Merge tag 'topic/phy-compliance-2020-04-08' of git://anongit.freedesktop.org/drm...
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.20-170"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
77
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81         HPSA_DRIVER_VERSION);
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90         "Use 'simple mode' rather than 'performant mode'");
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
150                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151         {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161         {0x40700E11, "Smart Array 5300", &SA5A_access},
162         {0x40800E11, "Smart Array 5i", &SA5B_access},
163         {0x40820E11, "Smart Array 532", &SA5B_access},
164         {0x40830E11, "Smart Array 5312", &SA5B_access},
165         {0x409A0E11, "Smart Array 641", &SA5A_access},
166         {0x409B0E11, "Smart Array 642", &SA5A_access},
167         {0x409C0E11, "Smart Array 6400", &SA5A_access},
168         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169         {0x40910E11, "Smart Array 6i", &SA5A_access},
170         {0x3225103C, "Smart Array P600", &SA5A_access},
171         {0x3223103C, "Smart Array P800", &SA5A_access},
172         {0x3234103C, "Smart Array P400", &SA5A_access},
173         {0x3235103C, "Smart Array P400i", &SA5A_access},
174         {0x3211103C, "Smart Array E200i", &SA5A_access},
175         {0x3212103C, "Smart Array E200", &SA5A_access},
176         {0x3213103C, "Smart Array E200i", &SA5A_access},
177         {0x3214103C, "Smart Array E200i", &SA5A_access},
178         {0x3215103C, "Smart Array E200i", &SA5A_access},
179         {0x3237103C, "Smart Array E500", &SA5A_access},
180         {0x323D103C, "Smart Array P700m", &SA5A_access},
181         {0x3241103C, "Smart Array P212", &SA5_access},
182         {0x3243103C, "Smart Array P410", &SA5_access},
183         {0x3245103C, "Smart Array P410i", &SA5_access},
184         {0x3247103C, "Smart Array P411", &SA5_access},
185         {0x3249103C, "Smart Array P812", &SA5_access},
186         {0x324A103C, "Smart Array P712m", &SA5_access},
187         {0x324B103C, "Smart Array P711m", &SA5_access},
188         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189         {0x3350103C, "Smart Array P222", &SA5_access},
190         {0x3351103C, "Smart Array P420", &SA5_access},
191         {0x3352103C, "Smart Array P421", &SA5_access},
192         {0x3353103C, "Smart Array P822", &SA5_access},
193         {0x3354103C, "Smart Array P420i", &SA5_access},
194         {0x3355103C, "Smart Array P220i", &SA5_access},
195         {0x3356103C, "Smart Array P721m", &SA5_access},
196         {0x1920103C, "Smart Array P430i", &SA5_access},
197         {0x1921103C, "Smart Array P830i", &SA5_access},
198         {0x1922103C, "Smart Array P430", &SA5_access},
199         {0x1923103C, "Smart Array P431", &SA5_access},
200         {0x1924103C, "Smart Array P830", &SA5_access},
201         {0x1925103C, "Smart Array P831", &SA5_access},
202         {0x1926103C, "Smart Array P731m", &SA5_access},
203         {0x1928103C, "Smart Array P230i", &SA5_access},
204         {0x1929103C, "Smart Array P530", &SA5_access},
205         {0x21BD103C, "Smart Array P244br", &SA5_access},
206         {0x21BE103C, "Smart Array P741m", &SA5_access},
207         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208         {0x21C0103C, "Smart Array P440ar", &SA5_access},
209         {0x21C1103C, "Smart Array P840ar", &SA5_access},
210         {0x21C2103C, "Smart Array P440", &SA5_access},
211         {0x21C3103C, "Smart Array P441", &SA5_access},
212         {0x21C4103C, "Smart Array", &SA5_access},
213         {0x21C5103C, "Smart Array P841", &SA5_access},
214         {0x21C6103C, "Smart HBA H244br", &SA5_access},
215         {0x21C7103C, "Smart HBA H240", &SA5_access},
216         {0x21C8103C, "Smart HBA H241", &SA5_access},
217         {0x21C9103C, "Smart Array", &SA5_access},
218         {0x21CA103C, "Smart Array P246br", &SA5_access},
219         {0x21CB103C, "Smart Array P840", &SA5_access},
220         {0x21CC103C, "Smart Array", &SA5_access},
221         {0x21CD103C, "Smart Array", &SA5_access},
222         {0x21CE103C, "Smart HBA", &SA5_access},
223         {0x05809005, "SmartHBA-SA", &SA5_access},
224         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241                         struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245                 struct sas_rphy *rphy);
246
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256                       void __user *arg);
257
258 #ifdef CONFIG_COMPAT
259 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
260         void __user *arg);
261 #endif
262
263 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_alloc(struct ctlr_info *h);
265 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
266 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
267                                             struct scsi_cmnd *scmd);
268 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
269         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
270         int cmd_type);
271 static void hpsa_free_cmd_pool(struct ctlr_info *h);
272 #define VPD_PAGE (1 << 8)
273 #define HPSA_SIMPLE_ERROR_BITS 0x03
274
275 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
276 static void hpsa_scan_start(struct Scsi_Host *);
277 static int hpsa_scan_finished(struct Scsi_Host *sh,
278         unsigned long elapsed_time);
279 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
280
281 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
282 static int hpsa_slave_alloc(struct scsi_device *sdev);
283 static int hpsa_slave_configure(struct scsi_device *sdev);
284 static void hpsa_slave_destroy(struct scsi_device *sdev);
285
286 static void hpsa_update_scsi_devices(struct ctlr_info *h);
287 static int check_for_unit_attention(struct ctlr_info *h,
288         struct CommandList *c);
289 static void check_ioctl_unit_attention(struct ctlr_info *h,
290         struct CommandList *c);
291 /* performant mode helper functions */
292 static void calc_bucket_map(int *bucket, int num_buckets,
293         int nsgs, int min_blocks, u32 *bucket_map);
294 static void hpsa_free_performant_mode(struct ctlr_info *h);
295 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
296 static inline u32 next_command(struct ctlr_info *h, u8 q);
297 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
298                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
299                                u64 *cfg_offset);
300 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
301                                     unsigned long *memory_bar);
302 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
303                                 bool *legacy_board);
304 static int wait_for_device_to_become_ready(struct ctlr_info *h,
305                                            unsigned char lunaddr[],
306                                            int reply_queue);
307 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
308                                      int wait_for_ready);
309 static inline void finish_cmd(struct CommandList *c);
310 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
311 #define BOARD_NOT_READY 0
312 #define BOARD_READY 1
313 static void hpsa_drain_accel_commands(struct ctlr_info *h);
314 static void hpsa_flush_cache(struct ctlr_info *h);
315 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
316         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
317         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
318 static void hpsa_command_resubmit_worker(struct work_struct *work);
319 static u32 lockup_detected(struct ctlr_info *h);
320 static int detect_controller_lockup(struct ctlr_info *h);
321 static void hpsa_disable_rld_caching(struct ctlr_info *h);
322 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
323         struct ReportExtendedLUNdata *buf, int bufsize);
324 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
325         unsigned char scsi3addr[], u8 page);
326 static int hpsa_luns_changed(struct ctlr_info *h);
327 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
328                                struct hpsa_scsi_dev_t *dev,
329                                unsigned char *scsi3addr);
330
331 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
332 {
333         unsigned long *priv = shost_priv(sdev->host);
334         return (struct ctlr_info *) *priv;
335 }
336
337 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
338 {
339         unsigned long *priv = shost_priv(sh);
340         return (struct ctlr_info *) *priv;
341 }
342
343 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
344 {
345         return c->scsi_cmd == SCSI_CMD_IDLE;
346 }
347
348 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
349 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
350                         u8 *sense_key, u8 *asc, u8 *ascq)
351 {
352         struct scsi_sense_hdr sshdr;
353         bool rc;
354
355         *sense_key = -1;
356         *asc = -1;
357         *ascq = -1;
358
359         if (sense_data_len < 1)
360                 return;
361
362         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
363         if (rc) {
364                 *sense_key = sshdr.sense_key;
365                 *asc = sshdr.asc;
366                 *ascq = sshdr.ascq;
367         }
368 }
369
370 static int check_for_unit_attention(struct ctlr_info *h,
371         struct CommandList *c)
372 {
373         u8 sense_key, asc, ascq;
374         int sense_len;
375
376         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
377                 sense_len = sizeof(c->err_info->SenseInfo);
378         else
379                 sense_len = c->err_info->SenseLen;
380
381         decode_sense_data(c->err_info->SenseInfo, sense_len,
382                                 &sense_key, &asc, &ascq);
383         if (sense_key != UNIT_ATTENTION || asc == 0xff)
384                 return 0;
385
386         switch (asc) {
387         case STATE_CHANGED:
388                 dev_warn(&h->pdev->dev,
389                         "%s: a state change detected, command retried\n",
390                         h->devname);
391                 break;
392         case LUN_FAILED:
393                 dev_warn(&h->pdev->dev,
394                         "%s: LUN failure detected\n", h->devname);
395                 break;
396         case REPORT_LUNS_CHANGED:
397                 dev_warn(&h->pdev->dev,
398                         "%s: report LUN data changed\n", h->devname);
399         /*
400          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
401          * target (array) devices.
402          */
403                 break;
404         case POWER_OR_RESET:
405                 dev_warn(&h->pdev->dev,
406                         "%s: a power on or device reset detected\n",
407                         h->devname);
408                 break;
409         case UNIT_ATTENTION_CLEARED:
410                 dev_warn(&h->pdev->dev,
411                         "%s: unit attention cleared by another initiator\n",
412                         h->devname);
413                 break;
414         default:
415                 dev_warn(&h->pdev->dev,
416                         "%s: unknown unit attention detected\n",
417                         h->devname);
418                 break;
419         }
420         return 1;
421 }
422
423 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
424 {
425         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
426                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
427                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
428                 return 0;
429         dev_warn(&h->pdev->dev, HPSA "device busy");
430         return 1;
431 }
432
433 static u32 lockup_detected(struct ctlr_info *h);
434 static ssize_t host_show_lockup_detected(struct device *dev,
435                 struct device_attribute *attr, char *buf)
436 {
437         int ld;
438         struct ctlr_info *h;
439         struct Scsi_Host *shost = class_to_shost(dev);
440
441         h = shost_to_hba(shost);
442         ld = lockup_detected(h);
443
444         return sprintf(buf, "ld=%d\n", ld);
445 }
446
447 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
448                                          struct device_attribute *attr,
449                                          const char *buf, size_t count)
450 {
451         int status, len;
452         struct ctlr_info *h;
453         struct Scsi_Host *shost = class_to_shost(dev);
454         char tmpbuf[10];
455
456         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
457                 return -EACCES;
458         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
459         strncpy(tmpbuf, buf, len);
460         tmpbuf[len] = '\0';
461         if (sscanf(tmpbuf, "%d", &status) != 1)
462                 return -EINVAL;
463         h = shost_to_hba(shost);
464         h->acciopath_status = !!status;
465         dev_warn(&h->pdev->dev,
466                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
467                 h->acciopath_status ? "enabled" : "disabled");
468         return count;
469 }
470
471 static ssize_t host_store_raid_offload_debug(struct device *dev,
472                                          struct device_attribute *attr,
473                                          const char *buf, size_t count)
474 {
475         int debug_level, len;
476         struct ctlr_info *h;
477         struct Scsi_Host *shost = class_to_shost(dev);
478         char tmpbuf[10];
479
480         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
481                 return -EACCES;
482         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
483         strncpy(tmpbuf, buf, len);
484         tmpbuf[len] = '\0';
485         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
486                 return -EINVAL;
487         if (debug_level < 0)
488                 debug_level = 0;
489         h = shost_to_hba(shost);
490         h->raid_offload_debug = debug_level;
491         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
492                 h->raid_offload_debug);
493         return count;
494 }
495
496 static ssize_t host_store_rescan(struct device *dev,
497                                  struct device_attribute *attr,
498                                  const char *buf, size_t count)
499 {
500         struct ctlr_info *h;
501         struct Scsi_Host *shost = class_to_shost(dev);
502         h = shost_to_hba(shost);
503         hpsa_scan_start(h->scsi_host);
504         return count;
505 }
506
507 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
508 {
509         device->offload_enabled = 0;
510         device->offload_to_be_enabled = 0;
511 }
512
513 static ssize_t host_show_firmware_revision(struct device *dev,
514              struct device_attribute *attr, char *buf)
515 {
516         struct ctlr_info *h;
517         struct Scsi_Host *shost = class_to_shost(dev);
518         unsigned char *fwrev;
519
520         h = shost_to_hba(shost);
521         if (!h->hba_inquiry_data)
522                 return 0;
523         fwrev = &h->hba_inquiry_data[32];
524         return snprintf(buf, 20, "%c%c%c%c\n",
525                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
526 }
527
528 static ssize_t host_show_commands_outstanding(struct device *dev,
529              struct device_attribute *attr, char *buf)
530 {
531         struct Scsi_Host *shost = class_to_shost(dev);
532         struct ctlr_info *h = shost_to_hba(shost);
533
534         return snprintf(buf, 20, "%d\n",
535                         atomic_read(&h->commands_outstanding));
536 }
537
538 static ssize_t host_show_transport_mode(struct device *dev,
539         struct device_attribute *attr, char *buf)
540 {
541         struct ctlr_info *h;
542         struct Scsi_Host *shost = class_to_shost(dev);
543
544         h = shost_to_hba(shost);
545         return snprintf(buf, 20, "%s\n",
546                 h->transMethod & CFGTBL_Trans_Performant ?
547                         "performant" : "simple");
548 }
549
550 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
551         struct device_attribute *attr, char *buf)
552 {
553         struct ctlr_info *h;
554         struct Scsi_Host *shost = class_to_shost(dev);
555
556         h = shost_to_hba(shost);
557         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
558                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
559 }
560
561 /* List of controllers which cannot be hard reset on kexec with reset_devices */
562 static u32 unresettable_controller[] = {
563         0x324a103C, /* Smart Array P712m */
564         0x324b103C, /* Smart Array P711m */
565         0x3223103C, /* Smart Array P800 */
566         0x3234103C, /* Smart Array P400 */
567         0x3235103C, /* Smart Array P400i */
568         0x3211103C, /* Smart Array E200i */
569         0x3212103C, /* Smart Array E200 */
570         0x3213103C, /* Smart Array E200i */
571         0x3214103C, /* Smart Array E200i */
572         0x3215103C, /* Smart Array E200i */
573         0x3237103C, /* Smart Array E500 */
574         0x323D103C, /* Smart Array P700m */
575         0x40800E11, /* Smart Array 5i */
576         0x409C0E11, /* Smart Array 6400 */
577         0x409D0E11, /* Smart Array 6400 EM */
578         0x40700E11, /* Smart Array 5300 */
579         0x40820E11, /* Smart Array 532 */
580         0x40830E11, /* Smart Array 5312 */
581         0x409A0E11, /* Smart Array 641 */
582         0x409B0E11, /* Smart Array 642 */
583         0x40910E11, /* Smart Array 6i */
584 };
585
586 /* List of controllers which cannot even be soft reset */
587 static u32 soft_unresettable_controller[] = {
588         0x40800E11, /* Smart Array 5i */
589         0x40700E11, /* Smart Array 5300 */
590         0x40820E11, /* Smart Array 532 */
591         0x40830E11, /* Smart Array 5312 */
592         0x409A0E11, /* Smart Array 641 */
593         0x409B0E11, /* Smart Array 642 */
594         0x40910E11, /* Smart Array 6i */
595         /* Exclude 640x boards.  These are two pci devices in one slot
596          * which share a battery backed cache module.  One controls the
597          * cache, the other accesses the cache through the one that controls
598          * it.  If we reset the one controlling the cache, the other will
599          * likely not be happy.  Just forbid resetting this conjoined mess.
600          * The 640x isn't really supported by hpsa anyway.
601          */
602         0x409C0E11, /* Smart Array 6400 */
603         0x409D0E11, /* Smart Array 6400 EM */
604 };
605
606 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
607 {
608         int i;
609
610         for (i = 0; i < nelems; i++)
611                 if (a[i] == board_id)
612                         return 1;
613         return 0;
614 }
615
616 static int ctlr_is_hard_resettable(u32 board_id)
617 {
618         return !board_id_in_array(unresettable_controller,
619                         ARRAY_SIZE(unresettable_controller), board_id);
620 }
621
622 static int ctlr_is_soft_resettable(u32 board_id)
623 {
624         return !board_id_in_array(soft_unresettable_controller,
625                         ARRAY_SIZE(soft_unresettable_controller), board_id);
626 }
627
628 static int ctlr_is_resettable(u32 board_id)
629 {
630         return ctlr_is_hard_resettable(board_id) ||
631                 ctlr_is_soft_resettable(board_id);
632 }
633
634 static ssize_t host_show_resettable(struct device *dev,
635         struct device_attribute *attr, char *buf)
636 {
637         struct ctlr_info *h;
638         struct Scsi_Host *shost = class_to_shost(dev);
639
640         h = shost_to_hba(shost);
641         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
642 }
643
644 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
645 {
646         return (scsi3addr[3] & 0xC0) == 0x40;
647 }
648
649 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
650         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
651 };
652 #define HPSA_RAID_0     0
653 #define HPSA_RAID_4     1
654 #define HPSA_RAID_1     2       /* also used for RAID 10 */
655 #define HPSA_RAID_5     3       /* also used for RAID 50 */
656 #define HPSA_RAID_51    4
657 #define HPSA_RAID_6     5       /* also used for RAID 60 */
658 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
659 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
660 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
661
662 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
663 {
664         return !device->physical_device;
665 }
666
667 static ssize_t raid_level_show(struct device *dev,
668              struct device_attribute *attr, char *buf)
669 {
670         ssize_t l = 0;
671         unsigned char rlevel;
672         struct ctlr_info *h;
673         struct scsi_device *sdev;
674         struct hpsa_scsi_dev_t *hdev;
675         unsigned long flags;
676
677         sdev = to_scsi_device(dev);
678         h = sdev_to_hba(sdev);
679         spin_lock_irqsave(&h->lock, flags);
680         hdev = sdev->hostdata;
681         if (!hdev) {
682                 spin_unlock_irqrestore(&h->lock, flags);
683                 return -ENODEV;
684         }
685
686         /* Is this even a logical drive? */
687         if (!is_logical_device(hdev)) {
688                 spin_unlock_irqrestore(&h->lock, flags);
689                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
690                 return l;
691         }
692
693         rlevel = hdev->raid_level;
694         spin_unlock_irqrestore(&h->lock, flags);
695         if (rlevel > RAID_UNKNOWN)
696                 rlevel = RAID_UNKNOWN;
697         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
698         return l;
699 }
700
701 static ssize_t lunid_show(struct device *dev,
702              struct device_attribute *attr, char *buf)
703 {
704         struct ctlr_info *h;
705         struct scsi_device *sdev;
706         struct hpsa_scsi_dev_t *hdev;
707         unsigned long flags;
708         unsigned char lunid[8];
709
710         sdev = to_scsi_device(dev);
711         h = sdev_to_hba(sdev);
712         spin_lock_irqsave(&h->lock, flags);
713         hdev = sdev->hostdata;
714         if (!hdev) {
715                 spin_unlock_irqrestore(&h->lock, flags);
716                 return -ENODEV;
717         }
718         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
719         spin_unlock_irqrestore(&h->lock, flags);
720         return snprintf(buf, 20, "0x%8phN\n", lunid);
721 }
722
723 static ssize_t unique_id_show(struct device *dev,
724              struct device_attribute *attr, char *buf)
725 {
726         struct ctlr_info *h;
727         struct scsi_device *sdev;
728         struct hpsa_scsi_dev_t *hdev;
729         unsigned long flags;
730         unsigned char sn[16];
731
732         sdev = to_scsi_device(dev);
733         h = sdev_to_hba(sdev);
734         spin_lock_irqsave(&h->lock, flags);
735         hdev = sdev->hostdata;
736         if (!hdev) {
737                 spin_unlock_irqrestore(&h->lock, flags);
738                 return -ENODEV;
739         }
740         memcpy(sn, hdev->device_id, sizeof(sn));
741         spin_unlock_irqrestore(&h->lock, flags);
742         return snprintf(buf, 16 * 2 + 2,
743                         "%02X%02X%02X%02X%02X%02X%02X%02X"
744                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
745                         sn[0], sn[1], sn[2], sn[3],
746                         sn[4], sn[5], sn[6], sn[7],
747                         sn[8], sn[9], sn[10], sn[11],
748                         sn[12], sn[13], sn[14], sn[15]);
749 }
750
751 static ssize_t sas_address_show(struct device *dev,
752               struct device_attribute *attr, char *buf)
753 {
754         struct ctlr_info *h;
755         struct scsi_device *sdev;
756         struct hpsa_scsi_dev_t *hdev;
757         unsigned long flags;
758         u64 sas_address;
759
760         sdev = to_scsi_device(dev);
761         h = sdev_to_hba(sdev);
762         spin_lock_irqsave(&h->lock, flags);
763         hdev = sdev->hostdata;
764         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
765                 spin_unlock_irqrestore(&h->lock, flags);
766                 return -ENODEV;
767         }
768         sas_address = hdev->sas_address;
769         spin_unlock_irqrestore(&h->lock, flags);
770
771         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
772 }
773
774 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
775              struct device_attribute *attr, char *buf)
776 {
777         struct ctlr_info *h;
778         struct scsi_device *sdev;
779         struct hpsa_scsi_dev_t *hdev;
780         unsigned long flags;
781         int offload_enabled;
782
783         sdev = to_scsi_device(dev);
784         h = sdev_to_hba(sdev);
785         spin_lock_irqsave(&h->lock, flags);
786         hdev = sdev->hostdata;
787         if (!hdev) {
788                 spin_unlock_irqrestore(&h->lock, flags);
789                 return -ENODEV;
790         }
791         offload_enabled = hdev->offload_enabled;
792         spin_unlock_irqrestore(&h->lock, flags);
793
794         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
795                 return snprintf(buf, 20, "%d\n", offload_enabled);
796         else
797                 return snprintf(buf, 40, "%s\n",
798                                 "Not applicable for a controller");
799 }
800
801 #define MAX_PATHS 8
802 static ssize_t path_info_show(struct device *dev,
803              struct device_attribute *attr, char *buf)
804 {
805         struct ctlr_info *h;
806         struct scsi_device *sdev;
807         struct hpsa_scsi_dev_t *hdev;
808         unsigned long flags;
809         int i;
810         int output_len = 0;
811         u8 box;
812         u8 bay;
813         u8 path_map_index = 0;
814         char *active;
815         unsigned char phys_connector[2];
816
817         sdev = to_scsi_device(dev);
818         h = sdev_to_hba(sdev);
819         spin_lock_irqsave(&h->devlock, flags);
820         hdev = sdev->hostdata;
821         if (!hdev) {
822                 spin_unlock_irqrestore(&h->devlock, flags);
823                 return -ENODEV;
824         }
825
826         bay = hdev->bay;
827         for (i = 0; i < MAX_PATHS; i++) {
828                 path_map_index = 1<<i;
829                 if (i == hdev->active_path_index)
830                         active = "Active";
831                 else if (hdev->path_map & path_map_index)
832                         active = "Inactive";
833                 else
834                         continue;
835
836                 output_len += scnprintf(buf + output_len,
837                                 PAGE_SIZE - output_len,
838                                 "[%d:%d:%d:%d] %20.20s ",
839                                 h->scsi_host->host_no,
840                                 hdev->bus, hdev->target, hdev->lun,
841                                 scsi_device_type(hdev->devtype));
842
843                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
844                         output_len += scnprintf(buf + output_len,
845                                                 PAGE_SIZE - output_len,
846                                                 "%s\n", active);
847                         continue;
848                 }
849
850                 box = hdev->box[i];
851                 memcpy(&phys_connector, &hdev->phys_connector[i],
852                         sizeof(phys_connector));
853                 if (phys_connector[0] < '0')
854                         phys_connector[0] = '0';
855                 if (phys_connector[1] < '0')
856                         phys_connector[1] = '0';
857                 output_len += scnprintf(buf + output_len,
858                                 PAGE_SIZE - output_len,
859                                 "PORT: %.2s ",
860                                 phys_connector);
861                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
862                         hdev->expose_device) {
863                         if (box == 0 || box == 0xFF) {
864                                 output_len += scnprintf(buf + output_len,
865                                         PAGE_SIZE - output_len,
866                                         "BAY: %hhu %s\n",
867                                         bay, active);
868                         } else {
869                                 output_len += scnprintf(buf + output_len,
870                                         PAGE_SIZE - output_len,
871                                         "BOX: %hhu BAY: %hhu %s\n",
872                                         box, bay, active);
873                         }
874                 } else if (box != 0 && box != 0xFF) {
875                         output_len += scnprintf(buf + output_len,
876                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
877                                 box, active);
878                 } else
879                         output_len += scnprintf(buf + output_len,
880                                 PAGE_SIZE - output_len, "%s\n", active);
881         }
882
883         spin_unlock_irqrestore(&h->devlock, flags);
884         return output_len;
885 }
886
887 static ssize_t host_show_ctlr_num(struct device *dev,
888         struct device_attribute *attr, char *buf)
889 {
890         struct ctlr_info *h;
891         struct Scsi_Host *shost = class_to_shost(dev);
892
893         h = shost_to_hba(shost);
894         return snprintf(buf, 20, "%d\n", h->ctlr);
895 }
896
897 static ssize_t host_show_legacy_board(struct device *dev,
898         struct device_attribute *attr, char *buf)
899 {
900         struct ctlr_info *h;
901         struct Scsi_Host *shost = class_to_shost(dev);
902
903         h = shost_to_hba(shost);
904         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
905 }
906
907 static DEVICE_ATTR_RO(raid_level);
908 static DEVICE_ATTR_RO(lunid);
909 static DEVICE_ATTR_RO(unique_id);
910 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
911 static DEVICE_ATTR_RO(sas_address);
912 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
913                         host_show_hp_ssd_smart_path_enabled, NULL);
914 static DEVICE_ATTR_RO(path_info);
915 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
916                 host_show_hp_ssd_smart_path_status,
917                 host_store_hp_ssd_smart_path_status);
918 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
919                         host_store_raid_offload_debug);
920 static DEVICE_ATTR(firmware_revision, S_IRUGO,
921         host_show_firmware_revision, NULL);
922 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
923         host_show_commands_outstanding, NULL);
924 static DEVICE_ATTR(transport_mode, S_IRUGO,
925         host_show_transport_mode, NULL);
926 static DEVICE_ATTR(resettable, S_IRUGO,
927         host_show_resettable, NULL);
928 static DEVICE_ATTR(lockup_detected, S_IRUGO,
929         host_show_lockup_detected, NULL);
930 static DEVICE_ATTR(ctlr_num, S_IRUGO,
931         host_show_ctlr_num, NULL);
932 static DEVICE_ATTR(legacy_board, S_IRUGO,
933         host_show_legacy_board, NULL);
934
935 static struct device_attribute *hpsa_sdev_attrs[] = {
936         &dev_attr_raid_level,
937         &dev_attr_lunid,
938         &dev_attr_unique_id,
939         &dev_attr_hp_ssd_smart_path_enabled,
940         &dev_attr_path_info,
941         &dev_attr_sas_address,
942         NULL,
943 };
944
945 static struct device_attribute *hpsa_shost_attrs[] = {
946         &dev_attr_rescan,
947         &dev_attr_firmware_revision,
948         &dev_attr_commands_outstanding,
949         &dev_attr_transport_mode,
950         &dev_attr_resettable,
951         &dev_attr_hp_ssd_smart_path_status,
952         &dev_attr_raid_offload_debug,
953         &dev_attr_lockup_detected,
954         &dev_attr_ctlr_num,
955         &dev_attr_legacy_board,
956         NULL,
957 };
958
959 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
960                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
961
962 static struct scsi_host_template hpsa_driver_template = {
963         .module                 = THIS_MODULE,
964         .name                   = HPSA,
965         .proc_name              = HPSA,
966         .queuecommand           = hpsa_scsi_queue_command,
967         .scan_start             = hpsa_scan_start,
968         .scan_finished          = hpsa_scan_finished,
969         .change_queue_depth     = hpsa_change_queue_depth,
970         .this_id                = -1,
971         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
972         .ioctl                  = hpsa_ioctl,
973         .slave_alloc            = hpsa_slave_alloc,
974         .slave_configure        = hpsa_slave_configure,
975         .slave_destroy          = hpsa_slave_destroy,
976 #ifdef CONFIG_COMPAT
977         .compat_ioctl           = hpsa_compat_ioctl,
978 #endif
979         .sdev_attrs = hpsa_sdev_attrs,
980         .shost_attrs = hpsa_shost_attrs,
981         .max_sectors = 2048,
982         .no_write_same = 1,
983 };
984
985 static inline u32 next_command(struct ctlr_info *h, u8 q)
986 {
987         u32 a;
988         struct reply_queue_buffer *rq = &h->reply_queue[q];
989
990         if (h->transMethod & CFGTBL_Trans_io_accel1)
991                 return h->access.command_completed(h, q);
992
993         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
994                 return h->access.command_completed(h, q);
995
996         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
997                 a = rq->head[rq->current_entry];
998                 rq->current_entry++;
999                 atomic_dec(&h->commands_outstanding);
1000         } else {
1001                 a = FIFO_EMPTY;
1002         }
1003         /* Check for wraparound */
1004         if (rq->current_entry == h->max_commands) {
1005                 rq->current_entry = 0;
1006                 rq->wraparound ^= 1;
1007         }
1008         return a;
1009 }
1010
1011 /*
1012  * There are some special bits in the bus address of the
1013  * command that we have to set for the controller to know
1014  * how to process the command:
1015  *
1016  * Normal performant mode:
1017  * bit 0: 1 means performant mode, 0 means simple mode.
1018  * bits 1-3 = block fetch table entry
1019  * bits 4-6 = command type (== 0)
1020  *
1021  * ioaccel1 mode:
1022  * bit 0 = "performant mode" bit.
1023  * bits 1-3 = block fetch table entry
1024  * bits 4-6 = command type (== 110)
1025  * (command type is needed because ioaccel1 mode
1026  * commands are submitted through the same register as normal
1027  * mode commands, so this is how the controller knows whether
1028  * the command is normal mode or ioaccel1 mode.)
1029  *
1030  * ioaccel2 mode:
1031  * bit 0 = "performant mode" bit.
1032  * bits 1-4 = block fetch table entry (note extra bit)
1033  * bits 4-6 = not needed, because ioaccel2 mode has
1034  * a separate special register for submitting commands.
1035  */
1036
1037 /*
1038  * set_performant_mode: Modify the tag for cciss performant
1039  * set bit 0 for pull model, bits 3-1 for block fetch
1040  * register number
1041  */
1042 #define DEFAULT_REPLY_QUEUE (-1)
1043 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1044                                         int reply_queue)
1045 {
1046         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1047                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1048                 if (unlikely(!h->msix_vectors))
1049                         return;
1050                 c->Header.ReplyQueue = reply_queue;
1051         }
1052 }
1053
1054 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1055                                                 struct CommandList *c,
1056                                                 int reply_queue)
1057 {
1058         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1059
1060         /*
1061          * Tell the controller to post the reply to the queue for this
1062          * processor.  This seems to give the best I/O throughput.
1063          */
1064         cp->ReplyQueue = reply_queue;
1065         /*
1066          * Set the bits in the address sent down to include:
1067          *  - performant mode bit (bit 0)
1068          *  - pull count (bits 1-3)
1069          *  - command type (bits 4-6)
1070          */
1071         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1072                                         IOACCEL1_BUSADDR_CMDTYPE;
1073 }
1074
1075 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1076                                                 struct CommandList *c,
1077                                                 int reply_queue)
1078 {
1079         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1080                 &h->ioaccel2_cmd_pool[c->cmdindex];
1081
1082         /* Tell the controller to post the reply to the queue for this
1083          * processor.  This seems to give the best I/O throughput.
1084          */
1085         cp->reply_queue = reply_queue;
1086         /* Set the bits in the address sent down to include:
1087          *  - performant mode bit not used in ioaccel mode 2
1088          *  - pull count (bits 0-3)
1089          *  - command type isn't needed for ioaccel2
1090          */
1091         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1092 }
1093
1094 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1095                                                 struct CommandList *c,
1096                                                 int reply_queue)
1097 {
1098         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1099
1100         /*
1101          * Tell the controller to post the reply to the queue for this
1102          * processor.  This seems to give the best I/O throughput.
1103          */
1104         cp->reply_queue = reply_queue;
1105         /*
1106          * Set the bits in the address sent down to include:
1107          *  - performant mode bit not used in ioaccel mode 2
1108          *  - pull count (bits 0-3)
1109          *  - command type isn't needed for ioaccel2
1110          */
1111         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1112 }
1113
1114 static int is_firmware_flash_cmd(u8 *cdb)
1115 {
1116         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1117 }
1118
1119 /*
1120  * During firmware flash, the heartbeat register may not update as frequently
1121  * as it should.  So we dial down lockup detection during firmware flash. and
1122  * dial it back up when firmware flash completes.
1123  */
1124 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1125 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1126 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1127 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1128                 struct CommandList *c)
1129 {
1130         if (!is_firmware_flash_cmd(c->Request.CDB))
1131                 return;
1132         atomic_inc(&h->firmware_flash_in_progress);
1133         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1134 }
1135
1136 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1137                 struct CommandList *c)
1138 {
1139         if (is_firmware_flash_cmd(c->Request.CDB) &&
1140                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1141                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1142 }
1143
1144 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1145         struct CommandList *c, int reply_queue)
1146 {
1147         dial_down_lockup_detection_during_fw_flash(h, c);
1148         atomic_inc(&h->commands_outstanding);
1149         if (c->device)
1150                 atomic_inc(&c->device->commands_outstanding);
1151
1152         reply_queue = h->reply_map[raw_smp_processor_id()];
1153         switch (c->cmd_type) {
1154         case CMD_IOACCEL1:
1155                 set_ioaccel1_performant_mode(h, c, reply_queue);
1156                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1157                 break;
1158         case CMD_IOACCEL2:
1159                 set_ioaccel2_performant_mode(h, c, reply_queue);
1160                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161                 break;
1162         case IOACCEL2_TMF:
1163                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1164                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1165                 break;
1166         default:
1167                 set_performant_mode(h, c, reply_queue);
1168                 h->access.submit_command(h, c);
1169         }
1170 }
1171
1172 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1173 {
1174         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1175 }
1176
1177 static inline int is_hba_lunid(unsigned char scsi3addr[])
1178 {
1179         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1180 }
1181
1182 static inline int is_scsi_rev_5(struct ctlr_info *h)
1183 {
1184         if (!h->hba_inquiry_data)
1185                 return 0;
1186         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1187                 return 1;
1188         return 0;
1189 }
1190
1191 static int hpsa_find_target_lun(struct ctlr_info *h,
1192         unsigned char scsi3addr[], int bus, int *target, int *lun)
1193 {
1194         /* finds an unused bus, target, lun for a new physical device
1195          * assumes h->devlock is held
1196          */
1197         int i, found = 0;
1198         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1199
1200         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1201
1202         for (i = 0; i < h->ndevices; i++) {
1203                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1204                         __set_bit(h->dev[i]->target, lun_taken);
1205         }
1206
1207         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1208         if (i < HPSA_MAX_DEVICES) {
1209                 /* *bus = 1; */
1210                 *target = i;
1211                 *lun = 0;
1212                 found = 1;
1213         }
1214         return !found;
1215 }
1216
1217 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1218         struct hpsa_scsi_dev_t *dev, char *description)
1219 {
1220 #define LABEL_SIZE 25
1221         char label[LABEL_SIZE];
1222
1223         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1224                 return;
1225
1226         switch (dev->devtype) {
1227         case TYPE_RAID:
1228                 snprintf(label, LABEL_SIZE, "controller");
1229                 break;
1230         case TYPE_ENCLOSURE:
1231                 snprintf(label, LABEL_SIZE, "enclosure");
1232                 break;
1233         case TYPE_DISK:
1234         case TYPE_ZBC:
1235                 if (dev->external)
1236                         snprintf(label, LABEL_SIZE, "external");
1237                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1238                         snprintf(label, LABEL_SIZE, "%s",
1239                                 raid_label[PHYSICAL_DRIVE]);
1240                 else
1241                         snprintf(label, LABEL_SIZE, "RAID-%s",
1242                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1243                                 raid_label[dev->raid_level]);
1244                 break;
1245         case TYPE_ROM:
1246                 snprintf(label, LABEL_SIZE, "rom");
1247                 break;
1248         case TYPE_TAPE:
1249                 snprintf(label, LABEL_SIZE, "tape");
1250                 break;
1251         case TYPE_MEDIUM_CHANGER:
1252                 snprintf(label, LABEL_SIZE, "changer");
1253                 break;
1254         default:
1255                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1256                 break;
1257         }
1258
1259         dev_printk(level, &h->pdev->dev,
1260                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1261                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1262                         description,
1263                         scsi_device_type(dev->devtype),
1264                         dev->vendor,
1265                         dev->model,
1266                         label,
1267                         dev->offload_config ? '+' : '-',
1268                         dev->offload_to_be_enabled ? '+' : '-',
1269                         dev->expose_device);
1270 }
1271
1272 /* Add an entry into h->dev[] array. */
1273 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1274                 struct hpsa_scsi_dev_t *device,
1275                 struct hpsa_scsi_dev_t *added[], int *nadded)
1276 {
1277         /* assumes h->devlock is held */
1278         int n = h->ndevices;
1279         int i;
1280         unsigned char addr1[8], addr2[8];
1281         struct hpsa_scsi_dev_t *sd;
1282
1283         if (n >= HPSA_MAX_DEVICES) {
1284                 dev_err(&h->pdev->dev, "too many devices, some will be "
1285                         "inaccessible.\n");
1286                 return -1;
1287         }
1288
1289         /* physical devices do not have lun or target assigned until now. */
1290         if (device->lun != -1)
1291                 /* Logical device, lun is already assigned. */
1292                 goto lun_assigned;
1293
1294         /* If this device a non-zero lun of a multi-lun device
1295          * byte 4 of the 8-byte LUN addr will contain the logical
1296          * unit no, zero otherwise.
1297          */
1298         if (device->scsi3addr[4] == 0) {
1299                 /* This is not a non-zero lun of a multi-lun device */
1300                 if (hpsa_find_target_lun(h, device->scsi3addr,
1301                         device->bus, &device->target, &device->lun) != 0)
1302                         return -1;
1303                 goto lun_assigned;
1304         }
1305
1306         /* This is a non-zero lun of a multi-lun device.
1307          * Search through our list and find the device which
1308          * has the same 8 byte LUN address, excepting byte 4 and 5.
1309          * Assign the same bus and target for this new LUN.
1310          * Use the logical unit number from the firmware.
1311          */
1312         memcpy(addr1, device->scsi3addr, 8);
1313         addr1[4] = 0;
1314         addr1[5] = 0;
1315         for (i = 0; i < n; i++) {
1316                 sd = h->dev[i];
1317                 memcpy(addr2, sd->scsi3addr, 8);
1318                 addr2[4] = 0;
1319                 addr2[5] = 0;
1320                 /* differ only in byte 4 and 5? */
1321                 if (memcmp(addr1, addr2, 8) == 0) {
1322                         device->bus = sd->bus;
1323                         device->target = sd->target;
1324                         device->lun = device->scsi3addr[4];
1325                         break;
1326                 }
1327         }
1328         if (device->lun == -1) {
1329                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1330                         " suspect firmware bug or unsupported hardware "
1331                         "configuration.\n");
1332                 return -1;
1333         }
1334
1335 lun_assigned:
1336
1337         h->dev[n] = device;
1338         h->ndevices++;
1339         added[*nadded] = device;
1340         (*nadded)++;
1341         hpsa_show_dev_msg(KERN_INFO, h, device,
1342                 device->expose_device ? "added" : "masked");
1343         return 0;
1344 }
1345
1346 /*
1347  * Called during a scan operation.
1348  *
1349  * Update an entry in h->dev[] array.
1350  */
1351 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1352         int entry, struct hpsa_scsi_dev_t *new_entry)
1353 {
1354         /* assumes h->devlock is held */
1355         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1356
1357         /* Raid level changed. */
1358         h->dev[entry]->raid_level = new_entry->raid_level;
1359
1360         /*
1361          * ioacccel_handle may have changed for a dual domain disk
1362          */
1363         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1364
1365         /* Raid offload parameters changed.  Careful about the ordering. */
1366         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1367                 /*
1368                  * if drive is newly offload_enabled, we want to copy the
1369                  * raid map data first.  If previously offload_enabled and
1370                  * offload_config were set, raid map data had better be
1371                  * the same as it was before. If raid map data has changed
1372                  * then it had better be the case that
1373                  * h->dev[entry]->offload_enabled is currently 0.
1374                  */
1375                 h->dev[entry]->raid_map = new_entry->raid_map;
1376                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1377         }
1378         if (new_entry->offload_to_be_enabled) {
1379                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1380                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1381         }
1382         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1383         h->dev[entry]->offload_config = new_entry->offload_config;
1384         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1385         h->dev[entry]->queue_depth = new_entry->queue_depth;
1386
1387         /*
1388          * We can turn off ioaccel offload now, but need to delay turning
1389          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1390          * can't do that until all the devices are updated.
1391          */
1392         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1393
1394         /*
1395          * turn ioaccel off immediately if told to do so.
1396          */
1397         if (!new_entry->offload_to_be_enabled)
1398                 h->dev[entry]->offload_enabled = 0;
1399
1400         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1401 }
1402
1403 /* Replace an entry from h->dev[] array. */
1404 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1405         int entry, struct hpsa_scsi_dev_t *new_entry,
1406         struct hpsa_scsi_dev_t *added[], int *nadded,
1407         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1408 {
1409         /* assumes h->devlock is held */
1410         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1411         removed[*nremoved] = h->dev[entry];
1412         (*nremoved)++;
1413
1414         /*
1415          * New physical devices won't have target/lun assigned yet
1416          * so we need to preserve the values in the slot we are replacing.
1417          */
1418         if (new_entry->target == -1) {
1419                 new_entry->target = h->dev[entry]->target;
1420                 new_entry->lun = h->dev[entry]->lun;
1421         }
1422
1423         h->dev[entry] = new_entry;
1424         added[*nadded] = new_entry;
1425         (*nadded)++;
1426
1427         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1428 }
1429
1430 /* Remove an entry from h->dev[] array. */
1431 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1432         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1433 {
1434         /* assumes h->devlock is held */
1435         int i;
1436         struct hpsa_scsi_dev_t *sd;
1437
1438         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1439
1440         sd = h->dev[entry];
1441         removed[*nremoved] = h->dev[entry];
1442         (*nremoved)++;
1443
1444         for (i = entry; i < h->ndevices-1; i++)
1445                 h->dev[i] = h->dev[i+1];
1446         h->ndevices--;
1447         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1448 }
1449
1450 #define SCSI3ADDR_EQ(a, b) ( \
1451         (a)[7] == (b)[7] && \
1452         (a)[6] == (b)[6] && \
1453         (a)[5] == (b)[5] && \
1454         (a)[4] == (b)[4] && \
1455         (a)[3] == (b)[3] && \
1456         (a)[2] == (b)[2] && \
1457         (a)[1] == (b)[1] && \
1458         (a)[0] == (b)[0])
1459
1460 static void fixup_botched_add(struct ctlr_info *h,
1461         struct hpsa_scsi_dev_t *added)
1462 {
1463         /* called when scsi_add_device fails in order to re-adjust
1464          * h->dev[] to match the mid layer's view.
1465          */
1466         unsigned long flags;
1467         int i, j;
1468
1469         spin_lock_irqsave(&h->lock, flags);
1470         for (i = 0; i < h->ndevices; i++) {
1471                 if (h->dev[i] == added) {
1472                         for (j = i; j < h->ndevices-1; j++)
1473                                 h->dev[j] = h->dev[j+1];
1474                         h->ndevices--;
1475                         break;
1476                 }
1477         }
1478         spin_unlock_irqrestore(&h->lock, flags);
1479         kfree(added);
1480 }
1481
1482 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1483         struct hpsa_scsi_dev_t *dev2)
1484 {
1485         /* we compare everything except lun and target as these
1486          * are not yet assigned.  Compare parts likely
1487          * to differ first
1488          */
1489         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1490                 sizeof(dev1->scsi3addr)) != 0)
1491                 return 0;
1492         if (memcmp(dev1->device_id, dev2->device_id,
1493                 sizeof(dev1->device_id)) != 0)
1494                 return 0;
1495         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1496                 return 0;
1497         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1498                 return 0;
1499         if (dev1->devtype != dev2->devtype)
1500                 return 0;
1501         if (dev1->bus != dev2->bus)
1502                 return 0;
1503         return 1;
1504 }
1505
1506 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1507         struct hpsa_scsi_dev_t *dev2)
1508 {
1509         /* Device attributes that can change, but don't mean
1510          * that the device is a different device, nor that the OS
1511          * needs to be told anything about the change.
1512          */
1513         if (dev1->raid_level != dev2->raid_level)
1514                 return 1;
1515         if (dev1->offload_config != dev2->offload_config)
1516                 return 1;
1517         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1518                 return 1;
1519         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1520                 if (dev1->queue_depth != dev2->queue_depth)
1521                         return 1;
1522         /*
1523          * This can happen for dual domain devices. An active
1524          * path change causes the ioaccel handle to change
1525          *
1526          * for example note the handle differences between p0 and p1
1527          * Device                    WWN               ,WWN hash,Handle
1528          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1529          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1530          */
1531         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1532                 return 1;
1533         return 0;
1534 }
1535
1536 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1537  * and return needle location in *index.  If scsi3addr matches, but not
1538  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1539  * location in *index.
1540  * In the case of a minor device attribute change, such as RAID level, just
1541  * return DEVICE_UPDATED, along with the updated device's location in index.
1542  * If needle not found, return DEVICE_NOT_FOUND.
1543  */
1544 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1545         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1546         int *index)
1547 {
1548         int i;
1549 #define DEVICE_NOT_FOUND 0
1550 #define DEVICE_CHANGED 1
1551 #define DEVICE_SAME 2
1552 #define DEVICE_UPDATED 3
1553         if (needle == NULL)
1554                 return DEVICE_NOT_FOUND;
1555
1556         for (i = 0; i < haystack_size; i++) {
1557                 if (haystack[i] == NULL) /* previously removed. */
1558                         continue;
1559                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1560                         *index = i;
1561                         if (device_is_the_same(needle, haystack[i])) {
1562                                 if (device_updated(needle, haystack[i]))
1563                                         return DEVICE_UPDATED;
1564                                 return DEVICE_SAME;
1565                         } else {
1566                                 /* Keep offline devices offline */
1567                                 if (needle->volume_offline)
1568                                         return DEVICE_NOT_FOUND;
1569                                 return DEVICE_CHANGED;
1570                         }
1571                 }
1572         }
1573         *index = -1;
1574         return DEVICE_NOT_FOUND;
1575 }
1576
1577 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1578                                         unsigned char scsi3addr[])
1579 {
1580         struct offline_device_entry *device;
1581         unsigned long flags;
1582
1583         /* Check to see if device is already on the list */
1584         spin_lock_irqsave(&h->offline_device_lock, flags);
1585         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1586                 if (memcmp(device->scsi3addr, scsi3addr,
1587                         sizeof(device->scsi3addr)) == 0) {
1588                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1589                         return;
1590                 }
1591         }
1592         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1593
1594         /* Device is not on the list, add it. */
1595         device = kmalloc(sizeof(*device), GFP_KERNEL);
1596         if (!device)
1597                 return;
1598
1599         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1600         spin_lock_irqsave(&h->offline_device_lock, flags);
1601         list_add_tail(&device->offline_list, &h->offline_device_list);
1602         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1603 }
1604
1605 /* Print a message explaining various offline volume states */
1606 static void hpsa_show_volume_status(struct ctlr_info *h,
1607         struct hpsa_scsi_dev_t *sd)
1608 {
1609         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1610                 dev_info(&h->pdev->dev,
1611                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1612                         h->scsi_host->host_no,
1613                         sd->bus, sd->target, sd->lun);
1614         switch (sd->volume_offline) {
1615         case HPSA_LV_OK:
1616                 break;
1617         case HPSA_LV_UNDERGOING_ERASE:
1618                 dev_info(&h->pdev->dev,
1619                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1620                         h->scsi_host->host_no,
1621                         sd->bus, sd->target, sd->lun);
1622                 break;
1623         case HPSA_LV_NOT_AVAILABLE:
1624                 dev_info(&h->pdev->dev,
1625                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1626                         h->scsi_host->host_no,
1627                         sd->bus, sd->target, sd->lun);
1628                 break;
1629         case HPSA_LV_UNDERGOING_RPI:
1630                 dev_info(&h->pdev->dev,
1631                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1632                         h->scsi_host->host_no,
1633                         sd->bus, sd->target, sd->lun);
1634                 break;
1635         case HPSA_LV_PENDING_RPI:
1636                 dev_info(&h->pdev->dev,
1637                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1638                         h->scsi_host->host_no,
1639                         sd->bus, sd->target, sd->lun);
1640                 break;
1641         case HPSA_LV_ENCRYPTED_NO_KEY:
1642                 dev_info(&h->pdev->dev,
1643                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1644                         h->scsi_host->host_no,
1645                         sd->bus, sd->target, sd->lun);
1646                 break;
1647         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1648                 dev_info(&h->pdev->dev,
1649                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1650                         h->scsi_host->host_no,
1651                         sd->bus, sd->target, sd->lun);
1652                 break;
1653         case HPSA_LV_UNDERGOING_ENCRYPTION:
1654                 dev_info(&h->pdev->dev,
1655                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1656                         h->scsi_host->host_no,
1657                         sd->bus, sd->target, sd->lun);
1658                 break;
1659         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1660                 dev_info(&h->pdev->dev,
1661                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1662                         h->scsi_host->host_no,
1663                         sd->bus, sd->target, sd->lun);
1664                 break;
1665         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1666                 dev_info(&h->pdev->dev,
1667                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1668                         h->scsi_host->host_no,
1669                         sd->bus, sd->target, sd->lun);
1670                 break;
1671         case HPSA_LV_PENDING_ENCRYPTION:
1672                 dev_info(&h->pdev->dev,
1673                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1674                         h->scsi_host->host_no,
1675                         sd->bus, sd->target, sd->lun);
1676                 break;
1677         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1678                 dev_info(&h->pdev->dev,
1679                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1680                         h->scsi_host->host_no,
1681                         sd->bus, sd->target, sd->lun);
1682                 break;
1683         }
1684 }
1685
1686 /*
1687  * Figure the list of physical drive pointers for a logical drive with
1688  * raid offload configured.
1689  */
1690 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1691                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1692                                 struct hpsa_scsi_dev_t *logical_drive)
1693 {
1694         struct raid_map_data *map = &logical_drive->raid_map;
1695         struct raid_map_disk_data *dd = &map->data[0];
1696         int i, j;
1697         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1698                                 le16_to_cpu(map->metadata_disks_per_row);
1699         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1700                                 le16_to_cpu(map->layout_map_count) *
1701                                 total_disks_per_row;
1702         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1703                                 total_disks_per_row;
1704         int qdepth;
1705
1706         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1707                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1708
1709         logical_drive->nphysical_disks = nraid_map_entries;
1710
1711         qdepth = 0;
1712         for (i = 0; i < nraid_map_entries; i++) {
1713                 logical_drive->phys_disk[i] = NULL;
1714                 if (!logical_drive->offload_config)
1715                         continue;
1716                 for (j = 0; j < ndevices; j++) {
1717                         if (dev[j] == NULL)
1718                                 continue;
1719                         if (dev[j]->devtype != TYPE_DISK &&
1720                             dev[j]->devtype != TYPE_ZBC)
1721                                 continue;
1722                         if (is_logical_device(dev[j]))
1723                                 continue;
1724                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1725                                 continue;
1726
1727                         logical_drive->phys_disk[i] = dev[j];
1728                         if (i < nphys_disk)
1729                                 qdepth = min(h->nr_cmds, qdepth +
1730                                     logical_drive->phys_disk[i]->queue_depth);
1731                         break;
1732                 }
1733
1734                 /*
1735                  * This can happen if a physical drive is removed and
1736                  * the logical drive is degraded.  In that case, the RAID
1737                  * map data will refer to a physical disk which isn't actually
1738                  * present.  And in that case offload_enabled should already
1739                  * be 0, but we'll turn it off here just in case
1740                  */
1741                 if (!logical_drive->phys_disk[i]) {
1742                         dev_warn(&h->pdev->dev,
1743                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1744                                 __func__,
1745                                 h->scsi_host->host_no, logical_drive->bus,
1746                                 logical_drive->target, logical_drive->lun);
1747                         hpsa_turn_off_ioaccel_for_device(logical_drive);
1748                         logical_drive->queue_depth = 8;
1749                 }
1750         }
1751         if (nraid_map_entries)
1752                 /*
1753                  * This is correct for reads, too high for full stripe writes,
1754                  * way too high for partial stripe writes
1755                  */
1756                 logical_drive->queue_depth = qdepth;
1757         else {
1758                 if (logical_drive->external)
1759                         logical_drive->queue_depth = EXTERNAL_QD;
1760                 else
1761                         logical_drive->queue_depth = h->nr_cmds;
1762         }
1763 }
1764
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768         int i;
1769
1770         for (i = 0; i < ndevices; i++) {
1771                 if (dev[i] == NULL)
1772                         continue;
1773                 if (dev[i]->devtype != TYPE_DISK &&
1774                     dev[i]->devtype != TYPE_ZBC)
1775                         continue;
1776                 if (!is_logical_device(dev[i]))
1777                         continue;
1778
1779                 /*
1780                  * If offload is currently enabled, the RAID map and
1781                  * phys_disk[] assignment *better* not be changing
1782                  * because we would be changing ioaccel phsy_disk[] pointers
1783                  * on a ioaccel volume processing I/O requests.
1784                  *
1785                  * If an ioaccel volume status changed, initially because it was
1786                  * re-configured and thus underwent a transformation, or
1787                  * a drive failed, we would have received a state change
1788                  * request and ioaccel should have been turned off. When the
1789                  * transformation completes, we get another state change
1790                  * request to turn ioaccel back on. In this case, we need
1791                  * to update the ioaccel information.
1792                  *
1793                  * Thus: If it is not currently enabled, but will be after
1794                  * the scan completes, make sure the ioaccel pointers
1795                  * are up to date.
1796                  */
1797
1798                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800         }
1801 }
1802
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805         int rc = 0;
1806
1807         if (!h->scsi_host)
1808                 return 1;
1809
1810         if (is_logical_device(device)) /* RAID */
1811                 rc = scsi_add_device(h->scsi_host, device->bus,
1812                                         device->target, device->lun);
1813         else /* HBA */
1814                 rc = hpsa_add_sas_device(h->sas_host, device);
1815
1816         return rc;
1817 }
1818
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820                                                 struct hpsa_scsi_dev_t *dev)
1821 {
1822         int i;
1823         int count = 0;
1824
1825         for (i = 0; i < h->nr_cmds; i++) {
1826                 struct CommandList *c = h->cmd_pool + i;
1827                 int refcount = atomic_inc_return(&c->refcount);
1828
1829                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830                                 dev->scsi3addr)) {
1831                         unsigned long flags;
1832
1833                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1834                         if (!hpsa_is_cmd_idle(c))
1835                                 ++count;
1836                         spin_unlock_irqrestore(&h->lock, flags);
1837                 }
1838
1839                 cmd_free(h, c);
1840         }
1841
1842         return count;
1843 }
1844
1845 #define NUM_WAIT 20
1846 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1847                                                 struct hpsa_scsi_dev_t *device)
1848 {
1849         int cmds = 0;
1850         int waits = 0;
1851         int num_wait = NUM_WAIT;
1852
1853         if (device->external)
1854                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1855
1856         while (1) {
1857                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1858                 if (cmds == 0)
1859                         break;
1860                 if (++waits > num_wait)
1861                         break;
1862                 msleep(1000);
1863         }
1864
1865         if (waits > num_wait) {
1866                 dev_warn(&h->pdev->dev,
1867                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1868                         __func__,
1869                         h->scsi_host->host_no,
1870                         device->bus, device->target, device->lun, cmds);
1871         }
1872 }
1873
1874 static void hpsa_remove_device(struct ctlr_info *h,
1875                         struct hpsa_scsi_dev_t *device)
1876 {
1877         struct scsi_device *sdev = NULL;
1878
1879         if (!h->scsi_host)
1880                 return;
1881
1882         /*
1883          * Allow for commands to drain
1884          */
1885         device->removed = 1;
1886         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1887
1888         if (is_logical_device(device)) { /* RAID */
1889                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1890                                                 device->target, device->lun);
1891                 if (sdev) {
1892                         scsi_remove_device(sdev);
1893                         scsi_device_put(sdev);
1894                 } else {
1895                         /*
1896                          * We don't expect to get here.  Future commands
1897                          * to this device will get a selection timeout as
1898                          * if the device were gone.
1899                          */
1900                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1901                                         "didn't find device for removal.");
1902                 }
1903         } else { /* HBA */
1904
1905                 hpsa_remove_sas_device(device);
1906         }
1907 }
1908
1909 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1910         struct hpsa_scsi_dev_t *sd[], int nsds)
1911 {
1912         /* sd contains scsi3 addresses and devtypes, and inquiry
1913          * data.  This function takes what's in sd to be the current
1914          * reality and updates h->dev[] to reflect that reality.
1915          */
1916         int i, entry, device_change, changes = 0;
1917         struct hpsa_scsi_dev_t *csd;
1918         unsigned long flags;
1919         struct hpsa_scsi_dev_t **added, **removed;
1920         int nadded, nremoved;
1921
1922         /*
1923          * A reset can cause a device status to change
1924          * re-schedule the scan to see what happened.
1925          */
1926         spin_lock_irqsave(&h->reset_lock, flags);
1927         if (h->reset_in_progress) {
1928                 h->drv_req_rescan = 1;
1929                 spin_unlock_irqrestore(&h->reset_lock, flags);
1930                 return;
1931         }
1932         spin_unlock_irqrestore(&h->reset_lock, flags);
1933
1934         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1935         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1936
1937         if (!added || !removed) {
1938                 dev_warn(&h->pdev->dev, "out of memory in "
1939                         "adjust_hpsa_scsi_table\n");
1940                 goto free_and_out;
1941         }
1942
1943         spin_lock_irqsave(&h->devlock, flags);
1944
1945         /* find any devices in h->dev[] that are not in
1946          * sd[] and remove them from h->dev[], and for any
1947          * devices which have changed, remove the old device
1948          * info and add the new device info.
1949          * If minor device attributes change, just update
1950          * the existing device structure.
1951          */
1952         i = 0;
1953         nremoved = 0;
1954         nadded = 0;
1955         while (i < h->ndevices) {
1956                 csd = h->dev[i];
1957                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1958                 if (device_change == DEVICE_NOT_FOUND) {
1959                         changes++;
1960                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1961                         continue; /* remove ^^^, hence i not incremented */
1962                 } else if (device_change == DEVICE_CHANGED) {
1963                         changes++;
1964                         hpsa_scsi_replace_entry(h, i, sd[entry],
1965                                 added, &nadded, removed, &nremoved);
1966                         /* Set it to NULL to prevent it from being freed
1967                          * at the bottom of hpsa_update_scsi_devices()
1968                          */
1969                         sd[entry] = NULL;
1970                 } else if (device_change == DEVICE_UPDATED) {
1971                         hpsa_scsi_update_entry(h, i, sd[entry]);
1972                 }
1973                 i++;
1974         }
1975
1976         /* Now, make sure every device listed in sd[] is also
1977          * listed in h->dev[], adding them if they aren't found
1978          */
1979
1980         for (i = 0; i < nsds; i++) {
1981                 if (!sd[i]) /* if already added above. */
1982                         continue;
1983
1984                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1985                  * as the SCSI mid-layer does not handle such devices well.
1986                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1987                  * at 160Hz, and prevents the system from coming up.
1988                  */
1989                 if (sd[i]->volume_offline) {
1990                         hpsa_show_volume_status(h, sd[i]);
1991                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1992                         continue;
1993                 }
1994
1995                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1996                                         h->ndevices, &entry);
1997                 if (device_change == DEVICE_NOT_FOUND) {
1998                         changes++;
1999                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2000                                 break;
2001                         sd[i] = NULL; /* prevent from being freed later. */
2002                 } else if (device_change == DEVICE_CHANGED) {
2003                         /* should never happen... */
2004                         changes++;
2005                         dev_warn(&h->pdev->dev,
2006                                 "device unexpectedly changed.\n");
2007                         /* but if it does happen, we just ignore that device */
2008                 }
2009         }
2010         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2011
2012         /*
2013          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2014          * any logical drives that need it enabled.
2015          *
2016          * The raid map should be current by now.
2017          *
2018          * We are updating the device list used for I/O requests.
2019          */
2020         for (i = 0; i < h->ndevices; i++) {
2021                 if (h->dev[i] == NULL)
2022                         continue;
2023                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2024         }
2025
2026         spin_unlock_irqrestore(&h->devlock, flags);
2027
2028         /* Monitor devices which are in one of several NOT READY states to be
2029          * brought online later. This must be done without holding h->devlock,
2030          * so don't touch h->dev[]
2031          */
2032         for (i = 0; i < nsds; i++) {
2033                 if (!sd[i]) /* if already added above. */
2034                         continue;
2035                 if (sd[i]->volume_offline)
2036                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2037         }
2038
2039         /* Don't notify scsi mid layer of any changes the first time through
2040          * (or if there are no changes) scsi_scan_host will do it later the
2041          * first time through.
2042          */
2043         if (!changes)
2044                 goto free_and_out;
2045
2046         /* Notify scsi mid layer of any removed devices */
2047         for (i = 0; i < nremoved; i++) {
2048                 if (removed[i] == NULL)
2049                         continue;
2050                 if (removed[i]->expose_device)
2051                         hpsa_remove_device(h, removed[i]);
2052                 kfree(removed[i]);
2053                 removed[i] = NULL;
2054         }
2055
2056         /* Notify scsi mid layer of any added devices */
2057         for (i = 0; i < nadded; i++) {
2058                 int rc = 0;
2059
2060                 if (added[i] == NULL)
2061                         continue;
2062                 if (!(added[i]->expose_device))
2063                         continue;
2064                 rc = hpsa_add_device(h, added[i]);
2065                 if (!rc)
2066                         continue;
2067                 dev_warn(&h->pdev->dev,
2068                         "addition failed %d, device not added.", rc);
2069                 /* now we have to remove it from h->dev,
2070                  * since it didn't get added to scsi mid layer
2071                  */
2072                 fixup_botched_add(h, added[i]);
2073                 h->drv_req_rescan = 1;
2074         }
2075
2076 free_and_out:
2077         kfree(added);
2078         kfree(removed);
2079 }
2080
2081 /*
2082  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2083  * Assume's h->devlock is held.
2084  */
2085 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2086         int bus, int target, int lun)
2087 {
2088         int i;
2089         struct hpsa_scsi_dev_t *sd;
2090
2091         for (i = 0; i < h->ndevices; i++) {
2092                 sd = h->dev[i];
2093                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2094                         return sd;
2095         }
2096         return NULL;
2097 }
2098
2099 static int hpsa_slave_alloc(struct scsi_device *sdev)
2100 {
2101         struct hpsa_scsi_dev_t *sd = NULL;
2102         unsigned long flags;
2103         struct ctlr_info *h;
2104
2105         h = sdev_to_hba(sdev);
2106         spin_lock_irqsave(&h->devlock, flags);
2107         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2108                 struct scsi_target *starget;
2109                 struct sas_rphy *rphy;
2110
2111                 starget = scsi_target(sdev);
2112                 rphy = target_to_rphy(starget);
2113                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2114                 if (sd) {
2115                         sd->target = sdev_id(sdev);
2116                         sd->lun = sdev->lun;
2117                 }
2118         }
2119         if (!sd)
2120                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2121                                         sdev_id(sdev), sdev->lun);
2122
2123         if (sd && sd->expose_device) {
2124                 atomic_set(&sd->ioaccel_cmds_out, 0);
2125                 sdev->hostdata = sd;
2126         } else
2127                 sdev->hostdata = NULL;
2128         spin_unlock_irqrestore(&h->devlock, flags);
2129         return 0;
2130 }
2131
2132 /* configure scsi device based on internal per-device structure */
2133 static int hpsa_slave_configure(struct scsi_device *sdev)
2134 {
2135         struct hpsa_scsi_dev_t *sd;
2136         int queue_depth;
2137
2138         sd = sdev->hostdata;
2139         sdev->no_uld_attach = !sd || !sd->expose_device;
2140
2141         if (sd) {
2142                 sd->was_removed = 0;
2143                 if (sd->external) {
2144                         queue_depth = EXTERNAL_QD;
2145                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2146                         blk_queue_rq_timeout(sdev->request_queue,
2147                                                 HPSA_EH_PTRAID_TIMEOUT);
2148                 } else {
2149                         queue_depth = sd->queue_depth != 0 ?
2150                                         sd->queue_depth : sdev->host->can_queue;
2151                 }
2152         } else
2153                 queue_depth = sdev->host->can_queue;
2154
2155         scsi_change_queue_depth(sdev, queue_depth);
2156
2157         return 0;
2158 }
2159
2160 static void hpsa_slave_destroy(struct scsi_device *sdev)
2161 {
2162         struct hpsa_scsi_dev_t *hdev = NULL;
2163
2164         hdev = sdev->hostdata;
2165
2166         if (hdev)
2167                 hdev->was_removed = 1;
2168 }
2169
2170 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2171 {
2172         int i;
2173
2174         if (!h->ioaccel2_cmd_sg_list)
2175                 return;
2176         for (i = 0; i < h->nr_cmds; i++) {
2177                 kfree(h->ioaccel2_cmd_sg_list[i]);
2178                 h->ioaccel2_cmd_sg_list[i] = NULL;
2179         }
2180         kfree(h->ioaccel2_cmd_sg_list);
2181         h->ioaccel2_cmd_sg_list = NULL;
2182 }
2183
2184 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2185 {
2186         int i;
2187
2188         if (h->chainsize <= 0)
2189                 return 0;
2190
2191         h->ioaccel2_cmd_sg_list =
2192                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2193                                         GFP_KERNEL);
2194         if (!h->ioaccel2_cmd_sg_list)
2195                 return -ENOMEM;
2196         for (i = 0; i < h->nr_cmds; i++) {
2197                 h->ioaccel2_cmd_sg_list[i] =
2198                         kmalloc_array(h->maxsgentries,
2199                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2200                                       GFP_KERNEL);
2201                 if (!h->ioaccel2_cmd_sg_list[i])
2202                         goto clean;
2203         }
2204         return 0;
2205
2206 clean:
2207         hpsa_free_ioaccel2_sg_chain_blocks(h);
2208         return -ENOMEM;
2209 }
2210
2211 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2212 {
2213         int i;
2214
2215         if (!h->cmd_sg_list)
2216                 return;
2217         for (i = 0; i < h->nr_cmds; i++) {
2218                 kfree(h->cmd_sg_list[i]);
2219                 h->cmd_sg_list[i] = NULL;
2220         }
2221         kfree(h->cmd_sg_list);
2222         h->cmd_sg_list = NULL;
2223 }
2224
2225 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2226 {
2227         int i;
2228
2229         if (h->chainsize <= 0)
2230                 return 0;
2231
2232         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2233                                  GFP_KERNEL);
2234         if (!h->cmd_sg_list)
2235                 return -ENOMEM;
2236
2237         for (i = 0; i < h->nr_cmds; i++) {
2238                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2239                                                   sizeof(*h->cmd_sg_list[i]),
2240                                                   GFP_KERNEL);
2241                 if (!h->cmd_sg_list[i])
2242                         goto clean;
2243
2244         }
2245         return 0;
2246
2247 clean:
2248         hpsa_free_sg_chain_blocks(h);
2249         return -ENOMEM;
2250 }
2251
2252 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2253         struct io_accel2_cmd *cp, struct CommandList *c)
2254 {
2255         struct ioaccel2_sg_element *chain_block;
2256         u64 temp64;
2257         u32 chain_size;
2258
2259         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2260         chain_size = le32_to_cpu(cp->sg[0].length);
2261         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2262                                 DMA_TO_DEVICE);
2263         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2264                 /* prevent subsequent unmapping */
2265                 cp->sg->address = 0;
2266                 return -1;
2267         }
2268         cp->sg->address = cpu_to_le64(temp64);
2269         return 0;
2270 }
2271
2272 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2273         struct io_accel2_cmd *cp)
2274 {
2275         struct ioaccel2_sg_element *chain_sg;
2276         u64 temp64;
2277         u32 chain_size;
2278
2279         chain_sg = cp->sg;
2280         temp64 = le64_to_cpu(chain_sg->address);
2281         chain_size = le32_to_cpu(cp->sg[0].length);
2282         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2283 }
2284
2285 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2286         struct CommandList *c)
2287 {
2288         struct SGDescriptor *chain_sg, *chain_block;
2289         u64 temp64;
2290         u32 chain_len;
2291
2292         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2293         chain_block = h->cmd_sg_list[c->cmdindex];
2294         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2295         chain_len = sizeof(*chain_sg) *
2296                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2297         chain_sg->Len = cpu_to_le32(chain_len);
2298         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2299                                 DMA_TO_DEVICE);
2300         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2301                 /* prevent subsequent unmapping */
2302                 chain_sg->Addr = cpu_to_le64(0);
2303                 return -1;
2304         }
2305         chain_sg->Addr = cpu_to_le64(temp64);
2306         return 0;
2307 }
2308
2309 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2310         struct CommandList *c)
2311 {
2312         struct SGDescriptor *chain_sg;
2313
2314         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2315                 return;
2316
2317         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2318         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2319                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2320 }
2321
2322
2323 /* Decode the various types of errors on ioaccel2 path.
2324  * Return 1 for any error that should generate a RAID path retry.
2325  * Return 0 for errors that don't require a RAID path retry.
2326  */
2327 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2328                                         struct CommandList *c,
2329                                         struct scsi_cmnd *cmd,
2330                                         struct io_accel2_cmd *c2,
2331                                         struct hpsa_scsi_dev_t *dev)
2332 {
2333         int data_len;
2334         int retry = 0;
2335         u32 ioaccel2_resid = 0;
2336
2337         switch (c2->error_data.serv_response) {
2338         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2339                 switch (c2->error_data.status) {
2340                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2341                         if (cmd)
2342                                 cmd->result = 0;
2343                         break;
2344                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2345                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2346                         if (c2->error_data.data_present !=
2347                                         IOACCEL2_SENSE_DATA_PRESENT) {
2348                                 memset(cmd->sense_buffer, 0,
2349                                         SCSI_SENSE_BUFFERSIZE);
2350                                 break;
2351                         }
2352                         /* copy the sense data */
2353                         data_len = c2->error_data.sense_data_len;
2354                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2355                                 data_len = SCSI_SENSE_BUFFERSIZE;
2356                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2357                                 data_len =
2358                                         sizeof(c2->error_data.sense_data_buff);
2359                         memcpy(cmd->sense_buffer,
2360                                 c2->error_data.sense_data_buff, data_len);
2361                         retry = 1;
2362                         break;
2363                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2364                         retry = 1;
2365                         break;
2366                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2367                         retry = 1;
2368                         break;
2369                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2370                         retry = 1;
2371                         break;
2372                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2373                         retry = 1;
2374                         break;
2375                 default:
2376                         retry = 1;
2377                         break;
2378                 }
2379                 break;
2380         case IOACCEL2_SERV_RESPONSE_FAILURE:
2381                 switch (c2->error_data.status) {
2382                 case IOACCEL2_STATUS_SR_IO_ERROR:
2383                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2384                 case IOACCEL2_STATUS_SR_OVERRUN:
2385                         retry = 1;
2386                         break;
2387                 case IOACCEL2_STATUS_SR_UNDERRUN:
2388                         cmd->result = (DID_OK << 16);           /* host byte */
2389                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2390                         ioaccel2_resid = get_unaligned_le32(
2391                                                 &c2->error_data.resid_cnt[0]);
2392                         scsi_set_resid(cmd, ioaccel2_resid);
2393                         break;
2394                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2395                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2396                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2397                         /*
2398                          * Did an HBA disk disappear? We will eventually
2399                          * get a state change event from the controller but
2400                          * in the meantime, we need to tell the OS that the
2401                          * HBA disk is no longer there and stop I/O
2402                          * from going down. This allows the potential re-insert
2403                          * of the disk to get the same device node.
2404                          */
2405                         if (dev->physical_device && dev->expose_device) {
2406                                 cmd->result = DID_NO_CONNECT << 16;
2407                                 dev->removed = 1;
2408                                 h->drv_req_rescan = 1;
2409                                 dev_warn(&h->pdev->dev,
2410                                         "%s: device is gone!\n", __func__);
2411                         } else
2412                                 /*
2413                                  * Retry by sending down the RAID path.
2414                                  * We will get an event from ctlr to
2415                                  * trigger rescan regardless.
2416                                  */
2417                                 retry = 1;
2418                         break;
2419                 default:
2420                         retry = 1;
2421                 }
2422                 break;
2423         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2424                 break;
2425         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2426                 break;
2427         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2428                 retry = 1;
2429                 break;
2430         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2431                 break;
2432         default:
2433                 retry = 1;
2434                 break;
2435         }
2436
2437         if (dev->in_reset)
2438                 retry = 0;
2439
2440         return retry;   /* retry on raid path? */
2441 }
2442
2443 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2444                 struct CommandList *c)
2445 {
2446         struct hpsa_scsi_dev_t *dev = c->device;
2447
2448         /*
2449          * Reset c->scsi_cmd here so that the reset handler will know
2450          * this command has completed.  Then, check to see if the handler is
2451          * waiting for this command, and, if so, wake it.
2452          */
2453         c->scsi_cmd = SCSI_CMD_IDLE;
2454         mb();   /* Declare command idle before checking for pending events. */
2455         if (dev) {
2456                 atomic_dec(&dev->commands_outstanding);
2457                 if (dev->in_reset &&
2458                         atomic_read(&dev->commands_outstanding) <= 0)
2459                         wake_up_all(&h->event_sync_wait_queue);
2460         }
2461 }
2462
2463 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2464                                       struct CommandList *c)
2465 {
2466         hpsa_cmd_resolve_events(h, c);
2467         cmd_tagged_free(h, c);
2468 }
2469
2470 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2471                 struct CommandList *c, struct scsi_cmnd *cmd)
2472 {
2473         hpsa_cmd_resolve_and_free(h, c);
2474         if (cmd && cmd->scsi_done)
2475                 cmd->scsi_done(cmd);
2476 }
2477
2478 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2479 {
2480         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2481         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2482 }
2483
2484 static void process_ioaccel2_completion(struct ctlr_info *h,
2485                 struct CommandList *c, struct scsi_cmnd *cmd,
2486                 struct hpsa_scsi_dev_t *dev)
2487 {
2488         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2489
2490         /* check for good status */
2491         if (likely(c2->error_data.serv_response == 0 &&
2492                         c2->error_data.status == 0)) {
2493                 cmd->result = 0;
2494                 return hpsa_cmd_free_and_done(h, c, cmd);
2495         }
2496
2497         /*
2498          * Any RAID offload error results in retry which will use
2499          * the normal I/O path so the controller can handle whatever is
2500          * wrong.
2501          */
2502         if (is_logical_device(dev) &&
2503                 c2->error_data.serv_response ==
2504                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2505                 if (c2->error_data.status ==
2506                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2507                         hpsa_turn_off_ioaccel_for_device(dev);
2508                 }
2509
2510                 if (dev->in_reset) {
2511                         cmd->result = DID_RESET << 16;
2512                         return hpsa_cmd_free_and_done(h, c, cmd);
2513                 }
2514
2515                 return hpsa_retry_cmd(h, c);
2516         }
2517
2518         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2519                 return hpsa_retry_cmd(h, c);
2520
2521         return hpsa_cmd_free_and_done(h, c, cmd);
2522 }
2523
2524 /* Returns 0 on success, < 0 otherwise. */
2525 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2526                                         struct CommandList *cp)
2527 {
2528         u8 tmf_status = cp->err_info->ScsiStatus;
2529
2530         switch (tmf_status) {
2531         case CISS_TMF_COMPLETE:
2532                 /*
2533                  * CISS_TMF_COMPLETE never happens, instead,
2534                  * ei->CommandStatus == 0 for this case.
2535                  */
2536         case CISS_TMF_SUCCESS:
2537                 return 0;
2538         case CISS_TMF_INVALID_FRAME:
2539         case CISS_TMF_NOT_SUPPORTED:
2540         case CISS_TMF_FAILED:
2541         case CISS_TMF_WRONG_LUN:
2542         case CISS_TMF_OVERLAPPED_TAG:
2543                 break;
2544         default:
2545                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2546                                 tmf_status);
2547                 break;
2548         }
2549         return -tmf_status;
2550 }
2551
2552 static void complete_scsi_command(struct CommandList *cp)
2553 {
2554         struct scsi_cmnd *cmd;
2555         struct ctlr_info *h;
2556         struct ErrorInfo *ei;
2557         struct hpsa_scsi_dev_t *dev;
2558         struct io_accel2_cmd *c2;
2559
2560         u8 sense_key;
2561         u8 asc;      /* additional sense code */
2562         u8 ascq;     /* additional sense code qualifier */
2563         unsigned long sense_data_size;
2564
2565         ei = cp->err_info;
2566         cmd = cp->scsi_cmd;
2567         h = cp->h;
2568
2569         if (!cmd->device) {
2570                 cmd->result = DID_NO_CONNECT << 16;
2571                 return hpsa_cmd_free_and_done(h, cp, cmd);
2572         }
2573
2574         dev = cmd->device->hostdata;
2575         if (!dev) {
2576                 cmd->result = DID_NO_CONNECT << 16;
2577                 return hpsa_cmd_free_and_done(h, cp, cmd);
2578         }
2579         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2580
2581         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2582         if ((cp->cmd_type == CMD_SCSI) &&
2583                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2584                 hpsa_unmap_sg_chain_block(h, cp);
2585
2586         if ((cp->cmd_type == CMD_IOACCEL2) &&
2587                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2588                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2589
2590         cmd->result = (DID_OK << 16);           /* host byte */
2591         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2592
2593         /* SCSI command has already been cleaned up in SML */
2594         if (dev->was_removed) {
2595                 hpsa_cmd_resolve_and_free(h, cp);
2596                 return;
2597         }
2598
2599         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2600                 if (dev->physical_device && dev->expose_device &&
2601                         dev->removed) {
2602                         cmd->result = DID_NO_CONNECT << 16;
2603                         return hpsa_cmd_free_and_done(h, cp, cmd);
2604                 }
2605                 if (likely(cp->phys_disk != NULL))
2606                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2607         }
2608
2609         /*
2610          * We check for lockup status here as it may be set for
2611          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2612          * fail_all_oustanding_cmds()
2613          */
2614         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2615                 /* DID_NO_CONNECT will prevent a retry */
2616                 cmd->result = DID_NO_CONNECT << 16;
2617                 return hpsa_cmd_free_and_done(h, cp, cmd);
2618         }
2619
2620         if (cp->cmd_type == CMD_IOACCEL2)
2621                 return process_ioaccel2_completion(h, cp, cmd, dev);
2622
2623         scsi_set_resid(cmd, ei->ResidualCnt);
2624         if (ei->CommandStatus == 0)
2625                 return hpsa_cmd_free_and_done(h, cp, cmd);
2626
2627         /* For I/O accelerator commands, copy over some fields to the normal
2628          * CISS header used below for error handling.
2629          */
2630         if (cp->cmd_type == CMD_IOACCEL1) {
2631                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2632                 cp->Header.SGList = scsi_sg_count(cmd);
2633                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2634                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2635                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2636                 cp->Header.tag = c->tag;
2637                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2638                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2639
2640                 /* Any RAID offload error results in retry which will use
2641                  * the normal I/O path so the controller can handle whatever's
2642                  * wrong.
2643                  */
2644                 if (is_logical_device(dev)) {
2645                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2646                                 dev->offload_enabled = 0;
2647                         return hpsa_retry_cmd(h, cp);
2648                 }
2649         }
2650
2651         /* an error has occurred */
2652         switch (ei->CommandStatus) {
2653
2654         case CMD_TARGET_STATUS:
2655                 cmd->result |= ei->ScsiStatus;
2656                 /* copy the sense data */
2657                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2658                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2659                 else
2660                         sense_data_size = sizeof(ei->SenseInfo);
2661                 if (ei->SenseLen < sense_data_size)
2662                         sense_data_size = ei->SenseLen;
2663                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2664                 if (ei->ScsiStatus)
2665                         decode_sense_data(ei->SenseInfo, sense_data_size,
2666                                 &sense_key, &asc, &ascq);
2667                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2668                         switch (sense_key) {
2669                         case ABORTED_COMMAND:
2670                                 cmd->result |= DID_SOFT_ERROR << 16;
2671                                 break;
2672                         case UNIT_ATTENTION:
2673                                 if (asc == 0x3F && ascq == 0x0E)
2674                                         h->drv_req_rescan = 1;
2675                                 break;
2676                         case ILLEGAL_REQUEST:
2677                                 if (asc == 0x25 && ascq == 0x00) {
2678                                         dev->removed = 1;
2679                                         cmd->result = DID_NO_CONNECT << 16;
2680                                 }
2681                                 break;
2682                         }
2683                         break;
2684                 }
2685                 /* Problem was not a check condition
2686                  * Pass it up to the upper layers...
2687                  */
2688                 if (ei->ScsiStatus) {
2689                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2690                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2691                                 "Returning result: 0x%x\n",
2692                                 cp, ei->ScsiStatus,
2693                                 sense_key, asc, ascq,
2694                                 cmd->result);
2695                 } else {  /* scsi status is zero??? How??? */
2696                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2697                                 "Returning no connection.\n", cp),
2698
2699                         /* Ordinarily, this case should never happen,
2700                          * but there is a bug in some released firmware
2701                          * revisions that allows it to happen if, for
2702                          * example, a 4100 backplane loses power and
2703                          * the tape drive is in it.  We assume that
2704                          * it's a fatal error of some kind because we
2705                          * can't show that it wasn't. We will make it
2706                          * look like selection timeout since that is
2707                          * the most common reason for this to occur,
2708                          * and it's severe enough.
2709                          */
2710
2711                         cmd->result = DID_NO_CONNECT << 16;
2712                 }
2713                 break;
2714
2715         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2716                 break;
2717         case CMD_DATA_OVERRUN:
2718                 dev_warn(&h->pdev->dev,
2719                         "CDB %16phN data overrun\n", cp->Request.CDB);
2720                 break;
2721         case CMD_INVALID: {
2722                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2723                 print_cmd(cp); */
2724                 /* We get CMD_INVALID if you address a non-existent device
2725                  * instead of a selection timeout (no response).  You will
2726                  * see this if you yank out a drive, then try to access it.
2727                  * This is kind of a shame because it means that any other
2728                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2729                  * missing target. */
2730                 cmd->result = DID_NO_CONNECT << 16;
2731         }
2732                 break;
2733         case CMD_PROTOCOL_ERR:
2734                 cmd->result = DID_ERROR << 16;
2735                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2736                                 cp->Request.CDB);
2737                 break;
2738         case CMD_HARDWARE_ERR:
2739                 cmd->result = DID_ERROR << 16;
2740                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2741                         cp->Request.CDB);
2742                 break;
2743         case CMD_CONNECTION_LOST:
2744                 cmd->result = DID_ERROR << 16;
2745                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2746                         cp->Request.CDB);
2747                 break;
2748         case CMD_ABORTED:
2749                 cmd->result = DID_ABORT << 16;
2750                 break;
2751         case CMD_ABORT_FAILED:
2752                 cmd->result = DID_ERROR << 16;
2753                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2754                         cp->Request.CDB);
2755                 break;
2756         case CMD_UNSOLICITED_ABORT:
2757                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2758                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2759                         cp->Request.CDB);
2760                 break;
2761         case CMD_TIMEOUT:
2762                 cmd->result = DID_TIME_OUT << 16;
2763                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2764                         cp->Request.CDB);
2765                 break;
2766         case CMD_UNABORTABLE:
2767                 cmd->result = DID_ERROR << 16;
2768                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2769                 break;
2770         case CMD_TMF_STATUS:
2771                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2772                         cmd->result = DID_ERROR << 16;
2773                 break;
2774         case CMD_IOACCEL_DISABLED:
2775                 /* This only handles the direct pass-through case since RAID
2776                  * offload is handled above.  Just attempt a retry.
2777                  */
2778                 cmd->result = DID_SOFT_ERROR << 16;
2779                 dev_warn(&h->pdev->dev,
2780                                 "cp %p had HP SSD Smart Path error\n", cp);
2781                 break;
2782         default:
2783                 cmd->result = DID_ERROR << 16;
2784                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2785                                 cp, ei->CommandStatus);
2786         }
2787
2788         return hpsa_cmd_free_and_done(h, cp, cmd);
2789 }
2790
2791 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2792                 int sg_used, enum dma_data_direction data_direction)
2793 {
2794         int i;
2795
2796         for (i = 0; i < sg_used; i++)
2797                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2798                                 le32_to_cpu(c->SG[i].Len),
2799                                 data_direction);
2800 }
2801
2802 static int hpsa_map_one(struct pci_dev *pdev,
2803                 struct CommandList *cp,
2804                 unsigned char *buf,
2805                 size_t buflen,
2806                 enum dma_data_direction data_direction)
2807 {
2808         u64 addr64;
2809
2810         if (buflen == 0 || data_direction == DMA_NONE) {
2811                 cp->Header.SGList = 0;
2812                 cp->Header.SGTotal = cpu_to_le16(0);
2813                 return 0;
2814         }
2815
2816         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2817         if (dma_mapping_error(&pdev->dev, addr64)) {
2818                 /* Prevent subsequent unmap of something never mapped */
2819                 cp->Header.SGList = 0;
2820                 cp->Header.SGTotal = cpu_to_le16(0);
2821                 return -1;
2822         }
2823         cp->SG[0].Addr = cpu_to_le64(addr64);
2824         cp->SG[0].Len = cpu_to_le32(buflen);
2825         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2826         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2827         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2828         return 0;
2829 }
2830
2831 #define NO_TIMEOUT ((unsigned long) -1)
2832 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2833 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2834         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2835 {
2836         DECLARE_COMPLETION_ONSTACK(wait);
2837
2838         c->waiting = &wait;
2839         __enqueue_cmd_and_start_io(h, c, reply_queue);
2840         if (timeout_msecs == NO_TIMEOUT) {
2841                 /* TODO: get rid of this no-timeout thing */
2842                 wait_for_completion_io(&wait);
2843                 return IO_OK;
2844         }
2845         if (!wait_for_completion_io_timeout(&wait,
2846                                         msecs_to_jiffies(timeout_msecs))) {
2847                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2848                 return -ETIMEDOUT;
2849         }
2850         return IO_OK;
2851 }
2852
2853 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2854                                    int reply_queue, unsigned long timeout_msecs)
2855 {
2856         if (unlikely(lockup_detected(h))) {
2857                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2858                 return IO_OK;
2859         }
2860         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2861 }
2862
2863 static u32 lockup_detected(struct ctlr_info *h)
2864 {
2865         int cpu;
2866         u32 rc, *lockup_detected;
2867
2868         cpu = get_cpu();
2869         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2870         rc = *lockup_detected;
2871         put_cpu();
2872         return rc;
2873 }
2874
2875 #define MAX_DRIVER_CMD_RETRIES 25
2876 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2877                 struct CommandList *c, enum dma_data_direction data_direction,
2878                 unsigned long timeout_msecs)
2879 {
2880         int backoff_time = 10, retry_count = 0;
2881         int rc;
2882
2883         do {
2884                 memset(c->err_info, 0, sizeof(*c->err_info));
2885                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2886                                                   timeout_msecs);
2887                 if (rc)
2888                         break;
2889                 retry_count++;
2890                 if (retry_count > 3) {
2891                         msleep(backoff_time);
2892                         if (backoff_time < 1000)
2893                                 backoff_time *= 2;
2894                 }
2895         } while ((check_for_unit_attention(h, c) ||
2896                         check_for_busy(h, c)) &&
2897                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2898         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2899         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2900                 rc = -EIO;
2901         return rc;
2902 }
2903
2904 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2905                                 struct CommandList *c)
2906 {
2907         const u8 *cdb = c->Request.CDB;
2908         const u8 *lun = c->Header.LUN.LunAddrBytes;
2909
2910         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2911                  txt, lun, cdb);
2912 }
2913
2914 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2915                         struct CommandList *cp)
2916 {
2917         const struct ErrorInfo *ei = cp->err_info;
2918         struct device *d = &cp->h->pdev->dev;
2919         u8 sense_key, asc, ascq;
2920         int sense_len;
2921
2922         switch (ei->CommandStatus) {
2923         case CMD_TARGET_STATUS:
2924                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2925                         sense_len = sizeof(ei->SenseInfo);
2926                 else
2927                         sense_len = ei->SenseLen;
2928                 decode_sense_data(ei->SenseInfo, sense_len,
2929                                         &sense_key, &asc, &ascq);
2930                 hpsa_print_cmd(h, "SCSI status", cp);
2931                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2932                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2933                                 sense_key, asc, ascq);
2934                 else
2935                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2936                 if (ei->ScsiStatus == 0)
2937                         dev_warn(d, "SCSI status is abnormally zero.  "
2938                         "(probably indicates selection timeout "
2939                         "reported incorrectly due to a known "
2940                         "firmware bug, circa July, 2001.)\n");
2941                 break;
2942         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2943                 break;
2944         case CMD_DATA_OVERRUN:
2945                 hpsa_print_cmd(h, "overrun condition", cp);
2946                 break;
2947         case CMD_INVALID: {
2948                 /* controller unfortunately reports SCSI passthru's
2949                  * to non-existent targets as invalid commands.
2950                  */
2951                 hpsa_print_cmd(h, "invalid command", cp);
2952                 dev_warn(d, "probably means device no longer present\n");
2953                 }
2954                 break;
2955         case CMD_PROTOCOL_ERR:
2956                 hpsa_print_cmd(h, "protocol error", cp);
2957                 break;
2958         case CMD_HARDWARE_ERR:
2959                 hpsa_print_cmd(h, "hardware error", cp);
2960                 break;
2961         case CMD_CONNECTION_LOST:
2962                 hpsa_print_cmd(h, "connection lost", cp);
2963                 break;
2964         case CMD_ABORTED:
2965                 hpsa_print_cmd(h, "aborted", cp);
2966                 break;
2967         case CMD_ABORT_FAILED:
2968                 hpsa_print_cmd(h, "abort failed", cp);
2969                 break;
2970         case CMD_UNSOLICITED_ABORT:
2971                 hpsa_print_cmd(h, "unsolicited abort", cp);
2972                 break;
2973         case CMD_TIMEOUT:
2974                 hpsa_print_cmd(h, "timed out", cp);
2975                 break;
2976         case CMD_UNABORTABLE:
2977                 hpsa_print_cmd(h, "unabortable", cp);
2978                 break;
2979         case CMD_CTLR_LOCKUP:
2980                 hpsa_print_cmd(h, "controller lockup detected", cp);
2981                 break;
2982         default:
2983                 hpsa_print_cmd(h, "unknown status", cp);
2984                 dev_warn(d, "Unknown command status %x\n",
2985                                 ei->CommandStatus);
2986         }
2987 }
2988
2989 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2990                                         u8 page, u8 *buf, size_t bufsize)
2991 {
2992         int rc = IO_OK;
2993         struct CommandList *c;
2994         struct ErrorInfo *ei;
2995
2996         c = cmd_alloc(h);
2997         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2998                         page, scsi3addr, TYPE_CMD)) {
2999                 rc = -1;
3000                 goto out;
3001         }
3002         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3003                         NO_TIMEOUT);
3004         if (rc)
3005                 goto out;
3006         ei = c->err_info;
3007         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3008                 hpsa_scsi_interpret_error(h, c);
3009                 rc = -1;
3010         }
3011 out:
3012         cmd_free(h, c);
3013         return rc;
3014 }
3015
3016 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3017                                                 u8 *scsi3addr)
3018 {
3019         u8 *buf;
3020         u64 sa = 0;
3021         int rc = 0;
3022
3023         buf = kzalloc(1024, GFP_KERNEL);
3024         if (!buf)
3025                 return 0;
3026
3027         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3028                                         buf, 1024);
3029
3030         if (rc)
3031                 goto out;
3032
3033         sa = get_unaligned_be64(buf+12);
3034
3035 out:
3036         kfree(buf);
3037         return sa;
3038 }
3039
3040 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3041                         u16 page, unsigned char *buf,
3042                         unsigned char bufsize)
3043 {
3044         int rc = IO_OK;
3045         struct CommandList *c;
3046         struct ErrorInfo *ei;
3047
3048         c = cmd_alloc(h);
3049
3050         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3051                         page, scsi3addr, TYPE_CMD)) {
3052                 rc = -1;
3053                 goto out;
3054         }
3055         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3056                         NO_TIMEOUT);
3057         if (rc)
3058                 goto out;
3059         ei = c->err_info;
3060         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3061                 hpsa_scsi_interpret_error(h, c);
3062                 rc = -1;
3063         }
3064 out:
3065         cmd_free(h, c);
3066         return rc;
3067 }
3068
3069 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3070         u8 reset_type, int reply_queue)
3071 {
3072         int rc = IO_OK;
3073         struct CommandList *c;
3074         struct ErrorInfo *ei;
3075
3076         c = cmd_alloc(h);
3077         c->device = dev;
3078
3079         /* fill_cmd can't fail here, no data buffer to map. */
3080         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3081         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3082         if (rc) {
3083                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3084                 goto out;
3085         }
3086         /* no unmap needed here because no data xfer. */
3087
3088         ei = c->err_info;
3089         if (ei->CommandStatus != 0) {
3090                 hpsa_scsi_interpret_error(h, c);
3091                 rc = -1;
3092         }
3093 out:
3094         cmd_free(h, c);
3095         return rc;
3096 }
3097
3098 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3099                                struct hpsa_scsi_dev_t *dev,
3100                                unsigned char *scsi3addr)
3101 {
3102         int i;
3103         bool match = false;
3104         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3105         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3106
3107         if (hpsa_is_cmd_idle(c))
3108                 return false;
3109
3110         switch (c->cmd_type) {
3111         case CMD_SCSI:
3112         case CMD_IOCTL_PEND:
3113                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3114                                 sizeof(c->Header.LUN.LunAddrBytes));
3115                 break;
3116
3117         case CMD_IOACCEL1:
3118         case CMD_IOACCEL2:
3119                 if (c->phys_disk == dev) {
3120                         /* HBA mode match */
3121                         match = true;
3122                 } else {
3123                         /* Possible RAID mode -- check each phys dev. */
3124                         /* FIXME:  Do we need to take out a lock here?  If
3125                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3126                          * instead. */
3127                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3128                                 /* FIXME: an alternate test might be
3129                                  *
3130                                  * match = dev->phys_disk[i]->ioaccel_handle
3131                                  *              == c2->scsi_nexus;      */
3132                                 match = dev->phys_disk[i] == c->phys_disk;
3133                         }
3134                 }
3135                 break;
3136
3137         case IOACCEL2_TMF:
3138                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3139                         match = dev->phys_disk[i]->ioaccel_handle ==
3140                                         le32_to_cpu(ac->it_nexus);
3141                 }
3142                 break;
3143
3144         case 0:         /* The command is in the middle of being initialized. */
3145                 match = false;
3146                 break;
3147
3148         default:
3149                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3150                         c->cmd_type);
3151                 BUG();
3152         }
3153
3154         return match;
3155 }
3156
3157 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3158         u8 reset_type, int reply_queue)
3159 {
3160         int rc = 0;
3161
3162         /* We can really only handle one reset at a time */
3163         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3164                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3165                 return -EINTR;
3166         }
3167
3168         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3169         if (!rc) {
3170                 /* incremented by sending the reset request */
3171                 atomic_dec(&dev->commands_outstanding);
3172                 wait_event(h->event_sync_wait_queue,
3173                         atomic_read(&dev->commands_outstanding) <= 0 ||
3174                         lockup_detected(h));
3175         }
3176
3177         if (unlikely(lockup_detected(h))) {
3178                 dev_warn(&h->pdev->dev,
3179                          "Controller lockup detected during reset wait\n");
3180                 rc = -ENODEV;
3181         }
3182
3183         if (!rc)
3184                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3185
3186         mutex_unlock(&h->reset_mutex);
3187         return rc;
3188 }
3189
3190 static void hpsa_get_raid_level(struct ctlr_info *h,
3191         unsigned char *scsi3addr, unsigned char *raid_level)
3192 {
3193         int rc;
3194         unsigned char *buf;
3195
3196         *raid_level = RAID_UNKNOWN;
3197         buf = kzalloc(64, GFP_KERNEL);
3198         if (!buf)
3199                 return;
3200
3201         if (!hpsa_vpd_page_supported(h, scsi3addr,
3202                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3203                 goto exit;
3204
3205         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3206                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3207
3208         if (rc == 0)
3209                 *raid_level = buf[8];
3210         if (*raid_level > RAID_UNKNOWN)
3211                 *raid_level = RAID_UNKNOWN;
3212 exit:
3213         kfree(buf);
3214         return;
3215 }
3216
3217 #define HPSA_MAP_DEBUG
3218 #ifdef HPSA_MAP_DEBUG
3219 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3220                                 struct raid_map_data *map_buff)
3221 {
3222         struct raid_map_disk_data *dd = &map_buff->data[0];
3223         int map, row, col;
3224         u16 map_cnt, row_cnt, disks_per_row;
3225
3226         if (rc != 0)
3227                 return;
3228
3229         /* Show details only if debugging has been activated. */
3230         if (h->raid_offload_debug < 2)
3231                 return;
3232
3233         dev_info(&h->pdev->dev, "structure_size = %u\n",
3234                                 le32_to_cpu(map_buff->structure_size));
3235         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3236                         le32_to_cpu(map_buff->volume_blk_size));
3237         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3238                         le64_to_cpu(map_buff->volume_blk_cnt));
3239         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3240                         map_buff->phys_blk_shift);
3241         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3242                         map_buff->parity_rotation_shift);
3243         dev_info(&h->pdev->dev, "strip_size = %u\n",
3244                         le16_to_cpu(map_buff->strip_size));
3245         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3246                         le64_to_cpu(map_buff->disk_starting_blk));
3247         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3248                         le64_to_cpu(map_buff->disk_blk_cnt));
3249         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3250                         le16_to_cpu(map_buff->data_disks_per_row));
3251         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3252                         le16_to_cpu(map_buff->metadata_disks_per_row));
3253         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3254                         le16_to_cpu(map_buff->row_cnt));
3255         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3256                         le16_to_cpu(map_buff->layout_map_count));
3257         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3258                         le16_to_cpu(map_buff->flags));
3259         dev_info(&h->pdev->dev, "encryption = %s\n",
3260                         le16_to_cpu(map_buff->flags) &
3261                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3262         dev_info(&h->pdev->dev, "dekindex = %u\n",
3263                         le16_to_cpu(map_buff->dekindex));
3264         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3265         for (map = 0; map < map_cnt; map++) {
3266                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3267                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3268                 for (row = 0; row < row_cnt; row++) {
3269                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3270                         disks_per_row =
3271                                 le16_to_cpu(map_buff->data_disks_per_row);
3272                         for (col = 0; col < disks_per_row; col++, dd++)
3273                                 dev_info(&h->pdev->dev,
3274                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3275                                         col, dd->ioaccel_handle,
3276                                         dd->xor_mult[0], dd->xor_mult[1]);
3277                         disks_per_row =
3278                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3279                         for (col = 0; col < disks_per_row; col++, dd++)
3280                                 dev_info(&h->pdev->dev,
3281                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3282                                         col, dd->ioaccel_handle,
3283                                         dd->xor_mult[0], dd->xor_mult[1]);
3284                 }
3285         }
3286 }
3287 #else
3288 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3289                         __attribute__((unused)) int rc,
3290                         __attribute__((unused)) struct raid_map_data *map_buff)
3291 {
3292 }
3293 #endif
3294
3295 static int hpsa_get_raid_map(struct ctlr_info *h,
3296         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3297 {
3298         int rc = 0;
3299         struct CommandList *c;
3300         struct ErrorInfo *ei;
3301
3302         c = cmd_alloc(h);
3303
3304         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3305                         sizeof(this_device->raid_map), 0,
3306                         scsi3addr, TYPE_CMD)) {
3307                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3308                 cmd_free(h, c);
3309                 return -1;
3310         }
3311         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3312                         NO_TIMEOUT);
3313         if (rc)
3314                 goto out;
3315         ei = c->err_info;
3316         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3317                 hpsa_scsi_interpret_error(h, c);
3318                 rc = -1;
3319                 goto out;
3320         }
3321         cmd_free(h, c);
3322
3323         /* @todo in the future, dynamically allocate RAID map memory */
3324         if (le32_to_cpu(this_device->raid_map.structure_size) >
3325                                 sizeof(this_device->raid_map)) {
3326                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3327                 rc = -1;
3328         }
3329         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3330         return rc;
3331 out:
3332         cmd_free(h, c);
3333         return rc;
3334 }
3335
3336 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3337                 unsigned char scsi3addr[], u16 bmic_device_index,
3338                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3339 {
3340         int rc = IO_OK;
3341         struct CommandList *c;
3342         struct ErrorInfo *ei;
3343
3344         c = cmd_alloc(h);
3345
3346         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3347                 0, RAID_CTLR_LUNID, TYPE_CMD);
3348         if (rc)
3349                 goto out;
3350
3351         c->Request.CDB[2] = bmic_device_index & 0xff;
3352         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3353
3354         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3355                         NO_TIMEOUT);
3356         if (rc)
3357                 goto out;
3358         ei = c->err_info;
3359         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3360                 hpsa_scsi_interpret_error(h, c);
3361                 rc = -1;
3362         }
3363 out:
3364         cmd_free(h, c);
3365         return rc;
3366 }
3367
3368 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3369         struct bmic_identify_controller *buf, size_t bufsize)
3370 {
3371         int rc = IO_OK;
3372         struct CommandList *c;
3373         struct ErrorInfo *ei;
3374
3375         c = cmd_alloc(h);
3376
3377         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3378                 0, RAID_CTLR_LUNID, TYPE_CMD);
3379         if (rc)
3380                 goto out;
3381
3382         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3383                         NO_TIMEOUT);
3384         if (rc)
3385                 goto out;
3386         ei = c->err_info;
3387         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3388                 hpsa_scsi_interpret_error(h, c);
3389                 rc = -1;
3390         }
3391 out:
3392         cmd_free(h, c);
3393         return rc;
3394 }
3395
3396 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3397                 unsigned char scsi3addr[], u16 bmic_device_index,
3398                 struct bmic_identify_physical_device *buf, size_t bufsize)
3399 {
3400         int rc = IO_OK;
3401         struct CommandList *c;
3402         struct ErrorInfo *ei;
3403
3404         c = cmd_alloc(h);
3405         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3406                 0, RAID_CTLR_LUNID, TYPE_CMD);
3407         if (rc)
3408                 goto out;
3409
3410         c->Request.CDB[2] = bmic_device_index & 0xff;
3411         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3412
3413         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3414                                                 NO_TIMEOUT);
3415         ei = c->err_info;
3416         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3417                 hpsa_scsi_interpret_error(h, c);
3418                 rc = -1;
3419         }
3420 out:
3421         cmd_free(h, c);
3422
3423         return rc;
3424 }
3425
3426 /*
3427  * get enclosure information
3428  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3429  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3430  * Uses id_physical_device to determine the box_index.
3431  */
3432 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3433                         unsigned char *scsi3addr,
3434                         struct ReportExtendedLUNdata *rlep, int rle_index,
3435                         struct hpsa_scsi_dev_t *encl_dev)
3436 {
3437         int rc = -1;
3438         struct CommandList *c = NULL;
3439         struct ErrorInfo *ei = NULL;
3440         struct bmic_sense_storage_box_params *bssbp = NULL;
3441         struct bmic_identify_physical_device *id_phys = NULL;
3442         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3443         u16 bmic_device_index = 0;
3444
3445         encl_dev->eli =
3446                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3447
3448         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3449
3450         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3451                 rc = IO_OK;
3452                 goto out;
3453         }
3454
3455         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3456                 rc = IO_OK;
3457                 goto out;
3458         }
3459
3460         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3461         if (!bssbp)
3462                 goto out;
3463
3464         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3465         if (!id_phys)
3466                 goto out;
3467
3468         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3469                                                 id_phys, sizeof(*id_phys));
3470         if (rc) {
3471                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3472                         __func__, encl_dev->external, bmic_device_index);
3473                 goto out;
3474         }
3475
3476         c = cmd_alloc(h);
3477
3478         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3479                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3480
3481         if (rc)
3482                 goto out;
3483
3484         if (id_phys->phys_connector[1] == 'E')
3485                 c->Request.CDB[5] = id_phys->box_index;
3486         else
3487                 c->Request.CDB[5] = 0;
3488
3489         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3490                                                 NO_TIMEOUT);
3491         if (rc)
3492                 goto out;
3493
3494         ei = c->err_info;
3495         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3496                 rc = -1;
3497                 goto out;
3498         }
3499
3500         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3501         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3502                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3503
3504         rc = IO_OK;
3505 out:
3506         kfree(bssbp);
3507         kfree(id_phys);
3508
3509         if (c)
3510                 cmd_free(h, c);
3511
3512         if (rc != IO_OK)
3513                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3514                         "Error, could not get enclosure information");
3515 }
3516
3517 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3518                                                 unsigned char *scsi3addr)
3519 {
3520         struct ReportExtendedLUNdata *physdev;
3521         u32 nphysicals;
3522         u64 sa = 0;
3523         int i;
3524
3525         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3526         if (!physdev)
3527                 return 0;
3528
3529         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3530                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3531                 kfree(physdev);
3532                 return 0;
3533         }
3534         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3535
3536         for (i = 0; i < nphysicals; i++)
3537                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3538                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3539                         break;
3540                 }
3541
3542         kfree(physdev);
3543
3544         return sa;
3545 }
3546
3547 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3548                                         struct hpsa_scsi_dev_t *dev)
3549 {
3550         int rc;
3551         u64 sa = 0;
3552
3553         if (is_hba_lunid(scsi3addr)) {
3554                 struct bmic_sense_subsystem_info *ssi;
3555
3556                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3557                 if (!ssi)
3558                         return;
3559
3560                 rc = hpsa_bmic_sense_subsystem_information(h,
3561                                         scsi3addr, 0, ssi, sizeof(*ssi));
3562                 if (rc == 0) {
3563                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3564                         h->sas_address = sa;
3565                 }
3566
3567                 kfree(ssi);
3568         } else
3569                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3570
3571         dev->sas_address = sa;
3572 }
3573
3574 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3575         struct ReportExtendedLUNdata *physdev)
3576 {
3577         u32 nphysicals;
3578         int i;
3579
3580         if (h->discovery_polling)
3581                 return;
3582
3583         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3584
3585         for (i = 0; i < nphysicals; i++) {
3586                 if (physdev->LUN[i].device_type ==
3587                         BMIC_DEVICE_TYPE_CONTROLLER
3588                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3589                         dev_info(&h->pdev->dev,
3590                                 "External controller present, activate discovery polling and disable rld caching\n");
3591                         hpsa_disable_rld_caching(h);
3592                         h->discovery_polling = 1;
3593                         break;
3594                 }
3595         }
3596 }
3597
3598 /* Get a device id from inquiry page 0x83 */
3599 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3600         unsigned char scsi3addr[], u8 page)
3601 {
3602         int rc;
3603         int i;
3604         int pages;
3605         unsigned char *buf, bufsize;
3606
3607         buf = kzalloc(256, GFP_KERNEL);
3608         if (!buf)
3609                 return false;
3610
3611         /* Get the size of the page list first */
3612         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3613                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3614                                 buf, HPSA_VPD_HEADER_SZ);
3615         if (rc != 0)
3616                 goto exit_unsupported;
3617         pages = buf[3];
3618         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3619                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3620         else
3621                 bufsize = 255;
3622
3623         /* Get the whole VPD page list */
3624         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3625                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3626                                 buf, bufsize);
3627         if (rc != 0)
3628                 goto exit_unsupported;
3629
3630         pages = buf[3];
3631         for (i = 1; i <= pages; i++)
3632                 if (buf[3 + i] == page)
3633                         goto exit_supported;
3634 exit_unsupported:
3635         kfree(buf);
3636         return false;
3637 exit_supported:
3638         kfree(buf);
3639         return true;
3640 }
3641
3642 /*
3643  * Called during a scan operation.
3644  * Sets ioaccel status on the new device list, not the existing device list
3645  *
3646  * The device list used during I/O will be updated later in
3647  * adjust_hpsa_scsi_table.
3648  */
3649 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3650         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3651 {
3652         int rc;
3653         unsigned char *buf;
3654         u8 ioaccel_status;
3655
3656         this_device->offload_config = 0;
3657         this_device->offload_enabled = 0;
3658         this_device->offload_to_be_enabled = 0;
3659
3660         buf = kzalloc(64, GFP_KERNEL);
3661         if (!buf)
3662                 return;
3663         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3664                 goto out;
3665         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3666                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3667         if (rc != 0)
3668                 goto out;
3669
3670 #define IOACCEL_STATUS_BYTE 4
3671 #define OFFLOAD_CONFIGURED_BIT 0x01
3672 #define OFFLOAD_ENABLED_BIT 0x02
3673         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3674         this_device->offload_config =
3675                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3676         if (this_device->offload_config) {
3677                 bool offload_enabled =
3678                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3679                 /*
3680                  * Check to see if offload can be enabled.
3681                  */
3682                 if (offload_enabled) {
3683                         rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3684                         if (rc) /* could not load raid_map */
3685                                 goto out;
3686                         this_device->offload_to_be_enabled = 1;
3687                 }
3688         }
3689
3690 out:
3691         kfree(buf);
3692         return;
3693 }
3694
3695 /* Get the device id from inquiry page 0x83 */
3696 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3697         unsigned char *device_id, int index, int buflen)
3698 {
3699         int rc;
3700         unsigned char *buf;
3701
3702         /* Does controller have VPD for device id? */
3703         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3704                 return 1; /* not supported */
3705
3706         buf = kzalloc(64, GFP_KERNEL);
3707         if (!buf)
3708                 return -ENOMEM;
3709
3710         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3711                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3712         if (rc == 0) {
3713                 if (buflen > 16)
3714                         buflen = 16;
3715                 memcpy(device_id, &buf[8], buflen);
3716         }
3717
3718         kfree(buf);
3719
3720         return rc; /*0 - got id,  otherwise, didn't */
3721 }
3722
3723 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3724                 void *buf, int bufsize,
3725                 int extended_response)
3726 {
3727         int rc = IO_OK;
3728         struct CommandList *c;
3729         unsigned char scsi3addr[8];
3730         struct ErrorInfo *ei;
3731
3732         c = cmd_alloc(h);
3733
3734         /* address the controller */
3735         memset(scsi3addr, 0, sizeof(scsi3addr));
3736         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3737                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3738                 rc = -EAGAIN;
3739                 goto out;
3740         }
3741         if (extended_response)
3742                 c->Request.CDB[1] = extended_response;
3743         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3744                         NO_TIMEOUT);
3745         if (rc)
3746                 goto out;
3747         ei = c->err_info;
3748         if (ei->CommandStatus != 0 &&
3749             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3750                 hpsa_scsi_interpret_error(h, c);
3751                 rc = -EIO;
3752         } else {
3753                 struct ReportLUNdata *rld = buf;
3754
3755                 if (rld->extended_response_flag != extended_response) {
3756                         if (!h->legacy_board) {
3757                                 dev_err(&h->pdev->dev,
3758                                         "report luns requested format %u, got %u\n",
3759                                         extended_response,
3760                                         rld->extended_response_flag);
3761                                 rc = -EINVAL;
3762                         } else
3763                                 rc = -EOPNOTSUPP;
3764                 }
3765         }
3766 out:
3767         cmd_free(h, c);
3768         return rc;
3769 }
3770
3771 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3772                 struct ReportExtendedLUNdata *buf, int bufsize)
3773 {
3774         int rc;
3775         struct ReportLUNdata *lbuf;
3776
3777         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3778                                       HPSA_REPORT_PHYS_EXTENDED);
3779         if (!rc || rc != -EOPNOTSUPP)
3780                 return rc;
3781
3782         /* REPORT PHYS EXTENDED is not supported */
3783         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3784         if (!lbuf)
3785                 return -ENOMEM;
3786
3787         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3788         if (!rc) {
3789                 int i;
3790                 u32 nphys;
3791
3792                 /* Copy ReportLUNdata header */
3793                 memcpy(buf, lbuf, 8);
3794                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3795                 for (i = 0; i < nphys; i++)
3796                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3797         }
3798         kfree(lbuf);
3799         return rc;
3800 }
3801
3802 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3803                 struct ReportLUNdata *buf, int bufsize)
3804 {
3805         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3806 }
3807
3808 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3809         int bus, int target, int lun)
3810 {
3811         device->bus = bus;
3812         device->target = target;
3813         device->lun = lun;
3814 }
3815
3816 /* Use VPD inquiry to get details of volume status */
3817 static int hpsa_get_volume_status(struct ctlr_info *h,
3818                                         unsigned char scsi3addr[])
3819 {
3820         int rc;
3821         int status;
3822         int size;
3823         unsigned char *buf;
3824
3825         buf = kzalloc(64, GFP_KERNEL);
3826         if (!buf)
3827                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3828
3829         /* Does controller have VPD for logical volume status? */
3830         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3831                 goto exit_failed;
3832
3833         /* Get the size of the VPD return buffer */
3834         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3835                                         buf, HPSA_VPD_HEADER_SZ);
3836         if (rc != 0)
3837                 goto exit_failed;
3838         size = buf[3];
3839
3840         /* Now get the whole VPD buffer */
3841         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3842                                         buf, size + HPSA_VPD_HEADER_SZ);
3843         if (rc != 0)
3844                 goto exit_failed;
3845         status = buf[4]; /* status byte */
3846
3847         kfree(buf);
3848         return status;
3849 exit_failed:
3850         kfree(buf);
3851         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3852 }
3853
3854 /* Determine offline status of a volume.
3855  * Return either:
3856  *  0 (not offline)
3857  *  0xff (offline for unknown reasons)
3858  *  # (integer code indicating one of several NOT READY states
3859  *     describing why a volume is to be kept offline)
3860  */
3861 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3862                                         unsigned char scsi3addr[])
3863 {
3864         struct CommandList *c;
3865         unsigned char *sense;
3866         u8 sense_key, asc, ascq;
3867         int sense_len;
3868         int rc, ldstat = 0;
3869         u16 cmd_status;
3870         u8 scsi_status;
3871 #define ASC_LUN_NOT_READY 0x04
3872 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3873 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3874
3875         c = cmd_alloc(h);
3876
3877         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3878         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3879                                         NO_TIMEOUT);
3880         if (rc) {
3881                 cmd_free(h, c);
3882                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3883         }
3884         sense = c->err_info->SenseInfo;
3885         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3886                 sense_len = sizeof(c->err_info->SenseInfo);
3887         else
3888                 sense_len = c->err_info->SenseLen;
3889         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3890         cmd_status = c->err_info->CommandStatus;
3891         scsi_status = c->err_info->ScsiStatus;
3892         cmd_free(h, c);
3893
3894         /* Determine the reason for not ready state */
3895         ldstat = hpsa_get_volume_status(h, scsi3addr);
3896
3897         /* Keep volume offline in certain cases: */
3898         switch (ldstat) {
3899         case HPSA_LV_FAILED:
3900         case HPSA_LV_UNDERGOING_ERASE:
3901         case HPSA_LV_NOT_AVAILABLE:
3902         case HPSA_LV_UNDERGOING_RPI:
3903         case HPSA_LV_PENDING_RPI:
3904         case HPSA_LV_ENCRYPTED_NO_KEY:
3905         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3906         case HPSA_LV_UNDERGOING_ENCRYPTION:
3907         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3908         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3909                 return ldstat;
3910         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3911                 /* If VPD status page isn't available,
3912                  * use ASC/ASCQ to determine state
3913                  */
3914                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3915                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3916                         return ldstat;
3917                 break;
3918         default:
3919                 break;
3920         }
3921         return HPSA_LV_OK;
3922 }
3923
3924 static int hpsa_update_device_info(struct ctlr_info *h,
3925         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3926         unsigned char *is_OBDR_device)
3927 {
3928
3929 #define OBDR_SIG_OFFSET 43
3930 #define OBDR_TAPE_SIG "$DR-10"
3931 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3932 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3933
3934         unsigned char *inq_buff;
3935         unsigned char *obdr_sig;
3936         int rc = 0;
3937
3938         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3939         if (!inq_buff) {
3940                 rc = -ENOMEM;
3941                 goto bail_out;
3942         }
3943
3944         /* Do an inquiry to the device to see what it is. */
3945         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3946                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3947                 dev_err(&h->pdev->dev,
3948                         "%s: inquiry failed, device will be skipped.\n",
3949                         __func__);
3950                 rc = HPSA_INQUIRY_FAILED;
3951                 goto bail_out;
3952         }
3953
3954         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3955         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3956
3957         this_device->devtype = (inq_buff[0] & 0x1f);
3958         memcpy(this_device->scsi3addr, scsi3addr, 8);
3959         memcpy(this_device->vendor, &inq_buff[8],
3960                 sizeof(this_device->vendor));
3961         memcpy(this_device->model, &inq_buff[16],
3962                 sizeof(this_device->model));
3963         this_device->rev = inq_buff[2];
3964         memset(this_device->device_id, 0,
3965                 sizeof(this_device->device_id));
3966         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3967                 sizeof(this_device->device_id)) < 0) {
3968                 dev_err(&h->pdev->dev,
3969                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3970                         h->ctlr, __func__,
3971                         h->scsi_host->host_no,
3972                         this_device->bus, this_device->target,
3973                         this_device->lun,
3974                         scsi_device_type(this_device->devtype),
3975                         this_device->model);
3976                 rc = HPSA_LV_FAILED;
3977                 goto bail_out;
3978         }
3979
3980         if ((this_device->devtype == TYPE_DISK ||
3981                 this_device->devtype == TYPE_ZBC) &&
3982                 is_logical_dev_addr_mode(scsi3addr)) {
3983                 unsigned char volume_offline;
3984
3985                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3986                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3987                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3988                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3989                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3990                     h->legacy_board) {
3991                         /*
3992                          * Legacy boards might not support volume status
3993                          */
3994                         dev_info(&h->pdev->dev,
3995                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3996                                  this_device->target, this_device->lun);
3997                         volume_offline = 0;
3998                 }
3999                 this_device->volume_offline = volume_offline;
4000                 if (volume_offline == HPSA_LV_FAILED) {
4001                         rc = HPSA_LV_FAILED;
4002                         dev_err(&h->pdev->dev,
4003                                 "%s: LV failed, device will be skipped.\n",
4004                                 __func__);
4005                         goto bail_out;
4006                 }
4007         } else {
4008                 this_device->raid_level = RAID_UNKNOWN;
4009                 this_device->offload_config = 0;
4010                 hpsa_turn_off_ioaccel_for_device(this_device);
4011                 this_device->hba_ioaccel_enabled = 0;
4012                 this_device->volume_offline = 0;
4013                 this_device->queue_depth = h->nr_cmds;
4014         }
4015
4016         if (this_device->external)
4017                 this_device->queue_depth = EXTERNAL_QD;
4018
4019         if (is_OBDR_device) {
4020                 /* See if this is a One-Button-Disaster-Recovery device
4021                  * by looking for "$DR-10" at offset 43 in inquiry data.
4022                  */
4023                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4024                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4025                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4026                                                 OBDR_SIG_LEN) == 0);
4027         }
4028         kfree(inq_buff);
4029         return 0;
4030
4031 bail_out:
4032         kfree(inq_buff);
4033         return rc;
4034 }
4035
4036 /*
4037  * Helper function to assign bus, target, lun mapping of devices.
4038  * Logical drive target and lun are assigned at this time, but
4039  * physical device lun and target assignment are deferred (assigned
4040  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4041 */
4042 static void figure_bus_target_lun(struct ctlr_info *h,
4043         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4044 {
4045         u32 lunid = get_unaligned_le32(lunaddrbytes);
4046
4047         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4048                 /* physical device, target and lun filled in later */
4049                 if (is_hba_lunid(lunaddrbytes)) {
4050                         int bus = HPSA_HBA_BUS;
4051
4052                         if (!device->rev)
4053                                 bus = HPSA_LEGACY_HBA_BUS;
4054                         hpsa_set_bus_target_lun(device,
4055                                         bus, 0, lunid & 0x3fff);
4056                 } else
4057                         /* defer target, lun assignment for physical devices */
4058                         hpsa_set_bus_target_lun(device,
4059                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4060                 return;
4061         }
4062         /* It's a logical device */
4063         if (device->external) {
4064                 hpsa_set_bus_target_lun(device,
4065                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4066                         lunid & 0x00ff);
4067                 return;
4068         }
4069         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4070                                 0, lunid & 0x3fff);
4071 }
4072
4073 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4074         int i, int nphysicals, int nlocal_logicals)
4075 {
4076         /* In report logicals, local logicals are listed first,
4077         * then any externals.
4078         */
4079         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4080
4081         if (i == raid_ctlr_position)
4082                 return 0;
4083
4084         if (i < logicals_start)
4085                 return 0;
4086
4087         /* i is in logicals range, but still within local logicals */
4088         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4089                 return 0;
4090
4091         return 1; /* it's an external lun */
4092 }
4093
4094 /*
4095  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4096  * logdev.  The number of luns in physdev and logdev are returned in
4097  * *nphysicals and *nlogicals, respectively.
4098  * Returns 0 on success, -1 otherwise.
4099  */
4100 static int hpsa_gather_lun_info(struct ctlr_info *h,
4101         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4102         struct ReportLUNdata *logdev, u32 *nlogicals)
4103 {
4104         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4105                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4106                 return -1;
4107         }
4108         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4109         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4110                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4111                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4112                 *nphysicals = HPSA_MAX_PHYS_LUN;
4113         }
4114         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4115                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4116                 return -1;
4117         }
4118         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4119         /* Reject Logicals in excess of our max capability. */
4120         if (*nlogicals > HPSA_MAX_LUN) {
4121                 dev_warn(&h->pdev->dev,
4122                         "maximum logical LUNs (%d) exceeded.  "
4123                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4124                         *nlogicals - HPSA_MAX_LUN);
4125                 *nlogicals = HPSA_MAX_LUN;
4126         }
4127         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4128                 dev_warn(&h->pdev->dev,
4129                         "maximum logical + physical LUNs (%d) exceeded. "
4130                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4131                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4132                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4133         }
4134         return 0;
4135 }
4136
4137 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4138         int i, int nphysicals, int nlogicals,
4139         struct ReportExtendedLUNdata *physdev_list,
4140         struct ReportLUNdata *logdev_list)
4141 {
4142         /* Helper function, figure out where the LUN ID info is coming from
4143          * given index i, lists of physical and logical devices, where in
4144          * the list the raid controller is supposed to appear (first or last)
4145          */
4146
4147         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4148         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4149
4150         if (i == raid_ctlr_position)
4151                 return RAID_CTLR_LUNID;
4152
4153         if (i < logicals_start)
4154                 return &physdev_list->LUN[i -
4155                                 (raid_ctlr_position == 0)].lunid[0];
4156
4157         if (i < last_device)
4158                 return &logdev_list->LUN[i - nphysicals -
4159                         (raid_ctlr_position == 0)][0];
4160         BUG();
4161         return NULL;
4162 }
4163
4164 /* get physical drive ioaccel handle and queue depth */
4165 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4166                 struct hpsa_scsi_dev_t *dev,
4167                 struct ReportExtendedLUNdata *rlep, int rle_index,
4168                 struct bmic_identify_physical_device *id_phys)
4169 {
4170         int rc;
4171         struct ext_report_lun_entry *rle;
4172
4173         rle = &rlep->LUN[rle_index];
4174
4175         dev->ioaccel_handle = rle->ioaccel_handle;
4176         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4177                 dev->hba_ioaccel_enabled = 1;
4178         memset(id_phys, 0, sizeof(*id_phys));
4179         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4180                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4181                         sizeof(*id_phys));
4182         if (!rc)
4183                 /* Reserve space for FW operations */
4184 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4185 #define DRIVE_QUEUE_DEPTH 7
4186                 dev->queue_depth =
4187                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4188                                 DRIVE_CMDS_RESERVED_FOR_FW;
4189         else
4190                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4191 }
4192
4193 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4194         struct ReportExtendedLUNdata *rlep, int rle_index,
4195         struct bmic_identify_physical_device *id_phys)
4196 {
4197         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4198
4199         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4200                 this_device->hba_ioaccel_enabled = 1;
4201
4202         memcpy(&this_device->active_path_index,
4203                 &id_phys->active_path_number,
4204                 sizeof(this_device->active_path_index));
4205         memcpy(&this_device->path_map,
4206                 &id_phys->redundant_path_present_map,
4207                 sizeof(this_device->path_map));
4208         memcpy(&this_device->box,
4209                 &id_phys->alternate_paths_phys_box_on_port,
4210                 sizeof(this_device->box));
4211         memcpy(&this_device->phys_connector,
4212                 &id_phys->alternate_paths_phys_connector,
4213                 sizeof(this_device->phys_connector));
4214         memcpy(&this_device->bay,
4215                 &id_phys->phys_bay_in_box,
4216                 sizeof(this_device->bay));
4217 }
4218
4219 /* get number of local logical disks. */
4220 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4221         struct bmic_identify_controller *id_ctlr,
4222         u32 *nlocals)
4223 {
4224         int rc;
4225
4226         if (!id_ctlr) {
4227                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4228                         __func__);
4229                 return -ENOMEM;
4230         }
4231         memset(id_ctlr, 0, sizeof(*id_ctlr));
4232         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4233         if (!rc)
4234                 if (id_ctlr->configured_logical_drive_count < 255)
4235                         *nlocals = id_ctlr->configured_logical_drive_count;
4236                 else
4237                         *nlocals = le16_to_cpu(
4238                                         id_ctlr->extended_logical_unit_count);
4239         else
4240                 *nlocals = -1;
4241         return rc;
4242 }
4243
4244 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4245 {
4246         struct bmic_identify_physical_device *id_phys;
4247         bool is_spare = false;
4248         int rc;
4249
4250         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4251         if (!id_phys)
4252                 return false;
4253
4254         rc = hpsa_bmic_id_physical_device(h,
4255                                         lunaddrbytes,
4256                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4257                                         id_phys, sizeof(*id_phys));
4258         if (rc == 0)
4259                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4260
4261         kfree(id_phys);
4262         return is_spare;
4263 }
4264
4265 #define RPL_DEV_FLAG_NON_DISK                           0x1
4266 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4267 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4268
4269 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4270
4271 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4272                                 struct ext_report_lun_entry *rle)
4273 {
4274         u8 device_flags;
4275         u8 device_type;
4276
4277         if (!MASKED_DEVICE(lunaddrbytes))
4278                 return false;
4279
4280         device_flags = rle->device_flags;
4281         device_type = rle->device_type;
4282
4283         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4284                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4285                         return false;
4286                 return true;
4287         }
4288
4289         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4290                 return false;
4291
4292         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4293                 return false;
4294
4295         /*
4296          * Spares may be spun down, we do not want to
4297          * do an Inquiry to a RAID set spare drive as
4298          * that would have them spun up, that is a
4299          * performance hit because I/O to the RAID device
4300          * stops while the spin up occurs which can take
4301          * over 50 seconds.
4302          */
4303         if (hpsa_is_disk_spare(h, lunaddrbytes))
4304                 return true;
4305
4306         return false;
4307 }
4308
4309 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4310 {
4311         /* the idea here is we could get notified
4312          * that some devices have changed, so we do a report
4313          * physical luns and report logical luns cmd, and adjust
4314          * our list of devices accordingly.
4315          *
4316          * The scsi3addr's of devices won't change so long as the
4317          * adapter is not reset.  That means we can rescan and
4318          * tell which devices we already know about, vs. new
4319          * devices, vs.  disappearing devices.
4320          */
4321         struct ReportExtendedLUNdata *physdev_list = NULL;
4322         struct ReportLUNdata *logdev_list = NULL;
4323         struct bmic_identify_physical_device *id_phys = NULL;
4324         struct bmic_identify_controller *id_ctlr = NULL;
4325         u32 nphysicals = 0;
4326         u32 nlogicals = 0;
4327         u32 nlocal_logicals = 0;
4328         u32 ndev_allocated = 0;
4329         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4330         int ncurrent = 0;
4331         int i, n_ext_target_devs, ndevs_to_allocate;
4332         int raid_ctlr_position;
4333         bool physical_device;
4334         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4335
4336         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4337         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4338         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4339         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4340         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4341         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4342
4343         if (!currentsd || !physdev_list || !logdev_list ||
4344                 !tmpdevice || !id_phys || !id_ctlr) {
4345                 dev_err(&h->pdev->dev, "out of memory\n");
4346                 goto out;
4347         }
4348         memset(lunzerobits, 0, sizeof(lunzerobits));
4349
4350         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4351
4352         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4353                         logdev_list, &nlogicals)) {
4354                 h->drv_req_rescan = 1;
4355                 goto out;
4356         }
4357
4358         /* Set number of local logicals (non PTRAID) */
4359         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4360                 dev_warn(&h->pdev->dev,
4361                         "%s: Can't determine number of local logical devices.\n",
4362                         __func__);
4363         }
4364
4365         /* We might see up to the maximum number of logical and physical disks
4366          * plus external target devices, and a device for the local RAID
4367          * controller.
4368          */
4369         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4370
4371         hpsa_ext_ctrl_present(h, physdev_list);
4372
4373         /* Allocate the per device structures */
4374         for (i = 0; i < ndevs_to_allocate; i++) {
4375                 if (i >= HPSA_MAX_DEVICES) {
4376                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4377                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4378                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4379                         break;
4380                 }
4381
4382                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4383                 if (!currentsd[i]) {
4384                         h->drv_req_rescan = 1;
4385                         goto out;
4386                 }
4387                 ndev_allocated++;
4388         }
4389
4390         if (is_scsi_rev_5(h))
4391                 raid_ctlr_position = 0;
4392         else
4393                 raid_ctlr_position = nphysicals + nlogicals;
4394
4395         /* adjust our table of devices */
4396         n_ext_target_devs = 0;
4397         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4398                 u8 *lunaddrbytes, is_OBDR = 0;
4399                 int rc = 0;
4400                 int phys_dev_index = i - (raid_ctlr_position == 0);
4401                 bool skip_device = false;
4402
4403                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4404
4405                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4406
4407                 /* Figure out where the LUN ID info is coming from */
4408                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4409                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4410
4411                 /* Determine if this is a lun from an external target array */
4412                 tmpdevice->external =
4413                         figure_external_status(h, raid_ctlr_position, i,
4414                                                 nphysicals, nlocal_logicals);
4415
4416                 /*
4417                  * Skip over some devices such as a spare.
4418                  */
4419                 if (!tmpdevice->external && physical_device) {
4420                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4421                                         &physdev_list->LUN[phys_dev_index]);
4422                         if (skip_device)
4423                                 continue;
4424                 }
4425
4426                 /* Get device type, vendor, model, device id, raid_map */
4427                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4428                                                         &is_OBDR);
4429                 if (rc == -ENOMEM) {
4430                         dev_warn(&h->pdev->dev,
4431                                 "Out of memory, rescan deferred.\n");
4432                         h->drv_req_rescan = 1;
4433                         goto out;
4434                 }
4435                 if (rc) {
4436                         h->drv_req_rescan = 1;
4437                         continue;
4438                 }
4439
4440                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4441                 this_device = currentsd[ncurrent];
4442
4443                 *this_device = *tmpdevice;
4444                 this_device->physical_device = physical_device;
4445
4446                 /*
4447                  * Expose all devices except for physical devices that
4448                  * are masked.
4449                  */
4450                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4451                         this_device->expose_device = 0;
4452                 else
4453                         this_device->expose_device = 1;
4454
4455
4456                 /*
4457                  * Get the SAS address for physical devices that are exposed.
4458                  */
4459                 if (this_device->physical_device && this_device->expose_device)
4460                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4461
4462                 switch (this_device->devtype) {
4463                 case TYPE_ROM:
4464                         /* We don't *really* support actual CD-ROM devices,
4465                          * just "One Button Disaster Recovery" tape drive
4466                          * which temporarily pretends to be a CD-ROM drive.
4467                          * So we check that the device is really an OBDR tape
4468                          * device by checking for "$DR-10" in bytes 43-48 of
4469                          * the inquiry data.
4470                          */
4471                         if (is_OBDR)
4472                                 ncurrent++;
4473                         break;
4474                 case TYPE_DISK:
4475                 case TYPE_ZBC:
4476                         if (this_device->physical_device) {
4477                                 /* The disk is in HBA mode. */
4478                                 /* Never use RAID mapper in HBA mode. */
4479                                 this_device->offload_enabled = 0;
4480                                 hpsa_get_ioaccel_drive_info(h, this_device,
4481                                         physdev_list, phys_dev_index, id_phys);
4482                                 hpsa_get_path_info(this_device,
4483                                         physdev_list, phys_dev_index, id_phys);
4484                         }
4485                         ncurrent++;
4486                         break;
4487                 case TYPE_TAPE:
4488                 case TYPE_MEDIUM_CHANGER:
4489                         ncurrent++;
4490                         break;
4491                 case TYPE_ENCLOSURE:
4492                         if (!this_device->external)
4493                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4494                                                 physdev_list, phys_dev_index,
4495                                                 this_device);
4496                         ncurrent++;
4497                         break;
4498                 case TYPE_RAID:
4499                         /* Only present the Smartarray HBA as a RAID controller.
4500                          * If it's a RAID controller other than the HBA itself
4501                          * (an external RAID controller, MSA500 or similar)
4502                          * don't present it.
4503                          */
4504                         if (!is_hba_lunid(lunaddrbytes))
4505                                 break;
4506                         ncurrent++;
4507                         break;
4508                 default:
4509                         break;
4510                 }
4511                 if (ncurrent >= HPSA_MAX_DEVICES)
4512                         break;
4513         }
4514
4515         if (h->sas_host == NULL) {
4516                 int rc = 0;
4517
4518                 rc = hpsa_add_sas_host(h);
4519                 if (rc) {
4520                         dev_warn(&h->pdev->dev,
4521                                 "Could not add sas host %d\n", rc);
4522                         goto out;
4523                 }
4524         }
4525
4526         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4527 out:
4528         kfree(tmpdevice);
4529         for (i = 0; i < ndev_allocated; i++)
4530                 kfree(currentsd[i]);
4531         kfree(currentsd);
4532         kfree(physdev_list);
4533         kfree(logdev_list);
4534         kfree(id_ctlr);
4535         kfree(id_phys);
4536 }
4537
4538 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4539                                    struct scatterlist *sg)
4540 {
4541         u64 addr64 = (u64) sg_dma_address(sg);
4542         unsigned int len = sg_dma_len(sg);
4543
4544         desc->Addr = cpu_to_le64(addr64);
4545         desc->Len = cpu_to_le32(len);
4546         desc->Ext = 0;
4547 }
4548
4549 /*
4550  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4551  * dma mapping  and fills in the scatter gather entries of the
4552  * hpsa command, cp.
4553  */
4554 static int hpsa_scatter_gather(struct ctlr_info *h,
4555                 struct CommandList *cp,
4556                 struct scsi_cmnd *cmd)
4557 {
4558         struct scatterlist *sg;
4559         int use_sg, i, sg_limit, chained, last_sg;
4560         struct SGDescriptor *curr_sg;
4561
4562         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4563
4564         use_sg = scsi_dma_map(cmd);
4565         if (use_sg < 0)
4566                 return use_sg;
4567
4568         if (!use_sg)
4569                 goto sglist_finished;
4570
4571         /*
4572          * If the number of entries is greater than the max for a single list,
4573          * then we have a chained list; we will set up all but one entry in the
4574          * first list (the last entry is saved for link information);
4575          * otherwise, we don't have a chained list and we'll set up at each of
4576          * the entries in the one list.
4577          */
4578         curr_sg = cp->SG;
4579         chained = use_sg > h->max_cmd_sg_entries;
4580         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4581         last_sg = scsi_sg_count(cmd) - 1;
4582         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4583                 hpsa_set_sg_descriptor(curr_sg, sg);
4584                 curr_sg++;
4585         }
4586
4587         if (chained) {
4588                 /*
4589                  * Continue with the chained list.  Set curr_sg to the chained
4590                  * list.  Modify the limit to the total count less the entries
4591                  * we've already set up.  Resume the scan at the list entry
4592                  * where the previous loop left off.
4593                  */
4594                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4595                 sg_limit = use_sg - sg_limit;
4596                 for_each_sg(sg, sg, sg_limit, i) {
4597                         hpsa_set_sg_descriptor(curr_sg, sg);
4598                         curr_sg++;
4599                 }
4600         }
4601
4602         /* Back the pointer up to the last entry and mark it as "last". */
4603         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4604
4605         if (use_sg + chained > h->maxSG)
4606                 h->maxSG = use_sg + chained;
4607
4608         if (chained) {
4609                 cp->Header.SGList = h->max_cmd_sg_entries;
4610                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4611                 if (hpsa_map_sg_chain_block(h, cp)) {
4612                         scsi_dma_unmap(cmd);
4613                         return -1;
4614                 }
4615                 return 0;
4616         }
4617
4618 sglist_finished:
4619
4620         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4621         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4622         return 0;
4623 }
4624
4625 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4626                                                 u8 *cdb, int cdb_len,
4627                                                 const char *func)
4628 {
4629         dev_warn(&h->pdev->dev,
4630                  "%s: Blocking zero-length request: CDB:%*phN\n",
4631                  func, cdb_len, cdb);
4632 }
4633
4634 #define IO_ACCEL_INELIGIBLE 1
4635 /* zero-length transfers trigger hardware errors. */
4636 static bool is_zero_length_transfer(u8 *cdb)
4637 {
4638         u32 block_cnt;
4639
4640         /* Block zero-length transfer sizes on certain commands. */
4641         switch (cdb[0]) {
4642         case READ_10:
4643         case WRITE_10:
4644         case VERIFY:            /* 0x2F */
4645         case WRITE_VERIFY:      /* 0x2E */
4646                 block_cnt = get_unaligned_be16(&cdb[7]);
4647                 break;
4648         case READ_12:
4649         case WRITE_12:
4650         case VERIFY_12: /* 0xAF */
4651         case WRITE_VERIFY_12:   /* 0xAE */
4652                 block_cnt = get_unaligned_be32(&cdb[6]);
4653                 break;
4654         case READ_16:
4655         case WRITE_16:
4656         case VERIFY_16:         /* 0x8F */
4657                 block_cnt = get_unaligned_be32(&cdb[10]);
4658                 break;
4659         default:
4660                 return false;
4661         }
4662
4663         return block_cnt == 0;
4664 }
4665
4666 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4667 {
4668         int is_write = 0;
4669         u32 block;
4670         u32 block_cnt;
4671
4672         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4673         switch (cdb[0]) {
4674         case WRITE_6:
4675         case WRITE_12:
4676                 is_write = 1;
4677                 /* fall through */
4678         case READ_6:
4679         case READ_12:
4680                 if (*cdb_len == 6) {
4681                         block = (((cdb[1] & 0x1F) << 16) |
4682                                 (cdb[2] << 8) |
4683                                 cdb[3]);
4684                         block_cnt = cdb[4];
4685                         if (block_cnt == 0)
4686                                 block_cnt = 256;
4687                 } else {
4688                         BUG_ON(*cdb_len != 12);
4689                         block = get_unaligned_be32(&cdb[2]);
4690                         block_cnt = get_unaligned_be32(&cdb[6]);
4691                 }
4692                 if (block_cnt > 0xffff)
4693                         return IO_ACCEL_INELIGIBLE;
4694
4695                 cdb[0] = is_write ? WRITE_10 : READ_10;
4696                 cdb[1] = 0;
4697                 cdb[2] = (u8) (block >> 24);
4698                 cdb[3] = (u8) (block >> 16);
4699                 cdb[4] = (u8) (block >> 8);
4700                 cdb[5] = (u8) (block);
4701                 cdb[6] = 0;
4702                 cdb[7] = (u8) (block_cnt >> 8);
4703                 cdb[8] = (u8) (block_cnt);
4704                 cdb[9] = 0;
4705                 *cdb_len = 10;
4706                 break;
4707         }
4708         return 0;
4709 }
4710
4711 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4712         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4713         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4714 {
4715         struct scsi_cmnd *cmd = c->scsi_cmd;
4716         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4717         unsigned int len;
4718         unsigned int total_len = 0;
4719         struct scatterlist *sg;
4720         u64 addr64;
4721         int use_sg, i;
4722         struct SGDescriptor *curr_sg;
4723         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4724
4725         /* TODO: implement chaining support */
4726         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4727                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4728                 return IO_ACCEL_INELIGIBLE;
4729         }
4730
4731         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4732
4733         if (is_zero_length_transfer(cdb)) {
4734                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4735                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4736                 return IO_ACCEL_INELIGIBLE;
4737         }
4738
4739         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4740                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4741                 return IO_ACCEL_INELIGIBLE;
4742         }
4743
4744         c->cmd_type = CMD_IOACCEL1;
4745
4746         /* Adjust the DMA address to point to the accelerated command buffer */
4747         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4748                                 (c->cmdindex * sizeof(*cp));
4749         BUG_ON(c->busaddr & 0x0000007F);
4750
4751         use_sg = scsi_dma_map(cmd);
4752         if (use_sg < 0) {
4753                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4754                 return use_sg;
4755         }
4756
4757         if (use_sg) {
4758                 curr_sg = cp->SG;
4759                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4760                         addr64 = (u64) sg_dma_address(sg);
4761                         len  = sg_dma_len(sg);
4762                         total_len += len;
4763                         curr_sg->Addr = cpu_to_le64(addr64);
4764                         curr_sg->Len = cpu_to_le32(len);
4765                         curr_sg->Ext = cpu_to_le32(0);
4766                         curr_sg++;
4767                 }
4768                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4769
4770                 switch (cmd->sc_data_direction) {
4771                 case DMA_TO_DEVICE:
4772                         control |= IOACCEL1_CONTROL_DATA_OUT;
4773                         break;
4774                 case DMA_FROM_DEVICE:
4775                         control |= IOACCEL1_CONTROL_DATA_IN;
4776                         break;
4777                 case DMA_NONE:
4778                         control |= IOACCEL1_CONTROL_NODATAXFER;
4779                         break;
4780                 default:
4781                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4782                         cmd->sc_data_direction);
4783                         BUG();
4784                         break;
4785                 }
4786         } else {
4787                 control |= IOACCEL1_CONTROL_NODATAXFER;
4788         }
4789
4790         c->Header.SGList = use_sg;
4791         /* Fill out the command structure to submit */
4792         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4793         cp->transfer_len = cpu_to_le32(total_len);
4794         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4795                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4796         cp->control = cpu_to_le32(control);
4797         memcpy(cp->CDB, cdb, cdb_len);
4798         memcpy(cp->CISS_LUN, scsi3addr, 8);
4799         /* Tag was already set at init time. */
4800         enqueue_cmd_and_start_io(h, c);
4801         return 0;
4802 }
4803
4804 /*
4805  * Queue a command directly to a device behind the controller using the
4806  * I/O accelerator path.
4807  */
4808 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4809         struct CommandList *c)
4810 {
4811         struct scsi_cmnd *cmd = c->scsi_cmd;
4812         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4813
4814         if (!dev)
4815                 return -1;
4816
4817         c->phys_disk = dev;
4818
4819         if (dev->in_reset)
4820                 return -1;
4821
4822         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4823                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4824 }
4825
4826 /*
4827  * Set encryption parameters for the ioaccel2 request
4828  */
4829 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4830         struct CommandList *c, struct io_accel2_cmd *cp)
4831 {
4832         struct scsi_cmnd *cmd = c->scsi_cmd;
4833         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4834         struct raid_map_data *map = &dev->raid_map;
4835         u64 first_block;
4836
4837         /* Are we doing encryption on this device */
4838         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4839                 return;
4840         /* Set the data encryption key index. */
4841         cp->dekindex = map->dekindex;
4842
4843         /* Set the encryption enable flag, encoded into direction field. */
4844         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4845
4846         /* Set encryption tweak values based on logical block address
4847          * If block size is 512, tweak value is LBA.
4848          * For other block sizes, tweak is (LBA * block size)/ 512)
4849          */
4850         switch (cmd->cmnd[0]) {
4851         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4852         case READ_6:
4853         case WRITE_6:
4854                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4855                                 (cmd->cmnd[2] << 8) |
4856                                 cmd->cmnd[3]);
4857                 break;
4858         case WRITE_10:
4859         case READ_10:
4860         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4861         case WRITE_12:
4862         case READ_12:
4863                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4864                 break;
4865         case WRITE_16:
4866         case READ_16:
4867                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4868                 break;
4869         default:
4870                 dev_err(&h->pdev->dev,
4871                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4872                         __func__, cmd->cmnd[0]);
4873                 BUG();
4874                 break;
4875         }
4876
4877         if (le32_to_cpu(map->volume_blk_size) != 512)
4878                 first_block = first_block *
4879                                 le32_to_cpu(map->volume_blk_size)/512;
4880
4881         cp->tweak_lower = cpu_to_le32(first_block);
4882         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4883 }
4884
4885 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4886         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4887         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4888 {
4889         struct scsi_cmnd *cmd = c->scsi_cmd;
4890         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4891         struct ioaccel2_sg_element *curr_sg;
4892         int use_sg, i;
4893         struct scatterlist *sg;
4894         u64 addr64;
4895         u32 len;
4896         u32 total_len = 0;
4897
4898         if (!cmd->device)
4899                 return -1;
4900
4901         if (!cmd->device->hostdata)
4902                 return -1;
4903
4904         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4905
4906         if (is_zero_length_transfer(cdb)) {
4907                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4908                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4909                 return IO_ACCEL_INELIGIBLE;
4910         }
4911
4912         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4913                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4914                 return IO_ACCEL_INELIGIBLE;
4915         }
4916
4917         c->cmd_type = CMD_IOACCEL2;
4918         /* Adjust the DMA address to point to the accelerated command buffer */
4919         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4920                                 (c->cmdindex * sizeof(*cp));
4921         BUG_ON(c->busaddr & 0x0000007F);
4922
4923         memset(cp, 0, sizeof(*cp));
4924         cp->IU_type = IOACCEL2_IU_TYPE;
4925
4926         use_sg = scsi_dma_map(cmd);
4927         if (use_sg < 0) {
4928                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4929                 return use_sg;
4930         }
4931
4932         if (use_sg) {
4933                 curr_sg = cp->sg;
4934                 if (use_sg > h->ioaccel_maxsg) {
4935                         addr64 = le64_to_cpu(
4936                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4937                         curr_sg->address = cpu_to_le64(addr64);
4938                         curr_sg->length = 0;
4939                         curr_sg->reserved[0] = 0;
4940                         curr_sg->reserved[1] = 0;
4941                         curr_sg->reserved[2] = 0;
4942                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4943
4944                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4945                 }
4946                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4947                         addr64 = (u64) sg_dma_address(sg);
4948                         len  = sg_dma_len(sg);
4949                         total_len += len;
4950                         curr_sg->address = cpu_to_le64(addr64);
4951                         curr_sg->length = cpu_to_le32(len);
4952                         curr_sg->reserved[0] = 0;
4953                         curr_sg->reserved[1] = 0;
4954                         curr_sg->reserved[2] = 0;
4955                         curr_sg->chain_indicator = 0;
4956                         curr_sg++;
4957                 }
4958
4959                 /*
4960                  * Set the last s/g element bit
4961                  */
4962                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4963
4964                 switch (cmd->sc_data_direction) {
4965                 case DMA_TO_DEVICE:
4966                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4967                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4968                         break;
4969                 case DMA_FROM_DEVICE:
4970                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4971                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4972                         break;
4973                 case DMA_NONE:
4974                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4975                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4976                         break;
4977                 default:
4978                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4979                                 cmd->sc_data_direction);
4980                         BUG();
4981                         break;
4982                 }
4983         } else {
4984                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4985                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4986         }
4987
4988         /* Set encryption parameters, if necessary */
4989         set_encrypt_ioaccel2(h, c, cp);
4990
4991         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4992         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4993         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4994
4995         cp->data_len = cpu_to_le32(total_len);
4996         cp->err_ptr = cpu_to_le64(c->busaddr +
4997                         offsetof(struct io_accel2_cmd, error_data));
4998         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4999
5000         /* fill in sg elements */
5001         if (use_sg > h->ioaccel_maxsg) {
5002                 cp->sg_count = 1;
5003                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5004                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5005                         atomic_dec(&phys_disk->ioaccel_cmds_out);
5006                         scsi_dma_unmap(cmd);
5007                         return -1;
5008                 }
5009         } else
5010                 cp->sg_count = (u8) use_sg;
5011
5012         if (phys_disk->in_reset) {
5013                 cmd->result = DID_RESET << 16;
5014                 return -1;
5015         }
5016
5017         enqueue_cmd_and_start_io(h, c);
5018         return 0;
5019 }
5020
5021 /*
5022  * Queue a command to the correct I/O accelerator path.
5023  */
5024 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5025         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5026         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5027 {
5028         if (!c->scsi_cmd->device)
5029                 return -1;
5030
5031         if (!c->scsi_cmd->device->hostdata)
5032                 return -1;
5033
5034         if (phys_disk->in_reset)
5035                 return -1;
5036
5037         /* Try to honor the device's queue depth */
5038         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5039                                         phys_disk->queue_depth) {
5040                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5041                 return IO_ACCEL_INELIGIBLE;
5042         }
5043         if (h->transMethod & CFGTBL_Trans_io_accel1)
5044                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5045                                                 cdb, cdb_len, scsi3addr,
5046                                                 phys_disk);
5047         else
5048                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5049                                                 cdb, cdb_len, scsi3addr,
5050                                                 phys_disk);
5051 }
5052
5053 static void raid_map_helper(struct raid_map_data *map,
5054                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5055 {
5056         if (offload_to_mirror == 0)  {
5057                 /* use physical disk in the first mirrored group. */
5058                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5059                 return;
5060         }
5061         do {
5062                 /* determine mirror group that *map_index indicates */
5063                 *current_group = *map_index /
5064                         le16_to_cpu(map->data_disks_per_row);
5065                 if (offload_to_mirror == *current_group)
5066                         continue;
5067                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5068                         /* select map index from next group */
5069                         *map_index += le16_to_cpu(map->data_disks_per_row);
5070                         (*current_group)++;
5071                 } else {
5072                         /* select map index from first group */
5073                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5074                         *current_group = 0;
5075                 }
5076         } while (offload_to_mirror != *current_group);
5077 }
5078
5079 /*
5080  * Attempt to perform offload RAID mapping for a logical volume I/O.
5081  */
5082 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5083         struct CommandList *c)
5084 {
5085         struct scsi_cmnd *cmd = c->scsi_cmd;
5086         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5087         struct raid_map_data *map = &dev->raid_map;
5088         struct raid_map_disk_data *dd = &map->data[0];
5089         int is_write = 0;
5090         u32 map_index;
5091         u64 first_block, last_block;
5092         u32 block_cnt;
5093         u32 blocks_per_row;
5094         u64 first_row, last_row;
5095         u32 first_row_offset, last_row_offset;
5096         u32 first_column, last_column;
5097         u64 r0_first_row, r0_last_row;
5098         u32 r5or6_blocks_per_row;
5099         u64 r5or6_first_row, r5or6_last_row;
5100         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5101         u32 r5or6_first_column, r5or6_last_column;
5102         u32 total_disks_per_row;
5103         u32 stripesize;
5104         u32 first_group, last_group, current_group;
5105         u32 map_row;
5106         u32 disk_handle;
5107         u64 disk_block;
5108         u32 disk_block_cnt;
5109         u8 cdb[16];
5110         u8 cdb_len;
5111         u16 strip_size;
5112 #if BITS_PER_LONG == 32
5113         u64 tmpdiv;
5114 #endif
5115         int offload_to_mirror;
5116
5117         if (!dev)
5118                 return -1;
5119
5120         if (dev->in_reset)
5121                 return -1;
5122
5123         /* check for valid opcode, get LBA and block count */
5124         switch (cmd->cmnd[0]) {
5125         case WRITE_6:
5126                 is_write = 1;
5127                 /* fall through */
5128         case READ_6:
5129                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5130                                 (cmd->cmnd[2] << 8) |
5131                                 cmd->cmnd[3]);
5132                 block_cnt = cmd->cmnd[4];
5133                 if (block_cnt == 0)
5134                         block_cnt = 256;
5135                 break;
5136         case WRITE_10:
5137                 is_write = 1;
5138                 /* fall through */
5139         case READ_10:
5140                 first_block =
5141                         (((u64) cmd->cmnd[2]) << 24) |
5142                         (((u64) cmd->cmnd[3]) << 16) |
5143                         (((u64) cmd->cmnd[4]) << 8) |
5144                         cmd->cmnd[5];
5145                 block_cnt =
5146                         (((u32) cmd->cmnd[7]) << 8) |
5147                         cmd->cmnd[8];
5148                 break;
5149         case WRITE_12:
5150                 is_write = 1;
5151                 /* fall through */
5152         case READ_12:
5153                 first_block =
5154                         (((u64) cmd->cmnd[2]) << 24) |
5155                         (((u64) cmd->cmnd[3]) << 16) |
5156                         (((u64) cmd->cmnd[4]) << 8) |
5157                         cmd->cmnd[5];
5158                 block_cnt =
5159                         (((u32) cmd->cmnd[6]) << 24) |
5160                         (((u32) cmd->cmnd[7]) << 16) |
5161                         (((u32) cmd->cmnd[8]) << 8) |
5162                 cmd->cmnd[9];
5163                 break;
5164         case WRITE_16:
5165                 is_write = 1;
5166                 /* fall through */
5167         case READ_16:
5168                 first_block =
5169                         (((u64) cmd->cmnd[2]) << 56) |
5170                         (((u64) cmd->cmnd[3]) << 48) |
5171                         (((u64) cmd->cmnd[4]) << 40) |
5172                         (((u64) cmd->cmnd[5]) << 32) |
5173                         (((u64) cmd->cmnd[6]) << 24) |
5174                         (((u64) cmd->cmnd[7]) << 16) |
5175                         (((u64) cmd->cmnd[8]) << 8) |
5176                         cmd->cmnd[9];
5177                 block_cnt =
5178                         (((u32) cmd->cmnd[10]) << 24) |
5179                         (((u32) cmd->cmnd[11]) << 16) |
5180                         (((u32) cmd->cmnd[12]) << 8) |
5181                         cmd->cmnd[13];
5182                 break;
5183         default:
5184                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5185         }
5186         last_block = first_block + block_cnt - 1;
5187
5188         /* check for write to non-RAID-0 */
5189         if (is_write && dev->raid_level != 0)
5190                 return IO_ACCEL_INELIGIBLE;
5191
5192         /* check for invalid block or wraparound */
5193         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5194                 last_block < first_block)
5195                 return IO_ACCEL_INELIGIBLE;
5196
5197         /* calculate stripe information for the request */
5198         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5199                                 le16_to_cpu(map->strip_size);
5200         strip_size = le16_to_cpu(map->strip_size);
5201 #if BITS_PER_LONG == 32
5202         tmpdiv = first_block;
5203         (void) do_div(tmpdiv, blocks_per_row);
5204         first_row = tmpdiv;
5205         tmpdiv = last_block;
5206         (void) do_div(tmpdiv, blocks_per_row);
5207         last_row = tmpdiv;
5208         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5209         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5210         tmpdiv = first_row_offset;
5211         (void) do_div(tmpdiv, strip_size);
5212         first_column = tmpdiv;
5213         tmpdiv = last_row_offset;
5214         (void) do_div(tmpdiv, strip_size);
5215         last_column = tmpdiv;
5216 #else
5217         first_row = first_block / blocks_per_row;
5218         last_row = last_block / blocks_per_row;
5219         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5220         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5221         first_column = first_row_offset / strip_size;
5222         last_column = last_row_offset / strip_size;
5223 #endif
5224
5225         /* if this isn't a single row/column then give to the controller */
5226         if ((first_row != last_row) || (first_column != last_column))
5227                 return IO_ACCEL_INELIGIBLE;
5228
5229         /* proceeding with driver mapping */
5230         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5231                                 le16_to_cpu(map->metadata_disks_per_row);
5232         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5233                                 le16_to_cpu(map->row_cnt);
5234         map_index = (map_row * total_disks_per_row) + first_column;
5235
5236         switch (dev->raid_level) {
5237         case HPSA_RAID_0:
5238                 break; /* nothing special to do */
5239         case HPSA_RAID_1:
5240                 /* Handles load balance across RAID 1 members.
5241                  * (2-drive R1 and R10 with even # of drives.)
5242                  * Appropriate for SSDs, not optimal for HDDs
5243                  * Ensure we have the correct raid_map.
5244                  */
5245                 if (le16_to_cpu(map->layout_map_count) != 2) {
5246                         hpsa_turn_off_ioaccel_for_device(dev);
5247                         return IO_ACCEL_INELIGIBLE;
5248                 }
5249                 if (dev->offload_to_mirror)
5250                         map_index += le16_to_cpu(map->data_disks_per_row);
5251                 dev->offload_to_mirror = !dev->offload_to_mirror;
5252                 break;
5253         case HPSA_RAID_ADM:
5254                 /* Handles N-way mirrors  (R1-ADM)
5255                  * and R10 with # of drives divisible by 3.)
5256                  * Ensure we have the correct raid_map.
5257                  */
5258                 if (le16_to_cpu(map->layout_map_count) != 3) {
5259                         hpsa_turn_off_ioaccel_for_device(dev);
5260                         return IO_ACCEL_INELIGIBLE;
5261                 }
5262
5263                 offload_to_mirror = dev->offload_to_mirror;
5264                 raid_map_helper(map, offload_to_mirror,
5265                                 &map_index, &current_group);
5266                 /* set mirror group to use next time */
5267                 offload_to_mirror =
5268                         (offload_to_mirror >=
5269                         le16_to_cpu(map->layout_map_count) - 1)
5270                         ? 0 : offload_to_mirror + 1;
5271                 dev->offload_to_mirror = offload_to_mirror;
5272                 /* Avoid direct use of dev->offload_to_mirror within this
5273                  * function since multiple threads might simultaneously
5274                  * increment it beyond the range of dev->layout_map_count -1.
5275                  */
5276                 break;
5277         case HPSA_RAID_5:
5278         case HPSA_RAID_6:
5279                 if (le16_to_cpu(map->layout_map_count) <= 1)
5280                         break;
5281
5282                 /* Verify first and last block are in same RAID group */
5283                 r5or6_blocks_per_row =
5284                         le16_to_cpu(map->strip_size) *
5285                         le16_to_cpu(map->data_disks_per_row);
5286                 if (r5or6_blocks_per_row == 0) {
5287                         hpsa_turn_off_ioaccel_for_device(dev);
5288                         return IO_ACCEL_INELIGIBLE;
5289                 }
5290                 stripesize = r5or6_blocks_per_row *
5291                         le16_to_cpu(map->layout_map_count);
5292 #if BITS_PER_LONG == 32
5293                 tmpdiv = first_block;
5294                 first_group = do_div(tmpdiv, stripesize);
5295                 tmpdiv = first_group;
5296                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5297                 first_group = tmpdiv;
5298                 tmpdiv = last_block;
5299                 last_group = do_div(tmpdiv, stripesize);
5300                 tmpdiv = last_group;
5301                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5302                 last_group = tmpdiv;
5303 #else
5304                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5305                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5306 #endif
5307                 if (first_group != last_group)
5308                         return IO_ACCEL_INELIGIBLE;
5309
5310                 /* Verify request is in a single row of RAID 5/6 */
5311 #if BITS_PER_LONG == 32
5312                 tmpdiv = first_block;
5313                 (void) do_div(tmpdiv, stripesize);
5314                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5315                 tmpdiv = last_block;
5316                 (void) do_div(tmpdiv, stripesize);
5317                 r5or6_last_row = r0_last_row = tmpdiv;
5318 #else
5319                 first_row = r5or6_first_row = r0_first_row =
5320                                                 first_block / stripesize;
5321                 r5or6_last_row = r0_last_row = last_block / stripesize;
5322 #endif
5323                 if (r5or6_first_row != r5or6_last_row)
5324                         return IO_ACCEL_INELIGIBLE;
5325
5326
5327                 /* Verify request is in a single column */
5328 #if BITS_PER_LONG == 32
5329                 tmpdiv = first_block;
5330                 first_row_offset = do_div(tmpdiv, stripesize);
5331                 tmpdiv = first_row_offset;
5332                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5333                 r5or6_first_row_offset = first_row_offset;
5334                 tmpdiv = last_block;
5335                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5336                 tmpdiv = r5or6_last_row_offset;
5337                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5338                 tmpdiv = r5or6_first_row_offset;
5339                 (void) do_div(tmpdiv, map->strip_size);
5340                 first_column = r5or6_first_column = tmpdiv;
5341                 tmpdiv = r5or6_last_row_offset;
5342                 (void) do_div(tmpdiv, map->strip_size);
5343                 r5or6_last_column = tmpdiv;
5344 #else
5345                 first_row_offset = r5or6_first_row_offset =
5346                         (u32)((first_block % stripesize) %
5347                                                 r5or6_blocks_per_row);
5348
5349                 r5or6_last_row_offset =
5350                         (u32)((last_block % stripesize) %
5351                                                 r5or6_blocks_per_row);
5352
5353                 first_column = r5or6_first_column =
5354                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5355                 r5or6_last_column =
5356                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5357 #endif
5358                 if (r5or6_first_column != r5or6_last_column)
5359                         return IO_ACCEL_INELIGIBLE;
5360
5361                 /* Request is eligible */
5362                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5363                         le16_to_cpu(map->row_cnt);
5364
5365                 map_index = (first_group *
5366                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5367                         (map_row * total_disks_per_row) + first_column;
5368                 break;
5369         default:
5370                 return IO_ACCEL_INELIGIBLE;
5371         }
5372
5373         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5374                 return IO_ACCEL_INELIGIBLE;
5375
5376         c->phys_disk = dev->phys_disk[map_index];
5377         if (!c->phys_disk)
5378                 return IO_ACCEL_INELIGIBLE;
5379
5380         disk_handle = dd[map_index].ioaccel_handle;
5381         disk_block = le64_to_cpu(map->disk_starting_blk) +
5382                         first_row * le16_to_cpu(map->strip_size) +
5383                         (first_row_offset - first_column *
5384                         le16_to_cpu(map->strip_size));
5385         disk_block_cnt = block_cnt;
5386
5387         /* handle differing logical/physical block sizes */
5388         if (map->phys_blk_shift) {
5389                 disk_block <<= map->phys_blk_shift;
5390                 disk_block_cnt <<= map->phys_blk_shift;
5391         }
5392         BUG_ON(disk_block_cnt > 0xffff);
5393
5394         /* build the new CDB for the physical disk I/O */
5395         if (disk_block > 0xffffffff) {
5396                 cdb[0] = is_write ? WRITE_16 : READ_16;
5397                 cdb[1] = 0;
5398                 cdb[2] = (u8) (disk_block >> 56);
5399                 cdb[3] = (u8) (disk_block >> 48);
5400                 cdb[4] = (u8) (disk_block >> 40);
5401                 cdb[5] = (u8) (disk_block >> 32);
5402                 cdb[6] = (u8) (disk_block >> 24);
5403                 cdb[7] = (u8) (disk_block >> 16);
5404                 cdb[8] = (u8) (disk_block >> 8);
5405                 cdb[9] = (u8) (disk_block);
5406                 cdb[10] = (u8) (disk_block_cnt >> 24);
5407                 cdb[11] = (u8) (disk_block_cnt >> 16);
5408                 cdb[12] = (u8) (disk_block_cnt >> 8);
5409                 cdb[13] = (u8) (disk_block_cnt);
5410                 cdb[14] = 0;
5411                 cdb[15] = 0;
5412                 cdb_len = 16;
5413         } else {
5414                 cdb[0] = is_write ? WRITE_10 : READ_10;
5415                 cdb[1] = 0;
5416                 cdb[2] = (u8) (disk_block >> 24);
5417                 cdb[3] = (u8) (disk_block >> 16);
5418                 cdb[4] = (u8) (disk_block >> 8);
5419                 cdb[5] = (u8) (disk_block);
5420                 cdb[6] = 0;
5421                 cdb[7] = (u8) (disk_block_cnt >> 8);
5422                 cdb[8] = (u8) (disk_block_cnt);
5423                 cdb[9] = 0;
5424                 cdb_len = 10;
5425         }
5426         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5427                                                 dev->scsi3addr,
5428                                                 dev->phys_disk[map_index]);
5429 }
5430
5431 /*
5432  * Submit commands down the "normal" RAID stack path
5433  * All callers to hpsa_ciss_submit must check lockup_detected
5434  * beforehand, before (opt.) and after calling cmd_alloc
5435  */
5436 static int hpsa_ciss_submit(struct ctlr_info *h,
5437         struct CommandList *c, struct scsi_cmnd *cmd,
5438         struct hpsa_scsi_dev_t *dev)
5439 {
5440         cmd->host_scribble = (unsigned char *) c;
5441         c->cmd_type = CMD_SCSI;
5442         c->scsi_cmd = cmd;
5443         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5444         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5445         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5446
5447         /* Fill in the request block... */
5448
5449         c->Request.Timeout = 0;
5450         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5451         c->Request.CDBLen = cmd->cmd_len;
5452         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5453         switch (cmd->sc_data_direction) {
5454         case DMA_TO_DEVICE:
5455                 c->Request.type_attr_dir =
5456                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5457                 break;
5458         case DMA_FROM_DEVICE:
5459                 c->Request.type_attr_dir =
5460                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5461                 break;
5462         case DMA_NONE:
5463                 c->Request.type_attr_dir =
5464                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5465                 break;
5466         case DMA_BIDIRECTIONAL:
5467                 /* This can happen if a buggy application does a scsi passthru
5468                  * and sets both inlen and outlen to non-zero. ( see
5469                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5470                  */
5471
5472                 c->Request.type_attr_dir =
5473                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5474                 /* This is technically wrong, and hpsa controllers should
5475                  * reject it with CMD_INVALID, which is the most correct
5476                  * response, but non-fibre backends appear to let it
5477                  * slide by, and give the same results as if this field
5478                  * were set correctly.  Either way is acceptable for
5479                  * our purposes here.
5480                  */
5481
5482                 break;
5483
5484         default:
5485                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5486                         cmd->sc_data_direction);
5487                 BUG();
5488                 break;
5489         }
5490
5491         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5492                 hpsa_cmd_resolve_and_free(h, c);
5493                 return SCSI_MLQUEUE_HOST_BUSY;
5494         }
5495
5496         if (dev->in_reset) {
5497                 hpsa_cmd_resolve_and_free(h, c);
5498                 return SCSI_MLQUEUE_HOST_BUSY;
5499         }
5500
5501         c->device = dev;
5502
5503         enqueue_cmd_and_start_io(h, c);
5504         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5505         return 0;
5506 }
5507
5508 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5509                                 struct CommandList *c)
5510 {
5511         dma_addr_t cmd_dma_handle, err_dma_handle;
5512
5513         /* Zero out all of commandlist except the last field, refcount */
5514         memset(c, 0, offsetof(struct CommandList, refcount));
5515         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5516         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5517         c->err_info = h->errinfo_pool + index;
5518         memset(c->err_info, 0, sizeof(*c->err_info));
5519         err_dma_handle = h->errinfo_pool_dhandle
5520             + index * sizeof(*c->err_info);
5521         c->cmdindex = index;
5522         c->busaddr = (u32) cmd_dma_handle;
5523         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5524         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5525         c->h = h;
5526         c->scsi_cmd = SCSI_CMD_IDLE;
5527 }
5528
5529 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5530 {
5531         int i;
5532
5533         for (i = 0; i < h->nr_cmds; i++) {
5534                 struct CommandList *c = h->cmd_pool + i;
5535
5536                 hpsa_cmd_init(h, i, c);
5537                 atomic_set(&c->refcount, 0);
5538         }
5539 }
5540
5541 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5542                                 struct CommandList *c)
5543 {
5544         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5545
5546         BUG_ON(c->cmdindex != index);
5547
5548         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5549         memset(c->err_info, 0, sizeof(*c->err_info));
5550         c->busaddr = (u32) cmd_dma_handle;
5551 }
5552
5553 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5554                 struct CommandList *c, struct scsi_cmnd *cmd)
5555 {
5556         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5557         int rc = IO_ACCEL_INELIGIBLE;
5558
5559         if (!dev)
5560                 return SCSI_MLQUEUE_HOST_BUSY;
5561
5562         if (dev->in_reset)
5563                 return SCSI_MLQUEUE_HOST_BUSY;
5564
5565         if (hpsa_simple_mode)
5566                 return IO_ACCEL_INELIGIBLE;
5567
5568         cmd->host_scribble = (unsigned char *) c;
5569
5570         if (dev->offload_enabled) {
5571                 hpsa_cmd_init(h, c->cmdindex, c);
5572                 c->cmd_type = CMD_SCSI;
5573                 c->scsi_cmd = cmd;
5574                 c->device = dev;
5575                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5576                 if (rc < 0)     /* scsi_dma_map failed. */
5577                         rc = SCSI_MLQUEUE_HOST_BUSY;
5578         } else if (dev->hba_ioaccel_enabled) {
5579                 hpsa_cmd_init(h, c->cmdindex, c);
5580                 c->cmd_type = CMD_SCSI;
5581                 c->scsi_cmd = cmd;
5582                 c->device = dev;
5583                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5584                 if (rc < 0)     /* scsi_dma_map failed. */
5585                         rc = SCSI_MLQUEUE_HOST_BUSY;
5586         }
5587         return rc;
5588 }
5589
5590 static void hpsa_command_resubmit_worker(struct work_struct *work)
5591 {
5592         struct scsi_cmnd *cmd;
5593         struct hpsa_scsi_dev_t *dev;
5594         struct CommandList *c = container_of(work, struct CommandList, work);
5595
5596         cmd = c->scsi_cmd;
5597         dev = cmd->device->hostdata;
5598         if (!dev) {
5599                 cmd->result = DID_NO_CONNECT << 16;
5600                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5601         }
5602
5603         if (dev->in_reset) {
5604                 cmd->result = DID_RESET << 16;
5605                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5606         }
5607
5608         if (c->cmd_type == CMD_IOACCEL2) {
5609                 struct ctlr_info *h = c->h;
5610                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5611                 int rc;
5612
5613                 if (c2->error_data.serv_response ==
5614                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5615                         rc = hpsa_ioaccel_submit(h, c, cmd);
5616                         if (rc == 0)
5617                                 return;
5618                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5619                                 /*
5620                                  * If we get here, it means dma mapping failed.
5621                                  * Try again via scsi mid layer, which will
5622                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5623                                  */
5624                                 cmd->result = DID_IMM_RETRY << 16;
5625                                 return hpsa_cmd_free_and_done(h, c, cmd);
5626                         }
5627                         /* else, fall thru and resubmit down CISS path */
5628                 }
5629         }
5630         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5631         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5632                 /*
5633                  * If we get here, it means dma mapping failed. Try
5634                  * again via scsi mid layer, which will then get
5635                  * SCSI_MLQUEUE_HOST_BUSY.
5636                  *
5637                  * hpsa_ciss_submit will have already freed c
5638                  * if it encountered a dma mapping failure.
5639                  */
5640                 cmd->result = DID_IMM_RETRY << 16;
5641                 cmd->scsi_done(cmd);
5642         }
5643 }
5644
5645 /* Running in struct Scsi_Host->host_lock less mode */
5646 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5647 {
5648         struct ctlr_info *h;
5649         struct hpsa_scsi_dev_t *dev;
5650         struct CommandList *c;
5651         int rc = 0;
5652
5653         /* Get the ptr to our adapter structure out of cmd->host. */
5654         h = sdev_to_hba(cmd->device);
5655
5656         BUG_ON(cmd->request->tag < 0);
5657
5658         dev = cmd->device->hostdata;
5659         if (!dev) {
5660                 cmd->result = DID_NO_CONNECT << 16;
5661                 cmd->scsi_done(cmd);
5662                 return 0;
5663         }
5664
5665         if (dev->removed) {
5666                 cmd->result = DID_NO_CONNECT << 16;
5667                 cmd->scsi_done(cmd);
5668                 return 0;
5669         }
5670
5671         if (unlikely(lockup_detected(h))) {
5672                 cmd->result = DID_NO_CONNECT << 16;
5673                 cmd->scsi_done(cmd);
5674                 return 0;
5675         }
5676
5677         if (dev->in_reset)
5678                 return SCSI_MLQUEUE_DEVICE_BUSY;
5679
5680         c = cmd_tagged_alloc(h, cmd);
5681         if (c == NULL)
5682                 return SCSI_MLQUEUE_DEVICE_BUSY;
5683
5684         /*
5685          * This is necessary because the SML doesn't zero out this field during
5686          * error recovery.
5687          */
5688         cmd->result = 0;
5689
5690         /*
5691          * Call alternate submit routine for I/O accelerated commands.
5692          * Retries always go down the normal I/O path.
5693          */
5694         if (likely(cmd->retries == 0 &&
5695                         !blk_rq_is_passthrough(cmd->request) &&
5696                         h->acciopath_status)) {
5697                 rc = hpsa_ioaccel_submit(h, c, cmd);
5698                 if (rc == 0)
5699                         return 0;
5700                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5701                         hpsa_cmd_resolve_and_free(h, c);
5702                         return SCSI_MLQUEUE_HOST_BUSY;
5703                 }
5704         }
5705         return hpsa_ciss_submit(h, c, cmd, dev);
5706 }
5707
5708 static void hpsa_scan_complete(struct ctlr_info *h)
5709 {
5710         unsigned long flags;
5711
5712         spin_lock_irqsave(&h->scan_lock, flags);
5713         h->scan_finished = 1;
5714         wake_up(&h->scan_wait_queue);
5715         spin_unlock_irqrestore(&h->scan_lock, flags);
5716 }
5717
5718 static void hpsa_scan_start(struct Scsi_Host *sh)
5719 {
5720         struct ctlr_info *h = shost_to_hba(sh);
5721         unsigned long flags;
5722
5723         /*
5724          * Don't let rescans be initiated on a controller known to be locked
5725          * up.  If the controller locks up *during* a rescan, that thread is
5726          * probably hosed, but at least we can prevent new rescan threads from
5727          * piling up on a locked up controller.
5728          */
5729         if (unlikely(lockup_detected(h)))
5730                 return hpsa_scan_complete(h);
5731
5732         /*
5733          * If a scan is already waiting to run, no need to add another
5734          */
5735         spin_lock_irqsave(&h->scan_lock, flags);
5736         if (h->scan_waiting) {
5737                 spin_unlock_irqrestore(&h->scan_lock, flags);
5738                 return;
5739         }
5740
5741         spin_unlock_irqrestore(&h->scan_lock, flags);
5742
5743         /* wait until any scan already in progress is finished. */
5744         while (1) {
5745                 spin_lock_irqsave(&h->scan_lock, flags);
5746                 if (h->scan_finished)
5747                         break;
5748                 h->scan_waiting = 1;
5749                 spin_unlock_irqrestore(&h->scan_lock, flags);
5750                 wait_event(h->scan_wait_queue, h->scan_finished);
5751                 /* Note: We don't need to worry about a race between this
5752                  * thread and driver unload because the midlayer will
5753                  * have incremented the reference count, so unload won't
5754                  * happen if we're in here.
5755                  */
5756         }
5757         h->scan_finished = 0; /* mark scan as in progress */
5758         h->scan_waiting = 0;
5759         spin_unlock_irqrestore(&h->scan_lock, flags);
5760
5761         if (unlikely(lockup_detected(h)))
5762                 return hpsa_scan_complete(h);
5763
5764         /*
5765          * Do the scan after a reset completion
5766          */
5767         spin_lock_irqsave(&h->reset_lock, flags);
5768         if (h->reset_in_progress) {
5769                 h->drv_req_rescan = 1;
5770                 spin_unlock_irqrestore(&h->reset_lock, flags);
5771                 hpsa_scan_complete(h);
5772                 return;
5773         }
5774         spin_unlock_irqrestore(&h->reset_lock, flags);
5775
5776         hpsa_update_scsi_devices(h);
5777
5778         hpsa_scan_complete(h);
5779 }
5780
5781 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5782 {
5783         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5784
5785         if (!logical_drive)
5786                 return -ENODEV;
5787
5788         if (qdepth < 1)
5789                 qdepth = 1;
5790         else if (qdepth > logical_drive->queue_depth)
5791                 qdepth = logical_drive->queue_depth;
5792
5793         return scsi_change_queue_depth(sdev, qdepth);
5794 }
5795
5796 static int hpsa_scan_finished(struct Scsi_Host *sh,
5797         unsigned long elapsed_time)
5798 {
5799         struct ctlr_info *h = shost_to_hba(sh);
5800         unsigned long flags;
5801         int finished;
5802
5803         spin_lock_irqsave(&h->scan_lock, flags);
5804         finished = h->scan_finished;
5805         spin_unlock_irqrestore(&h->scan_lock, flags);
5806         return finished;
5807 }
5808
5809 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5810 {
5811         struct Scsi_Host *sh;
5812
5813         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5814         if (sh == NULL) {
5815                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5816                 return -ENOMEM;
5817         }
5818
5819         sh->io_port = 0;
5820         sh->n_io_port = 0;
5821         sh->this_id = -1;
5822         sh->max_channel = 3;
5823         sh->max_cmd_len = MAX_COMMAND_SIZE;
5824         sh->max_lun = HPSA_MAX_LUN;
5825         sh->max_id = HPSA_MAX_LUN;
5826         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5827         sh->cmd_per_lun = sh->can_queue;
5828         sh->sg_tablesize = h->maxsgentries;
5829         sh->transportt = hpsa_sas_transport_template;
5830         sh->hostdata[0] = (unsigned long) h;
5831         sh->irq = pci_irq_vector(h->pdev, 0);
5832         sh->unique_id = sh->irq;
5833
5834         h->scsi_host = sh;
5835         return 0;
5836 }
5837
5838 static int hpsa_scsi_add_host(struct ctlr_info *h)
5839 {
5840         int rv;
5841
5842         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5843         if (rv) {
5844                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5845                 return rv;
5846         }
5847         scsi_scan_host(h->scsi_host);
5848         return 0;
5849 }
5850
5851 /*
5852  * The block layer has already gone to the trouble of picking out a unique,
5853  * small-integer tag for this request.  We use an offset from that value as
5854  * an index to select our command block.  (The offset allows us to reserve the
5855  * low-numbered entries for our own uses.)
5856  */
5857 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5858 {
5859         int idx = scmd->request->tag;
5860
5861         if (idx < 0)
5862                 return idx;
5863
5864         /* Offset to leave space for internal cmds. */
5865         return idx += HPSA_NRESERVED_CMDS;
5866 }
5867
5868 /*
5869  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5870  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5871  */
5872 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5873                                 struct CommandList *c, unsigned char lunaddr[],
5874                                 int reply_queue)
5875 {
5876         int rc;
5877
5878         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5879         (void) fill_cmd(c, TEST_UNIT_READY, h,
5880                         NULL, 0, 0, lunaddr, TYPE_CMD);
5881         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5882         if (rc)
5883                 return rc;
5884         /* no unmap needed here because no data xfer. */
5885
5886         /* Check if the unit is already ready. */
5887         if (c->err_info->CommandStatus == CMD_SUCCESS)
5888                 return 0;
5889
5890         /*
5891          * The first command sent after reset will receive "unit attention" to
5892          * indicate that the LUN has been reset...this is actually what we're
5893          * looking for (but, success is good too).
5894          */
5895         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5896                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5897                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5898                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5899                 return 0;
5900
5901         return 1;
5902 }
5903
5904 /*
5905  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5906  * returns zero when the unit is ready, and non-zero when giving up.
5907  */
5908 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5909                                 struct CommandList *c,
5910                                 unsigned char lunaddr[], int reply_queue)
5911 {
5912         int rc;
5913         int count = 0;
5914         int waittime = 1; /* seconds */
5915
5916         /* Send test unit ready until device ready, or give up. */
5917         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5918
5919                 /*
5920                  * Wait for a bit.  do this first, because if we send
5921                  * the TUR right away, the reset will just abort it.
5922                  */
5923                 msleep(1000 * waittime);
5924
5925                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5926                 if (!rc)
5927                         break;
5928
5929                 /* Increase wait time with each try, up to a point. */
5930                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5931                         waittime *= 2;
5932
5933                 dev_warn(&h->pdev->dev,
5934                          "waiting %d secs for device to become ready.\n",
5935                          waittime);
5936         }
5937
5938         return rc;
5939 }
5940
5941 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5942                                            unsigned char lunaddr[],
5943                                            int reply_queue)
5944 {
5945         int first_queue;
5946         int last_queue;
5947         int rq;
5948         int rc = 0;
5949         struct CommandList *c;
5950
5951         c = cmd_alloc(h);
5952
5953         /*
5954          * If no specific reply queue was requested, then send the TUR
5955          * repeatedly, requesting a reply on each reply queue; otherwise execute
5956          * the loop exactly once using only the specified queue.
5957          */
5958         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5959                 first_queue = 0;
5960                 last_queue = h->nreply_queues - 1;
5961         } else {
5962                 first_queue = reply_queue;
5963                 last_queue = reply_queue;
5964         }
5965
5966         for (rq = first_queue; rq <= last_queue; rq++) {
5967                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5968                 if (rc)
5969                         break;
5970         }
5971
5972         if (rc)
5973                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5974         else
5975                 dev_warn(&h->pdev->dev, "device is ready.\n");
5976
5977         cmd_free(h, c);
5978         return rc;
5979 }
5980
5981 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5982  * complaining.  Doing a host- or bus-reset can't do anything good here.
5983  */
5984 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5985 {
5986         int rc = SUCCESS;
5987         int i;
5988         struct ctlr_info *h;
5989         struct hpsa_scsi_dev_t *dev = NULL;
5990         u8 reset_type;
5991         char msg[48];
5992         unsigned long flags;
5993
5994         /* find the controller to which the command to be aborted was sent */
5995         h = sdev_to_hba(scsicmd->device);
5996         if (h == NULL) /* paranoia */
5997                 return FAILED;
5998
5999         spin_lock_irqsave(&h->reset_lock, flags);
6000         h->reset_in_progress = 1;
6001         spin_unlock_irqrestore(&h->reset_lock, flags);
6002
6003         if (lockup_detected(h)) {
6004                 rc = FAILED;
6005                 goto return_reset_status;
6006         }
6007
6008         dev = scsicmd->device->hostdata;
6009         if (!dev) {
6010                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6011                 rc = FAILED;
6012                 goto return_reset_status;
6013         }
6014
6015         if (dev->devtype == TYPE_ENCLOSURE) {
6016                 rc = SUCCESS;
6017                 goto return_reset_status;
6018         }
6019
6020         /* if controller locked up, we can guarantee command won't complete */
6021         if (lockup_detected(h)) {
6022                 snprintf(msg, sizeof(msg),
6023                          "cmd %d RESET FAILED, lockup detected",
6024                          hpsa_get_cmd_index(scsicmd));
6025                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6026                 rc = FAILED;
6027                 goto return_reset_status;
6028         }
6029
6030         /* this reset request might be the result of a lockup; check */
6031         if (detect_controller_lockup(h)) {
6032                 snprintf(msg, sizeof(msg),
6033                          "cmd %d RESET FAILED, new lockup detected",
6034                          hpsa_get_cmd_index(scsicmd));
6035                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6036                 rc = FAILED;
6037                 goto return_reset_status;
6038         }
6039
6040         /* Do not attempt on controller */
6041         if (is_hba_lunid(dev->scsi3addr)) {
6042                 rc = SUCCESS;
6043                 goto return_reset_status;
6044         }
6045
6046         if (is_logical_dev_addr_mode(dev->scsi3addr))
6047                 reset_type = HPSA_DEVICE_RESET_MSG;
6048         else
6049                 reset_type = HPSA_PHYS_TARGET_RESET;
6050
6051         sprintf(msg, "resetting %s",
6052                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6053         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6054
6055         /*
6056          * wait to see if any commands will complete before sending reset
6057          */
6058         dev->in_reset = true; /* block any new cmds from OS for this device */
6059         for (i = 0; i < 10; i++) {
6060                 if (atomic_read(&dev->commands_outstanding) > 0)
6061                         msleep(1000);
6062                 else
6063                         break;
6064         }
6065
6066         /* send a reset to the SCSI LUN which the command was sent to */
6067         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6068         if (rc == 0)
6069                 rc = SUCCESS;
6070         else
6071                 rc = FAILED;
6072
6073         sprintf(msg, "reset %s %s",
6074                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6075                 rc == SUCCESS ? "completed successfully" : "failed");
6076         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6077
6078 return_reset_status:
6079         spin_lock_irqsave(&h->reset_lock, flags);
6080         h->reset_in_progress = 0;
6081         if (dev)
6082                 dev->in_reset = false;
6083         spin_unlock_irqrestore(&h->reset_lock, flags);
6084         return rc;
6085 }
6086
6087 /*
6088  * For operations with an associated SCSI command, a command block is allocated
6089  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6090  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6091  * the complement, although cmd_free() may be called instead.
6092  */
6093 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6094                                             struct scsi_cmnd *scmd)
6095 {
6096         int idx = hpsa_get_cmd_index(scmd);
6097         struct CommandList *c = h->cmd_pool + idx;
6098
6099         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6100                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6101                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6102                 /* The index value comes from the block layer, so if it's out of
6103                  * bounds, it's probably not our bug.
6104                  */
6105                 BUG();
6106         }
6107
6108         if (unlikely(!hpsa_is_cmd_idle(c))) {
6109                 /*
6110                  * We expect that the SCSI layer will hand us a unique tag
6111                  * value.  Thus, there should never be a collision here between
6112                  * two requests...because if the selected command isn't idle
6113                  * then someone is going to be very disappointed.
6114                  */
6115                 if (idx != h->last_collision_tag) { /* Print once per tag */
6116                         dev_warn(&h->pdev->dev,
6117                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6118                         if (scmd)
6119                                 scsi_print_command(scmd);
6120                         h->last_collision_tag = idx;
6121                 }
6122                 return NULL;
6123         }
6124
6125         atomic_inc(&c->refcount);
6126
6127         hpsa_cmd_partial_init(h, idx, c);
6128         return c;
6129 }
6130
6131 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6132 {
6133         /*
6134          * Release our reference to the block.  We don't need to do anything
6135          * else to free it, because it is accessed by index.
6136          */
6137         (void)atomic_dec(&c->refcount);
6138 }
6139
6140 /*
6141  * For operations that cannot sleep, a command block is allocated at init,
6142  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6143  * which ones are free or in use.  Lock must be held when calling this.
6144  * cmd_free() is the complement.
6145  * This function never gives up and returns NULL.  If it hangs,
6146  * another thread must call cmd_free() to free some tags.
6147  */
6148
6149 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6150 {
6151         struct CommandList *c;
6152         int refcount, i;
6153         int offset = 0;
6154
6155         /*
6156          * There is some *extremely* small but non-zero chance that that
6157          * multiple threads could get in here, and one thread could
6158          * be scanning through the list of bits looking for a free
6159          * one, but the free ones are always behind him, and other
6160          * threads sneak in behind him and eat them before he can
6161          * get to them, so that while there is always a free one, a
6162          * very unlucky thread might be starved anyway, never able to
6163          * beat the other threads.  In reality, this happens so
6164          * infrequently as to be indistinguishable from never.
6165          *
6166          * Note that we start allocating commands before the SCSI host structure
6167          * is initialized.  Since the search starts at bit zero, this
6168          * all works, since we have at least one command structure available;
6169          * however, it means that the structures with the low indexes have to be
6170          * reserved for driver-initiated requests, while requests from the block
6171          * layer will use the higher indexes.
6172          */
6173
6174         for (;;) {
6175                 i = find_next_zero_bit(h->cmd_pool_bits,
6176                                         HPSA_NRESERVED_CMDS,
6177                                         offset);
6178                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6179                         offset = 0;
6180                         continue;
6181                 }
6182                 c = h->cmd_pool + i;
6183                 refcount = atomic_inc_return(&c->refcount);
6184                 if (unlikely(refcount > 1)) {
6185                         cmd_free(h, c); /* already in use */
6186                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6187                         continue;
6188                 }
6189                 set_bit(i & (BITS_PER_LONG - 1),
6190                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6191                 break; /* it's ours now. */
6192         }
6193         hpsa_cmd_partial_init(h, i, c);
6194         c->device = NULL;
6195         return c;
6196 }
6197
6198 /*
6199  * This is the complementary operation to cmd_alloc().  Note, however, in some
6200  * corner cases it may also be used to free blocks allocated by
6201  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6202  * the clear-bit is harmless.
6203  */
6204 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6205 {
6206         if (atomic_dec_and_test(&c->refcount)) {
6207                 int i;
6208
6209                 i = c - h->cmd_pool;
6210                 clear_bit(i & (BITS_PER_LONG - 1),
6211                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6212         }
6213 }
6214
6215 #ifdef CONFIG_COMPAT
6216
6217 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6218         void __user *arg)
6219 {
6220         IOCTL32_Command_struct __user *arg32 =
6221             (IOCTL32_Command_struct __user *) arg;
6222         IOCTL_Command_struct arg64;
6223         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6224         int err;
6225         u32 cp;
6226
6227         memset(&arg64, 0, sizeof(arg64));
6228         err = 0;
6229         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6230                            sizeof(arg64.LUN_info));
6231         err |= copy_from_user(&arg64.Request, &arg32->Request,
6232                            sizeof(arg64.Request));
6233         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6234                            sizeof(arg64.error_info));
6235         err |= get_user(arg64.buf_size, &arg32->buf_size);
6236         err |= get_user(cp, &arg32->buf);
6237         arg64.buf = compat_ptr(cp);
6238         err |= copy_to_user(p, &arg64, sizeof(arg64));
6239
6240         if (err)
6241                 return -EFAULT;
6242
6243         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6244         if (err)
6245                 return err;
6246         err |= copy_in_user(&arg32->error_info, &p->error_info,
6247                          sizeof(arg32->error_info));
6248         if (err)
6249                 return -EFAULT;
6250         return err;
6251 }
6252
6253 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6254         unsigned int cmd, void __user *arg)
6255 {
6256         BIG_IOCTL32_Command_struct __user *arg32 =
6257             (BIG_IOCTL32_Command_struct __user *) arg;
6258         BIG_IOCTL_Command_struct arg64;
6259         BIG_IOCTL_Command_struct __user *p =
6260             compat_alloc_user_space(sizeof(arg64));
6261         int err;
6262         u32 cp;
6263
6264         memset(&arg64, 0, sizeof(arg64));
6265         err = 0;
6266         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6267                            sizeof(arg64.LUN_info));
6268         err |= copy_from_user(&arg64.Request, &arg32->Request,
6269                            sizeof(arg64.Request));
6270         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6271                            sizeof(arg64.error_info));
6272         err |= get_user(arg64.buf_size, &arg32->buf_size);
6273         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6274         err |= get_user(cp, &arg32->buf);
6275         arg64.buf = compat_ptr(cp);
6276         err |= copy_to_user(p, &arg64, sizeof(arg64));
6277
6278         if (err)
6279                 return -EFAULT;
6280
6281         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6282         if (err)
6283                 return err;
6284         err |= copy_in_user(&arg32->error_info, &p->error_info,
6285                          sizeof(arg32->error_info));
6286         if (err)
6287                 return -EFAULT;
6288         return err;
6289 }
6290
6291 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6292                              void __user *arg)
6293 {
6294         switch (cmd) {
6295         case CCISS_GETPCIINFO:
6296         case CCISS_GETINTINFO:
6297         case CCISS_SETINTINFO:
6298         case CCISS_GETNODENAME:
6299         case CCISS_SETNODENAME:
6300         case CCISS_GETHEARTBEAT:
6301         case CCISS_GETBUSTYPES:
6302         case CCISS_GETFIRMVER:
6303         case CCISS_GETDRIVVER:
6304         case CCISS_REVALIDVOLS:
6305         case CCISS_DEREGDISK:
6306         case CCISS_REGNEWDISK:
6307         case CCISS_REGNEWD:
6308         case CCISS_RESCANDISK:
6309         case CCISS_GETLUNINFO:
6310                 return hpsa_ioctl(dev, cmd, arg);
6311
6312         case CCISS_PASSTHRU32:
6313                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6314         case CCISS_BIG_PASSTHRU32:
6315                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6316
6317         default:
6318                 return -ENOIOCTLCMD;
6319         }
6320 }
6321 #endif
6322
6323 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6324 {
6325         struct hpsa_pci_info pciinfo;
6326
6327         if (!argp)
6328                 return -EINVAL;
6329         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6330         pciinfo.bus = h->pdev->bus->number;
6331         pciinfo.dev_fn = h->pdev->devfn;
6332         pciinfo.board_id = h->board_id;
6333         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6334                 return -EFAULT;
6335         return 0;
6336 }
6337
6338 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6339 {
6340         DriverVer_type DriverVer;
6341         unsigned char vmaj, vmin, vsubmin;
6342         int rc;
6343
6344         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6345                 &vmaj, &vmin, &vsubmin);
6346         if (rc != 3) {
6347                 dev_info(&h->pdev->dev, "driver version string '%s' "
6348                         "unrecognized.", HPSA_DRIVER_VERSION);
6349                 vmaj = 0;
6350                 vmin = 0;
6351                 vsubmin = 0;
6352         }
6353         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6354         if (!argp)
6355                 return -EINVAL;
6356         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6357                 return -EFAULT;
6358         return 0;
6359 }
6360
6361 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6362 {
6363         IOCTL_Command_struct iocommand;
6364         struct CommandList *c;
6365         char *buff = NULL;
6366         u64 temp64;
6367         int rc = 0;
6368
6369         if (!argp)
6370                 return -EINVAL;
6371         if (!capable(CAP_SYS_RAWIO))
6372                 return -EPERM;
6373         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6374                 return -EFAULT;
6375         if ((iocommand.buf_size < 1) &&
6376             (iocommand.Request.Type.Direction != XFER_NONE)) {
6377                 return -EINVAL;
6378         }
6379         if (iocommand.buf_size > 0) {
6380                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6381                 if (buff == NULL)
6382                         return -ENOMEM;
6383                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6384                         /* Copy the data into the buffer we created */
6385                         if (copy_from_user(buff, iocommand.buf,
6386                                 iocommand.buf_size)) {
6387                                 rc = -EFAULT;
6388                                 goto out_kfree;
6389                         }
6390                 } else {
6391                         memset(buff, 0, iocommand.buf_size);
6392                 }
6393         }
6394         c = cmd_alloc(h);
6395
6396         /* Fill in the command type */
6397         c->cmd_type = CMD_IOCTL_PEND;
6398         c->scsi_cmd = SCSI_CMD_BUSY;
6399         /* Fill in Command Header */
6400         c->Header.ReplyQueue = 0; /* unused in simple mode */
6401         if (iocommand.buf_size > 0) {   /* buffer to fill */
6402                 c->Header.SGList = 1;
6403                 c->Header.SGTotal = cpu_to_le16(1);
6404         } else  { /* no buffers to fill */
6405                 c->Header.SGList = 0;
6406                 c->Header.SGTotal = cpu_to_le16(0);
6407         }
6408         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6409
6410         /* Fill in Request block */
6411         memcpy(&c->Request, &iocommand.Request,
6412                 sizeof(c->Request));
6413
6414         /* Fill in the scatter gather information */
6415         if (iocommand.buf_size > 0) {
6416                 temp64 = dma_map_single(&h->pdev->dev, buff,
6417                         iocommand.buf_size, DMA_BIDIRECTIONAL);
6418                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6419                         c->SG[0].Addr = cpu_to_le64(0);
6420                         c->SG[0].Len = cpu_to_le32(0);
6421                         rc = -ENOMEM;
6422                         goto out;
6423                 }
6424                 c->SG[0].Addr = cpu_to_le64(temp64);
6425                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6426                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6427         }
6428         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6429                                         NO_TIMEOUT);
6430         if (iocommand.buf_size > 0)
6431                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6432         check_ioctl_unit_attention(h, c);
6433         if (rc) {
6434                 rc = -EIO;
6435                 goto out;
6436         }
6437
6438         /* Copy the error information out */
6439         memcpy(&iocommand.error_info, c->err_info,
6440                 sizeof(iocommand.error_info));
6441         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6442                 rc = -EFAULT;
6443                 goto out;
6444         }
6445         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6446                 iocommand.buf_size > 0) {
6447                 /* Copy the data out of the buffer we created */
6448                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6449                         rc = -EFAULT;
6450                         goto out;
6451                 }
6452         }
6453 out:
6454         cmd_free(h, c);
6455 out_kfree:
6456         kfree(buff);
6457         return rc;
6458 }
6459
6460 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6461 {
6462         BIG_IOCTL_Command_struct *ioc;
6463         struct CommandList *c;
6464         unsigned char **buff = NULL;
6465         int *buff_size = NULL;
6466         u64 temp64;
6467         BYTE sg_used = 0;
6468         int status = 0;
6469         u32 left;
6470         u32 sz;
6471         BYTE __user *data_ptr;
6472
6473         if (!argp)
6474                 return -EINVAL;
6475         if (!capable(CAP_SYS_RAWIO))
6476                 return -EPERM;
6477         ioc = vmemdup_user(argp, sizeof(*ioc));
6478         if (IS_ERR(ioc)) {
6479                 status = PTR_ERR(ioc);
6480                 goto cleanup1;
6481         }
6482         if ((ioc->buf_size < 1) &&
6483             (ioc->Request.Type.Direction != XFER_NONE)) {
6484                 status = -EINVAL;
6485                 goto cleanup1;
6486         }
6487         /* Check kmalloc limits  using all SGs */
6488         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6489                 status = -EINVAL;
6490                 goto cleanup1;
6491         }
6492         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6493                 status = -EINVAL;
6494                 goto cleanup1;
6495         }
6496         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6497         if (!buff) {
6498                 status = -ENOMEM;
6499                 goto cleanup1;
6500         }
6501         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6502         if (!buff_size) {
6503                 status = -ENOMEM;
6504                 goto cleanup1;
6505         }
6506         left = ioc->buf_size;
6507         data_ptr = ioc->buf;
6508         while (left) {
6509                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6510                 buff_size[sg_used] = sz;
6511                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6512                 if (buff[sg_used] == NULL) {
6513                         status = -ENOMEM;
6514                         goto cleanup1;
6515                 }
6516                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6517                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6518                                 status = -EFAULT;
6519                                 goto cleanup1;
6520                         }
6521                 } else
6522                         memset(buff[sg_used], 0, sz);
6523                 left -= sz;
6524                 data_ptr += sz;
6525                 sg_used++;
6526         }
6527         c = cmd_alloc(h);
6528
6529         c->cmd_type = CMD_IOCTL_PEND;
6530         c->scsi_cmd = SCSI_CMD_BUSY;
6531         c->Header.ReplyQueue = 0;
6532         c->Header.SGList = (u8) sg_used;
6533         c->Header.SGTotal = cpu_to_le16(sg_used);
6534         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6535         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6536         if (ioc->buf_size > 0) {
6537                 int i;
6538                 for (i = 0; i < sg_used; i++) {
6539                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6540                                     buff_size[i], DMA_BIDIRECTIONAL);
6541                         if (dma_mapping_error(&h->pdev->dev,
6542                                                         (dma_addr_t) temp64)) {
6543                                 c->SG[i].Addr = cpu_to_le64(0);
6544                                 c->SG[i].Len = cpu_to_le32(0);
6545                                 hpsa_pci_unmap(h->pdev, c, i,
6546                                         DMA_BIDIRECTIONAL);
6547                                 status = -ENOMEM;
6548                                 goto cleanup0;
6549                         }
6550                         c->SG[i].Addr = cpu_to_le64(temp64);
6551                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6552                         c->SG[i].Ext = cpu_to_le32(0);
6553                 }
6554                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6555         }
6556         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6557                                                 NO_TIMEOUT);
6558         if (sg_used)
6559                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6560         check_ioctl_unit_attention(h, c);
6561         if (status) {
6562                 status = -EIO;
6563                 goto cleanup0;
6564         }
6565
6566         /* Copy the error information out */
6567         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6568         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6569                 status = -EFAULT;
6570                 goto cleanup0;
6571         }
6572         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6573                 int i;
6574
6575                 /* Copy the data out of the buffer we created */
6576                 BYTE __user *ptr = ioc->buf;
6577                 for (i = 0; i < sg_used; i++) {
6578                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6579                                 status = -EFAULT;
6580                                 goto cleanup0;
6581                         }
6582                         ptr += buff_size[i];
6583                 }
6584         }
6585         status = 0;
6586 cleanup0:
6587         cmd_free(h, c);
6588 cleanup1:
6589         if (buff) {
6590                 int i;
6591
6592                 for (i = 0; i < sg_used; i++)
6593                         kfree(buff[i]);
6594                 kfree(buff);
6595         }
6596         kfree(buff_size);
6597         kvfree(ioc);
6598         return status;
6599 }
6600
6601 static void check_ioctl_unit_attention(struct ctlr_info *h,
6602         struct CommandList *c)
6603 {
6604         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6605                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6606                 (void) check_for_unit_attention(h, c);
6607 }
6608
6609 /*
6610  * ioctl
6611  */
6612 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6613                       void __user *arg)
6614 {
6615         struct ctlr_info *h;
6616         void __user *argp = (void __user *)arg;
6617         int rc;
6618
6619         h = sdev_to_hba(dev);
6620
6621         switch (cmd) {
6622         case CCISS_DEREGDISK:
6623         case CCISS_REGNEWDISK:
6624         case CCISS_REGNEWD:
6625                 hpsa_scan_start(h->scsi_host);
6626                 return 0;
6627         case CCISS_GETPCIINFO:
6628                 return hpsa_getpciinfo_ioctl(h, argp);
6629         case CCISS_GETDRIVVER:
6630                 return hpsa_getdrivver_ioctl(h, argp);
6631         case CCISS_PASSTHRU:
6632                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6633                         return -EAGAIN;
6634                 rc = hpsa_passthru_ioctl(h, argp);
6635                 atomic_inc(&h->passthru_cmds_avail);
6636                 return rc;
6637         case CCISS_BIG_PASSTHRU:
6638                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6639                         return -EAGAIN;
6640                 rc = hpsa_big_passthru_ioctl(h, argp);
6641                 atomic_inc(&h->passthru_cmds_avail);
6642                 return rc;
6643         default:
6644                 return -ENOTTY;
6645         }
6646 }
6647
6648 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6649 {
6650         struct CommandList *c;
6651
6652         c = cmd_alloc(h);
6653
6654         /* fill_cmd can't fail here, no data buffer to map */
6655         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6656                 RAID_CTLR_LUNID, TYPE_MSG);
6657         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6658         c->waiting = NULL;
6659         enqueue_cmd_and_start_io(h, c);
6660         /* Don't wait for completion, the reset won't complete.  Don't free
6661          * the command either.  This is the last command we will send before
6662          * re-initializing everything, so it doesn't matter and won't leak.
6663          */
6664         return;
6665 }
6666
6667 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6668         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6669         int cmd_type)
6670 {
6671         enum dma_data_direction dir = DMA_NONE;
6672
6673         c->cmd_type = CMD_IOCTL_PEND;
6674         c->scsi_cmd = SCSI_CMD_BUSY;
6675         c->Header.ReplyQueue = 0;
6676         if (buff != NULL && size > 0) {
6677                 c->Header.SGList = 1;
6678                 c->Header.SGTotal = cpu_to_le16(1);
6679         } else {
6680                 c->Header.SGList = 0;
6681                 c->Header.SGTotal = cpu_to_le16(0);
6682         }
6683         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6684
6685         if (cmd_type == TYPE_CMD) {
6686                 switch (cmd) {
6687                 case HPSA_INQUIRY:
6688                         /* are we trying to read a vital product page */
6689                         if (page_code & VPD_PAGE) {
6690                                 c->Request.CDB[1] = 0x01;
6691                                 c->Request.CDB[2] = (page_code & 0xff);
6692                         }
6693                         c->Request.CDBLen = 6;
6694                         c->Request.type_attr_dir =
6695                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6696                         c->Request.Timeout = 0;
6697                         c->Request.CDB[0] = HPSA_INQUIRY;
6698                         c->Request.CDB[4] = size & 0xFF;
6699                         break;
6700                 case RECEIVE_DIAGNOSTIC:
6701                         c->Request.CDBLen = 6;
6702                         c->Request.type_attr_dir =
6703                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6704                         c->Request.Timeout = 0;
6705                         c->Request.CDB[0] = cmd;
6706                         c->Request.CDB[1] = 1;
6707                         c->Request.CDB[2] = 1;
6708                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6709                         c->Request.CDB[4] = size & 0xFF;
6710                         break;
6711                 case HPSA_REPORT_LOG:
6712                 case HPSA_REPORT_PHYS:
6713                         /* Talking to controller so It's a physical command
6714                            mode = 00 target = 0.  Nothing to write.
6715                          */
6716                         c->Request.CDBLen = 12;
6717                         c->Request.type_attr_dir =
6718                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6719                         c->Request.Timeout = 0;
6720                         c->Request.CDB[0] = cmd;
6721                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6722                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6723                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6724                         c->Request.CDB[9] = size & 0xFF;
6725                         break;
6726                 case BMIC_SENSE_DIAG_OPTIONS:
6727                         c->Request.CDBLen = 16;
6728                         c->Request.type_attr_dir =
6729                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6730                         c->Request.Timeout = 0;
6731                         /* Spec says this should be BMIC_WRITE */
6732                         c->Request.CDB[0] = BMIC_READ;
6733                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6734                         break;
6735                 case BMIC_SET_DIAG_OPTIONS:
6736                         c->Request.CDBLen = 16;
6737                         c->Request.type_attr_dir =
6738                                         TYPE_ATTR_DIR(cmd_type,
6739                                                 ATTR_SIMPLE, XFER_WRITE);
6740                         c->Request.Timeout = 0;
6741                         c->Request.CDB[0] = BMIC_WRITE;
6742                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6743                         break;
6744                 case HPSA_CACHE_FLUSH:
6745                         c->Request.CDBLen = 12;
6746                         c->Request.type_attr_dir =
6747                                         TYPE_ATTR_DIR(cmd_type,
6748                                                 ATTR_SIMPLE, XFER_WRITE);
6749                         c->Request.Timeout = 0;
6750                         c->Request.CDB[0] = BMIC_WRITE;
6751                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6752                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6753                         c->Request.CDB[8] = size & 0xFF;
6754                         break;
6755                 case TEST_UNIT_READY:
6756                         c->Request.CDBLen = 6;
6757                         c->Request.type_attr_dir =
6758                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6759                         c->Request.Timeout = 0;
6760                         break;
6761                 case HPSA_GET_RAID_MAP:
6762                         c->Request.CDBLen = 12;
6763                         c->Request.type_attr_dir =
6764                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6765                         c->Request.Timeout = 0;
6766                         c->Request.CDB[0] = HPSA_CISS_READ;
6767                         c->Request.CDB[1] = cmd;
6768                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6769                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6770                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6771                         c->Request.CDB[9] = size & 0xFF;
6772                         break;
6773                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6774                         c->Request.CDBLen = 10;
6775                         c->Request.type_attr_dir =
6776                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6777                         c->Request.Timeout = 0;
6778                         c->Request.CDB[0] = BMIC_READ;
6779                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6780                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6781                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6782                         break;
6783                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6784                         c->Request.CDBLen = 10;
6785                         c->Request.type_attr_dir =
6786                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6787                         c->Request.Timeout = 0;
6788                         c->Request.CDB[0] = BMIC_READ;
6789                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6790                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6791                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6792                         break;
6793                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6794                         c->Request.CDBLen = 10;
6795                         c->Request.type_attr_dir =
6796                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6797                         c->Request.Timeout = 0;
6798                         c->Request.CDB[0] = BMIC_READ;
6799                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6800                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6801                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6802                         break;
6803                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6804                         c->Request.CDBLen = 10;
6805                         c->Request.type_attr_dir =
6806                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6807                         c->Request.Timeout = 0;
6808                         c->Request.CDB[0] = BMIC_READ;
6809                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6810                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6811                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6812                         break;
6813                 case BMIC_IDENTIFY_CONTROLLER:
6814                         c->Request.CDBLen = 10;
6815                         c->Request.type_attr_dir =
6816                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6817                         c->Request.Timeout = 0;
6818                         c->Request.CDB[0] = BMIC_READ;
6819                         c->Request.CDB[1] = 0;
6820                         c->Request.CDB[2] = 0;
6821                         c->Request.CDB[3] = 0;
6822                         c->Request.CDB[4] = 0;
6823                         c->Request.CDB[5] = 0;
6824                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6825                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6826                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6827                         c->Request.CDB[9] = 0;
6828                         break;
6829                 default:
6830                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6831                         BUG();
6832                 }
6833         } else if (cmd_type == TYPE_MSG) {
6834                 switch (cmd) {
6835
6836                 case  HPSA_PHYS_TARGET_RESET:
6837                         c->Request.CDBLen = 16;
6838                         c->Request.type_attr_dir =
6839                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6840                         c->Request.Timeout = 0; /* Don't time out */
6841                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6842                         c->Request.CDB[0] = HPSA_RESET;
6843                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6844                         /* Physical target reset needs no control bytes 4-7*/
6845                         c->Request.CDB[4] = 0x00;
6846                         c->Request.CDB[5] = 0x00;
6847                         c->Request.CDB[6] = 0x00;
6848                         c->Request.CDB[7] = 0x00;
6849                         break;
6850                 case  HPSA_DEVICE_RESET_MSG:
6851                         c->Request.CDBLen = 16;
6852                         c->Request.type_attr_dir =
6853                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6854                         c->Request.Timeout = 0; /* Don't time out */
6855                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6856                         c->Request.CDB[0] =  cmd;
6857                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6858                         /* If bytes 4-7 are zero, it means reset the */
6859                         /* LunID device */
6860                         c->Request.CDB[4] = 0x00;
6861                         c->Request.CDB[5] = 0x00;
6862                         c->Request.CDB[6] = 0x00;
6863                         c->Request.CDB[7] = 0x00;
6864                         break;
6865                 default:
6866                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6867                                 cmd);
6868                         BUG();
6869                 }
6870         } else {
6871                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6872                 BUG();
6873         }
6874
6875         switch (GET_DIR(c->Request.type_attr_dir)) {
6876         case XFER_READ:
6877                 dir = DMA_FROM_DEVICE;
6878                 break;
6879         case XFER_WRITE:
6880                 dir = DMA_TO_DEVICE;
6881                 break;
6882         case XFER_NONE:
6883                 dir = DMA_NONE;
6884                 break;
6885         default:
6886                 dir = DMA_BIDIRECTIONAL;
6887         }
6888         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6889                 return -1;
6890         return 0;
6891 }
6892
6893 /*
6894  * Map (physical) PCI mem into (virtual) kernel space
6895  */
6896 static void __iomem *remap_pci_mem(ulong base, ulong size)
6897 {
6898         ulong page_base = ((ulong) base) & PAGE_MASK;
6899         ulong page_offs = ((ulong) base) - page_base;
6900         void __iomem *page_remapped = ioremap(page_base,
6901                 page_offs + size);
6902
6903         return page_remapped ? (page_remapped + page_offs) : NULL;
6904 }
6905
6906 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6907 {
6908         return h->access.command_completed(h, q);
6909 }
6910
6911 static inline bool interrupt_pending(struct ctlr_info *h)
6912 {
6913         return h->access.intr_pending(h);
6914 }
6915
6916 static inline long interrupt_not_for_us(struct ctlr_info *h)
6917 {
6918         return (h->access.intr_pending(h) == 0) ||
6919                 (h->interrupts_enabled == 0);
6920 }
6921
6922 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6923         u32 raw_tag)
6924 {
6925         if (unlikely(tag_index >= h->nr_cmds)) {
6926                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6927                 return 1;
6928         }
6929         return 0;
6930 }
6931
6932 static inline void finish_cmd(struct CommandList *c)
6933 {
6934         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6935         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6936                         || c->cmd_type == CMD_IOACCEL2))
6937                 complete_scsi_command(c);
6938         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6939                 complete(c->waiting);
6940 }
6941
6942 /* process completion of an indexed ("direct lookup") command */
6943 static inline void process_indexed_cmd(struct ctlr_info *h,
6944         u32 raw_tag)
6945 {
6946         u32 tag_index;
6947         struct CommandList *c;
6948
6949         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6950         if (!bad_tag(h, tag_index, raw_tag)) {
6951                 c = h->cmd_pool + tag_index;
6952                 finish_cmd(c);
6953         }
6954 }
6955
6956 /* Some controllers, like p400, will give us one interrupt
6957  * after a soft reset, even if we turned interrupts off.
6958  * Only need to check for this in the hpsa_xxx_discard_completions
6959  * functions.
6960  */
6961 static int ignore_bogus_interrupt(struct ctlr_info *h)
6962 {
6963         if (likely(!reset_devices))
6964                 return 0;
6965
6966         if (likely(h->interrupts_enabled))
6967                 return 0;
6968
6969         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6970                 "(known firmware bug.)  Ignoring.\n");
6971
6972         return 1;
6973 }
6974
6975 /*
6976  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6977  * Relies on (h-q[x] == x) being true for x such that
6978  * 0 <= x < MAX_REPLY_QUEUES.
6979  */
6980 static struct ctlr_info *queue_to_hba(u8 *queue)
6981 {
6982         return container_of((queue - *queue), struct ctlr_info, q[0]);
6983 }
6984
6985 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6986 {
6987         struct ctlr_info *h = queue_to_hba(queue);
6988         u8 q = *(u8 *) queue;
6989         u32 raw_tag;
6990
6991         if (ignore_bogus_interrupt(h))
6992                 return IRQ_NONE;
6993
6994         if (interrupt_not_for_us(h))
6995                 return IRQ_NONE;
6996         h->last_intr_timestamp = get_jiffies_64();
6997         while (interrupt_pending(h)) {
6998                 raw_tag = get_next_completion(h, q);
6999                 while (raw_tag != FIFO_EMPTY)
7000                         raw_tag = next_command(h, q);
7001         }
7002         return IRQ_HANDLED;
7003 }
7004
7005 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7006 {
7007         struct ctlr_info *h = queue_to_hba(queue);
7008         u32 raw_tag;
7009         u8 q = *(u8 *) queue;
7010
7011         if (ignore_bogus_interrupt(h))
7012                 return IRQ_NONE;
7013
7014         h->last_intr_timestamp = get_jiffies_64();
7015         raw_tag = get_next_completion(h, q);
7016         while (raw_tag != FIFO_EMPTY)
7017                 raw_tag = next_command(h, q);
7018         return IRQ_HANDLED;
7019 }
7020
7021 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7022 {
7023         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7024         u32 raw_tag;
7025         u8 q = *(u8 *) queue;
7026
7027         if (interrupt_not_for_us(h))
7028                 return IRQ_NONE;
7029         h->last_intr_timestamp = get_jiffies_64();
7030         while (interrupt_pending(h)) {
7031                 raw_tag = get_next_completion(h, q);
7032                 while (raw_tag != FIFO_EMPTY) {
7033                         process_indexed_cmd(h, raw_tag);
7034                         raw_tag = next_command(h, q);
7035                 }
7036         }
7037         return IRQ_HANDLED;
7038 }
7039
7040 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7041 {
7042         struct ctlr_info *h = queue_to_hba(queue);
7043         u32 raw_tag;
7044         u8 q = *(u8 *) queue;
7045
7046         h->last_intr_timestamp = get_jiffies_64();
7047         raw_tag = get_next_completion(h, q);
7048         while (raw_tag != FIFO_EMPTY) {
7049                 process_indexed_cmd(h, raw_tag);
7050                 raw_tag = next_command(h, q);
7051         }
7052         return IRQ_HANDLED;
7053 }
7054
7055 /* Send a message CDB to the firmware. Careful, this only works
7056  * in simple mode, not performant mode due to the tag lookup.
7057  * We only ever use this immediately after a controller reset.
7058  */
7059 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7060                         unsigned char type)
7061 {
7062         struct Command {
7063                 struct CommandListHeader CommandHeader;
7064                 struct RequestBlock Request;
7065                 struct ErrDescriptor ErrorDescriptor;
7066         };
7067         struct Command *cmd;
7068         static const size_t cmd_sz = sizeof(*cmd) +
7069                                         sizeof(cmd->ErrorDescriptor);
7070         dma_addr_t paddr64;
7071         __le32 paddr32;
7072         u32 tag;
7073         void __iomem *vaddr;
7074         int i, err;
7075
7076         vaddr = pci_ioremap_bar(pdev, 0);
7077         if (vaddr == NULL)
7078                 return -ENOMEM;
7079
7080         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7081          * CCISS commands, so they must be allocated from the lower 4GiB of
7082          * memory.
7083          */
7084         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7085         if (err) {
7086                 iounmap(vaddr);
7087                 return err;
7088         }
7089
7090         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7091         if (cmd == NULL) {
7092                 iounmap(vaddr);
7093                 return -ENOMEM;
7094         }
7095
7096         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7097          * although there's no guarantee, we assume that the address is at
7098          * least 4-byte aligned (most likely, it's page-aligned).
7099          */
7100         paddr32 = cpu_to_le32(paddr64);
7101
7102         cmd->CommandHeader.ReplyQueue = 0;
7103         cmd->CommandHeader.SGList = 0;
7104         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7105         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7106         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7107
7108         cmd->Request.CDBLen = 16;
7109         cmd->Request.type_attr_dir =
7110                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7111         cmd->Request.Timeout = 0; /* Don't time out */
7112         cmd->Request.CDB[0] = opcode;
7113         cmd->Request.CDB[1] = type;
7114         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7115         cmd->ErrorDescriptor.Addr =
7116                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7117         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7118
7119         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7120
7121         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7122                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7123                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7124                         break;
7125                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7126         }
7127
7128         iounmap(vaddr);
7129
7130         /* we leak the DMA buffer here ... no choice since the controller could
7131          *  still complete the command.
7132          */
7133         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7134                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7135                         opcode, type);
7136                 return -ETIMEDOUT;
7137         }
7138
7139         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7140
7141         if (tag & HPSA_ERROR_BIT) {
7142                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7143                         opcode, type);
7144                 return -EIO;
7145         }
7146
7147         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7148                 opcode, type);
7149         return 0;
7150 }
7151
7152 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7153
7154 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7155         void __iomem *vaddr, u32 use_doorbell)
7156 {
7157
7158         if (use_doorbell) {
7159                 /* For everything after the P600, the PCI power state method
7160                  * of resetting the controller doesn't work, so we have this
7161                  * other way using the doorbell register.
7162                  */
7163                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7164                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7165
7166                 /* PMC hardware guys tell us we need a 10 second delay after
7167                  * doorbell reset and before any attempt to talk to the board
7168                  * at all to ensure that this actually works and doesn't fall
7169                  * over in some weird corner cases.
7170                  */
7171                 msleep(10000);
7172         } else { /* Try to do it the PCI power state way */
7173
7174                 /* Quoting from the Open CISS Specification: "The Power
7175                  * Management Control/Status Register (CSR) controls the power
7176                  * state of the device.  The normal operating state is D0,
7177                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7178                  * the controller, place the interface device in D3 then to D0,
7179                  * this causes a secondary PCI reset which will reset the
7180                  * controller." */
7181
7182                 int rc = 0;
7183
7184                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7185
7186                 /* enter the D3hot power management state */
7187                 rc = pci_set_power_state(pdev, PCI_D3hot);
7188                 if (rc)
7189                         return rc;
7190
7191                 msleep(500);
7192
7193                 /* enter the D0 power management state */
7194                 rc = pci_set_power_state(pdev, PCI_D0);
7195                 if (rc)
7196                         return rc;
7197
7198                 /*
7199                  * The P600 requires a small delay when changing states.
7200                  * Otherwise we may think the board did not reset and we bail.
7201                  * This for kdump only and is particular to the P600.
7202                  */
7203                 msleep(500);
7204         }
7205         return 0;
7206 }
7207
7208 static void init_driver_version(char *driver_version, int len)
7209 {
7210         memset(driver_version, 0, len);
7211         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7212 }
7213
7214 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7215 {
7216         char *driver_version;
7217         int i, size = sizeof(cfgtable->driver_version);
7218
7219         driver_version = kmalloc(size, GFP_KERNEL);
7220         if (!driver_version)
7221                 return -ENOMEM;
7222
7223         init_driver_version(driver_version, size);
7224         for (i = 0; i < size; i++)
7225                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7226         kfree(driver_version);
7227         return 0;
7228 }
7229
7230 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7231                                           unsigned char *driver_ver)
7232 {
7233         int i;
7234
7235         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7236                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7237 }
7238
7239 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7240 {
7241
7242         char *driver_ver, *old_driver_ver;
7243         int rc, size = sizeof(cfgtable->driver_version);
7244
7245         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7246         if (!old_driver_ver)
7247                 return -ENOMEM;
7248         driver_ver = old_driver_ver + size;
7249
7250         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7251          * should have been changed, otherwise we know the reset failed.
7252          */
7253         init_driver_version(old_driver_ver, size);
7254         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7255         rc = !memcmp(driver_ver, old_driver_ver, size);
7256         kfree(old_driver_ver);
7257         return rc;
7258 }
7259 /* This does a hard reset of the controller using PCI power management
7260  * states or the using the doorbell register.
7261  */
7262 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7263 {
7264         u64 cfg_offset;
7265         u32 cfg_base_addr;
7266         u64 cfg_base_addr_index;
7267         void __iomem *vaddr;
7268         unsigned long paddr;
7269         u32 misc_fw_support;
7270         int rc;
7271         struct CfgTable __iomem *cfgtable;
7272         u32 use_doorbell;
7273         u16 command_register;
7274
7275         /* For controllers as old as the P600, this is very nearly
7276          * the same thing as
7277          *
7278          * pci_save_state(pci_dev);
7279          * pci_set_power_state(pci_dev, PCI_D3hot);
7280          * pci_set_power_state(pci_dev, PCI_D0);
7281          * pci_restore_state(pci_dev);
7282          *
7283          * For controllers newer than the P600, the pci power state
7284          * method of resetting doesn't work so we have another way
7285          * using the doorbell register.
7286          */
7287
7288         if (!ctlr_is_resettable(board_id)) {
7289                 dev_warn(&pdev->dev, "Controller not resettable\n");
7290                 return -ENODEV;
7291         }
7292
7293         /* if controller is soft- but not hard resettable... */
7294         if (!ctlr_is_hard_resettable(board_id))
7295                 return -ENOTSUPP; /* try soft reset later. */
7296
7297         /* Save the PCI command register */
7298         pci_read_config_word(pdev, 4, &command_register);
7299         pci_save_state(pdev);
7300
7301         /* find the first memory BAR, so we can find the cfg table */
7302         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7303         if (rc)
7304                 return rc;
7305         vaddr = remap_pci_mem(paddr, 0x250);
7306         if (!vaddr)
7307                 return -ENOMEM;
7308
7309         /* find cfgtable in order to check if reset via doorbell is supported */
7310         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7311                                         &cfg_base_addr_index, &cfg_offset);
7312         if (rc)
7313                 goto unmap_vaddr;
7314         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7315                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7316         if (!cfgtable) {
7317                 rc = -ENOMEM;
7318                 goto unmap_vaddr;
7319         }
7320         rc = write_driver_ver_to_cfgtable(cfgtable);
7321         if (rc)
7322                 goto unmap_cfgtable;
7323
7324         /* If reset via doorbell register is supported, use that.
7325          * There are two such methods.  Favor the newest method.
7326          */
7327         misc_fw_support = readl(&cfgtable->misc_fw_support);
7328         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7329         if (use_doorbell) {
7330                 use_doorbell = DOORBELL_CTLR_RESET2;
7331         } else {
7332                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7333                 if (use_doorbell) {
7334                         dev_warn(&pdev->dev,
7335                                 "Soft reset not supported. Firmware update is required.\n");
7336                         rc = -ENOTSUPP; /* try soft reset */
7337                         goto unmap_cfgtable;
7338                 }
7339         }
7340
7341         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7342         if (rc)
7343                 goto unmap_cfgtable;
7344
7345         pci_restore_state(pdev);
7346         pci_write_config_word(pdev, 4, command_register);
7347
7348         /* Some devices (notably the HP Smart Array 5i Controller)
7349            need a little pause here */
7350         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7351
7352         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7353         if (rc) {
7354                 dev_warn(&pdev->dev,
7355                         "Failed waiting for board to become ready after hard reset\n");
7356                 goto unmap_cfgtable;
7357         }
7358
7359         rc = controller_reset_failed(vaddr);
7360         if (rc < 0)
7361                 goto unmap_cfgtable;
7362         if (rc) {
7363                 dev_warn(&pdev->dev, "Unable to successfully reset "
7364                         "controller. Will try soft reset.\n");
7365                 rc = -ENOTSUPP;
7366         } else {
7367                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7368         }
7369
7370 unmap_cfgtable:
7371         iounmap(cfgtable);
7372
7373 unmap_vaddr:
7374         iounmap(vaddr);
7375         return rc;
7376 }
7377
7378 /*
7379  *  We cannot read the structure directly, for portability we must use
7380  *   the io functions.
7381  *   This is for debug only.
7382  */
7383 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7384 {
7385 #ifdef HPSA_DEBUG
7386         int i;
7387         char temp_name[17];
7388
7389         dev_info(dev, "Controller Configuration information\n");
7390         dev_info(dev, "------------------------------------\n");
7391         for (i = 0; i < 4; i++)
7392                 temp_name[i] = readb(&(tb->Signature[i]));
7393         temp_name[4] = '\0';
7394         dev_info(dev, "   Signature = %s\n", temp_name);
7395         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7396         dev_info(dev, "   Transport methods supported = 0x%x\n",
7397                readl(&(tb->TransportSupport)));
7398         dev_info(dev, "   Transport methods active = 0x%x\n",
7399                readl(&(tb->TransportActive)));
7400         dev_info(dev, "   Requested transport Method = 0x%x\n",
7401                readl(&(tb->HostWrite.TransportRequest)));
7402         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7403                readl(&(tb->HostWrite.CoalIntDelay)));
7404         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7405                readl(&(tb->HostWrite.CoalIntCount)));
7406         dev_info(dev, "   Max outstanding commands = %d\n",
7407                readl(&(tb->CmdsOutMax)));
7408         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7409         for (i = 0; i < 16; i++)
7410                 temp_name[i] = readb(&(tb->ServerName[i]));
7411         temp_name[16] = '\0';
7412         dev_info(dev, "   Server Name = %s\n", temp_name);
7413         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7414                 readl(&(tb->HeartBeat)));
7415 #endif                          /* HPSA_DEBUG */
7416 }
7417
7418 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7419 {
7420         int i, offset, mem_type, bar_type;
7421
7422         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7423                 return 0;
7424         offset = 0;
7425         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7426                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7427                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7428                         offset += 4;
7429                 else {
7430                         mem_type = pci_resource_flags(pdev, i) &
7431                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7432                         switch (mem_type) {
7433                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7434                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7435                                 offset += 4;    /* 32 bit */
7436                                 break;
7437                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7438                                 offset += 8;
7439                                 break;
7440                         default:        /* reserved in PCI 2.2 */
7441                                 dev_warn(&pdev->dev,
7442                                        "base address is invalid\n");
7443                                 return -1;
7444                                 break;
7445                         }
7446                 }
7447                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7448                         return i + 1;
7449         }
7450         return -1;
7451 }
7452
7453 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7454 {
7455         pci_free_irq_vectors(h->pdev);
7456         h->msix_vectors = 0;
7457 }
7458
7459 static void hpsa_setup_reply_map(struct ctlr_info *h)
7460 {
7461         const struct cpumask *mask;
7462         unsigned int queue, cpu;
7463
7464         for (queue = 0; queue < h->msix_vectors; queue++) {
7465                 mask = pci_irq_get_affinity(h->pdev, queue);
7466                 if (!mask)
7467                         goto fallback;
7468
7469                 for_each_cpu(cpu, mask)
7470                         h->reply_map[cpu] = queue;
7471         }
7472         return;
7473
7474 fallback:
7475         for_each_possible_cpu(cpu)
7476                 h->reply_map[cpu] = 0;
7477 }
7478
7479 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7480  * controllers that are capable. If not, we use legacy INTx mode.
7481  */
7482 static int hpsa_interrupt_mode(struct ctlr_info *h)
7483 {
7484         unsigned int flags = PCI_IRQ_LEGACY;
7485         int ret;
7486
7487         /* Some boards advertise MSI but don't really support it */
7488         switch (h->board_id) {
7489         case 0x40700E11:
7490         case 0x40800E11:
7491         case 0x40820E11:
7492         case 0x40830E11:
7493                 break;
7494         default:
7495                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7496                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7497                 if (ret > 0) {
7498                         h->msix_vectors = ret;
7499                         return 0;
7500                 }
7501
7502                 flags |= PCI_IRQ_MSI;
7503                 break;
7504         }
7505
7506         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7507         if (ret < 0)
7508                 return ret;
7509         return 0;
7510 }
7511
7512 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7513                                 bool *legacy_board)
7514 {
7515         int i;
7516         u32 subsystem_vendor_id, subsystem_device_id;
7517
7518         subsystem_vendor_id = pdev->subsystem_vendor;
7519         subsystem_device_id = pdev->subsystem_device;
7520         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7521                     subsystem_vendor_id;
7522
7523         if (legacy_board)
7524                 *legacy_board = false;
7525         for (i = 0; i < ARRAY_SIZE(products); i++)
7526                 if (*board_id == products[i].board_id) {
7527                         if (products[i].access != &SA5A_access &&
7528                             products[i].access != &SA5B_access)
7529                                 return i;
7530                         dev_warn(&pdev->dev,
7531                                  "legacy board ID: 0x%08x\n",
7532                                  *board_id);
7533                         if (legacy_board)
7534                             *legacy_board = true;
7535                         return i;
7536                 }
7537
7538         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7539         if (legacy_board)
7540                 *legacy_board = true;
7541         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7542 }
7543
7544 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7545                                     unsigned long *memory_bar)
7546 {
7547         int i;
7548
7549         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7550                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7551                         /* addressing mode bits already removed */
7552                         *memory_bar = pci_resource_start(pdev, i);
7553                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7554                                 *memory_bar);
7555                         return 0;
7556                 }
7557         dev_warn(&pdev->dev, "no memory BAR found\n");
7558         return -ENODEV;
7559 }
7560
7561 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7562                                      int wait_for_ready)
7563 {
7564         int i, iterations;
7565         u32 scratchpad;
7566         if (wait_for_ready)
7567                 iterations = HPSA_BOARD_READY_ITERATIONS;
7568         else
7569                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7570
7571         for (i = 0; i < iterations; i++) {
7572                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7573                 if (wait_for_ready) {
7574                         if (scratchpad == HPSA_FIRMWARE_READY)
7575                                 return 0;
7576                 } else {
7577                         if (scratchpad != HPSA_FIRMWARE_READY)
7578                                 return 0;
7579                 }
7580                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7581         }
7582         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7583         return -ENODEV;
7584 }
7585
7586 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7587                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7588                                u64 *cfg_offset)
7589 {
7590         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7591         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7592         *cfg_base_addr &= (u32) 0x0000ffff;
7593         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7594         if (*cfg_base_addr_index == -1) {
7595                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7596                 return -ENODEV;
7597         }
7598         return 0;
7599 }
7600
7601 static void hpsa_free_cfgtables(struct ctlr_info *h)
7602 {
7603         if (h->transtable) {
7604                 iounmap(h->transtable);
7605                 h->transtable = NULL;
7606         }
7607         if (h->cfgtable) {
7608                 iounmap(h->cfgtable);
7609                 h->cfgtable = NULL;
7610         }
7611 }
7612
7613 /* Find and map CISS config table and transfer table
7614 + * several items must be unmapped (freed) later
7615 + * */
7616 static int hpsa_find_cfgtables(struct ctlr_info *h)
7617 {
7618         u64 cfg_offset;
7619         u32 cfg_base_addr;
7620         u64 cfg_base_addr_index;
7621         u32 trans_offset;
7622         int rc;
7623
7624         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7625                 &cfg_base_addr_index, &cfg_offset);
7626         if (rc)
7627                 return rc;
7628         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7629                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7630         if (!h->cfgtable) {
7631                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7632                 return -ENOMEM;
7633         }
7634         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7635         if (rc)
7636                 return rc;
7637         /* Find performant mode table. */
7638         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7639         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7640                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7641                                 sizeof(*h->transtable));
7642         if (!h->transtable) {
7643                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7644                 hpsa_free_cfgtables(h);
7645                 return -ENOMEM;
7646         }
7647         return 0;
7648 }
7649
7650 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7651 {
7652 #define MIN_MAX_COMMANDS 16
7653         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7654
7655         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7656
7657         /* Limit commands in memory limited kdump scenario. */
7658         if (reset_devices && h->max_commands > 32)
7659                 h->max_commands = 32;
7660
7661         if (h->max_commands < MIN_MAX_COMMANDS) {
7662                 dev_warn(&h->pdev->dev,
7663                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7664                         h->max_commands,
7665                         MIN_MAX_COMMANDS);
7666                 h->max_commands = MIN_MAX_COMMANDS;
7667         }
7668 }
7669
7670 /* If the controller reports that the total max sg entries is greater than 512,
7671  * then we know that chained SG blocks work.  (Original smart arrays did not
7672  * support chained SG blocks and would return zero for max sg entries.)
7673  */
7674 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7675 {
7676         return h->maxsgentries > 512;
7677 }
7678
7679 /* Interrogate the hardware for some limits:
7680  * max commands, max SG elements without chaining, and with chaining,
7681  * SG chain block size, etc.
7682  */
7683 static void hpsa_find_board_params(struct ctlr_info *h)
7684 {
7685         hpsa_get_max_perf_mode_cmds(h);
7686         h->nr_cmds = h->max_commands;
7687         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7688         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7689         if (hpsa_supports_chained_sg_blocks(h)) {
7690                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7691                 h->max_cmd_sg_entries = 32;
7692                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7693                 h->maxsgentries--; /* save one for chain pointer */
7694         } else {
7695                 /*
7696                  * Original smart arrays supported at most 31 s/g entries
7697                  * embedded inline in the command (trying to use more
7698                  * would lock up the controller)
7699                  */
7700                 h->max_cmd_sg_entries = 31;
7701                 h->maxsgentries = 31; /* default to traditional values */
7702                 h->chainsize = 0;
7703         }
7704
7705         /* Find out what task management functions are supported and cache */
7706         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7707         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7708                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7709         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7710                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7711         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7712                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7713 }
7714
7715 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7716 {
7717         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7718                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7719                 return false;
7720         }
7721         return true;
7722 }
7723
7724 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7725 {
7726         u32 driver_support;
7727
7728         driver_support = readl(&(h->cfgtable->driver_support));
7729         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7730 #ifdef CONFIG_X86
7731         driver_support |= ENABLE_SCSI_PREFETCH;
7732 #endif
7733         driver_support |= ENABLE_UNIT_ATTN;
7734         writel(driver_support, &(h->cfgtable->driver_support));
7735 }
7736
7737 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7738  * in a prefetch beyond physical memory.
7739  */
7740 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7741 {
7742         u32 dma_prefetch;
7743
7744         if (h->board_id != 0x3225103C)
7745                 return;
7746         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7747         dma_prefetch |= 0x8000;
7748         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7749 }
7750
7751 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7752 {
7753         int i;
7754         u32 doorbell_value;
7755         unsigned long flags;
7756         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7757         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7758                 spin_lock_irqsave(&h->lock, flags);
7759                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7760                 spin_unlock_irqrestore(&h->lock, flags);
7761                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7762                         goto done;
7763                 /* delay and try again */
7764                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7765         }
7766         return -ENODEV;
7767 done:
7768         return 0;
7769 }
7770
7771 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7772 {
7773         int i;
7774         u32 doorbell_value;
7775         unsigned long flags;
7776
7777         /* under certain very rare conditions, this can take awhile.
7778          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7779          * as we enter this code.)
7780          */
7781         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7782                 if (h->remove_in_progress)
7783                         goto done;
7784                 spin_lock_irqsave(&h->lock, flags);
7785                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7786                 spin_unlock_irqrestore(&h->lock, flags);
7787                 if (!(doorbell_value & CFGTBL_ChangeReq))
7788                         goto done;
7789                 /* delay and try again */
7790                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7791         }
7792         return -ENODEV;
7793 done:
7794         return 0;
7795 }
7796
7797 /* return -ENODEV or other reason on error, 0 on success */
7798 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7799 {
7800         u32 trans_support;
7801
7802         trans_support = readl(&(h->cfgtable->TransportSupport));
7803         if (!(trans_support & SIMPLE_MODE))
7804                 return -ENOTSUPP;
7805
7806         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7807
7808         /* Update the field, and then ring the doorbell */
7809         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7810         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7811         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7812         if (hpsa_wait_for_mode_change_ack(h))
7813                 goto error;
7814         print_cfg_table(&h->pdev->dev, h->cfgtable);
7815         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7816                 goto error;
7817         h->transMethod = CFGTBL_Trans_Simple;
7818         return 0;
7819 error:
7820         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7821         return -ENODEV;
7822 }
7823
7824 /* free items allocated or mapped by hpsa_pci_init */
7825 static void hpsa_free_pci_init(struct ctlr_info *h)
7826 {
7827         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7828         iounmap(h->vaddr);                      /* pci_init 3 */
7829         h->vaddr = NULL;
7830         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7831         /*
7832          * call pci_disable_device before pci_release_regions per
7833          * Documentation/driver-api/pci/pci.rst
7834          */
7835         pci_disable_device(h->pdev);            /* pci_init 1 */
7836         pci_release_regions(h->pdev);           /* pci_init 2 */
7837 }
7838
7839 /* several items must be freed later */
7840 static int hpsa_pci_init(struct ctlr_info *h)
7841 {
7842         int prod_index, err;
7843         bool legacy_board;
7844
7845         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7846         if (prod_index < 0)
7847                 return prod_index;
7848         h->product_name = products[prod_index].product_name;
7849         h->access = *(products[prod_index].access);
7850         h->legacy_board = legacy_board;
7851         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7852                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7853
7854         err = pci_enable_device(h->pdev);
7855         if (err) {
7856                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7857                 pci_disable_device(h->pdev);
7858                 return err;
7859         }
7860
7861         err = pci_request_regions(h->pdev, HPSA);
7862         if (err) {
7863                 dev_err(&h->pdev->dev,
7864                         "failed to obtain PCI resources\n");
7865                 pci_disable_device(h->pdev);
7866                 return err;
7867         }
7868
7869         pci_set_master(h->pdev);
7870
7871         err = hpsa_interrupt_mode(h);
7872         if (err)
7873                 goto clean1;
7874
7875         /* setup mapping between CPU and reply queue */
7876         hpsa_setup_reply_map(h);
7877
7878         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7879         if (err)
7880                 goto clean2;    /* intmode+region, pci */
7881         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7882         if (!h->vaddr) {
7883                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7884                 err = -ENOMEM;
7885                 goto clean2;    /* intmode+region, pci */
7886         }
7887         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7888         if (err)
7889                 goto clean3;    /* vaddr, intmode+region, pci */
7890         err = hpsa_find_cfgtables(h);
7891         if (err)
7892                 goto clean3;    /* vaddr, intmode+region, pci */
7893         hpsa_find_board_params(h);
7894
7895         if (!hpsa_CISS_signature_present(h)) {
7896                 err = -ENODEV;
7897                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7898         }
7899         hpsa_set_driver_support_bits(h);
7900         hpsa_p600_dma_prefetch_quirk(h);
7901         err = hpsa_enter_simple_mode(h);
7902         if (err)
7903                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7904         return 0;
7905
7906 clean4: /* cfgtables, vaddr, intmode+region, pci */
7907         hpsa_free_cfgtables(h);
7908 clean3: /* vaddr, intmode+region, pci */
7909         iounmap(h->vaddr);
7910         h->vaddr = NULL;
7911 clean2: /* intmode+region, pci */
7912         hpsa_disable_interrupt_mode(h);
7913 clean1:
7914         /*
7915          * call pci_disable_device before pci_release_regions per
7916          * Documentation/driver-api/pci/pci.rst
7917          */
7918         pci_disable_device(h->pdev);
7919         pci_release_regions(h->pdev);
7920         return err;
7921 }
7922
7923 static void hpsa_hba_inquiry(struct ctlr_info *h)
7924 {
7925         int rc;
7926
7927 #define HBA_INQUIRY_BYTE_COUNT 64
7928         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7929         if (!h->hba_inquiry_data)
7930                 return;
7931         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7932                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7933         if (rc != 0) {
7934                 kfree(h->hba_inquiry_data);
7935                 h->hba_inquiry_data = NULL;
7936         }
7937 }
7938
7939 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7940 {
7941         int rc, i;
7942         void __iomem *vaddr;
7943
7944         if (!reset_devices)
7945                 return 0;
7946
7947         /* kdump kernel is loading, we don't know in which state is
7948          * the pci interface. The dev->enable_cnt is equal zero
7949          * so we call enable+disable, wait a while and switch it on.
7950          */
7951         rc = pci_enable_device(pdev);
7952         if (rc) {
7953                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7954                 return -ENODEV;
7955         }
7956         pci_disable_device(pdev);
7957         msleep(260);                    /* a randomly chosen number */
7958         rc = pci_enable_device(pdev);
7959         if (rc) {
7960                 dev_warn(&pdev->dev, "failed to enable device.\n");
7961                 return -ENODEV;
7962         }
7963
7964         pci_set_master(pdev);
7965
7966         vaddr = pci_ioremap_bar(pdev, 0);
7967         if (vaddr == NULL) {
7968                 rc = -ENOMEM;
7969                 goto out_disable;
7970         }
7971         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7972         iounmap(vaddr);
7973
7974         /* Reset the controller with a PCI power-cycle or via doorbell */
7975         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7976
7977         /* -ENOTSUPP here means we cannot reset the controller
7978          * but it's already (and still) up and running in
7979          * "performant mode".  Or, it might be 640x, which can't reset
7980          * due to concerns about shared bbwc between 6402/6404 pair.
7981          */
7982         if (rc)
7983                 goto out_disable;
7984
7985         /* Now try to get the controller to respond to a no-op */
7986         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7987         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7988                 if (hpsa_noop(pdev) == 0)
7989                         break;
7990                 else
7991                         dev_warn(&pdev->dev, "no-op failed%s\n",
7992                                         (i < 11 ? "; re-trying" : ""));
7993         }
7994
7995 out_disable:
7996
7997         pci_disable_device(pdev);
7998         return rc;
7999 }
8000
8001 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8002 {
8003         kfree(h->cmd_pool_bits);
8004         h->cmd_pool_bits = NULL;
8005         if (h->cmd_pool) {
8006                 dma_free_coherent(&h->pdev->dev,
8007                                 h->nr_cmds * sizeof(struct CommandList),
8008                                 h->cmd_pool,
8009                                 h->cmd_pool_dhandle);
8010                 h->cmd_pool = NULL;
8011                 h->cmd_pool_dhandle = 0;
8012         }
8013         if (h->errinfo_pool) {
8014                 dma_free_coherent(&h->pdev->dev,
8015                                 h->nr_cmds * sizeof(struct ErrorInfo),
8016                                 h->errinfo_pool,
8017                                 h->errinfo_pool_dhandle);
8018                 h->errinfo_pool = NULL;
8019                 h->errinfo_pool_dhandle = 0;
8020         }
8021 }
8022
8023 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8024 {
8025         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8026                                    sizeof(unsigned long),
8027                                    GFP_KERNEL);
8028         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8029                     h->nr_cmds * sizeof(*h->cmd_pool),
8030                     &h->cmd_pool_dhandle, GFP_KERNEL);
8031         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8032                     h->nr_cmds * sizeof(*h->errinfo_pool),
8033                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8034         if ((h->cmd_pool_bits == NULL)
8035             || (h->cmd_pool == NULL)
8036             || (h->errinfo_pool == NULL)) {
8037                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8038                 goto clean_up;
8039         }
8040         hpsa_preinitialize_commands(h);
8041         return 0;
8042 clean_up:
8043         hpsa_free_cmd_pool(h);
8044         return -ENOMEM;
8045 }
8046
8047 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8048 static void hpsa_free_irqs(struct ctlr_info *h)
8049 {
8050         int i;
8051         int irq_vector = 0;
8052
8053         if (hpsa_simple_mode)
8054                 irq_vector = h->intr_mode;
8055
8056         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8057                 /* Single reply queue, only one irq to free */
8058                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8059                                 &h->q[h->intr_mode]);
8060                 h->q[h->intr_mode] = 0;
8061                 return;
8062         }
8063
8064         for (i = 0; i < h->msix_vectors; i++) {
8065                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8066                 h->q[i] = 0;
8067         }
8068         for (; i < MAX_REPLY_QUEUES; i++)
8069                 h->q[i] = 0;
8070 }
8071
8072 /* returns 0 on success; cleans up and returns -Enn on error */
8073 static int hpsa_request_irqs(struct ctlr_info *h,
8074         irqreturn_t (*msixhandler)(int, void *),
8075         irqreturn_t (*intxhandler)(int, void *))
8076 {
8077         int rc, i;
8078         int irq_vector = 0;
8079
8080         if (hpsa_simple_mode)
8081                 irq_vector = h->intr_mode;
8082
8083         /*
8084          * initialize h->q[x] = x so that interrupt handlers know which
8085          * queue to process.
8086          */
8087         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8088                 h->q[i] = (u8) i;
8089
8090         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8091                 /* If performant mode and MSI-X, use multiple reply queues */
8092                 for (i = 0; i < h->msix_vectors; i++) {
8093                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8094                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8095                                         0, h->intrname[i],
8096                                         &h->q[i]);
8097                         if (rc) {
8098                                 int j;
8099
8100                                 dev_err(&h->pdev->dev,
8101                                         "failed to get irq %d for %s\n",
8102                                        pci_irq_vector(h->pdev, i), h->devname);
8103                                 for (j = 0; j < i; j++) {
8104                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8105                                         h->q[j] = 0;
8106                                 }
8107                                 for (; j < MAX_REPLY_QUEUES; j++)
8108                                         h->q[j] = 0;
8109                                 return rc;
8110                         }
8111                 }
8112         } else {
8113                 /* Use single reply pool */
8114                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8115                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8116                                 h->msix_vectors ? "x" : "");
8117                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8118                                 msixhandler, 0,
8119                                 h->intrname[0],
8120                                 &h->q[h->intr_mode]);
8121                 } else {
8122                         sprintf(h->intrname[h->intr_mode],
8123                                 "%s-intx", h->devname);
8124                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8125                                 intxhandler, IRQF_SHARED,
8126                                 h->intrname[0],
8127                                 &h->q[h->intr_mode]);
8128                 }
8129         }
8130         if (rc) {
8131                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8132                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8133                 hpsa_free_irqs(h);
8134                 return -ENODEV;
8135         }
8136         return 0;
8137 }
8138
8139 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8140 {
8141         int rc;
8142         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8143
8144         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8145         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8146         if (rc) {
8147                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8148                 return rc;
8149         }
8150
8151         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8152         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8153         if (rc) {
8154                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8155                         "after soft reset.\n");
8156                 return rc;
8157         }
8158
8159         return 0;
8160 }
8161
8162 static void hpsa_free_reply_queues(struct ctlr_info *h)
8163 {
8164         int i;
8165
8166         for (i = 0; i < h->nreply_queues; i++) {
8167                 if (!h->reply_queue[i].head)
8168                         continue;
8169                 dma_free_coherent(&h->pdev->dev,
8170                                         h->reply_queue_size,
8171                                         h->reply_queue[i].head,
8172                                         h->reply_queue[i].busaddr);
8173                 h->reply_queue[i].head = NULL;
8174                 h->reply_queue[i].busaddr = 0;
8175         }
8176         h->reply_queue_size = 0;
8177 }
8178
8179 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8180 {
8181         hpsa_free_performant_mode(h);           /* init_one 7 */
8182         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8183         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8184         hpsa_free_irqs(h);                      /* init_one 4 */
8185         scsi_host_put(h->scsi_host);            /* init_one 3 */
8186         h->scsi_host = NULL;                    /* init_one 3 */
8187         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8188         free_percpu(h->lockup_detected);        /* init_one 2 */
8189         h->lockup_detected = NULL;              /* init_one 2 */
8190         if (h->resubmit_wq) {
8191                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8192                 h->resubmit_wq = NULL;
8193         }
8194         if (h->rescan_ctlr_wq) {
8195                 destroy_workqueue(h->rescan_ctlr_wq);
8196                 h->rescan_ctlr_wq = NULL;
8197         }
8198         if (h->monitor_ctlr_wq) {
8199                 destroy_workqueue(h->monitor_ctlr_wq);
8200                 h->monitor_ctlr_wq = NULL;
8201         }
8202
8203         kfree(h);                               /* init_one 1 */
8204 }
8205
8206 /* Called when controller lockup detected. */
8207 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8208 {
8209         int i, refcount;
8210         struct CommandList *c;
8211         int failcount = 0;
8212
8213         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8214         for (i = 0; i < h->nr_cmds; i++) {
8215                 c = h->cmd_pool + i;
8216                 refcount = atomic_inc_return(&c->refcount);
8217                 if (refcount > 1) {
8218                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8219                         finish_cmd(c);
8220                         atomic_dec(&h->commands_outstanding);
8221                         failcount++;
8222                 }
8223                 cmd_free(h, c);
8224         }
8225         dev_warn(&h->pdev->dev,
8226                 "failed %d commands in fail_all\n", failcount);
8227 }
8228
8229 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8230 {
8231         int cpu;
8232
8233         for_each_online_cpu(cpu) {
8234                 u32 *lockup_detected;
8235                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8236                 *lockup_detected = value;
8237         }
8238         wmb(); /* be sure the per-cpu variables are out to memory */
8239 }
8240
8241 static void controller_lockup_detected(struct ctlr_info *h)
8242 {
8243         unsigned long flags;
8244         u32 lockup_detected;
8245
8246         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8247         spin_lock_irqsave(&h->lock, flags);
8248         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8249         if (!lockup_detected) {
8250                 /* no heartbeat, but controller gave us a zero. */
8251                 dev_warn(&h->pdev->dev,
8252                         "lockup detected after %d but scratchpad register is zero\n",
8253                         h->heartbeat_sample_interval / HZ);
8254                 lockup_detected = 0xffffffff;
8255         }
8256         set_lockup_detected_for_all_cpus(h, lockup_detected);
8257         spin_unlock_irqrestore(&h->lock, flags);
8258         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8259                         lockup_detected, h->heartbeat_sample_interval / HZ);
8260         if (lockup_detected == 0xffff0000) {
8261                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8262                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8263         }
8264         pci_disable_device(h->pdev);
8265         fail_all_outstanding_cmds(h);
8266 }
8267
8268 static int detect_controller_lockup(struct ctlr_info *h)
8269 {
8270         u64 now;
8271         u32 heartbeat;
8272         unsigned long flags;
8273
8274         now = get_jiffies_64();
8275         /* If we've received an interrupt recently, we're ok. */
8276         if (time_after64(h->last_intr_timestamp +
8277                                 (h->heartbeat_sample_interval), now))
8278                 return false;
8279
8280         /*
8281          * If we've already checked the heartbeat recently, we're ok.
8282          * This could happen if someone sends us a signal. We
8283          * otherwise don't care about signals in this thread.
8284          */
8285         if (time_after64(h->last_heartbeat_timestamp +
8286                                 (h->heartbeat_sample_interval), now))
8287                 return false;
8288
8289         /* If heartbeat has not changed since we last looked, we're not ok. */
8290         spin_lock_irqsave(&h->lock, flags);
8291         heartbeat = readl(&h->cfgtable->HeartBeat);
8292         spin_unlock_irqrestore(&h->lock, flags);
8293         if (h->last_heartbeat == heartbeat) {
8294                 controller_lockup_detected(h);
8295                 return true;
8296         }
8297
8298         /* We're ok. */
8299         h->last_heartbeat = heartbeat;
8300         h->last_heartbeat_timestamp = now;
8301         return false;
8302 }
8303
8304 /*
8305  * Set ioaccel status for all ioaccel volumes.
8306  *
8307  * Called from monitor controller worker (hpsa_event_monitor_worker)
8308  *
8309  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8310  * transformation, so we will be turning off ioaccel for all volumes that
8311  * make up the Array.
8312  */
8313 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8314 {
8315         int rc;
8316         int i;
8317         u8 ioaccel_status;
8318         unsigned char *buf;
8319         struct hpsa_scsi_dev_t *device;
8320
8321         if (!h)
8322                 return;
8323
8324         buf = kmalloc(64, GFP_KERNEL);
8325         if (!buf)
8326                 return;
8327
8328         /*
8329          * Run through current device list used during I/O requests.
8330          */
8331         for (i = 0; i < h->ndevices; i++) {
8332                 int offload_to_be_enabled = 0;
8333                 int offload_config = 0;
8334
8335                 device = h->dev[i];
8336
8337                 if (!device)
8338                         continue;
8339                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8340                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8341                         continue;
8342
8343                 memset(buf, 0, 64);
8344
8345                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8346                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8347                                         buf, 64);
8348                 if (rc != 0)
8349                         continue;
8350
8351                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8352
8353                 /*
8354                  * Check if offload is still configured on
8355                  */
8356                 offload_config =
8357                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8358                 /*
8359                  * If offload is configured on, check to see if ioaccel
8360                  * needs to be enabled.
8361                  */
8362                 if (offload_config)
8363                         offload_to_be_enabled =
8364                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8365
8366                 /*
8367                  * If ioaccel is to be re-enabled, re-enable later during the
8368                  * scan operation so the driver can get a fresh raidmap
8369                  * before turning ioaccel back on.
8370                  */
8371                 if (offload_to_be_enabled)
8372                         continue;
8373
8374                 /*
8375                  * Immediately turn off ioaccel for any volume the
8376                  * controller tells us to. Some of the reasons could be:
8377                  *    transformation - change to the LVs of an Array.
8378                  *    degraded volume - component failure
8379                  */
8380                 hpsa_turn_off_ioaccel_for_device(device);
8381         }
8382
8383         kfree(buf);
8384 }
8385
8386 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8387 {
8388         char *event_type;
8389
8390         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8391                 return;
8392
8393         /* Ask the controller to clear the events we're handling. */
8394         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8395                         | CFGTBL_Trans_io_accel2)) &&
8396                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8397                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8398
8399                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8400                         event_type = "state change";
8401                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8402                         event_type = "configuration change";
8403                 /* Stop sending new RAID offload reqs via the IO accelerator */
8404                 scsi_block_requests(h->scsi_host);
8405                 hpsa_set_ioaccel_status(h);
8406                 hpsa_drain_accel_commands(h);
8407                 /* Set 'accelerator path config change' bit */
8408                 dev_warn(&h->pdev->dev,
8409                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8410                         h->events, event_type);
8411                 writel(h->events, &(h->cfgtable->clear_event_notify));
8412                 /* Set the "clear event notify field update" bit 6 */
8413                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8414                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8415                 hpsa_wait_for_clear_event_notify_ack(h);
8416                 scsi_unblock_requests(h->scsi_host);
8417         } else {
8418                 /* Acknowledge controller notification events. */
8419                 writel(h->events, &(h->cfgtable->clear_event_notify));
8420                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8421                 hpsa_wait_for_clear_event_notify_ack(h);
8422         }
8423         return;
8424 }
8425
8426 /* Check a register on the controller to see if there are configuration
8427  * changes (added/changed/removed logical drives, etc.) which mean that
8428  * we should rescan the controller for devices.
8429  * Also check flag for driver-initiated rescan.
8430  */
8431 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8432 {
8433         if (h->drv_req_rescan) {
8434                 h->drv_req_rescan = 0;
8435                 return 1;
8436         }
8437
8438         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8439                 return 0;
8440
8441         h->events = readl(&(h->cfgtable->event_notify));
8442         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8443 }
8444
8445 /*
8446  * Check if any of the offline devices have become ready
8447  */
8448 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8449 {
8450         unsigned long flags;
8451         struct offline_device_entry *d;
8452         struct list_head *this, *tmp;
8453
8454         spin_lock_irqsave(&h->offline_device_lock, flags);
8455         list_for_each_safe(this, tmp, &h->offline_device_list) {
8456                 d = list_entry(this, struct offline_device_entry,
8457                                 offline_list);
8458                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8459                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8460                         spin_lock_irqsave(&h->offline_device_lock, flags);
8461                         list_del(&d->offline_list);
8462                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8463                         return 1;
8464                 }
8465                 spin_lock_irqsave(&h->offline_device_lock, flags);
8466         }
8467         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8468         return 0;
8469 }
8470
8471 static int hpsa_luns_changed(struct ctlr_info *h)
8472 {
8473         int rc = 1; /* assume there are changes */
8474         struct ReportLUNdata *logdev = NULL;
8475
8476         /* if we can't find out if lun data has changed,
8477          * assume that it has.
8478          */
8479
8480         if (!h->lastlogicals)
8481                 return rc;
8482
8483         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8484         if (!logdev)
8485                 return rc;
8486
8487         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8488                 dev_warn(&h->pdev->dev,
8489                         "report luns failed, can't track lun changes.\n");
8490                 goto out;
8491         }
8492         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8493                 dev_info(&h->pdev->dev,
8494                         "Lun changes detected.\n");
8495                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8496                 goto out;
8497         } else
8498                 rc = 0; /* no changes detected. */
8499 out:
8500         kfree(logdev);
8501         return rc;
8502 }
8503
8504 static void hpsa_perform_rescan(struct ctlr_info *h)
8505 {
8506         struct Scsi_Host *sh = NULL;
8507         unsigned long flags;
8508
8509         /*
8510          * Do the scan after the reset
8511          */
8512         spin_lock_irqsave(&h->reset_lock, flags);
8513         if (h->reset_in_progress) {
8514                 h->drv_req_rescan = 1;
8515                 spin_unlock_irqrestore(&h->reset_lock, flags);
8516                 return;
8517         }
8518         spin_unlock_irqrestore(&h->reset_lock, flags);
8519
8520         sh = scsi_host_get(h->scsi_host);
8521         if (sh != NULL) {
8522                 hpsa_scan_start(sh);
8523                 scsi_host_put(sh);
8524                 h->drv_req_rescan = 0;
8525         }
8526 }
8527
8528 /*
8529  * watch for controller events
8530  */
8531 static void hpsa_event_monitor_worker(struct work_struct *work)
8532 {
8533         struct ctlr_info *h = container_of(to_delayed_work(work),
8534                                         struct ctlr_info, event_monitor_work);
8535         unsigned long flags;
8536
8537         spin_lock_irqsave(&h->lock, flags);
8538         if (h->remove_in_progress) {
8539                 spin_unlock_irqrestore(&h->lock, flags);
8540                 return;
8541         }
8542         spin_unlock_irqrestore(&h->lock, flags);
8543
8544         if (hpsa_ctlr_needs_rescan(h)) {
8545                 hpsa_ack_ctlr_events(h);
8546                 hpsa_perform_rescan(h);
8547         }
8548
8549         spin_lock_irqsave(&h->lock, flags);
8550         if (!h->remove_in_progress)
8551                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8552                                 HPSA_EVENT_MONITOR_INTERVAL);
8553         spin_unlock_irqrestore(&h->lock, flags);
8554 }
8555
8556 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8557 {
8558         unsigned long flags;
8559         struct ctlr_info *h = container_of(to_delayed_work(work),
8560                                         struct ctlr_info, rescan_ctlr_work);
8561
8562         spin_lock_irqsave(&h->lock, flags);
8563         if (h->remove_in_progress) {
8564                 spin_unlock_irqrestore(&h->lock, flags);
8565                 return;
8566         }
8567         spin_unlock_irqrestore(&h->lock, flags);
8568
8569         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8570                 hpsa_perform_rescan(h);
8571         } else if (h->discovery_polling) {
8572                 if (hpsa_luns_changed(h)) {
8573                         dev_info(&h->pdev->dev,
8574                                 "driver discovery polling rescan.\n");
8575                         hpsa_perform_rescan(h);
8576                 }
8577         }
8578         spin_lock_irqsave(&h->lock, flags);
8579         if (!h->remove_in_progress)
8580                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8581                                 h->heartbeat_sample_interval);
8582         spin_unlock_irqrestore(&h->lock, flags);
8583 }
8584
8585 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8586 {
8587         unsigned long flags;
8588         struct ctlr_info *h = container_of(to_delayed_work(work),
8589                                         struct ctlr_info, monitor_ctlr_work);
8590
8591         detect_controller_lockup(h);
8592         if (lockup_detected(h))
8593                 return;
8594
8595         spin_lock_irqsave(&h->lock, flags);
8596         if (!h->remove_in_progress)
8597                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8598                                 h->heartbeat_sample_interval);
8599         spin_unlock_irqrestore(&h->lock, flags);
8600 }
8601
8602 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8603                                                 char *name)
8604 {
8605         struct workqueue_struct *wq = NULL;
8606
8607         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8608         if (!wq)
8609                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8610
8611         return wq;
8612 }
8613
8614 static void hpda_free_ctlr_info(struct ctlr_info *h)
8615 {
8616         kfree(h->reply_map);
8617         kfree(h);
8618 }
8619
8620 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8621 {
8622         struct ctlr_info *h;
8623
8624         h = kzalloc(sizeof(*h), GFP_KERNEL);
8625         if (!h)
8626                 return NULL;
8627
8628         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8629         if (!h->reply_map) {
8630                 kfree(h);
8631                 return NULL;
8632         }
8633         return h;
8634 }
8635
8636 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8637 {
8638         int dac, rc;
8639         struct ctlr_info *h;
8640         int try_soft_reset = 0;
8641         unsigned long flags;
8642         u32 board_id;
8643
8644         if (number_of_controllers == 0)
8645                 printk(KERN_INFO DRIVER_NAME "\n");
8646
8647         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8648         if (rc < 0) {
8649                 dev_warn(&pdev->dev, "Board ID not found\n");
8650                 return rc;
8651         }
8652
8653         rc = hpsa_init_reset_devices(pdev, board_id);
8654         if (rc) {
8655                 if (rc != -ENOTSUPP)
8656                         return rc;
8657                 /* If the reset fails in a particular way (it has no way to do
8658                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8659                  * a soft reset once we get the controller configured up to the
8660                  * point that it can accept a command.
8661                  */
8662                 try_soft_reset = 1;
8663                 rc = 0;
8664         }
8665
8666 reinit_after_soft_reset:
8667
8668         /* Command structures must be aligned on a 32-byte boundary because
8669          * the 5 lower bits of the address are used by the hardware. and by
8670          * the driver.  See comments in hpsa.h for more info.
8671          */
8672         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8673         h = hpda_alloc_ctlr_info();
8674         if (!h) {
8675                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8676                 return -ENOMEM;
8677         }
8678
8679         h->pdev = pdev;
8680
8681         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8682         INIT_LIST_HEAD(&h->offline_device_list);
8683         spin_lock_init(&h->lock);
8684         spin_lock_init(&h->offline_device_lock);
8685         spin_lock_init(&h->scan_lock);
8686         spin_lock_init(&h->reset_lock);
8687         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8688
8689         /* Allocate and clear per-cpu variable lockup_detected */
8690         h->lockup_detected = alloc_percpu(u32);
8691         if (!h->lockup_detected) {
8692                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8693                 rc = -ENOMEM;
8694                 goto clean1;    /* aer/h */
8695         }
8696         set_lockup_detected_for_all_cpus(h, 0);
8697
8698         rc = hpsa_pci_init(h);
8699         if (rc)
8700                 goto clean2;    /* lu, aer/h */
8701
8702         /* relies on h-> settings made by hpsa_pci_init, including
8703          * interrupt_mode h->intr */
8704         rc = hpsa_scsi_host_alloc(h);
8705         if (rc)
8706                 goto clean2_5;  /* pci, lu, aer/h */
8707
8708         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8709         h->ctlr = number_of_controllers;
8710         number_of_controllers++;
8711
8712         /* configure PCI DMA stuff */
8713         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8714         if (rc == 0) {
8715                 dac = 1;
8716         } else {
8717                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8718                 if (rc == 0) {
8719                         dac = 0;
8720                 } else {
8721                         dev_err(&pdev->dev, "no suitable DMA available\n");
8722                         goto clean3;    /* shost, pci, lu, aer/h */
8723                 }
8724         }
8725
8726         /* make sure the board interrupts are off */
8727         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8728
8729         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8730         if (rc)
8731                 goto clean3;    /* shost, pci, lu, aer/h */
8732         rc = hpsa_alloc_cmd_pool(h);
8733         if (rc)
8734                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8735         rc = hpsa_alloc_sg_chain_blocks(h);
8736         if (rc)
8737                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8738         init_waitqueue_head(&h->scan_wait_queue);
8739         init_waitqueue_head(&h->event_sync_wait_queue);
8740         mutex_init(&h->reset_mutex);
8741         h->scan_finished = 1; /* no scan currently in progress */
8742         h->scan_waiting = 0;
8743
8744         pci_set_drvdata(pdev, h);
8745         h->ndevices = 0;
8746
8747         spin_lock_init(&h->devlock);
8748         rc = hpsa_put_ctlr_into_performant_mode(h);
8749         if (rc)
8750                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8751
8752         /* create the resubmit workqueue */
8753         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8754         if (!h->rescan_ctlr_wq) {
8755                 rc = -ENOMEM;
8756                 goto clean7;
8757         }
8758
8759         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8760         if (!h->resubmit_wq) {
8761                 rc = -ENOMEM;
8762                 goto clean7;    /* aer/h */
8763         }
8764
8765         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8766         if (!h->monitor_ctlr_wq) {
8767                 rc = -ENOMEM;
8768                 goto clean7;
8769         }
8770
8771         /*
8772          * At this point, the controller is ready to take commands.
8773          * Now, if reset_devices and the hard reset didn't work, try
8774          * the soft reset and see if that works.
8775          */
8776         if (try_soft_reset) {
8777
8778                 /* This is kind of gross.  We may or may not get a completion
8779                  * from the soft reset command, and if we do, then the value
8780                  * from the fifo may or may not be valid.  So, we wait 10 secs
8781                  * after the reset throwing away any completions we get during
8782                  * that time.  Unregister the interrupt handler and register
8783                  * fake ones to scoop up any residual completions.
8784                  */
8785                 spin_lock_irqsave(&h->lock, flags);
8786                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8787                 spin_unlock_irqrestore(&h->lock, flags);
8788                 hpsa_free_irqs(h);
8789                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8790                                         hpsa_intx_discard_completions);
8791                 if (rc) {
8792                         dev_warn(&h->pdev->dev,
8793                                 "Failed to request_irq after soft reset.\n");
8794                         /*
8795                          * cannot goto clean7 or free_irqs will be called
8796                          * again. Instead, do its work
8797                          */
8798                         hpsa_free_performant_mode(h);   /* clean7 */
8799                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8800                         hpsa_free_cmd_pool(h);          /* clean5 */
8801                         /*
8802                          * skip hpsa_free_irqs(h) clean4 since that
8803                          * was just called before request_irqs failed
8804                          */
8805                         goto clean3;
8806                 }
8807
8808                 rc = hpsa_kdump_soft_reset(h);
8809                 if (rc)
8810                         /* Neither hard nor soft reset worked, we're hosed. */
8811                         goto clean7;
8812
8813                 dev_info(&h->pdev->dev, "Board READY.\n");
8814                 dev_info(&h->pdev->dev,
8815                         "Waiting for stale completions to drain.\n");
8816                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8817                 msleep(10000);
8818                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8819
8820                 rc = controller_reset_failed(h->cfgtable);
8821                 if (rc)
8822                         dev_info(&h->pdev->dev,
8823                                 "Soft reset appears to have failed.\n");
8824
8825                 /* since the controller's reset, we have to go back and re-init
8826                  * everything.  Easiest to just forget what we've done and do it
8827                  * all over again.
8828                  */
8829                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8830                 try_soft_reset = 0;
8831                 if (rc)
8832                         /* don't goto clean, we already unallocated */
8833                         return -ENODEV;
8834
8835                 goto reinit_after_soft_reset;
8836         }
8837
8838         /* Enable Accelerated IO path at driver layer */
8839         h->acciopath_status = 1;
8840         /* Disable discovery polling.*/
8841         h->discovery_polling = 0;
8842
8843
8844         /* Turn the interrupts on so we can service requests */
8845         h->access.set_intr_mask(h, HPSA_INTR_ON);
8846
8847         hpsa_hba_inquiry(h);
8848
8849         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8850         if (!h->lastlogicals)
8851                 dev_info(&h->pdev->dev,
8852                         "Can't track change to report lun data\n");
8853
8854         /* hook into SCSI subsystem */
8855         rc = hpsa_scsi_add_host(h);
8856         if (rc)
8857                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8858
8859         /* Monitor the controller for firmware lockups */
8860         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8861         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8862         schedule_delayed_work(&h->monitor_ctlr_work,
8863                                 h->heartbeat_sample_interval);
8864         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8865         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8866                                 h->heartbeat_sample_interval);
8867         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8868         schedule_delayed_work(&h->event_monitor_work,
8869                                 HPSA_EVENT_MONITOR_INTERVAL);
8870         return 0;
8871
8872 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8873         hpsa_free_performant_mode(h);
8874         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8875 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8876         hpsa_free_sg_chain_blocks(h);
8877 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8878         hpsa_free_cmd_pool(h);
8879 clean4: /* irq, shost, pci, lu, aer/h */
8880         hpsa_free_irqs(h);
8881 clean3: /* shost, pci, lu, aer/h */
8882         scsi_host_put(h->scsi_host);
8883         h->scsi_host = NULL;
8884 clean2_5: /* pci, lu, aer/h */
8885         hpsa_free_pci_init(h);
8886 clean2: /* lu, aer/h */
8887         if (h->lockup_detected) {
8888                 free_percpu(h->lockup_detected);
8889                 h->lockup_detected = NULL;
8890         }
8891 clean1: /* wq/aer/h */
8892         if (h->resubmit_wq) {
8893                 destroy_workqueue(h->resubmit_wq);
8894                 h->resubmit_wq = NULL;
8895         }
8896         if (h->rescan_ctlr_wq) {
8897                 destroy_workqueue(h->rescan_ctlr_wq);
8898                 h->rescan_ctlr_wq = NULL;
8899         }
8900         if (h->monitor_ctlr_wq) {
8901                 destroy_workqueue(h->monitor_ctlr_wq);
8902                 h->monitor_ctlr_wq = NULL;
8903         }
8904         kfree(h);
8905         return rc;
8906 }
8907
8908 static void hpsa_flush_cache(struct ctlr_info *h)
8909 {
8910         char *flush_buf;
8911         struct CommandList *c;
8912         int rc;
8913
8914         if (unlikely(lockup_detected(h)))
8915                 return;
8916         flush_buf = kzalloc(4, GFP_KERNEL);
8917         if (!flush_buf)
8918                 return;
8919
8920         c = cmd_alloc(h);
8921
8922         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8923                 RAID_CTLR_LUNID, TYPE_CMD)) {
8924                 goto out;
8925         }
8926         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8927                         DEFAULT_TIMEOUT);
8928         if (rc)
8929                 goto out;
8930         if (c->err_info->CommandStatus != 0)
8931 out:
8932                 dev_warn(&h->pdev->dev,
8933                         "error flushing cache on controller\n");
8934         cmd_free(h, c);
8935         kfree(flush_buf);
8936 }
8937
8938 /* Make controller gather fresh report lun data each time we
8939  * send down a report luns request
8940  */
8941 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8942 {
8943         u32 *options;
8944         struct CommandList *c;
8945         int rc;
8946
8947         /* Don't bother trying to set diag options if locked up */
8948         if (unlikely(h->lockup_detected))
8949                 return;
8950
8951         options = kzalloc(sizeof(*options), GFP_KERNEL);
8952         if (!options)
8953                 return;
8954
8955         c = cmd_alloc(h);
8956
8957         /* first, get the current diag options settings */
8958         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8959                 RAID_CTLR_LUNID, TYPE_CMD))
8960                 goto errout;
8961
8962         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8963                         NO_TIMEOUT);
8964         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8965                 goto errout;
8966
8967         /* Now, set the bit for disabling the RLD caching */
8968         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8969
8970         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8971                 RAID_CTLR_LUNID, TYPE_CMD))
8972                 goto errout;
8973
8974         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8975                         NO_TIMEOUT);
8976         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8977                 goto errout;
8978
8979         /* Now verify that it got set: */
8980         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8981                 RAID_CTLR_LUNID, TYPE_CMD))
8982                 goto errout;
8983
8984         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8985                         NO_TIMEOUT);
8986         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8987                 goto errout;
8988
8989         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8990                 goto out;
8991
8992 errout:
8993         dev_err(&h->pdev->dev,
8994                         "Error: failed to disable report lun data caching.\n");
8995 out:
8996         cmd_free(h, c);
8997         kfree(options);
8998 }
8999
9000 static void __hpsa_shutdown(struct pci_dev *pdev)
9001 {
9002         struct ctlr_info *h;
9003
9004         h = pci_get_drvdata(pdev);
9005         /* Turn board interrupts off  and send the flush cache command
9006          * sendcmd will turn off interrupt, and send the flush...
9007          * To write all data in the battery backed cache to disks
9008          */
9009         hpsa_flush_cache(h);
9010         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9011         hpsa_free_irqs(h);                      /* init_one 4 */
9012         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9013 }
9014
9015 static void hpsa_shutdown(struct pci_dev *pdev)
9016 {
9017         __hpsa_shutdown(pdev);
9018         pci_disable_device(pdev);
9019 }
9020
9021 static void hpsa_free_device_info(struct ctlr_info *h)
9022 {
9023         int i;
9024
9025         for (i = 0; i < h->ndevices; i++) {
9026                 kfree(h->dev[i]);
9027                 h->dev[i] = NULL;
9028         }
9029 }
9030
9031 static void hpsa_remove_one(struct pci_dev *pdev)
9032 {
9033         struct ctlr_info *h;
9034         unsigned long flags;
9035
9036         if (pci_get_drvdata(pdev) == NULL) {
9037                 dev_err(&pdev->dev, "unable to remove device\n");
9038                 return;
9039         }
9040         h = pci_get_drvdata(pdev);
9041
9042         /* Get rid of any controller monitoring work items */
9043         spin_lock_irqsave(&h->lock, flags);
9044         h->remove_in_progress = 1;
9045         spin_unlock_irqrestore(&h->lock, flags);
9046         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9047         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9048         cancel_delayed_work_sync(&h->event_monitor_work);
9049         destroy_workqueue(h->rescan_ctlr_wq);
9050         destroy_workqueue(h->resubmit_wq);
9051         destroy_workqueue(h->monitor_ctlr_wq);
9052
9053         hpsa_delete_sas_host(h);
9054
9055         /*
9056          * Call before disabling interrupts.
9057          * scsi_remove_host can trigger I/O operations especially
9058          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9059          * operations which cannot complete and will hang the system.
9060          */
9061         if (h->scsi_host)
9062                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9063         /* includes hpsa_free_irqs - init_one 4 */
9064         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9065         __hpsa_shutdown(pdev);
9066
9067         hpsa_free_device_info(h);               /* scan */
9068
9069         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9070         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9071         hpsa_free_ioaccel2_sg_chain_blocks(h);
9072         hpsa_free_performant_mode(h);                   /* init_one 7 */
9073         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9074         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9075         kfree(h->lastlogicals);
9076
9077         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9078
9079         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9080         h->scsi_host = NULL;                            /* init_one 3 */
9081
9082         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9083         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9084
9085         free_percpu(h->lockup_detected);                /* init_one 2 */
9086         h->lockup_detected = NULL;                      /* init_one 2 */
9087         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9088
9089         hpda_free_ctlr_info(h);                         /* init_one 1 */
9090 }
9091
9092 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9093         __attribute__((unused)) pm_message_t state)
9094 {
9095         return -ENOSYS;
9096 }
9097
9098 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9099 {
9100         return -ENOSYS;
9101 }
9102
9103 static struct pci_driver hpsa_pci_driver = {
9104         .name = HPSA,
9105         .probe = hpsa_init_one,
9106         .remove = hpsa_remove_one,
9107         .id_table = hpsa_pci_device_id, /* id_table */
9108         .shutdown = hpsa_shutdown,
9109         .suspend = hpsa_suspend,
9110         .resume = hpsa_resume,
9111 };
9112
9113 /* Fill in bucket_map[], given nsgs (the max number of
9114  * scatter gather elements supported) and bucket[],
9115  * which is an array of 8 integers.  The bucket[] array
9116  * contains 8 different DMA transfer sizes (in 16
9117  * byte increments) which the controller uses to fetch
9118  * commands.  This function fills in bucket_map[], which
9119  * maps a given number of scatter gather elements to one of
9120  * the 8 DMA transfer sizes.  The point of it is to allow the
9121  * controller to only do as much DMA as needed to fetch the
9122  * command, with the DMA transfer size encoded in the lower
9123  * bits of the command address.
9124  */
9125 static void  calc_bucket_map(int bucket[], int num_buckets,
9126         int nsgs, int min_blocks, u32 *bucket_map)
9127 {
9128         int i, j, b, size;
9129
9130         /* Note, bucket_map must have nsgs+1 entries. */
9131         for (i = 0; i <= nsgs; i++) {
9132                 /* Compute size of a command with i SG entries */
9133                 size = i + min_blocks;
9134                 b = num_buckets; /* Assume the biggest bucket */
9135                 /* Find the bucket that is just big enough */
9136                 for (j = 0; j < num_buckets; j++) {
9137                         if (bucket[j] >= size) {
9138                                 b = j;
9139                                 break;
9140                         }
9141                 }
9142                 /* for a command with i SG entries, use bucket b. */
9143                 bucket_map[i] = b;
9144         }
9145 }
9146
9147 /*
9148  * return -ENODEV on err, 0 on success (or no action)
9149  * allocates numerous items that must be freed later
9150  */
9151 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9152 {
9153         int i;
9154         unsigned long register_value;
9155         unsigned long transMethod = CFGTBL_Trans_Performant |
9156                         (trans_support & CFGTBL_Trans_use_short_tags) |
9157                                 CFGTBL_Trans_enable_directed_msix |
9158                         (trans_support & (CFGTBL_Trans_io_accel1 |
9159                                 CFGTBL_Trans_io_accel2));
9160         struct access_method access = SA5_performant_access;
9161
9162         /* This is a bit complicated.  There are 8 registers on
9163          * the controller which we write to to tell it 8 different
9164          * sizes of commands which there may be.  It's a way of
9165          * reducing the DMA done to fetch each command.  Encoded into
9166          * each command's tag are 3 bits which communicate to the controller
9167          * which of the eight sizes that command fits within.  The size of
9168          * each command depends on how many scatter gather entries there are.
9169          * Each SG entry requires 16 bytes.  The eight registers are programmed
9170          * with the number of 16-byte blocks a command of that size requires.
9171          * The smallest command possible requires 5 such 16 byte blocks.
9172          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9173          * blocks.  Note, this only extends to the SG entries contained
9174          * within the command block, and does not extend to chained blocks
9175          * of SG elements.   bft[] contains the eight values we write to
9176          * the registers.  They are not evenly distributed, but have more
9177          * sizes for small commands, and fewer sizes for larger commands.
9178          */
9179         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9180 #define MIN_IOACCEL2_BFT_ENTRY 5
9181 #define HPSA_IOACCEL2_HEADER_SZ 4
9182         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9183                         13, 14, 15, 16, 17, 18, 19,
9184                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9185         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9186         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9187         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9188                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9189         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9190         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9191         /*  5 = 1 s/g entry or 4k
9192          *  6 = 2 s/g entry or 8k
9193          *  8 = 4 s/g entry or 16k
9194          * 10 = 6 s/g entry or 24k
9195          */
9196
9197         /* If the controller supports either ioaccel method then
9198          * we can also use the RAID stack submit path that does not
9199          * perform the superfluous readl() after each command submission.
9200          */
9201         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9202                 access = SA5_performant_access_no_read;
9203
9204         /* Controller spec: zero out this buffer. */
9205         for (i = 0; i < h->nreply_queues; i++)
9206                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9207
9208         bft[7] = SG_ENTRIES_IN_CMD + 4;
9209         calc_bucket_map(bft, ARRAY_SIZE(bft),
9210                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9211         for (i = 0; i < 8; i++)
9212                 writel(bft[i], &h->transtable->BlockFetch[i]);
9213
9214         /* size of controller ring buffer */
9215         writel(h->max_commands, &h->transtable->RepQSize);
9216         writel(h->nreply_queues, &h->transtable->RepQCount);
9217         writel(0, &h->transtable->RepQCtrAddrLow32);
9218         writel(0, &h->transtable->RepQCtrAddrHigh32);
9219
9220         for (i = 0; i < h->nreply_queues; i++) {
9221                 writel(0, &h->transtable->RepQAddr[i].upper);
9222                 writel(h->reply_queue[i].busaddr,
9223                         &h->transtable->RepQAddr[i].lower);
9224         }
9225
9226         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9227         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9228         /*
9229          * enable outbound interrupt coalescing in accelerator mode;
9230          */
9231         if (trans_support & CFGTBL_Trans_io_accel1) {
9232                 access = SA5_ioaccel_mode1_access;
9233                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9234                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9235         } else
9236                 if (trans_support & CFGTBL_Trans_io_accel2)
9237                         access = SA5_ioaccel_mode2_access;
9238         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9239         if (hpsa_wait_for_mode_change_ack(h)) {
9240                 dev_err(&h->pdev->dev,
9241                         "performant mode problem - doorbell timeout\n");
9242                 return -ENODEV;
9243         }
9244         register_value = readl(&(h->cfgtable->TransportActive));
9245         if (!(register_value & CFGTBL_Trans_Performant)) {
9246                 dev_err(&h->pdev->dev,
9247                         "performant mode problem - transport not active\n");
9248                 return -ENODEV;
9249         }
9250         /* Change the access methods to the performant access methods */
9251         h->access = access;
9252         h->transMethod = transMethod;
9253
9254         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9255                 (trans_support & CFGTBL_Trans_io_accel2)))
9256                 return 0;
9257
9258         if (trans_support & CFGTBL_Trans_io_accel1) {
9259                 /* Set up I/O accelerator mode */
9260                 for (i = 0; i < h->nreply_queues; i++) {
9261                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9262                         h->reply_queue[i].current_entry =
9263                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9264                 }
9265                 bft[7] = h->ioaccel_maxsg + 8;
9266                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9267                                 h->ioaccel1_blockFetchTable);
9268
9269                 /* initialize all reply queue entries to unused */
9270                 for (i = 0; i < h->nreply_queues; i++)
9271                         memset(h->reply_queue[i].head,
9272                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9273                                 h->reply_queue_size);
9274
9275                 /* set all the constant fields in the accelerator command
9276                  * frames once at init time to save CPU cycles later.
9277                  */
9278                 for (i = 0; i < h->nr_cmds; i++) {
9279                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9280
9281                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9282                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9283                                         (i * sizeof(struct ErrorInfo)));
9284                         cp->err_info_len = sizeof(struct ErrorInfo);
9285                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9286                         cp->host_context_flags =
9287                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9288                         cp->timeout_sec = 0;
9289                         cp->ReplyQueue = 0;
9290                         cp->tag =
9291                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9292                         cp->host_addr =
9293                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9294                                         (i * sizeof(struct io_accel1_cmd)));
9295                 }
9296         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9297                 u64 cfg_offset, cfg_base_addr_index;
9298                 u32 bft2_offset, cfg_base_addr;
9299                 int rc;
9300
9301                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9302                         &cfg_base_addr_index, &cfg_offset);
9303                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9304                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9305                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9306                                 4, h->ioaccel2_blockFetchTable);
9307                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9308                 BUILD_BUG_ON(offsetof(struct CfgTable,
9309                                 io_accel_request_size_offset) != 0xb8);
9310                 h->ioaccel2_bft2_regs =
9311                         remap_pci_mem(pci_resource_start(h->pdev,
9312                                         cfg_base_addr_index) +
9313                                         cfg_offset + bft2_offset,
9314                                         ARRAY_SIZE(bft2) *
9315                                         sizeof(*h->ioaccel2_bft2_regs));
9316                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9317                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9318         }
9319         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9320         if (hpsa_wait_for_mode_change_ack(h)) {
9321                 dev_err(&h->pdev->dev,
9322                         "performant mode problem - enabling ioaccel mode\n");
9323                 return -ENODEV;
9324         }
9325         return 0;
9326 }
9327
9328 /* Free ioaccel1 mode command blocks and block fetch table */
9329 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9330 {
9331         if (h->ioaccel_cmd_pool) {
9332                 pci_free_consistent(h->pdev,
9333                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9334                         h->ioaccel_cmd_pool,
9335                         h->ioaccel_cmd_pool_dhandle);
9336                 h->ioaccel_cmd_pool = NULL;
9337                 h->ioaccel_cmd_pool_dhandle = 0;
9338         }
9339         kfree(h->ioaccel1_blockFetchTable);
9340         h->ioaccel1_blockFetchTable = NULL;
9341 }
9342
9343 /* Allocate ioaccel1 mode command blocks and block fetch table */
9344 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9345 {
9346         h->ioaccel_maxsg =
9347                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9348         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9349                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9350
9351         /* Command structures must be aligned on a 128-byte boundary
9352          * because the 7 lower bits of the address are used by the
9353          * hardware.
9354          */
9355         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9356                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9357         h->ioaccel_cmd_pool =
9358                 dma_alloc_coherent(&h->pdev->dev,
9359                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9360                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9361
9362         h->ioaccel1_blockFetchTable =
9363                 kmalloc(((h->ioaccel_maxsg + 1) *
9364                                 sizeof(u32)), GFP_KERNEL);
9365
9366         if ((h->ioaccel_cmd_pool == NULL) ||
9367                 (h->ioaccel1_blockFetchTable == NULL))
9368                 goto clean_up;
9369
9370         memset(h->ioaccel_cmd_pool, 0,
9371                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9372         return 0;
9373
9374 clean_up:
9375         hpsa_free_ioaccel1_cmd_and_bft(h);
9376         return -ENOMEM;
9377 }
9378
9379 /* Free ioaccel2 mode command blocks and block fetch table */
9380 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9381 {
9382         hpsa_free_ioaccel2_sg_chain_blocks(h);
9383
9384         if (h->ioaccel2_cmd_pool) {
9385                 pci_free_consistent(h->pdev,
9386                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9387                         h->ioaccel2_cmd_pool,
9388                         h->ioaccel2_cmd_pool_dhandle);
9389                 h->ioaccel2_cmd_pool = NULL;
9390                 h->ioaccel2_cmd_pool_dhandle = 0;
9391         }
9392         kfree(h->ioaccel2_blockFetchTable);
9393         h->ioaccel2_blockFetchTable = NULL;
9394 }
9395
9396 /* Allocate ioaccel2 mode command blocks and block fetch table */
9397 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9398 {
9399         int rc;
9400
9401         /* Allocate ioaccel2 mode command blocks and block fetch table */
9402
9403         h->ioaccel_maxsg =
9404                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9405         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9406                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9407
9408         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9409                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9410         h->ioaccel2_cmd_pool =
9411                 dma_alloc_coherent(&h->pdev->dev,
9412                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9413                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9414
9415         h->ioaccel2_blockFetchTable =
9416                 kmalloc(((h->ioaccel_maxsg + 1) *
9417                                 sizeof(u32)), GFP_KERNEL);
9418
9419         if ((h->ioaccel2_cmd_pool == NULL) ||
9420                 (h->ioaccel2_blockFetchTable == NULL)) {
9421                 rc = -ENOMEM;
9422                 goto clean_up;
9423         }
9424
9425         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9426         if (rc)
9427                 goto clean_up;
9428
9429         memset(h->ioaccel2_cmd_pool, 0,
9430                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9431         return 0;
9432
9433 clean_up:
9434         hpsa_free_ioaccel2_cmd_and_bft(h);
9435         return rc;
9436 }
9437
9438 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9439 static void hpsa_free_performant_mode(struct ctlr_info *h)
9440 {
9441         kfree(h->blockFetchTable);
9442         h->blockFetchTable = NULL;
9443         hpsa_free_reply_queues(h);
9444         hpsa_free_ioaccel1_cmd_and_bft(h);
9445         hpsa_free_ioaccel2_cmd_and_bft(h);
9446 }
9447
9448 /* return -ENODEV on error, 0 on success (or no action)
9449  * allocates numerous items that must be freed later
9450  */
9451 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9452 {
9453         u32 trans_support;
9454         unsigned long transMethod = CFGTBL_Trans_Performant |
9455                                         CFGTBL_Trans_use_short_tags;
9456         int i, rc;
9457
9458         if (hpsa_simple_mode)
9459                 return 0;
9460
9461         trans_support = readl(&(h->cfgtable->TransportSupport));
9462         if (!(trans_support & PERFORMANT_MODE))
9463                 return 0;
9464
9465         /* Check for I/O accelerator mode support */
9466         if (trans_support & CFGTBL_Trans_io_accel1) {
9467                 transMethod |= CFGTBL_Trans_io_accel1 |
9468                                 CFGTBL_Trans_enable_directed_msix;
9469                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9470                 if (rc)
9471                         return rc;
9472         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9473                 transMethod |= CFGTBL_Trans_io_accel2 |
9474                                 CFGTBL_Trans_enable_directed_msix;
9475                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9476                 if (rc)
9477                         return rc;
9478         }
9479
9480         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9481         hpsa_get_max_perf_mode_cmds(h);
9482         /* Performant mode ring buffer and supporting data structures */
9483         h->reply_queue_size = h->max_commands * sizeof(u64);
9484
9485         for (i = 0; i < h->nreply_queues; i++) {
9486                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9487                                                 h->reply_queue_size,
9488                                                 &h->reply_queue[i].busaddr,
9489                                                 GFP_KERNEL);
9490                 if (!h->reply_queue[i].head) {
9491                         rc = -ENOMEM;
9492                         goto clean1;    /* rq, ioaccel */
9493                 }
9494                 h->reply_queue[i].size = h->max_commands;
9495                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9496                 h->reply_queue[i].current_entry = 0;
9497         }
9498
9499         /* Need a block fetch table for performant mode */
9500         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9501                                 sizeof(u32)), GFP_KERNEL);
9502         if (!h->blockFetchTable) {
9503                 rc = -ENOMEM;
9504                 goto clean1;    /* rq, ioaccel */
9505         }
9506
9507         rc = hpsa_enter_performant_mode(h, trans_support);
9508         if (rc)
9509                 goto clean2;    /* bft, rq, ioaccel */
9510         return 0;
9511
9512 clean2: /* bft, rq, ioaccel */
9513         kfree(h->blockFetchTable);
9514         h->blockFetchTable = NULL;
9515 clean1: /* rq, ioaccel */
9516         hpsa_free_reply_queues(h);
9517         hpsa_free_ioaccel1_cmd_and_bft(h);
9518         hpsa_free_ioaccel2_cmd_and_bft(h);
9519         return rc;
9520 }
9521
9522 static int is_accelerated_cmd(struct CommandList *c)
9523 {
9524         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9525 }
9526
9527 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9528 {
9529         struct CommandList *c = NULL;
9530         int i, accel_cmds_out;
9531         int refcount;
9532
9533         do { /* wait for all outstanding ioaccel commands to drain out */
9534                 accel_cmds_out = 0;
9535                 for (i = 0; i < h->nr_cmds; i++) {
9536                         c = h->cmd_pool + i;
9537                         refcount = atomic_inc_return(&c->refcount);
9538                         if (refcount > 1) /* Command is allocated */
9539                                 accel_cmds_out += is_accelerated_cmd(c);
9540                         cmd_free(h, c);
9541                 }
9542                 if (accel_cmds_out <= 0)
9543                         break;
9544                 msleep(100);
9545         } while (1);
9546 }
9547
9548 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9549                                 struct hpsa_sas_port *hpsa_sas_port)
9550 {
9551         struct hpsa_sas_phy *hpsa_sas_phy;
9552         struct sas_phy *phy;
9553
9554         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9555         if (!hpsa_sas_phy)
9556                 return NULL;
9557
9558         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9559                 hpsa_sas_port->next_phy_index);
9560         if (!phy) {
9561                 kfree(hpsa_sas_phy);
9562                 return NULL;
9563         }
9564
9565         hpsa_sas_port->next_phy_index++;
9566         hpsa_sas_phy->phy = phy;
9567         hpsa_sas_phy->parent_port = hpsa_sas_port;
9568
9569         return hpsa_sas_phy;
9570 }
9571
9572 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9573 {
9574         struct sas_phy *phy = hpsa_sas_phy->phy;
9575
9576         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9577         if (hpsa_sas_phy->added_to_port)
9578                 list_del(&hpsa_sas_phy->phy_list_entry);
9579         sas_phy_delete(phy);
9580         kfree(hpsa_sas_phy);
9581 }
9582
9583 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9584 {
9585         int rc;
9586         struct hpsa_sas_port *hpsa_sas_port;
9587         struct sas_phy *phy;
9588         struct sas_identify *identify;
9589
9590         hpsa_sas_port = hpsa_sas_phy->parent_port;
9591         phy = hpsa_sas_phy->phy;
9592
9593         identify = &phy->identify;
9594         memset(identify, 0, sizeof(*identify));
9595         identify->sas_address = hpsa_sas_port->sas_address;
9596         identify->device_type = SAS_END_DEVICE;
9597         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9598         identify->target_port_protocols = SAS_PROTOCOL_STP;
9599         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9600         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9601         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9602         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9603         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9604
9605         rc = sas_phy_add(hpsa_sas_phy->phy);
9606         if (rc)
9607                 return rc;
9608
9609         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9610         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9611                         &hpsa_sas_port->phy_list_head);
9612         hpsa_sas_phy->added_to_port = true;
9613
9614         return 0;
9615 }
9616
9617 static int
9618         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9619                                 struct sas_rphy *rphy)
9620 {
9621         struct sas_identify *identify;
9622
9623         identify = &rphy->identify;
9624         identify->sas_address = hpsa_sas_port->sas_address;
9625         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9626         identify->target_port_protocols = SAS_PROTOCOL_STP;
9627
9628         return sas_rphy_add(rphy);
9629 }
9630
9631 static struct hpsa_sas_port
9632         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9633                                 u64 sas_address)
9634 {
9635         int rc;
9636         struct hpsa_sas_port *hpsa_sas_port;
9637         struct sas_port *port;
9638
9639         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9640         if (!hpsa_sas_port)
9641                 return NULL;
9642
9643         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9644         hpsa_sas_port->parent_node = hpsa_sas_node;
9645
9646         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9647         if (!port)
9648                 goto free_hpsa_port;
9649
9650         rc = sas_port_add(port);
9651         if (rc)
9652                 goto free_sas_port;
9653
9654         hpsa_sas_port->port = port;
9655         hpsa_sas_port->sas_address = sas_address;
9656         list_add_tail(&hpsa_sas_port->port_list_entry,
9657                         &hpsa_sas_node->port_list_head);
9658
9659         return hpsa_sas_port;
9660
9661 free_sas_port:
9662         sas_port_free(port);
9663 free_hpsa_port:
9664         kfree(hpsa_sas_port);
9665
9666         return NULL;
9667 }
9668
9669 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9670 {
9671         struct hpsa_sas_phy *hpsa_sas_phy;
9672         struct hpsa_sas_phy *next;
9673
9674         list_for_each_entry_safe(hpsa_sas_phy, next,
9675                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9676                 hpsa_free_sas_phy(hpsa_sas_phy);
9677
9678         sas_port_delete(hpsa_sas_port->port);
9679         list_del(&hpsa_sas_port->port_list_entry);
9680         kfree(hpsa_sas_port);
9681 }
9682
9683 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9684 {
9685         struct hpsa_sas_node *hpsa_sas_node;
9686
9687         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9688         if (hpsa_sas_node) {
9689                 hpsa_sas_node->parent_dev = parent_dev;
9690                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9691         }
9692
9693         return hpsa_sas_node;
9694 }
9695
9696 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9697 {
9698         struct hpsa_sas_port *hpsa_sas_port;
9699         struct hpsa_sas_port *next;
9700
9701         if (!hpsa_sas_node)
9702                 return;
9703
9704         list_for_each_entry_safe(hpsa_sas_port, next,
9705                         &hpsa_sas_node->port_list_head, port_list_entry)
9706                 hpsa_free_sas_port(hpsa_sas_port);
9707
9708         kfree(hpsa_sas_node);
9709 }
9710
9711 static struct hpsa_scsi_dev_t
9712         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9713                                         struct sas_rphy *rphy)
9714 {
9715         int i;
9716         struct hpsa_scsi_dev_t *device;
9717
9718         for (i = 0; i < h->ndevices; i++) {
9719                 device = h->dev[i];
9720                 if (!device->sas_port)
9721                         continue;
9722                 if (device->sas_port->rphy == rphy)
9723                         return device;
9724         }
9725
9726         return NULL;
9727 }
9728
9729 static int hpsa_add_sas_host(struct ctlr_info *h)
9730 {
9731         int rc;
9732         struct device *parent_dev;
9733         struct hpsa_sas_node *hpsa_sas_node;
9734         struct hpsa_sas_port *hpsa_sas_port;
9735         struct hpsa_sas_phy *hpsa_sas_phy;
9736
9737         parent_dev = &h->scsi_host->shost_dev;
9738
9739         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9740         if (!hpsa_sas_node)
9741                 return -ENOMEM;
9742
9743         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9744         if (!hpsa_sas_port) {
9745                 rc = -ENODEV;
9746                 goto free_sas_node;
9747         }
9748
9749         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9750         if (!hpsa_sas_phy) {
9751                 rc = -ENODEV;
9752                 goto free_sas_port;
9753         }
9754
9755         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9756         if (rc)
9757                 goto free_sas_phy;
9758
9759         h->sas_host = hpsa_sas_node;
9760
9761         return 0;
9762
9763 free_sas_phy:
9764         hpsa_free_sas_phy(hpsa_sas_phy);
9765 free_sas_port:
9766         hpsa_free_sas_port(hpsa_sas_port);
9767 free_sas_node:
9768         hpsa_free_sas_node(hpsa_sas_node);
9769
9770         return rc;
9771 }
9772
9773 static void hpsa_delete_sas_host(struct ctlr_info *h)
9774 {
9775         hpsa_free_sas_node(h->sas_host);
9776 }
9777
9778 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9779                                 struct hpsa_scsi_dev_t *device)
9780 {
9781         int rc;
9782         struct hpsa_sas_port *hpsa_sas_port;
9783         struct sas_rphy *rphy;
9784
9785         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9786         if (!hpsa_sas_port)
9787                 return -ENOMEM;
9788
9789         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9790         if (!rphy) {
9791                 rc = -ENODEV;
9792                 goto free_sas_port;
9793         }
9794
9795         hpsa_sas_port->rphy = rphy;
9796         device->sas_port = hpsa_sas_port;
9797
9798         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9799         if (rc)
9800                 goto free_sas_port;
9801
9802         return 0;
9803
9804 free_sas_port:
9805         hpsa_free_sas_port(hpsa_sas_port);
9806         device->sas_port = NULL;
9807
9808         return rc;
9809 }
9810
9811 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9812 {
9813         if (device->sas_port) {
9814                 hpsa_free_sas_port(device->sas_port);
9815                 device->sas_port = NULL;
9816         }
9817 }
9818
9819 static int
9820 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9821 {
9822         return 0;
9823 }
9824
9825 static int
9826 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9827 {
9828         struct Scsi_Host *shost = phy_to_shost(rphy);
9829         struct ctlr_info *h;
9830         struct hpsa_scsi_dev_t *sd;
9831
9832         if (!shost)
9833                 return -ENXIO;
9834
9835         h = shost_to_hba(shost);
9836
9837         if (!h)
9838                 return -ENXIO;
9839
9840         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9841         if (!sd)
9842                 return -ENXIO;
9843
9844         *identifier = sd->eli;
9845
9846         return 0;
9847 }
9848
9849 static int
9850 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9851 {
9852         return -ENXIO;
9853 }
9854
9855 static int
9856 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9857 {
9858         return 0;
9859 }
9860
9861 static int
9862 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9863 {
9864         return 0;
9865 }
9866
9867 static int
9868 hpsa_sas_phy_setup(struct sas_phy *phy)
9869 {
9870         return 0;
9871 }
9872
9873 static void
9874 hpsa_sas_phy_release(struct sas_phy *phy)
9875 {
9876 }
9877
9878 static int
9879 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9880 {
9881         return -EINVAL;
9882 }
9883
9884 static struct sas_function_template hpsa_sas_transport_functions = {
9885         .get_linkerrors = hpsa_sas_get_linkerrors,
9886         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9887         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9888         .phy_reset = hpsa_sas_phy_reset,
9889         .phy_enable = hpsa_sas_phy_enable,
9890         .phy_setup = hpsa_sas_phy_setup,
9891         .phy_release = hpsa_sas_phy_release,
9892         .set_phy_speed = hpsa_sas_phy_speed,
9893 };
9894
9895 /*
9896  *  This is it.  Register the PCI driver information for the cards we control
9897  *  the OS will call our registered routines when it finds one of our cards.
9898  */
9899 static int __init hpsa_init(void)
9900 {
9901         int rc;
9902
9903         hpsa_sas_transport_template =
9904                 sas_attach_transport(&hpsa_sas_transport_functions);
9905         if (!hpsa_sas_transport_template)
9906                 return -ENODEV;
9907
9908         rc = pci_register_driver(&hpsa_pci_driver);
9909
9910         if (rc)
9911                 sas_release_transport(hpsa_sas_transport_template);
9912
9913         return rc;
9914 }
9915
9916 static void __exit hpsa_cleanup(void)
9917 {
9918         pci_unregister_driver(&hpsa_pci_driver);
9919         sas_release_transport(hpsa_sas_transport_template);
9920 }
9921
9922 static void __attribute__((unused)) verify_offsets(void)
9923 {
9924 #define VERIFY_OFFSET(member, offset) \
9925         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9926
9927         VERIFY_OFFSET(structure_size, 0);
9928         VERIFY_OFFSET(volume_blk_size, 4);
9929         VERIFY_OFFSET(volume_blk_cnt, 8);
9930         VERIFY_OFFSET(phys_blk_shift, 16);
9931         VERIFY_OFFSET(parity_rotation_shift, 17);
9932         VERIFY_OFFSET(strip_size, 18);
9933         VERIFY_OFFSET(disk_starting_blk, 20);
9934         VERIFY_OFFSET(disk_blk_cnt, 28);
9935         VERIFY_OFFSET(data_disks_per_row, 36);
9936         VERIFY_OFFSET(metadata_disks_per_row, 38);
9937         VERIFY_OFFSET(row_cnt, 40);
9938         VERIFY_OFFSET(layout_map_count, 42);
9939         VERIFY_OFFSET(flags, 44);
9940         VERIFY_OFFSET(dekindex, 46);
9941         /* VERIFY_OFFSET(reserved, 48 */
9942         VERIFY_OFFSET(data, 64);
9943
9944 #undef VERIFY_OFFSET
9945
9946 #define VERIFY_OFFSET(member, offset) \
9947         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9948
9949         VERIFY_OFFSET(IU_type, 0);
9950         VERIFY_OFFSET(direction, 1);
9951         VERIFY_OFFSET(reply_queue, 2);
9952         /* VERIFY_OFFSET(reserved1, 3);  */
9953         VERIFY_OFFSET(scsi_nexus, 4);
9954         VERIFY_OFFSET(Tag, 8);
9955         VERIFY_OFFSET(cdb, 16);
9956         VERIFY_OFFSET(cciss_lun, 32);
9957         VERIFY_OFFSET(data_len, 40);
9958         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9959         VERIFY_OFFSET(sg_count, 45);
9960         /* VERIFY_OFFSET(reserved3 */
9961         VERIFY_OFFSET(err_ptr, 48);
9962         VERIFY_OFFSET(err_len, 56);
9963         /* VERIFY_OFFSET(reserved4  */
9964         VERIFY_OFFSET(sg, 64);
9965
9966 #undef VERIFY_OFFSET
9967
9968 #define VERIFY_OFFSET(member, offset) \
9969         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9970
9971         VERIFY_OFFSET(dev_handle, 0x00);
9972         VERIFY_OFFSET(reserved1, 0x02);
9973         VERIFY_OFFSET(function, 0x03);
9974         VERIFY_OFFSET(reserved2, 0x04);
9975         VERIFY_OFFSET(err_info, 0x0C);
9976         VERIFY_OFFSET(reserved3, 0x10);
9977         VERIFY_OFFSET(err_info_len, 0x12);
9978         VERIFY_OFFSET(reserved4, 0x13);
9979         VERIFY_OFFSET(sgl_offset, 0x14);
9980         VERIFY_OFFSET(reserved5, 0x15);
9981         VERIFY_OFFSET(transfer_len, 0x1C);
9982         VERIFY_OFFSET(reserved6, 0x20);
9983         VERIFY_OFFSET(io_flags, 0x24);
9984         VERIFY_OFFSET(reserved7, 0x26);
9985         VERIFY_OFFSET(LUN, 0x34);
9986         VERIFY_OFFSET(control, 0x3C);
9987         VERIFY_OFFSET(CDB, 0x40);
9988         VERIFY_OFFSET(reserved8, 0x50);
9989         VERIFY_OFFSET(host_context_flags, 0x60);
9990         VERIFY_OFFSET(timeout_sec, 0x62);
9991         VERIFY_OFFSET(ReplyQueue, 0x64);
9992         VERIFY_OFFSET(reserved9, 0x65);
9993         VERIFY_OFFSET(tag, 0x68);
9994         VERIFY_OFFSET(host_addr, 0x70);
9995         VERIFY_OFFSET(CISS_LUN, 0x78);
9996         VERIFY_OFFSET(SG, 0x78 + 8);
9997 #undef VERIFY_OFFSET
9998 }
9999
10000 module_init(hpsa_init);
10001 module_exit(hpsa_cleanup);