = i; j < h->ndevices-1; j++)
1481 h->dev[j] = h->dev[j+1];
1486 spin_unlock_irqrestore(&h->lock, flags);
1490 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1491 struct hpsa_scsi_dev_t *dev2)
1493 /* we compare everything except lun and target as these
1494 * are not yet assigned. Compare parts likely
1497 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1498 sizeof(dev1->scsi3addr)) != 0)
1500 if (memcmp(dev1->device_id, dev2->device_id,
1501 sizeof(dev1->device_id)) != 0)
1503 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1505 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1507 if (dev1->devtype != dev2->devtype)
1509 if (dev1->bus != dev2->bus)
1514 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1515 struct hpsa_scsi_dev_t *dev2)
1517 /* Device attributes that can change, but don't mean
1518 * that the device is a different device, nor that the OS
1519 * needs to be told anything about the change.
1521 if (dev1->raid_level != dev2->raid_level)
1523 if (dev1->offload_config != dev2->offload_config)
1525 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1527 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1528 if (dev1->queue_depth != dev2->queue_depth)
1531 * This can happen for dual domain devices. An active
1532 * path change causes the ioaccel handle to change
1534 * for example note the handle differences between p0 and p1
1535 * Device WWN ,WWN hash,Handle
1536 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1537 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1539 if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1544 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1545 * and return needle location in *index. If scsi3addr matches, but not
1546 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1547 * location in *index.
1548 * In the case of a minor device attribute change, such as RAID level, just
1549 * return DEVICE_UPDATED, along with the updated device's location in index.
1550 * If needle not found, return DEVICE_NOT_FOUND.
1552 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1553 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1557 #define DEVICE_NOT_FOUND 0
1558 #define DEVICE_CHANGED 1
1559 #define DEVICE_SAME 2
1560 #define DEVICE_UPDATED 3
1562 return DEVICE_NOT_FOUND;
1564 for (i = 0; i < haystack_size; i++) {
1565 if (haystack[i] == NULL) /* previously removed. */
1567 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1569 if (device_is_the_same(needle, haystack[i])) {
1570 if (device_updated(needle, haystack[i]))
1571 return DEVICE_UPDATED;
1574 /* Keep offline devices offline */
1575 if (needle->volume_offline)
1576 return DEVICE_NOT_FOUND;
1577 return DEVICE_CHANGED;
1582 return DEVICE_NOT_FOUND;
1585 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1586 unsigned char scsi3addr[])
1588 struct offline_device_entry *device;
1589 unsigned long flags;
1591 /* Check to see if device is already on the list */
1592 spin_lock_irqsave(&h->offline_device_lock, flags);
1593 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1594 if (memcmp(device->scsi3addr, scsi3addr,
1595 sizeof(device->scsi3addr)) == 0) {
1596 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1600 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 /* Device is not on the list, add it. */
1603 device = kmalloc(sizeof(*device), GFP_KERNEL);
1607 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1608 spin_lock_irqsave(&h->offline_device_lock, flags);
1609 list_add_tail(&device->offline_list, &h->offline_device_list);
1610 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1613 /* Print a message explaining various offline volume states */
1614 static void hpsa_show_volume_status(struct ctlr_info *h,
1615 struct hpsa_scsi_dev_t *sd)
1617 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1618 dev_info(&h->pdev->dev,
1619 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1620 h->scsi_host->host_no,
1621 sd->bus, sd->target, sd->lun);
1622 switch (sd->volume_offline) {
1625 case HPSA_LV_UNDERGOING_ERASE:
1626 dev_info(&h->pdev->dev,
1627 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1628 h->scsi_host->host_no,
1629 sd->bus, sd->target, sd->lun);
1631 case HPSA_LV_NOT_AVAILABLE:
1632 dev_info(&h->pdev->dev,
1633 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1634 h->scsi_host->host_no,
1635 sd->bus, sd->target, sd->lun);
1637 case HPSA_LV_UNDERGOING_RPI:
1638 dev_info(&h->pdev->dev,
1639 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1640 h->scsi_host->host_no,
1641 sd->bus, sd->target, sd->lun);
1643 case HPSA_LV_PENDING_RPI:
1644 dev_info(&h->pdev->dev,
1645 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1646 h->scsi_host->host_no,
1647 sd->bus, sd->target, sd->lun);
1649 case HPSA_LV_ENCRYPTED_NO_KEY:
1650 dev_info(&h->pdev->dev,
1651 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1652 h->scsi_host->host_no,
1653 sd->bus, sd->target, sd->lun);
1655 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1656 dev_info(&h->pdev->dev,
1657 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1658 h->scsi_host->host_no,
1659 sd->bus, sd->target, sd->lun);
1661 case HPSA_LV_UNDERGOING_ENCRYPTION:
1662 dev_info(&h->pdev->dev,
1663 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1664 h->scsi_host->host_no,
1665 sd->bus, sd->target, sd->lun);
1667 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1668 dev_info(&h->pdev->dev,
1669 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1670 h->scsi_host->host_no,
1671 sd->bus, sd->target, sd->lun);
1673 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1674 dev_info(&h->pdev->dev,
1675 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1676 h->scsi_host->host_no,
1677 sd->bus, sd->target, sd->lun);
1679 case HPSA_LV_PENDING_ENCRYPTION:
1680 dev_info(&h->pdev->dev,
1681 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1682 h->scsi_host->host_no,
1683 sd->bus, sd->target, sd->lun);
1685 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1686 dev_info(&h->pdev->dev,
1687 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1688 h->scsi_host->host_no,
1689 sd->bus, sd->target, sd->lun);
1695 * Figure the list of physical drive pointers for a logical drive with
1696 * raid offload configured.
1698 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1699 struct hpsa_scsi_dev_t *dev[], int ndevices,
1700 struct hpsa_scsi_dev_t *logical_drive)
1702 struct raid_map_data *map = &logical_drive->raid_map;
1703 struct raid_map_disk_data *dd = &map->data[0];
1705 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1706 le16_to_cpu(map->metadata_disks_per_row);
1707 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1708 le16_to_cpu(map->layout_map_count) *
1709 total_disks_per_row;
1710 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1711 total_disks_per_row;
1714 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1715 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1717 logical_drive->nphysical_disks = nraid_map_entries;
1720 for (i = 0; i < nraid_map_entries; i++) {
1721 logical_drive->phys_disk[i] = NULL;
1722 if (!logical_drive->offload_config)
1724 for (j = 0; j < ndevices; j++) {
1727 if (dev[j]->devtype != TYPE_DISK &&
1728 dev[j]->devtype != TYPE_ZBC)
1730 if (is_logical_device(dev[j]))
1732 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1735 logical_drive->phys_disk[i] = dev[j];
1737 qdepth = min(h->nr_cmds, qdepth +
1738 logical_drive->phys_disk[i]->queue_depth);
1743 * This can happen if a physical drive is removed and
1744 * the logical drive is degraded. In that case, the RAID
1745 * map data will refer to a physical disk which isn't actually
1746 * present. And in that case offload_enabled should already
1747 * be 0, but we'll turn it off here just in case
1749 if (!logical_drive->phys_disk[i]) {
1750 dev_warn(&h->pdev->dev,
1751 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1753 h->scsi_host->host_no, logical_drive->bus,
1754 logical_drive->target, logical_drive->lun);
1755 hpsa_turn_off_ioaccel_for_device(logical_drive);
1756 logical_drive->queue_depth = 8;
1759 if (nraid_map_entries)
1761 * This is correct for reads, too high for full stripe writes,
1762 * way too high for partial stripe writes
1764 logical_drive->queue_depth = qdepth;
1766 if (logical_drive->external)
1767 logical_drive->queue_depth = EXTERNAL_QD;
1769 logical_drive->queue_depth = h->nr_cmds;
1773 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1774 struct hpsa_scsi_dev_t *dev[], int ndevices)
1778 for (i = 0; i < ndevices; i++) {
1781 if (dev[i]->devtype != TYPE_DISK &&
1782 dev[i]->devtype != TYPE_ZBC)
1784 if (!is_logical_device(dev[i]))
1788 * If offload is currently enabled, the RAID map and
1789 * phys_disk[] assignment *better* not be changing
1790 * because we would be changing ioaccel phsy_disk[] pointers
1791 * on a ioaccel volume processing I/O requests.
1793 * If an ioaccel volume status changed, initially because it was
1794 * re-configured and thus underwent a transformation, or
1795 * a drive failed, we would have received a state change
1796 * request and ioaccel should have been turned off. When the
1797 * transformation completes, we get another state change
1798 * request to turn ioaccel back on. In this case, we need
1799 * to update the ioaccel information.
1801 * Thus: If it is not currently enabled, but will be after
1802 * the scan completes, make sure the ioaccel pointers
1806 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1807 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1811 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1818 if (is_logical_device(device)) /* RAID */
1819 rc = scsi_add_device(h->scsi_host, device->bus,
1820 device->target, device->lun);
1822 rc = hpsa_add_sas_device(h->sas_host, device);
1827 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1828 struct hpsa_scsi_dev_t *dev)
1833 for (i = 0; i < h->nr_cmds; i++) {
1834 struct CommandList *c = h->cmd_pool + i;
1835 int refcount = atomic_inc_return(&c->refcount);
1837 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1839 unsigned long flags;
1841 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1842 if (!hpsa_is_cmd_idle(c))
1844 spin_unlock_irqrestore(&h->lock, flags);
1854 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1855 struct hpsa_scsi_dev_t *device)
1859 int num_wait = NUM_WAIT;
1861 if (device->external)
1862 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1865 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1868 if (++waits > num_wait)
1873 if (waits > num_wait) {
1874 dev_warn(&h->pdev->dev,
1875 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1877 h->scsi_host->host_no,
1878 device->bus, device->target, device->lun, cmds);
1882 static void hpsa_remove_device(struct ctlr_info *h,
1883 struct hpsa_scsi_dev_t *device)
1885 struct scsi_device *sdev = NULL;
1891 * Allow for commands to drain
1893 device->removed = 1;
1894 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1896 if (is_logical_device(device)) { /* RAID */
1897 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1898 device->target, device->lun);
1900 scsi_remove_device(sdev);
1901 scsi_device_put(sdev);
1904 * We don't expect to get here. Future commands
1905 * to this device will get a selection timeout as
1906 * if the device were gone.
1908 hpsa_show_dev_msg(KERN_WARNING, h, device,
1909 "didn't find device for removal.");
1913 hpsa_remove_sas_device(device);
1917 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1918 struct hpsa_scsi_dev_t *sd[], int nsds)
1920 /* sd contains scsi3 addresses and devtypes, and inquiry
1921 * data. This function takes what's in sd to be the current
1922 * reality and updates h->dev[] to reflect that reality.
1924 int i, entry, device_change, changes = 0;
1925 struct hpsa_scsi_dev_t *csd;
1926 unsigned long flags;
1927 struct hpsa_scsi_dev_t **added, **removed;
1928 int nadded, nremoved;
1931 * A reset can cause a device status to change
1932 * re-schedule the scan to see what happened.
1934 spin_lock_irqsave(&h->reset_lock, flags);
1935 if (h->reset_in_progress) {
1936 h->drv_req_rescan = 1;
1937 spin_unlock_irqrestore(&h->reset_lock, flags);
1940 spin_unlock_irqrestore(&h->reset_lock, flags);
1942 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1943 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1945 if (!added || !removed) {
1946 dev_warn(&h->pdev->dev, "out of memory in "
1947 "adjust_hpsa_scsi_table\n");
1951 spin_lock_irqsave(&h->devlock, flags);
1953 /* find any devices in h->dev[] that are not in
1954 * sd[] and remove them from h->dev[], and for any
1955 * devices which have changed, remove the old device
1956 * info and add the new device info.
1957 * If minor device attributes change, just update
1958 * the existing device structure.
1963 while (i < h->ndevices) {
1965 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1966 if (device_change == DEVICE_NOT_FOUND) {
1968 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1969 continue; /* remove ^^^, hence i not incremented */
1970 } else if (device_change == DEVICE_CHANGED) {
1972 hpsa_scsi_replace_entry(h, i, sd[entry],
1973 added, &nadded, removed, &nremoved);
1974 /* Set it to NULL to prevent it from being freed
1975 * at the bottom of hpsa_update_scsi_devices()
1978 } else if (device_change == DEVICE_UPDATED) {
1979 hpsa_scsi_update_entry(h, i, sd[entry]);
1984 /* Now, make sure every device listed in sd[] is also
1985 * listed in h->dev[], adding them if they aren't found
1988 for (i = 0; i < nsds; i++) {
1989 if (!sd[i]) /* if already added above. */
1992 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1993 * as the SCSI mid-layer does not handle such devices well.
1994 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1995 * at 160Hz, and prevents the system from coming up.
1997 if (sd[i]->volume_offline) {
1998 hpsa_show_volume_status(h, sd[i]);
1999 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
2003 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2004 h->ndevices, &entry);
2005 if (device_change == DEVICE_NOT_FOUND) {
2007 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2009 sd[i] = NULL; /* prevent from being freed later. */
2010 } else if (device_change == DEVICE_CHANGED) {
2011 /* should never happen... */
2013 dev_warn(&h->pdev->dev,
2014 "device unexpectedly changed.\n");
2015 /* but if it does happen, we just ignore that device */
2018 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2021 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2022 * any logical drives that need it enabled.
2024 * The raid map should be current by now.
2026 * We are updating the device list used for I/O requests.
2028 for (i = 0; i < h->ndevices; i++) {
2029 if (h->dev[i] == NULL)
2031 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2034 spin_unlock_irqrestore(&h->devlock, flags);
2036 /* Monitor devices which are in one of several NOT READY states to be
2037 * brought online later. This must be done without holding h->devlock,
2038 * so don't touch h->dev[]
2040 for (i = 0; i < nsds; i++) {
2041 if (!sd[i]) /* if already added above. */
2043 if (sd[i]->volume_offline)
2044 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2047 /* Don't notify scsi mid layer of any changes the first time through
2048 * (or if there are no changes) scsi_scan_host will do it later the
2049 * first time through.
2054 /* Notify scsi mid layer of any removed devices */
2055 for (i = 0; i < nremoved; i++) {
2056 if (removed[i] == NULL)
2058 if (removed[i]->expose_device)
2059 hpsa_remove_device(h, removed[i]);
2064 /* Notify scsi mid layer of any added devices */
2065 for (i = 0; i < nadded; i++) {
2068 if (added[i] == NULL)
2070 if (!(added[i]->expose_device))
2072 rc = hpsa_add_device(h, added[i]);
2075 dev_warn(&h->pdev->dev,
2076 "addition failed %d, device not added.", rc);
2077 /* now we have to remove it from h->dev,
2078 * since it didn't get added to scsi mid layer
2080 fixup_botched_add(h, added[i]);
2081 h->drv_req_rescan = 1;
2090 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2091 * Assume's h->devlock is held.
2093 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2094 int bus, int target, int lun)
2097 struct hpsa_scsi_dev_t *sd;
2099 for (i = 0; i < h->ndevices; i++) {
2101 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2107 static int hpsa_slave_alloc(struct scsi_device *sdev)
2109 struct hpsa_scsi_dev_t *sd = NULL;
2110 unsigned long flags;
2111 struct ctlr_info *h;
2113 h = sdev_to_hba(sdev);
2114 spin_lock_irqsave(&h->devlock, flags);
2115 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2116 struct scsi_target *starget;
2117 struct sas_rphy *rphy;
2119 starget = scsi_target(sdev);
2120 rphy = target_to_rphy(starget);
2121 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2123 sd->target = sdev_id(sdev);
2124 sd->lun = sdev->lun;
2128 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2129 sdev_id(sdev), sdev->lun);
2131 if (sd && sd->expose_device) {
2132 atomic_set(&sd->ioaccel_cmds_out, 0);
2133 sdev->hostdata = sd;
2135 sdev->hostdata = NULL;
2136 spin_unlock_irqrestore(&h->devlock, flags);
2140 /* configure scsi device based on internal per-device structure */
2141 #define CTLR_TIMEOUT (120 * HZ)
2142 static int hpsa_slave_configure(struct scsi_device *sdev)
2144 struct hpsa_scsi_dev_t *sd;
2147 sd = sdev->hostdata;
2148 sdev->no_uld_attach = !sd || !sd->expose_device;
2151 sd->was_removed = 0;
2152 queue_depth = sd->queue_depth != 0 ?
2153 sd->queue_depth : sdev->host->can_queue;
2155 queue_depth = EXTERNAL_QD;
2156 sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2157 blk_queue_rq_timeout(sdev->request_queue,
2158 HPSA_EH_PTRAID_TIMEOUT);
2160 if (is_hba_lunid(sd->scsi3addr)) {
2161 sdev->eh_timeout = CTLR_TIMEOUT;
2162 blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2165 queue_depth = sdev->host->can_queue;
2168 scsi_change_queue_depth(sdev, queue_depth);
2173 static void hpsa_slave_destroy(struct scsi_device *sdev)
2175 struct hpsa_scsi_dev_t *hdev = NULL;
2177 hdev = sdev->hostdata;
2180 hdev->was_removed = 1;
2183 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2187 if (!h->ioaccel2_cmd_sg_list)
2189 for (i = 0; i < h->nr_cmds; i++) {
2190 kfree(h->ioaccel2_cmd_sg_list[i]);
2191 h->ioaccel2_cmd_sg_list[i] = NULL;
2193 kfree(h->ioaccel2_cmd_sg_list);
2194 h->ioaccel2_cmd_sg_list = NULL;
2197 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2201 if (h->chainsize <= 0)
2204 h->ioaccel2_cmd_sg_list =
2205 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2207 if (!h->ioaccel2_cmd_sg_list)
2209 for (i = 0; i < h->nr_cmds; i++) {
2210 h->ioaccel2_cmd_sg_list[i] =
2211 kmalloc_array(h->maxsgentries,
2212 sizeof(*h->ioaccel2_cmd_sg_list[i]),
2214 if (!h->ioaccel2_cmd_sg_list[i])
2220 hpsa_free_ioaccel2_sg_chain_blocks(h);
2224 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2228 if (!h->cmd_sg_list)
2230 for (i = 0; i < h->nr_cmds; i++) {
2231 kfree(h->cmd_sg_list[i]);
2232 h->cmd_sg_list[i] = NULL;
2234 kfree(h->cmd_sg_list);
2235 h->cmd_sg_list = NULL;
2238 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2242 if (h->chainsize <= 0)
2245 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2247 if (!h->cmd_sg_list)
2250 for (i = 0; i < h->nr_cmds; i++) {
2251 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2252 sizeof(*h->cmd_sg_list[i]),
2254 if (!h->cmd_sg_list[i])
2261 hpsa_free_sg_chain_blocks(h);
2265 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2266 struct io_accel2_cmd *cp, struct CommandList *c)
2268 struct ioaccel2_sg_element *chain_block;
2272 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2273 chain_size = le32_to_cpu(cp->sg[0].length);
2274 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2276 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2277 /* prevent subsequent unmapping */
2278 cp->sg->address = 0;
2281 cp->sg->address = cpu_to_le64(temp64);
2285 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2286 struct io_accel2_cmd *cp)
2288 struct ioaccel2_sg_element *chain_sg;
2293 temp64 = le64_to_cpu(chain_sg->address);
2294 chain_size = le32_to_cpu(cp->sg[0].length);
2295 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2298 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2299 struct CommandList *c)
2301 struct SGDescriptor *chain_sg, *chain_block;
2305 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2306 chain_block = h->cmd_sg_list[c->cmdindex];
2307 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2308 chain_len = sizeof(*chain_sg) *
2309 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2310 chain_sg->Len = cpu_to_le32(chain_len);
2311 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2313 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2314 /* prevent subsequent unmapping */
2315 chain_sg->Addr = cpu_to_le64(0);
2318 chain_sg->Addr = cpu_to_le64(temp64);
2322 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2323 struct CommandList *c)
2325 struct SGDescriptor *chain_sg;
2327 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2330 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2331 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2332 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2336 /* Decode the various types of errors on ioaccel2 path.
2337 * Return 1 for any error that should generate a RAID path retry.
2338 * Return 0 for errors that don't require a RAID path retry.
2340 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2341 struct CommandList *c,
2342 struct scsi_cmnd *cmd,
2343 struct io_accel2_cmd *c2,
2344 struct hpsa_scsi_dev_t *dev)
2348 u32 ioaccel2_resid = 0;
2350 switch (c2->error_data.serv_response) {
2351 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2352 switch (c2->error_data.status) {
2353 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2357 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2358 cmd->result |= SAM_STAT_CHECK_CONDITION;
2359 if (c2->error_data.data_present !=
2360 IOACCEL2_SENSE_DATA_PRESENT) {
2361 memset(cmd->sense_buffer, 0,
2362 SCSI_SENSE_BUFFERSIZE);
2365 /* copy the sense data */
2366 data_len = c2->error_data.sense_data_len;
2367 if (data_len > SCSI_SENSE_BUFFERSIZE)
2368 data_len = SCSI_SENSE_BUFFERSIZE;
2369 if (data_len > sizeof(c2->error_data.sense_data_buff))
2371 sizeof(c2->error_data.sense_data_buff);
2372 memcpy(cmd->sense_buffer,
2373 c2->error_data.sense_data_buff, data_len);
2376 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2379 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2382 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2385 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2393 case IOACCEL2_SERV_RESPONSE_FAILURE:
2394 switch (c2->error_data.status) {
2395 case IOACCEL2_STATUS_SR_IO_ERROR:
2396 case IOACCEL2_STATUS_SR_IO_ABORTED:
2397 case IOACCEL2_STATUS_SR_OVERRUN:
2400 case IOACCEL2_STATUS_SR_UNDERRUN:
2401 cmd->result = (DID_OK << 16); /* host byte */
2402 ioaccel2_resid = get_unaligned_le32(
2403 &c2->error_data.resid_cnt[0]);
2404 scsi_set_resid(cmd, ioaccel2_resid);
2406 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2407 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2408 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2410 * Did an HBA disk disappear? We will eventually
2411 * get a state change event from the controller but
2412 * in the meantime, we need to tell the OS that the
2413 * HBA disk is no longer there and stop I/O
2414 * from going down. This allows the potential re-insert
2415 * of the disk to get the same device node.
2417 if (dev->physical_device && dev->expose_device) {
2418 cmd->result = DID_NO_CONNECT << 16;
2420 h->drv_req_rescan = 1;
2421 dev_warn(&h->pdev->dev,
2422 "%s: device is gone!\n", __func__);
2425 * Retry by sending down the RAID path.
2426 * We will get an event from ctlr to
2427 * trigger rescan regardless.
2435 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2437 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2439 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2442 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2452 return retry; /* retry on raid path? */
2455 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2456 struct CommandList *c)
2458 struct hpsa_scsi_dev_t *dev = c->device;
2461 * Reset c->scsi_cmd here so that the reset handler will know
2462 * this command has completed. Then, check to see if the handler is
2463 * waiting for this command, and, if so, wake it.
2465 c->scsi_cmd = SCSI_CMD_IDLE;
2466 mb(); /* Declare command idle before checking for pending events. */
2468 atomic_dec(&dev->commands_outstanding);
2469 if (dev->in_reset &&
2470 atomic_read(&dev->commands_outstanding) <= 0)
2471 wake_up_all(&h->event_sync_wait_queue);
2475 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2476 struct CommandList *c)
2478 hpsa_cmd_resolve_events(h, c);
2479 cmd_tagged_free(h, c);
2482 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2483 struct CommandList *c, struct scsi_cmnd *cmd)
2485 hpsa_cmd_resolve_and_free(h, c);
2486 if (cmd && cmd->scsi_done)
2487 cmd->scsi_done(cmd);
2490 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2492 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2493 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2496 static void process_ioaccel2_completion(struct ctlr_info *h,
2497 struct CommandList *c, struct scsi_cmnd *cmd,
2498 struct hpsa_scsi_dev_t *dev)
2500 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2502 /* check for good status */
2503 if (likely(c2->error_data.serv_response == 0 &&
2504 c2->error_data.status == 0)) {
2506 return hpsa_cmd_free_and_done(h, c, cmd);
2510 * Any RAID offload error results in retry which will use
2511 * the normal I/O path so the controller can handle whatever is
2514 if (is_logical_device(dev) &&
2515 c2->error_data.serv_response ==
2516 IOACCEL2_SERV_RESPONSE_FAILURE) {
2517 if (c2->error_data.status ==
2518 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2519 hpsa_turn_off_ioaccel_for_device(dev);
2522 if (dev->in_reset) {
2523 cmd->result = DID_RESET << 16;
2524 return hpsa_cmd_free_and_done(h, c, cmd);
2527 return hpsa_retry_cmd(h, c);
2530 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2531 return hpsa_retry_cmd(h, c);
2533 return hpsa_cmd_free_and_done(h, c, cmd);
2536 /* Returns 0 on success, < 0 otherwise. */
2537 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2538 struct CommandList *cp)
2540 u8 tmf_status = cp->err_info->ScsiStatus;
2542 switch (tmf_status) {
2543 case CISS_TMF_COMPLETE:
2545 * CISS_TMF_COMPLETE never happens, instead,
2546 * ei->CommandStatus == 0 for this case.
2548 case CISS_TMF_SUCCESS:
2550 case CISS_TMF_INVALID_FRAME:
2551 case CISS_TMF_NOT_SUPPORTED:
2552 case CISS_TMF_FAILED:
2553 case CISS_TMF_WRONG_LUN:
2554 case CISS_TMF_OVERLAPPED_TAG:
2557 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2564 static void complete_scsi_command(struct CommandList *cp)
2566 struct scsi_cmnd *cmd;
2567 struct ctlr_info *h;
2568 struct ErrorInfo *ei;
2569 struct hpsa_scsi_dev_t *dev;
2570 struct io_accel2_cmd *c2;
2573 u8 asc; /* additional sense code */
2574 u8 ascq; /* additional sense code qualifier */
2575 unsigned long sense_data_size;
2582 cmd->result = DID_NO_CONNECT << 16;
2583 return hpsa_cmd_free_and_done(h, cp, cmd);
2586 dev = cmd->device->hostdata;
2588 cmd->result = DID_NO_CONNECT << 16;
2589 return hpsa_cmd_free_and_done(h, cp, cmd);
2591 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2593 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2594 if ((cp->cmd_type == CMD_SCSI) &&
2595 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2596 hpsa_unmap_sg_chain_block(h, cp);
2598 if ((cp->cmd_type == CMD_IOACCEL2) &&
2599 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2600 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2602 cmd->result = (DID_OK << 16); /* host byte */
2604 /* SCSI command has already been cleaned up in SML */
2605 if (dev->was_removed) {
2606 hpsa_cmd_resolve_and_free(h, cp);
2610 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2611 if (dev->physical_device && dev->expose_device &&
2613 cmd->result = DID_NO_CONNECT << 16;
2614 return hpsa_cmd_free_and_done(h, cp, cmd);
2616 if (likely(cp->phys_disk != NULL))
2617 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2621 * We check for lockup status here as it may be set for
2622 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2623 * fail_all_oustanding_cmds()
2625 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2626 /* DID_NO_CONNECT will prevent a retry */
2627 cmd->result = DID_NO_CONNECT << 16;
2628 return hpsa_cmd_free_and_done(h, cp, cmd);
2631 if (cp->cmd_type == CMD_IOACCEL2)
2632 return process_ioaccel2_completion(h, cp, cmd, dev);
2634 scsi_set_resid(cmd, ei->ResidualCnt);
2635 if (ei->CommandStatus == 0)
2636 return hpsa_cmd_free_and_done(h, cp, cmd);
2638 /* For I/O accelerator commands, copy over some fields to the normal
2639 * CISS header used below for error handling.
2641 if (cp->cmd_type == CMD_IOACCEL1) {
2642 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2643 cp->Header.SGList = scsi_sg_count(cmd);
2644 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2645 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2646 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2647 cp->Header.tag = c->tag;
2648 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2649 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2651 /* Any RAID offload error results in retry which will use
2652 * the normal I/O path so the controller can handle whatever's
2655 if (is_logical_device(dev)) {
2656 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2657 dev->offload_enabled = 0;
2658 return hpsa_retry_cmd(h, cp);
2662 /* an error has occurred */
2663 switch (ei->CommandStatus) {
2665 case CMD_TARGET_STATUS:
2666 cmd->result |= ei->ScsiStatus;
2667 /* copy the sense data */
2668 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2669 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2671 sense_data_size = sizeof(ei->SenseInfo);
2672 if (ei->SenseLen < sense_data_size)
2673 sense_data_size = ei->SenseLen;
2674 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2676 decode_sense_data(ei->SenseInfo, sense_data_size,
2677 &sense_key, &asc, &ascq);
2678 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2679 switch (sense_key) {
2680 case ABORTED_COMMAND:
2681 cmd->result |= DID_SOFT_ERROR << 16;
2683 case UNIT_ATTENTION:
2684 if (asc == 0x3F && ascq == 0x0E)
2685 h->drv_req_rescan = 1;
2687 case ILLEGAL_REQUEST:
2688 if (asc == 0x25 && ascq == 0x00) {
2690 cmd->result = DID_NO_CONNECT << 16;
2696 /* Problem was not a check condition
2697 * Pass it up to the upper layers...
2699 if (ei->ScsiStatus) {
2700 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2701 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2702 "Returning result: 0x%x\n",
2704 sense_key, asc, ascq,
2706 } else { /* scsi status is zero??? How??? */
2707 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2708 "Returning no connection.\n", cp),
2710 /* Ordinarily, this case should never happen,
2711 * but there is a bug in some released firmware
2712 * revisions that allows it to happen if, for
2713 * example, a 4100 backplane loses power and
2714 * the tape drive is in it. We assume that
2715 * it's a fatal error of some kind because we
2716 * can't show that it wasn't. We will make it
2717 * look like selection timeout since that is
2718 * the most common reason for this to occur,
2719 * and it's severe enough.
2722 cmd->result = DID_NO_CONNECT << 16;
2726 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2728 case CMD_DATA_OVERRUN:
2729 dev_warn(&h->pdev->dev,
2730 "CDB %16phN data overrun\n", cp->Request.CDB);
2733 /* print_bytes(cp, sizeof(*cp), 1, 0);
2735 /* We get CMD_INVALID if you address a non-existent device
2736 * instead of a selection timeout (no response). You will
2737 * see this if you yank out a drive, then try to access it.
2738 * This is kind of a shame because it means that any other
2739 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2740 * missing target. */
2741 cmd->result = DID_NO_CONNECT << 16;
2744 case CMD_PROTOCOL_ERR:
2745 cmd->result = DID_ERROR << 16;
2746 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2749 case CMD_HARDWARE_ERR:
2750 cmd->result = DID_ERROR << 16;
2751 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2754 case CMD_CONNECTION_LOST:
2755 cmd->result = DID_ERROR << 16;
2756 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2760 cmd->result = DID_ABORT << 16;
2762 case CMD_ABORT_FAILED:
2763 cmd->result = DID_ERROR << 16;
2764 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2767 case CMD_UNSOLICITED_ABORT:
2768 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2769 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2773 cmd->result = DID_TIME_OUT << 16;
2774 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2777 case CMD_UNABORTABLE:
2778 cmd->result = DID_ERROR << 16;
2779 dev_warn(&h->pdev->dev, "Command unabortable\n");
2781 case CMD_TMF_STATUS:
2782 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2783 cmd->result = DID_ERROR << 16;
2785 case CMD_IOACCEL_DISABLED:
2786 /* This only handles the direct pass-through case since RAID
2787 * offload is handled above. Just attempt a retry.
2789 cmd->result = DID_SOFT_ERROR << 16;
2790 dev_warn(&h->pdev->dev,
2791 "cp %p had HP SSD Smart Path error\n", cp);
2794 cmd->result = DID_ERROR << 16;
2795 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2796 cp, ei->CommandStatus);
2799 return hpsa_cmd_free_and_done(h, cp, cmd);
2802 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2803 int sg_used, enum dma_data_direction data_direction)
2807 for (i = 0; i < sg_used; i++)
2808 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2809 le32_to_cpu(c->SG[i].Len),
2813 static int hpsa_map_one(struct pci_dev *pdev,
2814 struct CommandList *cp,
2817 enum dma_data_direction data_direction)
2821 if (buflen == 0 || data_direction == DMA_NONE) {
2822 cp->Header.SGList = 0;
2823 cp->Header.SGTotal = cpu_to_le16(0);
2827 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2828 if (dma_mapping_error(&pdev->dev, addr64)) {
2829 /* Prevent subsequent unmap of something never mapped */
2830 cp->Header.SGList = 0;
2831 cp->Header.SGTotal = cpu_to_le16(0);
2834 cp->SG[0].Addr = cpu_to_le64(addr64);
2835 cp->SG[0].Len = cpu_to_le32(buflen);
2836 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2837 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2838 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2842 #define NO_TIMEOUT ((unsigned long) -1)
2843 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2844 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2845 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2847 DECLARE_COMPLETION_ONSTACK(wait);
2850 __enqueue_cmd_and_start_io(h, c, reply_queue);
2851 if (timeout_msecs == NO_TIMEOUT) {
2852 /* TODO: get rid of this no-timeout thing */
2853 wait_for_completion_io(&wait);
2856 if (!wait_for_completion_io_timeout(&wait,
2857 msecs_to_jiffies(timeout_msecs))) {
2858 dev_warn(&h->pdev->dev, "Command timed out.\n");
2864 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2865 int reply_queue, unsigned long timeout_msecs)
2867 if (unlikely(lockup_detected(h))) {
2868 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2871 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2874 static u32 lockup_detected(struct ctlr_info *h)
2877 u32 rc, *lockup_detected;
2880 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2881 rc = *lockup_detected;
2886 #define MAX_DRIVER_CMD_RETRIES 25
2887 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2888 struct CommandList *c, enum dma_data_direction data_direction,
2889 unsigned long timeout_msecs)
2891 int backoff_time = 10, retry_count = 0;
2895 memset(c->err_info, 0, sizeof(*c->err_info));
2896 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2901 if (retry_count > 3) {
2902 msleep(backoff_time);
2903 if (backoff_time < 1000)
2906 } while ((check_for_unit_attention(h, c) ||
2907 check_for_busy(h, c)) &&
2908 retry_count <= MAX_DRIVER_CMD_RETRIES);
2909 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2910 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2915 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2916 struct CommandList *c)
2918 const u8 *cdb = c->Request.CDB;
2919 const u8 *lun = c->Header.LUN.LunAddrBytes;
2921 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2925 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2926 struct CommandList *cp)
2928 const struct ErrorInfo *ei = cp->err_info;
2929 struct device *d = &cp->h->pdev->dev;
2930 u8 sense_key, asc, ascq;
2933 switch (ei->CommandStatus) {
2934 case CMD_TARGET_STATUS:
2935 if (ei->SenseLen > sizeof(ei->SenseInfo))
2936 sense_len = sizeof(ei->SenseInfo);
2938 sense_len = ei->SenseLen;
2939 decode_sense_data(ei->SenseInfo, sense_len,
2940 &sense_key, &asc, &ascq);
2941 hpsa_print_cmd(h, "SCSI status", cp);
2942 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2943 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2944 sense_key, asc, ascq);
2946 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2947 if (ei->ScsiStatus == 0)
2948 dev_warn(d, "SCSI status is abnormally zero. "
2949 "(probably indicates selection timeout "
2950 "reported incorrectly due to a known "
2951 "firmware bug, circa July, 2001.)\n");
2953 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2955 case CMD_DATA_OVERRUN:
2956 hpsa_print_cmd(h, "overrun condition", cp);
2959 /* controller unfortunately reports SCSI passthru's
2960 * to non-existent targets as invalid commands.
2962 hpsa_print_cmd(h, "invalid command", cp);
2963 dev_warn(d, "probably means device no longer present\n");
2966 case CMD_PROTOCOL_ERR:
2967 hpsa_print_cmd(h, "protocol error", cp);
2969 case CMD_HARDWARE_ERR:
2970 hpsa_print_cmd(h, "hardware error", cp);
2972 case CMD_CONNECTION_LOST:
2973 hpsa_print_cmd(h, "connection lost", cp);
2976 hpsa_print_cmd(h, "aborted", cp);
2978 case CMD_ABORT_FAILED:
2979 hpsa_print_cmd(h, "abort failed", cp);
2981 case CMD_UNSOLICITED_ABORT:
2982 hpsa_print_cmd(h, "unsolicited abort", cp);
2985 hpsa_print_cmd(h, "timed out", cp);
2987 case CMD_UNABORTABLE:
2988 hpsa_print_cmd(h, "unabortable", cp);
2990 case CMD_CTLR_LOCKUP:
2991 hpsa_print_cmd(h, "controller lockup detected", cp);
2994 hpsa_print_cmd(h, "unknown status", cp);
2995 dev_warn(d, "Unknown command status %x\n",
3000 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3001 u8 page, u8 *buf, size_t bufsize)
3004 struct CommandList *c;
3005 struct ErrorInfo *ei;
3008 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3009 page, scsi3addr, TYPE_CMD)) {
3013 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3018 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3019 hpsa_scsi_interpret_error(h, c);
3027 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3034 buf = kzalloc(1024, GFP_KERNEL);
3038 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3044 sa = get_unaligned_be64(buf+12);
3051 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3052 u16 page, unsigned char *buf,
3053 unsigned char bufsize)
3056 struct CommandList *c;
3057 struct ErrorInfo *ei;
3061 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3062 page, scsi3addr, TYPE_CMD)) {
3066 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3071 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3072 hpsa_scsi_interpret_error(h, c);
3080 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3081 u8 reset_type, int reply_queue)
3084 struct CommandList *c;
3085 struct ErrorInfo *ei;
3090 /* fill_cmd can't fail here, no data buffer to map. */
3091 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3092 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3094 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3097 /* no unmap needed here because no data xfer. */
3100 if (ei->CommandStatus != 0) {
3101 hpsa_scsi_interpret_error(h, c);
3109 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3110 struct hpsa_scsi_dev_t *dev,
3111 unsigned char *scsi3addr)
3115 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3116 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3118 if (hpsa_is_cmd_idle(c))
3121 switch (c->cmd_type) {
3123 case CMD_IOCTL_PEND:
3124 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3125 sizeof(c->Header.LUN.LunAddrBytes));
3130 if (c->phys_disk == dev) {
3131 /* HBA mode match */
3134 /* Possible RAID mode -- check each phys dev. */
3135 /* FIXME: Do we need to take out a lock here? If
3136 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3138 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3139 /* FIXME: an alternate test might be
3141 * match = dev->phys_disk[i]->ioaccel_handle
3142 * == c2->scsi_nexus; */
3143 match = dev->phys_disk[i] == c->phys_disk;
3149 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3150 match = dev->phys_disk[i]->ioaccel_handle ==
3151 le32_to_cpu(ac->it_nexus);
3155 case 0: /* The command is in the middle of being initialized. */
3160 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3168 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3169 u8 reset_type, int reply_queue)
3173 /* We can really only handle one reset at a time */
3174 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3175 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3179 rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3181 /* incremented by sending the reset request */
3182 atomic_dec(&dev->commands_outstanding);
3183 wait_event(h->event_sync_wait_queue,
3184 atomic_read(&dev->commands_outstanding) <= 0 ||
3185 lockup_detected(h));
3188 if (unlikely(lockup_detected(h))) {
3189 dev_warn(&h->pdev->dev,
3190 "Controller lockup detected during reset wait\n");
3195 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3197 mutex_unlock(&h->reset_mutex);
3201 static void hpsa_get_raid_level(struct ctlr_info *h,
3202 unsigned char *scsi3addr, unsigned char *raid_level)
3207 *raid_level = RAID_UNKNOWN;
3208 buf = kzalloc(64, GFP_KERNEL);
3212 if (!hpsa_vpd_page_supported(h, scsi3addr,
3213 HPSA_VPD_LV_DEVICE_GEOMETRY))
3216 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3217 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3220 *raid_level = buf[8];
3221 if (*raid_level > RAID_UNKNOWN)
3222 *raid_level = RAID_UNKNOWN;
3228 #define HPSA_MAP_DEBUG
3229 #ifdef HPSA_MAP_DEBUG
3230 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3231 struct raid_map_data *map_buff)
3233 struct raid_map_disk_data *dd = &map_buff->data[0];
3235 u16 map_cnt, row_cnt, disks_per_row;
3240 /* Show details only if debugging has been activated. */
3241 if (h->raid_offload_debug < 2)
3244 dev_info(&h->pdev->dev, "structure_size = %u\n",
3245 le32_to_cpu(map_buff->structure_size));
3246 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3247 le32_to_cpu(map_buff->volume_blk_size));
3248 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3249 le64_to_cpu(map_buff->volume_blk_cnt));
3250 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3251 map_buff->phys_blk_shift);
3252 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3253 map_buff->parity_rotation_shift);
3254 dev_info(&h->pdev->dev, "strip_size = %u\n",
3255 le16_to_cpu(map_buff->strip_size));
3256 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3257 le64_to_cpu(map_buff->disk_starting_blk));
3258 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3259 le64_to_cpu(map_buff->disk_blk_cnt));
3260 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3261 le16_to_cpu(map_buff->data_disks_per_row));
3262 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3263 le16_to_cpu(map_buff->metadata_disks_per_row));
3264 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3265 le16_to_cpu(map_buff->row_cnt));
3266 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3267 le16_to_cpu(map_buff->layout_map_count));
3268 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3269 le16_to_cpu(map_buff->flags));
3270 dev_info(&h->pdev->dev, "encryption = %s\n",
3271 le16_to_cpu(map_buff->flags) &
3272 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3273 dev_info(&h->pdev->dev, "dekindex = %u\n",
3274 le16_to_cpu(map_buff->dekindex));
3275 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3276 for (map = 0; map < map_cnt; map++) {
3277 dev_info(&h->pdev->dev, "Map%u:\n", map);
3278 row_cnt = le16_to_cpu(map_buff->row_cnt);
3279 for (row = 0; row < row_cnt; row++) {
3280 dev_info(&h->pdev->dev, " Row%u:\n", row);
3282 le16_to_cpu(map_buff->data_disks_per_row);
3283 for (col = 0; col < disks_per_row; col++, dd++)
3284 dev_info(&h->pdev->dev,
3285 " D%02u: h=0x%04x xor=%u,%u\n",
3286 col, dd->ioaccel_handle,
3287 dd->xor_mult[0], dd->xor_mult[1]);
3289 le16_to_cpu(map_buff->metadata_disks_per_row);
3290 for (col = 0; col < disks_per_row; col++, dd++)
3291 dev_info(&h->pdev->dev,
3292 " M%02u: h=0x%04x xor=%u,%u\n",
3293 col, dd->ioaccel_handle,
3294 dd->xor_mult[0], dd->xor_mult[1]);
3299 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3300 __attribute__((unused)) int rc,
3301 __attribute__((unused)) struct raid_map_data *map_buff)
3306 static int hpsa_get_raid_map(struct ctlr_info *h,
3307 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3310 struct CommandList *c;
3311 struct ErrorInfo *ei;
3315 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3316 sizeof(this_device->raid_map), 0,
3317 scsi3addr, TYPE_CMD)) {
3318 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3322 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3327 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3328 hpsa_scsi_interpret_error(h, c);
3334 /* @todo in the future, dynamically allocate RAID map memory */
3335 if (le32_to_cpu(this_device->raid_map.structure_size) >
3336 sizeof(this_device->raid_map)) {
3337 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3340 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3347 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3348 unsigned char scsi3addr[], u16 bmic_device_index,
3349 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3352 struct CommandList *c;
3353 struct ErrorInfo *ei;
3357 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3358 0, RAID_CTLR_LUNID, TYPE_CMD);
3362 c->Request.CDB[2] = bmic_device_index & 0xff;
3363 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3365 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3370 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3371 hpsa_scsi_interpret_error(h, c);
3379 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3380 struct bmic_identify_controller *buf, size_t bufsize)
3383 struct CommandList *c;
3384 struct ErrorInfo *ei;
3388 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3389 0, RAID_CTLR_LUNID, TYPE_CMD);
3393 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3398 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3399 hpsa_scsi_interpret_error(h, c);
3407 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3408 unsigned char scsi3addr[], u16 bmic_device_index,
3409 struct bmic_identify_physical_device *buf, size_t bufsize)
3412 struct CommandList *c;
3413 struct ErrorInfo *ei;
3416 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3417 0, RAID_CTLR_LUNID, TYPE_CMD);
3421 c->Request.CDB[2] = bmic_device_index & 0xff;
3422 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3424 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3427 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3428 hpsa_scsi_interpret_error(h, c);
3438 * get enclosure information
3439 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3440 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3441 * Uses id_physical_device to determine the box_index.
3443 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3444 unsigned char *scsi3addr,
3445 struct ReportExtendedLUNdata *rlep, int rle_index,
3446 struct hpsa_scsi_dev_t *encl_dev)
3449 struct CommandList *c = NULL;
3450 struct ErrorInfo *ei = NULL;
3451 struct bmic_sense_storage_box_params *bssbp = NULL;
3452 struct bmic_identify_physical_device *id_phys = NULL;
3453 struct ext_report_lun_entry *rle;
3454 u16 bmic_device_index = 0;
3456 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3459 rle = &rlep->LUN[rle_index];
3462 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3464 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3466 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3471 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3476 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3480 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3484 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3485 id_phys, sizeof(*id_phys));
3487 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3488 __func__, encl_dev->external, bmic_device_index);
3494 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3495 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3500 if (id_phys->phys_connector[1] == 'E')
3501 c->Request.CDB[5] = id_phys->box_index;
3503 c->Request.CDB[5] = 0;
3505 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3511 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3516 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3517 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3518 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3529 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3530 "Error, could not get enclosure information");
3533 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3534 unsigned char *scsi3addr)
3536 struct ReportExtendedLUNdata *physdev;
3541 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3545 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3546 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3550 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3552 for (i = 0; i < nphysicals; i++)
3553 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3554 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3563 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3564 struct hpsa_scsi_dev_t *dev)
3569 if (is_hba_lunid(scsi3addr)) {
3570 struct bmic_sense_subsystem_info *ssi;
3572 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3576 rc = hpsa_bmic_sense_subsystem_information(h,
3577 scsi3addr, 0, ssi, sizeof(*ssi));
3579 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3580 h->sas_address = sa;
3585 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3587 dev->sas_address = sa;
3590 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3591 struct ReportExtendedLUNdata *physdev)
3596 if (h->discovery_polling)
3599 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3601 for (i = 0; i < nphysicals; i++) {
3602 if (physdev->LUN[i].device_type ==
3603 BMIC_DEVICE_TYPE_CONTROLLER
3604 && !is_hba_lunid(physdev->LUN[i].lunid)) {
3605 dev_info(&h->pdev->dev,
3606 "External controller present, activate discovery polling and disable rld caching\n");
3607 hpsa_disable_rld_caching(h);
3608 h->discovery_polling = 1;
3614 /* Get a device id from inquiry page 0x83 */
3615 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3616 unsigned char scsi3addr[], u8 page)
3621 unsigned char *buf, bufsize;
3623 buf = kzalloc(256, GFP_KERNEL);
3627 /* Get the size of the page list first */
3628 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3629 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3630 buf, HPSA_VPD_HEADER_SZ);
3632 goto exit_unsupported;
3634 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3635 bufsize = pages + HPSA_VPD_HEADER_SZ;
3639 /* Get the whole VPD page list */
3640 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3641 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3644 goto exit_unsupported;
3647 for (i = 1; i <= pages; i++)
3648 if (buf[3 + i] == page)
3649 goto exit_supported;
3659 * Called during a scan operation.
3660 * Sets ioaccel status on the new device list, not the existing device list
3662 * The device list used during I/O will be updated later in
3663 * adjust_hpsa_scsi_table.
3665 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3666 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3672 this_device->offload_config = 0;
3673 this_device->offload_enabled = 0;
3674 this_device->offload_to_be_enabled = 0;
3676 buf = kzalloc(64, GFP_KERNEL);
3679 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3681 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3682 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3686 #define IOACCEL_STATUS_BYTE 4
3687 #define OFFLOAD_CONFIGURED_BIT 0x01
3688 #define OFFLOAD_ENABLED_BIT 0x02
3689 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3690 this_device->offload_config =
3691 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3692 if (this_device->offload_config) {
3693 bool offload_enabled =
3694 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3696 * Check to see if offload can be enabled.
3698 if (offload_enabled) {
3699 rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3700 if (rc) /* could not load raid_map */
3702 this_device->offload_to_be_enabled = 1;
3711 /* Get the device id from inquiry page 0x83 */
3712 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3713 unsigned char *device_id, int index, int buflen)
3718 /* Does controller have VPD for device id? */
3719 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3720 return 1; /* not supported */
3722 buf = kzalloc(64, GFP_KERNEL);
3726 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3727 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3731 memcpy(device_id, &buf[8], buflen);
3736 return rc; /*0 - got id, otherwise, didn't */
3739 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3740 void *buf, int bufsize,
3741 int extended_response)
3744 struct CommandList *c;
3745 unsigned char scsi3addr[8];
3746 struct ErrorInfo *ei;
3750 /* address the controller */
3751 memset(scsi3addr, 0, sizeof(scsi3addr));
3752 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3753 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3757 if (extended_response)
3758 c->Request.CDB[1] = extended_response;
3759 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3764 if (ei->CommandStatus != 0 &&
3765 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3766 hpsa_scsi_interpret_error(h, c);
3769 struct ReportLUNdata *rld = buf;
3771 if (rld->extended_response_flag != extended_response) {
3772 if (!h->legacy_board) {
3773 dev_err(&h->pdev->dev,
3774 "report luns requested format %u, got %u\n",
3776 rld->extended_response_flag);
3787 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3788 struct ReportExtendedLUNdata *buf, int bufsize)
3791 struct ReportLUNdata *lbuf;
3793 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3794 HPSA_REPORT_PHYS_EXTENDED);
3795 if (!rc || rc != -EOPNOTSUPP)
3798 /* REPORT PHYS EXTENDED is not supported */
3799 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3803 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3808 /* Copy ReportLUNdata header */
3809 memcpy(buf, lbuf, 8);
3810 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3811 for (i = 0; i < nphys; i++)
3812 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3818 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3819 struct ReportLUNdata *buf, int bufsize)
3821 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3824 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3825 int bus, int target, int lun)
3828 device->target = target;
3832 /* Use VPD inquiry to get details of volume status */
3833 static int hpsa_get_volume_status(struct ctlr_info *h,
3834 unsigned char scsi3addr[])
3841 buf = kzalloc(64, GFP_KERNEL);
3843 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3845 /* Does controller have VPD for logical volume status? */
3846 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3849 /* Get the size of the VPD return buffer */
3850 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3851 buf, HPSA_VPD_HEADER_SZ);
3856 /* Now get the whole VPD buffer */
3857 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3858 buf, size + HPSA_VPD_HEADER_SZ);
3861 status = buf[4]; /* status byte */
3867 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3870 /* Determine offline status of a volume.
3873 * 0xff (offline for unknown reasons)
3874 * # (integer code indicating one of several NOT READY states
3875 * describing why a volume is to be kept offline)
3877 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3878 unsigned char scsi3addr[])
3880 struct CommandList *c;
3881 unsigned char *sense;
3882 u8 sense_key, asc, ascq;
3885 #define ASC_LUN_NOT_READY 0x04
3886 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3887 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3891 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3892 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3896 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3898 sense = c->err_info->SenseInfo;
3899 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3900 sense_len = sizeof(c->err_info->SenseInfo);
3902 sense_len = c->err_info->SenseLen;
3903 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3906 /* Determine the reason for not ready state */
3907 ldstat = hpsa_get_volume_status(h, scsi3addr);
3909 /* Keep volume offline in certain cases: */
3911 case HPSA_LV_FAILED:
3912 case HPSA_LV_UNDERGOING_ERASE:
3913 case HPSA_LV_NOT_AVAILABLE:
3914 case HPSA_LV_UNDERGOING_RPI:
3915 case HPSA_LV_PENDING_RPI:
3916 case HPSA_LV_ENCRYPTED_NO_KEY:
3917 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3918 case HPSA_LV_UNDERGOING_ENCRYPTION:
3919 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3920 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3922 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3923 /* If VPD status page isn't available,
3924 * use ASC/ASCQ to determine state
3926 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3927 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3936 static int hpsa_update_device_info(struct ctlr_info *h,
3937 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3938 unsigned char *is_OBDR_device)
3941 #define OBDR_SIG_OFFSET 43
3942 #define OBDR_TAPE_SIG "$DR-10"
3943 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3944 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3946 unsigned char *inq_buff;
3947 unsigned char *obdr_sig;
3950 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3956 /* Do an inquiry to the device to see what it is. */
3957 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3958 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3959 dev_err(&h->pdev->dev,
3960 "%s: inquiry failed, device will be skipped.\n",
3962 rc = HPSA_INQUIRY_FAILED;
3966 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3967 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3969 this_device->devtype = (inq_buff[0] & 0x1f);
3970 memcpy(this_device->scsi3addr, scsi3addr, 8);
3971 memcpy(this_device->vendor, &inq_buff[8],
3972 sizeof(this_device->vendor));
3973 memcpy(this_device->model, &inq_buff[16],
3974 sizeof(this_device->model));
3975 this_device->rev = inq_buff[2];
3976 memset(this_device->device_id, 0,
3977 sizeof(this_device->device_id));
3978 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3979 sizeof(this_device->device_id)) < 0) {
3980 dev_err(&h->pdev->dev,
3981 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3983 h->scsi_host->host_no,
3984 this_device->bus, this_device->target,
3986 scsi_device_type(this_device->devtype),
3987 this_device->model);
3988 rc = HPSA_LV_FAILED;
3992 if ((this_device->devtype == TYPE_DISK ||
3993 this_device->devtype == TYPE_ZBC) &&
3994 is_logical_dev_addr_mode(scsi3addr)) {
3995 unsigned char volume_offline;
3997 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3998 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3999 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4000 volume_offline = hpsa_volume_offline(h, scsi3addr);
4001 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4004 * Legacy boards might not support volume status
4006 dev_info(&h->pdev->dev,
4007 "C0:T%d:L%d Volume status not available, assuming online.\n",
4008 this_device->target, this_device->lun);
4011 this_device->volume_offline = volume_offline;
4012 if (volume_offline == HPSA_LV_FAILED) {
4013 rc = HPSA_LV_FAILED;
4014 dev_err(&h->pdev->dev,
4015 "%s: LV failed, device will be skipped.\n",
4020 this_device->raid_level = RAID_UNKNOWN;
4021 this_device->offload_config = 0;
4022 hpsa_turn_off_ioaccel_for_device(this_device);
4023 this_device->hba_ioaccel_enabled = 0;
4024 this_device->volume_offline = 0;
4025 this_device->queue_depth = h->nr_cmds;
4028 if (this_device->external)
4029 this_device->queue_depth = EXTERNAL_QD;
4031 if (is_OBDR_device) {
4032 /* See if this is a One-Button-Disaster-Recovery device
4033 * by looking for "$DR-10" at offset 43 in inquiry data.
4035 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4036 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4037 strncmp(obdr_sig, OBDR_TAPE_SIG,
4038 OBDR_SIG_LEN) == 0);
4049 * Helper function to assign bus, target, lun mapping of devices.
4050 * Logical drive target and lun are assigned at this time, but
4051 * physical device lun and target assignment are deferred (assigned
4052 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4054 static void figure_bus_target_lun(struct ctlr_info *h,
4055 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4057 u32 lunid = get_unaligned_le32(lunaddrbytes);
4059 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4060 /* physical device, target and lun filled in later */
4061 if (is_hba_lunid(lunaddrbytes)) {
4062 int bus = HPSA_HBA_BUS;
4065 bus = HPSA_LEGACY_HBA_BUS;
4066 hpsa_set_bus_target_lun(device,
4067 bus, 0, lunid & 0x3fff);
4069 /* defer target, lun assignment for physical devices */
4070 hpsa_set_bus_target_lun(device,
4071 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4074 /* It's a logical device */
4075 if (device->external) {
4076 hpsa_set_bus_target_lun(device,
4077 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4081 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4085 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4086 int i, int nphysicals, int nlocal_logicals)
4088 /* In report logicals, local logicals are listed first,
4089 * then any externals.
4091 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4093 if (i == raid_ctlr_position)
4096 if (i < logicals_start)
4099 /* i is in logicals range, but still within local logicals */
4100 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4103 return 1; /* it's an external lun */
4107 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4108 * logdev. The number of luns in physdev and logdev are returned in
4109 * *nphysicals and *nlogicals, respectively.
4110 * Returns 0 on success, -1 otherwise.
4112 static int hpsa_gather_lun_info(struct ctlr_info *h,
4113 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4114 struct ReportLUNdata *logdev, u32 *nlogicals)
4116 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4117 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4120 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4121 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4122 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4123 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4124 *nphysicals = HPSA_MAX_PHYS_LUN;
4126 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4127 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4130 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4131 /* Reject Logicals in excess of our max capability. */
4132 if (*nlogicals > HPSA_MAX_LUN) {
4133 dev_warn(&h->pdev->dev,
4134 "maximum logical LUNs (%d) exceeded. "
4135 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4136 *nlogicals - HPSA_MAX_LUN);
4137 *nlogicals = HPSA_MAX_LUN;
4139 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4140 dev_warn(&h->pdev->dev,
4141 "maximum logical + physical LUNs (%d) exceeded. "
4142 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4143 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4144 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4149 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4150 int i, int nphysicals, int nlogicals,
4151 struct ReportExtendedLUNdata *physdev_list,
4152 struct ReportLUNdata *logdev_list)
4154 /* Helper function, figure out where the LUN ID info is coming from
4155 * given index i, lists of physical and logical devices, where in
4156 * the list the raid controller is supposed to appear (first or last)
4159 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4160 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4162 if (i == raid_ctlr_position)
4163 return RAID_CTLR_LUNID;
4165 if (i < logicals_start)
4166 return &physdev_list->LUN[i -
4167 (raid_ctlr_position == 0)].lunid[0];
4169 if (i < last_device)
4170 return &logdev_list->LUN[i - nphysicals -
4171 (raid_ctlr_position == 0)][0];
4176 /* get physical drive ioaccel handle and queue depth */
4177 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4178 struct hpsa_scsi_dev_t *dev,
4179 struct ReportExtendedLUNdata *rlep, int rle_index,
4180 struct bmic_identify_physical_device *id_phys)
4183 struct ext_report_lun_entry *rle;
4185 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4188 rle = &rlep->LUN[rle_index];
4190 dev->ioaccel_handle = rle->ioaccel_handle;
4191 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4192 dev->hba_ioaccel_enabled = 1;
4193 memset(id_phys, 0, sizeof(*id_phys));
4194 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4195 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4198 /* Reserve space for FW operations */
4199 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4200 #define DRIVE_QUEUE_DEPTH 7
4202 le16_to_cpu(id_phys->current_queue_depth_limit) -
4203 DRIVE_CMDS_RESERVED_FOR_FW;
4205 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4208 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4209 struct ReportExtendedLUNdata *rlep, int rle_index,
4210 struct bmic_identify_physical_device *id_phys)
4212 struct ext_report_lun_entry *rle;
4214 if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4217 rle = &rlep->LUN[rle_index];
4219 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4220 this_device->hba_ioaccel_enabled = 1;
4222 memcpy(&this_device->active_path_index,
4223 &id_phys->active_path_number,
4224 sizeof(this_device->active_path_index));
4225 memcpy(&this_device->path_map,
4226 &id_phys->redundant_path_present_map,
4227 sizeof(this_device->path_map));
4228 memcpy(&this_device->box,
4229 &id_phys->alternate_paths_phys_box_on_port,
4230 sizeof(this_device->box));
4231 memcpy(&this_device->phys_connector,
4232 &id_phys->alternate_paths_phys_connector,
4233 sizeof(this_device->phys_connector));
4234 memcpy(&this_device->bay,
4235 &id_phys->phys_bay_in_box,
4236 sizeof(this_device->bay));
4239 /* get number of local logical disks. */
4240 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4241 struct bmic_identify_controller *id_ctlr,
4247 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4251 memset(id_ctlr, 0, sizeof(*id_ctlr));
4252 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4254 if (id_ctlr->configured_logical_drive_count < 255)
4255 *nlocals = id_ctlr->configured_logical_drive_count;
4257 *nlocals = le16_to_cpu(
4258 id_ctlr->extended_logical_unit_count);
4264 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4266 struct bmic_identify_physical_device *id_phys;
4267 bool is_spare = false;
4270 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4274 rc = hpsa_bmic_id_physical_device(h,
4276 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4277 id_phys, sizeof(*id_phys));
4279 is_spare = (id_phys->more_flags >> 6) & 0x01;
4285 #define RPL_DEV_FLAG_NON_DISK 0x1
4286 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4287 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4289 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4291 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4292 struct ext_report_lun_entry *rle)
4297 if (!MASKED_DEVICE(lunaddrbytes))
4300 device_flags = rle->device_flags;
4301 device_type = rle->device_type;
4303 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4304 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4309 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4312 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4316 * Spares may be spun down, we do not want to
4317 * do an Inquiry to a RAID set spare drive as
4318 * that would have them spun up, that is a
4319 * performance hit because I/O to the RAID device
4320 * stops while the spin up occurs which can take
4323 if (hpsa_is_disk_spare(h, lunaddrbytes))
4329 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4331 /* the idea here is we could get notified
4332 * that some devices have changed, so we do a report
4333 * physical luns and report logical luns cmd, and adjust
4334 * our list of devices accordingly.
4336 * The scsi3addr's of devices won't change so long as the
4337 * adapter is not reset. That means we can rescan and
4338 * tell which devices we already know about, vs. new
4339 * devices, vs. disappearing devices.
4341 struct ReportExtendedLUNdata *physdev_list = NULL;
4342 struct ReportLUNdata *logdev_list = NULL;
4343 struct bmic_identify_physical_device *id_phys = NULL;
4344 struct bmic_identify_controller *id_ctlr = NULL;
4347 u32 nlocal_logicals = 0;
4348 u32 ndev_allocated = 0;
4349 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4351 int i, ndevs_to_allocate;
4352 int raid_ctlr_position;
4353 bool physical_device;
4354 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4356 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4357 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4358 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4359 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4360 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4361 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4363 if (!currentsd || !physdev_list || !logdev_list ||
4364 !tmpdevice || !id_phys || !id_ctlr) {
4365 dev_err(&h->pdev->dev, "out of memory\n");
4368 memset(lunzerobits, 0, sizeof(lunzerobits));
4370 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4372 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4373 logdev_list, &nlogicals)) {
4374 h->drv_req_rescan = 1;
4378 /* Set number of local logicals (non PTRAID) */
4379 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4380 dev_warn(&h->pdev->dev,
4381 "%s: Can't determine number of local logical devices.\n",
4385 /* We might see up to the maximum number of logical and physical disks
4386 * plus external target devices, and a device for the local RAID
4389 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4391 hpsa_ext_ctrl_present(h, physdev_list);
4393 /* Allocate the per device structures */
4394 for (i = 0; i < ndevs_to_allocate; i++) {
4395 if (i >= HPSA_MAX_DEVICES) {
4396 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4397 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4398 ndevs_to_allocate - HPSA_MAX_DEVICES);
4402 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4403 if (!currentsd[i]) {
4404 h->drv_req_rescan = 1;
4410 if (is_scsi_rev_5(h))
4411 raid_ctlr_position = 0;
4413 raid_ctlr_position = nphysicals + nlogicals;
4415 /* adjust our table of devices */
4416 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4417 u8 *lunaddrbytes, is_OBDR = 0;
4419 int phys_dev_index = i - (raid_ctlr_position == 0);
4420 bool skip_device = false;
4422 memset(tmpdevice, 0, sizeof(*tmpdevice));
4424 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4426 /* Figure out where the LUN ID info is coming from */
4427 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4428 i, nphysicals, nlogicals, physdev_list, logdev_list);
4430 /* Determine if this is a lun from an external target array */
4431 tmpdevice->external =
4432 figure_external_status(h, raid_ctlr_position, i,
4433 nphysicals, nlocal_logicals);
4436 * Skip over some devices such as a spare.
4438 if (phys_dev_index >= 0 && !tmpdevice->external &&
4440 skip_device = hpsa_skip_device(h, lunaddrbytes,
4441 &physdev_list->LUN[phys_dev_index]);
4446 /* Get device type, vendor, model, device id, raid_map */
4447 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4449 if (rc == -ENOMEM) {
4450 dev_warn(&h->pdev->dev,
4451 "Out of memory, rescan deferred.\n");
4452 h->drv_req_rescan = 1;
4456 h->drv_req_rescan = 1;
4460 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4461 this_device = currentsd[ncurrent];
4463 *this_device = *tmpdevice;
4464 this_device->physical_device = physical_device;
4467 * Expose all devices except for physical devices that
4470 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4471 this_device->expose_device = 0;
4473 this_device->expose_device = 1;
4477 * Get the SAS address for physical devices that are exposed.
4479 if (this_device->physical_device && this_device->expose_device)
4480 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4482 switch (this_device->devtype) {
4484 /* We don't *really* support actual CD-ROM devices,
4485 * just "One Button Disaster Recovery" tape drive
4486 * which temporarily pretends to be a CD-ROM drive.
4487 * So we check that the device is really an OBDR tape
4488 * device by checking for "$DR-10" in bytes 43-48 of
4496 if (this_device->physical_device) {
4497 /* The disk is in HBA mode. */
4498 /* Never use RAID mapper in HBA mode. */
4499 this_device->offload_enabled = 0;
4500 hpsa_get_ioaccel_drive_info(h, this_device,
4501 physdev_list, phys_dev_index, id_phys);
4502 hpsa_get_path_info(this_device,
4503 physdev_list, phys_dev_index, id_phys);
4508 case TYPE_MEDIUM_CHANGER:
4511 case TYPE_ENCLOSURE:
4512 if (!this_device->external)
4513 hpsa_get_enclosure_info(h, lunaddrbytes,
4514 physdev_list, phys_dev_index,
4519 /* Only present the Smartarray HBA as a RAID controller.
4520 * If it's a RAID controller other than the HBA itself
4521 * (an external RAID controller, MSA500 or similar)
4524 if (!is_hba_lunid(lunaddrbytes))
4531 if (ncurrent >= HPSA_MAX_DEVICES)
4535 if (h->sas_host == NULL) {
4538 rc = hpsa_add_sas_host(h);
4540 dev_warn(&h->pdev->dev,
4541 "Could not add sas host %d\n", rc);
4546 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4549 for (i = 0; i < ndev_allocated; i++)
4550 kfree(currentsd[i]);
4552 kfree(physdev_list);
4558 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4559 struct scatterlist *sg)
4561 u64 addr64 = (u64) sg_dma_address(sg);
4562 unsigned int len = sg_dma_len(sg);
4564 desc->Addr = cpu_to_le64(addr64);
4565 desc->Len = cpu_to_le32(len);
4570 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4571 * dma mapping and fills in the scatter gather entries of the
4574 static int hpsa_scatter_gather(struct ctlr_info *h,
4575 struct CommandList *cp,
4576 struct scsi_cmnd *cmd)
4578 struct scatterlist *sg;
4579 int use_sg, i, sg_limit, chained;
4580 struct SGDescriptor *curr_sg;
4582 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4584 use_sg = scsi_dma_map(cmd);
4589 goto sglist_finished;
4592 * If the number of entries is greater than the max for a single list,
4593 * then we have a chained list; we will set up all but one entry in the
4594 * first list (the last entry is saved for link information);
4595 * otherwise, we don't have a chained list and we'll set up at each of
4596 * the entries in the one list.
4599 chained = use_sg > h->max_cmd_sg_entries;
4600 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4601 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4602 hpsa_set_sg_descriptor(curr_sg, sg);
4608 * Continue with the chained list. Set curr_sg to the chained
4609 * list. Modify the limit to the total count less the entries
4610 * we've already set up. Resume the scan at the list entry
4611 * where the previous loop left off.
4613 curr_sg = h->cmd_sg_list[cp->cmdindex];
4614 sg_limit = use_sg - sg_limit;
4615 for_each_sg(sg, sg, sg_limit, i) {
4616 hpsa_set_sg_descriptor(curr_sg, sg);
4621 /* Back the pointer up to the last entry and mark it as "last". */
4622 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4624 if (use_sg + chained > h->maxSG)
4625 h->maxSG = use_sg + chained;
4628 cp->Header.SGList = h->max_cmd_sg_entries;
4629 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4630 if (hpsa_map_sg_chain_block(h, cp)) {
4631 scsi_dma_unmap(cmd);
4639 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4640 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4644 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4645 u8 *cdb, int cdb_len,
4648 dev_warn(&h->pdev->dev,
4649 "%s: Blocking zero-length request: CDB:%*phN\n",
4650 func, cdb_len, cdb);
4653 #define IO_ACCEL_INELIGIBLE 1
4654 /* zero-length transfers trigger hardware errors. */
4655 static bool is_zero_length_transfer(u8 *cdb)
4659 /* Block zero-length transfer sizes on certain commands. */
4663 case VERIFY: /* 0x2F */
4664 case WRITE_VERIFY: /* 0x2E */
4665 block_cnt = get_unaligned_be16(&cdb[7]);
4669 case VERIFY_12: /* 0xAF */
4670 case WRITE_VERIFY_12: /* 0xAE */
4671 block_cnt = get_unaligned_be32(&cdb[6]);
4675 case VERIFY_16: /* 0x8F */
4676 block_cnt = get_unaligned_be32(&cdb[10]);
4682 return block_cnt == 0;
4685 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4691 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4699 if (*cdb_len == 6) {
4700 block = (((cdb[1] & 0x1F) << 16) |
4707 BUG_ON(*cdb_len != 12);
4708 block = get_unaligned_be32(&cdb[2]);
4709 block_cnt = get_unaligned_be32(&cdb[6]);
4711 if (block_cnt > 0xffff)
4712 return IO_ACCEL_INELIGIBLE;
4714 cdb[0] = is_write ? WRITE_10 : READ_10;
4716 cdb[2] = (u8) (block >> 24);
4717 cdb[3] = (u8) (block >> 16);
4718 cdb[4] = (u8) (block >> 8);
4719 cdb[5] = (u8) (block);
4721 cdb[7] = (u8) (block_cnt >> 8);
4722 cdb[8] = (u8) (block_cnt);
4730 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4731 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4732 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4734 struct scsi_cmnd *cmd = c->scsi_cmd;
4735 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4737 unsigned int total_len = 0;
4738 struct scatterlist *sg;
4741 struct SGDescriptor *curr_sg;
4742 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4744 /* TODO: implement chaining support */
4745 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4746 atomic_dec(&phys_disk->ioaccel_cmds_out);
4747 return IO_ACCEL_INELIGIBLE;
4750 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4752 if (is_zero_length_transfer(cdb)) {
4753 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4754 atomic_dec(&phys_disk->ioaccel_cmds_out);
4755 return IO_ACCEL_INELIGIBLE;
4758 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4759 atomic_dec(&phys_disk->ioaccel_cmds_out);
4760 return IO_ACCEL_INELIGIBLE;
4763 c->cmd_type = CMD_IOACCEL1;
4765 /* Adjust the DMA address to point to the accelerated command buffer */
4766 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4767 (c->cmdindex * sizeof(*cp));
4768 BUG_ON(c->busaddr & 0x0000007F);
4770 use_sg = scsi_dma_map(cmd);
4772 atomic_dec(&phys_disk->ioaccel_cmds_out);
4778 scsi_for_each_sg(cmd, sg, use_sg, i) {
4779 addr64 = (u64) sg_dma_address(sg);
4780 len = sg_dma_len(sg);
4782 curr_sg->Addr = cpu_to_le64(addr64);
4783 curr_sg->Len = cpu_to_le32(len);
4784 curr_sg->Ext = cpu_to_le32(0);
4787 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4789 switch (cmd->sc_data_direction) {
4791 control |= IOACCEL1_CONTROL_DATA_OUT;
4793 case DMA_FROM_DEVICE:
4794 control |= IOACCEL1_CONTROL_DATA_IN;
4797 control |= IOACCEL1_CONTROL_NODATAXFER;
4800 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4801 cmd->sc_data_direction);
4806 control |= IOACCEL1_CONTROL_NODATAXFER;
4809 c->Header.SGList = use_sg;
4810 /* Fill out the command structure to submit */
4811 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4812 cp->transfer_len = cpu_to_le32(total_len);
4813 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4814 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4815 cp->control = cpu_to_le32(control);
4816 memcpy(cp->CDB, cdb, cdb_len);
4817 memcpy(cp->CISS_LUN, scsi3addr, 8);
4818 /* Tag was already set at init time. */
4819 enqueue_cmd_and_start_io(h, c);
4824 * Queue a command directly to a device behind the controller using the
4825 * I/O accelerator path.
4827 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4828 struct CommandList *c)
4830 struct scsi_cmnd *cmd = c->scsi_cmd;
4831 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4841 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4842 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4846 * Set encryption parameters for the ioaccel2 request
4848 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4849 struct CommandList *c, struct io_accel2_cmd *cp)
4851 struct scsi_cmnd *cmd = c->scsi_cmd;
4852 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4853 struct raid_map_data *map = &dev->raid_map;
4856 /* Are we doing encryption on this device */
4857 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4859 /* Set the data encryption key index. */
4860 cp->dekindex = map->dekindex;
4862 /* Set the encryption enable flag, encoded into direction field. */
4863 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4865 /* Set encryption tweak values based on logical block address
4866 * If block size is 512, tweak value is LBA.
4867 * For other block sizes, tweak is (LBA * block size)/ 512)
4869 switch (cmd->cmnd[0]) {
4870 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4873 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4874 (cmd->cmnd[2] << 8) |
4879 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4882 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4886 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4889 dev_err(&h->pdev->dev,
4890 "ERROR: %s: size (0x%x) not supported for encryption\n",
4891 __func__, cmd->cmnd[0]);
4896 if (le32_to_cpu(map->volume_blk_size) != 512)
4897 first_block = first_block *
4898 le32_to_cpu(map->volume_blk_size)/512;
4900 cp->tweak_lower = cpu_to_le32(first_block);
4901 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4904 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4905 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4906 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4908 struct scsi_cmnd *cmd = c->scsi_cmd;
4909 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4910 struct ioaccel2_sg_element *curr_sg;
4912 struct scatterlist *sg;
4920 if (!cmd->device->hostdata)
4923 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4925 if (is_zero_length_transfer(cdb)) {
4926 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4927 atomic_dec(&phys_disk->ioaccel_cmds_out);
4928 return IO_ACCEL_INELIGIBLE;
4931 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4932 atomic_dec(&phys_disk->ioaccel_cmds_out);
4933 return IO_ACCEL_INELIGIBLE;
4936 c->cmd_type = CMD_IOACCEL2;
4937 /* Adjust the DMA address to point to the accelerated command buffer */
4938 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4939 (c->cmdindex * sizeof(*cp));
4940 BUG_ON(c->busaddr & 0x0000007F);
4942 memset(cp, 0, sizeof(*cp));
4943 cp->IU_type = IOACCEL2_IU_TYPE;
4945 use_sg = scsi_dma_map(cmd);
4947 atomic_dec(&phys_disk->ioaccel_cmds_out);
4953 if (use_sg > h->ioaccel_maxsg) {
4954 addr64 = le64_to_cpu(
4955 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4956 curr_sg->address = cpu_to_le64(addr64);
4957 curr_sg->length = 0;
4958 curr_sg->reserved[0] = 0;
4959 curr_sg->reserved[1] = 0;
4960 curr_sg->reserved[2] = 0;
4961 curr_sg->chain_indicator = IOACCEL2_CHAIN;
4963 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4965 scsi_for_each_sg(cmd, sg, use_sg, i) {
4966 addr64 = (u64) sg_dma_address(sg);
4967 len = sg_dma_len(sg);
4969 curr_sg->address = cpu_to_le64(addr64);
4970 curr_sg->length = cpu_to_le32(len);
4971 curr_sg->reserved[0] = 0;
4972 curr_sg->reserved[1] = 0;
4973 curr_sg->reserved[2] = 0;
4974 curr_sg->chain_indicator = 0;
4979 * Set the last s/g element bit
4981 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4983 switch (cmd->sc_data_direction) {
4985 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4986 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4988 case DMA_FROM_DEVICE:
4989 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4990 cp->direction |= IOACCEL2_DIR_DATA_IN;
4993 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4994 cp->direction |= IOACCEL2_DIR_NO_DATA;
4997 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4998 cmd->sc_data_direction);
5003 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5004 cp->direction |= IOACCEL2_DIR_NO_DATA;
5007 /* Set encryption parameters, if necessary */
5008 set_encrypt_ioaccel2(h, c, cp);
5010 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5011 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5012 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5014 cp->data_len = cpu_to_le32(total_len);
5015 cp->err_ptr = cpu_to_le64(c->busaddr +
5016 offsetof(struct io_accel2_cmd, error_data));
5017 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5019 /* fill in sg elements */
5020 if (use_sg > h->ioaccel_maxsg) {
5022 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5023 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5024 atomic_dec(&phys_disk->ioaccel_cmds_out);
5025 scsi_dma_unmap(cmd);
5029 cp->sg_count = (u8) use_sg;
5031 if (phys_disk->in_reset) {
5032 cmd->result = DID_RESET << 16;
5036 enqueue_cmd_and_start_io(h, c);
5041 * Queue a command to the correct I/O accelerator path.
5043 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5044 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5045 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5047 if (!c->scsi_cmd->device)
5050 if (!c->scsi_cmd->device->hostdata)
5053 if (phys_disk->in_reset)
5056 /* Try to honor the device's queue depth */
5057 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5058 phys_disk->queue_depth) {
5059 atomic_dec(&phys_disk->ioaccel_cmds_out);
5060 return IO_ACCEL_INELIGIBLE;
5062 if (h->transMethod & CFGTBL_Trans_io_accel1)
5063 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5064 cdb, cdb_len, scsi3addr,
5067 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5068 cdb, cdb_len, scsi3addr,
5072 static void raid_map_helper(struct raid_map_data *map,
5073 int offload_to_mirror, u32 *map_index, u32 *current_group)
5075 if (offload_to_mirror == 0) {
5076 /* use physical disk in the first mirrored group. */
5077 *map_index %= le16_to_cpu(map->data_disks_per_row);
5081 /* determine mirror group that *map_index indicates */
5082 *current_group = *map_index /
5083 le16_to_cpu(map->data_disks_per_row);
5084 if (offload_to_mirror == *current_group)
5086 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5087 /* select map index from next group */
5088 *map_index += le16_to_cpu(map->data_disks_per_row);
5091 /* select map index from first group */
5092 *map_index %= le16_to_cpu(map->data_disks_per_row);
5095 } while (offload_to_mirror != *current_group);
5099 * Attempt to perform offload RAID mapping for a logical volume I/O.
5101 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5102 struct CommandList *c)
5104 struct scsi_cmnd *cmd = c->scsi_cmd;
5105 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5106 struct raid_map_data *map = &dev->raid_map;
5107 struct raid_map_disk_data *dd = &map->data[0];
5110 u64 first_block, last_block;
5113 u64 first_row, last_row;
5114 u32 first_row_offset, last_row_offset;
5115 u32 first_column, last_column;
5116 u64 r0_first_row, r0_last_row;
5117 u32 r5or6_blocks_per_row;
5118 u64 r5or6_first_row, r5or6_last_row;
5119 u32 r5or6_first_row_offset, r5or6_last_row_offset;
5120 u32 r5or6_first_column, r5or6_last_column;
5121 u32 total_disks_per_row;
5123 u32 first_group, last_group, current_group;
5131 #if BITS_PER_LONG == 32
5134 int offload_to_mirror;
5142 /* check for valid opcode, get LBA and block count */
5143 switch (cmd->cmnd[0]) {
5148 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5149 (cmd->cmnd[2] << 8) |
5151 block_cnt = cmd->cmnd[4];
5160 (((u64) cmd->cmnd[2]) << 24) |
5161 (((u64) cmd->cmnd[3]) << 16) |
5162 (((u64) cmd->cmnd[4]) << 8) |
5165 (((u32) cmd->cmnd[7]) << 8) |
5173 (((u64) cmd->cmnd[2]) << 24) |
5174 (((u64) cmd->cmnd[3]) << 16) |
5175 (((u64) cmd->cmnd[4]) << 8) |
5178 (((u32) cmd->cmnd[6]) << 24) |
5179 (((u32) cmd->cmnd[7]) << 16) |
5180 (((u32) cmd->cmnd[8]) << 8) |
5188 (((u64) cmd->cmnd[2]) << 56) |
5189 (((u64) cmd->cmnd[3]) << 48) |
5190 (((u64) cmd->cmnd[4]) << 40) |
5191 (((u64) cmd->cmnd[5]) << 32) |
5192 (((u64) cmd->cmnd[6]) << 24) |
5193 (((u64) cmd->cmnd[7]) << 16) |
5194 (((u64) cmd->cmnd[8]) << 8) |
5197 (((u32) cmd->cmnd[10]) << 24) |
5198 (((u32) cmd->cmnd[11]) << 16) |
5199 (((u32) cmd->cmnd[12]) << 8) |
5203 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5205 last_block = first_block + block_cnt - 1;
5207 /* check for write to non-RAID-0 */
5208 if (is_write && dev->raid_level != 0)
5209 return IO_ACCEL_INELIGIBLE;
5211 /* check for invalid block or wraparound */
5212 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5213 last_block < first_block)
5214 return IO_ACCEL_INELIGIBLE;
5216 /* calculate stripe information for the request */
5217 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5218 le16_to_cpu(map->strip_size);
5219 strip_size = le16_to_cpu(map->strip_size);
5220 #if BITS_PER_LONG == 32
5221 tmpdiv = first_block;
5222 (void) do_div(tmpdiv, blocks_per_row);
5224 tmpdiv = last_block;
5225 (void) do_div(tmpdiv, blocks_per_row);
5227 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5228 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5229 tmpdiv = first_row_offset;
5230 (void) do_div(tmpdiv, strip_size);
5231 first_column = tmpdiv;
5232 tmpdiv = last_row_offset;
5233 (void) do_div(tmpdiv, strip_size);
5234 last_column = tmpdiv;
5236 first_row = first_block / blocks_per_row;
5237 last_row = last_block / blocks_per_row;
5238 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5239 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5240 first_column = first_row_offset / strip_size;
5241 last_column = last_row_offset / strip_size;
5244 /* if this isn't a single row/column then give to the controller */
5245 if ((first_row != last_row) || (first_column != last_column))
5246 return IO_ACCEL_INELIGIBLE;
5248 /* proceeding with driver mapping */
5249 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5250 le16_to_cpu(map->metadata_disks_per_row);
5251 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5252 le16_to_cpu(map->row_cnt);
5253 map_index = (map_row * total_disks_per_row) + first_column;
5255 switch (dev->raid_level) {
5257 break; /* nothing special to do */
5259 /* Handles load balance across RAID 1 members.
5260 * (2-drive R1 and R10 with even # of drives.)
5261 * Appropriate for SSDs, not optimal for HDDs
5262 * Ensure we have the correct raid_map.
5264 if (le16_to_cpu(map->layout_map_count) != 2) {
5265 hpsa_turn_off_ioaccel_for_device(dev);
5266 return IO_ACCEL_INELIGIBLE;
5268 if (dev->offload_to_mirror)
5269 map_index += le16_to_cpu(map->data_disks_per_row);
5270 dev->offload_to_mirror = !dev->offload_to_mirror;
5273 /* Handles N-way mirrors (R1-ADM)
5274 * and R10 with # of drives divisible by 3.)
5275 * Ensure we have the correct raid_map.
5277 if (le16_to_cpu(map->layout_map_count) != 3) {
5278 hpsa_turn_off_ioaccel_for_device(dev);
5279 return IO_ACCEL_INELIGIBLE;
5282 offload_to_mirror = dev->offload_to_mirror;
5283 raid_map_helper(map, offload_to_mirror,
5284 &map_index, ¤t_group);
5285 /* set mirror group to use next time */
5287 (offload_to_mirror >=
5288 le16_to_cpu(map->layout_map_count) - 1)
5289 ? 0 : offload_to_mirror + 1;
5290 dev->offload_to_mirror = offload_to_mirror;
5291 /* Avoid direct use of dev->offload_to_mirror within this
5292 * function since multiple threads might simultaneously
5293 * increment it beyond the range of dev->layout_map_count -1.
5298 if (le16_to_cpu(map->layout_map_count) <= 1)
5301 /* Verify first and last block are in same RAID group */
5302 r5or6_blocks_per_row =
5303 le16_to_cpu(map->strip_size) *
5304 le16_to_cpu(map->data_disks_per_row);
5305 if (r5or6_blocks_per_row == 0) {
5306 hpsa_turn_off_ioaccel_for_device(dev);
5307 return IO_ACCEL_INELIGIBLE;
5309 stripesize = r5or6_blocks_per_row *
5310 le16_to_cpu(map->layout_map_count);
5311 #if BITS_PER_LONG == 32
5312 tmpdiv = first_block;
5313 first_group = do_div(tmpdiv, stripesize);
5314 tmpdiv = first_group;
5315 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5316 first_group = tmpdiv;
5317 tmpdiv = last_block;
5318 last_group = do_div(tmpdiv, stripesize);
5319 tmpdiv = last_group;
5320 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5321 last_group = tmpdiv;
5323 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5324 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5326 if (first_group != last_group)
5327 return IO_ACCEL_INELIGIBLE;
5329 /* Verify request is in a single row of RAID 5/6 */
5330 #if BITS_PER_LONG == 32
5331 tmpdiv = first_block;
5332 (void) do_div(tmpdiv, stripesize);
5333 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5334 tmpdiv = last_block;
5335 (void) do_div(tmpdiv, stripesize);
5336 r5or6_last_row = r0_last_row = tmpdiv;
5338 first_row = r5or6_first_row = r0_first_row =
5339 first_block / stripesize;
5340 r5or6_last_row = r0_last_row = last_block / stripesize;
5342 if (r5or6_first_row != r5or6_last_row)
5343 return IO_ACCEL_INELIGIBLE;
5346 /* Verify request is in a single column */
5347 #if BITS_PER_LONG == 32
5348 tmpdiv = first_block;
5349 first_row_offset = do_div(tmpdiv, stripesize);
5350 tmpdiv = first_row_offset;
5351 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5352 r5or6_first_row_offset = first_row_offset;
5353 tmpdiv = last_block;
5354 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5355 tmpdiv = r5or6_last_row_offset;
5356 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5357 tmpdiv = r5or6_first_row_offset;
5358 (void) do_div(tmpdiv, map->strip_size);
5359 first_column = r5or6_first_column = tmpdiv;
5360 tmpdiv = r5or6_last_row_offset;
5361 (void) do_div(tmpdiv, map->strip_size);
5362 r5or6_last_column = tmpdiv;
5364 first_row_offset = r5or6_first_row_offset =
5365 (u32)((first_block % stripesize) %
5366 r5or6_blocks_per_row);
5368 r5or6_last_row_offset =
5369 (u32)((last_block % stripesize) %
5370 r5or6_blocks_per_row);
5372 first_column = r5or6_first_column =
5373 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5375 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5377 if (r5or6_first_column != r5or6_last_column)
5378 return IO_ACCEL_INELIGIBLE;
5380 /* Request is eligible */
5381 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5382 le16_to_cpu(map->row_cnt);
5384 map_index = (first_group *
5385 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5386 (map_row * total_disks_per_row) + first_column;
5389 return IO_ACCEL_INELIGIBLE;
5392 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5393 return IO_ACCEL_INELIGIBLE;
5395 c->phys_disk = dev->phys_disk[map_index];
5397 return IO_ACCEL_INELIGIBLE;
5399 disk_handle = dd[map_index].ioaccel_handle;
5400 disk_block = le64_to_cpu(map->disk_starting_blk) +
5401 first_row * le16_to_cpu(map->strip_size) +
5402 (first_row_offset - first_column *
5403 le16_to_cpu(map->strip_size));
5404 disk_block_cnt = block_cnt;
5406 /* handle differing logical/physical block sizes */
5407 if (map->phys_blk_shift) {
5408 disk_block <<= map->phys_blk_shift;
5409 disk_block_cnt <<= map->phys_blk_shift;
5411 BUG_ON(disk_block_cnt > 0xffff);
5413 /* build the new CDB for the physical disk I/O */
5414 if (disk_block > 0xffffffff) {
5415 cdb[0] = is_write ? WRITE_16 : READ_16;
5417 cdb[2] = (u8) (disk_block >> 56);
5418 cdb[3] = (u8) (disk_block >> 48);
5419 cdb[4] = (u8) (disk_block >> 40);
5420 cdb[5] = (u8) (disk_block >> 32);
5421 cdb[6] = (u8) (disk_block >> 24);
5422 cdb[7] = (u8) (disk_block >> 16);
5423 cdb[8] = (u8) (disk_block >> 8);
5424 cdb[9] = (u8) (disk_block);
5425 cdb[10] = (u8) (disk_block_cnt >> 24);
5426 cdb[11] = (u8) (disk_block_cnt >> 16);
5427 cdb[12] = (u8) (disk_block_cnt >> 8);
5428 cdb[13] = (u8) (disk_block_cnt);
5433 cdb[0] = is_write ? WRITE_10 : READ_10;
5435 cdb[2] = (u8) (disk_block >> 24);
5436 cdb[3] = (u8) (disk_block >> 16);
5437 cdb[4] = (u8) (disk_block >> 8);
5438 cdb[5] = (u8) (disk_block);
5440 cdb[7] = (u8) (disk_block_cnt >> 8);
5441 cdb[8] = (u8) (disk_block_cnt);
5445 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5447 dev->phys_disk[map_index]);
5451 * Submit commands down the "normal" RAID stack path
5452 * All callers to hpsa_ciss_submit must check lockup_detected
5453 * beforehand, before (opt.) and after calling cmd_alloc
5455 static int hpsa_ciss_submit(struct ctlr_info *h,
5456 struct CommandList *c, struct scsi_cmnd *cmd,
5457 struct hpsa_scsi_dev_t *dev)
5459 cmd->host_scribble = (unsigned char *) c;
5460 c->cmd_type = CMD_SCSI;
5462 c->Header.ReplyQueue = 0; /* unused in simple mode */
5463 memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5464 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5466 /* Fill in the request block... */
5468 c->Request.Timeout = 0;
5469 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5470 c->Request.CDBLen = cmd->cmd_len;
5471 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5472 switch (cmd->sc_data_direction) {
5474 c->Request.type_attr_dir =
5475 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5477 case DMA_FROM_DEVICE:
5478 c->Request.type_attr_dir =
5479 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5482 c->Request.type_attr_dir =
5483 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5485 case DMA_BIDIRECTIONAL:
5486 /* This can happen if a buggy application does a scsi passthru
5487 * and sets both inlen and outlen to non-zero. ( see
5488 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5491 c->Request.type_attr_dir =
5492 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5493 /* This is technically wrong, and hpsa controllers should
5494 * reject it with CMD_INVALID, which is the most correct
5495 * response, but non-fibre backends appear to let it
5496 * slide by, and give the same results as if this field
5497 * were set correctly. Either way is acceptable for
5498 * our purposes here.
5504 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5505 cmd->sc_data_direction);
5510 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5511 hpsa_cmd_resolve_and_free(h, c);
5512 return SCSI_MLQUEUE_HOST_BUSY;
5515 if (dev->in_reset) {
5516 hpsa_cmd_resolve_and_free(h, c);
5517 return SCSI_MLQUEUE_HOST_BUSY;
5522 enqueue_cmd_and_start_io(h, c);
5523 /* the cmd'll come back via intr handler in complete_scsi_command() */
5527 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5528 struct CommandList *c)
5530 dma_addr_t cmd_dma_handle, err_dma_handle;
5532 /* Zero out all of commandlist except the last field, refcount */
5533 memset(c, 0, offsetof(struct CommandList, refcount));
5534 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5535 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5536 c->err_info = h->errinfo_pool + index;
5537 memset(c->err_info, 0, sizeof(*c->err_info));
5538 err_dma_handle = h->errinfo_pool_dhandle
5539 + index * sizeof(*c->err_info);
5540 c->cmdindex = index;
5541 c->busaddr = (u32) cmd_dma_handle;
5542 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5543 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5545 c->scsi_cmd = SCSI_CMD_IDLE;
5548 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5552 for (i = 0; i < h->nr_cmds; i++) {
5553 struct CommandList *c = h->cmd_pool + i;
5555 hpsa_cmd_init(h, i, c);
5556 atomic_set(&c->refcount, 0);
5560 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5561 struct CommandList *c)
5563 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5565 BUG_ON(c->cmdindex != index);
5567 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5568 memset(c->err_info, 0, sizeof(*c->err_info));
5569 c->busaddr = (u32) cmd_dma_handle;
5572 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5573 struct CommandList *c, struct scsi_cmnd *cmd,
5576 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5577 int rc = IO_ACCEL_INELIGIBLE;
5580 return SCSI_MLQUEUE_HOST_BUSY;
5583 return SCSI_MLQUEUE_HOST_BUSY;
5585 if (hpsa_simple_mode)
5586 return IO_ACCEL_INELIGIBLE;
5588 cmd->host_scribble = (unsigned char *) c;
5590 if (dev->offload_enabled) {
5591 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5592 c->cmd_type = CMD_SCSI;
5595 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5596 c->retry_pending = true;
5597 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5598 if (rc < 0) /* scsi_dma_map failed. */
5599 rc = SCSI_MLQUEUE_HOST_BUSY;
5600 } else if (dev->hba_ioaccel_enabled) {
5601 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5602 c->cmd_type = CMD_SCSI;
5605 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5606 c->retry_pending = true;
5607 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5608 if (rc < 0) /* scsi_dma_map failed. */
5609 rc = SCSI_MLQUEUE_HOST_BUSY;
5614 static void hpsa_command_resubmit_worker(struct work_struct *work)
5616 struct scsi_cmnd *cmd;
5617 struct hpsa_scsi_dev_t *dev;
5618 struct CommandList *c = container_of(work, struct CommandList, work);
5621 dev = cmd->device->hostdata;
5623 cmd->result = DID_NO_CONNECT << 16;
5624 return hpsa_cmd_free_and_done(c->h, c, cmd);
5627 if (dev->in_reset) {
5628 cmd->result = DID_RESET << 16;
5629 return hpsa_cmd_free_and_done(c->h, c, cmd);
5632 if (c->cmd_type == CMD_IOACCEL2) {
5633 struct ctlr_info *h = c->h;
5634 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5637 if (c2->error_data.serv_response ==
5638 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5639 /* Resubmit with the retry_pending flag set. */
5640 rc = hpsa_ioaccel_submit(h, c, cmd, true);
5643 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5645 * If we get here, it means dma mapping failed.
5646 * Try again via scsi mid layer, which will
5647 * then get SCSI_MLQUEUE_HOST_BUSY.
5649 cmd->result = DID_IMM_RETRY << 16;
5650 return hpsa_cmd_free_and_done(h, c, cmd);
5652 /* else, fall thru and resubmit down CISS path */
5655 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5657 * Here we have not come in though queue_command, so we
5658 * can set the retry_pending flag to true for a driver initiated
5659 * retry attempt (I.E. not a SML retry).
5660 * I.E. We are submitting a driver initiated retry.
5661 * Note: hpsa_ciss_submit does not zero out the command fields like
5662 * ioaccel submit does.
5664 c->retry_pending = true;
5665 if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5667 * If we get here, it means dma mapping failed. Try
5668 * again via scsi mid layer, which will then get
5669 * SCSI_MLQUEUE_HOST_BUSY.
5671 * hpsa_ciss_submit will have already freed c
5672 * if it encountered a dma mapping failure.
5674 cmd->result = DID_IMM_RETRY << 16;
5675 cmd->scsi_done(cmd);
5679 /* Running in struct Scsi_Host->host_lock less mode */
5680 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5682 struct ctlr_info *h;
5683 struct hpsa_scsi_dev_t *dev;
5684 struct CommandList *c;
5687 /* Get the ptr to our adapter structure out of cmd->host. */
5688 h = sdev_to_hba(cmd->device);
5690 BUG_ON(cmd->request->tag < 0);
5692 dev = cmd->device->hostdata;
5694 cmd->result = DID_NO_CONNECT << 16;
5695 cmd->scsi_done(cmd);
5700 cmd->result = DID_NO_CONNECT << 16;
5701 cmd->scsi_done(cmd);
5705 if (unlikely(lockup_detected(h))) {
5706 cmd->result = DID_NO_CONNECT << 16;
5707 cmd->scsi_done(cmd);
5712 return SCSI_MLQUEUE_DEVICE_BUSY;
5714 c = cmd_tagged_alloc(h, cmd);
5716 return SCSI_MLQUEUE_DEVICE_BUSY;
5719 * This is necessary because the SML doesn't zero out this field during
5725 * Call alternate submit routine for I/O accelerated commands.
5726 * Retries always go down the normal I/O path.
5727 * Note: If cmd->retries is non-zero, then this is a SML
5728 * initiated retry and not a driver initiated retry.
5729 * This command has been obtained from cmd_tagged_alloc
5730 * and is therefore a brand-new command.
5732 if (likely(cmd->retries == 0 &&
5733 !blk_rq_is_passthrough(cmd->request) &&
5734 h->acciopath_status)) {
5735 /* Submit with the retry_pending flag unset. */
5736 rc = hpsa_ioaccel_submit(h, c, cmd, false);
5739 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5740 hpsa_cmd_resolve_and_free(h, c);
5741 return SCSI_MLQUEUE_HOST_BUSY;
5744 return hpsa_ciss_submit(h, c, cmd, dev);
5747 static void hpsa_scan_complete(struct ctlr_info *h)
5749 unsigned long flags;
5751 spin_lock_irqsave(&h->scan_lock, flags);
5752 h->scan_finished = 1;
5753 wake_up(&h->scan_wait_queue);
5754 spin_unlock_irqrestore(&h->scan_lock, flags);
5757 static void hpsa_scan_start(struct Scsi_Host *sh)
5759 struct ctlr_info *h = shost_to_hba(sh);
5760 unsigned long flags;
5763 * Don't let rescans be initiated on a controller known to be locked
5764 * up. If the controller locks up *during* a rescan, that thread is
5765 * probably hosed, but at least we can prevent new rescan threads from
5766 * piling up on a locked up controller.
5768 if (unlikely(lockup_detected(h)))
5769 return hpsa_scan_complete(h);
5772 * If a scan is already waiting to run, no need to add another
5774 spin_lock_irqsave(&h->scan_lock, flags);
5775 if (h->scan_waiting) {
5776 spin_unlock_irqrestore(&h->scan_lock, flags);
5780 spin_unlock_irqrestore(&h->scan_lock, flags);
5782 /* wait until any scan already in progress is finished. */
5784 spin_lock_irqsave(&h->scan_lock, flags);
5785 if (h->scan_finished)
5787 h->scan_waiting = 1;
5788 spin_unlock_irqrestore(&h->scan_lock, flags);
5789 wait_event(h->scan_wait_queue, h->scan_finished);
5790 /* Note: We don't need to worry about a race between this
5791 * thread and driver unload because the midlayer will
5792 * have incremented the reference count, so unload won't
5793 * happen if we're in here.
5796 h->scan_finished = 0; /* mark scan as in progress */
5797 h->scan_waiting = 0;
5798 spin_unlock_irqrestore(&h->scan_lock, flags);
5800 if (unlikely(lockup_detected(h)))
5801 return hpsa_scan_complete(h);
5804 * Do the scan after a reset completion
5806 spin_lock_irqsave(&h->reset_lock, flags);
5807 if (h->reset_in_progress) {
5808 h->drv_req_rescan = 1;
5809 spin_unlock_irqrestore(&h->reset_lock, flags);
5810 hpsa_scan_complete(h);
5813 spin_unlock_irqrestore(&h->reset_lock, flags);
5815 hpsa_update_scsi_devices(h);
5817 hpsa_scan_complete(h);
5820 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5822 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5829 else if (qdepth > logical_drive->queue_depth)
5830 qdepth = logical_drive->queue_depth;
5832 return scsi_change_queue_depth(sdev, qdepth);
5835 static int hpsa_scan_finished(struct Scsi_Host *sh,
5836 unsigned long elapsed_time)
5838 struct ctlr_info *h = shost_to_hba(sh);
5839 unsigned long flags;
5842 spin_lock_irqsave(&h->scan_lock, flags);
5843 finished = h->scan_finished;
5844 spin_unlock_irqrestore(&h->scan_lock, flags);
5848 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5850 struct Scsi_Host *sh;
5852 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5854 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5861 sh->max_channel = 3;
5862 sh->max_cmd_len = MAX_COMMAND_SIZE;
5863 sh->max_lun = HPSA_MAX_LUN;
5864 sh->max_id = HPSA_MAX_LUN;
5865 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5866 sh->cmd_per_lun = sh->can_queue;
5867 sh->sg_tablesize = h->maxsgentries;
5868 sh->transportt = hpsa_sas_transport_template;
5869 sh->hostdata[0] = (unsigned long) h;
5870 sh->irq = pci_irq_vector(h->pdev, 0);
5871 sh->unique_id = sh->irq;
5877 static int hpsa_scsi_add_host(struct ctlr_info *h)
5881 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5883 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5886 scsi_scan_host(h->scsi_host);
5891 * The block layer has already gone to the trouble of picking out a unique,
5892 * small-integer tag for this request. We use an offset from that value as
5893 * an index to select our command block. (The offset allows us to reserve the
5894 * low-numbered entries for our own uses.)
5896 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5898 int idx = scmd->request->tag;
5903 /* Offset to leave space for internal cmds. */
5904 return idx += HPSA_NRESERVED_CMDS;
5908 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5909 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5911 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5912 struct CommandList *c, unsigned char lunaddr[],
5917 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5918 (void) fill_cmd(c, TEST_UNIT_READY, h,
5919 NULL, 0, 0, lunaddr, TYPE_CMD);
5920 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5923 /* no unmap needed here because no data xfer. */
5925 /* Check if the unit is already ready. */
5926 if (c->err_info->CommandStatus == CMD_SUCCESS)
5930 * The first command sent after reset will receive "unit attention" to
5931 * indicate that the LUN has been reset...this is actually what we're
5932 * looking for (but, success is good too).
5934 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5935 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5936 (c->err_info->SenseInfo[2] == NO_SENSE ||
5937 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5944 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5945 * returns zero when the unit is ready, and non-zero when giving up.
5947 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5948 struct CommandList *c,
5949 unsigned char lunaddr[], int reply_queue)
5953 int waittime = 1; /* seconds */
5955 /* Send test unit ready until device ready, or give up. */
5956 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5959 * Wait for a bit. do this first, because if we send
5960 * the TUR right away, the reset will just abort it.
5962 msleep(1000 * waittime);
5964 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5968 /* Increase wait time with each try, up to a point. */
5969 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5972 dev_warn(&h->pdev->dev,
5973 "waiting %d secs for device to become ready.\n",
5980 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5981 unsigned char lunaddr[],
5988 struct CommandList *c;
5993 * If no specific reply queue was requested, then send the TUR
5994 * repeatedly, requesting a reply on each reply queue; otherwise execute
5995 * the loop exactly once using only the specified queue.
5997 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5999 last_queue = h->nreply_queues - 1;
6001 first_queue = reply_queue;
6002 last_queue = reply_queue;
6005 for (rq = first_queue; rq <= last_queue; rq++) {
6006 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6012 dev_warn(&h->pdev->dev, "giving up on device.\n");
6014 dev_warn(&h->pdev->dev, "device is ready.\n");
6020 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6021 * complaining. Doing a host- or bus-reset can't do anything good here.
6023 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6027 struct ctlr_info *h;
6028 struct hpsa_scsi_dev_t *dev = NULL;
6031 unsigned long flags;
6033 /* find the controller to which the command to be aborted was sent */
6034 h = sdev_to_hba(scsicmd->device);
6035 if (h == NULL) /* paranoia */
6038 spin_lock_irqsave(&h->reset_lock, flags);
6039 h->reset_in_progress = 1;
6040 spin_unlock_irqrestore(&h->reset_lock, flags);
6042 if (lockup_detected(h)) {
6044 goto return_reset_status;
6047 dev = scsicmd->device->hostdata;
6049 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6051 goto return_reset_status;
6054 if (dev->devtype == TYPE_ENCLOSURE) {
6056 goto return_reset_status;
6059 /* if controller locked up, we can guarantee command won't complete */
6060 if (lockup_detected(h)) {
6061 snprintf(msg, sizeof(msg),
6062 "cmd %d RESET FAILED, lockup detected",
6063 hpsa_get_cmd_index(scsicmd));
6064 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6066 goto return_reset_status;
6069 /* this reset request might be the result of a lockup; check */
6070 if (detect_controller_lockup(h)) {
6071 snprintf(msg, sizeof(msg),
6072 "cmd %d RESET FAILED, new lockup detected",
6073 hpsa_get_cmd_index(scsicmd));
6074 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6076 goto return_reset_status;
6079 /* Do not attempt on controller */
6080 if (is_hba_lunid(dev->scsi3addr)) {
6082 goto return_reset_status;
6085 if (is_logical_dev_addr_mode(dev->scsi3addr))
6086 reset_type = HPSA_DEVICE_RESET_MSG;
6088 reset_type = HPSA_PHYS_TARGET_RESET;
6090 sprintf(msg, "resetting %s",
6091 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6092 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6095 * wait to see if any commands will complete before sending reset
6097 dev->in_reset = true; /* block any new cmds from OS for this device */
6098 for (i = 0; i < 10; i++) {
6099 if (atomic_read(&dev->commands_outstanding) > 0)
6105 /* send a reset to the SCSI LUN which the command was sent to */
6106 rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6112 sprintf(msg, "reset %s %s",
6113 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6114 rc == SUCCESS ? "completed successfully" : "failed");
6115 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6117 return_reset_status:
6118 spin_lock_irqsave(&h->reset_lock, flags);
6119 h->reset_in_progress = 0;
6121 dev->in_reset = false;
6122 spin_unlock_irqrestore(&h->reset_lock, flags);
6127 * For operations with an associated SCSI command, a command block is allocated
6128 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6129 * block request tag as an index into a table of entries. cmd_tagged_free() is
6130 * the complement, although cmd_free() may be called instead.
6131 * This function is only called for new requests from queue_command.
6133 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6134 struct scsi_cmnd *scmd)
6136 int idx = hpsa_get_cmd_index(scmd);
6137 struct CommandList *c = h->cmd_pool + idx;
6139 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6140 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6141 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6142 /* The index value comes from the block layer, so if it's out of
6143 * bounds, it's probably not our bug.
6148 if (unlikely(!hpsa_is_cmd_idle(c))) {
6150 * We expect that the SCSI layer will hand us a unique tag
6151 * value. Thus, there should never be a collision here between
6152 * two requests...because if the selected command isn't idle
6153 * then someone is going to be very disappointed.
6155 if (idx != h->last_collision_tag) { /* Print once per tag */
6156 dev_warn(&h->pdev->dev,
6157 "%s: tag collision (tag=%d)\n", __func__, idx);
6159 scsi_print_command(scmd);
6160 h->last_collision_tag = idx;
6165 atomic_inc(&c->refcount);
6166 hpsa_cmd_partial_init(h, idx, c);
6169 * This is a new command obtained from queue_command so
6170 * there have not been any driver initiated retry attempts.
6172 c->retry_pending = false;
6177 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6180 * Release our reference to the block. We don't need to do anything
6181 * else to free it, because it is accessed by index.
6183 (void)atomic_dec(&c->refcount);
6187 * For operations that cannot sleep, a command block is allocated at init,
6188 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6189 * which ones are free or in use. Lock must be held when calling this.
6190 * cmd_free() is the complement.
6191 * This function never gives up and returns NULL. If it hangs,
6192 * another thread must call cmd_free() to free some tags.
6195 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6197 struct CommandList *c;
6202 * There is some *extremely* small but non-zero chance that that
6203 * multiple threads could get in here, and one thread could
6204 * be scanning through the list of bits looking for a free
6205 * one, but the free ones are always behind him, and other
6206 * threads sneak in behind him and eat them before he can
6207 * get to them, so that while there is always a free one, a
6208 * very unlucky thread might be starved anyway, never able to
6209 * beat the other threads. In reality, this happens so
6210 * infrequently as to be indistinguishable from never.
6212 * Note that we start allocating commands before the SCSI host structure
6213 * is initialized. Since the search starts at bit zero, this
6214 * all works, since we have at least one command structure available;
6215 * however, it means that the structures with the low indexes have to be
6216 * reserved for driver-initiated requests, while requests from the block
6217 * layer will use the higher indexes.
6221 i = find_next_zero_bit(h->cmd_pool_bits,
6222 HPSA_NRESERVED_CMDS,
6224 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6228 c = h->cmd_pool + i;
6229 refcount = atomic_inc_return(&c->refcount);
6230 if (unlikely(refcount > 1)) {
6231 cmd_free(h, c); /* already in use */
6232 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6235 set_bit(i & (BITS_PER_LONG - 1),
6236 h->cmd_pool_bits + (i / BITS_PER_LONG));
6237 break; /* it's ours now. */
6239 hpsa_cmd_partial_init(h, i, c);
6243 * cmd_alloc is for "internal" commands and they are never
6246 c->retry_pending = false;
6252 * This is the complementary operation to cmd_alloc(). Note, however, in some
6253 * corner cases it may also be used to free blocks allocated by
6254 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6255 * the clear-bit is harmless.
6257 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6259 if (atomic_dec_and_test(&c->refcount)) {
6262 i = c - h->cmd_pool;
6263 clear_bit(i & (BITS_PER_LONG - 1),
6264 h->cmd_pool_bits + (i / BITS_PER_LONG));
6268 #ifdef CONFIG_COMPAT
6270 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6273 struct ctlr_info *h = sdev_to_hba(dev);
6274 IOCTL32_Command_struct __user *arg32 = arg;
6275 IOCTL_Command_struct arg64;
6282 memset(&arg64, 0, sizeof(arg64));
6283 if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6285 if (get_user(cp, &arg32->buf))
6287 arg64.buf = compat_ptr(cp);
6289 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6291 err = hpsa_passthru_ioctl(h, &arg64);
6292 atomic_inc(&h->passthru_cmds_avail);
6295 if (copy_to_user(&arg32->error_info, &arg64.error_info,
6296 sizeof(arg32->error_info)))
6301 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6302 unsigned int cmd, void __user *arg)
6304 struct ctlr_info *h = sdev_to_hba(dev);
6305 BIG_IOCTL32_Command_struct __user *arg32 = arg;
6306 BIG_IOCTL_Command_struct arg64;
6312 memset(&arg64, 0, sizeof(arg64));
6313 if (copy_from_user(&arg64, arg32,
6314 offsetof(BIG_IOCTL32_Command_struct, buf)))
6316 if (get_user(cp, &arg32->buf))
6318 arg64.buf = compat_ptr(cp);
6320 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6322 err = hpsa_big_passthru_ioctl(h, &arg64);
6323 atomic_inc(&h->passthru_cmds_avail);
6326 if (copy_to_user(&arg32->error_info, &arg64.error_info,
6327 sizeof(arg32->error_info)))
6332 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6336 case CCISS_GETPCIINFO:
6337 case CCISS_GETINTINFO:
6338 case CCISS_SETINTINFO:
6339 case CCISS_GETNODENAME:
6340 case CCISS_SETNODENAME:
6341 case CCISS_GETHEARTBEAT:
6342 case CCISS_GETBUSTYPES:
6343 case CCISS_GETFIRMVER:
6344 case CCISS_GETDRIVVER:
6345 case CCISS_REVALIDVOLS:
6346 case CCISS_DEREGDISK:
6347 case CCISS_REGNEWDISK:
6349 case CCISS_RESCANDISK:
6350 case CCISS_GETLUNINFO:
6351 return hpsa_ioctl(dev, cmd, arg);
6353 case CCISS_PASSTHRU32:
6354 return hpsa_ioctl32_passthru(dev, cmd, arg);
6355 case CCISS_BIG_PASSTHRU32:
6356 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6359 return -ENOIOCTLCMD;
6364 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6366 struct hpsa_pci_info pciinfo;
6370 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6371 pciinfo.bus = h->pdev->bus->number;
6372 pciinfo.dev_fn = h->pdev->devfn;
6373 pciinfo.board_id = h->board_id;
6374 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6379 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6381 DriverVer_type DriverVer;
6382 unsigned char vmaj, vmin, vsubmin;
6385 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6386 &vmaj, &vmin, &vsubmin);
6388 dev_info(&h->pdev->dev, "driver version string '%s' "
6389 "unrecognized.", HPSA_DRIVER_VERSION);
6394 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6397 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6402 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6403 IOCTL_Command_struct *iocommand)
6405 struct CommandList *c;
6410 if (!capable(CAP_SYS_RAWIO))
6412 if ((iocommand->buf_size < 1) &&
6413 (iocommand->Request.Type.Direction != XFER_NONE)) {
6416 if (iocommand->buf_size > 0) {
6417 buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6420 if (iocommand->Request.Type.Direction & XFER_WRITE) {
6421 /* Copy the data into the buffer we created */
6422 if (copy_from_user(buff, iocommand->buf,
6423 iocommand->buf_size)) {
6428 memset(buff, 0, iocommand->buf_size);
6433 /* Fill in the command type */
6434 c->cmd_type = CMD_IOCTL_PEND;
6435 c->scsi_cmd = SCSI_CMD_BUSY;
6436 /* Fill in Command Header */
6437 c->Header.ReplyQueue = 0; /* unused in simple mode */
6438 if (iocommand->buf_size > 0) { /* buffer to fill */
6439 c->Header.SGList = 1;
6440 c->Header.SGTotal = cpu_to_le16(1);
6441 } else { /* no buffers to fill */
6442 c->Header.SGList = 0;
6443 c->Header.SGTotal = cpu_to_le16(0);
6445 memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6447 /* Fill in Request block */
6448 memcpy(&c->Request, &iocommand->Request,
6449 sizeof(c->Request));
6451 /* Fill in the scatter gather information */
6452 if (iocommand->buf_size > 0) {
6453 temp64 = dma_map_single(&h->pdev->dev, buff,
6454 iocommand->buf_size, DMA_BIDIRECTIONAL);
6455 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6456 c->SG[0].Addr = cpu_to_le64(0);
6457 c->SG[0].Len = cpu_to_le32(0);
6461 c->SG[0].Addr = cpu_to_le64(temp64);
6462 c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6463 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6465 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6467 if (iocommand->buf_size > 0)
6468 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6469 check_ioctl_unit_attention(h, c);
6475 /* Copy the error information out */
6476 memcpy(&iocommand->error_info, c->err_info,
6477 sizeof(iocommand->error_info));
6478 if ((iocommand->Request.Type.Direction & XFER_READ) &&
6479 iocommand->buf_size > 0) {
6480 /* Copy the data out of the buffer we created */
6481 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6493 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6494 BIG_IOCTL_Command_struct *ioc)
6496 struct CommandList *c;
6497 unsigned char **buff = NULL;
6498 int *buff_size = NULL;
6504 BYTE __user *data_ptr;
6506 if (!capable(CAP_SYS_RAWIO))
6509 if ((ioc->buf_size < 1) &&
6510 (ioc->Request.Type.Direction != XFER_NONE))
6512 /* Check kmalloc limits using all SGs */
6513 if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6515 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6517 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6522 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6527 left = ioc->buf_size;
6528 data_ptr = ioc->buf;
6530 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6531 buff_size[sg_used] = sz;
6532 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6533 if (buff[sg_used] == NULL) {
6537 if (ioc->Request.Type.Direction & XFER_WRITE) {
6538 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6543 memset(buff[sg_used], 0, sz);
6550 c->cmd_type = CMD_IOCTL_PEND;
6551 c->scsi_cmd = SCSI_CMD_BUSY;
6552 c->Header.ReplyQueue = 0;
6553 c->Header.SGList = (u8) sg_used;
6554 c->Header.SGTotal = cpu_to_le16(sg_used);
6555 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6556 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6557 if (ioc->buf_size > 0) {
6559 for (i = 0; i < sg_used; i++) {
6560 temp64 = dma_map_single(&h->pdev->dev, buff[i],
6561 buff_size[i], DMA_BIDIRECTIONAL);
6562 if (dma_mapping_error(&h->pdev->dev,
6563 (dma_addr_t) temp64)) {
6564 c->SG[i].Addr = cpu_to_le64(0);
6565 c->SG[i].Len = cpu_to_le32(0);
6566 hpsa_pci_unmap(h->pdev, c, i,
6571 c->SG[i].Addr = cpu_to_le64(temp64);
6572 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6573 c->SG[i].Ext = cpu_to_le32(0);
6575 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6577 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6580 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6581 check_ioctl_unit_attention(h, c);
6587 /* Copy the error information out */
6588 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6589 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6592 /* Copy the data out of the buffer we created */
6593 BYTE __user *ptr = ioc->buf;
6594 for (i = 0; i < sg_used; i++) {
6595 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6599 ptr += buff_size[i];
6609 for (i = 0; i < sg_used; i++)
6617 static void check_ioctl_unit_attention(struct ctlr_info *h,
6618 struct CommandList *c)
6620 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6621 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6622 (void) check_for_unit_attention(h, c);
6628 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6631 struct ctlr_info *h = sdev_to_hba(dev);
6635 case CCISS_DEREGDISK:
6636 case CCISS_REGNEWDISK:
6638 hpsa_scan_start(h->scsi_host);
6640 case CCISS_GETPCIINFO:
6641 return hpsa_getpciinfo_ioctl(h, argp);
6642 case CCISS_GETDRIVVER:
6643 return hpsa_getdrivver_ioctl(h, argp);
6644 case CCISS_PASSTHRU: {
6645 IOCTL_Command_struct iocommand;
6649 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6651 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6653 rc = hpsa_passthru_ioctl(h, &iocommand);
6654 atomic_inc(&h->passthru_cmds_avail);
6655 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6659 case CCISS_BIG_PASSTHRU: {
6660 BIG_IOCTL_Command_struct ioc;
6663 if (copy_from_user(&ioc, argp, sizeof(ioc)))
6665 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6667 rc = hpsa_big_passthru_ioctl(h, &ioc);
6668 atomic_inc(&h->passthru_cmds_avail);
6669 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6678 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6680 struct CommandList *c;
6684 /* fill_cmd can't fail here, no data buffer to map */
6685 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6686 RAID_CTLR_LUNID, TYPE_MSG);
6687 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6689 enqueue_cmd_and_start_io(h, c);
6690 /* Don't wait for completion, the reset won't complete. Don't free
6691 * the command either. This is the last command we will send before
6692 * re-initializing everything, so it doesn't matter and won't leak.
6697 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6698 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6701 enum dma_data_direction dir = DMA_NONE;
6703 c->cmd_type = CMD_IOCTL_PEND;
6704 c->scsi_cmd = SCSI_CMD_BUSY;
6705 c->Header.ReplyQueue = 0;
6706 if (buff != NULL && size > 0) {
6707 c->Header.SGList = 1;
6708 c->Header.SGTotal = cpu_to_le16(1);
6710 c->Header.SGList = 0;
6711 c->Header.SGTotal = cpu_to_le16(0);
6713 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6715 if (cmd_type == TYPE_CMD) {
6718 /* are we trying to read a vital product page */
6719 if (page_code & VPD_PAGE) {
6720 c->Request.CDB[1] = 0x01;
6721 c->Request.CDB[2] = (page_code & 0xff);
6723 c->Request.CDBLen = 6;
6724 c->Request.type_attr_dir =
6725 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6726 c->Request.Timeout = 0;
6727 c->Request.CDB[0] = HPSA_INQUIRY;
6728 c->Request.CDB[4] = size & 0xFF;
6730 case RECEIVE_DIAGNOSTIC:
6731 c->Request.CDBLen = 6;
6732 c->Request.type_attr_dir =
6733 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6734 c->Request.Timeout = 0;
6735 c->Request.CDB[0] = cmd;
6736 c->Request.CDB[1] = 1;
6737 c->Request.CDB[2] = 1;
6738 c->Request.CDB[3] = (size >> 8) & 0xFF;
6739 c->Request.CDB[4] = size & 0xFF;
6741 case HPSA_REPORT_LOG:
6742 case HPSA_REPORT_PHYS:
6743 /* Talking to controller so It's a physical command
6744 mode = 00 target = 0. Nothing to write.
6746 c->Request.CDBLen = 12;
6747 c->Request.type_attr_dir =
6748 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6749 c->Request.Timeout = 0;
6750 c->Request.CDB[0] = cmd;
6751 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6752 c->Request.CDB[7] = (size >> 16) & 0xFF;
6753 c->Request.CDB[8] = (size >> 8) & 0xFF;
6754 c->Request.CDB[9] = size & 0xFF;
6756 case BMIC_SENSE_DIAG_OPTIONS:
6757 c->Request.CDBLen = 16;
6758 c->Request.type_attr_dir =
6759 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6760 c->Request.Timeout = 0;
6761 /* Spec says this should be BMIC_WRITE */
6762 c->Request.CDB[0] = BMIC_READ;
6763 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6765 case BMIC_SET_DIAG_OPTIONS:
6766 c->Request.CDBLen = 16;
6767 c->Request.type_attr_dir =
6768 TYPE_ATTR_DIR(cmd_type,
6769 ATTR_SIMPLE, XFER_WRITE);
6770 c->Request.Timeout = 0;
6771 c->Request.CDB[0] = BMIC_WRITE;
6772 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6774 case HPSA_CACHE_FLUSH:
6775 c->Request.CDBLen = 12;
6776 c->Request.type_attr_dir =
6777 TYPE_ATTR_DIR(cmd_type,
6778 ATTR_SIMPLE, XFER_WRITE);
6779 c->Request.Timeout = 0;
6780 c->Request.CDB[0] = BMIC_WRITE;
6781 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6782 c->Request.CDB[7] = (size >> 8) & 0xFF;
6783 c->Request.CDB[8] = size & 0xFF;
6785 case TEST_UNIT_READY:
6786 c->Request.CDBLen = 6;
6787 c->Request.type_attr_dir =
6788 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6789 c->Request.Timeout = 0;
6791 case HPSA_GET_RAID_MAP:
6792 c->Request.CDBLen = 12;
6793 c->Request.type_attr_dir =
6794 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6795 c->Request.Timeout = 0;
6796 c->Request.CDB[0] = HPSA_CISS_READ;
6797 c->Request.CDB[1] = cmd;
6798 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6799 c->Request.CDB[7] = (size >> 16) & 0xFF;
6800 c->Request.CDB[8] = (size >> 8) & 0xFF;
6801 c->Request.CDB[9] = size & 0xFF;
6803 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6804 c->Request.CDBLen = 10;
6805 c->Request.type_attr_dir =
6806 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6807 c->Request.Timeout = 0;
6808 c->Request.CDB[0] = BMIC_READ;
6809 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6810 c->Request.CDB[7] = (size >> 16) & 0xFF;
6811 c->Request.CDB[8] = (size >> 8) & 0xFF;
6813 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6814 c->Request.CDBLen = 10;
6815 c->Request.type_attr_dir =
6816 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6817 c->Request.Timeout = 0;
6818 c->Request.CDB[0] = BMIC_READ;
6819 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6820 c->Request.CDB[7] = (size >> 16) & 0xFF;
6821 c->Request.CDB[8] = (size >> 8) & 0XFF;
6823 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6824 c->Request.CDBLen = 10;
6825 c->Request.type_attr_dir =
6826 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6827 c->Request.Timeout = 0;
6828 c->Request.CDB[0] = BMIC_READ;
6829 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6830 c->Request.CDB[7] = (size >> 16) & 0xFF;
6831 c->Request.CDB[8] = (size >> 8) & 0XFF;
6833 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6834 c->Request.CDBLen = 10;
6835 c->Request.type_attr_dir =
6836 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6837 c->Request.Timeout = 0;
6838 c->Request.CDB[0] = BMIC_READ;
6839 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6840 c->Request.CDB[7] = (size >> 16) & 0xFF;
6841 c->Request.CDB[8] = (size >> 8) & 0XFF;
6843 case BMIC_IDENTIFY_CONTROLLER:
6844 c->Request.CDBLen = 10;
6845 c->Request.type_attr_dir =
6846 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6847 c->Request.Timeout = 0;
6848 c->Request.CDB[0] = BMIC_READ;
6849 c->Request.CDB[1] = 0;
6850 c->Request.CDB[2] = 0;
6851 c->Request.CDB[3] = 0;
6852 c->Request.CDB[4] = 0;
6853 c->Request.CDB[5] = 0;
6854 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6855 c->Request.CDB[7] = (size >> 16) & 0xFF;
6856 c->Request.CDB[8] = (size >> 8) & 0XFF;
6857 c->Request.CDB[9] = 0;
6860 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6863 } else if (cmd_type == TYPE_MSG) {
6866 case HPSA_PHYS_TARGET_RESET:
6867 c->Request.CDBLen = 16;
6868 c->Request.type_attr_dir =
6869 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6870 c->Request.Timeout = 0; /* Don't time out */
6871 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6872 c->Request.CDB[0] = HPSA_RESET;
6873 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6874 /* Physical target reset needs no control bytes 4-7*/
6875 c->Request.CDB[4] = 0x00;
6876 c->Request.CDB[5] = 0x00;
6877 c->Request.CDB[6] = 0x00;
6878 c->Request.CDB[7] = 0x00;
6880 case HPSA_DEVICE_RESET_MSG:
6881 c->Request.CDBLen = 16;
6882 c->Request.type_attr_dir =
6883 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6884 c->Request.Timeout = 0; /* Don't time out */
6885 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6886 c->Request.CDB[0] = cmd;
6887 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6888 /* If bytes 4-7 are zero, it means reset the */
6890 c->Request.CDB[4] = 0x00;
6891 c->Request.CDB[5] = 0x00;
6892 c->Request.CDB[6] = 0x00;
6893 c->Request.CDB[7] = 0x00;
6896 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6901 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6905 switch (GET_DIR(c->Request.type_attr_dir)) {
6907 dir = DMA_FROM_DEVICE;
6910 dir = DMA_TO_DEVICE;
6916 dir = DMA_BIDIRECTIONAL;
6918 if (hpsa_map_one(h->pdev, c, buff, size, dir))
6924 * Map (physical) PCI mem into (virtual) kernel space
6926 static void __iomem *remap_pci_mem(ulong base, ulong size)
6928 ulong page_base = ((ulong) base) & PAGE_MASK;
6929 ulong page_offs = ((ulong) base) - page_base;
6930 void __iomem *page_remapped = ioremap(page_base,
6933 return page_remapped ? (page_remapped + page_offs) : NULL;
6936 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6938 return h->access.command_completed(h, q);
6941 static inline bool interrupt_pending(struct ctlr_info *h)
6943 return h->access.intr_pending(h);
6946 static inline long interrupt_not_for_us(struct ctlr_info *h)
6948 return (h->access.intr_pending(h) == 0) ||
6949 (h->interrupts_enabled == 0);
6952 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6955 if (unlikely(tag_index >= h->nr_cmds)) {
6956 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6962 static inline void finish_cmd(struct CommandList *c)
6964 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6965 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6966 || c->cmd_type == CMD_IOACCEL2))
6967 complete_scsi_command(c);
6968 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6969 complete(c->waiting);
6972 /* process completion of an indexed ("direct lookup") command */
6973 static inline void process_indexed_cmd(struct ctlr_info *h,
6977 struct CommandList *c;
6979 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6980 if (!bad_tag(h, tag_index, raw_tag)) {
6981 c = h->cmd_pool + tag_index;
6986 /* Some controllers, like p400, will give us one interrupt
6987 * after a soft reset, even if we turned interrupts off.
6988 * Only need to check for this in the hpsa_xxx_discard_completions
6991 static int ignore_bogus_interrupt(struct ctlr_info *h)
6993 if (likely(!reset_devices))
6996 if (likely(h->interrupts_enabled))
6999 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7000 "(known firmware bug.) Ignoring.\n");
7006 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7007 * Relies on (h-q[x] == x) being true for x such that
7008 * 0 <= x < MAX_REPLY_QUEUES.
7010 static struct ctlr_info *queue_to_hba(u8 *queue)
7012 return container_of((queue - *queue), struct ctlr_info, q[0]);
7015 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7017 struct ctlr_info *h = queue_to_hba(queue);
7018 u8 q = *(u8 *) queue;
7021 if (ignore_bogus_interrupt(h))
7024 if (interrupt_not_for_us(h))
7026 h->last_intr_timestamp = get_jiffies_64();
7027 while (interrupt_pending(h)) {
7028 raw_tag = get_next_completion(h, q);
7029 while (raw_tag != FIFO_EMPTY)
7030 raw_tag = next_command(h, q);
7035 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7037 struct ctlr_info *h = queue_to_hba(queue);
7039 u8 q = *(u8 *) queue;
7041 if (ignore_bogus_interrupt(h))
7044 h->last_intr_timestamp = get_jiffies_64();
7045 raw_tag = get_next_completion(h, q);
7046 while (raw_tag != FIFO_EMPTY)
7047 raw_tag = next_command(h, q);
7051 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7053 struct ctlr_info *h = queue_to_hba((u8 *) queue);
7055 u8 q = *(u8 *) queue;
7057 if (interrupt_not_for_us(h))
7059 h->last_intr_timestamp = get_jiffies_64();
7060 while (interrupt_pending(h)) {
7061 raw_tag = get_next_completion(h, q);
7062 while (raw_tag != FIFO_EMPTY) {
7063 process_indexed_cmd(h, raw_tag);
7064 raw_tag = next_command(h, q);
7070 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7072 struct ctlr_info *h = queue_to_hba(queue);
7074 u8 q = *(u8 *) queue;
7076 h->last_intr_timestamp = get_jiffies_64();
7077 raw_tag = get_next_completion(h, q);
7078 while (raw_tag != FIFO_EMPTY) {
7079 process_indexed_cmd(h, raw_tag);
7080 raw_tag = next_command(h, q);
7085 /* Send a message CDB to the firmware. Careful, this only works
7086 * in simple mode, not performant mode due to the tag lookup.
7087 * We only ever use this immediately after a controller reset.
7089 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7093 struct CommandListHeader CommandHeader;
7094 struct RequestBlock Request;
7095 struct ErrDescriptor ErrorDescriptor;
7097 struct Command *cmd;
7098 static const size_t cmd_sz = sizeof(*cmd) +
7099 sizeof(cmd->ErrorDescriptor);
7103 void __iomem *vaddr;
7106 vaddr = pci_ioremap_bar(pdev, 0);
7110 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7111 * CCISS commands, so they must be allocated from the lower 4GiB of
7114 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7120 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7126 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7127 * although there's no guarantee, we assume that the address is at
7128 * least 4-byte aligned (most likely, it's page-aligned).
7130 paddr32 = cpu_to_le32(paddr64);
7132 cmd->CommandHeader.ReplyQueue = 0;
7133 cmd->CommandHeader.SGList = 0;
7134 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7135 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7136 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7138 cmd->Request.CDBLen = 16;
7139 cmd->Request.type_attr_dir =
7140 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7141 cmd->Request.Timeout = 0; /* Don't time out */
7142 cmd->Request.CDB[0] = opcode;
7143 cmd->Request.CDB[1] = type;
7144 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7145 cmd->ErrorDescriptor.Addr =
7146 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7147 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7149 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7151 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7152 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7153 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7155 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7160 /* we leak the DMA buffer here ... no choice since the controller could
7161 * still complete the command.
7163 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7164 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7169 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7171 if (tag & HPSA_ERROR_BIT) {
7172 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7177 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7182 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7184 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7185 void __iomem *vaddr, u32 use_doorbell)
7189 /* For everything after the P600, the PCI power state method
7190 * of resetting the controller doesn't work, so we have this
7191 * other way using the doorbell register.
7193 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7194 writel(use_doorbell, vaddr + SA5_DOORBELL);
7196 /* PMC hardware guys tell us we need a 10 second delay after
7197 * doorbell reset and before any attempt to talk to the board
7198 * at all to ensure that this actually works and doesn't fall
7199 * over in some weird corner cases.
7202 } else { /* Try to do it the PCI power state way */
7204 /* Quoting from the Open CISS Specification: "The Power
7205 * Management Control/Status Register (CSR) controls the power
7206 * state of the device. The normal operating state is D0,
7207 * CSR=00h. The software off state is D3, CSR=03h. To reset
7208 * the controller, place the interface device in D3 then to D0,
7209 * this causes a secondary PCI reset which will reset the
7214 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7216 /* enter the D3hot power management state */
7217 rc = pci_set_power_state(pdev, PCI_D3hot);
7223 /* enter the D0 power management state */
7224 rc = pci_set_power_state(pdev, PCI_D0);
7229 * The P600 requires a small delay when changing states.
7230 * Otherwise we may think the board did not reset and we bail.
7231 * This for kdump only and is particular to the P600.
7238 static void init_driver_version(char *driver_version, int len)
7240 memset(driver_version, 0, len);
7241 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7244 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7246 char *driver_version;
7247 int i, size = sizeof(cfgtable->driver_version);
7249 driver_version = kmalloc(size, GFP_KERNEL);
7250 if (!driver_version)
7253 init_driver_version(driver_version, size);
7254 for (i = 0; i < size; i++)
7255 writeb(driver_version[i], &cfgtable->driver_version[i]);
7256 kfree(driver_version);
7260 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7261 unsigned char *driver_ver)
7265 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7266 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7269 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7272 char *driver_ver, *old_driver_ver;
7273 int rc, size = sizeof(cfgtable->driver_version);
7275 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7276 if (!old_driver_ver)
7278 driver_ver = old_driver_ver + size;
7280 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7281 * should have been changed, otherwise we know the reset failed.
7283 init_driver_version(old_driver_ver, size);
7284 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7285 rc = !memcmp(driver_ver, old_driver_ver, size);
7286 kfree(old_driver_ver);
7289 /* This does a hard reset of the controller using PCI power management
7290 * states or the using the doorbell register.
7292 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7296 u64 cfg_base_addr_index;
7297 void __iomem *vaddr;
7298 unsigned long paddr;
7299 u32 misc_fw_support;
7301 struct CfgTable __iomem *cfgtable;
7303 u16 command_register;
7305 /* For controllers as old as the P600, this is very nearly
7308 * pci_save_state(pci_dev);
7309 * pci_set_power_state(pci_dev, PCI_D3hot);
7310 * pci_set_power_state(pci_dev, PCI_D0);
7311 * pci_restore_state(pci_dev);
7313 * For controllers newer than the P600, the pci power state
7314 * method of resetting doesn't work so we have another way
7315 * using the doorbell register.
7318 if (!ctlr_is_resettable(board_id)) {
7319 dev_warn(&pdev->dev, "Controller not resettable\n");
7323 /* if controller is soft- but not hard resettable... */
7324 if (!ctlr_is_hard_resettable(board_id))
7325 return -ENOTSUPP; /* try soft reset later. */
7327 /* Save the PCI command register */
7328 pci_read_config_word(pdev, 4, &command_register);
7329 pci_save_state(pdev);
7331 /* find the first memory BAR, so we can find the cfg table */
7332 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7335 vaddr = remap_pci_mem(paddr, 0x250);
7339 /* find cfgtable in order to check if reset via doorbell is supported */
7340 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7341 &cfg_base_addr_index, &cfg_offset);
7344 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7345 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7350 rc = write_driver_ver_to_cfgtable(cfgtable);
7352 goto unmap_cfgtable;
7354 /* If reset via doorbell register is supported, use that.
7355 * There are two such methods. Favor the newest method.
7357 misc_fw_support = readl(&cfgtable->misc_fw_support);
7358 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7360 use_doorbell = DOORBELL_CTLR_RESET2;
7362 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7364 dev_warn(&pdev->dev,
7365 "Soft reset not supported. Firmware update is required.\n");
7366 rc = -ENOTSUPP; /* try soft reset */
7367 goto unmap_cfgtable;
7371 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7373 goto unmap_cfgtable;
7375 pci_restore_state(pdev);
7376 pci_write_config_word(pdev, 4, command_register);
7378 /* Some devices (notably the HP Smart Array 5i Controller)
7379 need a little pause here */
7380 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7382 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7384 dev_warn(&pdev->dev,
7385 "Failed waiting for board to become ready after hard reset\n");
7386 goto unmap_cfgtable;
7389 rc = controller_reset_failed(vaddr);
7391 goto unmap_cfgtable;
7393 dev_warn(&pdev->dev, "Unable to successfully reset "
7394 "controller. Will try soft reset.\n");
7397 dev_info(&pdev->dev, "board ready after hard reset.\n");
7409 * We cannot read the structure directly, for portability we must use
7411 * This is for debug only.
7413 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7419 dev_info(dev, "Controller Configuration information\n");
7420 dev_info(dev, "------------------------------------\n");
7421 for (i = 0; i < 4; i++)
7422 temp_name[i] = readb(&(tb->Signature[i]));
7423 temp_name[4] = '\0';
7424 dev_info(dev, " Signature = %s\n", temp_name);
7425 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7426 dev_info(dev, " Transport methods supported = 0x%x\n",
7427 readl(&(tb->TransportSupport)));
7428 dev_info(dev, " Transport methods active = 0x%x\n",
7429 readl(&(tb->TransportActive)));
7430 dev_info(dev, " Requested transport Method = 0x%x\n",
7431 readl(&(tb->HostWrite.TransportRequest)));
7432 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7433 readl(&(tb->HostWrite.CoalIntDelay)));
7434 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7435 readl(&(tb->HostWrite.CoalIntCount)));
7436 dev_info(dev, " Max outstanding commands = %d\n",
7437 readl(&(tb->CmdsOutMax)));
7438 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7439 for (i = 0; i < 16; i++)
7440 temp_name[i] = readb(&(tb->ServerName[i]));
7441 temp_name[16] = '\0';
7442 dev_info(dev, " Server Name = %s\n", temp_name);
7443 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7444 readl(&(tb->HeartBeat)));
7445 #endif /* HPSA_DEBUG */
7448 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7450 int i, offset, mem_type, bar_type;
7452 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7455 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7456 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7457 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7460 mem_type = pci_resource_flags(pdev, i) &
7461 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7463 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7464 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7465 offset += 4; /* 32 bit */
7467 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7470 default: /* reserved in PCI 2.2 */
7471 dev_warn(&pdev->dev,
7472 "base address is invalid\n");
7476 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7482 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7484 pci_free_irq_vectors(h->pdev);
7485 h->msix_vectors = 0;
7488 static void hpsa_setup_reply_map(struct ctlr_info *h)
7490 const struct cpumask *mask;
7491 unsigned int queue, cpu;
7493 for (queue = 0; queue < h->msix_vectors; queue++) {
7494 mask = pci_irq_get_affinity(h->pdev, queue);
7498 for_each_cpu(cpu, mask)
7499 h->reply_map[cpu] = queue;
7504 for_each_possible_cpu(cpu)
7505 h->reply_map[cpu] = 0;
7508 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7509 * controllers that are capable. If not, we use legacy INTx mode.
7511 static int hpsa_interrupt_mode(struct ctlr_info *h)
7513 unsigned int flags = PCI_IRQ_LEGACY;
7516 /* Some boards advertise MSI but don't really support it */
7517 switch (h->board_id) {
7524 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7525 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7527 h->msix_vectors = ret;
7531 flags |= PCI_IRQ_MSI;
7535 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7541 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7545 u32 subsystem_vendor_id, subsystem_device_id;
7547 subsystem_vendor_id = pdev->subsystem_vendor;
7548 subsystem_device_id = pdev->subsystem_device;
7549 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7550 subsystem_vendor_id;
7553 *legacy_board = false;
7554 for (i = 0; i < ARRAY_SIZE(products); i++)
7555 if (*board_id == products[i].board_id) {
7556 if (products[i].access != &SA5A_access &&
7557 products[i].access != &SA5B_access)
7559 dev_warn(&pdev->dev,
7560 "legacy board ID: 0x%08x\n",
7563 *legacy_board = true;
7567 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7569 *legacy_board = true;
7570 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7573 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7574 unsigned long *memory_bar)
7578 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7579 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7580 /* addressing mode bits already removed */
7581 *memory_bar = pci_resource_start(pdev, i);
7582 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7586 dev_warn(&pdev->dev, "no memory BAR found\n");
7590 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7596 iterations = HPSA_BOARD_READY_ITERATIONS;
7598 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7600 for (i = 0; i < iterations; i++) {
7601 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7602 if (wait_for_ready) {
7603 if (scratchpad == HPSA_FIRMWARE_READY)
7606 if (scratchpad != HPSA_FIRMWARE_READY)
7609 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7611 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7615 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7616 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7619 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7620 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7621 *cfg_base_addr &= (u32) 0x0000ffff;
7622 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7623 if (*cfg_base_addr_index == -1) {
7624 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7630 static void hpsa_free_cfgtables(struct ctlr_info *h)
7632 if (h->transtable) {
7633 iounmap(h->transtable);
7634 h->transtable = NULL;
7637 iounmap(h->cfgtable);
7642 /* Find and map CISS config table and transfer table
7643 + * several items must be unmapped (freed) later
7645 static int hpsa_find_cfgtables(struct ctlr_info *h)
7649 u64 cfg_base_addr_index;
7653 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7654 &cfg_base_addr_index, &cfg_offset);
7657 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7658 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7660 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7663 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7666 /* Find performant mode table. */
7667 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7668 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7669 cfg_base_addr_index)+cfg_offset+trans_offset,
7670 sizeof(*h->transtable));
7671 if (!h->transtable) {
7672 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7673 hpsa_free_cfgtables(h);
7679 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7681 #define MIN_MAX_COMMANDS 16
7682 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7684 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7686 /* Limit commands in memory limited kdump scenario. */
7687 if (reset_devices && h->max_commands > 32)
7688 h->max_commands = 32;
7690 if (h->max_commands < MIN_MAX_COMMANDS) {
7691 dev_warn(&h->pdev->dev,
7692 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7695 h->max_commands = MIN_MAX_COMMANDS;
7699 /* If the controller reports that the total max sg entries is greater than 512,
7700 * then we know that chained SG blocks work. (Original smart arrays did not
7701 * support chained SG blocks and would return zero for max sg entries.)
7703 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7705 return h->maxsgentries > 512;
7708 /* Interrogate the hardware for some limits:
7709 * max commands, max SG elements without chaining, and with chaining,
7710 * SG chain block size, etc.
7712 static void hpsa_find_board_params(struct ctlr_info *h)
7714 hpsa_get_max_perf_mode_cmds(h);
7715 h->nr_cmds = h->max_commands;
7716 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7717 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7718 if (hpsa_supports_chained_sg_blocks(h)) {
7719 /* Limit in-command s/g elements to 32 save dma'able memory. */
7720 h->max_cmd_sg_entries = 32;
7721 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7722 h->maxsgentries--; /* save one for chain pointer */
7725 * Original smart arrays supported at most 31 s/g entries
7726 * embedded inline in the command (trying to use more
7727 * would lock up the controller)
7729 h->max_cmd_sg_entries = 31;
7730 h->maxsgentries = 31; /* default to traditional values */
7734 /* Find out what task management functions are supported and cache */
7735 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7736 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7737 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7738 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7739 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7740 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7741 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7744 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7746 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7747 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7753 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7757 driver_support = readl(&(h->cfgtable->driver_support));
7758 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7760 driver_support |= ENABLE_SCSI_PREFETCH;
7762 driver_support |= ENABLE_UNIT_ATTN;
7763 writel(driver_support, &(h->cfgtable->driver_support));
7766 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7767 * in a prefetch beyond physical memory.
7769 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7773 if (h->board_id != 0x3225103C)
7775 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7776 dma_prefetch |= 0x8000;
7777 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7780 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7784 unsigned long flags;
7785 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7786 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7787 spin_lock_irqsave(&h->lock, flags);
7788 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7789 spin_unlock_irqrestore(&h->lock, flags);
7790 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7792 /* delay and try again */
7793 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7800 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7804 unsigned long flags;
7806 /* under certain very rare conditions, this can take awhile.
7807 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7808 * as we enter this code.)
7810 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7811 if (h->remove_in_progress)
7813 spin_lock_irqsave(&h->lock, flags);
7814 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7815 spin_unlock_irqrestore(&h->lock, flags);
7816 if (!(doorbell_value & CFGTBL_ChangeReq))
7818 /* delay and try again */
7819 msleep(MODE_CHANGE_WAIT_INTERVAL);
7826 /* return -ENODEV or other reason on error, 0 on success */
7827 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7831 trans_support = readl(&(h->cfgtable->TransportSupport));
7832 if (!(trans_support & SIMPLE_MODE))
7835 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7837 /* Update the field, and then ring the doorbell */
7838 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7839 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7840 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7841 if (hpsa_wait_for_mode_change_ack(h))
7843 print_cfg_table(&h->pdev->dev, h->cfgtable);
7844 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7846 h->transMethod = CFGTBL_Trans_Simple;
7849 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7853 /* free items allocated or mapped by hpsa_pci_init */
7854 static void hpsa_free_pci_init(struct ctlr_info *h)
7856 hpsa_free_cfgtables(h); /* pci_init 4 */
7857 iounmap(h->vaddr); /* pci_init 3 */
7859 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7861 * call pci_disable_device before pci_release_regions per
7862 * Documentation/driver-api/pci/pci.rst
7864 pci_disable_device(h->pdev); /* pci_init 1 */
7865 pci_release_regions(h->pdev); /* pci_init 2 */
7868 /* several items must be freed later */
7869 static int hpsa_pci_init(struct ctlr_info *h)
7871 int prod_index, err;
7874 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7877 h->product_name = products[prod_index].product_name;
7878 h->access = *(products[prod_index].access);
7879 h->legacy_board = legacy_board;
7880 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7881 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7883 err = pci_enable_device(h->pdev);
7885 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7886 pci_disable_device(h->pdev);
7890 err = pci_request_regions(h->pdev, HPSA);
7892 dev_err(&h->pdev->dev,
7893 "failed to obtain PCI resources\n");
7894 pci_disable_device(h->pdev);
7898 pci_set_master(h->pdev);
7900 err = hpsa_interrupt_mode(h);
7904 /* setup mapping between CPU and reply queue */
7905 hpsa_setup_reply_map(h);
7907 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7909 goto clean2; /* intmode+region, pci */
7910 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7912 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7914 goto clean2; /* intmode+region, pci */
7916 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7918 goto clean3; /* vaddr, intmode+region, pci */
7919 err = hpsa_find_cfgtables(h);
7921 goto clean3; /* vaddr, intmode+region, pci */
7922 hpsa_find_board_params(h);
7924 if (!hpsa_CISS_signature_present(h)) {
7926 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7928 hpsa_set_driver_support_bits(h);
7929 hpsa_p600_dma_prefetch_quirk(h);
7930 err = hpsa_enter_simple_mode(h);
7932 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7935 clean4: /* cfgtables, vaddr, intmode+region, pci */
7936 hpsa_free_cfgtables(h);
7937 clean3: /* vaddr, intmode+region, pci */
7940 clean2: /* intmode+region, pci */
7941 hpsa_disable_interrupt_mode(h);
7944 * call pci_disable_device before pci_release_regions per
7945 * Documentation/driver-api/pci/pci.rst
7947 pci_disable_device(h->pdev);
7948 pci_release_regions(h->pdev);
7952 static void hpsa_hba_inquiry(struct ctlr_info *h)
7956 #define HBA_INQUIRY_BYTE_COUNT 64
7957 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7958 if (!h->hba_inquiry_data)
7960 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7961 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7963 kfree(h->hba_inquiry_data);
7964 h->hba_inquiry_data = NULL;
7968 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7971 void __iomem *vaddr;
7976 /* kdump kernel is loading, we don't know in which state is
7977 * the pci interface. The dev->enable_cnt is equal zero
7978 * so we call enable+disable, wait a while and switch it on.
7980 rc = pci_enable_device(pdev);
7982 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7985 pci_disable_device(pdev);
7986 msleep(260); /* a randomly chosen number */
7987 rc = pci_enable_device(pdev);
7989 dev_warn(&pdev->dev, "failed to enable device.\n");
7993 pci_set_master(pdev);
7995 vaddr = pci_ioremap_bar(pdev, 0);
7996 if (vaddr == NULL) {
8000 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8003 /* Reset the controller with a PCI power-cycle or via doorbell */
8004 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8006 /* -ENOTSUPP here means we cannot reset the controller
8007 * but it's already (and still) up and running in
8008 * "performant mode". Or, it might be 640x, which can't reset
8009 * due to concerns about shared bbwc between 6402/6404 pair.
8014 /* Now try to get the controller to respond to a no-op */
8015 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8016 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8017 if (hpsa_noop(pdev) == 0)
8020 dev_warn(&pdev->dev, "no-op failed%s\n",
8021 (i < 11 ? "; re-trying" : ""));
8026 pci_disable_device(pdev);
8030 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8032 kfree(h->cmd_pool_bits);
8033 h->cmd_pool_bits = NULL;
8035 dma_free_coherent(&h->pdev->dev,
8036 h->nr_cmds * sizeof(struct CommandList),
8038 h->cmd_pool_dhandle);
8040 h->cmd_pool_dhandle = 0;
8042 if (h->errinfo_pool) {
8043 dma_free_coherent(&h->pdev->dev,
8044 h->nr_cmds * sizeof(struct ErrorInfo),
8046 h->errinfo_pool_dhandle);
8047 h->errinfo_pool = NULL;
8048 h->errinfo_pool_dhandle = 0;
8052 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8054 h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8055 sizeof(unsigned long),
8057 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8058 h->nr_cmds * sizeof(*h->cmd_pool),
8059 &h->cmd_pool_dhandle, GFP_KERNEL);
8060 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8061 h->nr_cmds * sizeof(*h->errinfo_pool),
8062 &h->errinfo_pool_dhandle, GFP_KERNEL);
8063 if ((h->cmd_pool_bits == NULL)
8064 || (h->cmd_pool == NULL)
8065 || (h->errinfo_pool == NULL)) {
8066 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8069 hpsa_preinitialize_commands(h);
8072 hpsa_free_cmd_pool(h);
8076 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8077 static void hpsa_free_irqs(struct ctlr_info *h)
8082 if (hpsa_simple_mode)
8083 irq_vector = h->intr_mode;
8085 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8086 /* Single reply queue, only one irq to free */
8087 free_irq(pci_irq_vector(h->pdev, irq_vector),
8088 &h->q[h->intr_mode]);
8089 h->q[h->intr_mode] = 0;
8093 for (i = 0; i < h->msix_vectors; i++) {
8094 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8097 for (; i < MAX_REPLY_QUEUES; i++)
8101 /* returns 0 on success; cleans up and returns -Enn on error */
8102 static int hpsa_request_irqs(struct ctlr_info *h,
8103 irqreturn_t (*msixhandler)(int, void *),
8104 irqreturn_t (*intxhandler)(int, void *))
8109 if (hpsa_simple_mode)
8110 irq_vector = h->intr_mode;
8113 * initialize h->q[x] = x so that interrupt handlers know which
8116 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8119 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8120 /* If performant mode and MSI-X, use multiple reply queues */
8121 for (i = 0; i < h->msix_vectors; i++) {
8122 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8123 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8129 dev_err(&h->pdev->dev,
8130 "failed to get irq %d for %s\n",
8131 pci_irq_vector(h->pdev, i), h->devname);
8132 for (j = 0; j < i; j++) {
8133 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8136 for (; j < MAX_REPLY_QUEUES; j++)
8142 /* Use single reply pool */
8143 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8144 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8145 h->msix_vectors ? "x" : "");
8146 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8149 &h->q[h->intr_mode]);
8151 sprintf(h->intrname[h->intr_mode],
8152 "%s-intx", h->devname);
8153 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8154 intxhandler, IRQF_SHARED,
8156 &h->q[h->intr_mode]);
8160 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8161 pci_irq_vector(h->pdev, irq_vector), h->devname);
8168 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8171 hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8173 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8174 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8176 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8180 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8181 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8183 dev_warn(&h->pdev->dev, "Board failed to become ready "
8184 "after soft reset.\n");
8191 static void hpsa_free_reply_queues(struct ctlr_info *h)
8195 for (i = 0; i < h->nreply_queues; i++) {
8196 if (!h->reply_queue[i].head)
8198 dma_free_coherent(&h->pdev->dev,
8199 h->reply_queue_size,
8200 h->reply_queue[i].head,
8201 h->reply_queue[i].busaddr);
8202 h->reply_queue[i].head = NULL;
8203 h->reply_queue[i].busaddr = 0;
8205 h->reply_queue_size = 0;
8208 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8210 hpsa_free_performant_mode(h); /* init_one 7 */
8211 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8212 hpsa_free_cmd_pool(h); /* init_one 5 */
8213 hpsa_free_irqs(h); /* init_one 4 */
8214 scsi_host_put(h->scsi_host); /* init_one 3 */
8215 h->scsi_host = NULL; /* init_one 3 */
8216 hpsa_free_pci_init(h); /* init_one 2_5 */
8217 free_percpu(h->lockup_detected); /* init_one 2 */
8218 h->lockup_detected = NULL; /* init_one 2 */
8219 if (h->resubmit_wq) {
8220 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8221 h->resubmit_wq = NULL;
8223 if (h->rescan_ctlr_wq) {
8224 destroy_workqueue(h->rescan_ctlr_wq);
8225 h->rescan_ctlr_wq = NULL;
8227 if (h->monitor_ctlr_wq) {
8228 destroy_workqueue(h->monitor_ctlr_wq);
8229 h->monitor_ctlr_wq = NULL;
8232 kfree(h); /* init_one 1 */
8235 /* Called when controller lockup detected. */
8236 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8239 struct CommandList *c;
8242 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8243 for (i = 0; i < h->nr_cmds; i++) {
8244 c = h->cmd_pool + i;
8245 refcount = atomic_inc_return(&c->refcount);
8247 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8249 atomic_dec(&h->commands_outstanding);
8254 dev_warn(&h->pdev->dev,
8255 "failed %d commands in fail_all\n", failcount);
8258 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8262 for_each_online_cpu(cpu) {
8263 u32 *lockup_detected;
8264 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8265 *lockup_detected = value;
8267 wmb(); /* be sure the per-cpu variables are out to memory */
8270 static void controller_lockup_detected(struct ctlr_info *h)
8272 unsigned long flags;
8273 u32 lockup_detected;
8275 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8276 spin_lock_irqsave(&h->lock, flags);
8277 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8278 if (!lockup_detected) {
8279 /* no heartbeat, but controller gave us a zero. */
8280 dev_warn(&h->pdev->dev,
8281 "lockup detected after %d but scratchpad register is zero\n",
8282 h->heartbeat_sample_interval / HZ);
8283 lockup_detected = 0xffffffff;
8285 set_lockup_detected_for_all_cpus(h, lockup_detected);
8286 spin_unlock_irqrestore(&h->lock, flags);
8287 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8288 lockup_detected, h->heartbeat_sample_interval / HZ);
8289 if (lockup_detected == 0xffff0000) {
8290 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8291 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8293 pci_disable_device(h->pdev);
8294 fail_all_outstanding_cmds(h);
8297 static int detect_controller_lockup(struct ctlr_info *h)
8301 unsigned long flags;
8303 now = get_jiffies_64();
8304 /* If we've received an interrupt recently, we're ok. */
8305 if (time_after64(h->last_intr_timestamp +
8306 (h->heartbeat_sample_interval), now))
8310 * If we've already checked the heartbeat recently, we're ok.
8311 * This could happen if someone sends us a signal. We
8312 * otherwise don't care about signals in this thread.
8314 if (time_after64(h->last_heartbeat_timestamp +
8315 (h->heartbeat_sample_interval), now))
8318 /* If heartbeat has not changed since we last looked, we're not ok. */
8319 spin_lock_irqsave(&h->lock, flags);
8320 heartbeat = readl(&h->cfgtable->HeartBeat);
8321 spin_unlock_irqrestore(&h->lock, flags);
8322 if (h->last_heartbeat == heartbeat) {
8323 controller_lockup_detected(h);
8328 h->last_heartbeat = heartbeat;
8329 h->last_heartbeat_timestamp = now;
8334 * Set ioaccel status for all ioaccel volumes.
8336 * Called from monitor controller worker (hpsa_event_monitor_worker)
8338 * A Volume (or Volumes that comprise an Array set) may be undergoing a
8339 * transformation, so we will be turning off ioaccel for all volumes that
8340 * make up the Array.
8342 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8348 struct hpsa_scsi_dev_t *device;
8353 buf = kmalloc(64, GFP_KERNEL);
8358 * Run through current device list used during I/O requests.
8360 for (i = 0; i < h->ndevices; i++) {
8361 int offload_to_be_enabled = 0;
8362 int offload_config = 0;
8368 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8369 HPSA_VPD_LV_IOACCEL_STATUS))
8374 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8375 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8380 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8383 * Check if offload is still configured on
8386 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8388 * If offload is configured on, check to see if ioaccel
8389 * needs to be enabled.
8392 offload_to_be_enabled =
8393 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8396 * If ioaccel is to be re-enabled, re-enable later during the
8397 * scan operation so the driver can get a fresh raidmap
8398 * before turning ioaccel back on.
8400 if (offload_to_be_enabled)
8404 * Immediately turn off ioaccel for any volume the
8405 * controller tells us to. Some of the reasons could be:
8406 * transformation - change to the LVs of an Array.
8407 * degraded volume - component failure
8409 hpsa_turn_off_ioaccel_for_device(device);
8415 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8419 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8422 /* Ask the controller to clear the events we're handling. */
8423 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8424 | CFGTBL_Trans_io_accel2)) &&
8425 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8426 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8428 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8429 event_type = "state change";
8430 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8431 event_type = "configuration change";
8432 /* Stop sending new RAID offload reqs via the IO accelerator */
8433 scsi_block_requests(h->scsi_host);
8434 hpsa_set_ioaccel_status(h);
8435 hpsa_drain_accel_commands(h);
8436 /* Set 'accelerator path config change' bit */
8437 dev_warn(&h->pdev->dev,
8438 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8439 h->events, event_type);
8440 writel(h->events, &(h->cfgtable->clear_event_notify));
8441 /* Set the "clear event notify field update" bit 6 */
8442 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8443 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8444 hpsa_wait_for_clear_event_notify_ack(h);
8445 scsi_unblock_requests(h->scsi_host);
8447 /* Acknowledge controller notification events. */
8448 writel(h->events, &(h->cfgtable->clear_event_notify));
8449 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8450 hpsa_wait_for_clear_event_notify_ack(h);
8455 /* Check a register on the controller to see if there are configuration
8456 * changes (added/changed/removed logical drives, etc.) which mean that
8457 * we should rescan the controller for devices.
8458 * Also check flag for driver-initiated rescan.
8460 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8462 if (h->drv_req_rescan) {
8463 h->drv_req_rescan = 0;
8467 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8470 h->events = readl(&(h->cfgtable->event_notify));
8471 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8475 * Check if any of the offline devices have become ready
8477 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8479 unsigned long flags;
8480 struct offline_device_entry *d;
8481 struct list_head *this, *tmp;
8483 spin_lock_irqsave(&h->offline_device_lock, flags);
8484 list_for_each_safe(this, tmp, &h->offline_device_list) {
8485 d = list_entry(this, struct offline_device_entry,
8487 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8488 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8489 spin_lock_irqsave(&h->offline_device_lock, flags);
8490 list_del(&d->offline_list);
8491 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8494 spin_lock_irqsave(&h->offline_device_lock, flags);
8496 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8500 static int hpsa_luns_changed(struct ctlr_info *h)
8502 int rc = 1; /* assume there are changes */
8503 struct ReportLUNdata *logdev = NULL;
8505 /* if we can't find out if lun data has changed,
8506 * assume that it has.
8509 if (!h->lastlogicals)
8512 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8516 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8517 dev_warn(&h->pdev->dev,
8518 "report luns failed, can't track lun changes.\n");
8521 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8522 dev_info(&h->pdev->dev,
8523 "Lun changes detected.\n");
8524 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8527 rc = 0; /* no changes detected. */
8533 static void hpsa_perform_rescan(struct ctlr_info *h)
8535 struct Scsi_Host *sh = NULL;
8536 unsigned long flags;
8539 * Do the scan after the reset
8541 spin_lock_irqsave(&h->reset_lock, flags);
8542 if (h->reset_in_progress) {
8543 h->drv_req_rescan = 1;
8544 spin_unlock_irqrestore(&h->reset_lock, flags);
8547 spin_unlock_irqrestore(&h->reset_lock, flags);
8549 sh = scsi_host_get(h->scsi_host);
8551 hpsa_scan_start(sh);
8553 h->drv_req_rescan = 0;
8558 * watch for controller events
8560 static void hpsa_event_monitor_worker(struct work_struct *work)
8562 struct ctlr_info *h = container_of(to_delayed_work(work),
8563 struct ctlr_info, event_monitor_work);
8564 unsigned long flags;
8566 spin_lock_irqsave(&h->lock, flags);
8567 if (h->remove_in_progress) {
8568 spin_unlock_irqrestore(&h->lock, flags);
8571 spin_unlock_irqrestore(&h->lock, flags);
8573 if (hpsa_ctlr_needs_rescan(h)) {
8574 hpsa_ack_ctlr_events(h);
8575 hpsa_perform_rescan(h);
8578 spin_lock_irqsave(&h->lock, flags);
8579 if (!h->remove_in_progress)
8580 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8581 HPSA_EVENT_MONITOR_INTERVAL);
8582 spin_unlock_irqrestore(&h->lock, flags);
8585 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8587 unsigned long flags;
8588 struct ctlr_info *h = container_of(to_delayed_work(work),
8589 struct ctlr_info, rescan_ctlr_work);
8591 spin_lock_irqsave(&h->lock, flags);
8592 if (h->remove_in_progress) {
8593 spin_unlock_irqrestore(&h->lock, flags);
8596 spin_unlock_irqrestore(&h->lock, flags);
8598 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8599 hpsa_perform_rescan(h);
8600 } else if (h->discovery_polling) {
8601 if (hpsa_luns_changed(h)) {
8602 dev_info(&h->pdev->dev,
8603 "driver discovery polling rescan.\n");
8604 hpsa_perform_rescan(h);
8607 spin_lock_irqsave(&h->lock, flags);
8608 if (!h->remove_in_progress)
8609 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8610 h->heartbeat_sample_interval);
8611 spin_unlock_irqrestore(&h->lock, flags);
8614 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8616 unsigned long flags;
8617 struct ctlr_info *h = container_of(to_delayed_work(work),
8618 struct ctlr_info, monitor_ctlr_work);
8620 detect_controller_lockup(h);
8621 if (lockup_detected(h))
8624 spin_lock_irqsave(&h->lock, flags);
8625 if (!h->remove_in_progress)
8626 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8627 h->heartbeat_sample_interval);
8628 spin_unlock_irqrestore(&h->lock, flags);
8631 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8634 struct workqueue_struct *wq = NULL;
8636 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8638 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8643 static void hpda_free_ctlr_info(struct ctlr_info *h)
8645 kfree(h->reply_map);
8649 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8651 struct ctlr_info *h;
8653 h = kzalloc(sizeof(*h), GFP_KERNEL);
8657 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8658 if (!h->reply_map) {
8665 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8668 struct ctlr_info *h;
8669 int try_soft_reset = 0;
8670 unsigned long flags;
8673 if (number_of_controllers == 0)
8674 printk(KERN_INFO DRIVER_NAME "\n");
8676 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8678 dev_warn(&pdev->dev, "Board ID not found\n");
8682 rc = hpsa_init_reset_devices(pdev, board_id);
8684 if (rc != -ENOTSUPP)
8686 /* If the reset fails in a particular way (it has no way to do
8687 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8688 * a soft reset once we get the controller configured up to the
8689 * point that it can accept a command.
8695 reinit_after_soft_reset:
8697 /* Command structures must be aligned on a 32-byte boundary because
8698 * the 5 lower bits of the address are used by the hardware. and by
8699 * the driver. See comments in hpsa.h for more info.
8701 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8702 h = hpda_alloc_ctlr_info();
8704 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8710 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8711 INIT_LIST_HEAD(&h->offline_device_list);
8712 spin_lock_init(&h->lock);
8713 spin_lock_init(&h->offline_device_lock);
8714 spin_lock_init(&h->scan_lock);
8715 spin_lock_init(&h->reset_lock);
8716 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8718 /* Allocate and clear per-cpu variable lockup_detected */
8719 h->lockup_detected = alloc_percpu(u32);
8720 if (!h->lockup_detected) {
8721 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8723 goto clean1; /* aer/h */
8725 set_lockup_detected_for_all_cpus(h, 0);
8727 rc = hpsa_pci_init(h);
8729 goto clean2; /* lu, aer/h */
8731 /* relies on h-> settings made by hpsa_pci_init, including
8732 * interrupt_mode h->intr */
8733 rc = hpsa_scsi_host_alloc(h);
8735 goto clean2_5; /* pci, lu, aer/h */
8737 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8738 h->ctlr = number_of_controllers;
8739 number_of_controllers++;
8741 /* configure PCI DMA stuff */
8742 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8744 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8746 dev_err(&pdev->dev, "no suitable DMA available\n");
8747 goto clean3; /* shost, pci, lu, aer/h */
8751 /* make sure the board interrupts are off */
8752 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8754 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8756 goto clean3; /* shost, pci, lu, aer/h */
8757 rc = hpsa_alloc_cmd_pool(h);
8759 goto clean4; /* irq, shost, pci, lu, aer/h */
8760 rc = hpsa_alloc_sg_chain_blocks(h);
8762 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8763 init_waitqueue_head(&h->scan_wait_queue);
8764 init_waitqueue_head(&h->event_sync_wait_queue);
8765 mutex_init(&h->reset_mutex);
8766 h->scan_finished = 1; /* no scan currently in progress */
8767 h->scan_waiting = 0;
8769 pci_set_drvdata(pdev, h);
8772 spin_lock_init(&h->devlock);
8773 rc = hpsa_put_ctlr_into_performant_mode(h);
8775 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8777 /* create the resubmit workqueue */
8778 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8779 if (!h->rescan_ctlr_wq) {
8784 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8785 if (!h->resubmit_wq) {
8787 goto clean7; /* aer/h */
8790 h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8791 if (!h->monitor_ctlr_wq) {
8797 * At this point, the controller is ready to take commands.
8798 * Now, if reset_devices and the hard reset didn't work, try
8799 * the soft reset and see if that works.
8801 if (try_soft_reset) {
8803 /* This is kind of gross. We may or may not get a completion
8804 * from the soft reset command, and if we do, then the value
8805 * from the fifo may or may not be valid. So, we wait 10 secs
8806 * after the reset throwing away any completions we get during
8807 * that time. Unregister the interrupt handler and register
8808 * fake ones to scoop up any residual completions.
8810 spin_lock_irqsave(&h->lock, flags);
8811 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8812 spin_unlock_irqrestore(&h->lock, flags);
8814 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8815 hpsa_intx_discard_completions);
8817 dev_warn(&h->pdev->dev,
8818 "Failed to request_irq after soft reset.\n");
8820 * cannot goto clean7 or free_irqs will be called
8821 * again. Instead, do its work
8823 hpsa_free_performant_mode(h); /* clean7 */
8824 hpsa_free_sg_chain_blocks(h); /* clean6 */
8825 hpsa_free_cmd_pool(h); /* clean5 */
8827 * skip hpsa_free_irqs(h) clean4 since that
8828 * was just called before request_irqs failed
8833 rc = hpsa_kdump_soft_reset(h);
8835 /* Neither hard nor soft reset worked, we're hosed. */
8838 dev_info(&h->pdev->dev, "Board READY.\n");
8839 dev_info(&h->pdev->dev,
8840 "Waiting for stale completions to drain.\n");
8841 h->access.set_intr_mask(h, HPSA_INTR_ON);
8843 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8845 rc = controller_reset_failed(h->cfgtable);
8847 dev_info(&h->pdev->dev,
8848 "Soft reset appears to have failed.\n");
8850 /* since the controller's reset, we have to go back and re-init
8851 * everything. Easiest to just forget what we've done and do it
8854 hpsa_undo_allocations_after_kdump_soft_reset(h);
8857 /* don't goto clean, we already unallocated */
8860 goto reinit_after_soft_reset;
8863 /* Enable Accelerated IO path at driver layer */
8864 h->acciopath_status = 1;
8865 /* Disable discovery polling.*/
8866 h->discovery_polling = 0;
8869 /* Turn the interrupts on so we can service requests */
8870 h->access.set_intr_mask(h, HPSA_INTR_ON);
8872 hpsa_hba_inquiry(h);
8874 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8875 if (!h->lastlogicals)
8876 dev_info(&h->pdev->dev,
8877 "Can't track change to report lun data\n");
8879 /* hook into SCSI subsystem */
8880 rc = hpsa_scsi_add_host(h);
8882 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8884 /* Monitor the controller for firmware lockups */
8885 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8886 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8887 schedule_delayed_work(&h->monitor_ctlr_work,
8888 h->heartbeat_sample_interval);
8889 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8890 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8891 h->heartbeat_sample_interval);
8892 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8893 schedule_delayed_work(&h->event_monitor_work,
8894 HPSA_EVENT_MONITOR_INTERVAL);
8897 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8898 kfree(h->lastlogicals);
8899 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8900 hpsa_free_performant_mode(h);
8901 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8902 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8903 hpsa_free_sg_chain_blocks(h);
8904 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8905 hpsa_free_cmd_pool(h);
8906 clean4: /* irq, shost, pci, lu, aer/h */
8908 clean3: /* shost, pci, lu, aer/h */
8909 scsi_host_put(h->scsi_host);
8910 h->scsi_host = NULL;
8911 clean2_5: /* pci, lu, aer/h */
8912 hpsa_free_pci_init(h);
8913 clean2: /* lu, aer/h */
8914 if (h->lockup_detected) {
8915 free_percpu(h->lockup_detected);
8916 h->lockup_detected = NULL;
8918 clean1: /* wq/aer/h */
8919 if (h->resubmit_wq) {
8920 destroy_workqueue(h->resubmit_wq);
8921 h->resubmit_wq = NULL;
8923 if (h->rescan_ctlr_wq) {
8924 destroy_workqueue(h->rescan_ctlr_wq);
8925 h->rescan_ctlr_wq = NULL;
8927 if (h->monitor_ctlr_wq) {
8928 destroy_workqueue(h->monitor_ctlr_wq);
8929 h->monitor_ctlr_wq = NULL;
8935 static void hpsa_flush_cache(struct ctlr_info *h)
8938 struct CommandList *c;
8941 if (unlikely(lockup_detected(h)))
8943 flush_buf = kzalloc(4, GFP_KERNEL);
8949 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8950 RAID_CTLR_LUNID, TYPE_CMD)) {
8953 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8957 if (c->err_info->CommandStatus != 0)
8959 dev_warn(&h->pdev->dev,
8960 "error flushing cache on controller\n");
8965 /* Make controller gather fresh report lun data each time we
8966 * send down a report luns request
8968 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8971 struct CommandList *c;
8974 /* Don't bother trying to set diag options if locked up */
8975 if (unlikely(h->lockup_detected))
8978 options = kzalloc(sizeof(*options), GFP_KERNEL);
8984 /* first, get the current diag options settings */
8985 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8986 RAID_CTLR_LUNID, TYPE_CMD))
8989 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8991 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8994 /* Now, set the bit for disabling the RLD caching */
8995 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8997 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8998 RAID_CTLR_LUNID, TYPE_CMD))
9001 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
9003 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9006 /* Now verify that it got set: */
9007 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9008 RAID_CTLR_LUNID, TYPE_CMD))
9011 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9013 if ((rc != 0) || (c->err_info->CommandStatus != 0))
9016 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9020 dev_err(&h->pdev->dev,
9021 "Error: failed to disable report lun data caching.\n");
9027 static void __hpsa_shutdown(struct pci_dev *pdev)
9029 struct ctlr_info *h;
9031 h = pci_get_drvdata(pdev);
9032 /* Turn board interrupts off and send the flush cache command
9033 * sendcmd will turn off interrupt, and send the flush...
9034 * To write all data in the battery backed cache to disks
9036 hpsa_flush_cache(h);
9037 h->access.set_intr_mask(h, HPSA_INTR_OFF);
9038 hpsa_free_irqs(h); /* init_one 4 */
9039 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
9042 static void hpsa_shutdown(struct pci_dev *pdev)
9044 __hpsa_shutdown(pdev);
9045 pci_disable_device(pdev);
9048 static void hpsa_free_device_info(struct ctlr_info *h)
9052 for (i = 0; i < h->ndevices; i++) {
9058 static void hpsa_remove_one(struct pci_dev *pdev)
9060 struct ctlr_info *h;
9061 unsigned long flags;
9063 if (pci_get_drvdata(pdev) == NULL) {
9064 dev_err(&pdev->dev, "unable to remove device\n");
9067 h = pci_get_drvdata(pdev);
9069 /* Get rid of any controller monitoring work items */
9070 spin_lock_irqsave(&h->lock, flags);
9071 h->remove_in_progress = 1;
9072 spin_unlock_irqrestore(&h->lock, flags);
9073 cancel_delayed_work_sync(&h->monitor_ctlr_work);
9074 cancel_delayed_work_sync(&h->rescan_ctlr_work);
9075 cancel_delayed_work_sync(&h->event_monitor_work);
9076 destroy_workqueue(h->rescan_ctlr_wq);
9077 destroy_workqueue(h->resubmit_wq);
9078 destroy_workqueue(h->monitor_ctlr_wq);
9080 hpsa_delete_sas_host(h);
9083 * Call before disabling interrupts.
9084 * scsi_remove_host can trigger I/O operations especially
9085 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9086 * operations which cannot complete and will hang the system.
9089 scsi_remove_host(h->scsi_host); /* init_one 8 */
9090 /* includes hpsa_free_irqs - init_one 4 */
9091 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9092 __hpsa_shutdown(pdev);
9094 hpsa_free_device_info(h); /* scan */
9096 kfree(h->hba_inquiry_data); /* init_one 10 */
9097 h->hba_inquiry_data = NULL; /* init_one 10 */
9098 hpsa_free_ioaccel2_sg_chain_blocks(h);
9099 hpsa_free_performant_mode(h); /* init_one 7 */
9100 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
9101 hpsa_free_cmd_pool(h); /* init_one 5 */
9102 kfree(h->lastlogicals);
9104 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9106 scsi_host_put(h->scsi_host); /* init_one 3 */
9107 h->scsi_host = NULL; /* init_one 3 */
9109 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9110 hpsa_free_pci_init(h); /* init_one 2.5 */
9112 free_percpu(h->lockup_detected); /* init_one 2 */
9113 h->lockup_detected = NULL; /* init_one 2 */
9114 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9116 hpda_free_ctlr_info(h); /* init_one 1 */
9119 static int __maybe_unused hpsa_suspend(
9120 __attribute__((unused)) struct device *dev)
9125 static int __maybe_unused hpsa_resume
9126 (__attribute__((unused)) struct device *dev)
9131 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9133 static struct pci_driver hpsa_pci_driver = {
9135 .probe = hpsa_init_one,
9136 .remove = hpsa_remove_one,
9137 .id_table = hpsa_pci_device_id, /* id_table */
9138 .shutdown = hpsa_shutdown,
9139 .driver.pm = &hpsa_pm_ops,
9142 /* Fill in bucket_map[], given nsgs (the max number of
9143 * scatter gather elements supported) and bucket[],
9144 * which is an array of 8 integers. The bucket[] array
9145 * contains 8 different DMA transfer sizes (in 16
9146 * byte increments) which the controller uses to fetch
9147 * commands. This function fills in bucket_map[], which
9148 * maps a given number of scatter gather elements to one of
9149 * the 8 DMA transfer sizes. The point of it is to allow the
9150 * controller to only do as much DMA as needed to fetch the
9151 * command, with the DMA transfer size encoded in the lower
9152 * bits of the command address.
9154 static void calc_bucket_map(int bucket[], int num_buckets,
9155 int nsgs, int min_blocks, u32 *bucket_map)
9159 /* Note, bucket_map must have nsgs+1 entries. */
9160 for (i = 0; i <= nsgs; i++) {
9161 /* Compute size of a command with i SG entries */
9162 size = i + min_blocks;
9163 b = num_buckets; /* Assume the biggest bucket */
9164 /* Find the bucket that is just big enough */
9165 for (j = 0; j < num_buckets; j++) {
9166 if (bucket[j] >= size) {
9171 /* for a command with i SG entries, use bucket b. */
9177 * return -ENODEV on err, 0 on success (or no action)
9178 * allocates numerous items that must be freed later
9180 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9183 unsigned long register_value;
9184 unsigned long transMethod = CFGTBL_Trans_Performant |
9185 (trans_support & CFGTBL_Trans_use_short_tags) |
9186 CFGTBL_Trans_enable_directed_msix |
9187 (trans_support & (CFGTBL_Trans_io_accel1 |
9188 CFGTBL_Trans_io_accel2));
9189 struct access_method access = SA5_performant_access;
9191 /* This is a bit complicated. There are 8 registers on
9192 * the controller which we write to to tell it 8 different
9193 * sizes of commands which there may be. It's a way of
9194 * reducing the DMA done to fetch each command. Encoded into
9195 * each command's tag are 3 bits which communicate to the controller
9196 * which of the eight sizes that command fits within. The size of
9197 * each command depends on how many scatter gather entries there are.
9198 * Each SG entry requires 16 bytes. The eight registers are programmed
9199 * with the number of 16-byte blocks a command of that size requires.
9200 * The smallest command possible requires 5 such 16 byte blocks.
9201 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9202 * blocks. Note, this only extends to the SG entries contained
9203 * within the command block, and does not extend to chained blocks
9204 * of SG elements. bft[] contains the eight values we write to
9205 * the registers. They are not evenly distributed, but have more
9206 * sizes for small commands, and fewer sizes for larger commands.
9208 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9209 #define MIN_IOACCEL2_BFT_ENTRY 5
9210 #define HPSA_IOACCEL2_HEADER_SZ 4
9211 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9212 13, 14, 15, 16, 17, 18, 19,
9213 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9214 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9215 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9216 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9217 16 * MIN_IOACCEL2_BFT_ENTRY);
9218 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9219 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9220 /* 5 = 1 s/g entry or 4k
9221 * 6 = 2 s/g entry or 8k
9222 * 8 = 4 s/g entry or 16k
9223 * 10 = 6 s/g entry or 24k
9226 /* If the controller supports either ioaccel method then
9227 * we can also use the RAID stack submit path that does not
9228 * perform the superfluous readl() after each command submission.
9230 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9231 access = SA5_performant_access_no_read;
9233 /* Controller spec: zero out this buffer. */
9234 for (i = 0; i < h->nreply_queues; i++)
9235 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9237 bft[7] = SG_ENTRIES_IN_CMD + 4;
9238 calc_bucket_map(bft, ARRAY_SIZE(bft),
9239 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9240 for (i = 0; i < 8; i++)
9241 writel(bft[i], &h->transtable->BlockFetch[i]);
9243 /* size of controller ring buffer */
9244 writel(h->max_commands, &h->transtable->RepQSize);
9245 writel(h->nreply_queues, &h->transtable->RepQCount);
9246 writel(0, &h->transtable->RepQCtrAddrLow32);
9247 writel(0, &h->transtable->RepQCtrAddrHigh32);
9249 for (i = 0; i < h->nreply_queues; i++) {
9250 writel(0, &h->transtable->RepQAddr[i].upper);
9251 writel(h->reply_queue[i].busaddr,
9252 &h->transtable->RepQAddr[i].lower);
9255 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9256 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9258 * enable outbound interrupt coalescing in accelerator mode;
9260 if (trans_support & CFGTBL_Trans_io_accel1) {
9261 access = SA5_ioaccel_mode1_access;
9262 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9263 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9265 if (trans_support & CFGTBL_Trans_io_accel2)
9266 access = SA5_ioaccel_mode2_access;
9267 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9268 if (hpsa_wait_for_mode_change_ack(h)) {
9269 dev_err(&h->pdev->dev,
9270 "performant mode problem - doorbell timeout\n");
9273 register_value = readl(&(h->cfgtable->TransportActive));
9274 if (!(register_value & CFGTBL_Trans_Performant)) {
9275 dev_err(&h->pdev->dev,
9276 "performant mode problem - transport not active\n");
9279 /* Change the access methods to the performant access methods */
9281 h->transMethod = transMethod;
9283 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9284 (trans_support & CFGTBL_Trans_io_accel2)))
9287 if (trans_support & CFGTBL_Trans_io_accel1) {
9288 /* Set up I/O accelerator mode */
9289 for (i = 0; i < h->nreply_queues; i++) {
9290 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9291 h->reply_queue[i].current_entry =
9292 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9294 bft[7] = h->ioaccel_maxsg + 8;
9295 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9296 h->ioaccel1_blockFetchTable);
9298 /* initialize all reply queue entries to unused */
9299 for (i = 0; i < h->nreply_queues; i++)
9300 memset(h->reply_queue[i].head,
9301 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9302 h->reply_queue_size);
9304 /* set all the constant fields in the accelerator command
9305 * frames once at init time to save CPU cycles later.
9307 for (i = 0; i < h->nr_cmds; i++) {
9308 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9310 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9311 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9312 (i * sizeof(struct ErrorInfo)));
9313 cp->err_info_len = sizeof(struct ErrorInfo);
9314 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9315 cp->host_context_flags =
9316 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9317 cp->timeout_sec = 0;
9320 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9322 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9323 (i * sizeof(struct io_accel1_cmd)));
9325 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9326 u64 cfg_offset, cfg_base_addr_index;
9327 u32 bft2_offset, cfg_base_addr;
9329 hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9330 &cfg_base_addr_index, &cfg_offset);
9331 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9332 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9333 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9334 4, h->ioaccel2_blockFetchTable);
9335 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9336 BUILD_BUG_ON(offsetof(struct CfgTable,
9337 io_accel_request_size_offset) != 0xb8);
9338 h->ioaccel2_bft2_regs =
9339 remap_pci_mem(pci_resource_start(h->pdev,
9340 cfg_base_addr_index) +
9341 cfg_offset + bft2_offset,
9343 sizeof(*h->ioaccel2_bft2_regs));
9344 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9345 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9347 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9348 if (hpsa_wait_for_mode_change_ack(h)) {
9349 dev_err(&h->pdev->dev,
9350 "performant mode problem - enabling ioaccel mode\n");
9356 /* Free ioaccel1 mode command blocks and block fetch table */
9357 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9359 if (h->ioaccel_cmd_pool) {
9360 dma_free_coherent(&h->pdev->dev,
9361 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9362 h->ioaccel_cmd_pool,
9363 h->ioaccel_cmd_pool_dhandle);
9364 h->ioaccel_cmd_pool = NULL;
9365 h->ioaccel_cmd_pool_dhandle = 0;
9367 kfree(h->ioaccel1_blockFetchTable);
9368 h->ioaccel1_blockFetchTable = NULL;
9371 /* Allocate ioaccel1 mode command blocks and block fetch table */
9372 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9375 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9376 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9377 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9379 /* Command structures must be aligned on a 128-byte boundary
9380 * because the 7 lower bits of the address are used by the
9383 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9384 IOACCEL1_COMMANDLIST_ALIGNMENT);
9385 h->ioaccel_cmd_pool =
9386 dma_alloc_coherent(&h->pdev->dev,
9387 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9388 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9390 h->ioaccel1_blockFetchTable =
9391 kmalloc(((h->ioaccel_maxsg + 1) *
9392 sizeof(u32)), GFP_KERNEL);
9394 if ((h->ioaccel_cmd_pool == NULL) ||
9395 (h->ioaccel1_blockFetchTable == NULL))
9398 memset(h->ioaccel_cmd_pool, 0,
9399 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9403 hpsa_free_ioaccel1_cmd_and_bft(h);
9407 /* Free ioaccel2 mode command blocks and block fetch table */
9408 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9410 hpsa_free_ioaccel2_sg_chain_blocks(h);
9412 if (h->ioaccel2_cmd_pool) {
9413 dma_free_coherent(&h->pdev->dev,
9414 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9415 h->ioaccel2_cmd_pool,
9416 h->ioaccel2_cmd_pool_dhandle);
9417 h->ioaccel2_cmd_pool = NULL;
9418 h->ioaccel2_cmd_pool_dhandle = 0;
9420 kfree(h->ioaccel2_blockFetchTable);
9421 h->ioaccel2_blockFetchTable = NULL;
9424 /* Allocate ioaccel2 mode command blocks and block fetch table */
9425 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9429 /* Allocate ioaccel2 mode command blocks and block fetch table */
9432 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9433 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9434 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9436 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9437 IOACCEL2_COMMANDLIST_ALIGNMENT);
9438 h->ioaccel2_cmd_pool =
9439 dma_alloc_coherent(&h->pdev->dev,
9440 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9441 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9443 h->ioaccel2_blockFetchTable =
9444 kmalloc(((h->ioaccel_maxsg + 1) *
9445 sizeof(u32)), GFP_KERNEL);
9447 if ((h->ioaccel2_cmd_pool == NULL) ||
9448 (h->ioaccel2_blockFetchTable == NULL)) {
9453 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9457 memset(h->ioaccel2_cmd_pool, 0,
9458 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9462 hpsa_free_ioaccel2_cmd_and_bft(h);
9466 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9467 static void hpsa_free_performant_mode(struct ctlr_info *h)
9469 kfree(h->blockFetchTable);
9470 h->blockFetchTable = NULL;
9471 hpsa_free_reply_queues(h);
9472 hpsa_free_ioaccel1_cmd_and_bft(h);
9473 hpsa_free_ioaccel2_cmd_and_bft(h);
9476 /* return -ENODEV on error, 0 on success (or no action)
9477 * allocates numerous items that must be freed later
9479 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9482 unsigned long transMethod = CFGTBL_Trans_Performant |
9483 CFGTBL_Trans_use_short_tags;
9486 if (hpsa_simple_mode)
9489 trans_support = readl(&(h->cfgtable->TransportSupport));
9490 if (!(trans_support & PERFORMANT_MODE))
9493 /* Check for I/O accelerator mode support */
9494 if (trans_support & CFGTBL_Trans_io_accel1) {
9495 transMethod |= CFGTBL_Trans_io_accel1 |
9496 CFGTBL_Trans_enable_directed_msix;
9497 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9500 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9501 transMethod |= CFGTBL_Trans_io_accel2 |
9502 CFGTBL_Trans_enable_directed_msix;
9503 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9508 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9509 hpsa_get_max_perf_mode_cmds(h);
9510 /* Performant mode ring buffer and supporting data structures */
9511 h->reply_queue_size = h->max_commands * sizeof(u64);
9513 for (i = 0; i < h->nreply_queues; i++) {
9514 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9515 h->reply_queue_size,
9516 &h->reply_queue[i].busaddr,
9518 if (!h->reply_queue[i].head) {
9520 goto clean1; /* rq, ioaccel */
9522 h->reply_queue[i].size = h->max_commands;
9523 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9524 h->reply_queue[i].current_entry = 0;
9527 /* Need a block fetch table for performant mode */
9528 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9529 sizeof(u32)), GFP_KERNEL);
9530 if (!h->blockFetchTable) {
9532 goto clean1; /* rq, ioaccel */
9535 rc = hpsa_enter_performant_mode(h, trans_support);
9537 goto clean2; /* bft, rq, ioaccel */
9540 clean2: /* bft, rq, ioaccel */
9541 kfree(h->blockFetchTable);
9542 h->blockFetchTable = NULL;
9543 clean1: /* rq, ioaccel */
9544 hpsa_free_reply_queues(h);
9545 hpsa_free_ioaccel1_cmd_and_bft(h);
9546 hpsa_free_ioaccel2_cmd_and_bft(h);
9550 static int is_accelerated_cmd(struct CommandList *c)
9552 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9555 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9557 struct CommandList *c = NULL;
9558 int i, accel_cmds_out;
9561 do { /* wait for all outstanding ioaccel commands to drain out */
9563 for (i = 0; i < h->nr_cmds; i++) {
9564 c = h->cmd_pool + i;
9565 refcount = atomic_inc_return(&c->refcount);
9566 if (refcount > 1) /* Command is allocated */
9567 accel_cmds_out += is_accelerated_cmd(c);
9570 if (accel_cmds_out <= 0)
9576 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9577 struct hpsa_sas_port *hpsa_sas_port)
9579 struct hpsa_sas_phy *hpsa_sas_phy;
9580 struct sas_phy *phy;
9582 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9586 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9587 hpsa_sas_port->next_phy_index);
9589 kfree(hpsa_sas_phy);
9593 hpsa_sas_port->next_phy_index++;
9594 hpsa_sas_phy->phy = phy;
9595 hpsa_sas_phy->parent_port = hpsa_sas_port;
9597 return hpsa_sas_phy;
9600 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9602 struct sas_phy *phy = hpsa_sas_phy->phy;
9604 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9605 if (hpsa_sas_phy->added_to_port)
9606 list_del(&hpsa_sas_phy->phy_list_entry);
9607 sas_phy_delete(phy);
9608 kfree(hpsa_sas_phy);
9611 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9614 struct hpsa_sas_port *hpsa_sas_port;
9615 struct sas_phy *phy;
9616 struct sas_identify *identify;
9618 hpsa_sas_port = hpsa_sas_phy->parent_port;
9619 phy = hpsa_sas_phy->phy;
9621 identify = &phy->identify;
9622 memset(identify, 0, sizeof(*identify));
9623 identify->sas_address = hpsa_sas_port->sas_address;
9624 identify->device_type = SAS_END_DEVICE;
9625 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9626 identify->target_port_protocols = SAS_PROTOCOL_STP;
9627 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9628 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9629 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9630 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9631 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9633 rc = sas_phy_add(hpsa_sas_phy->phy);
9637 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9638 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9639 &hpsa_sas_port->phy_list_head);
9640 hpsa_sas_phy->added_to_port = true;
9646 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9647 struct sas_rphy *rphy)
9649 struct sas_identify *identify;
9651 identify = &rphy->identify;
9652 identify->sas_address = hpsa_sas_port->sas_address;
9653 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9654 identify->target_port_protocols = SAS_PROTOCOL_STP;
9656 return sas_rphy_add(rphy);
9659 static struct hpsa_sas_port
9660 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9664 struct hpsa_sas_port *hpsa_sas_port;
9665 struct sas_port *port;
9667 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9671 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9672 hpsa_sas_port->parent_node = hpsa_sas_node;
9674 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9676 goto free_hpsa_port;
9678 rc = sas_port_add(port);
9682 hpsa_sas_port->port = port;
9683 hpsa_sas_port->sas_address = sas_address;
9684 list_add_tail(&hpsa_sas_port->port_list_entry,
9685 &hpsa_sas_node->port_list_head);
9687 return hpsa_sas_port;
9690 sas_port_free(port);
9692 kfree(hpsa_sas_port);
9697 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9699 struct hpsa_sas_phy *hpsa_sas_phy;
9700 struct hpsa_sas_phy *next;
9702 list_for_each_entry_safe(hpsa_sas_phy, next,
9703 &hpsa_sas_port->phy_list_head, phy_list_entry)
9704 hpsa_free_sas_phy(hpsa_sas_phy);
9706 sas_port_delete(hpsa_sas_port->port);
9707 list_del(&hpsa_sas_port->port_list_entry);
9708 kfree(hpsa_sas_port);
9711 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9713 struct hpsa_sas_node *hpsa_sas_node;
9715 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9716 if (hpsa_sas_node) {
9717 hpsa_sas_node->parent_dev = parent_dev;
9718 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9721 return hpsa_sas_node;
9724 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9726 struct hpsa_sas_port *hpsa_sas_port;
9727 struct hpsa_sas_port *next;
9732 list_for_each_entry_safe(hpsa_sas_port, next,
9733 &hpsa_sas_node->port_list_head, port_list_entry)
9734 hpsa_free_sas_port(hpsa_sas_port);
9736 kfree(hpsa_sas_node);
9739 static struct hpsa_scsi_dev_t
9740 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9741 struct sas_rphy *rphy)
9744 struct hpsa_scsi_dev_t *device;
9746 for (i = 0; i < h->ndevices; i++) {
9748 if (!device->sas_port)
9750 if (device->sas_port->rphy == rphy)
9757 static int hpsa_add_sas_host(struct ctlr_info *h)
9760 struct device *parent_dev;
9761 struct hpsa_sas_node *hpsa_sas_node;
9762 struct hpsa_sas_port *hpsa_sas_port;
9763 struct hpsa_sas_phy *hpsa_sas_phy;
9765 parent_dev = &h->scsi_host->shost_dev;
9767 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9771 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9772 if (!hpsa_sas_port) {
9777 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9778 if (!hpsa_sas_phy) {
9783 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9787 h->sas_host = hpsa_sas_node;
9792 hpsa_free_sas_phy(hpsa_sas_phy);
9794 hpsa_free_sas_port(hpsa_sas_port);
9796 hpsa_free_sas_node(hpsa_sas_node);
9801 static void hpsa_delete_sas_host(struct ctlr_info *h)
9803 hpsa_free_sas_node(h->sas_host);
9806 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9807 struct hpsa_scsi_dev_t *device)
9810 struct hpsa_sas_port *hpsa_sas_port;
9811 struct sas_rphy *rphy;
9813 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9817 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9823 hpsa_sas_port->rphy = rphy;
9824 device->sas_port = hpsa_sas_port;
9826 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9833 hpsa_free_sas_port(hpsa_sas_port);
9834 device->sas_port = NULL;
9839 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9841 if (device->sas_port) {
9842 hpsa_free_sas_port(device->sas_port);
9843 device->sas_port = NULL;
9848 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9854 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9856 struct Scsi_Host *shost = phy_to_shost(rphy);
9857 struct ctlr_info *h;
9858 struct hpsa_scsi_dev_t *sd;
9863 h = shost_to_hba(shost);
9868 sd = hpsa_find_device_by_sas_rphy(h, rphy);
9872 *identifier = sd->eli;
9878 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9884 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9890 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9896 hpsa_sas_phy_setup(struct sas_phy *phy)
9902 hpsa_sas_phy_release(struct sas_phy *phy)
9907 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9912 static struct sas_function_template hpsa_sas_transport_functions = {
9913 .get_linkerrors = hpsa_sas_get_linkerrors,
9914 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9915 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9916 .phy_reset = hpsa_sas_phy_reset,
9917 .phy_enable = hpsa_sas_phy_enable,
9918 .phy_setup = hpsa_sas_phy_setup,
9919 .phy_release = hpsa_sas_phy_release,
9920 .set_phy_speed = hpsa_sas_phy_speed,
9924 * This is it. Register the PCI driver information for the cards we control
9925 * the OS will call our registered routines when it finds one of our cards.
9927 static int __init hpsa_init(void)
9931 hpsa_sas_transport_template =
9932 sas_attach_transport(&hpsa_sas_transport_functions);
9933 if (!hpsa_sas_transport_template)
9936 rc = pci_register_driver(&hpsa_pci_driver);
9939 sas_release_transport(hpsa_sas_transport_template);
9944 static void __exit hpsa_cleanup(void)
9946 pci_unregister_driver(&hpsa_pci_driver);
9947 sas_release_transport(hpsa_sas_transport_template);
9950 static void __attribute__((unused)) verify_offsets(void)
9952 #define VERIFY_OFFSET(member, offset) \
9953 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9955 VERIFY_OFFSET(structure_size, 0);
9956 VERIFY_OFFSET(volume_blk_size, 4);
9957 VERIFY_OFFSET(volume_blk_cnt, 8);
9958 VERIFY_OFFSET(phys_blk_shift, 16);
9959 VERIFY_OFFSET(parity_rotation_shift, 17);
9960 VERIFY_OFFSET(strip_size, 18);
9961 VERIFY_OFFSET(disk_starting_blk, 20);
9962 VERIFY_OFFSET(disk_blk_cnt, 28);
9963 VERIFY_OFFSET(data_disks_per_row, 36);
9964 VERIFY_OFFSET(metadata_disks_per_row, 38);
9965 VERIFY_OFFSET(row_cnt, 40);
9966 VERIFY_OFFSET(layout_map_count, 42);
9967 VERIFY_OFFSET(flags, 44);
9968 VERIFY_OFFSET(dekindex, 46);
9969 /* VERIFY_OFFSET(reserved, 48 */
9970 VERIFY_OFFSET(data, 64);
9972 #undef VERIFY_OFFSET
9974 #define VERIFY_OFFSET(member, offset) \
9975 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9977 VERIFY_OFFSET(IU_type, 0);
9978 VERIFY_OFFSET(direction, 1);
9979 VERIFY_OFFSET(reply_queue, 2);
9980 /* VERIFY_OFFSET(reserved1, 3); */
9981 VERIFY_OFFSET(scsi_nexus, 4);
9982 VERIFY_OFFSET(Tag, 8);
9983 VERIFY_OFFSET(cdb, 16);
9984 VERIFY_OFFSET(cciss_lun, 32);
9985 VERIFY_OFFSET(data_len, 40);
9986 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9987 VERIFY_OFFSET(sg_count, 45);
9988 /* VERIFY_OFFSET(reserved3 */
9989 VERIFY_OFFSET(err_ptr, 48);
9990 VERIFY_OFFSET(err_len, 56);
9991 /* VERIFY_OFFSET(reserved4 */
9992 VERIFY_OFFSET(sg, 64);
9994 #undef VERIFY_OFFSET
9996 #define VERIFY_OFFSET(member, offset) \
9997 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9999 VERIFY_OFFSET(dev_handle, 0x00);
10000 VERIFY_OFFSET(reserved1, 0x02);
10001 VERIFY_OFFSET(function, 0x03);
10002 VERIFY_OFFSET(reserved2, 0x04);
10003 VERIFY_OFFSET(err_info, 0x0C);
10004 VERIFY_OFFSET(reserved3, 0x10);
10005 VERIFY_OFFSET(err_info_len, 0x12);
10006 VERIFY_OFFSET(reserved4, 0x13);
10007 VERIFY_OFFSET(sgl_offset, 0x14);
10008 VERIFY_OFFSET(reserved5, 0x15);
10009 VERIFY_OFFSET(transfer_len, 0x1C);
10010 VERIFY_OFFSET(reserved6, 0x20);
10011 VERIFY_OFFSET(io_flags, 0x24);
10012 VERIFY_OFFSET(reserved7, 0x26);
10013 VERIFY_OFFSET(LUN, 0x34);
10014 VERIFY_OFFSET(control, 0x3C);
10015 VERIFY_OFFSET(CDB, 0x40);
10016 VERIFY_OFFSET(reserved8, 0x50);
10017 VERIFY_OFFSET(host_context_flags, 0x60);
10018 VERIFY_OFFSET(timeout_sec, 0x62);
10019 VERIFY_OFFSET(ReplyQueue, 0x64);
10020 VERIFY_OFFSET(reserved9, 0x65);
10021 VERIFY_OFFSET(tag, 0x68);
10022 VERIFY_OFFSET(host_addr, 0x70);
10023 VERIFY_OFFSET(CISS_LUN, 0x78);
10024 VERIFY_OFFSET(SG, 0x78 + 8);
10025 #undef VERIFY_OFFSET
10028 module_init(hpsa_init);
10029 module_exit(hpsa_cleanup);