Merge tag 'hisi-arm64-defconfig-for-5.4' of git://github.com/hisilicon/linux-hisi...
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-170"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82         HPSA_DRIVER_VERSION);
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
87
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91         "Use 'simple mode' rather than 'performant mode'");
92
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
136         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
151                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
152         {0,}
153 };
154
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156
157 /*  board_id = Subsystem Device ID & Vendor ID
158  *  product = Marketing Name for the board
159  *  access = Address of the struct of function pointers
160  */
161 static struct board_type products[] = {
162         {0x40700E11, "Smart Array 5300", &SA5A_access},
163         {0x40800E11, "Smart Array 5i", &SA5B_access},
164         {0x40820E11, "Smart Array 532", &SA5B_access},
165         {0x40830E11, "Smart Array 5312", &SA5B_access},
166         {0x409A0E11, "Smart Array 641", &SA5A_access},
167         {0x409B0E11, "Smart Array 642", &SA5A_access},
168         {0x409C0E11, "Smart Array 6400", &SA5A_access},
169         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170         {0x40910E11, "Smart Array 6i", &SA5A_access},
171         {0x3225103C, "Smart Array P600", &SA5A_access},
172         {0x3223103C, "Smart Array P800", &SA5A_access},
173         {0x3234103C, "Smart Array P400", &SA5A_access},
174         {0x3235103C, "Smart Array P400i", &SA5A_access},
175         {0x3211103C, "Smart Array E200i", &SA5A_access},
176         {0x3212103C, "Smart Array E200", &SA5A_access},
177         {0x3213103C, "Smart Array E200i", &SA5A_access},
178         {0x3214103C, "Smart Array E200i", &SA5A_access},
179         {0x3215103C, "Smart Array E200i", &SA5A_access},
180         {0x3237103C, "Smart Array E500", &SA5A_access},
181         {0x323D103C, "Smart Array P700m", &SA5A_access},
182         {0x3241103C, "Smart Array P212", &SA5_access},
183         {0x3243103C, "Smart Array P410", &SA5_access},
184         {0x3245103C, "Smart Array P410i", &SA5_access},
185         {0x3247103C, "Smart Array P411", &SA5_access},
186         {0x3249103C, "Smart Array P812", &SA5_access},
187         {0x324A103C, "Smart Array P712m", &SA5_access},
188         {0x324B103C, "Smart Array P711m", &SA5_access},
189         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190         {0x3350103C, "Smart Array P222", &SA5_access},
191         {0x3351103C, "Smart Array P420", &SA5_access},
192         {0x3352103C, "Smart Array P421", &SA5_access},
193         {0x3353103C, "Smart Array P822", &SA5_access},
194         {0x3354103C, "Smart Array P420i", &SA5_access},
195         {0x3355103C, "Smart Array P220i", &SA5_access},
196         {0x3356103C, "Smart Array P721m", &SA5_access},
197         {0x1920103C, "Smart Array P430i", &SA5_access},
198         {0x1921103C, "Smart Array P830i", &SA5_access},
199         {0x1922103C, "Smart Array P430", &SA5_access},
200         {0x1923103C, "Smart Array P431", &SA5_access},
201         {0x1924103C, "Smart Array P830", &SA5_access},
202         {0x1925103C, "Smart Array P831", &SA5_access},
203         {0x1926103C, "Smart Array P731m", &SA5_access},
204         {0x1928103C, "Smart Array P230i", &SA5_access},
205         {0x1929103C, "Smart Array P530", &SA5_access},
206         {0x21BD103C, "Smart Array P244br", &SA5_access},
207         {0x21BE103C, "Smart Array P741m", &SA5_access},
208         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
209         {0x21C0103C, "Smart Array P440ar", &SA5_access},
210         {0x21C1103C, "Smart Array P840ar", &SA5_access},
211         {0x21C2103C, "Smart Array P440", &SA5_access},
212         {0x21C3103C, "Smart Array P441", &SA5_access},
213         {0x21C4103C, "Smart Array", &SA5_access},
214         {0x21C5103C, "Smart Array P841", &SA5_access},
215         {0x21C6103C, "Smart HBA H244br", &SA5_access},
216         {0x21C7103C, "Smart HBA H240", &SA5_access},
217         {0x21C8103C, "Smart HBA H241", &SA5_access},
218         {0x21C9103C, "Smart Array", &SA5_access},
219         {0x21CA103C, "Smart Array P246br", &SA5_access},
220         {0x21CB103C, "Smart Array P840", &SA5_access},
221         {0x21CC103C, "Smart Array", &SA5_access},
222         {0x21CD103C, "Smart Array", &SA5_access},
223         {0x21CE103C, "Smart HBA", &SA5_access},
224         {0x05809005, "SmartHBA-SA", &SA5_access},
225         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
226         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
228         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
229         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 };
237
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242                         struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246                 struct sas_rphy *rphy);
247
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
253
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
257                       void __user *arg);
258
259 #ifdef CONFIG_COMPAT
260 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
261         void __user *arg);
262 #endif
263
264 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_alloc(struct ctlr_info *h);
266 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
267 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
268                                             struct scsi_cmnd *scmd);
269 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
270         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
271         int cmd_type);
272 static void hpsa_free_cmd_pool(struct ctlr_info *h);
273 #define VPD_PAGE (1 << 8)
274 #define HPSA_SIMPLE_ERROR_BITS 0x03
275
276 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
277 static void hpsa_scan_start(struct Scsi_Host *);
278 static int hpsa_scan_finished(struct Scsi_Host *sh,
279         unsigned long elapsed_time);
280 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
281
282 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
283 static int hpsa_slave_alloc(struct scsi_device *sdev);
284 static int hpsa_slave_configure(struct scsi_device *sdev);
285 static void hpsa_slave_destroy(struct scsi_device *sdev);
286
287 static void hpsa_update_scsi_devices(struct ctlr_info *h);
288 static int check_for_unit_attention(struct ctlr_info *h,
289         struct CommandList *c);
290 static void check_ioctl_unit_attention(struct ctlr_info *h,
291         struct CommandList *c);
292 /* performant mode helper functions */
293 static void calc_bucket_map(int *bucket, int num_buckets,
294         int nsgs, int min_blocks, u32 *bucket_map);
295 static void hpsa_free_performant_mode(struct ctlr_info *h);
296 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
297 static inline u32 next_command(struct ctlr_info *h, u8 q);
298 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
299                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
300                                u64 *cfg_offset);
301 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
302                                     unsigned long *memory_bar);
303 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
304                                 bool *legacy_board);
305 static int wait_for_device_to_become_ready(struct ctlr_info *h,
306                                            unsigned char lunaddr[],
307                                            int reply_queue);
308 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
309                                      int wait_for_ready);
310 static inline void finish_cmd(struct CommandList *c);
311 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
312 #define BOARD_NOT_READY 0
313 #define BOARD_READY 1
314 static void hpsa_drain_accel_commands(struct ctlr_info *h);
315 static void hpsa_flush_cache(struct ctlr_info *h);
316 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
317         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
318         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
319 static void hpsa_command_resubmit_worker(struct work_struct *work);
320 static u32 lockup_detected(struct ctlr_info *h);
321 static int detect_controller_lockup(struct ctlr_info *h);
322 static void hpsa_disable_rld_caching(struct ctlr_info *h);
323 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
324         struct ReportExtendedLUNdata *buf, int bufsize);
325 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
326         unsigned char scsi3addr[], u8 page);
327 static int hpsa_luns_changed(struct ctlr_info *h);
328 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
329                                struct hpsa_scsi_dev_t *dev,
330                                unsigned char *scsi3addr);
331
332 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
333 {
334         unsigned long *priv = shost_priv(sdev->host);
335         return (struct ctlr_info *) *priv;
336 }
337
338 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
339 {
340         unsigned long *priv = shost_priv(sh);
341         return (struct ctlr_info *) *priv;
342 }
343
344 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
345 {
346         return c->scsi_cmd == SCSI_CMD_IDLE;
347 }
348
349 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
350 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
351                         u8 *sense_key, u8 *asc, u8 *ascq)
352 {
353         struct scsi_sense_hdr sshdr;
354         bool rc;
355
356         *sense_key = -1;
357         *asc = -1;
358         *ascq = -1;
359
360         if (sense_data_len < 1)
361                 return;
362
363         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
364         if (rc) {
365                 *sense_key = sshdr.sense_key;
366                 *asc = sshdr.asc;
367                 *ascq = sshdr.ascq;
368         }
369 }
370
371 static int check_for_unit_attention(struct ctlr_info *h,
372         struct CommandList *c)
373 {
374         u8 sense_key, asc, ascq;
375         int sense_len;
376
377         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
378                 sense_len = sizeof(c->err_info->SenseInfo);
379         else
380                 sense_len = c->err_info->SenseLen;
381
382         decode_sense_data(c->err_info->SenseInfo, sense_len,
383                                 &sense_key, &asc, &ascq);
384         if (sense_key != UNIT_ATTENTION || asc == 0xff)
385                 return 0;
386
387         switch (asc) {
388         case STATE_CHANGED:
389                 dev_warn(&h->pdev->dev,
390                         "%s: a state change detected, command retried\n",
391                         h->devname);
392                 break;
393         case LUN_FAILED:
394                 dev_warn(&h->pdev->dev,
395                         "%s: LUN failure detected\n", h->devname);
396                 break;
397         case REPORT_LUNS_CHANGED:
398                 dev_warn(&h->pdev->dev,
399                         "%s: report LUN data changed\n", h->devname);
400         /*
401          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
402          * target (array) devices.
403          */
404                 break;
405         case POWER_OR_RESET:
406                 dev_warn(&h->pdev->dev,
407                         "%s: a power on or device reset detected\n",
408                         h->devname);
409                 break;
410         case UNIT_ATTENTION_CLEARED:
411                 dev_warn(&h->pdev->dev,
412                         "%s: unit attention cleared by another initiator\n",
413                         h->devname);
414                 break;
415         default:
416                 dev_warn(&h->pdev->dev,
417                         "%s: unknown unit attention detected\n",
418                         h->devname);
419                 break;
420         }
421         return 1;
422 }
423
424 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
425 {
426         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
427                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
428                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
429                 return 0;
430         dev_warn(&h->pdev->dev, HPSA "device busy");
431         return 1;
432 }
433
434 static u32 lockup_detected(struct ctlr_info *h);
435 static ssize_t host_show_lockup_detected(struct device *dev,
436                 struct device_attribute *attr, char *buf)
437 {
438         int ld;
439         struct ctlr_info *h;
440         struct Scsi_Host *shost = class_to_shost(dev);
441
442         h = shost_to_hba(shost);
443         ld = lockup_detected(h);
444
445         return sprintf(buf, "ld=%d\n", ld);
446 }
447
448 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
449                                          struct device_attribute *attr,
450                                          const char *buf, size_t count)
451 {
452         int status, len;
453         struct ctlr_info *h;
454         struct Scsi_Host *shost = class_to_shost(dev);
455         char tmpbuf[10];
456
457         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
458                 return -EACCES;
459         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
460         strncpy(tmpbuf, buf, len);
461         tmpbuf[len] = '\0';
462         if (sscanf(tmpbuf, "%d", &status) != 1)
463                 return -EINVAL;
464         h = shost_to_hba(shost);
465         h->acciopath_status = !!status;
466         dev_warn(&h->pdev->dev,
467                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
468                 h->acciopath_status ? "enabled" : "disabled");
469         return count;
470 }
471
472 static ssize_t host_store_raid_offload_debug(struct device *dev,
473                                          struct device_attribute *attr,
474                                          const char *buf, size_t count)
475 {
476         int debug_level, len;
477         struct ctlr_info *h;
478         struct Scsi_Host *shost = class_to_shost(dev);
479         char tmpbuf[10];
480
481         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
482                 return -EACCES;
483         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
484         strncpy(tmpbuf, buf, len);
485         tmpbuf[len] = '\0';
486         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
487                 return -EINVAL;
488         if (debug_level < 0)
489                 debug_level = 0;
490         h = shost_to_hba(shost);
491         h->raid_offload_debug = debug_level;
492         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
493                 h->raid_offload_debug);
494         return count;
495 }
496
497 static ssize_t host_store_rescan(struct device *dev,
498                                  struct device_attribute *attr,
499                                  const char *buf, size_t count)
500 {
501         struct ctlr_info *h;
502         struct Scsi_Host *shost = class_to_shost(dev);
503         h = shost_to_hba(shost);
504         hpsa_scan_start(h->scsi_host);
505         return count;
506 }
507
508 static ssize_t host_show_firmware_revision(struct device *dev,
509              struct device_attribute *attr, char *buf)
510 {
511         struct ctlr_info *h;
512         struct Scsi_Host *shost = class_to_shost(dev);
513         unsigned char *fwrev;
514
515         h = shost_to_hba(shost);
516         if (!h->hba_inquiry_data)
517                 return 0;
518         fwrev = &h->hba_inquiry_data[32];
519         return snprintf(buf, 20, "%c%c%c%c\n",
520                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
521 }
522
523 static ssize_t host_show_commands_outstanding(struct device *dev,
524              struct device_attribute *attr, char *buf)
525 {
526         struct Scsi_Host *shost = class_to_shost(dev);
527         struct ctlr_info *h = shost_to_hba(shost);
528
529         return snprintf(buf, 20, "%d\n",
530                         atomic_read(&h->commands_outstanding));
531 }
532
533 static ssize_t host_show_transport_mode(struct device *dev,
534         struct device_attribute *attr, char *buf)
535 {
536         struct ctlr_info *h;
537         struct Scsi_Host *shost = class_to_shost(dev);
538
539         h = shost_to_hba(shost);
540         return snprintf(buf, 20, "%s\n",
541                 h->transMethod & CFGTBL_Trans_Performant ?
542                         "performant" : "simple");
543 }
544
545 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
546         struct device_attribute *attr, char *buf)
547 {
548         struct ctlr_info *h;
549         struct Scsi_Host *shost = class_to_shost(dev);
550
551         h = shost_to_hba(shost);
552         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
553                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
554 }
555
556 /* List of controllers which cannot be hard reset on kexec with reset_devices */
557 static u32 unresettable_controller[] = {
558         0x324a103C, /* Smart Array P712m */
559         0x324b103C, /* Smart Array P711m */
560         0x3223103C, /* Smart Array P800 */
561         0x3234103C, /* Smart Array P400 */
562         0x3235103C, /* Smart Array P400i */
563         0x3211103C, /* Smart Array E200i */
564         0x3212103C, /* Smart Array E200 */
565         0x3213103C, /* Smart Array E200i */
566         0x3214103C, /* Smart Array E200i */
567         0x3215103C, /* Smart Array E200i */
568         0x3237103C, /* Smart Array E500 */
569         0x323D103C, /* Smart Array P700m */
570         0x40800E11, /* Smart Array 5i */
571         0x409C0E11, /* Smart Array 6400 */
572         0x409D0E11, /* Smart Array 6400 EM */
573         0x40700E11, /* Smart Array 5300 */
574         0x40820E11, /* Smart Array 532 */
575         0x40830E11, /* Smart Array 5312 */
576         0x409A0E11, /* Smart Array 641 */
577         0x409B0E11, /* Smart Array 642 */
578         0x40910E11, /* Smart Array 6i */
579 };
580
581 /* List of controllers which cannot even be soft reset */
582 static u32 soft_unresettable_controller[] = {
583         0x40800E11, /* Smart Array 5i */
584         0x40700E11, /* Smart Array 5300 */
585         0x40820E11, /* Smart Array 532 */
586         0x40830E11, /* Smart Array 5312 */
587         0x409A0E11, /* Smart Array 641 */
588         0x409B0E11, /* Smart Array 642 */
589         0x40910E11, /* Smart Array 6i */
590         /* Exclude 640x boards.  These are two pci devices in one slot
591          * which share a battery backed cache module.  One controls the
592          * cache, the other accesses the cache through the one that controls
593          * it.  If we reset the one controlling the cache, the other will
594          * likely not be happy.  Just forbid resetting this conjoined mess.
595          * The 640x isn't really supported by hpsa anyway.
596          */
597         0x409C0E11, /* Smart Array 6400 */
598         0x409D0E11, /* Smart Array 6400 EM */
599 };
600
601 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
602 {
603         int i;
604
605         for (i = 0; i < nelems; i++)
606                 if (a[i] == board_id)
607                         return 1;
608         return 0;
609 }
610
611 static int ctlr_is_hard_resettable(u32 board_id)
612 {
613         return !board_id_in_array(unresettable_controller,
614                         ARRAY_SIZE(unresettable_controller), board_id);
615 }
616
617 static int ctlr_is_soft_resettable(u32 board_id)
618 {
619         return !board_id_in_array(soft_unresettable_controller,
620                         ARRAY_SIZE(soft_unresettable_controller), board_id);
621 }
622
623 static int ctlr_is_resettable(u32 board_id)
624 {
625         return ctlr_is_hard_resettable(board_id) ||
626                 ctlr_is_soft_resettable(board_id);
627 }
628
629 static ssize_t host_show_resettable(struct device *dev,
630         struct device_attribute *attr, char *buf)
631 {
632         struct ctlr_info *h;
633         struct Scsi_Host *shost = class_to_shost(dev);
634
635         h = shost_to_hba(shost);
636         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
637 }
638
639 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
640 {
641         return (scsi3addr[3] & 0xC0) == 0x40;
642 }
643
644 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
645         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
646 };
647 #define HPSA_RAID_0     0
648 #define HPSA_RAID_4     1
649 #define HPSA_RAID_1     2       /* also used for RAID 10 */
650 #define HPSA_RAID_5     3       /* also used for RAID 50 */
651 #define HPSA_RAID_51    4
652 #define HPSA_RAID_6     5       /* also used for RAID 60 */
653 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
654 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
655 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
656
657 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
658 {
659         return !device->physical_device;
660 }
661
662 static ssize_t raid_level_show(struct device *dev,
663              struct device_attribute *attr, char *buf)
664 {
665         ssize_t l = 0;
666         unsigned char rlevel;
667         struct ctlr_info *h;
668         struct scsi_device *sdev;
669         struct hpsa_scsi_dev_t *hdev;
670         unsigned long flags;
671
672         sdev = to_scsi_device(dev);
673         h = sdev_to_hba(sdev);
674         spin_lock_irqsave(&h->lock, flags);
675         hdev = sdev->hostdata;
676         if (!hdev) {
677                 spin_unlock_irqrestore(&h->lock, flags);
678                 return -ENODEV;
679         }
680
681         /* Is this even a logical drive? */
682         if (!is_logical_device(hdev)) {
683                 spin_unlock_irqrestore(&h->lock, flags);
684                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
685                 return l;
686         }
687
688         rlevel = hdev->raid_level;
689         spin_unlock_irqrestore(&h->lock, flags);
690         if (rlevel > RAID_UNKNOWN)
691                 rlevel = RAID_UNKNOWN;
692         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
693         return l;
694 }
695
696 static ssize_t lunid_show(struct device *dev,
697              struct device_attribute *attr, char *buf)
698 {
699         struct ctlr_info *h;
700         struct scsi_device *sdev;
701         struct hpsa_scsi_dev_t *hdev;
702         unsigned long flags;
703         unsigned char lunid[8];
704
705         sdev = to_scsi_device(dev);
706         h = sdev_to_hba(sdev);
707         spin_lock_irqsave(&h->lock, flags);
708         hdev = sdev->hostdata;
709         if (!hdev) {
710                 spin_unlock_irqrestore(&h->lock, flags);
711                 return -ENODEV;
712         }
713         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
714         spin_unlock_irqrestore(&h->lock, flags);
715         return snprintf(buf, 20, "0x%8phN\n", lunid);
716 }
717
718 static ssize_t unique_id_show(struct device *dev,
719              struct device_attribute *attr, char *buf)
720 {
721         struct ctlr_info *h;
722         struct scsi_device *sdev;
723         struct hpsa_scsi_dev_t *hdev;
724         unsigned long flags;
725         unsigned char sn[16];
726
727         sdev = to_scsi_device(dev);
728         h = sdev_to_hba(sdev);
729         spin_lock_irqsave(&h->lock, flags);
730         hdev = sdev->hostdata;
731         if (!hdev) {
732                 spin_unlock_irqrestore(&h->lock, flags);
733                 return -ENODEV;
734         }
735         memcpy(sn, hdev->device_id, sizeof(sn));
736         spin_unlock_irqrestore(&h->lock, flags);
737         return snprintf(buf, 16 * 2 + 2,
738                         "%02X%02X%02X%02X%02X%02X%02X%02X"
739                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
740                         sn[0], sn[1], sn[2], sn[3],
741                         sn[4], sn[5], sn[6], sn[7],
742                         sn[8], sn[9], sn[10], sn[11],
743                         sn[12], sn[13], sn[14], sn[15]);
744 }
745
746 static ssize_t sas_address_show(struct device *dev,
747               struct device_attribute *attr, char *buf)
748 {
749         struct ctlr_info *h;
750         struct scsi_device *sdev;
751         struct hpsa_scsi_dev_t *hdev;
752         unsigned long flags;
753         u64 sas_address;
754
755         sdev = to_scsi_device(dev);
756         h = sdev_to_hba(sdev);
757         spin_lock_irqsave(&h->lock, flags);
758         hdev = sdev->hostdata;
759         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
760                 spin_unlock_irqrestore(&h->lock, flags);
761                 return -ENODEV;
762         }
763         sas_address = hdev->sas_address;
764         spin_unlock_irqrestore(&h->lock, flags);
765
766         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
767 }
768
769 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
770              struct device_attribute *attr, char *buf)
771 {
772         struct ctlr_info *h;
773         struct scsi_device *sdev;
774         struct hpsa_scsi_dev_t *hdev;
775         unsigned long flags;
776         int offload_enabled;
777
778         sdev = to_scsi_device(dev);
779         h = sdev_to_hba(sdev);
780         spin_lock_irqsave(&h->lock, flags);
781         hdev = sdev->hostdata;
782         if (!hdev) {
783                 spin_unlock_irqrestore(&h->lock, flags);
784                 return -ENODEV;
785         }
786         offload_enabled = hdev->offload_enabled;
787         spin_unlock_irqrestore(&h->lock, flags);
788
789         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
790                 return snprintf(buf, 20, "%d\n", offload_enabled);
791         else
792                 return snprintf(buf, 40, "%s\n",
793                                 "Not applicable for a controller");
794 }
795
796 #define MAX_PATHS 8
797 static ssize_t path_info_show(struct device *dev,
798              struct device_attribute *attr, char *buf)
799 {
800         struct ctlr_info *h;
801         struct scsi_device *sdev;
802         struct hpsa_scsi_dev_t *hdev;
803         unsigned long flags;
804         int i;
805         int output_len = 0;
806         u8 box;
807         u8 bay;
808         u8 path_map_index = 0;
809         char *active;
810         unsigned char phys_connector[2];
811
812         sdev = to_scsi_device(dev);
813         h = sdev_to_hba(sdev);
814         spin_lock_irqsave(&h->devlock, flags);
815         hdev = sdev->hostdata;
816         if (!hdev) {
817                 spin_unlock_irqrestore(&h->devlock, flags);
818                 return -ENODEV;
819         }
820
821         bay = hdev->bay;
822         for (i = 0; i < MAX_PATHS; i++) {
823                 path_map_index = 1<<i;
824                 if (i == hdev->active_path_index)
825                         active = "Active";
826                 else if (hdev->path_map & path_map_index)
827                         active = "Inactive";
828                 else
829                         continue;
830
831                 output_len += scnprintf(buf + output_len,
832                                 PAGE_SIZE - output_len,
833                                 "[%d:%d:%d:%d] %20.20s ",
834                                 h->scsi_host->host_no,
835                                 hdev->bus, hdev->target, hdev->lun,
836                                 scsi_device_type(hdev->devtype));
837
838                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
839                         output_len += scnprintf(buf + output_len,
840                                                 PAGE_SIZE - output_len,
841                                                 "%s\n", active);
842                         continue;
843                 }
844
845                 box = hdev->box[i];
846                 memcpy(&phys_connector, &hdev->phys_connector[i],
847                         sizeof(phys_connector));
848                 if (phys_connector[0] < '0')
849                         phys_connector[0] = '0';
850                 if (phys_connector[1] < '0')
851                         phys_connector[1] = '0';
852                 output_len += scnprintf(buf + output_len,
853                                 PAGE_SIZE - output_len,
854                                 "PORT: %.2s ",
855                                 phys_connector);
856                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
857                         hdev->expose_device) {
858                         if (box == 0 || box == 0xFF) {
859                                 output_len += scnprintf(buf + output_len,
860                                         PAGE_SIZE - output_len,
861                                         "BAY: %hhu %s\n",
862                                         bay, active);
863                         } else {
864                                 output_len += scnprintf(buf + output_len,
865                                         PAGE_SIZE - output_len,
866                                         "BOX: %hhu BAY: %hhu %s\n",
867                                         box, bay, active);
868                         }
869                 } else if (box != 0 && box != 0xFF) {
870                         output_len += scnprintf(buf + output_len,
871                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
872                                 box, active);
873                 } else
874                         output_len += scnprintf(buf + output_len,
875                                 PAGE_SIZE - output_len, "%s\n", active);
876         }
877
878         spin_unlock_irqrestore(&h->devlock, flags);
879         return output_len;
880 }
881
882 static ssize_t host_show_ctlr_num(struct device *dev,
883         struct device_attribute *attr, char *buf)
884 {
885         struct ctlr_info *h;
886         struct Scsi_Host *shost = class_to_shost(dev);
887
888         h = shost_to_hba(shost);
889         return snprintf(buf, 20, "%d\n", h->ctlr);
890 }
891
892 static ssize_t host_show_legacy_board(struct device *dev,
893         struct device_attribute *attr, char *buf)
894 {
895         struct ctlr_info *h;
896         struct Scsi_Host *shost = class_to_shost(dev);
897
898         h = shost_to_hba(shost);
899         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
900 }
901
902 static DEVICE_ATTR_RO(raid_level);
903 static DEVICE_ATTR_RO(lunid);
904 static DEVICE_ATTR_RO(unique_id);
905 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
906 static DEVICE_ATTR_RO(sas_address);
907 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
908                         host_show_hp_ssd_smart_path_enabled, NULL);
909 static DEVICE_ATTR_RO(path_info);
910 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
911                 host_show_hp_ssd_smart_path_status,
912                 host_store_hp_ssd_smart_path_status);
913 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
914                         host_store_raid_offload_debug);
915 static DEVICE_ATTR(firmware_revision, S_IRUGO,
916         host_show_firmware_revision, NULL);
917 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
918         host_show_commands_outstanding, NULL);
919 static DEVICE_ATTR(transport_mode, S_IRUGO,
920         host_show_transport_mode, NULL);
921 static DEVICE_ATTR(resettable, S_IRUGO,
922         host_show_resettable, NULL);
923 static DEVICE_ATTR(lockup_detected, S_IRUGO,
924         host_show_lockup_detected, NULL);
925 static DEVICE_ATTR(ctlr_num, S_IRUGO,
926         host_show_ctlr_num, NULL);
927 static DEVICE_ATTR(legacy_board, S_IRUGO,
928         host_show_legacy_board, NULL);
929
930 static struct device_attribute *hpsa_sdev_attrs[] = {
931         &dev_attr_raid_level,
932         &dev_attr_lunid,
933         &dev_attr_unique_id,
934         &dev_attr_hp_ssd_smart_path_enabled,
935         &dev_attr_path_info,
936         &dev_attr_sas_address,
937         NULL,
938 };
939
940 static struct device_attribute *hpsa_shost_attrs[] = {
941         &dev_attr_rescan,
942         &dev_attr_firmware_revision,
943         &dev_attr_commands_outstanding,
944         &dev_attr_transport_mode,
945         &dev_attr_resettable,
946         &dev_attr_hp_ssd_smart_path_status,
947         &dev_attr_raid_offload_debug,
948         &dev_attr_lockup_detected,
949         &dev_attr_ctlr_num,
950         &dev_attr_legacy_board,
951         NULL,
952 };
953
954 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
955                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
956
957 static struct scsi_host_template hpsa_driver_template = {
958         .module                 = THIS_MODULE,
959         .name                   = HPSA,
960         .proc_name              = HPSA,
961         .queuecommand           = hpsa_scsi_queue_command,
962         .scan_start             = hpsa_scan_start,
963         .scan_finished          = hpsa_scan_finished,
964         .change_queue_depth     = hpsa_change_queue_depth,
965         .this_id                = -1,
966         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
967         .ioctl                  = hpsa_ioctl,
968         .slave_alloc            = hpsa_slave_alloc,
969         .slave_configure        = hpsa_slave_configure,
970         .slave_destroy          = hpsa_slave_destroy,
971 #ifdef CONFIG_COMPAT
972         .compat_ioctl           = hpsa_compat_ioctl,
973 #endif
974         .sdev_attrs = hpsa_sdev_attrs,
975         .shost_attrs = hpsa_shost_attrs,
976         .max_sectors = 2048,
977         .no_write_same = 1,
978 };
979
980 static inline u32 next_command(struct ctlr_info *h, u8 q)
981 {
982         u32 a;
983         struct reply_queue_buffer *rq = &h->reply_queue[q];
984
985         if (h->transMethod & CFGTBL_Trans_io_accel1)
986                 return h->access.command_completed(h, q);
987
988         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
989                 return h->access.command_completed(h, q);
990
991         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
992                 a = rq->head[rq->current_entry];
993                 rq->current_entry++;
994                 atomic_dec(&h->commands_outstanding);
995         } else {
996                 a = FIFO_EMPTY;
997         }
998         /* Check for wraparound */
999         if (rq->current_entry == h->max_commands) {
1000                 rq->current_entry = 0;
1001                 rq->wraparound ^= 1;
1002         }
1003         return a;
1004 }
1005
1006 /*
1007  * There are some special bits in the bus address of the
1008  * command that we have to set for the controller to know
1009  * how to process the command:
1010  *
1011  * Normal performant mode:
1012  * bit 0: 1 means performant mode, 0 means simple mode.
1013  * bits 1-3 = block fetch table entry
1014  * bits 4-6 = command type (== 0)
1015  *
1016  * ioaccel1 mode:
1017  * bit 0 = "performant mode" bit.
1018  * bits 1-3 = block fetch table entry
1019  * bits 4-6 = command type (== 110)
1020  * (command type is needed because ioaccel1 mode
1021  * commands are submitted through the same register as normal
1022  * mode commands, so this is how the controller knows whether
1023  * the command is normal mode or ioaccel1 mode.)
1024  *
1025  * ioaccel2 mode:
1026  * bit 0 = "performant mode" bit.
1027  * bits 1-4 = block fetch table entry (note extra bit)
1028  * bits 4-6 = not needed, because ioaccel2 mode has
1029  * a separate special register for submitting commands.
1030  */
1031
1032 /*
1033  * set_performant_mode: Modify the tag for cciss performant
1034  * set bit 0 for pull model, bits 3-1 for block fetch
1035  * register number
1036  */
1037 #define DEFAULT_REPLY_QUEUE (-1)
1038 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1039                                         int reply_queue)
1040 {
1041         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1042                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1043                 if (unlikely(!h->msix_vectors))
1044                         return;
1045                 c->Header.ReplyQueue = reply_queue;
1046         }
1047 }
1048
1049 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1050                                                 struct CommandList *c,
1051                                                 int reply_queue)
1052 {
1053         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1054
1055         /*
1056          * Tell the controller to post the reply to the queue for this
1057          * processor.  This seems to give the best I/O throughput.
1058          */
1059         cp->ReplyQueue = reply_queue;
1060         /*
1061          * Set the bits in the address sent down to include:
1062          *  - performant mode bit (bit 0)
1063          *  - pull count (bits 1-3)
1064          *  - command type (bits 4-6)
1065          */
1066         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1067                                         IOACCEL1_BUSADDR_CMDTYPE;
1068 }
1069
1070 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1071                                                 struct CommandList *c,
1072                                                 int reply_queue)
1073 {
1074         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1075                 &h->ioaccel2_cmd_pool[c->cmdindex];
1076
1077         /* Tell the controller to post the reply to the queue for this
1078          * processor.  This seems to give the best I/O throughput.
1079          */
1080         cp->reply_queue = reply_queue;
1081         /* Set the bits in the address sent down to include:
1082          *  - performant mode bit not used in ioaccel mode 2
1083          *  - pull count (bits 0-3)
1084          *  - command type isn't needed for ioaccel2
1085          */
1086         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1087 }
1088
1089 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1090                                                 struct CommandList *c,
1091                                                 int reply_queue)
1092 {
1093         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1094
1095         /*
1096          * Tell the controller to post the reply to the queue for this
1097          * processor.  This seems to give the best I/O throughput.
1098          */
1099         cp->reply_queue = reply_queue;
1100         /*
1101          * Set the bits in the address sent down to include:
1102          *  - performant mode bit not used in ioaccel mode 2
1103          *  - pull count (bits 0-3)
1104          *  - command type isn't needed for ioaccel2
1105          */
1106         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1107 }
1108
1109 static int is_firmware_flash_cmd(u8 *cdb)
1110 {
1111         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1112 }
1113
1114 /*
1115  * During firmware flash, the heartbeat register may not update as frequently
1116  * as it should.  So we dial down lockup detection during firmware flash. and
1117  * dial it back up when firmware flash completes.
1118  */
1119 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1120 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1121 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1122 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1123                 struct CommandList *c)
1124 {
1125         if (!is_firmware_flash_cmd(c->Request.CDB))
1126                 return;
1127         atomic_inc(&h->firmware_flash_in_progress);
1128         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1129 }
1130
1131 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1132                 struct CommandList *c)
1133 {
1134         if (is_firmware_flash_cmd(c->Request.CDB) &&
1135                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1136                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1137 }
1138
1139 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1140         struct CommandList *c, int reply_queue)
1141 {
1142         dial_down_lockup_detection_during_fw_flash(h, c);
1143         atomic_inc(&h->commands_outstanding);
1144         if (c->device)
1145                 atomic_inc(&c->device->commands_outstanding);
1146
1147         reply_queue = h->reply_map[raw_smp_processor_id()];
1148         switch (c->cmd_type) {
1149         case CMD_IOACCEL1:
1150                 set_ioaccel1_performant_mode(h, c, reply_queue);
1151                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1152                 break;
1153         case CMD_IOACCEL2:
1154                 set_ioaccel2_performant_mode(h, c, reply_queue);
1155                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1156                 break;
1157         case IOACCEL2_TMF:
1158                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1159                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1160                 break;
1161         default:
1162                 set_performant_mode(h, c, reply_queue);
1163                 h->access.submit_command(h, c);
1164         }
1165 }
1166
1167 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1168 {
1169         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1170 }
1171
1172 static inline int is_hba_lunid(unsigned char scsi3addr[])
1173 {
1174         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1175 }
1176
1177 static inline int is_scsi_rev_5(struct ctlr_info *h)
1178 {
1179         if (!h->hba_inquiry_data)
1180                 return 0;
1181         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1182                 return 1;
1183         return 0;
1184 }
1185
1186 static int hpsa_find_target_lun(struct ctlr_info *h,
1187         unsigned char scsi3addr[], int bus, int *target, int *lun)
1188 {
1189         /* finds an unused bus, target, lun for a new physical device
1190          * assumes h->devlock is held
1191          */
1192         int i, found = 0;
1193         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1194
1195         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1196
1197         for (i = 0; i < h->ndevices; i++) {
1198                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1199                         __set_bit(h->dev[i]->target, lun_taken);
1200         }
1201
1202         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1203         if (i < HPSA_MAX_DEVICES) {
1204                 /* *bus = 1; */
1205                 *target = i;
1206                 *lun = 0;
1207                 found = 1;
1208         }
1209         return !found;
1210 }
1211
1212 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1213         struct hpsa_scsi_dev_t *dev, char *description)
1214 {
1215 #define LABEL_SIZE 25
1216         char label[LABEL_SIZE];
1217
1218         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1219                 return;
1220
1221         switch (dev->devtype) {
1222         case TYPE_RAID:
1223                 snprintf(label, LABEL_SIZE, "controller");
1224                 break;
1225         case TYPE_ENCLOSURE:
1226                 snprintf(label, LABEL_SIZE, "enclosure");
1227                 break;
1228         case TYPE_DISK:
1229         case TYPE_ZBC:
1230                 if (dev->external)
1231                         snprintf(label, LABEL_SIZE, "external");
1232                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1233                         snprintf(label, LABEL_SIZE, "%s",
1234                                 raid_label[PHYSICAL_DRIVE]);
1235                 else
1236                         snprintf(label, LABEL_SIZE, "RAID-%s",
1237                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1238                                 raid_label[dev->raid_level]);
1239                 break;
1240         case TYPE_ROM:
1241                 snprintf(label, LABEL_SIZE, "rom");
1242                 break;
1243         case TYPE_TAPE:
1244                 snprintf(label, LABEL_SIZE, "tape");
1245                 break;
1246         case TYPE_MEDIUM_CHANGER:
1247                 snprintf(label, LABEL_SIZE, "changer");
1248                 break;
1249         default:
1250                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1251                 break;
1252         }
1253
1254         dev_printk(level, &h->pdev->dev,
1255                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1256                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1257                         description,
1258                         scsi_device_type(dev->devtype),
1259                         dev->vendor,
1260                         dev->model,
1261                         label,
1262                         dev->offload_config ? '+' : '-',
1263                         dev->offload_to_be_enabled ? '+' : '-',
1264                         dev->expose_device);
1265 }
1266
1267 /* Add an entry into h->dev[] array. */
1268 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1269                 struct hpsa_scsi_dev_t *device,
1270                 struct hpsa_scsi_dev_t *added[], int *nadded)
1271 {
1272         /* assumes h->devlock is held */
1273         int n = h->ndevices;
1274         int i;
1275         unsigned char addr1[8], addr2[8];
1276         struct hpsa_scsi_dev_t *sd;
1277
1278         if (n >= HPSA_MAX_DEVICES) {
1279                 dev_err(&h->pdev->dev, "too many devices, some will be "
1280                         "inaccessible.\n");
1281                 return -1;
1282         }
1283
1284         /* physical devices do not have lun or target assigned until now. */
1285         if (device->lun != -1)
1286                 /* Logical device, lun is already assigned. */
1287                 goto lun_assigned;
1288
1289         /* If this device a non-zero lun of a multi-lun device
1290          * byte 4 of the 8-byte LUN addr will contain the logical
1291          * unit no, zero otherwise.
1292          */
1293         if (device->scsi3addr[4] == 0) {
1294                 /* This is not a non-zero lun of a multi-lun device */
1295                 if (hpsa_find_target_lun(h, device->scsi3addr,
1296                         device->bus, &device->target, &device->lun) != 0)
1297                         return -1;
1298                 goto lun_assigned;
1299         }
1300
1301         /* This is a non-zero lun of a multi-lun device.
1302          * Search through our list and find the device which
1303          * has the same 8 byte LUN address, excepting byte 4 and 5.
1304          * Assign the same bus and target for this new LUN.
1305          * Use the logical unit number from the firmware.
1306          */
1307         memcpy(addr1, device->scsi3addr, 8);
1308         addr1[4] = 0;
1309         addr1[5] = 0;
1310         for (i = 0; i < n; i++) {
1311                 sd = h->dev[i];
1312                 memcpy(addr2, sd->scsi3addr, 8);
1313                 addr2[4] = 0;
1314                 addr2[5] = 0;
1315                 /* differ only in byte 4 and 5? */
1316                 if (memcmp(addr1, addr2, 8) == 0) {
1317                         device->bus = sd->bus;
1318                         device->target = sd->target;
1319                         device->lun = device->scsi3addr[4];
1320                         break;
1321                 }
1322         }
1323         if (device->lun == -1) {
1324                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1325                         " suspect firmware bug or unsupported hardware "
1326                         "configuration.\n");
1327                 return -1;
1328         }
1329
1330 lun_assigned:
1331
1332         h->dev[n] = device;
1333         h->ndevices++;
1334         added[*nadded] = device;
1335         (*nadded)++;
1336         hpsa_show_dev_msg(KERN_INFO, h, device,
1337                 device->expose_device ? "added" : "masked");
1338         return 0;
1339 }
1340
1341 /*
1342  * Called during a scan operation.
1343  *
1344  * Update an entry in h->dev[] array.
1345  */
1346 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1347         int entry, struct hpsa_scsi_dev_t *new_entry)
1348 {
1349         /* assumes h->devlock is held */
1350         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1351
1352         /* Raid level changed. */
1353         h->dev[entry]->raid_level = new_entry->raid_level;
1354
1355         /*
1356          * ioacccel_handle may have changed for a dual domain disk
1357          */
1358         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1359
1360         /* Raid offload parameters changed.  Careful about the ordering. */
1361         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1362                 /*
1363                  * if drive is newly offload_enabled, we want to copy the
1364                  * raid map data first.  If previously offload_enabled and
1365                  * offload_config were set, raid map data had better be
1366                  * the same as it was before. If raid map data has changed
1367                  * then it had better be the case that
1368                  * h->dev[entry]->offload_enabled is currently 0.
1369                  */
1370                 h->dev[entry]->raid_map = new_entry->raid_map;
1371                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1372         }
1373         if (new_entry->offload_to_be_enabled) {
1374                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1376         }
1377         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1378         h->dev[entry]->offload_config = new_entry->offload_config;
1379         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1380         h->dev[entry]->queue_depth = new_entry->queue_depth;
1381
1382         /*
1383          * We can turn off ioaccel offload now, but need to delay turning
1384          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1385          * can't do that until all the devices are updated.
1386          */
1387         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1388
1389         /*
1390          * turn ioaccel off immediately if told to do so.
1391          */
1392         if (!new_entry->offload_to_be_enabled)
1393                 h->dev[entry]->offload_enabled = 0;
1394
1395         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1396 }
1397
1398 /* Replace an entry from h->dev[] array. */
1399 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1400         int entry, struct hpsa_scsi_dev_t *new_entry,
1401         struct hpsa_scsi_dev_t *added[], int *nadded,
1402         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1403 {
1404         /* assumes h->devlock is held */
1405         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1406         removed[*nremoved] = h->dev[entry];
1407         (*nremoved)++;
1408
1409         /*
1410          * New physical devices won't have target/lun assigned yet
1411          * so we need to preserve the values in the slot we are replacing.
1412          */
1413         if (new_entry->target == -1) {
1414                 new_entry->target = h->dev[entry]->target;
1415                 new_entry->lun = h->dev[entry]->lun;
1416         }
1417
1418         h->dev[entry] = new_entry;
1419         added[*nadded] = new_entry;
1420         (*nadded)++;
1421
1422         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1423 }
1424
1425 /* Remove an entry from h->dev[] array. */
1426 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1427         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1428 {
1429         /* assumes h->devlock is held */
1430         int i;
1431         struct hpsa_scsi_dev_t *sd;
1432
1433         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1434
1435         sd = h->dev[entry];
1436         removed[*nremoved] = h->dev[entry];
1437         (*nremoved)++;
1438
1439         for (i = entry; i < h->ndevices-1; i++)
1440                 h->dev[i] = h->dev[i+1];
1441         h->ndevices--;
1442         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1443 }
1444
1445 #define SCSI3ADDR_EQ(a, b) ( \
1446         (a)[7] == (b)[7] && \
1447         (a)[6] == (b)[6] && \
1448         (a)[5] == (b)[5] && \
1449         (a)[4] == (b)[4] && \
1450         (a)[3] == (b)[3] && \
1451         (a)[2] == (b)[2] && \
1452         (a)[1] == (b)[1] && \
1453         (a)[0] == (b)[0])
1454
1455 static void fixup_botched_add(struct ctlr_info *h,
1456         struct hpsa_scsi_dev_t *added)
1457 {
1458         /* called when scsi_add_device fails in order to re-adjust
1459          * h->dev[] to match the mid layer's view.
1460          */
1461         unsigned long flags;
1462         int i, j;
1463
1464         spin_lock_irqsave(&h->lock, flags);
1465         for (i = 0; i < h->ndevices; i++) {
1466                 if (h->dev[i] == added) {
1467                         for (j = i; j < h->ndevices-1; j++)
1468                                 h->dev[j] = h->dev[j+1];
1469                         h->ndevices--;
1470                         break;
1471                 }
1472         }
1473         spin_unlock_irqrestore(&h->lock, flags);
1474         kfree(added);
1475 }
1476
1477 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1478         struct hpsa_scsi_dev_t *dev2)
1479 {
1480         /* we compare everything except lun and target as these
1481          * are not yet assigned.  Compare parts likely
1482          * to differ first
1483          */
1484         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1485                 sizeof(dev1->scsi3addr)) != 0)
1486                 return 0;
1487         if (memcmp(dev1->device_id, dev2->device_id,
1488                 sizeof(dev1->device_id)) != 0)
1489                 return 0;
1490         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1491                 return 0;
1492         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1493                 return 0;
1494         if (dev1->devtype != dev2->devtype)
1495                 return 0;
1496         if (dev1->bus != dev2->bus)
1497                 return 0;
1498         return 1;
1499 }
1500
1501 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1502         struct hpsa_scsi_dev_t *dev2)
1503 {
1504         /* Device attributes that can change, but don't mean
1505          * that the device is a different device, nor that the OS
1506          * needs to be told anything about the change.
1507          */
1508         if (dev1->raid_level != dev2->raid_level)
1509                 return 1;
1510         if (dev1->offload_config != dev2->offload_config)
1511                 return 1;
1512         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1513                 return 1;
1514         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1515                 if (dev1->queue_depth != dev2->queue_depth)
1516                         return 1;
1517         /*
1518          * This can happen for dual domain devices. An active
1519          * path change causes the ioaccel handle to change
1520          *
1521          * for example note the handle differences between p0 and p1
1522          * Device                    WWN               ,WWN hash,Handle
1523          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1524          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1525          */
1526         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1527                 return 1;
1528         return 0;
1529 }
1530
1531 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1532  * and return needle location in *index.  If scsi3addr matches, but not
1533  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1534  * location in *index.
1535  * In the case of a minor device attribute change, such as RAID level, just
1536  * return DEVICE_UPDATED, along with the updated device's location in index.
1537  * If needle not found, return DEVICE_NOT_FOUND.
1538  */
1539 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1540         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1541         int *index)
1542 {
1543         int i;
1544 #define DEVICE_NOT_FOUND 0
1545 #define DEVICE_CHANGED 1
1546 #define DEVICE_SAME 2
1547 #define DEVICE_UPDATED 3
1548         if (needle == NULL)
1549                 return DEVICE_NOT_FOUND;
1550
1551         for (i = 0; i < haystack_size; i++) {
1552                 if (haystack[i] == NULL) /* previously removed. */
1553                         continue;
1554                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1555                         *index = i;
1556                         if (device_is_the_same(needle, haystack[i])) {
1557                                 if (device_updated(needle, haystack[i]))
1558                                         return DEVICE_UPDATED;
1559                                 return DEVICE_SAME;
1560                         } else {
1561                                 /* Keep offline devices offline */
1562                                 if (needle->volume_offline)
1563                                         return DEVICE_NOT_FOUND;
1564                                 return DEVICE_CHANGED;
1565                         }
1566                 }
1567         }
1568         *index = -1;
1569         return DEVICE_NOT_FOUND;
1570 }
1571
1572 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1573                                         unsigned char scsi3addr[])
1574 {
1575         struct offline_device_entry *device;
1576         unsigned long flags;
1577
1578         /* Check to see if device is already on the list */
1579         spin_lock_irqsave(&h->offline_device_lock, flags);
1580         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1581                 if (memcmp(device->scsi3addr, scsi3addr,
1582                         sizeof(device->scsi3addr)) == 0) {
1583                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1584                         return;
1585                 }
1586         }
1587         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588
1589         /* Device is not on the list, add it. */
1590         device = kmalloc(sizeof(*device), GFP_KERNEL);
1591         if (!device)
1592                 return;
1593
1594         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1595         spin_lock_irqsave(&h->offline_device_lock, flags);
1596         list_add_tail(&device->offline_list, &h->offline_device_list);
1597         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598 }
1599
1600 /* Print a message explaining various offline volume states */
1601 static void hpsa_show_volume_status(struct ctlr_info *h,
1602         struct hpsa_scsi_dev_t *sd)
1603 {
1604         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1605                 dev_info(&h->pdev->dev,
1606                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1607                         h->scsi_host->host_no,
1608                         sd->bus, sd->target, sd->lun);
1609         switch (sd->volume_offline) {
1610         case HPSA_LV_OK:
1611                 break;
1612         case HPSA_LV_UNDERGOING_ERASE:
1613                 dev_info(&h->pdev->dev,
1614                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1615                         h->scsi_host->host_no,
1616                         sd->bus, sd->target, sd->lun);
1617                 break;
1618         case HPSA_LV_NOT_AVAILABLE:
1619                 dev_info(&h->pdev->dev,
1620                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1621                         h->scsi_host->host_no,
1622                         sd->bus, sd->target, sd->lun);
1623                 break;
1624         case HPSA_LV_UNDERGOING_RPI:
1625                 dev_info(&h->pdev->dev,
1626                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1627                         h->scsi_host->host_no,
1628                         sd->bus, sd->target, sd->lun);
1629                 break;
1630         case HPSA_LV_PENDING_RPI:
1631                 dev_info(&h->pdev->dev,
1632                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1633                         h->scsi_host->host_no,
1634                         sd->bus, sd->target, sd->lun);
1635                 break;
1636         case HPSA_LV_ENCRYPTED_NO_KEY:
1637                 dev_info(&h->pdev->dev,
1638                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1639                         h->scsi_host->host_no,
1640                         sd->bus, sd->target, sd->lun);
1641                 break;
1642         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1643                 dev_info(&h->pdev->dev,
1644                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1645                         h->scsi_host->host_no,
1646                         sd->bus, sd->target, sd->lun);
1647                 break;
1648         case HPSA_LV_UNDERGOING_ENCRYPTION:
1649                 dev_info(&h->pdev->dev,
1650                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1651                         h->scsi_host->host_no,
1652                         sd->bus, sd->target, sd->lun);
1653                 break;
1654         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1655                 dev_info(&h->pdev->dev,
1656                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1657                         h->scsi_host->host_no,
1658                         sd->bus, sd->target, sd->lun);
1659                 break;
1660         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1661                 dev_info(&h->pdev->dev,
1662                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1663                         h->scsi_host->host_no,
1664                         sd->bus, sd->target, sd->lun);
1665                 break;
1666         case HPSA_LV_PENDING_ENCRYPTION:
1667                 dev_info(&h->pdev->dev,
1668                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1669                         h->scsi_host->host_no,
1670                         sd->bus, sd->target, sd->lun);
1671                 break;
1672         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1673                 dev_info(&h->pdev->dev,
1674                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1675                         h->scsi_host->host_no,
1676                         sd->bus, sd->target, sd->lun);
1677                 break;
1678         }
1679 }
1680
1681 /*
1682  * Figure the list of physical drive pointers for a logical drive with
1683  * raid offload configured.
1684  */
1685 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1686                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1687                                 struct hpsa_scsi_dev_t *logical_drive)
1688 {
1689         struct raid_map_data *map = &logical_drive->raid_map;
1690         struct raid_map_disk_data *dd = &map->data[0];
1691         int i, j;
1692         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1693                                 le16_to_cpu(map->metadata_disks_per_row);
1694         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1695                                 le16_to_cpu(map->layout_map_count) *
1696                                 total_disks_per_row;
1697         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1698                                 total_disks_per_row;
1699         int qdepth;
1700
1701         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1702                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1703
1704         logical_drive->nphysical_disks = nraid_map_entries;
1705
1706         qdepth = 0;
1707         for (i = 0; i < nraid_map_entries; i++) {
1708                 logical_drive->phys_disk[i] = NULL;
1709                 if (!logical_drive->offload_config)
1710                         continue;
1711                 for (j = 0; j < ndevices; j++) {
1712                         if (dev[j] == NULL)
1713                                 continue;
1714                         if (dev[j]->devtype != TYPE_DISK &&
1715                             dev[j]->devtype != TYPE_ZBC)
1716                                 continue;
1717                         if (is_logical_device(dev[j]))
1718                                 continue;
1719                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1720                                 continue;
1721
1722                         logical_drive->phys_disk[i] = dev[j];
1723                         if (i < nphys_disk)
1724                                 qdepth = min(h->nr_cmds, qdepth +
1725                                     logical_drive->phys_disk[i]->queue_depth);
1726                         break;
1727                 }
1728
1729                 /*
1730                  * This can happen if a physical drive is removed and
1731                  * the logical drive is degraded.  In that case, the RAID
1732                  * map data will refer to a physical disk which isn't actually
1733                  * present.  And in that case offload_enabled should already
1734                  * be 0, but we'll turn it off here just in case
1735                  */
1736                 if (!logical_drive->phys_disk[i]) {
1737                         dev_warn(&h->pdev->dev,
1738                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1739                                 __func__,
1740                                 h->scsi_host->host_no, logical_drive->bus,
1741                                 logical_drive->target, logical_drive->lun);
1742                         logical_drive->offload_enabled = 0;
1743                         logical_drive->offload_to_be_enabled = 0;
1744                         logical_drive->queue_depth = 8;
1745                 }
1746         }
1747         if (nraid_map_entries)
1748                 /*
1749                  * This is correct for reads, too high for full stripe writes,
1750                  * way too high for partial stripe writes
1751                  */
1752                 logical_drive->queue_depth = qdepth;
1753         else {
1754                 if (logical_drive->external)
1755                         logical_drive->queue_depth = EXTERNAL_QD;
1756                 else
1757                         logical_drive->queue_depth = h->nr_cmds;
1758         }
1759 }
1760
1761 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1762                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1763 {
1764         int i;
1765
1766         for (i = 0; i < ndevices; i++) {
1767                 if (dev[i] == NULL)
1768                         continue;
1769                 if (dev[i]->devtype != TYPE_DISK &&
1770                     dev[i]->devtype != TYPE_ZBC)
1771                         continue;
1772                 if (!is_logical_device(dev[i]))
1773                         continue;
1774
1775                 /*
1776                  * If offload is currently enabled, the RAID map and
1777                  * phys_disk[] assignment *better* not be changing
1778                  * because we would be changing ioaccel phsy_disk[] pointers
1779                  * on a ioaccel volume processing I/O requests.
1780                  *
1781                  * If an ioaccel volume status changed, initially because it was
1782                  * re-configured and thus underwent a transformation, or
1783                  * a drive failed, we would have received a state change
1784                  * request and ioaccel should have been turned off. When the
1785                  * transformation completes, we get another state change
1786                  * request to turn ioaccel back on. In this case, we need
1787                  * to update the ioaccel information.
1788                  *
1789                  * Thus: If it is not currently enabled, but will be after
1790                  * the scan completes, make sure the ioaccel pointers
1791                  * are up to date.
1792                  */
1793
1794                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1795                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1796         }
1797 }
1798
1799 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1800 {
1801         int rc = 0;
1802
1803         if (!h->scsi_host)
1804                 return 1;
1805
1806         if (is_logical_device(device)) /* RAID */
1807                 rc = scsi_add_device(h->scsi_host, device->bus,
1808                                         device->target, device->lun);
1809         else /* HBA */
1810                 rc = hpsa_add_sas_device(h->sas_host, device);
1811
1812         return rc;
1813 }
1814
1815 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1816                                                 struct hpsa_scsi_dev_t *dev)
1817 {
1818         int i;
1819         int count = 0;
1820
1821         for (i = 0; i < h->nr_cmds; i++) {
1822                 struct CommandList *c = h->cmd_pool + i;
1823                 int refcount = atomic_inc_return(&c->refcount);
1824
1825                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1826                                 dev->scsi3addr)) {
1827                         unsigned long flags;
1828
1829                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1830                         if (!hpsa_is_cmd_idle(c))
1831                                 ++count;
1832                         spin_unlock_irqrestore(&h->lock, flags);
1833                 }
1834
1835                 cmd_free(h, c);
1836         }
1837
1838         return count;
1839 }
1840
1841 #define NUM_WAIT 20
1842 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1843                                                 struct hpsa_scsi_dev_t *device)
1844 {
1845         int cmds = 0;
1846         int waits = 0;
1847         int num_wait = NUM_WAIT;
1848
1849         if (device->external)
1850                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1851
1852         while (1) {
1853                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1854                 if (cmds == 0)
1855                         break;
1856                 if (++waits > num_wait)
1857                         break;
1858                 msleep(1000);
1859         }
1860
1861         if (waits > num_wait) {
1862                 dev_warn(&h->pdev->dev,
1863                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1864                         __func__,
1865                         h->scsi_host->host_no,
1866                         device->bus, device->target, device->lun, cmds);
1867         }
1868 }
1869
1870 static void hpsa_remove_device(struct ctlr_info *h,
1871                         struct hpsa_scsi_dev_t *device)
1872 {
1873         struct scsi_device *sdev = NULL;
1874
1875         if (!h->scsi_host)
1876                 return;
1877
1878         /*
1879          * Allow for commands to drain
1880          */
1881         device->removed = 1;
1882         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1883
1884         if (is_logical_device(device)) { /* RAID */
1885                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1886                                                 device->target, device->lun);
1887                 if (sdev) {
1888                         scsi_remove_device(sdev);
1889                         scsi_device_put(sdev);
1890                 } else {
1891                         /*
1892                          * We don't expect to get here.  Future commands
1893                          * to this device will get a selection timeout as
1894                          * if the device were gone.
1895                          */
1896                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1897                                         "didn't find device for removal.");
1898                 }
1899         } else { /* HBA */
1900
1901                 hpsa_remove_sas_device(device);
1902         }
1903 }
1904
1905 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1906         struct hpsa_scsi_dev_t *sd[], int nsds)
1907 {
1908         /* sd contains scsi3 addresses and devtypes, and inquiry
1909          * data.  This function takes what's in sd to be the current
1910          * reality and updates h->dev[] to reflect that reality.
1911          */
1912         int i, entry, device_change, changes = 0;
1913         struct hpsa_scsi_dev_t *csd;
1914         unsigned long flags;
1915         struct hpsa_scsi_dev_t **added, **removed;
1916         int nadded, nremoved;
1917
1918         /*
1919          * A reset can cause a device status to change
1920          * re-schedule the scan to see what happened.
1921          */
1922         spin_lock_irqsave(&h->reset_lock, flags);
1923         if (h->reset_in_progress) {
1924                 h->drv_req_rescan = 1;
1925                 spin_unlock_irqrestore(&h->reset_lock, flags);
1926                 return;
1927         }
1928         spin_unlock_irqrestore(&h->reset_lock, flags);
1929
1930         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1931         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1932
1933         if (!added || !removed) {
1934                 dev_warn(&h->pdev->dev, "out of memory in "
1935                         "adjust_hpsa_scsi_table\n");
1936                 goto free_and_out;
1937         }
1938
1939         spin_lock_irqsave(&h->devlock, flags);
1940
1941         /* find any devices in h->dev[] that are not in
1942          * sd[] and remove them from h->dev[], and for any
1943          * devices which have changed, remove the old device
1944          * info and add the new device info.
1945          * If minor device attributes change, just update
1946          * the existing device structure.
1947          */
1948         i = 0;
1949         nremoved = 0;
1950         nadded = 0;
1951         while (i < h->ndevices) {
1952                 csd = h->dev[i];
1953                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1954                 if (device_change == DEVICE_NOT_FOUND) {
1955                         changes++;
1956                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1957                         continue; /* remove ^^^, hence i not incremented */
1958                 } else if (device_change == DEVICE_CHANGED) {
1959                         changes++;
1960                         hpsa_scsi_replace_entry(h, i, sd[entry],
1961                                 added, &nadded, removed, &nremoved);
1962                         /* Set it to NULL to prevent it from being freed
1963                          * at the bottom of hpsa_update_scsi_devices()
1964                          */
1965                         sd[entry] = NULL;
1966                 } else if (device_change == DEVICE_UPDATED) {
1967                         hpsa_scsi_update_entry(h, i, sd[entry]);
1968                 }
1969                 i++;
1970         }
1971
1972         /* Now, make sure every device listed in sd[] is also
1973          * listed in h->dev[], adding them if they aren't found
1974          */
1975
1976         for (i = 0; i < nsds; i++) {
1977                 if (!sd[i]) /* if already added above. */
1978                         continue;
1979
1980                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1981                  * as the SCSI mid-layer does not handle such devices well.
1982                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1983                  * at 160Hz, and prevents the system from coming up.
1984                  */
1985                 if (sd[i]->volume_offline) {
1986                         hpsa_show_volume_status(h, sd[i]);
1987                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1988                         continue;
1989                 }
1990
1991                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1992                                         h->ndevices, &entry);
1993                 if (device_change == DEVICE_NOT_FOUND) {
1994                         changes++;
1995                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1996                                 break;
1997                         sd[i] = NULL; /* prevent from being freed later. */
1998                 } else if (device_change == DEVICE_CHANGED) {
1999                         /* should never happen... */
2000                         changes++;
2001                         dev_warn(&h->pdev->dev,
2002                                 "device unexpectedly changed.\n");
2003                         /* but if it does happen, we just ignore that device */
2004                 }
2005         }
2006         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2007
2008         /*
2009          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2010          * any logical drives that need it enabled.
2011          *
2012          * The raid map should be current by now.
2013          *
2014          * We are updating the device list used for I/O requests.
2015          */
2016         for (i = 0; i < h->ndevices; i++) {
2017                 if (h->dev[i] == NULL)
2018                         continue;
2019                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2020         }
2021
2022         spin_unlock_irqrestore(&h->devlock, flags);
2023
2024         /* Monitor devices which are in one of several NOT READY states to be
2025          * brought online later. This must be done without holding h->devlock,
2026          * so don't touch h->dev[]
2027          */
2028         for (i = 0; i < nsds; i++) {
2029                 if (!sd[i]) /* if already added above. */
2030                         continue;
2031                 if (sd[i]->volume_offline)
2032                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2033         }
2034
2035         /* Don't notify scsi mid layer of any changes the first time through
2036          * (or if there are no changes) scsi_scan_host will do it later the
2037          * first time through.
2038          */
2039         if (!changes)
2040                 goto free_and_out;
2041
2042         /* Notify scsi mid layer of any removed devices */
2043         for (i = 0; i < nremoved; i++) {
2044                 if (removed[i] == NULL)
2045                         continue;
2046                 if (removed[i]->expose_device)
2047                         hpsa_remove_device(h, removed[i]);
2048                 kfree(removed[i]);
2049                 removed[i] = NULL;
2050         }
2051
2052         /* Notify scsi mid layer of any added devices */
2053         for (i = 0; i < nadded; i++) {
2054                 int rc = 0;
2055
2056                 if (added[i] == NULL)
2057                         continue;
2058                 if (!(added[i]->expose_device))
2059                         continue;
2060                 rc = hpsa_add_device(h, added[i]);
2061                 if (!rc)
2062                         continue;
2063                 dev_warn(&h->pdev->dev,
2064                         "addition failed %d, device not added.", rc);
2065                 /* now we have to remove it from h->dev,
2066                  * since it didn't get added to scsi mid layer
2067                  */
2068                 fixup_botched_add(h, added[i]);
2069                 h->drv_req_rescan = 1;
2070         }
2071
2072 free_and_out:
2073         kfree(added);
2074         kfree(removed);
2075 }
2076
2077 /*
2078  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2079  * Assume's h->devlock is held.
2080  */
2081 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2082         int bus, int target, int lun)
2083 {
2084         int i;
2085         struct hpsa_scsi_dev_t *sd;
2086
2087         for (i = 0; i < h->ndevices; i++) {
2088                 sd = h->dev[i];
2089                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2090                         return sd;
2091         }
2092         return NULL;
2093 }
2094
2095 static int hpsa_slave_alloc(struct scsi_device *sdev)
2096 {
2097         struct hpsa_scsi_dev_t *sd = NULL;
2098         unsigned long flags;
2099         struct ctlr_info *h;
2100
2101         h = sdev_to_hba(sdev);
2102         spin_lock_irqsave(&h->devlock, flags);
2103         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2104                 struct scsi_target *starget;
2105                 struct sas_rphy *rphy;
2106
2107                 starget = scsi_target(sdev);
2108                 rphy = target_to_rphy(starget);
2109                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2110                 if (sd) {
2111                         sd->target = sdev_id(sdev);
2112                         sd->lun = sdev->lun;
2113                 }
2114         }
2115         if (!sd)
2116                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2117                                         sdev_id(sdev), sdev->lun);
2118
2119         if (sd && sd->expose_device) {
2120                 atomic_set(&sd->ioaccel_cmds_out, 0);
2121                 sdev->hostdata = sd;
2122         } else
2123                 sdev->hostdata = NULL;
2124         spin_unlock_irqrestore(&h->devlock, flags);
2125         return 0;
2126 }
2127
2128 /* configure scsi device based on internal per-device structure */
2129 static int hpsa_slave_configure(struct scsi_device *sdev)
2130 {
2131         struct hpsa_scsi_dev_t *sd;
2132         int queue_depth;
2133
2134         sd = sdev->hostdata;
2135         sdev->no_uld_attach = !sd || !sd->expose_device;
2136
2137         if (sd) {
2138                 sd->was_removed = 0;
2139                 if (sd->external) {
2140                         queue_depth = EXTERNAL_QD;
2141                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2142                         blk_queue_rq_timeout(sdev->request_queue,
2143                                                 HPSA_EH_PTRAID_TIMEOUT);
2144                 } else {
2145                         queue_depth = sd->queue_depth != 0 ?
2146                                         sd->queue_depth : sdev->host->can_queue;
2147                 }
2148         } else
2149                 queue_depth = sdev->host->can_queue;
2150
2151         scsi_change_queue_depth(sdev, queue_depth);
2152
2153         return 0;
2154 }
2155
2156 static void hpsa_slave_destroy(struct scsi_device *sdev)
2157 {
2158         struct hpsa_scsi_dev_t *hdev = NULL;
2159
2160         hdev = sdev->hostdata;
2161
2162         if (hdev)
2163                 hdev->was_removed = 1;
2164 }
2165
2166 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168         int i;
2169
2170         if (!h->ioaccel2_cmd_sg_list)
2171                 return;
2172         for (i = 0; i < h->nr_cmds; i++) {
2173                 kfree(h->ioaccel2_cmd_sg_list[i]);
2174                 h->ioaccel2_cmd_sg_list[i] = NULL;
2175         }
2176         kfree(h->ioaccel2_cmd_sg_list);
2177         h->ioaccel2_cmd_sg_list = NULL;
2178 }
2179
2180 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181 {
2182         int i;
2183
2184         if (h->chainsize <= 0)
2185                 return 0;
2186
2187         h->ioaccel2_cmd_sg_list =
2188                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2189                                         GFP_KERNEL);
2190         if (!h->ioaccel2_cmd_sg_list)
2191                 return -ENOMEM;
2192         for (i = 0; i < h->nr_cmds; i++) {
2193                 h->ioaccel2_cmd_sg_list[i] =
2194                         kmalloc_array(h->maxsgentries,
2195                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2196                                       GFP_KERNEL);
2197                 if (!h->ioaccel2_cmd_sg_list[i])
2198                         goto clean;
2199         }
2200         return 0;
2201
2202 clean:
2203         hpsa_free_ioaccel2_sg_chain_blocks(h);
2204         return -ENOMEM;
2205 }
2206
2207 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209         int i;
2210
2211         if (!h->cmd_sg_list)
2212                 return;
2213         for (i = 0; i < h->nr_cmds; i++) {
2214                 kfree(h->cmd_sg_list[i]);
2215                 h->cmd_sg_list[i] = NULL;
2216         }
2217         kfree(h->cmd_sg_list);
2218         h->cmd_sg_list = NULL;
2219 }
2220
2221 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2222 {
2223         int i;
2224
2225         if (h->chainsize <= 0)
2226                 return 0;
2227
2228         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2229                                  GFP_KERNEL);
2230         if (!h->cmd_sg_list)
2231                 return -ENOMEM;
2232
2233         for (i = 0; i < h->nr_cmds; i++) {
2234                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2235                                                   sizeof(*h->cmd_sg_list[i]),
2236                                                   GFP_KERNEL);
2237                 if (!h->cmd_sg_list[i])
2238                         goto clean;
2239
2240         }
2241         return 0;
2242
2243 clean:
2244         hpsa_free_sg_chain_blocks(h);
2245         return -ENOMEM;
2246 }
2247
2248 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2249         struct io_accel2_cmd *cp, struct CommandList *c)
2250 {
2251         struct ioaccel2_sg_element *chain_block;
2252         u64 temp64;
2253         u32 chain_size;
2254
2255         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2256         chain_size = le32_to_cpu(cp->sg[0].length);
2257         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2258                                 DMA_TO_DEVICE);
2259         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2260                 /* prevent subsequent unmapping */
2261                 cp->sg->address = 0;
2262                 return -1;
2263         }
2264         cp->sg->address = cpu_to_le64(temp64);
2265         return 0;
2266 }
2267
2268 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269         struct io_accel2_cmd *cp)
2270 {
2271         struct ioaccel2_sg_element *chain_sg;
2272         u64 temp64;
2273         u32 chain_size;
2274
2275         chain_sg = cp->sg;
2276         temp64 = le64_to_cpu(chain_sg->address);
2277         chain_size = le32_to_cpu(cp->sg[0].length);
2278         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2279 }
2280
2281 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2282         struct CommandList *c)
2283 {
2284         struct SGDescriptor *chain_sg, *chain_block;
2285         u64 temp64;
2286         u32 chain_len;
2287
2288         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2289         chain_block = h->cmd_sg_list[c->cmdindex];
2290         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2291         chain_len = sizeof(*chain_sg) *
2292                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2293         chain_sg->Len = cpu_to_le32(chain_len);
2294         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2295                                 DMA_TO_DEVICE);
2296         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2297                 /* prevent subsequent unmapping */
2298                 chain_sg->Addr = cpu_to_le64(0);
2299                 return -1;
2300         }
2301         chain_sg->Addr = cpu_to_le64(temp64);
2302         return 0;
2303 }
2304
2305 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2306         struct CommandList *c)
2307 {
2308         struct SGDescriptor *chain_sg;
2309
2310         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2311                 return;
2312
2313         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2314         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2315                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2316 }
2317
2318
2319 /* Decode the various types of errors on ioaccel2 path.
2320  * Return 1 for any error that should generate a RAID path retry.
2321  * Return 0 for errors that don't require a RAID path retry.
2322  */
2323 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2324                                         struct CommandList *c,
2325                                         struct scsi_cmnd *cmd,
2326                                         struct io_accel2_cmd *c2,
2327                                         struct hpsa_scsi_dev_t *dev)
2328 {
2329         int data_len;
2330         int retry = 0;
2331         u32 ioaccel2_resid = 0;
2332
2333         switch (c2->error_data.serv_response) {
2334         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2335                 switch (c2->error_data.status) {
2336                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2337                         if (cmd)
2338                                 cmd->result = 0;
2339                         break;
2340                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2341                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2342                         if (c2->error_data.data_present !=
2343                                         IOACCEL2_SENSE_DATA_PRESENT) {
2344                                 memset(cmd->sense_buffer, 0,
2345                                         SCSI_SENSE_BUFFERSIZE);
2346                                 break;
2347                         }
2348                         /* copy the sense data */
2349                         data_len = c2->error_data.sense_data_len;
2350                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2351                                 data_len = SCSI_SENSE_BUFFERSIZE;
2352                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2353                                 data_len =
2354                                         sizeof(c2->error_data.sense_data_buff);
2355                         memcpy(cmd->sense_buffer,
2356                                 c2->error_data.sense_data_buff, data_len);
2357                         retry = 1;
2358                         break;
2359                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2360                         retry = 1;
2361                         break;
2362                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2363                         retry = 1;
2364                         break;
2365                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2366                         retry = 1;
2367                         break;
2368                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2369                         retry = 1;
2370                         break;
2371                 default:
2372                         retry = 1;
2373                         break;
2374                 }
2375                 break;
2376         case IOACCEL2_SERV_RESPONSE_FAILURE:
2377                 switch (c2->error_data.status) {
2378                 case IOACCEL2_STATUS_SR_IO_ERROR:
2379                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2380                 case IOACCEL2_STATUS_SR_OVERRUN:
2381                         retry = 1;
2382                         break;
2383                 case IOACCEL2_STATUS_SR_UNDERRUN:
2384                         cmd->result = (DID_OK << 16);           /* host byte */
2385                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2386                         ioaccel2_resid = get_unaligned_le32(
2387                                                 &c2->error_data.resid_cnt[0]);
2388                         scsi_set_resid(cmd, ioaccel2_resid);
2389                         break;
2390                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2391                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2392                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2393                         /*
2394                          * Did an HBA disk disappear? We will eventually
2395                          * get a state change event from the controller but
2396                          * in the meantime, we need to tell the OS that the
2397                          * HBA disk is no longer there and stop I/O
2398                          * from going down. This allows the potential re-insert
2399                          * of the disk to get the same device node.
2400                          */
2401                         if (dev->physical_device && dev->expose_device) {
2402                                 cmd->result = DID_NO_CONNECT << 16;
2403                                 dev->removed = 1;
2404                                 h->drv_req_rescan = 1;
2405                                 dev_warn(&h->pdev->dev,
2406                                         "%s: device is gone!\n", __func__);
2407                         } else
2408                                 /*
2409                                  * Retry by sending down the RAID path.
2410                                  * We will get an event from ctlr to
2411                                  * trigger rescan regardless.
2412                                  */
2413                                 retry = 1;
2414                         break;
2415                 default:
2416                         retry = 1;
2417                 }
2418                 break;
2419         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2420                 break;
2421         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2422                 break;
2423         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2424                 retry = 1;
2425                 break;
2426         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2427                 break;
2428         default:
2429                 retry = 1;
2430                 break;
2431         }
2432
2433         if (dev->in_reset)
2434                 retry = 0;
2435
2436         return retry;   /* retry on raid path? */
2437 }
2438
2439 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2440                 struct CommandList *c)
2441 {
2442         struct hpsa_scsi_dev_t *dev = c->device;
2443
2444         /*
2445          * Reset c->scsi_cmd here so that the reset handler will know
2446          * this command has completed.  Then, check to see if the handler is
2447          * waiting for this command, and, if so, wake it.
2448          */
2449         c->scsi_cmd = SCSI_CMD_IDLE;
2450         mb();   /* Declare command idle before checking for pending events. */
2451         if (dev) {
2452                 atomic_dec(&dev->commands_outstanding);
2453                 if (dev->in_reset &&
2454                         atomic_read(&dev->commands_outstanding) <= 0)
2455                         wake_up_all(&h->event_sync_wait_queue);
2456         }
2457 }
2458
2459 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2460                                       struct CommandList *c)
2461 {
2462         hpsa_cmd_resolve_events(h, c);
2463         cmd_tagged_free(h, c);
2464 }
2465
2466 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2467                 struct CommandList *c, struct scsi_cmnd *cmd)
2468 {
2469         hpsa_cmd_resolve_and_free(h, c);
2470         if (cmd && cmd->scsi_done)
2471                 cmd->scsi_done(cmd);
2472 }
2473
2474 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2475 {
2476         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2477         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2478 }
2479
2480 static void process_ioaccel2_completion(struct ctlr_info *h,
2481                 struct CommandList *c, struct scsi_cmnd *cmd,
2482                 struct hpsa_scsi_dev_t *dev)
2483 {
2484         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2485
2486         /* check for good status */
2487         if (likely(c2->error_data.serv_response == 0 &&
2488                         c2->error_data.status == 0)) {
2489                 cmd->result = 0;
2490                 return hpsa_cmd_free_and_done(h, c, cmd);
2491         }
2492
2493         /*
2494          * Any RAID offload error results in retry which will use
2495          * the normal I/O path so the controller can handle whatever is
2496          * wrong.
2497          */
2498         if (is_logical_device(dev) &&
2499                 c2->error_data.serv_response ==
2500                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2501                 if (c2->error_data.status ==
2502                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2503                         dev->offload_enabled = 0;
2504                         dev->offload_to_be_enabled = 0;
2505                 }
2506
2507                 if (dev->in_reset) {
2508                         cmd->result = DID_RESET << 16;
2509                         return hpsa_cmd_free_and_done(h, c, cmd);
2510                 }
2511
2512                 return hpsa_retry_cmd(h, c);
2513         }
2514
2515         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2516                 return hpsa_retry_cmd(h, c);
2517
2518         return hpsa_cmd_free_and_done(h, c, cmd);
2519 }
2520
2521 /* Returns 0 on success, < 0 otherwise. */
2522 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2523                                         struct CommandList *cp)
2524 {
2525         u8 tmf_status = cp->err_info->ScsiStatus;
2526
2527         switch (tmf_status) {
2528         case CISS_TMF_COMPLETE:
2529                 /*
2530                  * CISS_TMF_COMPLETE never happens, instead,
2531                  * ei->CommandStatus == 0 for this case.
2532                  */
2533         case CISS_TMF_SUCCESS:
2534                 return 0;
2535         case CISS_TMF_INVALID_FRAME:
2536         case CISS_TMF_NOT_SUPPORTED:
2537         case CISS_TMF_FAILED:
2538         case CISS_TMF_WRONG_LUN:
2539         case CISS_TMF_OVERLAPPED_TAG:
2540                 break;
2541         default:
2542                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2543                                 tmf_status);
2544                 break;
2545         }
2546         return -tmf_status;
2547 }
2548
2549 static void complete_scsi_command(struct CommandList *cp)
2550 {
2551         struct scsi_cmnd *cmd;
2552         struct ctlr_info *h;
2553         struct ErrorInfo *ei;
2554         struct hpsa_scsi_dev_t *dev;
2555         struct io_accel2_cmd *c2;
2556
2557         u8 sense_key;
2558         u8 asc;      /* additional sense code */
2559         u8 ascq;     /* additional sense code qualifier */
2560         unsigned long sense_data_size;
2561
2562         ei = cp->err_info;
2563         cmd = cp->scsi_cmd;
2564         h = cp->h;
2565
2566         if (!cmd->device) {
2567                 cmd->result = DID_NO_CONNECT << 16;
2568                 return hpsa_cmd_free_and_done(h, cp, cmd);
2569         }
2570
2571         dev = cmd->device->hostdata;
2572         if (!dev) {
2573                 cmd->result = DID_NO_CONNECT << 16;
2574                 return hpsa_cmd_free_and_done(h, cp, cmd);
2575         }
2576         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2577
2578         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2579         if ((cp->cmd_type == CMD_SCSI) &&
2580                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2581                 hpsa_unmap_sg_chain_block(h, cp);
2582
2583         if ((cp->cmd_type == CMD_IOACCEL2) &&
2584                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2585                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2586
2587         cmd->result = (DID_OK << 16);           /* host byte */
2588         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2589
2590         /* SCSI command has already been cleaned up in SML */
2591         if (dev->was_removed) {
2592                 hpsa_cmd_resolve_and_free(h, cp);
2593                 return;
2594         }
2595
2596         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2597                 if (dev->physical_device && dev->expose_device &&
2598                         dev->removed) {
2599                         cmd->result = DID_NO_CONNECT << 16;
2600                         return hpsa_cmd_free_and_done(h, cp, cmd);
2601                 }
2602                 if (likely(cp->phys_disk != NULL))
2603                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2604         }
2605
2606         /*
2607          * We check for lockup status here as it may be set for
2608          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2609          * fail_all_oustanding_cmds()
2610          */
2611         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2612                 /* DID_NO_CONNECT will prevent a retry */
2613                 cmd->result = DID_NO_CONNECT << 16;
2614                 return hpsa_cmd_free_and_done(h, cp, cmd);
2615         }
2616
2617         if (cp->cmd_type == CMD_IOACCEL2)
2618                 return process_ioaccel2_completion(h, cp, cmd, dev);
2619
2620         scsi_set_resid(cmd, ei->ResidualCnt);
2621         if (ei->CommandStatus == 0)
2622                 return hpsa_cmd_free_and_done(h, cp, cmd);
2623
2624         /* For I/O accelerator commands, copy over some fields to the normal
2625          * CISS header used below for error handling.
2626          */
2627         if (cp->cmd_type == CMD_IOACCEL1) {
2628                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2629                 cp->Header.SGList = scsi_sg_count(cmd);
2630                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2631                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2632                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2633                 cp->Header.tag = c->tag;
2634                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2635                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2636
2637                 /* Any RAID offload error results in retry which will use
2638                  * the normal I/O path so the controller can handle whatever's
2639                  * wrong.
2640                  */
2641                 if (is_logical_device(dev)) {
2642                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2643                                 dev->offload_enabled = 0;
2644                         return hpsa_retry_cmd(h, cp);
2645                 }
2646         }
2647
2648         /* an error has occurred */
2649         switch (ei->CommandStatus) {
2650
2651         case CMD_TARGET_STATUS:
2652                 cmd->result |= ei->ScsiStatus;
2653                 /* copy the sense data */
2654                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2655                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2656                 else
2657                         sense_data_size = sizeof(ei->SenseInfo);
2658                 if (ei->SenseLen < sense_data_size)
2659                         sense_data_size = ei->SenseLen;
2660                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2661                 if (ei->ScsiStatus)
2662                         decode_sense_data(ei->SenseInfo, sense_data_size,
2663                                 &sense_key, &asc, &ascq);
2664                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2665                         switch (sense_key) {
2666                         case ABORTED_COMMAND:
2667                                 cmd->result |= DID_SOFT_ERROR << 16;
2668                                 break;
2669                         case UNIT_ATTENTION:
2670                                 if (asc == 0x3F && ascq == 0x0E)
2671                                         h->drv_req_rescan = 1;
2672                                 break;
2673                         case ILLEGAL_REQUEST:
2674                                 if (asc == 0x25 && ascq == 0x00) {
2675                                         dev->removed = 1;
2676                                         cmd->result = DID_NO_CONNECT << 16;
2677                                 }
2678                                 break;
2679                         }
2680                         break;
2681                 }
2682                 /* Problem was not a check condition
2683                  * Pass it up to the upper layers...
2684                  */
2685                 if (ei->ScsiStatus) {
2686                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2687                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2688                                 "Returning result: 0x%x\n",
2689                                 cp, ei->ScsiStatus,
2690                                 sense_key, asc, ascq,
2691                                 cmd->result);
2692                 } else {  /* scsi status is zero??? How??? */
2693                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2694                                 "Returning no connection.\n", cp),
2695
2696                         /* Ordinarily, this case should never happen,
2697                          * but there is a bug in some released firmware
2698                          * revisions that allows it to happen if, for
2699                          * example, a 4100 backplane loses power and
2700                          * the tape drive is in it.  We assume that
2701                          * it's a fatal error of some kind because we
2702                          * can't show that it wasn't. We will make it
2703                          * look like selection timeout since that is
2704                          * the most common reason for this to occur,
2705                          * and it's severe enough.
2706                          */
2707
2708                         cmd->result = DID_NO_CONNECT << 16;
2709                 }
2710                 break;
2711
2712         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2713                 break;
2714         case CMD_DATA_OVERRUN:
2715                 dev_warn(&h->pdev->dev,
2716                         "CDB %16phN data overrun\n", cp->Request.CDB);
2717                 break;
2718         case CMD_INVALID: {
2719                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2720                 print_cmd(cp); */
2721                 /* We get CMD_INVALID if you address a non-existent device
2722                  * instead of a selection timeout (no response).  You will
2723                  * see this if you yank out a drive, then try to access it.
2724                  * This is kind of a shame because it means that any other
2725                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2726                  * missing target. */
2727                 cmd->result = DID_NO_CONNECT << 16;
2728         }
2729                 break;
2730         case CMD_PROTOCOL_ERR:
2731                 cmd->result = DID_ERROR << 16;
2732                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2733                                 cp->Request.CDB);
2734                 break;
2735         case CMD_HARDWARE_ERR:
2736                 cmd->result = DID_ERROR << 16;
2737                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2738                         cp->Request.CDB);
2739                 break;
2740         case CMD_CONNECTION_LOST:
2741                 cmd->result = DID_ERROR << 16;
2742                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2743                         cp->Request.CDB);
2744                 break;
2745         case CMD_ABORTED:
2746                 cmd->result = DID_ABORT << 16;
2747                 break;
2748         case CMD_ABORT_FAILED:
2749                 cmd->result = DID_ERROR << 16;
2750                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2751                         cp->Request.CDB);
2752                 break;
2753         case CMD_UNSOLICITED_ABORT:
2754                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2755                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2756                         cp->Request.CDB);
2757                 break;
2758         case CMD_TIMEOUT:
2759                 cmd->result = DID_TIME_OUT << 16;
2760                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2761                         cp->Request.CDB);
2762                 break;
2763         case CMD_UNABORTABLE:
2764                 cmd->result = DID_ERROR << 16;
2765                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2766                 break;
2767         case CMD_TMF_STATUS:
2768                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2769                         cmd->result = DID_ERROR << 16;
2770                 break;
2771         case CMD_IOACCEL_DISABLED:
2772                 /* This only handles the direct pass-through case since RAID
2773                  * offload is handled above.  Just attempt a retry.
2774                  */
2775                 cmd->result = DID_SOFT_ERROR << 16;
2776                 dev_warn(&h->pdev->dev,
2777                                 "cp %p had HP SSD Smart Path error\n", cp);
2778                 break;
2779         default:
2780                 cmd->result = DID_ERROR << 16;
2781                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2782                                 cp, ei->CommandStatus);
2783         }
2784
2785         return hpsa_cmd_free_and_done(h, cp, cmd);
2786 }
2787
2788 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2789                 int sg_used, enum dma_data_direction data_direction)
2790 {
2791         int i;
2792
2793         for (i = 0; i < sg_used; i++)
2794                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2795                                 le32_to_cpu(c->SG[i].Len),
2796                                 data_direction);
2797 }
2798
2799 static int hpsa_map_one(struct pci_dev *pdev,
2800                 struct CommandList *cp,
2801                 unsigned char *buf,
2802                 size_t buflen,
2803                 enum dma_data_direction data_direction)
2804 {
2805         u64 addr64;
2806
2807         if (buflen == 0 || data_direction == DMA_NONE) {
2808                 cp->Header.SGList = 0;
2809                 cp->Header.SGTotal = cpu_to_le16(0);
2810                 return 0;
2811         }
2812
2813         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2814         if (dma_mapping_error(&pdev->dev, addr64)) {
2815                 /* Prevent subsequent unmap of something never mapped */
2816                 cp->Header.SGList = 0;
2817                 cp->Header.SGTotal = cpu_to_le16(0);
2818                 return -1;
2819         }
2820         cp->SG[0].Addr = cpu_to_le64(addr64);
2821         cp->SG[0].Len = cpu_to_le32(buflen);
2822         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2823         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2824         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2825         return 0;
2826 }
2827
2828 #define NO_TIMEOUT ((unsigned long) -1)
2829 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2830 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2831         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2832 {
2833         DECLARE_COMPLETION_ONSTACK(wait);
2834
2835         c->waiting = &wait;
2836         __enqueue_cmd_and_start_io(h, c, reply_queue);
2837         if (timeout_msecs == NO_TIMEOUT) {
2838                 /* TODO: get rid of this no-timeout thing */
2839                 wait_for_completion_io(&wait);
2840                 return IO_OK;
2841         }
2842         if (!wait_for_completion_io_timeout(&wait,
2843                                         msecs_to_jiffies(timeout_msecs))) {
2844                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2845                 return -ETIMEDOUT;
2846         }
2847         return IO_OK;
2848 }
2849
2850 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2851                                    int reply_queue, unsigned long timeout_msecs)
2852 {
2853         if (unlikely(lockup_detected(h))) {
2854                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2855                 return IO_OK;
2856         }
2857         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2858 }
2859
2860 static u32 lockup_detected(struct ctlr_info *h)
2861 {
2862         int cpu;
2863         u32 rc, *lockup_detected;
2864
2865         cpu = get_cpu();
2866         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2867         rc = *lockup_detected;
2868         put_cpu();
2869         return rc;
2870 }
2871
2872 #define MAX_DRIVER_CMD_RETRIES 25
2873 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2874                 struct CommandList *c, enum dma_data_direction data_direction,
2875                 unsigned long timeout_msecs)
2876 {
2877         int backoff_time = 10, retry_count = 0;
2878         int rc;
2879
2880         do {
2881                 memset(c->err_info, 0, sizeof(*c->err_info));
2882                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2883                                                   timeout_msecs);
2884                 if (rc)
2885                         break;
2886                 retry_count++;
2887                 if (retry_count > 3) {
2888                         msleep(backoff_time);
2889                         if (backoff_time < 1000)
2890                                 backoff_time *= 2;
2891                 }
2892         } while ((check_for_unit_attention(h, c) ||
2893                         check_for_busy(h, c)) &&
2894                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2895         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2896         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2897                 rc = -EIO;
2898         return rc;
2899 }
2900
2901 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2902                                 struct CommandList *c)
2903 {
2904         const u8 *cdb = c->Request.CDB;
2905         const u8 *lun = c->Header.LUN.LunAddrBytes;
2906
2907         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2908                  txt, lun, cdb);
2909 }
2910
2911 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2912                         struct CommandList *cp)
2913 {
2914         const struct ErrorInfo *ei = cp->err_info;
2915         struct device *d = &cp->h->pdev->dev;
2916         u8 sense_key, asc, ascq;
2917         int sense_len;
2918
2919         switch (ei->CommandStatus) {
2920         case CMD_TARGET_STATUS:
2921                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2922                         sense_len = sizeof(ei->SenseInfo);
2923                 else
2924                         sense_len = ei->SenseLen;
2925                 decode_sense_data(ei->SenseInfo, sense_len,
2926                                         &sense_key, &asc, &ascq);
2927                 hpsa_print_cmd(h, "SCSI status", cp);
2928                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2929                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2930                                 sense_key, asc, ascq);
2931                 else
2932                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2933                 if (ei->ScsiStatus == 0)
2934                         dev_warn(d, "SCSI status is abnormally zero.  "
2935                         "(probably indicates selection timeout "
2936                         "reported incorrectly due to a known "
2937                         "firmware bug, circa July, 2001.)\n");
2938                 break;
2939         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2940                 break;
2941         case CMD_DATA_OVERRUN:
2942                 hpsa_print_cmd(h, "overrun condition", cp);
2943                 break;
2944         case CMD_INVALID: {
2945                 /* controller unfortunately reports SCSI passthru's
2946                  * to non-existent targets as invalid commands.
2947                  */
2948                 hpsa_print_cmd(h, "invalid command", cp);
2949                 dev_warn(d, "probably means device no longer present\n");
2950                 }
2951                 break;
2952         case CMD_PROTOCOL_ERR:
2953                 hpsa_print_cmd(h, "protocol error", cp);
2954                 break;
2955         case CMD_HARDWARE_ERR:
2956                 hpsa_print_cmd(h, "hardware error", cp);
2957                 break;
2958         case CMD_CONNECTION_LOST:
2959                 hpsa_print_cmd(h, "connection lost", cp);
2960                 break;
2961         case CMD_ABORTED:
2962                 hpsa_print_cmd(h, "aborted", cp);
2963                 break;
2964         case CMD_ABORT_FAILED:
2965                 hpsa_print_cmd(h, "abort failed", cp);
2966                 break;
2967         case CMD_UNSOLICITED_ABORT:
2968                 hpsa_print_cmd(h, "unsolicited abort", cp);
2969                 break;
2970         case CMD_TIMEOUT:
2971                 hpsa_print_cmd(h, "timed out", cp);
2972                 break;
2973         case CMD_UNABORTABLE:
2974                 hpsa_print_cmd(h, "unabortable", cp);
2975                 break;
2976         case CMD_CTLR_LOCKUP:
2977                 hpsa_print_cmd(h, "controller lockup detected", cp);
2978                 break;
2979         default:
2980                 hpsa_print_cmd(h, "unknown status", cp);
2981                 dev_warn(d, "Unknown command status %x\n",
2982                                 ei->CommandStatus);
2983         }
2984 }
2985
2986 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2987                                         u8 page, u8 *buf, size_t bufsize)
2988 {
2989         int rc = IO_OK;
2990         struct CommandList *c;
2991         struct ErrorInfo *ei;
2992
2993         c = cmd_alloc(h);
2994         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2995                         page, scsi3addr, TYPE_CMD)) {
2996                 rc = -1;
2997                 goto out;
2998         }
2999         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3000                         NO_TIMEOUT);
3001         if (rc)
3002                 goto out;
3003         ei = c->err_info;
3004         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3005                 hpsa_scsi_interpret_error(h, c);
3006                 rc = -1;
3007         }
3008 out:
3009         cmd_free(h, c);
3010         return rc;
3011 }
3012
3013 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3014                                                 u8 *scsi3addr)
3015 {
3016         u8 *buf;
3017         u64 sa = 0;
3018         int rc = 0;
3019
3020         buf = kzalloc(1024, GFP_KERNEL);
3021         if (!buf)
3022                 return 0;
3023
3024         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3025                                         buf, 1024);
3026
3027         if (rc)
3028                 goto out;
3029
3030         sa = get_unaligned_be64(buf+12);
3031
3032 out:
3033         kfree(buf);
3034         return sa;
3035 }
3036
3037 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3038                         u16 page, unsigned char *buf,
3039                         unsigned char bufsize)
3040 {
3041         int rc = IO_OK;
3042         struct CommandList *c;
3043         struct ErrorInfo *ei;
3044
3045         c = cmd_alloc(h);
3046
3047         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3048                         page, scsi3addr, TYPE_CMD)) {
3049                 rc = -1;
3050                 goto out;
3051         }
3052         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3053                         NO_TIMEOUT);
3054         if (rc)
3055                 goto out;
3056         ei = c->err_info;
3057         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3058                 hpsa_scsi_interpret_error(h, c);
3059                 rc = -1;
3060         }
3061 out:
3062         cmd_free(h, c);
3063         return rc;
3064 }
3065
3066 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3067         u8 reset_type, int reply_queue)
3068 {
3069         int rc = IO_OK;
3070         struct CommandList *c;
3071         struct ErrorInfo *ei;
3072
3073         c = cmd_alloc(h);
3074         c->device = dev;
3075
3076         /* fill_cmd can't fail here, no data buffer to map. */
3077         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3078         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3079         if (rc) {
3080                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3081                 goto out;
3082         }
3083         /* no unmap needed here because no data xfer. */
3084
3085         ei = c->err_info;
3086         if (ei->CommandStatus != 0) {
3087                 hpsa_scsi_interpret_error(h, c);
3088                 rc = -1;
3089         }
3090 out:
3091         cmd_free(h, c);
3092         return rc;
3093 }
3094
3095 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3096                                struct hpsa_scsi_dev_t *dev,
3097                                unsigned char *scsi3addr)
3098 {
3099         int i;
3100         bool match = false;
3101         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3102         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3103
3104         if (hpsa_is_cmd_idle(c))
3105                 return false;
3106
3107         switch (c->cmd_type) {
3108         case CMD_SCSI:
3109         case CMD_IOCTL_PEND:
3110                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3111                                 sizeof(c->Header.LUN.LunAddrBytes));
3112                 break;
3113
3114         case CMD_IOACCEL1:
3115         case CMD_IOACCEL2:
3116                 if (c->phys_disk == dev) {
3117                         /* HBA mode match */
3118                         match = true;
3119                 } else {
3120                         /* Possible RAID mode -- check each phys dev. */
3121                         /* FIXME:  Do we need to take out a lock here?  If
3122                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3123                          * instead. */
3124                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3125                                 /* FIXME: an alternate test might be
3126                                  *
3127                                  * match = dev->phys_disk[i]->ioaccel_handle
3128                                  *              == c2->scsi_nexus;      */
3129                                 match = dev->phys_disk[i] == c->phys_disk;
3130                         }
3131                 }
3132                 break;
3133
3134         case IOACCEL2_TMF:
3135                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3136                         match = dev->phys_disk[i]->ioaccel_handle ==
3137                                         le32_to_cpu(ac->it_nexus);
3138                 }
3139                 break;
3140
3141         case 0:         /* The command is in the middle of being initialized. */
3142                 match = false;
3143                 break;
3144
3145         default:
3146                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3147                         c->cmd_type);
3148                 BUG();
3149         }
3150
3151         return match;
3152 }
3153
3154 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3155         u8 reset_type, int reply_queue)
3156 {
3157         int rc = 0;
3158
3159         /* We can really only handle one reset at a time */
3160         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3161                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3162                 return -EINTR;
3163         }
3164
3165         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3166         if (!rc) {
3167                 /* incremented by sending the reset request */
3168                 atomic_dec(&dev->commands_outstanding);
3169                 wait_event(h->event_sync_wait_queue,
3170                         atomic_read(&dev->commands_outstanding) <= 0 ||
3171                         lockup_detected(h));
3172         }
3173
3174         if (unlikely(lockup_detected(h))) {
3175                 dev_warn(&h->pdev->dev,
3176                          "Controller lockup detected during reset wait\n");
3177                 rc = -ENODEV;
3178         }
3179
3180         if (!rc)
3181                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3182
3183         mutex_unlock(&h->reset_mutex);
3184         return rc;
3185 }
3186
3187 static void hpsa_get_raid_level(struct ctlr_info *h,
3188         unsigned char *scsi3addr, unsigned char *raid_level)
3189 {
3190         int rc;
3191         unsigned char *buf;
3192
3193         *raid_level = RAID_UNKNOWN;
3194         buf = kzalloc(64, GFP_KERNEL);
3195         if (!buf)
3196                 return;
3197
3198         if (!hpsa_vpd_page_supported(h, scsi3addr,
3199                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3200                 goto exit;
3201
3202         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3203                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3204
3205         if (rc == 0)
3206                 *raid_level = buf[8];
3207         if (*raid_level > RAID_UNKNOWN)
3208                 *raid_level = RAID_UNKNOWN;
3209 exit:
3210         kfree(buf);
3211         return;
3212 }
3213
3214 #define HPSA_MAP_DEBUG
3215 #ifdef HPSA_MAP_DEBUG
3216 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3217                                 struct raid_map_data *map_buff)
3218 {
3219         struct raid_map_disk_data *dd = &map_buff->data[0];
3220         int map, row, col;
3221         u16 map_cnt, row_cnt, disks_per_row;
3222
3223         if (rc != 0)
3224                 return;
3225
3226         /* Show details only if debugging has been activated. */
3227         if (h->raid_offload_debug < 2)
3228                 return;
3229
3230         dev_info(&h->pdev->dev, "structure_size = %u\n",
3231                                 le32_to_cpu(map_buff->structure_size));
3232         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3233                         le32_to_cpu(map_buff->volume_blk_size));
3234         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3235                         le64_to_cpu(map_buff->volume_blk_cnt));
3236         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3237                         map_buff->phys_blk_shift);
3238         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3239                         map_buff->parity_rotation_shift);
3240         dev_info(&h->pdev->dev, "strip_size = %u\n",
3241                         le16_to_cpu(map_buff->strip_size));
3242         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3243                         le64_to_cpu(map_buff->disk_starting_blk));
3244         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3245                         le64_to_cpu(map_buff->disk_blk_cnt));
3246         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3247                         le16_to_cpu(map_buff->data_disks_per_row));
3248         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3249                         le16_to_cpu(map_buff->metadata_disks_per_row));
3250         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3251                         le16_to_cpu(map_buff->row_cnt));
3252         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3253                         le16_to_cpu(map_buff->layout_map_count));
3254         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3255                         le16_to_cpu(map_buff->flags));
3256         dev_info(&h->pdev->dev, "encryption = %s\n",
3257                         le16_to_cpu(map_buff->flags) &
3258                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3259         dev_info(&h->pdev->dev, "dekindex = %u\n",
3260                         le16_to_cpu(map_buff->dekindex));
3261         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3262         for (map = 0; map < map_cnt; map++) {
3263                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3264                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3265                 for (row = 0; row < row_cnt; row++) {
3266                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3267                         disks_per_row =
3268                                 le16_to_cpu(map_buff->data_disks_per_row);
3269                         for (col = 0; col < disks_per_row; col++, dd++)
3270                                 dev_info(&h->pdev->dev,
3271                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3272                                         col, dd->ioaccel_handle,
3273                                         dd->xor_mult[0], dd->xor_mult[1]);
3274                         disks_per_row =
3275                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3276                         for (col = 0; col < disks_per_row; col++, dd++)
3277                                 dev_info(&h->pdev->dev,
3278                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3279                                         col, dd->ioaccel_handle,
3280                                         dd->xor_mult[0], dd->xor_mult[1]);
3281                 }
3282         }
3283 }
3284 #else
3285 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3286                         __attribute__((unused)) int rc,
3287                         __attribute__((unused)) struct raid_map_data *map_buff)
3288 {
3289 }
3290 #endif
3291
3292 static int hpsa_get_raid_map(struct ctlr_info *h,
3293         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3294 {
3295         int rc = 0;
3296         struct CommandList *c;
3297         struct ErrorInfo *ei;
3298
3299         c = cmd_alloc(h);
3300
3301         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3302                         sizeof(this_device->raid_map), 0,
3303                         scsi3addr, TYPE_CMD)) {
3304                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3305                 cmd_free(h, c);
3306                 return -1;
3307         }
3308         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3309                         NO_TIMEOUT);
3310         if (rc)
3311                 goto out;
3312         ei = c->err_info;
3313         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3314                 hpsa_scsi_interpret_error(h, c);
3315                 rc = -1;
3316                 goto out;
3317         }
3318         cmd_free(h, c);
3319
3320         /* @todo in the future, dynamically allocate RAID map memory */
3321         if (le32_to_cpu(this_device->raid_map.structure_size) >
3322                                 sizeof(this_device->raid_map)) {
3323                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3324                 rc = -1;
3325         }
3326         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3327         return rc;
3328 out:
3329         cmd_free(h, c);
3330         return rc;
3331 }
3332
3333 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3334                 unsigned char scsi3addr[], u16 bmic_device_index,
3335                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3336 {
3337         int rc = IO_OK;
3338         struct CommandList *c;
3339         struct ErrorInfo *ei;
3340
3341         c = cmd_alloc(h);
3342
3343         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3344                 0, RAID_CTLR_LUNID, TYPE_CMD);
3345         if (rc)
3346                 goto out;
3347
3348         c->Request.CDB[2] = bmic_device_index & 0xff;
3349         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3350
3351         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3352                         NO_TIMEOUT);
3353         if (rc)
3354                 goto out;
3355         ei = c->err_info;
3356         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3357                 hpsa_scsi_interpret_error(h, c);
3358                 rc = -1;
3359         }
3360 out:
3361         cmd_free(h, c);
3362         return rc;
3363 }
3364
3365 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3366         struct bmic_identify_controller *buf, size_t bufsize)
3367 {
3368         int rc = IO_OK;
3369         struct CommandList *c;
3370         struct ErrorInfo *ei;
3371
3372         c = cmd_alloc(h);
3373
3374         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3375                 0, RAID_CTLR_LUNID, TYPE_CMD);
3376         if (rc)
3377                 goto out;
3378
3379         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3380                         NO_TIMEOUT);
3381         if (rc)
3382                 goto out;
3383         ei = c->err_info;
3384         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3385                 hpsa_scsi_interpret_error(h, c);
3386                 rc = -1;
3387         }
3388 out:
3389         cmd_free(h, c);
3390         return rc;
3391 }
3392
3393 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3394                 unsigned char scsi3addr[], u16 bmic_device_index,
3395                 struct bmic_identify_physical_device *buf, size_t bufsize)
3396 {
3397         int rc = IO_OK;
3398         struct CommandList *c;
3399         struct ErrorInfo *ei;
3400
3401         c = cmd_alloc(h);
3402         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3403                 0, RAID_CTLR_LUNID, TYPE_CMD);
3404         if (rc)
3405                 goto out;
3406
3407         c->Request.CDB[2] = bmic_device_index & 0xff;
3408         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3409
3410         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3411                                                 NO_TIMEOUT);
3412         ei = c->err_info;
3413         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3414                 hpsa_scsi_interpret_error(h, c);
3415                 rc = -1;
3416         }
3417 out:
3418         cmd_free(h, c);
3419
3420         return rc;
3421 }
3422
3423 /*
3424  * get enclosure information
3425  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3426  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3427  * Uses id_physical_device to determine the box_index.
3428  */
3429 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3430                         unsigned char *scsi3addr,
3431                         struct ReportExtendedLUNdata *rlep, int rle_index,
3432                         struct hpsa_scsi_dev_t *encl_dev)
3433 {
3434         int rc = -1;
3435         struct CommandList *c = NULL;
3436         struct ErrorInfo *ei = NULL;
3437         struct bmic_sense_storage_box_params *bssbp = NULL;
3438         struct bmic_identify_physical_device *id_phys = NULL;
3439         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3440         u16 bmic_device_index = 0;
3441
3442         encl_dev->eli =
3443                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3444
3445         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3446
3447         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3448                 rc = IO_OK;
3449                 goto out;
3450         }
3451
3452         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3453                 rc = IO_OK;
3454                 goto out;
3455         }
3456
3457         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3458         if (!bssbp)
3459                 goto out;
3460
3461         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3462         if (!id_phys)
3463                 goto out;
3464
3465         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3466                                                 id_phys, sizeof(*id_phys));
3467         if (rc) {
3468                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3469                         __func__, encl_dev->external, bmic_device_index);
3470                 goto out;
3471         }
3472
3473         c = cmd_alloc(h);
3474
3475         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3476                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3477
3478         if (rc)
3479                 goto out;
3480
3481         if (id_phys->phys_connector[1] == 'E')
3482                 c->Request.CDB[5] = id_phys->box_index;
3483         else
3484                 c->Request.CDB[5] = 0;
3485
3486         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3487                                                 NO_TIMEOUT);
3488         if (rc)
3489                 goto out;
3490
3491         ei = c->err_info;
3492         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3493                 rc = -1;
3494                 goto out;
3495         }
3496
3497         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3498         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3499                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3500
3501         rc = IO_OK;
3502 out:
3503         kfree(bssbp);
3504         kfree(id_phys);
3505
3506         if (c)
3507                 cmd_free(h, c);
3508
3509         if (rc != IO_OK)
3510                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3511                         "Error, could not get enclosure information");
3512 }
3513
3514 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3515                                                 unsigned char *scsi3addr)
3516 {
3517         struct ReportExtendedLUNdata *physdev;
3518         u32 nphysicals;
3519         u64 sa = 0;
3520         int i;
3521
3522         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3523         if (!physdev)
3524                 return 0;
3525
3526         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3527                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3528                 kfree(physdev);
3529                 return 0;
3530         }
3531         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3532
3533         for (i = 0; i < nphysicals; i++)
3534                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3535                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3536                         break;
3537                 }
3538
3539         kfree(physdev);
3540
3541         return sa;
3542 }
3543
3544 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3545                                         struct hpsa_scsi_dev_t *dev)
3546 {
3547         int rc;
3548         u64 sa = 0;
3549
3550         if (is_hba_lunid(scsi3addr)) {
3551                 struct bmic_sense_subsystem_info *ssi;
3552
3553                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3554                 if (!ssi)
3555                         return;
3556
3557                 rc = hpsa_bmic_sense_subsystem_information(h,
3558                                         scsi3addr, 0, ssi, sizeof(*ssi));
3559                 if (rc == 0) {
3560                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3561                         h->sas_address = sa;
3562                 }
3563
3564                 kfree(ssi);
3565         } else
3566                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3567
3568         dev->sas_address = sa;
3569 }
3570
3571 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3572         struct ReportExtendedLUNdata *physdev)
3573 {
3574         u32 nphysicals;
3575         int i;
3576
3577         if (h->discovery_polling)
3578                 return;
3579
3580         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3581
3582         for (i = 0; i < nphysicals; i++) {
3583                 if (physdev->LUN[i].device_type ==
3584                         BMIC_DEVICE_TYPE_CONTROLLER
3585                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3586                         dev_info(&h->pdev->dev,
3587                                 "External controller present, activate discovery polling and disable rld caching\n");
3588                         hpsa_disable_rld_caching(h);
3589                         h->discovery_polling = 1;
3590                         break;
3591                 }
3592         }
3593 }
3594
3595 /* Get a device id from inquiry page 0x83 */
3596 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3597         unsigned char scsi3addr[], u8 page)
3598 {
3599         int rc;
3600         int i;
3601         int pages;
3602         unsigned char *buf, bufsize;
3603
3604         buf = kzalloc(256, GFP_KERNEL);
3605         if (!buf)
3606                 return false;
3607
3608         /* Get the size of the page list first */
3609         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3610                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3611                                 buf, HPSA_VPD_HEADER_SZ);
3612         if (rc != 0)
3613                 goto exit_unsupported;
3614         pages = buf[3];
3615         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3616                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3617         else
3618                 bufsize = 255;
3619
3620         /* Get the whole VPD page list */
3621         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3622                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3623                                 buf, bufsize);
3624         if (rc != 0)
3625                 goto exit_unsupported;
3626
3627         pages = buf[3];
3628         for (i = 1; i <= pages; i++)
3629                 if (buf[3 + i] == page)
3630                         goto exit_supported;
3631 exit_unsupported:
3632         kfree(buf);
3633         return false;
3634 exit_supported:
3635         kfree(buf);
3636         return true;
3637 }
3638
3639 /*
3640  * Called during a scan operation.
3641  * Sets ioaccel status on the new device list, not the existing device list
3642  *
3643  * The device list used during I/O will be updated later in
3644  * adjust_hpsa_scsi_table.
3645  */
3646 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3647         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3648 {
3649         int rc;
3650         unsigned char *buf;
3651         u8 ioaccel_status;
3652
3653         this_device->offload_config = 0;
3654         this_device->offload_enabled = 0;
3655         this_device->offload_to_be_enabled = 0;
3656
3657         buf = kzalloc(64, GFP_KERNEL);
3658         if (!buf)
3659                 return;
3660         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3661                 goto out;
3662         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3663                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3664         if (rc != 0)
3665                 goto out;
3666
3667 #define IOACCEL_STATUS_BYTE 4
3668 #define OFFLOAD_CONFIGURED_BIT 0x01
3669 #define OFFLOAD_ENABLED_BIT 0x02
3670         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3671         this_device->offload_config =
3672                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3673         if (this_device->offload_config) {
3674                 this_device->offload_to_be_enabled =
3675                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3676                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3677                         this_device->offload_to_be_enabled = 0;
3678         }
3679
3680 out:
3681         kfree(buf);
3682         return;
3683 }
3684
3685 /* Get the device id from inquiry page 0x83 */
3686 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3687         unsigned char *device_id, int index, int buflen)
3688 {
3689         int rc;
3690         unsigned char *buf;
3691
3692         /* Does controller have VPD for device id? */
3693         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3694                 return 1; /* not supported */
3695
3696         buf = kzalloc(64, GFP_KERNEL);
3697         if (!buf)
3698                 return -ENOMEM;
3699
3700         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3701                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3702         if (rc == 0) {
3703                 if (buflen > 16)
3704                         buflen = 16;
3705                 memcpy(device_id, &buf[8], buflen);
3706         }
3707
3708         kfree(buf);
3709
3710         return rc; /*0 - got id,  otherwise, didn't */
3711 }
3712
3713 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3714                 void *buf, int bufsize,
3715                 int extended_response)
3716 {
3717         int rc = IO_OK;
3718         struct CommandList *c;
3719         unsigned char scsi3addr[8];
3720         struct ErrorInfo *ei;
3721
3722         c = cmd_alloc(h);
3723
3724         /* address the controller */
3725         memset(scsi3addr, 0, sizeof(scsi3addr));
3726         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3727                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3728                 rc = -EAGAIN;
3729                 goto out;
3730         }
3731         if (extended_response)
3732                 c->Request.CDB[1] = extended_response;
3733         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3734                         NO_TIMEOUT);
3735         if (rc)
3736                 goto out;
3737         ei = c->err_info;
3738         if (ei->CommandStatus != 0 &&
3739             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3740                 hpsa_scsi_interpret_error(h, c);
3741                 rc = -EIO;
3742         } else {
3743                 struct ReportLUNdata *rld = buf;
3744
3745                 if (rld->extended_response_flag != extended_response) {
3746                         if (!h->legacy_board) {
3747                                 dev_err(&h->pdev->dev,
3748                                         "report luns requested format %u, got %u\n",
3749                                         extended_response,
3750                                         rld->extended_response_flag);
3751                                 rc = -EINVAL;
3752                         } else
3753                                 rc = -EOPNOTSUPP;
3754                 }
3755         }
3756 out:
3757         cmd_free(h, c);
3758         return rc;
3759 }
3760
3761 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3762                 struct ReportExtendedLUNdata *buf, int bufsize)
3763 {
3764         int rc;
3765         struct ReportLUNdata *lbuf;
3766
3767         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3768                                       HPSA_REPORT_PHYS_EXTENDED);
3769         if (!rc || rc != -EOPNOTSUPP)
3770                 return rc;
3771
3772         /* REPORT PHYS EXTENDED is not supported */
3773         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3774         if (!lbuf)
3775                 return -ENOMEM;
3776
3777         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3778         if (!rc) {
3779                 int i;
3780                 u32 nphys;
3781
3782                 /* Copy ReportLUNdata header */
3783                 memcpy(buf, lbuf, 8);
3784                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3785                 for (i = 0; i < nphys; i++)
3786                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3787         }
3788         kfree(lbuf);
3789         return rc;
3790 }
3791
3792 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3793                 struct ReportLUNdata *buf, int bufsize)
3794 {
3795         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3796 }
3797
3798 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3799         int bus, int target, int lun)
3800 {
3801         device->bus = bus;
3802         device->target = target;
3803         device->lun = lun;
3804 }
3805
3806 /* Use VPD inquiry to get details of volume status */
3807 static int hpsa_get_volume_status(struct ctlr_info *h,
3808                                         unsigned char scsi3addr[])
3809 {
3810         int rc;
3811         int status;
3812         int size;
3813         unsigned char *buf;
3814
3815         buf = kzalloc(64, GFP_KERNEL);
3816         if (!buf)
3817                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3818
3819         /* Does controller have VPD for logical volume status? */
3820         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3821                 goto exit_failed;
3822
3823         /* Get the size of the VPD return buffer */
3824         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3825                                         buf, HPSA_VPD_HEADER_SZ);
3826         if (rc != 0)
3827                 goto exit_failed;
3828         size = buf[3];
3829
3830         /* Now get the whole VPD buffer */
3831         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3832                                         buf, size + HPSA_VPD_HEADER_SZ);
3833         if (rc != 0)
3834                 goto exit_failed;
3835         status = buf[4]; /* status byte */
3836
3837         kfree(buf);
3838         return status;
3839 exit_failed:
3840         kfree(buf);
3841         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3842 }
3843
3844 /* Determine offline status of a volume.
3845  * Return either:
3846  *  0 (not offline)
3847  *  0xff (offline for unknown reasons)
3848  *  # (integer code indicating one of several NOT READY states
3849  *     describing why a volume is to be kept offline)
3850  */
3851 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3852                                         unsigned char scsi3addr[])
3853 {
3854         struct CommandList *c;
3855         unsigned char *sense;
3856         u8 sense_key, asc, ascq;
3857         int sense_len;
3858         int rc, ldstat = 0;
3859         u16 cmd_status;
3860         u8 scsi_status;
3861 #define ASC_LUN_NOT_READY 0x04
3862 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3863 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3864
3865         c = cmd_alloc(h);
3866
3867         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3868         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3869                                         NO_TIMEOUT);
3870         if (rc) {
3871                 cmd_free(h, c);
3872                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3873         }
3874         sense = c->err_info->SenseInfo;
3875         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3876                 sense_len = sizeof(c->err_info->SenseInfo);
3877         else
3878                 sense_len = c->err_info->SenseLen;
3879         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3880         cmd_status = c->err_info->CommandStatus;
3881         scsi_status = c->err_info->ScsiStatus;
3882         cmd_free(h, c);
3883
3884         /* Determine the reason for not ready state */
3885         ldstat = hpsa_get_volume_status(h, scsi3addr);
3886
3887         /* Keep volume offline in certain cases: */
3888         switch (ldstat) {
3889         case HPSA_LV_FAILED:
3890         case HPSA_LV_UNDERGOING_ERASE:
3891         case HPSA_LV_NOT_AVAILABLE:
3892         case HPSA_LV_UNDERGOING_RPI:
3893         case HPSA_LV_PENDING_RPI:
3894         case HPSA_LV_ENCRYPTED_NO_KEY:
3895         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3896         case HPSA_LV_UNDERGOING_ENCRYPTION:
3897         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3898         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3899                 return ldstat;
3900         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3901                 /* If VPD status page isn't available,
3902                  * use ASC/ASCQ to determine state
3903                  */
3904                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3905                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3906                         return ldstat;
3907                 break;
3908         default:
3909                 break;
3910         }
3911         return HPSA_LV_OK;
3912 }
3913
3914 static int hpsa_update_device_info(struct ctlr_info *h,
3915         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3916         unsigned char *is_OBDR_device)
3917 {
3918
3919 #define OBDR_SIG_OFFSET 43
3920 #define OBDR_TAPE_SIG "$DR-10"
3921 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3922 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3923
3924         unsigned char *inq_buff;
3925         unsigned char *obdr_sig;
3926         int rc = 0;
3927
3928         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3929         if (!inq_buff) {
3930                 rc = -ENOMEM;
3931                 goto bail_out;
3932         }
3933
3934         /* Do an inquiry to the device to see what it is. */
3935         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3936                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3937                 dev_err(&h->pdev->dev,
3938                         "%s: inquiry failed, device will be skipped.\n",
3939                         __func__);
3940                 rc = HPSA_INQUIRY_FAILED;
3941                 goto bail_out;
3942         }
3943
3944         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3945         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3946
3947         this_device->devtype = (inq_buff[0] & 0x1f);
3948         memcpy(this_device->scsi3addr, scsi3addr, 8);
3949         memcpy(this_device->vendor, &inq_buff[8],
3950                 sizeof(this_device->vendor));
3951         memcpy(this_device->model, &inq_buff[16],
3952                 sizeof(this_device->model));
3953         this_device->rev = inq_buff[2];
3954         memset(this_device->device_id, 0,
3955                 sizeof(this_device->device_id));
3956         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3957                 sizeof(this_device->device_id)) < 0) {
3958                 dev_err(&h->pdev->dev,
3959                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3960                         h->ctlr, __func__,
3961                         h->scsi_host->host_no,
3962                         this_device->bus, this_device->target,
3963                         this_device->lun,
3964                         scsi_device_type(this_device->devtype),
3965                         this_device->model);
3966                 rc = HPSA_LV_FAILED;
3967                 goto bail_out;
3968         }
3969
3970         if ((this_device->devtype == TYPE_DISK ||
3971                 this_device->devtype == TYPE_ZBC) &&
3972                 is_logical_dev_addr_mode(scsi3addr)) {
3973                 unsigned char volume_offline;
3974
3975                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3976                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3977                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3978                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3979                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3980                     h->legacy_board) {
3981                         /*
3982                          * Legacy boards might not support volume status
3983                          */
3984                         dev_info(&h->pdev->dev,
3985                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3986                                  this_device->target, this_device->lun);
3987                         volume_offline = 0;
3988                 }
3989                 this_device->volume_offline = volume_offline;
3990                 if (volume_offline == HPSA_LV_FAILED) {
3991                         rc = HPSA_LV_FAILED;
3992                         dev_err(&h->pdev->dev,
3993                                 "%s: LV failed, device will be skipped.\n",
3994                                 __func__);
3995                         goto bail_out;
3996                 }
3997         } else {
3998                 this_device->raid_level = RAID_UNKNOWN;
3999                 this_device->offload_config = 0;
4000                 this_device->offload_enabled = 0;
4001                 this_device->offload_to_be_enabled = 0;
4002                 this_device->hba_ioaccel_enabled = 0;
4003                 this_device->volume_offline = 0;
4004                 this_device->queue_depth = h->nr_cmds;
4005         }
4006
4007         if (this_device->external)
4008                 this_device->queue_depth = EXTERNAL_QD;
4009
4010         if (is_OBDR_device) {
4011                 /* See if this is a One-Button-Disaster-Recovery device
4012                  * by looking for "$DR-10" at offset 43 in inquiry data.
4013                  */
4014                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4015                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4016                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4017                                                 OBDR_SIG_LEN) == 0);
4018         }
4019         kfree(inq_buff);
4020         return 0;
4021
4022 bail_out:
4023         kfree(inq_buff);
4024         return rc;
4025 }
4026
4027 /*
4028  * Helper function to assign bus, target, lun mapping of devices.
4029  * Logical drive target and lun are assigned at this time, but
4030  * physical device lun and target assignment are deferred (assigned
4031  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4032 */
4033 static void figure_bus_target_lun(struct ctlr_info *h,
4034         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4035 {
4036         u32 lunid = get_unaligned_le32(lunaddrbytes);
4037
4038         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4039                 /* physical device, target and lun filled in later */
4040                 if (is_hba_lunid(lunaddrbytes)) {
4041                         int bus = HPSA_HBA_BUS;
4042
4043                         if (!device->rev)
4044                                 bus = HPSA_LEGACY_HBA_BUS;
4045                         hpsa_set_bus_target_lun(device,
4046                                         bus, 0, lunid & 0x3fff);
4047                 } else
4048                         /* defer target, lun assignment for physical devices */
4049                         hpsa_set_bus_target_lun(device,
4050                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4051                 return;
4052         }
4053         /* It's a logical device */
4054         if (device->external) {
4055                 hpsa_set_bus_target_lun(device,
4056                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4057                         lunid & 0x00ff);
4058                 return;
4059         }
4060         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4061                                 0, lunid & 0x3fff);
4062 }
4063
4064 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4065         int i, int nphysicals, int nlocal_logicals)
4066 {
4067         /* In report logicals, local logicals are listed first,
4068         * then any externals.
4069         */
4070         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4071
4072         if (i == raid_ctlr_position)
4073                 return 0;
4074
4075         if (i < logicals_start)
4076                 return 0;
4077
4078         /* i is in logicals range, but still within local logicals */
4079         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4080                 return 0;
4081
4082         return 1; /* it's an external lun */
4083 }
4084
4085 /*
4086  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4087  * logdev.  The number of luns in physdev and logdev are returned in
4088  * *nphysicals and *nlogicals, respectively.
4089  * Returns 0 on success, -1 otherwise.
4090  */
4091 static int hpsa_gather_lun_info(struct ctlr_info *h,
4092         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4093         struct ReportLUNdata *logdev, u32 *nlogicals)
4094 {
4095         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4096                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4097                 return -1;
4098         }
4099         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4100         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4101                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4102                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4103                 *nphysicals = HPSA_MAX_PHYS_LUN;
4104         }
4105         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4106                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4107                 return -1;
4108         }
4109         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4110         /* Reject Logicals in excess of our max capability. */
4111         if (*nlogicals > HPSA_MAX_LUN) {
4112                 dev_warn(&h->pdev->dev,
4113                         "maximum logical LUNs (%d) exceeded.  "
4114                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4115                         *nlogicals - HPSA_MAX_LUN);
4116                 *nlogicals = HPSA_MAX_LUN;
4117         }
4118         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4119                 dev_warn(&h->pdev->dev,
4120                         "maximum logical + physical LUNs (%d) exceeded. "
4121                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4122                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4123                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4124         }
4125         return 0;
4126 }
4127
4128 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4129         int i, int nphysicals, int nlogicals,
4130         struct ReportExtendedLUNdata *physdev_list,
4131         struct ReportLUNdata *logdev_list)
4132 {
4133         /* Helper function, figure out where the LUN ID info is coming from
4134          * given index i, lists of physical and logical devices, where in
4135          * the list the raid controller is supposed to appear (first or last)
4136          */
4137
4138         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4139         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4140
4141         if (i == raid_ctlr_position)
4142                 return RAID_CTLR_LUNID;
4143
4144         if (i < logicals_start)
4145                 return &physdev_list->LUN[i -
4146                                 (raid_ctlr_position == 0)].lunid[0];
4147
4148         if (i < last_device)
4149                 return &logdev_list->LUN[i - nphysicals -
4150                         (raid_ctlr_position == 0)][0];
4151         BUG();
4152         return NULL;
4153 }
4154
4155 /* get physical drive ioaccel handle and queue depth */
4156 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4157                 struct hpsa_scsi_dev_t *dev,
4158                 struct ReportExtendedLUNdata *rlep, int rle_index,
4159                 struct bmic_identify_physical_device *id_phys)
4160 {
4161         int rc;
4162         struct ext_report_lun_entry *rle;
4163
4164         rle = &rlep->LUN[rle_index];
4165
4166         dev->ioaccel_handle = rle->ioaccel_handle;
4167         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4168                 dev->hba_ioaccel_enabled = 1;
4169         memset(id_phys, 0, sizeof(*id_phys));
4170         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4171                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4172                         sizeof(*id_phys));
4173         if (!rc)
4174                 /* Reserve space for FW operations */
4175 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4176 #define DRIVE_QUEUE_DEPTH 7
4177                 dev->queue_depth =
4178                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4179                                 DRIVE_CMDS_RESERVED_FOR_FW;
4180         else
4181                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4182 }
4183
4184 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4185         struct ReportExtendedLUNdata *rlep, int rle_index,
4186         struct bmic_identify_physical_device *id_phys)
4187 {
4188         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4189
4190         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4191                 this_device->hba_ioaccel_enabled = 1;
4192
4193         memcpy(&this_device->active_path_index,
4194                 &id_phys->active_path_number,
4195                 sizeof(this_device->active_path_index));
4196         memcpy(&this_device->path_map,
4197                 &id_phys->redundant_path_present_map,
4198                 sizeof(this_device->path_map));
4199         memcpy(&this_device->box,
4200                 &id_phys->alternate_paths_phys_box_on_port,
4201                 sizeof(this_device->box));
4202         memcpy(&this_device->phys_connector,
4203                 &id_phys->alternate_paths_phys_connector,
4204                 sizeof(this_device->phys_connector));
4205         memcpy(&this_device->bay,
4206                 &id_phys->phys_bay_in_box,
4207                 sizeof(this_device->bay));
4208 }
4209
4210 /* get number of local logical disks. */
4211 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4212         struct bmic_identify_controller *id_ctlr,
4213         u32 *nlocals)
4214 {
4215         int rc;
4216
4217         if (!id_ctlr) {
4218                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4219                         __func__);
4220                 return -ENOMEM;
4221         }
4222         memset(id_ctlr, 0, sizeof(*id_ctlr));
4223         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4224         if (!rc)
4225                 if (id_ctlr->configured_logical_drive_count < 255)
4226                         *nlocals = id_ctlr->configured_logical_drive_count;
4227                 else
4228                         *nlocals = le16_to_cpu(
4229                                         id_ctlr->extended_logical_unit_count);
4230         else
4231                 *nlocals = -1;
4232         return rc;
4233 }
4234
4235 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4236 {
4237         struct bmic_identify_physical_device *id_phys;
4238         bool is_spare = false;
4239         int rc;
4240
4241         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4242         if (!id_phys)
4243                 return false;
4244
4245         rc = hpsa_bmic_id_physical_device(h,
4246                                         lunaddrbytes,
4247                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4248                                         id_phys, sizeof(*id_phys));
4249         if (rc == 0)
4250                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4251
4252         kfree(id_phys);
4253         return is_spare;
4254 }
4255
4256 #define RPL_DEV_FLAG_NON_DISK                           0x1
4257 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4258 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4259
4260 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4261
4262 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4263                                 struct ext_report_lun_entry *rle)
4264 {
4265         u8 device_flags;
4266         u8 device_type;
4267
4268         if (!MASKED_DEVICE(lunaddrbytes))
4269                 return false;
4270
4271         device_flags = rle->device_flags;
4272         device_type = rle->device_type;
4273
4274         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4275                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4276                         return false;
4277                 return true;
4278         }
4279
4280         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4281                 return false;
4282
4283         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4284                 return false;
4285
4286         /*
4287          * Spares may be spun down, we do not want to
4288          * do an Inquiry to a RAID set spare drive as
4289          * that would have them spun up, that is a
4290          * performance hit because I/O to the RAID device
4291          * stops while the spin up occurs which can take
4292          * over 50 seconds.
4293          */
4294         if (hpsa_is_disk_spare(h, lunaddrbytes))
4295                 return true;
4296
4297         return false;
4298 }
4299
4300 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4301 {
4302         /* the idea here is we could get notified
4303          * that some devices have changed, so we do a report
4304          * physical luns and report logical luns cmd, and adjust
4305          * our list of devices accordingly.
4306          *
4307          * The scsi3addr's of devices won't change so long as the
4308          * adapter is not reset.  That means we can rescan and
4309          * tell which devices we already know about, vs. new
4310          * devices, vs.  disappearing devices.
4311          */
4312         struct ReportExtendedLUNdata *physdev_list = NULL;
4313         struct ReportLUNdata *logdev_list = NULL;
4314         struct bmic_identify_physical_device *id_phys = NULL;
4315         struct bmic_identify_controller *id_ctlr = NULL;
4316         u32 nphysicals = 0;
4317         u32 nlogicals = 0;
4318         u32 nlocal_logicals = 0;
4319         u32 ndev_allocated = 0;
4320         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4321         int ncurrent = 0;
4322         int i, n_ext_target_devs, ndevs_to_allocate;
4323         int raid_ctlr_position;
4324         bool physical_device;
4325         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4326
4327         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4328         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4329         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4330         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4331         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4332         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4333
4334         if (!currentsd || !physdev_list || !logdev_list ||
4335                 !tmpdevice || !id_phys || !id_ctlr) {
4336                 dev_err(&h->pdev->dev, "out of memory\n");
4337                 goto out;
4338         }
4339         memset(lunzerobits, 0, sizeof(lunzerobits));
4340
4341         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4342
4343         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4344                         logdev_list, &nlogicals)) {
4345                 h->drv_req_rescan = 1;
4346                 goto out;
4347         }
4348
4349         /* Set number of local logicals (non PTRAID) */
4350         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4351                 dev_warn(&h->pdev->dev,
4352                         "%s: Can't determine number of local logical devices.\n",
4353                         __func__);
4354         }
4355
4356         /* We might see up to the maximum number of logical and physical disks
4357          * plus external target devices, and a device for the local RAID
4358          * controller.
4359          */
4360         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4361
4362         hpsa_ext_ctrl_present(h, physdev_list);
4363
4364         /* Allocate the per device structures */
4365         for (i = 0; i < ndevs_to_allocate; i++) {
4366                 if (i >= HPSA_MAX_DEVICES) {
4367                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4368                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4369                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4370                         break;
4371                 }
4372
4373                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4374                 if (!currentsd[i]) {
4375                         h->drv_req_rescan = 1;
4376                         goto out;
4377                 }
4378                 ndev_allocated++;
4379         }
4380
4381         if (is_scsi_rev_5(h))
4382                 raid_ctlr_position = 0;
4383         else
4384                 raid_ctlr_position = nphysicals + nlogicals;
4385
4386         /* adjust our table of devices */
4387         n_ext_target_devs = 0;
4388         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4389                 u8 *lunaddrbytes, is_OBDR = 0;
4390                 int rc = 0;
4391                 int phys_dev_index = i - (raid_ctlr_position == 0);
4392                 bool skip_device = false;
4393
4394                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4395
4396                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4397
4398                 /* Figure out where the LUN ID info is coming from */
4399                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4400                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4401
4402                 /* Determine if this is a lun from an external target array */
4403                 tmpdevice->external =
4404                         figure_external_status(h, raid_ctlr_position, i,
4405                                                 nphysicals, nlocal_logicals);
4406
4407                 /*
4408                  * Skip over some devices such as a spare.
4409                  */
4410                 if (!tmpdevice->external && physical_device) {
4411                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4412                                         &physdev_list->LUN[phys_dev_index]);
4413                         if (skip_device)
4414                                 continue;
4415                 }
4416
4417                 /* Get device type, vendor, model, device id, raid_map */
4418                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4419                                                         &is_OBDR);
4420                 if (rc == -ENOMEM) {
4421                         dev_warn(&h->pdev->dev,
4422                                 "Out of memory, rescan deferred.\n");
4423                         h->drv_req_rescan = 1;
4424                         goto out;
4425                 }
4426                 if (rc) {
4427                         h->drv_req_rescan = 1;
4428                         continue;
4429                 }
4430
4431                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4432                 this_device = currentsd[ncurrent];
4433
4434                 *this_device = *tmpdevice;
4435                 this_device->physical_device = physical_device;
4436
4437                 /*
4438                  * Expose all devices except for physical devices that
4439                  * are masked.
4440                  */
4441                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4442                         this_device->expose_device = 0;
4443                 else
4444                         this_device->expose_device = 1;
4445
4446
4447                 /*
4448                  * Get the SAS address for physical devices that are exposed.
4449                  */
4450                 if (this_device->physical_device && this_device->expose_device)
4451                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4452
4453                 switch (this_device->devtype) {
4454                 case TYPE_ROM:
4455                         /* We don't *really* support actual CD-ROM devices,
4456                          * just "One Button Disaster Recovery" tape drive
4457                          * which temporarily pretends to be a CD-ROM drive.
4458                          * So we check that the device is really an OBDR tape
4459                          * device by checking for "$DR-10" in bytes 43-48 of
4460                          * the inquiry data.
4461                          */
4462                         if (is_OBDR)
4463                                 ncurrent++;
4464                         break;
4465                 case TYPE_DISK:
4466                 case TYPE_ZBC:
4467                         if (this_device->physical_device) {
4468                                 /* The disk is in HBA mode. */
4469                                 /* Never use RAID mapper in HBA mode. */
4470                                 this_device->offload_enabled = 0;
4471                                 hpsa_get_ioaccel_drive_info(h, this_device,
4472                                         physdev_list, phys_dev_index, id_phys);
4473                                 hpsa_get_path_info(this_device,
4474                                         physdev_list, phys_dev_index, id_phys);
4475                         }
4476                         ncurrent++;
4477                         break;
4478                 case TYPE_TAPE:
4479                 case TYPE_MEDIUM_CHANGER:
4480                         ncurrent++;
4481                         break;
4482                 case TYPE_ENCLOSURE:
4483                         if (!this_device->external)
4484                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4485                                                 physdev_list, phys_dev_index,
4486                                                 this_device);
4487                         ncurrent++;
4488                         break;
4489                 case TYPE_RAID:
4490                         /* Only present the Smartarray HBA as a RAID controller.
4491                          * If it's a RAID controller other than the HBA itself
4492                          * (an external RAID controller, MSA500 or similar)
4493                          * don't present it.
4494                          */
4495                         if (!is_hba_lunid(lunaddrbytes))
4496                                 break;
4497                         ncurrent++;
4498                         break;
4499                 default:
4500                         break;
4501                 }
4502                 if (ncurrent >= HPSA_MAX_DEVICES)
4503                         break;
4504         }
4505
4506         if (h->sas_host == NULL) {
4507                 int rc = 0;
4508
4509                 rc = hpsa_add_sas_host(h);
4510                 if (rc) {
4511                         dev_warn(&h->pdev->dev,
4512                                 "Could not add sas host %d\n", rc);
4513                         goto out;
4514                 }
4515         }
4516
4517         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4518 out:
4519         kfree(tmpdevice);
4520         for (i = 0; i < ndev_allocated; i++)
4521                 kfree(currentsd[i]);
4522         kfree(currentsd);
4523         kfree(physdev_list);
4524         kfree(logdev_list);
4525         kfree(id_ctlr);
4526         kfree(id_phys);
4527 }
4528
4529 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4530                                    struct scatterlist *sg)
4531 {
4532         u64 addr64 = (u64) sg_dma_address(sg);
4533         unsigned int len = sg_dma_len(sg);
4534
4535         desc->Addr = cpu_to_le64(addr64);
4536         desc->Len = cpu_to_le32(len);
4537         desc->Ext = 0;
4538 }
4539
4540 /*
4541  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4542  * dma mapping  and fills in the scatter gather entries of the
4543  * hpsa command, cp.
4544  */
4545 static int hpsa_scatter_gather(struct ctlr_info *h,
4546                 struct CommandList *cp,
4547                 struct scsi_cmnd *cmd)
4548 {
4549         struct scatterlist *sg;
4550         int use_sg, i, sg_limit, chained, last_sg;
4551         struct SGDescriptor *curr_sg;
4552
4553         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4554
4555         use_sg = scsi_dma_map(cmd);
4556         if (use_sg < 0)
4557                 return use_sg;
4558
4559         if (!use_sg)
4560                 goto sglist_finished;
4561
4562         /*
4563          * If the number of entries is greater than the max for a single list,
4564          * then we have a chained list; we will set up all but one entry in the
4565          * first list (the last entry is saved for link information);
4566          * otherwise, we don't have a chained list and we'll set up at each of
4567          * the entries in the one list.
4568          */
4569         curr_sg = cp->SG;
4570         chained = use_sg > h->max_cmd_sg_entries;
4571         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4572         last_sg = scsi_sg_count(cmd) - 1;
4573         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4574                 hpsa_set_sg_descriptor(curr_sg, sg);
4575                 curr_sg++;
4576         }
4577
4578         if (chained) {
4579                 /*
4580                  * Continue with the chained list.  Set curr_sg to the chained
4581                  * list.  Modify the limit to the total count less the entries
4582                  * we've already set up.  Resume the scan at the list entry
4583                  * where the previous loop left off.
4584                  */
4585                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4586                 sg_limit = use_sg - sg_limit;
4587                 for_each_sg(sg, sg, sg_limit, i) {
4588                         hpsa_set_sg_descriptor(curr_sg, sg);
4589                         curr_sg++;
4590                 }
4591         }
4592
4593         /* Back the pointer up to the last entry and mark it as "last". */
4594         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4595
4596         if (use_sg + chained > h->maxSG)
4597                 h->maxSG = use_sg + chained;
4598
4599         if (chained) {
4600                 cp->Header.SGList = h->max_cmd_sg_entries;
4601                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4602                 if (hpsa_map_sg_chain_block(h, cp)) {
4603                         scsi_dma_unmap(cmd);
4604                         return -1;
4605                 }
4606                 return 0;
4607         }
4608
4609 sglist_finished:
4610
4611         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4612         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4613         return 0;
4614 }
4615
4616 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4617                                                 u8 *cdb, int cdb_len,
4618                                                 const char *func)
4619 {
4620         dev_warn(&h->pdev->dev,
4621                  "%s: Blocking zero-length request: CDB:%*phN\n",
4622                  func, cdb_len, cdb);
4623 }
4624
4625 #define IO_ACCEL_INELIGIBLE 1
4626 /* zero-length transfers trigger hardware errors. */
4627 static bool is_zero_length_transfer(u8 *cdb)
4628 {
4629         u32 block_cnt;
4630
4631         /* Block zero-length transfer sizes on certain commands. */
4632         switch (cdb[0]) {
4633         case READ_10:
4634         case WRITE_10:
4635         case VERIFY:            /* 0x2F */
4636         case WRITE_VERIFY:      /* 0x2E */
4637                 block_cnt = get_unaligned_be16(&cdb[7]);
4638                 break;
4639         case READ_12:
4640         case WRITE_12:
4641         case VERIFY_12: /* 0xAF */
4642         case WRITE_VERIFY_12:   /* 0xAE */
4643                 block_cnt = get_unaligned_be32(&cdb[6]);
4644                 break;
4645         case READ_16:
4646         case WRITE_16:
4647         case VERIFY_16:         /* 0x8F */
4648                 block_cnt = get_unaligned_be32(&cdb[10]);
4649                 break;
4650         default:
4651                 return false;
4652         }
4653
4654         return block_cnt == 0;
4655 }
4656
4657 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4658 {
4659         int is_write = 0;
4660         u32 block;
4661         u32 block_cnt;
4662
4663         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4664         switch (cdb[0]) {
4665         case WRITE_6:
4666         case WRITE_12:
4667                 is_write = 1;
4668                 /* fall through */
4669         case READ_6:
4670         case READ_12:
4671                 if (*cdb_len == 6) {
4672                         block = (((cdb[1] & 0x1F) << 16) |
4673                                 (cdb[2] << 8) |
4674                                 cdb[3]);
4675                         block_cnt = cdb[4];
4676                         if (block_cnt == 0)
4677                                 block_cnt = 256;
4678                 } else {
4679                         BUG_ON(*cdb_len != 12);
4680                         block = get_unaligned_be32(&cdb[2]);
4681                         block_cnt = get_unaligned_be32(&cdb[6]);
4682                 }
4683                 if (block_cnt > 0xffff)
4684                         return IO_ACCEL_INELIGIBLE;
4685
4686                 cdb[0] = is_write ? WRITE_10 : READ_10;
4687                 cdb[1] = 0;
4688                 cdb[2] = (u8) (block >> 24);
4689                 cdb[3] = (u8) (block >> 16);
4690                 cdb[4] = (u8) (block >> 8);
4691                 cdb[5] = (u8) (block);
4692                 cdb[6] = 0;
4693                 cdb[7] = (u8) (block_cnt >> 8);
4694                 cdb[8] = (u8) (block_cnt);
4695                 cdb[9] = 0;
4696                 *cdb_len = 10;
4697                 break;
4698         }
4699         return 0;
4700 }
4701
4702 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4703         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4704         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4705 {
4706         struct scsi_cmnd *cmd = c->scsi_cmd;
4707         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4708         unsigned int len;
4709         unsigned int total_len = 0;
4710         struct scatterlist *sg;
4711         u64 addr64;
4712         int use_sg, i;
4713         struct SGDescriptor *curr_sg;
4714         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4715
4716         /* TODO: implement chaining support */
4717         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4718                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4719                 return IO_ACCEL_INELIGIBLE;
4720         }
4721
4722         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4723
4724         if (is_zero_length_transfer(cdb)) {
4725                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4726                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4727                 return IO_ACCEL_INELIGIBLE;
4728         }
4729
4730         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4731                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4732                 return IO_ACCEL_INELIGIBLE;
4733         }
4734
4735         c->cmd_type = CMD_IOACCEL1;
4736
4737         /* Adjust the DMA address to point to the accelerated command buffer */
4738         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4739                                 (c->cmdindex * sizeof(*cp));
4740         BUG_ON(c->busaddr & 0x0000007F);
4741
4742         use_sg = scsi_dma_map(cmd);
4743         if (use_sg < 0) {
4744                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4745                 return use_sg;
4746         }
4747
4748         if (use_sg) {
4749                 curr_sg = cp->SG;
4750                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4751                         addr64 = (u64) sg_dma_address(sg);
4752                         len  = sg_dma_len(sg);
4753                         total_len += len;
4754                         curr_sg->Addr = cpu_to_le64(addr64);
4755                         curr_sg->Len = cpu_to_le32(len);
4756                         curr_sg->Ext = cpu_to_le32(0);
4757                         curr_sg++;
4758                 }
4759                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4760
4761                 switch (cmd->sc_data_direction) {
4762                 case DMA_TO_DEVICE:
4763                         control |= IOACCEL1_CONTROL_DATA_OUT;
4764                         break;
4765                 case DMA_FROM_DEVICE:
4766                         control |= IOACCEL1_CONTROL_DATA_IN;
4767                         break;
4768                 case DMA_NONE:
4769                         control |= IOACCEL1_CONTROL_NODATAXFER;
4770                         break;
4771                 default:
4772                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4773                         cmd->sc_data_direction);
4774                         BUG();
4775                         break;
4776                 }
4777         } else {
4778                 control |= IOACCEL1_CONTROL_NODATAXFER;
4779         }
4780
4781         c->Header.SGList = use_sg;
4782         /* Fill out the command structure to submit */
4783         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4784         cp->transfer_len = cpu_to_le32(total_len);
4785         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4786                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4787         cp->control = cpu_to_le32(control);
4788         memcpy(cp->CDB, cdb, cdb_len);
4789         memcpy(cp->CISS_LUN, scsi3addr, 8);
4790         /* Tag was already set at init time. */
4791         enqueue_cmd_and_start_io(h, c);
4792         return 0;
4793 }
4794
4795 /*
4796  * Queue a command directly to a device behind the controller using the
4797  * I/O accelerator path.
4798  */
4799 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4800         struct CommandList *c)
4801 {
4802         struct scsi_cmnd *cmd = c->scsi_cmd;
4803         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4804
4805         if (!dev)
4806                 return -1;
4807
4808         c->phys_disk = dev;
4809
4810         if (dev->in_reset)
4811                 return -1;
4812
4813         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4814                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4815 }
4816
4817 /*
4818  * Set encryption parameters for the ioaccel2 request
4819  */
4820 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4821         struct CommandList *c, struct io_accel2_cmd *cp)
4822 {
4823         struct scsi_cmnd *cmd = c->scsi_cmd;
4824         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4825         struct raid_map_data *map = &dev->raid_map;
4826         u64 first_block;
4827
4828         /* Are we doing encryption on this device */
4829         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4830                 return;
4831         /* Set the data encryption key index. */
4832         cp->dekindex = map->dekindex;
4833
4834         /* Set the encryption enable flag, encoded into direction field. */
4835         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4836
4837         /* Set encryption tweak values based on logical block address
4838          * If block size is 512, tweak value is LBA.
4839          * For other block sizes, tweak is (LBA * block size)/ 512)
4840          */
4841         switch (cmd->cmnd[0]) {
4842         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4843         case READ_6:
4844         case WRITE_6:
4845                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4846                                 (cmd->cmnd[2] << 8) |
4847                                 cmd->cmnd[3]);
4848                 break;
4849         case WRITE_10:
4850         case READ_10:
4851         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4852         case WRITE_12:
4853         case READ_12:
4854                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4855                 break;
4856         case WRITE_16:
4857         case READ_16:
4858                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4859                 break;
4860         default:
4861                 dev_err(&h->pdev->dev,
4862                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4863                         __func__, cmd->cmnd[0]);
4864                 BUG();
4865                 break;
4866         }
4867
4868         if (le32_to_cpu(map->volume_blk_size) != 512)
4869                 first_block = first_block *
4870                                 le32_to_cpu(map->volume_blk_size)/512;
4871
4872         cp->tweak_lower = cpu_to_le32(first_block);
4873         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4874 }
4875
4876 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4877         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4878         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4879 {
4880         struct scsi_cmnd *cmd = c->scsi_cmd;
4881         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4882         struct ioaccel2_sg_element *curr_sg;
4883         int use_sg, i;
4884         struct scatterlist *sg;
4885         u64 addr64;
4886         u32 len;
4887         u32 total_len = 0;
4888
4889         if (!cmd->device)
4890                 return -1;
4891
4892         if (!cmd->device->hostdata)
4893                 return -1;
4894
4895         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4896
4897         if (is_zero_length_transfer(cdb)) {
4898                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4899                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4900                 return IO_ACCEL_INELIGIBLE;
4901         }
4902
4903         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4904                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4905                 return IO_ACCEL_INELIGIBLE;
4906         }
4907
4908         c->cmd_type = CMD_IOACCEL2;
4909         /* Adjust the DMA address to point to the accelerated command buffer */
4910         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4911                                 (c->cmdindex * sizeof(*cp));
4912         BUG_ON(c->busaddr & 0x0000007F);
4913
4914         memset(cp, 0, sizeof(*cp));
4915         cp->IU_type = IOACCEL2_IU_TYPE;
4916
4917         use_sg = scsi_dma_map(cmd);
4918         if (use_sg < 0) {
4919                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4920                 return use_sg;
4921         }
4922
4923         if (use_sg) {
4924                 curr_sg = cp->sg;
4925                 if (use_sg > h->ioaccel_maxsg) {
4926                         addr64 = le64_to_cpu(
4927                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4928                         curr_sg->address = cpu_to_le64(addr64);
4929                         curr_sg->length = 0;
4930                         curr_sg->reserved[0] = 0;
4931                         curr_sg->reserved[1] = 0;
4932                         curr_sg->reserved[2] = 0;
4933                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4934
4935                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4936                 }
4937                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4938                         addr64 = (u64) sg_dma_address(sg);
4939                         len  = sg_dma_len(sg);
4940                         total_len += len;
4941                         curr_sg->address = cpu_to_le64(addr64);
4942                         curr_sg->length = cpu_to_le32(len);
4943                         curr_sg->reserved[0] = 0;
4944                         curr_sg->reserved[1] = 0;
4945                         curr_sg->reserved[2] = 0;
4946                         curr_sg->chain_indicator = 0;
4947                         curr_sg++;
4948                 }
4949
4950                 /*
4951                  * Set the last s/g element bit
4952                  */
4953                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4954
4955                 switch (cmd->sc_data_direction) {
4956                 case DMA_TO_DEVICE:
4957                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4958                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4959                         break;
4960                 case DMA_FROM_DEVICE:
4961                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4962                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4963                         break;
4964                 case DMA_NONE:
4965                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4966                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4967                         break;
4968                 default:
4969                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4970                                 cmd->sc_data_direction);
4971                         BUG();
4972                         break;
4973                 }
4974         } else {
4975                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4976                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4977         }
4978
4979         /* Set encryption parameters, if necessary */
4980         set_encrypt_ioaccel2(h, c, cp);
4981
4982         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4983         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4984         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4985
4986         cp->data_len = cpu_to_le32(total_len);
4987         cp->err_ptr = cpu_to_le64(c->busaddr +
4988                         offsetof(struct io_accel2_cmd, error_data));
4989         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4990
4991         /* fill in sg elements */
4992         if (use_sg > h->ioaccel_maxsg) {
4993                 cp->sg_count = 1;
4994                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4995                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4996                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4997                         scsi_dma_unmap(cmd);
4998                         return -1;
4999                 }
5000         } else
5001                 cp->sg_count = (u8) use_sg;
5002
5003         if (phys_disk->in_reset) {
5004                 cmd->result = DID_RESET << 16;
5005                 return -1;
5006         }
5007
5008         enqueue_cmd_and_start_io(h, c);
5009         return 0;
5010 }
5011
5012 /*
5013  * Queue a command to the correct I/O accelerator path.
5014  */
5015 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5016         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5017         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5018 {
5019         if (!c->scsi_cmd->device)
5020                 return -1;
5021
5022         if (!c->scsi_cmd->device->hostdata)
5023                 return -1;
5024
5025         if (phys_disk->in_reset)
5026                 return -1;
5027
5028         /* Try to honor the device's queue depth */
5029         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5030                                         phys_disk->queue_depth) {
5031                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5032                 return IO_ACCEL_INELIGIBLE;
5033         }
5034         if (h->transMethod & CFGTBL_Trans_io_accel1)
5035                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5036                                                 cdb, cdb_len, scsi3addr,
5037                                                 phys_disk);
5038         else
5039                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5040                                                 cdb, cdb_len, scsi3addr,
5041                                                 phys_disk);
5042 }
5043
5044 static void raid_map_helper(struct raid_map_data *map,
5045                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5046 {
5047         if (offload_to_mirror == 0)  {
5048                 /* use physical disk in the first mirrored group. */
5049                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5050                 return;
5051         }
5052         do {
5053                 /* determine mirror group that *map_index indicates */
5054                 *current_group = *map_index /
5055                         le16_to_cpu(map->data_disks_per_row);
5056                 if (offload_to_mirror == *current_group)
5057                         continue;
5058                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5059                         /* select map index from next group */
5060                         *map_index += le16_to_cpu(map->data_disks_per_row);
5061                         (*current_group)++;
5062                 } else {
5063                         /* select map index from first group */
5064                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5065                         *current_group = 0;
5066                 }
5067         } while (offload_to_mirror != *current_group);
5068 }
5069
5070 /*
5071  * Attempt to perform offload RAID mapping for a logical volume I/O.
5072  */
5073 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5074         struct CommandList *c)
5075 {
5076         struct scsi_cmnd *cmd = c->scsi_cmd;
5077         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5078         struct raid_map_data *map = &dev->raid_map;
5079         struct raid_map_disk_data *dd = &map->data[0];
5080         int is_write = 0;
5081         u32 map_index;
5082         u64 first_block, last_block;
5083         u32 block_cnt;
5084         u32 blocks_per_row;
5085         u64 first_row, last_row;
5086         u32 first_row_offset, last_row_offset;
5087         u32 first_column, last_column;
5088         u64 r0_first_row, r0_last_row;
5089         u32 r5or6_blocks_per_row;
5090         u64 r5or6_first_row, r5or6_last_row;
5091         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5092         u32 r5or6_first_column, r5or6_last_column;
5093         u32 total_disks_per_row;
5094         u32 stripesize;
5095         u32 first_group, last_group, current_group;
5096         u32 map_row;
5097         u32 disk_handle;
5098         u64 disk_block;
5099         u32 disk_block_cnt;
5100         u8 cdb[16];
5101         u8 cdb_len;
5102         u16 strip_size;
5103 #if BITS_PER_LONG == 32
5104         u64 tmpdiv;
5105 #endif
5106         int offload_to_mirror;
5107
5108         if (!dev)
5109                 return -1;
5110
5111         if (dev->in_reset)
5112                 return -1;
5113
5114         /* check for valid opcode, get LBA and block count */
5115         switch (cmd->cmnd[0]) {
5116         case WRITE_6:
5117                 is_write = 1;
5118                 /* fall through */
5119         case READ_6:
5120                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5121                                 (cmd->cmnd[2] << 8) |
5122                                 cmd->cmnd[3]);
5123                 block_cnt = cmd->cmnd[4];
5124                 if (block_cnt == 0)
5125                         block_cnt = 256;
5126                 break;
5127         case WRITE_10:
5128                 is_write = 1;
5129                 /* fall through */
5130         case READ_10:
5131                 first_block =
5132                         (((u64) cmd->cmnd[2]) << 24) |
5133                         (((u64) cmd->cmnd[3]) << 16) |
5134                         (((u64) cmd->cmnd[4]) << 8) |
5135                         cmd->cmnd[5];
5136                 block_cnt =
5137                         (((u32) cmd->cmnd[7]) << 8) |
5138                         cmd->cmnd[8];
5139                 break;
5140         case WRITE_12:
5141                 is_write = 1;
5142                 /* fall through */
5143         case READ_12:
5144                 first_block =
5145                         (((u64) cmd->cmnd[2]) << 24) |
5146                         (((u64) cmd->cmnd[3]) << 16) |
5147                         (((u64) cmd->cmnd[4]) << 8) |
5148                         cmd->cmnd[5];
5149                 block_cnt =
5150                         (((u32) cmd->cmnd[6]) << 24) |
5151                         (((u32) cmd->cmnd[7]) << 16) |
5152                         (((u32) cmd->cmnd[8]) << 8) |
5153                 cmd->cmnd[9];
5154                 break;
5155         case WRITE_16:
5156                 is_write = 1;
5157                 /* fall through */
5158         case READ_16:
5159                 first_block =
5160                         (((u64) cmd->cmnd[2]) << 56) |
5161                         (((u64) cmd->cmnd[3]) << 48) |
5162                         (((u64) cmd->cmnd[4]) << 40) |
5163                         (((u64) cmd->cmnd[5]) << 32) |
5164                         (((u64) cmd->cmnd[6]) << 24) |
5165                         (((u64) cmd->cmnd[7]) << 16) |
5166                         (((u64) cmd->cmnd[8]) << 8) |
5167                         cmd->cmnd[9];
5168                 block_cnt =
5169                         (((u32) cmd->cmnd[10]) << 24) |
5170                         (((u32) cmd->cmnd[11]) << 16) |
5171                         (((u32) cmd->cmnd[12]) << 8) |
5172                         cmd->cmnd[13];
5173                 break;
5174         default:
5175                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5176         }
5177         last_block = first_block + block_cnt - 1;
5178
5179         /* check for write to non-RAID-0 */
5180         if (is_write && dev->raid_level != 0)
5181                 return IO_ACCEL_INELIGIBLE;
5182
5183         /* check for invalid block or wraparound */
5184         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5185                 last_block < first_block)
5186                 return IO_ACCEL_INELIGIBLE;
5187
5188         /* calculate stripe information for the request */
5189         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5190                                 le16_to_cpu(map->strip_size);
5191         strip_size = le16_to_cpu(map->strip_size);
5192 #if BITS_PER_LONG == 32
5193         tmpdiv = first_block;
5194         (void) do_div(tmpdiv, blocks_per_row);
5195         first_row = tmpdiv;
5196         tmpdiv = last_block;
5197         (void) do_div(tmpdiv, blocks_per_row);
5198         last_row = tmpdiv;
5199         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5200         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5201         tmpdiv = first_row_offset;
5202         (void) do_div(tmpdiv, strip_size);
5203         first_column = tmpdiv;
5204         tmpdiv = last_row_offset;
5205         (void) do_div(tmpdiv, strip_size);
5206         last_column = tmpdiv;
5207 #else
5208         first_row = first_block / blocks_per_row;
5209         last_row = last_block / blocks_per_row;
5210         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5211         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5212         first_column = first_row_offset / strip_size;
5213         last_column = last_row_offset / strip_size;
5214 #endif
5215
5216         /* if this isn't a single row/column then give to the controller */
5217         if ((first_row != last_row) || (first_column != last_column))
5218                 return IO_ACCEL_INELIGIBLE;
5219
5220         /* proceeding with driver mapping */
5221         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5222                                 le16_to_cpu(map->metadata_disks_per_row);
5223         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5224                                 le16_to_cpu(map->row_cnt);
5225         map_index = (map_row * total_disks_per_row) + first_column;
5226
5227         switch (dev->raid_level) {
5228         case HPSA_RAID_0:
5229                 break; /* nothing special to do */
5230         case HPSA_RAID_1:
5231                 /* Handles load balance across RAID 1 members.
5232                  * (2-drive R1 and R10 with even # of drives.)
5233                  * Appropriate for SSDs, not optimal for HDDs
5234                  */
5235                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5236                 if (dev->offload_to_mirror)
5237                         map_index += le16_to_cpu(map->data_disks_per_row);
5238                 dev->offload_to_mirror = !dev->offload_to_mirror;
5239                 break;
5240         case HPSA_RAID_ADM:
5241                 /* Handles N-way mirrors  (R1-ADM)
5242                  * and R10 with # of drives divisible by 3.)
5243                  */
5244                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5245
5246                 offload_to_mirror = dev->offload_to_mirror;
5247                 raid_map_helper(map, offload_to_mirror,
5248                                 &map_index, &current_group);
5249                 /* set mirror group to use next time */
5250                 offload_to_mirror =
5251                         (offload_to_mirror >=
5252                         le16_to_cpu(map->layout_map_count) - 1)
5253                         ? 0 : offload_to_mirror + 1;
5254                 dev->offload_to_mirror = offload_to_mirror;
5255                 /* Avoid direct use of dev->offload_to_mirror within this
5256                  * function since multiple threads might simultaneously
5257                  * increment it beyond the range of dev->layout_map_count -1.
5258                  */
5259                 break;
5260         case HPSA_RAID_5:
5261         case HPSA_RAID_6:
5262                 if (le16_to_cpu(map->layout_map_count) <= 1)
5263                         break;
5264
5265                 /* Verify first and last block are in same RAID group */
5266                 r5or6_blocks_per_row =
5267                         le16_to_cpu(map->strip_size) *
5268                         le16_to_cpu(map->data_disks_per_row);
5269                 BUG_ON(r5or6_blocks_per_row == 0);
5270                 stripesize = r5or6_blocks_per_row *
5271                         le16_to_cpu(map->layout_map_count);
5272 #if BITS_PER_LONG == 32
5273                 tmpdiv = first_block;
5274                 first_group = do_div(tmpdiv, stripesize);
5275                 tmpdiv = first_group;
5276                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5277                 first_group = tmpdiv;
5278                 tmpdiv = last_block;
5279                 last_group = do_div(tmpdiv, stripesize);
5280                 tmpdiv = last_group;
5281                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5282                 last_group = tmpdiv;
5283 #else
5284                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5285                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5286 #endif
5287                 if (first_group != last_group)
5288                         return IO_ACCEL_INELIGIBLE;
5289
5290                 /* Verify request is in a single row of RAID 5/6 */
5291 #if BITS_PER_LONG == 32
5292                 tmpdiv = first_block;
5293                 (void) do_div(tmpdiv, stripesize);
5294                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5295                 tmpdiv = last_block;
5296                 (void) do_div(tmpdiv, stripesize);
5297                 r5or6_last_row = r0_last_row = tmpdiv;
5298 #else
5299                 first_row = r5or6_first_row = r0_first_row =
5300                                                 first_block / stripesize;
5301                 r5or6_last_row = r0_last_row = last_block / stripesize;
5302 #endif
5303                 if (r5or6_first_row != r5or6_last_row)
5304                         return IO_ACCEL_INELIGIBLE;
5305
5306
5307                 /* Verify request is in a single column */
5308 #if BITS_PER_LONG == 32
5309                 tmpdiv = first_block;
5310                 first_row_offset = do_div(tmpdiv, stripesize);
5311                 tmpdiv = first_row_offset;
5312                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5313                 r5or6_first_row_offset = first_row_offset;
5314                 tmpdiv = last_block;
5315                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5316                 tmpdiv = r5or6_last_row_offset;
5317                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5318                 tmpdiv = r5or6_first_row_offset;
5319                 (void) do_div(tmpdiv, map->strip_size);
5320                 first_column = r5or6_first_column = tmpdiv;
5321                 tmpdiv = r5or6_last_row_offset;
5322                 (void) do_div(tmpdiv, map->strip_size);
5323                 r5or6_last_column = tmpdiv;
5324 #else
5325                 first_row_offset = r5or6_first_row_offset =
5326                         (u32)((first_block % stripesize) %
5327                                                 r5or6_blocks_per_row);
5328
5329                 r5or6_last_row_offset =
5330                         (u32)((last_block % stripesize) %
5331                                                 r5or6_blocks_per_row);
5332
5333                 first_column = r5or6_first_column =
5334                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5335                 r5or6_last_column =
5336                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5337 #endif
5338                 if (r5or6_first_column != r5or6_last_column)
5339                         return IO_ACCEL_INELIGIBLE;
5340
5341                 /* Request is eligible */
5342                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5343                         le16_to_cpu(map->row_cnt);
5344
5345                 map_index = (first_group *
5346                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5347                         (map_row * total_disks_per_row) + first_column;
5348                 break;
5349         default:
5350                 return IO_ACCEL_INELIGIBLE;
5351         }
5352
5353         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5354                 return IO_ACCEL_INELIGIBLE;
5355
5356         c->phys_disk = dev->phys_disk[map_index];
5357         if (!c->phys_disk)
5358                 return IO_ACCEL_INELIGIBLE;
5359
5360         disk_handle = dd[map_index].ioaccel_handle;
5361         disk_block = le64_to_cpu(map->disk_starting_blk) +
5362                         first_row * le16_to_cpu(map->strip_size) +
5363                         (first_row_offset - first_column *
5364                         le16_to_cpu(map->strip_size));
5365         disk_block_cnt = block_cnt;
5366
5367         /* handle differing logical/physical block sizes */
5368         if (map->phys_blk_shift) {
5369                 disk_block <<= map->phys_blk_shift;
5370                 disk_block_cnt <<= map->phys_blk_shift;
5371         }
5372         BUG_ON(disk_block_cnt > 0xffff);
5373
5374         /* build the new CDB for the physical disk I/O */
5375         if (disk_block > 0xffffffff) {
5376                 cdb[0] = is_write ? WRITE_16 : READ_16;
5377                 cdb[1] = 0;
5378                 cdb[2] = (u8) (disk_block >> 56);
5379                 cdb[3] = (u8) (disk_block >> 48);
5380                 cdb[4] = (u8) (disk_block >> 40);
5381                 cdb[5] = (u8) (disk_block >> 32);
5382                 cdb[6] = (u8) (disk_block >> 24);
5383                 cdb[7] = (u8) (disk_block >> 16);
5384                 cdb[8] = (u8) (disk_block >> 8);
5385                 cdb[9] = (u8) (disk_block);
5386                 cdb[10] = (u8) (disk_block_cnt >> 24);
5387                 cdb[11] = (u8) (disk_block_cnt >> 16);
5388                 cdb[12] = (u8) (disk_block_cnt >> 8);
5389                 cdb[13] = (u8) (disk_block_cnt);
5390                 cdb[14] = 0;
5391                 cdb[15] = 0;
5392                 cdb_len = 16;
5393         } else {
5394                 cdb[0] = is_write ? WRITE_10 : READ_10;
5395                 cdb[1] = 0;
5396                 cdb[2] = (u8) (disk_block >> 24);
5397                 cdb[3] = (u8) (disk_block >> 16);
5398                 cdb[4] = (u8) (disk_block >> 8);
5399                 cdb[5] = (u8) (disk_block);
5400                 cdb[6] = 0;
5401                 cdb[7] = (u8) (disk_block_cnt >> 8);
5402                 cdb[8] = (u8) (disk_block_cnt);
5403                 cdb[9] = 0;
5404                 cdb_len = 10;
5405         }
5406         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5407                                                 dev->scsi3addr,
5408                                                 dev->phys_disk[map_index]);
5409 }
5410
5411 /*
5412  * Submit commands down the "normal" RAID stack path
5413  * All callers to hpsa_ciss_submit must check lockup_detected
5414  * beforehand, before (opt.) and after calling cmd_alloc
5415  */
5416 static int hpsa_ciss_submit(struct ctlr_info *h,
5417         struct CommandList *c, struct scsi_cmnd *cmd,
5418         struct hpsa_scsi_dev_t *dev)
5419 {
5420         cmd->host_scribble = (unsigned char *) c;
5421         c->cmd_type = CMD_SCSI;
5422         c->scsi_cmd = cmd;
5423         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5424         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5425         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5426
5427         /* Fill in the request block... */
5428
5429         c->Request.Timeout = 0;
5430         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5431         c->Request.CDBLen = cmd->cmd_len;
5432         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5433         switch (cmd->sc_data_direction) {
5434         case DMA_TO_DEVICE:
5435                 c->Request.type_attr_dir =
5436                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5437                 break;
5438         case DMA_FROM_DEVICE:
5439                 c->Request.type_attr_dir =
5440                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5441                 break;
5442         case DMA_NONE:
5443                 c->Request.type_attr_dir =
5444                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5445                 break;
5446         case DMA_BIDIRECTIONAL:
5447                 /* This can happen if a buggy application does a scsi passthru
5448                  * and sets both inlen and outlen to non-zero. ( see
5449                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5450                  */
5451
5452                 c->Request.type_attr_dir =
5453                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5454                 /* This is technically wrong, and hpsa controllers should
5455                  * reject it with CMD_INVALID, which is the most correct
5456                  * response, but non-fibre backends appear to let it
5457                  * slide by, and give the same results as if this field
5458                  * were set correctly.  Either way is acceptable for
5459                  * our purposes here.
5460                  */
5461
5462                 break;
5463
5464         default:
5465                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5466                         cmd->sc_data_direction);
5467                 BUG();
5468                 break;
5469         }
5470
5471         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5472                 hpsa_cmd_resolve_and_free(h, c);
5473                 return SCSI_MLQUEUE_HOST_BUSY;
5474         }
5475
5476         if (dev->in_reset) {
5477                 hpsa_cmd_resolve_and_free(h, c);
5478                 return SCSI_MLQUEUE_HOST_BUSY;
5479         }
5480
5481         enqueue_cmd_and_start_io(h, c);
5482         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5483         return 0;
5484 }
5485
5486 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5487                                 struct CommandList *c)
5488 {
5489         dma_addr_t cmd_dma_handle, err_dma_handle;
5490
5491         /* Zero out all of commandlist except the last field, refcount */
5492         memset(c, 0, offsetof(struct CommandList, refcount));
5493         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5494         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5495         c->err_info = h->errinfo_pool + index;
5496         memset(c->err_info, 0, sizeof(*c->err_info));
5497         err_dma_handle = h->errinfo_pool_dhandle
5498             + index * sizeof(*c->err_info);
5499         c->cmdindex = index;
5500         c->busaddr = (u32) cmd_dma_handle;
5501         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5502         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5503         c->h = h;
5504         c->scsi_cmd = SCSI_CMD_IDLE;
5505 }
5506
5507 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5508 {
5509         int i;
5510
5511         for (i = 0; i < h->nr_cmds; i++) {
5512                 struct CommandList *c = h->cmd_pool + i;
5513
5514                 hpsa_cmd_init(h, i, c);
5515                 atomic_set(&c->refcount, 0);
5516         }
5517 }
5518
5519 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5520                                 struct CommandList *c)
5521 {
5522         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5523
5524         BUG_ON(c->cmdindex != index);
5525
5526         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5527         memset(c->err_info, 0, sizeof(*c->err_info));
5528         c->busaddr = (u32) cmd_dma_handle;
5529 }
5530
5531 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5532                 struct CommandList *c, struct scsi_cmnd *cmd)
5533 {
5534         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5535         int rc = IO_ACCEL_INELIGIBLE;
5536
5537         if (!dev)
5538                 return SCSI_MLQUEUE_HOST_BUSY;
5539
5540         if (dev->in_reset)
5541                 return SCSI_MLQUEUE_HOST_BUSY;
5542
5543         if (hpsa_simple_mode)
5544                 return IO_ACCEL_INELIGIBLE;
5545
5546         cmd->host_scribble = (unsigned char *) c;
5547
5548         if (dev->offload_enabled) {
5549                 hpsa_cmd_init(h, c->cmdindex, c);
5550                 c->cmd_type = CMD_SCSI;
5551                 c->scsi_cmd = cmd;
5552                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5553                 if (rc < 0)     /* scsi_dma_map failed. */
5554                         rc = SCSI_MLQUEUE_HOST_BUSY;
5555         } else if (dev->hba_ioaccel_enabled) {
5556                 hpsa_cmd_init(h, c->cmdindex, c);
5557                 c->cmd_type = CMD_SCSI;
5558                 c->scsi_cmd = cmd;
5559                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5560                 if (rc < 0)     /* scsi_dma_map failed. */
5561                         rc = SCSI_MLQUEUE_HOST_BUSY;
5562         }
5563         return rc;
5564 }
5565
5566 static void hpsa_command_resubmit_worker(struct work_struct *work)
5567 {
5568         struct scsi_cmnd *cmd;
5569         struct hpsa_scsi_dev_t *dev;
5570         struct CommandList *c = container_of(work, struct CommandList, work);
5571
5572         cmd = c->scsi_cmd;
5573         dev = cmd->device->hostdata;
5574         if (!dev) {
5575                 cmd->result = DID_NO_CONNECT << 16;
5576                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5577         }
5578
5579         if (dev->in_reset) {
5580                 cmd->result = DID_RESET << 16;
5581                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5582         }
5583
5584         if (c->cmd_type == CMD_IOACCEL2) {
5585                 struct ctlr_info *h = c->h;
5586                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5587                 int rc;
5588
5589                 if (c2->error_data.serv_response ==
5590                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5591                         rc = hpsa_ioaccel_submit(h, c, cmd);
5592                         if (rc == 0)
5593                                 return;
5594                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5595                                 /*
5596                                  * If we get here, it means dma mapping failed.
5597                                  * Try again via scsi mid layer, which will
5598                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5599                                  */
5600                                 cmd->result = DID_IMM_RETRY << 16;
5601                                 return hpsa_cmd_free_and_done(h, c, cmd);
5602                         }
5603                         /* else, fall thru and resubmit down CISS path */
5604                 }
5605         }
5606         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5607         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5608                 /*
5609                  * If we get here, it means dma mapping failed. Try
5610                  * again via scsi mid layer, which will then get
5611                  * SCSI_MLQUEUE_HOST_BUSY.
5612                  *
5613                  * hpsa_ciss_submit will have already freed c
5614                  * if it encountered a dma mapping failure.
5615                  */
5616                 cmd->result = DID_IMM_RETRY << 16;
5617                 cmd->scsi_done(cmd);
5618         }
5619 }
5620
5621 /* Running in struct Scsi_Host->host_lock less mode */
5622 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5623 {
5624         struct ctlr_info *h;
5625         struct hpsa_scsi_dev_t *dev;
5626         struct CommandList *c;
5627         int rc = 0;
5628
5629         /* Get the ptr to our adapter structure out of cmd->host. */
5630         h = sdev_to_hba(cmd->device);
5631
5632         BUG_ON(cmd->request->tag < 0);
5633
5634         dev = cmd->device->hostdata;
5635         if (!dev) {
5636                 cmd->result = DID_NO_CONNECT << 16;
5637                 cmd->scsi_done(cmd);
5638                 return 0;
5639         }
5640
5641         if (dev->removed) {
5642                 cmd->result = DID_NO_CONNECT << 16;
5643                 cmd->scsi_done(cmd);
5644                 return 0;
5645         }
5646
5647         if (unlikely(lockup_detected(h))) {
5648                 cmd->result = DID_NO_CONNECT << 16;
5649                 cmd->scsi_done(cmd);
5650                 return 0;
5651         }
5652
5653         if (dev->in_reset)
5654                 return SCSI_MLQUEUE_DEVICE_BUSY;
5655
5656         c = cmd_tagged_alloc(h, cmd);
5657         if (c == NULL)
5658                 return SCSI_MLQUEUE_DEVICE_BUSY;
5659
5660         /*
5661          * This is necessary because the SML doesn't zero out this field during
5662          * error recovery.
5663          */
5664         cmd->result = 0;
5665
5666         /*
5667          * Call alternate submit routine for I/O accelerated commands.
5668          * Retries always go down the normal I/O path.
5669          */
5670         if (likely(cmd->retries == 0 &&
5671                         !blk_rq_is_passthrough(cmd->request) &&
5672                         h->acciopath_status)) {
5673                 rc = hpsa_ioaccel_submit(h, c, cmd);
5674                 if (rc == 0)
5675                         return 0;
5676                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5677                         hpsa_cmd_resolve_and_free(h, c);
5678                         return SCSI_MLQUEUE_HOST_BUSY;
5679                 }
5680         }
5681         return hpsa_ciss_submit(h, c, cmd, dev);
5682 }
5683
5684 static void hpsa_scan_complete(struct ctlr_info *h)
5685 {
5686         unsigned long flags;
5687
5688         spin_lock_irqsave(&h->scan_lock, flags);
5689         h->scan_finished = 1;
5690         wake_up(&h->scan_wait_queue);
5691         spin_unlock_irqrestore(&h->scan_lock, flags);
5692 }
5693
5694 static void hpsa_scan_start(struct Scsi_Host *sh)
5695 {
5696         struct ctlr_info *h = shost_to_hba(sh);
5697         unsigned long flags;
5698
5699         /*
5700          * Don't let rescans be initiated on a controller known to be locked
5701          * up.  If the controller locks up *during* a rescan, that thread is
5702          * probably hosed, but at least we can prevent new rescan threads from
5703          * piling up on a locked up controller.
5704          */
5705         if (unlikely(lockup_detected(h)))
5706                 return hpsa_scan_complete(h);
5707
5708         /*
5709          * If a scan is already waiting to run, no need to add another
5710          */
5711         spin_lock_irqsave(&h->scan_lock, flags);
5712         if (h->scan_waiting) {
5713                 spin_unlock_irqrestore(&h->scan_lock, flags);
5714                 return;
5715         }
5716
5717         spin_unlock_irqrestore(&h->scan_lock, flags);
5718
5719         /* wait until any scan already in progress is finished. */
5720         while (1) {
5721                 spin_lock_irqsave(&h->scan_lock, flags);
5722                 if (h->scan_finished)
5723                         break;
5724                 h->scan_waiting = 1;
5725                 spin_unlock_irqrestore(&h->scan_lock, flags);
5726                 wait_event(h->scan_wait_queue, h->scan_finished);
5727                 /* Note: We don't need to worry about a race between this
5728                  * thread and driver unload because the midlayer will
5729                  * have incremented the reference count, so unload won't
5730                  * happen if we're in here.
5731                  */
5732         }
5733         h->scan_finished = 0; /* mark scan as in progress */
5734         h->scan_waiting = 0;
5735         spin_unlock_irqrestore(&h->scan_lock, flags);
5736
5737         if (unlikely(lockup_detected(h)))
5738                 return hpsa_scan_complete(h);
5739
5740         /*
5741          * Do the scan after a reset completion
5742          */
5743         spin_lock_irqsave(&h->reset_lock, flags);
5744         if (h->reset_in_progress) {
5745                 h->drv_req_rescan = 1;
5746                 spin_unlock_irqrestore(&h->reset_lock, flags);
5747                 hpsa_scan_complete(h);
5748                 return;
5749         }
5750         spin_unlock_irqrestore(&h->reset_lock, flags);
5751
5752         hpsa_update_scsi_devices(h);
5753
5754         hpsa_scan_complete(h);
5755 }
5756
5757 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5758 {
5759         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5760
5761         if (!logical_drive)
5762                 return -ENODEV;
5763
5764         if (qdepth < 1)
5765                 qdepth = 1;
5766         else if (qdepth > logical_drive->queue_depth)
5767                 qdepth = logical_drive->queue_depth;
5768
5769         return scsi_change_queue_depth(sdev, qdepth);
5770 }
5771
5772 static int hpsa_scan_finished(struct Scsi_Host *sh,
5773         unsigned long elapsed_time)
5774 {
5775         struct ctlr_info *h = shost_to_hba(sh);
5776         unsigned long flags;
5777         int finished;
5778
5779         spin_lock_irqsave(&h->scan_lock, flags);
5780         finished = h->scan_finished;
5781         spin_unlock_irqrestore(&h->scan_lock, flags);
5782         return finished;
5783 }
5784
5785 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5786 {
5787         struct Scsi_Host *sh;
5788
5789         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5790         if (sh == NULL) {
5791                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5792                 return -ENOMEM;
5793         }
5794
5795         sh->io_port = 0;
5796         sh->n_io_port = 0;
5797         sh->this_id = -1;
5798         sh->max_channel = 3;
5799         sh->max_cmd_len = MAX_COMMAND_SIZE;
5800         sh->max_lun = HPSA_MAX_LUN;
5801         sh->max_id = HPSA_MAX_LUN;
5802         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5803         sh->cmd_per_lun = sh->can_queue;
5804         sh->sg_tablesize = h->maxsgentries;
5805         sh->transportt = hpsa_sas_transport_template;
5806         sh->hostdata[0] = (unsigned long) h;
5807         sh->irq = pci_irq_vector(h->pdev, 0);
5808         sh->unique_id = sh->irq;
5809
5810         h->scsi_host = sh;
5811         return 0;
5812 }
5813
5814 static int hpsa_scsi_add_host(struct ctlr_info *h)
5815 {
5816         int rv;
5817
5818         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5819         if (rv) {
5820                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5821                 return rv;
5822         }
5823         scsi_scan_host(h->scsi_host);
5824         return 0;
5825 }
5826
5827 /*
5828  * The block layer has already gone to the trouble of picking out a unique,
5829  * small-integer tag for this request.  We use an offset from that value as
5830  * an index to select our command block.  (The offset allows us to reserve the
5831  * low-numbered entries for our own uses.)
5832  */
5833 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5834 {
5835         int idx = scmd->request->tag;
5836
5837         if (idx < 0)
5838                 return idx;
5839
5840         /* Offset to leave space for internal cmds. */
5841         return idx += HPSA_NRESERVED_CMDS;
5842 }
5843
5844 /*
5845  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5846  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5847  */
5848 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5849                                 struct CommandList *c, unsigned char lunaddr[],
5850                                 int reply_queue)
5851 {
5852         int rc;
5853
5854         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5855         (void) fill_cmd(c, TEST_UNIT_READY, h,
5856                         NULL, 0, 0, lunaddr, TYPE_CMD);
5857         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5858         if (rc)
5859                 return rc;
5860         /* no unmap needed here because no data xfer. */
5861
5862         /* Check if the unit is already ready. */
5863         if (c->err_info->CommandStatus == CMD_SUCCESS)
5864                 return 0;
5865
5866         /*
5867          * The first command sent after reset will receive "unit attention" to
5868          * indicate that the LUN has been reset...this is actually what we're
5869          * looking for (but, success is good too).
5870          */
5871         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5872                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5873                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5874                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5875                 return 0;
5876
5877         return 1;
5878 }
5879
5880 /*
5881  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5882  * returns zero when the unit is ready, and non-zero when giving up.
5883  */
5884 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5885                                 struct CommandList *c,
5886                                 unsigned char lunaddr[], int reply_queue)
5887 {
5888         int rc;
5889         int count = 0;
5890         int waittime = 1; /* seconds */
5891
5892         /* Send test unit ready until device ready, or give up. */
5893         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5894
5895                 /*
5896                  * Wait for a bit.  do this first, because if we send
5897                  * the TUR right away, the reset will just abort it.
5898                  */
5899                 msleep(1000 * waittime);
5900
5901                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5902                 if (!rc)
5903                         break;
5904
5905                 /* Increase wait time with each try, up to a point. */
5906                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5907                         waittime *= 2;
5908
5909                 dev_warn(&h->pdev->dev,
5910                          "waiting %d secs for device to become ready.\n",
5911                          waittime);
5912         }
5913
5914         return rc;
5915 }
5916
5917 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5918                                            unsigned char lunaddr[],
5919                                            int reply_queue)
5920 {
5921         int first_queue;
5922         int last_queue;
5923         int rq;
5924         int rc = 0;
5925         struct CommandList *c;
5926
5927         c = cmd_alloc(h);
5928
5929         /*
5930          * If no specific reply queue was requested, then send the TUR
5931          * repeatedly, requesting a reply on each reply queue; otherwise execute
5932          * the loop exactly once using only the specified queue.
5933          */
5934         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5935                 first_queue = 0;
5936                 last_queue = h->nreply_queues - 1;
5937         } else {
5938                 first_queue = reply_queue;
5939                 last_queue = reply_queue;
5940         }
5941
5942         for (rq = first_queue; rq <= last_queue; rq++) {
5943                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5944                 if (rc)
5945                         break;
5946         }
5947
5948         if (rc)
5949                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5950         else
5951                 dev_warn(&h->pdev->dev, "device is ready.\n");
5952
5953         cmd_free(h, c);
5954         return rc;
5955 }
5956
5957 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5958  * complaining.  Doing a host- or bus-reset can't do anything good here.
5959  */
5960 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5961 {
5962         int rc = SUCCESS;
5963         int i;
5964         struct ctlr_info *h;
5965         struct hpsa_scsi_dev_t *dev = NULL;
5966         u8 reset_type;
5967         char msg[48];
5968         unsigned long flags;
5969
5970         /* find the controller to which the command to be aborted was sent */
5971         h = sdev_to_hba(scsicmd->device);
5972         if (h == NULL) /* paranoia */
5973                 return FAILED;
5974
5975         spin_lock_irqsave(&h->reset_lock, flags);
5976         h->reset_in_progress = 1;
5977         spin_unlock_irqrestore(&h->reset_lock, flags);
5978
5979         if (lockup_detected(h)) {
5980                 rc = FAILED;
5981                 goto return_reset_status;
5982         }
5983
5984         dev = scsicmd->device->hostdata;
5985         if (!dev) {
5986                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5987                 rc = FAILED;
5988                 goto return_reset_status;
5989         }
5990
5991         if (dev->devtype == TYPE_ENCLOSURE) {
5992                 rc = SUCCESS;
5993                 goto return_reset_status;
5994         }
5995
5996         /* if controller locked up, we can guarantee command won't complete */
5997         if (lockup_detected(h)) {
5998                 snprintf(msg, sizeof(msg),
5999                          "cmd %d RESET FAILED, lockup detected",
6000                          hpsa_get_cmd_index(scsicmd));
6001                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6002                 rc = FAILED;
6003                 goto return_reset_status;
6004         }
6005
6006         /* this reset request might be the result of a lockup; check */
6007         if (detect_controller_lockup(h)) {
6008                 snprintf(msg, sizeof(msg),
6009                          "cmd %d RESET FAILED, new lockup detected",
6010                          hpsa_get_cmd_index(scsicmd));
6011                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6012                 rc = FAILED;
6013                 goto return_reset_status;
6014         }
6015
6016         /* Do not attempt on controller */
6017         if (is_hba_lunid(dev->scsi3addr)) {
6018                 rc = SUCCESS;
6019                 goto return_reset_status;
6020         }
6021
6022         if (is_logical_dev_addr_mode(dev->scsi3addr))
6023                 reset_type = HPSA_DEVICE_RESET_MSG;
6024         else
6025                 reset_type = HPSA_PHYS_TARGET_RESET;
6026
6027         sprintf(msg, "resetting %s",
6028                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6029         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6030
6031         /*
6032          * wait to see if any commands will complete before sending reset
6033          */
6034         dev->in_reset = true; /* block any new cmds from OS for this device */
6035         for (i = 0; i < 10; i++) {
6036                 if (atomic_read(&dev->commands_outstanding) > 0)
6037                         msleep(1000);
6038                 else
6039                         break;
6040         }
6041
6042         /* send a reset to the SCSI LUN which the command was sent to */
6043         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6044         if (rc == 0)
6045                 rc = SUCCESS;
6046         else
6047                 rc = FAILED;
6048
6049         sprintf(msg, "reset %s %s",
6050                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6051                 rc == SUCCESS ? "completed successfully" : "failed");
6052         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6053
6054 return_reset_status:
6055         spin_lock_irqsave(&h->reset_lock, flags);
6056         h->reset_in_progress = 0;
6057         if (dev)
6058                 dev->in_reset = false;
6059         spin_unlock_irqrestore(&h->reset_lock, flags);
6060         return rc;
6061 }
6062
6063 /*
6064  * For operations with an associated SCSI command, a command block is allocated
6065  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6066  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6067  * the complement, although cmd_free() may be called instead.
6068  */
6069 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6070                                             struct scsi_cmnd *scmd)
6071 {
6072         int idx = hpsa_get_cmd_index(scmd);
6073         struct CommandList *c = h->cmd_pool + idx;
6074
6075         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6076                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6077                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6078                 /* The index value comes from the block layer, so if it's out of
6079                  * bounds, it's probably not our bug.
6080                  */
6081                 BUG();
6082         }
6083
6084         if (unlikely(!hpsa_is_cmd_idle(c))) {
6085                 /*
6086                  * We expect that the SCSI layer will hand us a unique tag
6087                  * value.  Thus, there should never be a collision here between
6088                  * two requests...because if the selected command isn't idle
6089                  * then someone is going to be very disappointed.
6090                  */
6091                 if (idx != h->last_collision_tag) { /* Print once per tag */
6092                         dev_warn(&h->pdev->dev,
6093                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6094                         if (scmd)
6095                                 scsi_print_command(scmd);
6096                         h->last_collision_tag = idx;
6097                 }
6098                 return NULL;
6099         }
6100
6101         atomic_inc(&c->refcount);
6102
6103         hpsa_cmd_partial_init(h, idx, c);
6104         return c;
6105 }
6106
6107 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6108 {
6109         /*
6110          * Release our reference to the block.  We don't need to do anything
6111          * else to free it, because it is accessed by index.
6112          */
6113         (void)atomic_dec(&c->refcount);
6114 }
6115
6116 /*
6117  * For operations that cannot sleep, a command block is allocated at init,
6118  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6119  * which ones are free or in use.  Lock must be held when calling this.
6120  * cmd_free() is the complement.
6121  * This function never gives up and returns NULL.  If it hangs,
6122  * another thread must call cmd_free() to free some tags.
6123  */
6124
6125 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6126 {
6127         struct CommandList *c;
6128         int refcount, i;
6129         int offset = 0;
6130
6131         /*
6132          * There is some *extremely* small but non-zero chance that that
6133          * multiple threads could get in here, and one thread could
6134          * be scanning through the list of bits looking for a free
6135          * one, but the free ones are always behind him, and other
6136          * threads sneak in behind him and eat them before he can
6137          * get to them, so that while there is always a free one, a
6138          * very unlucky thread might be starved anyway, never able to
6139          * beat the other threads.  In reality, this happens so
6140          * infrequently as to be indistinguishable from never.
6141          *
6142          * Note that we start allocating commands before the SCSI host structure
6143          * is initialized.  Since the search starts at bit zero, this
6144          * all works, since we have at least one command structure available;
6145          * however, it means that the structures with the low indexes have to be
6146          * reserved for driver-initiated requests, while requests from the block
6147          * layer will use the higher indexes.
6148          */
6149
6150         for (;;) {
6151                 i = find_next_zero_bit(h->cmd_pool_bits,
6152                                         HPSA_NRESERVED_CMDS,
6153                                         offset);
6154                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6155                         offset = 0;
6156                         continue;
6157                 }
6158                 c = h->cmd_pool + i;
6159                 refcount = atomic_inc_return(&c->refcount);
6160                 if (unlikely(refcount > 1)) {
6161                         cmd_free(h, c); /* already in use */
6162                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6163                         continue;
6164                 }
6165                 set_bit(i & (BITS_PER_LONG - 1),
6166                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6167                 break; /* it's ours now. */
6168         }
6169         hpsa_cmd_partial_init(h, i, c);
6170         c->device = NULL;
6171         return c;
6172 }
6173
6174 /*
6175  * This is the complementary operation to cmd_alloc().  Note, however, in some
6176  * corner cases it may also be used to free blocks allocated by
6177  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6178  * the clear-bit is harmless.
6179  */
6180 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6181 {
6182         if (atomic_dec_and_test(&c->refcount)) {
6183                 int i;
6184
6185                 i = c - h->cmd_pool;
6186                 clear_bit(i & (BITS_PER_LONG - 1),
6187                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6188         }
6189 }
6190
6191 #ifdef CONFIG_COMPAT
6192
6193 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6194         void __user *arg)
6195 {
6196         IOCTL32_Command_struct __user *arg32 =
6197             (IOCTL32_Command_struct __user *) arg;
6198         IOCTL_Command_struct arg64;
6199         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6200         int err;
6201         u32 cp;
6202
6203         memset(&arg64, 0, sizeof(arg64));
6204         err = 0;
6205         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6206                            sizeof(arg64.LUN_info));
6207         err |= copy_from_user(&arg64.Request, &arg32->Request,
6208                            sizeof(arg64.Request));
6209         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6210                            sizeof(arg64.error_info));
6211         err |= get_user(arg64.buf_size, &arg32->buf_size);
6212         err |= get_user(cp, &arg32->buf);
6213         arg64.buf = compat_ptr(cp);
6214         err |= copy_to_user(p, &arg64, sizeof(arg64));
6215
6216         if (err)
6217                 return -EFAULT;
6218
6219         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6220         if (err)
6221                 return err;
6222         err |= copy_in_user(&arg32->error_info, &p->error_info,
6223                          sizeof(arg32->error_info));
6224         if (err)
6225                 return -EFAULT;
6226         return err;
6227 }
6228
6229 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6230         unsigned int cmd, void __user *arg)
6231 {
6232         BIG_IOCTL32_Command_struct __user *arg32 =
6233             (BIG_IOCTL32_Command_struct __user *) arg;
6234         BIG_IOCTL_Command_struct arg64;
6235         BIG_IOCTL_Command_struct __user *p =
6236             compat_alloc_user_space(sizeof(arg64));
6237         int err;
6238         u32 cp;
6239
6240         memset(&arg64, 0, sizeof(arg64));
6241         err = 0;
6242         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6243                            sizeof(arg64.LUN_info));
6244         err |= copy_from_user(&arg64.Request, &arg32->Request,
6245                            sizeof(arg64.Request));
6246         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6247                            sizeof(arg64.error_info));
6248         err |= get_user(arg64.buf_size, &arg32->buf_size);
6249         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6250         err |= get_user(cp, &arg32->buf);
6251         arg64.buf = compat_ptr(cp);
6252         err |= copy_to_user(p, &arg64, sizeof(arg64));
6253
6254         if (err)
6255                 return -EFAULT;
6256
6257         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6258         if (err)
6259                 return err;
6260         err |= copy_in_user(&arg32->error_info, &p->error_info,
6261                          sizeof(arg32->error_info));
6262         if (err)
6263                 return -EFAULT;
6264         return err;
6265 }
6266
6267 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6268                              void __user *arg)
6269 {
6270         switch (cmd) {
6271         case CCISS_GETPCIINFO:
6272         case CCISS_GETINTINFO:
6273         case CCISS_SETINTINFO:
6274         case CCISS_GETNODENAME:
6275         case CCISS_SETNODENAME:
6276         case CCISS_GETHEARTBEAT:
6277         case CCISS_GETBUSTYPES:
6278         case CCISS_GETFIRMVER:
6279         case CCISS_GETDRIVVER:
6280         case CCISS_REVALIDVOLS:
6281         case CCISS_DEREGDISK:
6282         case CCISS_REGNEWDISK:
6283         case CCISS_REGNEWD:
6284         case CCISS_RESCANDISK:
6285         case CCISS_GETLUNINFO:
6286                 return hpsa_ioctl(dev, cmd, arg);
6287
6288         case CCISS_PASSTHRU32:
6289                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6290         case CCISS_BIG_PASSTHRU32:
6291                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6292
6293         default:
6294                 return -ENOIOCTLCMD;
6295         }
6296 }
6297 #endif
6298
6299 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6300 {
6301         struct hpsa_pci_info pciinfo;
6302
6303         if (!argp)
6304                 return -EINVAL;
6305         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6306         pciinfo.bus = h->pdev->bus->number;
6307         pciinfo.dev_fn = h->pdev->devfn;
6308         pciinfo.board_id = h->board_id;
6309         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6310                 return -EFAULT;
6311         return 0;
6312 }
6313
6314 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6315 {
6316         DriverVer_type DriverVer;
6317         unsigned char vmaj, vmin, vsubmin;
6318         int rc;
6319
6320         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6321                 &vmaj, &vmin, &vsubmin);
6322         if (rc != 3) {
6323                 dev_info(&h->pdev->dev, "driver version string '%s' "
6324                         "unrecognized.", HPSA_DRIVER_VERSION);
6325                 vmaj = 0;
6326                 vmin = 0;
6327                 vsubmin = 0;
6328         }
6329         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6330         if (!argp)
6331                 return -EINVAL;
6332         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6333                 return -EFAULT;
6334         return 0;
6335 }
6336
6337 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6338 {
6339         IOCTL_Command_struct iocommand;
6340         struct CommandList *c;
6341         char *buff = NULL;
6342         u64 temp64;
6343         int rc = 0;
6344
6345         if (!argp)
6346                 return -EINVAL;
6347         if (!capable(CAP_SYS_RAWIO))
6348                 return -EPERM;
6349         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6350                 return -EFAULT;
6351         if ((iocommand.buf_size < 1) &&
6352             (iocommand.Request.Type.Direction != XFER_NONE)) {
6353                 return -EINVAL;
6354         }
6355         if (iocommand.buf_size > 0) {
6356                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6357                 if (buff == NULL)
6358                         return -ENOMEM;
6359                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6360                         /* Copy the data into the buffer we created */
6361                         if (copy_from_user(buff, iocommand.buf,
6362                                 iocommand.buf_size)) {
6363                                 rc = -EFAULT;
6364                                 goto out_kfree;
6365                         }
6366                 } else {
6367                         memset(buff, 0, iocommand.buf_size);
6368                 }
6369         }
6370         c = cmd_alloc(h);
6371
6372         /* Fill in the command type */
6373         c->cmd_type = CMD_IOCTL_PEND;
6374         c->scsi_cmd = SCSI_CMD_BUSY;
6375         /* Fill in Command Header */
6376         c->Header.ReplyQueue = 0; /* unused in simple mode */
6377         if (iocommand.buf_size > 0) {   /* buffer to fill */
6378                 c->Header.SGList = 1;
6379                 c->Header.SGTotal = cpu_to_le16(1);
6380         } else  { /* no buffers to fill */
6381                 c->Header.SGList = 0;
6382                 c->Header.SGTotal = cpu_to_le16(0);
6383         }
6384         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6385
6386         /* Fill in Request block */
6387         memcpy(&c->Request, &iocommand.Request,
6388                 sizeof(c->Request));
6389
6390         /* Fill in the scatter gather information */
6391         if (iocommand.buf_size > 0) {
6392                 temp64 = dma_map_single(&h->pdev->dev, buff,
6393                         iocommand.buf_size, DMA_BIDIRECTIONAL);
6394                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6395                         c->SG[0].Addr = cpu_to_le64(0);
6396                         c->SG[0].Len = cpu_to_le32(0);
6397                         rc = -ENOMEM;
6398                         goto out;
6399                 }
6400                 c->SG[0].Addr = cpu_to_le64(temp64);
6401                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6402                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6403         }
6404         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6405                                         NO_TIMEOUT);
6406         if (iocommand.buf_size > 0)
6407                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6408         check_ioctl_unit_attention(h, c);
6409         if (rc) {
6410                 rc = -EIO;
6411                 goto out;
6412         }
6413
6414         /* Copy the error information out */
6415         memcpy(&iocommand.error_info, c->err_info,
6416                 sizeof(iocommand.error_info));
6417         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6418                 rc = -EFAULT;
6419                 goto out;
6420         }
6421         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6422                 iocommand.buf_size > 0) {
6423                 /* Copy the data out of the buffer we created */
6424                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6425                         rc = -EFAULT;
6426                         goto out;
6427                 }
6428         }
6429 out:
6430         cmd_free(h, c);
6431 out_kfree:
6432         kfree(buff);
6433         return rc;
6434 }
6435
6436 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6437 {
6438         BIG_IOCTL_Command_struct *ioc;
6439         struct CommandList *c;
6440         unsigned char **buff = NULL;
6441         int *buff_size = NULL;
6442         u64 temp64;
6443         BYTE sg_used = 0;
6444         int status = 0;
6445         u32 left;
6446         u32 sz;
6447         BYTE __user *data_ptr;
6448
6449         if (!argp)
6450                 return -EINVAL;
6451         if (!capable(CAP_SYS_RAWIO))
6452                 return -EPERM;
6453         ioc = vmemdup_user(argp, sizeof(*ioc));
6454         if (IS_ERR(ioc)) {
6455                 status = PTR_ERR(ioc);
6456                 goto cleanup1;
6457         }
6458         if ((ioc->buf_size < 1) &&
6459             (ioc->Request.Type.Direction != XFER_NONE)) {
6460                 status = -EINVAL;
6461                 goto cleanup1;
6462         }
6463         /* Check kmalloc limits  using all SGs */
6464         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6465                 status = -EINVAL;
6466                 goto cleanup1;
6467         }
6468         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6469                 status = -EINVAL;
6470                 goto cleanup1;
6471         }
6472         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6473         if (!buff) {
6474                 status = -ENOMEM;
6475                 goto cleanup1;
6476         }
6477         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6478         if (!buff_size) {
6479                 status = -ENOMEM;
6480                 goto cleanup1;
6481         }
6482         left = ioc->buf_size;
6483         data_ptr = ioc->buf;
6484         while (left) {
6485                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6486                 buff_size[sg_used] = sz;
6487                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6488                 if (buff[sg_used] == NULL) {
6489                         status = -ENOMEM;
6490                         goto cleanup1;
6491                 }
6492                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6493                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6494                                 status = -EFAULT;
6495                                 goto cleanup1;
6496                         }
6497                 } else
6498                         memset(buff[sg_used], 0, sz);
6499                 left -= sz;
6500                 data_ptr += sz;
6501                 sg_used++;
6502         }
6503         c = cmd_alloc(h);
6504
6505         c->cmd_type = CMD_IOCTL_PEND;
6506         c->scsi_cmd = SCSI_CMD_BUSY;
6507         c->Header.ReplyQueue = 0;
6508         c->Header.SGList = (u8) sg_used;
6509         c->Header.SGTotal = cpu_to_le16(sg_used);
6510         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6511         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6512         if (ioc->buf_size > 0) {
6513                 int i;
6514                 for (i = 0; i < sg_used; i++) {
6515                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6516                                     buff_size[i], DMA_BIDIRECTIONAL);
6517                         if (dma_mapping_error(&h->pdev->dev,
6518                                                         (dma_addr_t) temp64)) {
6519                                 c->SG[i].Addr = cpu_to_le64(0);
6520                                 c->SG[i].Len = cpu_to_le32(0);
6521                                 hpsa_pci_unmap(h->pdev, c, i,
6522                                         DMA_BIDIRECTIONAL);
6523                                 status = -ENOMEM;
6524                                 goto cleanup0;
6525                         }
6526                         c->SG[i].Addr = cpu_to_le64(temp64);
6527                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6528                         c->SG[i].Ext = cpu_to_le32(0);
6529                 }
6530                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6531         }
6532         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6533                                                 NO_TIMEOUT);
6534         if (sg_used)
6535                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6536         check_ioctl_unit_attention(h, c);
6537         if (status) {
6538                 status = -EIO;
6539                 goto cleanup0;
6540         }
6541
6542         /* Copy the error information out */
6543         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6544         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6545                 status = -EFAULT;
6546                 goto cleanup0;
6547         }
6548         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6549                 int i;
6550
6551                 /* Copy the data out of the buffer we created */
6552                 BYTE __user *ptr = ioc->buf;
6553                 for (i = 0; i < sg_used; i++) {
6554                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6555                                 status = -EFAULT;
6556                                 goto cleanup0;
6557                         }
6558                         ptr += buff_size[i];
6559                 }
6560         }
6561         status = 0;
6562 cleanup0:
6563         cmd_free(h, c);
6564 cleanup1:
6565         if (buff) {
6566                 int i;
6567
6568                 for (i = 0; i < sg_used; i++)
6569                         kfree(buff[i]);
6570                 kfree(buff);
6571         }
6572         kfree(buff_size);
6573         kvfree(ioc);
6574         return status;
6575 }
6576
6577 static void check_ioctl_unit_attention(struct ctlr_info *h,
6578         struct CommandList *c)
6579 {
6580         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6581                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6582                 (void) check_for_unit_attention(h, c);
6583 }
6584
6585 /*
6586  * ioctl
6587  */
6588 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6589                       void __user *arg)
6590 {
6591         struct ctlr_info *h;
6592         void __user *argp = (void __user *)arg;
6593         int rc;
6594
6595         h = sdev_to_hba(dev);
6596
6597         switch (cmd) {
6598         case CCISS_DEREGDISK:
6599         case CCISS_REGNEWDISK:
6600         case CCISS_REGNEWD:
6601                 hpsa_scan_start(h->scsi_host);
6602                 return 0;
6603         case CCISS_GETPCIINFO:
6604                 return hpsa_getpciinfo_ioctl(h, argp);
6605         case CCISS_GETDRIVVER:
6606                 return hpsa_getdrivver_ioctl(h, argp);
6607         case CCISS_PASSTHRU:
6608                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6609                         return -EAGAIN;
6610                 rc = hpsa_passthru_ioctl(h, argp);
6611                 atomic_inc(&h->passthru_cmds_avail);
6612                 return rc;
6613         case CCISS_BIG_PASSTHRU:
6614                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6615                         return -EAGAIN;
6616                 rc = hpsa_big_passthru_ioctl(h, argp);
6617                 atomic_inc(&h->passthru_cmds_avail);
6618                 return rc;
6619         default:
6620                 return -ENOTTY;
6621         }
6622 }
6623
6624 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6625 {
6626         struct CommandList *c;
6627
6628         c = cmd_alloc(h);
6629
6630         /* fill_cmd can't fail here, no data buffer to map */
6631         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6632                 RAID_CTLR_LUNID, TYPE_MSG);
6633         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6634         c->waiting = NULL;
6635         enqueue_cmd_and_start_io(h, c);
6636         /* Don't wait for completion, the reset won't complete.  Don't free
6637          * the command either.  This is the last command we will send before
6638          * re-initializing everything, so it doesn't matter and won't leak.
6639          */
6640         return;
6641 }
6642
6643 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6644         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6645         int cmd_type)
6646 {
6647         enum dma_data_direction dir = DMA_NONE;
6648
6649         c->cmd_type = CMD_IOCTL_PEND;
6650         c->scsi_cmd = SCSI_CMD_BUSY;
6651         c->Header.ReplyQueue = 0;
6652         if (buff != NULL && size > 0) {
6653                 c->Header.SGList = 1;
6654                 c->Header.SGTotal = cpu_to_le16(1);
6655         } else {
6656                 c->Header.SGList = 0;
6657                 c->Header.SGTotal = cpu_to_le16(0);
6658         }
6659         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6660
6661         if (cmd_type == TYPE_CMD) {
6662                 switch (cmd) {
6663                 case HPSA_INQUIRY:
6664                         /* are we trying to read a vital product page */
6665                         if (page_code & VPD_PAGE) {
6666                                 c->Request.CDB[1] = 0x01;
6667                                 c->Request.CDB[2] = (page_code & 0xff);
6668                         }
6669                         c->Request.CDBLen = 6;
6670                         c->Request.type_attr_dir =
6671                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6672                         c->Request.Timeout = 0;
6673                         c->Request.CDB[0] = HPSA_INQUIRY;
6674                         c->Request.CDB[4] = size & 0xFF;
6675                         break;
6676                 case RECEIVE_DIAGNOSTIC:
6677                         c->Request.CDBLen = 6;
6678                         c->Request.type_attr_dir =
6679                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6680                         c->Request.Timeout = 0;
6681                         c->Request.CDB[0] = cmd;
6682                         c->Request.CDB[1] = 1;
6683                         c->Request.CDB[2] = 1;
6684                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6685                         c->Request.CDB[4] = size & 0xFF;
6686                         break;
6687                 case HPSA_REPORT_LOG:
6688                 case HPSA_REPORT_PHYS:
6689                         /* Talking to controller so It's a physical command
6690                            mode = 00 target = 0.  Nothing to write.
6691                          */
6692                         c->Request.CDBLen = 12;
6693                         c->Request.type_attr_dir =
6694                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6695                         c->Request.Timeout = 0;
6696                         c->Request.CDB[0] = cmd;
6697                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6698                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6699                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6700                         c->Request.CDB[9] = size & 0xFF;
6701                         break;
6702                 case BMIC_SENSE_DIAG_OPTIONS:
6703                         c->Request.CDBLen = 16;
6704                         c->Request.type_attr_dir =
6705                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6706                         c->Request.Timeout = 0;
6707                         /* Spec says this should be BMIC_WRITE */
6708                         c->Request.CDB[0] = BMIC_READ;
6709                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6710                         break;
6711                 case BMIC_SET_DIAG_OPTIONS:
6712                         c->Request.CDBLen = 16;
6713                         c->Request.type_attr_dir =
6714                                         TYPE_ATTR_DIR(cmd_type,
6715                                                 ATTR_SIMPLE, XFER_WRITE);
6716                         c->Request.Timeout = 0;
6717                         c->Request.CDB[0] = BMIC_WRITE;
6718                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6719                         break;
6720                 case HPSA_CACHE_FLUSH:
6721                         c->Request.CDBLen = 12;
6722                         c->Request.type_attr_dir =
6723                                         TYPE_ATTR_DIR(cmd_type,
6724                                                 ATTR_SIMPLE, XFER_WRITE);
6725                         c->Request.Timeout = 0;
6726                         c->Request.CDB[0] = BMIC_WRITE;
6727                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6728                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6729                         c->Request.CDB[8] = size & 0xFF;
6730                         break;
6731                 case TEST_UNIT_READY:
6732                         c->Request.CDBLen = 6;
6733                         c->Request.type_attr_dir =
6734                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6735                         c->Request.Timeout = 0;
6736                         break;
6737                 case HPSA_GET_RAID_MAP:
6738                         c->Request.CDBLen = 12;
6739                         c->Request.type_attr_dir =
6740                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6741                         c->Request.Timeout = 0;
6742                         c->Request.CDB[0] = HPSA_CISS_READ;
6743                         c->Request.CDB[1] = cmd;
6744                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6745                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6746                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6747                         c->Request.CDB[9] = size & 0xFF;
6748                         break;
6749                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6750                         c->Request.CDBLen = 10;
6751                         c->Request.type_attr_dir =
6752                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6753                         c->Request.Timeout = 0;
6754                         c->Request.CDB[0] = BMIC_READ;
6755                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6756                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6757                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6758                         break;
6759                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6760                         c->Request.CDBLen = 10;
6761                         c->Request.type_attr_dir =
6762                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6763                         c->Request.Timeout = 0;
6764                         c->Request.CDB[0] = BMIC_READ;
6765                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6766                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6767                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6768                         break;
6769                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6770                         c->Request.CDBLen = 10;
6771                         c->Request.type_attr_dir =
6772                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6773                         c->Request.Timeout = 0;
6774                         c->Request.CDB[0] = BMIC_READ;
6775                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6776                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6777                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6778                         break;
6779                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6780                         c->Request.CDBLen = 10;
6781                         c->Request.type_attr_dir =
6782                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6783                         c->Request.Timeout = 0;
6784                         c->Request.CDB[0] = BMIC_READ;
6785                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6786                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6787                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6788                         break;
6789                 case BMIC_IDENTIFY_CONTROLLER:
6790                         c->Request.CDBLen = 10;
6791                         c->Request.type_attr_dir =
6792                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6793                         c->Request.Timeout = 0;
6794                         c->Request.CDB[0] = BMIC_READ;
6795                         c->Request.CDB[1] = 0;
6796                         c->Request.CDB[2] = 0;
6797                         c->Request.CDB[3] = 0;
6798                         c->Request.CDB[4] = 0;
6799                         c->Request.CDB[5] = 0;
6800                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6801                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6802                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6803                         c->Request.CDB[9] = 0;
6804                         break;
6805                 default:
6806                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6807                         BUG();
6808                 }
6809         } else if (cmd_type == TYPE_MSG) {
6810                 switch (cmd) {
6811
6812                 case  HPSA_PHYS_TARGET_RESET:
6813                         c->Request.CDBLen = 16;
6814                         c->Request.type_attr_dir =
6815                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6816                         c->Request.Timeout = 0; /* Don't time out */
6817                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6818                         c->Request.CDB[0] = HPSA_RESET;
6819                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6820                         /* Physical target reset needs no control bytes 4-7*/
6821                         c->Request.CDB[4] = 0x00;
6822                         c->Request.CDB[5] = 0x00;
6823                         c->Request.CDB[6] = 0x00;
6824                         c->Request.CDB[7] = 0x00;
6825                         break;
6826                 case  HPSA_DEVICE_RESET_MSG:
6827                         c->Request.CDBLen = 16;
6828                         c->Request.type_attr_dir =
6829                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6830                         c->Request.Timeout = 0; /* Don't time out */
6831                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6832                         c->Request.CDB[0] =  cmd;
6833                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6834                         /* If bytes 4-7 are zero, it means reset the */
6835                         /* LunID device */
6836                         c->Request.CDB[4] = 0x00;
6837                         c->Request.CDB[5] = 0x00;
6838                         c->Request.CDB[6] = 0x00;
6839                         c->Request.CDB[7] = 0x00;
6840                         break;
6841                 default:
6842                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6843                                 cmd);
6844                         BUG();
6845                 }
6846         } else {
6847                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6848                 BUG();
6849         }
6850
6851         switch (GET_DIR(c->Request.type_attr_dir)) {
6852         case XFER_READ:
6853                 dir = DMA_FROM_DEVICE;
6854                 break;
6855         case XFER_WRITE:
6856                 dir = DMA_TO_DEVICE;
6857                 break;
6858         case XFER_NONE:
6859                 dir = DMA_NONE;
6860                 break;
6861         default:
6862                 dir = DMA_BIDIRECTIONAL;
6863         }
6864         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6865                 return -1;
6866         return 0;
6867 }
6868
6869 /*
6870  * Map (physical) PCI mem into (virtual) kernel space
6871  */
6872 static void __iomem *remap_pci_mem(ulong base, ulong size)
6873 {
6874         ulong page_base = ((ulong) base) & PAGE_MASK;
6875         ulong page_offs = ((ulong) base) - page_base;
6876         void __iomem *page_remapped = ioremap_nocache(page_base,
6877                 page_offs + size);
6878
6879         return page_remapped ? (page_remapped + page_offs) : NULL;
6880 }
6881
6882 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6883 {
6884         return h->access.command_completed(h, q);
6885 }
6886
6887 static inline bool interrupt_pending(struct ctlr_info *h)
6888 {
6889         return h->access.intr_pending(h);
6890 }
6891
6892 static inline long interrupt_not_for_us(struct ctlr_info *h)
6893 {
6894         return (h->access.intr_pending(h) == 0) ||
6895                 (h->interrupts_enabled == 0);
6896 }
6897
6898 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6899         u32 raw_tag)
6900 {
6901         if (unlikely(tag_index >= h->nr_cmds)) {
6902                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6903                 return 1;
6904         }
6905         return 0;
6906 }
6907
6908 static inline void finish_cmd(struct CommandList *c)
6909 {
6910         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6911         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6912                         || c->cmd_type == CMD_IOACCEL2))
6913                 complete_scsi_command(c);
6914         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6915                 complete(c->waiting);
6916 }
6917
6918 /* process completion of an indexed ("direct lookup") command */
6919 static inline void process_indexed_cmd(struct ctlr_info *h,
6920         u32 raw_tag)
6921 {
6922         u32 tag_index;
6923         struct CommandList *c;
6924
6925         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6926         if (!bad_tag(h, tag_index, raw_tag)) {
6927                 c = h->cmd_pool + tag_index;
6928                 finish_cmd(c);
6929         }
6930 }
6931
6932 /* Some controllers, like p400, will give us one interrupt
6933  * after a soft reset, even if we turned interrupts off.
6934  * Only need to check for this in the hpsa_xxx_discard_completions
6935  * functions.
6936  */
6937 static int ignore_bogus_interrupt(struct ctlr_info *h)
6938 {
6939         if (likely(!reset_devices))
6940                 return 0;
6941
6942         if (likely(h->interrupts_enabled))
6943                 return 0;
6944
6945         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6946                 "(known firmware bug.)  Ignoring.\n");
6947
6948         return 1;
6949 }
6950
6951 /*
6952  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6953  * Relies on (h-q[x] == x) being true for x such that
6954  * 0 <= x < MAX_REPLY_QUEUES.
6955  */
6956 static struct ctlr_info *queue_to_hba(u8 *queue)
6957 {
6958         return container_of((queue - *queue), struct ctlr_info, q[0]);
6959 }
6960
6961 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6962 {
6963         struct ctlr_info *h = queue_to_hba(queue);
6964         u8 q = *(u8 *) queue;
6965         u32 raw_tag;
6966
6967         if (ignore_bogus_interrupt(h))
6968                 return IRQ_NONE;
6969
6970         if (interrupt_not_for_us(h))
6971                 return IRQ_NONE;
6972         h->last_intr_timestamp = get_jiffies_64();
6973         while (interrupt_pending(h)) {
6974                 raw_tag = get_next_completion(h, q);
6975                 while (raw_tag != FIFO_EMPTY)
6976                         raw_tag = next_command(h, q);
6977         }
6978         return IRQ_HANDLED;
6979 }
6980
6981 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6982 {
6983         struct ctlr_info *h = queue_to_hba(queue);
6984         u32 raw_tag;
6985         u8 q = *(u8 *) queue;
6986
6987         if (ignore_bogus_interrupt(h))
6988                 return IRQ_NONE;
6989
6990         h->last_intr_timestamp = get_jiffies_64();
6991         raw_tag = get_next_completion(h, q);
6992         while (raw_tag != FIFO_EMPTY)
6993                 raw_tag = next_command(h, q);
6994         return IRQ_HANDLED;
6995 }
6996
6997 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6998 {
6999         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7000         u32 raw_tag;
7001         u8 q = *(u8 *) queue;
7002
7003         if (interrupt_not_for_us(h))
7004                 return IRQ_NONE;
7005         h->last_intr_timestamp = get_jiffies_64();
7006         while (interrupt_pending(h)) {
7007                 raw_tag = get_next_completion(h, q);
7008                 while (raw_tag != FIFO_EMPTY) {
7009                         process_indexed_cmd(h, raw_tag);
7010                         raw_tag = next_command(h, q);
7011                 }
7012         }
7013         return IRQ_HANDLED;
7014 }
7015
7016 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7017 {
7018         struct ctlr_info *h = queue_to_hba(queue);
7019         u32 raw_tag;
7020         u8 q = *(u8 *) queue;
7021
7022         h->last_intr_timestamp = get_jiffies_64();
7023         raw_tag = get_next_completion(h, q);
7024         while (raw_tag != FIFO_EMPTY) {
7025                 process_indexed_cmd(h, raw_tag);
7026                 raw_tag = next_command(h, q);
7027         }
7028         return IRQ_HANDLED;
7029 }
7030
7031 /* Send a message CDB to the firmware. Careful, this only works
7032  * in simple mode, not performant mode due to the tag lookup.
7033  * We only ever use this immediately after a controller reset.
7034  */
7035 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7036                         unsigned char type)
7037 {
7038         struct Command {
7039                 struct CommandListHeader CommandHeader;
7040                 struct RequestBlock Request;
7041                 struct ErrDescriptor ErrorDescriptor;
7042         };
7043         struct Command *cmd;
7044         static const size_t cmd_sz = sizeof(*cmd) +
7045                                         sizeof(cmd->ErrorDescriptor);
7046         dma_addr_t paddr64;
7047         __le32 paddr32;
7048         u32 tag;
7049         void __iomem *vaddr;
7050         int i, err;
7051
7052         vaddr = pci_ioremap_bar(pdev, 0);
7053         if (vaddr == NULL)
7054                 return -ENOMEM;
7055
7056         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7057          * CCISS commands, so they must be allocated from the lower 4GiB of
7058          * memory.
7059          */
7060         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7061         if (err) {
7062                 iounmap(vaddr);
7063                 return err;
7064         }
7065
7066         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7067         if (cmd == NULL) {
7068                 iounmap(vaddr);
7069                 return -ENOMEM;
7070         }
7071
7072         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7073          * although there's no guarantee, we assume that the address is at
7074          * least 4-byte aligned (most likely, it's page-aligned).
7075          */
7076         paddr32 = cpu_to_le32(paddr64);
7077
7078         cmd->CommandHeader.ReplyQueue = 0;
7079         cmd->CommandHeader.SGList = 0;
7080         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7081         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7082         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7083
7084         cmd->Request.CDBLen = 16;
7085         cmd->Request.type_attr_dir =
7086                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7087         cmd->Request.Timeout = 0; /* Don't time out */
7088         cmd->Request.CDB[0] = opcode;
7089         cmd->Request.CDB[1] = type;
7090         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7091         cmd->ErrorDescriptor.Addr =
7092                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7093         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7094
7095         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7096
7097         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7098                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7099                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7100                         break;
7101                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7102         }
7103
7104         iounmap(vaddr);
7105
7106         /* we leak the DMA buffer here ... no choice since the controller could
7107          *  still complete the command.
7108          */
7109         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7110                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7111                         opcode, type);
7112                 return -ETIMEDOUT;
7113         }
7114
7115         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7116
7117         if (tag & HPSA_ERROR_BIT) {
7118                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7119                         opcode, type);
7120                 return -EIO;
7121         }
7122
7123         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7124                 opcode, type);
7125         return 0;
7126 }
7127
7128 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7129
7130 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7131         void __iomem *vaddr, u32 use_doorbell)
7132 {
7133
7134         if (use_doorbell) {
7135                 /* For everything after the P600, the PCI power state method
7136                  * of resetting the controller doesn't work, so we have this
7137                  * other way using the doorbell register.
7138                  */
7139                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7140                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7141
7142                 /* PMC hardware guys tell us we need a 10 second delay after
7143                  * doorbell reset and before any attempt to talk to the board
7144                  * at all to ensure that this actually works and doesn't fall
7145                  * over in some weird corner cases.
7146                  */
7147                 msleep(10000);
7148         } else { /* Try to do it the PCI power state way */
7149
7150                 /* Quoting from the Open CISS Specification: "The Power
7151                  * Management Control/Status Register (CSR) controls the power
7152                  * state of the device.  The normal operating state is D0,
7153                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7154                  * the controller, place the interface device in D3 then to D0,
7155                  * this causes a secondary PCI reset which will reset the
7156                  * controller." */
7157
7158                 int rc = 0;
7159
7160                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7161
7162                 /* enter the D3hot power management state */
7163                 rc = pci_set_power_state(pdev, PCI_D3hot);
7164                 if (rc)
7165                         return rc;
7166
7167                 msleep(500);
7168
7169                 /* enter the D0 power management state */
7170                 rc = pci_set_power_state(pdev, PCI_D0);
7171                 if (rc)
7172                         return rc;
7173
7174                 /*
7175                  * The P600 requires a small delay when changing states.
7176                  * Otherwise we may think the board did not reset and we bail.
7177                  * This for kdump only and is particular to the P600.
7178                  */
7179                 msleep(500);
7180         }
7181         return 0;
7182 }
7183
7184 static void init_driver_version(char *driver_version, int len)
7185 {
7186         memset(driver_version, 0, len);
7187         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7188 }
7189
7190 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7191 {
7192         char *driver_version;
7193         int i, size = sizeof(cfgtable->driver_version);
7194
7195         driver_version = kmalloc(size, GFP_KERNEL);
7196         if (!driver_version)
7197                 return -ENOMEM;
7198
7199         init_driver_version(driver_version, size);
7200         for (i = 0; i < size; i++)
7201                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7202         kfree(driver_version);
7203         return 0;
7204 }
7205
7206 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7207                                           unsigned char *driver_ver)
7208 {
7209         int i;
7210
7211         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7212                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7213 }
7214
7215 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7216 {
7217
7218         char *driver_ver, *old_driver_ver;
7219         int rc, size = sizeof(cfgtable->driver_version);
7220
7221         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7222         if (!old_driver_ver)
7223                 return -ENOMEM;
7224         driver_ver = old_driver_ver + size;
7225
7226         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7227          * should have been changed, otherwise we know the reset failed.
7228          */
7229         init_driver_version(old_driver_ver, size);
7230         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7231         rc = !memcmp(driver_ver, old_driver_ver, size);
7232         kfree(old_driver_ver);
7233         return rc;
7234 }
7235 /* This does a hard reset of the controller using PCI power management
7236  * states or the using the doorbell register.
7237  */
7238 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7239 {
7240         u64 cfg_offset;
7241         u32 cfg_base_addr;
7242         u64 cfg_base_addr_index;
7243         void __iomem *vaddr;
7244         unsigned long paddr;
7245         u32 misc_fw_support;
7246         int rc;
7247         struct CfgTable __iomem *cfgtable;
7248         u32 use_doorbell;
7249         u16 command_register;
7250
7251         /* For controllers as old as the P600, this is very nearly
7252          * the same thing as
7253          *
7254          * pci_save_state(pci_dev);
7255          * pci_set_power_state(pci_dev, PCI_D3hot);
7256          * pci_set_power_state(pci_dev, PCI_D0);
7257          * pci_restore_state(pci_dev);
7258          *
7259          * For controllers newer than the P600, the pci power state
7260          * method of resetting doesn't work so we have another way
7261          * using the doorbell register.
7262          */
7263
7264         if (!ctlr_is_resettable(board_id)) {
7265                 dev_warn(&pdev->dev, "Controller not resettable\n");
7266                 return -ENODEV;
7267         }
7268
7269         /* if controller is soft- but not hard resettable... */
7270         if (!ctlr_is_hard_resettable(board_id))
7271                 return -ENOTSUPP; /* try soft reset later. */
7272
7273         /* Save the PCI command register */
7274         pci_read_config_word(pdev, 4, &command_register);
7275         pci_save_state(pdev);
7276
7277         /* find the first memory BAR, so we can find the cfg table */
7278         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7279         if (rc)
7280                 return rc;
7281         vaddr = remap_pci_mem(paddr, 0x250);
7282         if (!vaddr)
7283                 return -ENOMEM;
7284
7285         /* find cfgtable in order to check if reset via doorbell is supported */
7286         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7287                                         &cfg_base_addr_index, &cfg_offset);
7288         if (rc)
7289                 goto unmap_vaddr;
7290         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7291                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7292         if (!cfgtable) {
7293                 rc = -ENOMEM;
7294                 goto unmap_vaddr;
7295         }
7296         rc = write_driver_ver_to_cfgtable(cfgtable);
7297         if (rc)
7298                 goto unmap_cfgtable;
7299
7300         /* If reset via doorbell register is supported, use that.
7301          * There are two such methods.  Favor the newest method.
7302          */
7303         misc_fw_support = readl(&cfgtable->misc_fw_support);
7304         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7305         if (use_doorbell) {
7306                 use_doorbell = DOORBELL_CTLR_RESET2;
7307         } else {
7308                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7309                 if (use_doorbell) {
7310                         dev_warn(&pdev->dev,
7311                                 "Soft reset not supported. Firmware update is required.\n");
7312                         rc = -ENOTSUPP; /* try soft reset */
7313                         goto unmap_cfgtable;
7314                 }
7315         }
7316
7317         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7318         if (rc)
7319                 goto unmap_cfgtable;
7320
7321         pci_restore_state(pdev);
7322         pci_write_config_word(pdev, 4, command_register);
7323
7324         /* Some devices (notably the HP Smart Array 5i Controller)
7325            need a little pause here */
7326         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7327
7328         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7329         if (rc) {
7330                 dev_warn(&pdev->dev,
7331                         "Failed waiting for board to become ready after hard reset\n");
7332                 goto unmap_cfgtable;
7333         }
7334
7335         rc = controller_reset_failed(vaddr);
7336         if (rc < 0)
7337                 goto unmap_cfgtable;
7338         if (rc) {
7339                 dev_warn(&pdev->dev, "Unable to successfully reset "
7340                         "controller. Will try soft reset.\n");
7341                 rc = -ENOTSUPP;
7342         } else {
7343                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7344         }
7345
7346 unmap_cfgtable:
7347         iounmap(cfgtable);
7348
7349 unmap_vaddr:
7350         iounmap(vaddr);
7351         return rc;
7352 }
7353
7354 /*
7355  *  We cannot read the structure directly, for portability we must use
7356  *   the io functions.
7357  *   This is for debug only.
7358  */
7359 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7360 {
7361 #ifdef HPSA_DEBUG
7362         int i;
7363         char temp_name[17];
7364
7365         dev_info(dev, "Controller Configuration information\n");
7366         dev_info(dev, "------------------------------------\n");
7367         for (i = 0; i < 4; i++)
7368                 temp_name[i] = readb(&(tb->Signature[i]));
7369         temp_name[4] = '\0';
7370         dev_info(dev, "   Signature = %s\n", temp_name);
7371         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7372         dev_info(dev, "   Transport methods supported = 0x%x\n",
7373                readl(&(tb->TransportSupport)));
7374         dev_info(dev, "   Transport methods active = 0x%x\n",
7375                readl(&(tb->TransportActive)));
7376         dev_info(dev, "   Requested transport Method = 0x%x\n",
7377                readl(&(tb->HostWrite.TransportRequest)));
7378         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7379                readl(&(tb->HostWrite.CoalIntDelay)));
7380         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7381                readl(&(tb->HostWrite.CoalIntCount)));
7382         dev_info(dev, "   Max outstanding commands = %d\n",
7383                readl(&(tb->CmdsOutMax)));
7384         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7385         for (i = 0; i < 16; i++)
7386                 temp_name[i] = readb(&(tb->ServerName[i]));
7387         temp_name[16] = '\0';
7388         dev_info(dev, "   Server Name = %s\n", temp_name);
7389         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7390                 readl(&(tb->HeartBeat)));
7391 #endif                          /* HPSA_DEBUG */
7392 }
7393
7394 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7395 {
7396         int i, offset, mem_type, bar_type;
7397
7398         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7399                 return 0;
7400         offset = 0;
7401         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7402                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7403                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7404                         offset += 4;
7405                 else {
7406                         mem_type = pci_resource_flags(pdev, i) &
7407                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7408                         switch (mem_type) {
7409                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7410                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7411                                 offset += 4;    /* 32 bit */
7412                                 break;
7413                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7414                                 offset += 8;
7415                                 break;
7416                         default:        /* reserved in PCI 2.2 */
7417                                 dev_warn(&pdev->dev,
7418                                        "base address is invalid\n");
7419                                 return -1;
7420                                 break;
7421                         }
7422                 }
7423                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7424                         return i + 1;
7425         }
7426         return -1;
7427 }
7428
7429 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7430 {
7431         pci_free_irq_vectors(h->pdev);
7432         h->msix_vectors = 0;
7433 }
7434
7435 static void hpsa_setup_reply_map(struct ctlr_info *h)
7436 {
7437         const struct cpumask *mask;
7438         unsigned int queue, cpu;
7439
7440         for (queue = 0; queue < h->msix_vectors; queue++) {
7441                 mask = pci_irq_get_affinity(h->pdev, queue);
7442                 if (!mask)
7443                         goto fallback;
7444
7445                 for_each_cpu(cpu, mask)
7446                         h->reply_map[cpu] = queue;
7447         }
7448         return;
7449
7450 fallback:
7451         for_each_possible_cpu(cpu)
7452                 h->reply_map[cpu] = 0;
7453 }
7454
7455 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7456  * controllers that are capable. If not, we use legacy INTx mode.
7457  */
7458 static int hpsa_interrupt_mode(struct ctlr_info *h)
7459 {
7460         unsigned int flags = PCI_IRQ_LEGACY;
7461         int ret;
7462
7463         /* Some boards advertise MSI but don't really support it */
7464         switch (h->board_id) {
7465         case 0x40700E11:
7466         case 0x40800E11:
7467         case 0x40820E11:
7468         case 0x40830E11:
7469                 break;
7470         default:
7471                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7472                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7473                 if (ret > 0) {
7474                         h->msix_vectors = ret;
7475                         return 0;
7476                 }
7477
7478                 flags |= PCI_IRQ_MSI;
7479                 break;
7480         }
7481
7482         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7483         if (ret < 0)
7484                 return ret;
7485         return 0;
7486 }
7487
7488 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7489                                 bool *legacy_board)
7490 {
7491         int i;
7492         u32 subsystem_vendor_id, subsystem_device_id;
7493
7494         subsystem_vendor_id = pdev->subsystem_vendor;
7495         subsystem_device_id = pdev->subsystem_device;
7496         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7497                     subsystem_vendor_id;
7498
7499         if (legacy_board)
7500                 *legacy_board = false;
7501         for (i = 0; i < ARRAY_SIZE(products); i++)
7502                 if (*board_id == products[i].board_id) {
7503                         if (products[i].access != &SA5A_access &&
7504                             products[i].access != &SA5B_access)
7505                                 return i;
7506                         dev_warn(&pdev->dev,
7507                                  "legacy board ID: 0x%08x\n",
7508                                  *board_id);
7509                         if (legacy_board)
7510                             *legacy_board = true;
7511                         return i;
7512                 }
7513
7514         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7515         if (legacy_board)
7516                 *legacy_board = true;
7517         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7518 }
7519
7520 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7521                                     unsigned long *memory_bar)
7522 {
7523         int i;
7524
7525         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7526                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7527                         /* addressing mode bits already removed */
7528                         *memory_bar = pci_resource_start(pdev, i);
7529                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7530                                 *memory_bar);
7531                         return 0;
7532                 }
7533         dev_warn(&pdev->dev, "no memory BAR found\n");
7534         return -ENODEV;
7535 }
7536
7537 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7538                                      int wait_for_ready)
7539 {
7540         int i, iterations;
7541         u32 scratchpad;
7542         if (wait_for_ready)
7543                 iterations = HPSA_BOARD_READY_ITERATIONS;
7544         else
7545                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7546
7547         for (i = 0; i < iterations; i++) {
7548                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7549                 if (wait_for_ready) {
7550                         if (scratchpad == HPSA_FIRMWARE_READY)
7551                                 return 0;
7552                 } else {
7553                         if (scratchpad != HPSA_FIRMWARE_READY)
7554                                 return 0;
7555                 }
7556                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7557         }
7558         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7559         return -ENODEV;
7560 }
7561
7562 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7563                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7564                                u64 *cfg_offset)
7565 {
7566         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7567         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7568         *cfg_base_addr &= (u32) 0x0000ffff;
7569         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7570         if (*cfg_base_addr_index == -1) {
7571                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7572                 return -ENODEV;
7573         }
7574         return 0;
7575 }
7576
7577 static void hpsa_free_cfgtables(struct ctlr_info *h)
7578 {
7579         if (h->transtable) {
7580                 iounmap(h->transtable);
7581                 h->transtable = NULL;
7582         }
7583         if (h->cfgtable) {
7584                 iounmap(h->cfgtable);
7585                 h->cfgtable = NULL;
7586         }
7587 }
7588
7589 /* Find and map CISS config table and transfer table
7590 + * several items must be unmapped (freed) later
7591 + * */
7592 static int hpsa_find_cfgtables(struct ctlr_info *h)
7593 {
7594         u64 cfg_offset;
7595         u32 cfg_base_addr;
7596         u64 cfg_base_addr_index;
7597         u32 trans_offset;
7598         int rc;
7599
7600         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7601                 &cfg_base_addr_index, &cfg_offset);
7602         if (rc)
7603                 return rc;
7604         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7605                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7606         if (!h->cfgtable) {
7607                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7608                 return -ENOMEM;
7609         }
7610         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7611         if (rc)
7612                 return rc;
7613         /* Find performant mode table. */
7614         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7615         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7616                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7617                                 sizeof(*h->transtable));
7618         if (!h->transtable) {
7619                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7620                 hpsa_free_cfgtables(h);
7621                 return -ENOMEM;
7622         }
7623         return 0;
7624 }
7625
7626 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7627 {
7628 #define MIN_MAX_COMMANDS 16
7629         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7630
7631         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7632
7633         /* Limit commands in memory limited kdump scenario. */
7634         if (reset_devices && h->max_commands > 32)
7635                 h->max_commands = 32;
7636
7637         if (h->max_commands < MIN_MAX_COMMANDS) {
7638                 dev_warn(&h->pdev->dev,
7639                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7640                         h->max_commands,
7641                         MIN_MAX_COMMANDS);
7642                 h->max_commands = MIN_MAX_COMMANDS;
7643         }
7644 }
7645
7646 /* If the controller reports that the total max sg entries is greater than 512,
7647  * then we know that chained SG blocks work.  (Original smart arrays did not
7648  * support chained SG blocks and would return zero for max sg entries.)
7649  */
7650 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7651 {
7652         return h->maxsgentries > 512;
7653 }
7654
7655 /* Interrogate the hardware for some limits:
7656  * max commands, max SG elements without chaining, and with chaining,
7657  * SG chain block size, etc.
7658  */
7659 static void hpsa_find_board_params(struct ctlr_info *h)
7660 {
7661         hpsa_get_max_perf_mode_cmds(h);
7662         h->nr_cmds = h->max_commands;
7663         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7664         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7665         if (hpsa_supports_chained_sg_blocks(h)) {
7666                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7667                 h->max_cmd_sg_entries = 32;
7668                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7669                 h->maxsgentries--; /* save one for chain pointer */
7670         } else {
7671                 /*
7672                  * Original smart arrays supported at most 31 s/g entries
7673                  * embedded inline in the command (trying to use more
7674                  * would lock up the controller)
7675                  */
7676                 h->max_cmd_sg_entries = 31;
7677                 h->maxsgentries = 31; /* default to traditional values */
7678                 h->chainsize = 0;
7679         }
7680
7681         /* Find out what task management functions are supported and cache */
7682         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7683         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7684                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7685         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7686                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7687         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7688                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7689 }
7690
7691 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7692 {
7693         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7694                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7695                 return false;
7696         }
7697         return true;
7698 }
7699
7700 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7701 {
7702         u32 driver_support;
7703
7704         driver_support = readl(&(h->cfgtable->driver_support));
7705         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7706 #ifdef CONFIG_X86
7707         driver_support |= ENABLE_SCSI_PREFETCH;
7708 #endif
7709         driver_support |= ENABLE_UNIT_ATTN;
7710         writel(driver_support, &(h->cfgtable->driver_support));
7711 }
7712
7713 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7714  * in a prefetch beyond physical memory.
7715  */
7716 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7717 {
7718         u32 dma_prefetch;
7719
7720         if (h->board_id != 0x3225103C)
7721                 return;
7722         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7723         dma_prefetch |= 0x8000;
7724         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7725 }
7726
7727 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7728 {
7729         int i;
7730         u32 doorbell_value;
7731         unsigned long flags;
7732         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7733         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7734                 spin_lock_irqsave(&h->lock, flags);
7735                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7736                 spin_unlock_irqrestore(&h->lock, flags);
7737                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7738                         goto done;
7739                 /* delay and try again */
7740                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7741         }
7742         return -ENODEV;
7743 done:
7744         return 0;
7745 }
7746
7747 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7748 {
7749         int i;
7750         u32 doorbell_value;
7751         unsigned long flags;
7752
7753         /* under certain very rare conditions, this can take awhile.
7754          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7755          * as we enter this code.)
7756          */
7757         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7758                 if (h->remove_in_progress)
7759                         goto done;
7760                 spin_lock_irqsave(&h->lock, flags);
7761                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7762                 spin_unlock_irqrestore(&h->lock, flags);
7763                 if (!(doorbell_value & CFGTBL_ChangeReq))
7764                         goto done;
7765                 /* delay and try again */
7766                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7767         }
7768         return -ENODEV;
7769 done:
7770         return 0;
7771 }
7772
7773 /* return -ENODEV or other reason on error, 0 on success */
7774 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7775 {
7776         u32 trans_support;
7777
7778         trans_support = readl(&(h->cfgtable->TransportSupport));
7779         if (!(trans_support & SIMPLE_MODE))
7780                 return -ENOTSUPP;
7781
7782         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7783
7784         /* Update the field, and then ring the doorbell */
7785         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7786         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7787         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7788         if (hpsa_wait_for_mode_change_ack(h))
7789                 goto error;
7790         print_cfg_table(&h->pdev->dev, h->cfgtable);
7791         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7792                 goto error;
7793         h->transMethod = CFGTBL_Trans_Simple;
7794         return 0;
7795 error:
7796         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7797         return -ENODEV;
7798 }
7799
7800 /* free items allocated or mapped by hpsa_pci_init */
7801 static void hpsa_free_pci_init(struct ctlr_info *h)
7802 {
7803         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7804         iounmap(h->vaddr);                      /* pci_init 3 */
7805         h->vaddr = NULL;
7806         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7807         /*
7808          * call pci_disable_device before pci_release_regions per
7809          * Documentation/driver-api/pci/pci.rst
7810          */
7811         pci_disable_device(h->pdev);            /* pci_init 1 */
7812         pci_release_regions(h->pdev);           /* pci_init 2 */
7813 }
7814
7815 /* several items must be freed later */
7816 static int hpsa_pci_init(struct ctlr_info *h)
7817 {
7818         int prod_index, err;
7819         bool legacy_board;
7820
7821         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7822         if (prod_index < 0)
7823                 return prod_index;
7824         h->product_name = products[prod_index].product_name;
7825         h->access = *(products[prod_index].access);
7826         h->legacy_board = legacy_board;
7827         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7828                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7829
7830         err = pci_enable_device(h->pdev);
7831         if (err) {
7832                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7833                 pci_disable_device(h->pdev);
7834                 return err;
7835         }
7836
7837         err = pci_request_regions(h->pdev, HPSA);
7838         if (err) {
7839                 dev_err(&h->pdev->dev,
7840                         "failed to obtain PCI resources\n");
7841                 pci_disable_device(h->pdev);
7842                 return err;
7843         }
7844
7845         pci_set_master(h->pdev);
7846
7847         err = hpsa_interrupt_mode(h);
7848         if (err)
7849                 goto clean1;
7850
7851         /* setup mapping between CPU and reply queue */
7852         hpsa_setup_reply_map(h);
7853
7854         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7855         if (err)
7856                 goto clean2;    /* intmode+region, pci */
7857         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7858         if (!h->vaddr) {
7859                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7860                 err = -ENOMEM;
7861                 goto clean2;    /* intmode+region, pci */
7862         }
7863         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7864         if (err)
7865                 goto clean3;    /* vaddr, intmode+region, pci */
7866         err = hpsa_find_cfgtables(h);
7867         if (err)
7868                 goto clean3;    /* vaddr, intmode+region, pci */
7869         hpsa_find_board_params(h);
7870
7871         if (!hpsa_CISS_signature_present(h)) {
7872                 err = -ENODEV;
7873                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7874         }
7875         hpsa_set_driver_support_bits(h);
7876         hpsa_p600_dma_prefetch_quirk(h);
7877         err = hpsa_enter_simple_mode(h);
7878         if (err)
7879                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7880         return 0;
7881
7882 clean4: /* cfgtables, vaddr, intmode+region, pci */
7883         hpsa_free_cfgtables(h);
7884 clean3: /* vaddr, intmode+region, pci */
7885         iounmap(h->vaddr);
7886         h->vaddr = NULL;
7887 clean2: /* intmode+region, pci */
7888         hpsa_disable_interrupt_mode(h);
7889 clean1:
7890         /*
7891          * call pci_disable_device before pci_release_regions per
7892          * Documentation/driver-api/pci/pci.rst
7893          */
7894         pci_disable_device(h->pdev);
7895         pci_release_regions(h->pdev);
7896         return err;
7897 }
7898
7899 static void hpsa_hba_inquiry(struct ctlr_info *h)
7900 {
7901         int rc;
7902
7903 #define HBA_INQUIRY_BYTE_COUNT 64
7904         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7905         if (!h->hba_inquiry_data)
7906                 return;
7907         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7908                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7909         if (rc != 0) {
7910                 kfree(h->hba_inquiry_data);
7911                 h->hba_inquiry_data = NULL;
7912         }
7913 }
7914
7915 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7916 {
7917         int rc, i;
7918         void __iomem *vaddr;
7919
7920         if (!reset_devices)
7921                 return 0;
7922
7923         /* kdump kernel is loading, we don't know in which state is
7924          * the pci interface. The dev->enable_cnt is equal zero
7925          * so we call enable+disable, wait a while and switch it on.
7926          */
7927         rc = pci_enable_device(pdev);
7928         if (rc) {
7929                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7930                 return -ENODEV;
7931         }
7932         pci_disable_device(pdev);
7933         msleep(260);                    /* a randomly chosen number */
7934         rc = pci_enable_device(pdev);
7935         if (rc) {
7936                 dev_warn(&pdev->dev, "failed to enable device.\n");
7937                 return -ENODEV;
7938         }
7939
7940         pci_set_master(pdev);
7941
7942         vaddr = pci_ioremap_bar(pdev, 0);
7943         if (vaddr == NULL) {
7944                 rc = -ENOMEM;
7945                 goto out_disable;
7946         }
7947         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7948         iounmap(vaddr);
7949
7950         /* Reset the controller with a PCI power-cycle or via doorbell */
7951         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7952
7953         /* -ENOTSUPP here means we cannot reset the controller
7954          * but it's already (and still) up and running in
7955          * "performant mode".  Or, it might be 640x, which can't reset
7956          * due to concerns about shared bbwc between 6402/6404 pair.
7957          */
7958         if (rc)
7959                 goto out_disable;
7960
7961         /* Now try to get the controller to respond to a no-op */
7962         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7963         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7964                 if (hpsa_noop(pdev) == 0)
7965                         break;
7966                 else
7967                         dev_warn(&pdev->dev, "no-op failed%s\n",
7968                                         (i < 11 ? "; re-trying" : ""));
7969         }
7970
7971 out_disable:
7972
7973         pci_disable_device(pdev);
7974         return rc;
7975 }
7976
7977 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7978 {
7979         kfree(h->cmd_pool_bits);
7980         h->cmd_pool_bits = NULL;
7981         if (h->cmd_pool) {
7982                 dma_free_coherent(&h->pdev->dev,
7983                                 h->nr_cmds * sizeof(struct CommandList),
7984                                 h->cmd_pool,
7985                                 h->cmd_pool_dhandle);
7986                 h->cmd_pool = NULL;
7987                 h->cmd_pool_dhandle = 0;
7988         }
7989         if (h->errinfo_pool) {
7990                 dma_free_coherent(&h->pdev->dev,
7991                                 h->nr_cmds * sizeof(struct ErrorInfo),
7992                                 h->errinfo_pool,
7993                                 h->errinfo_pool_dhandle);
7994                 h->errinfo_pool = NULL;
7995                 h->errinfo_pool_dhandle = 0;
7996         }
7997 }
7998
7999 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8000 {
8001         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8002                                    sizeof(unsigned long),
8003                                    GFP_KERNEL);
8004         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8005                     h->nr_cmds * sizeof(*h->cmd_pool),
8006                     &h->cmd_pool_dhandle, GFP_KERNEL);
8007         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8008                     h->nr_cmds * sizeof(*h->errinfo_pool),
8009                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8010         if ((h->cmd_pool_bits == NULL)
8011             || (h->cmd_pool == NULL)
8012             || (h->errinfo_pool == NULL)) {
8013                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8014                 goto clean_up;
8015         }
8016         hpsa_preinitialize_commands(h);
8017         return 0;
8018 clean_up:
8019         hpsa_free_cmd_pool(h);
8020         return -ENOMEM;
8021 }
8022
8023 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8024 static void hpsa_free_irqs(struct ctlr_info *h)
8025 {
8026         int i;
8027         int irq_vector = 0;
8028
8029         if (hpsa_simple_mode)
8030                 irq_vector = h->intr_mode;
8031
8032         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8033                 /* Single reply queue, only one irq to free */
8034                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8035                                 &h->q[h->intr_mode]);
8036                 h->q[h->intr_mode] = 0;
8037                 return;
8038         }
8039
8040         for (i = 0; i < h->msix_vectors; i++) {
8041                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8042                 h->q[i] = 0;
8043         }
8044         for (; i < MAX_REPLY_QUEUES; i++)
8045                 h->q[i] = 0;
8046 }
8047
8048 /* returns 0 on success; cleans up and returns -Enn on error */
8049 static int hpsa_request_irqs(struct ctlr_info *h,
8050         irqreturn_t (*msixhandler)(int, void *),
8051         irqreturn_t (*intxhandler)(int, void *))
8052 {
8053         int rc, i;
8054         int irq_vector = 0;
8055
8056         if (hpsa_simple_mode)
8057                 irq_vector = h->intr_mode;
8058
8059         /*
8060          * initialize h->q[x] = x so that interrupt handlers know which
8061          * queue to process.
8062          */
8063         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8064                 h->q[i] = (u8) i;
8065
8066         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8067                 /* If performant mode and MSI-X, use multiple reply queues */
8068                 for (i = 0; i < h->msix_vectors; i++) {
8069                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8070                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8071                                         0, h->intrname[i],
8072                                         &h->q[i]);
8073                         if (rc) {
8074                                 int j;
8075
8076                                 dev_err(&h->pdev->dev,
8077                                         "failed to get irq %d for %s\n",
8078                                        pci_irq_vector(h->pdev, i), h->devname);
8079                                 for (j = 0; j < i; j++) {
8080                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8081                                         h->q[j] = 0;
8082                                 }
8083                                 for (; j < MAX_REPLY_QUEUES; j++)
8084                                         h->q[j] = 0;
8085                                 return rc;
8086                         }
8087                 }
8088         } else {
8089                 /* Use single reply pool */
8090                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8091                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8092                                 h->msix_vectors ? "x" : "");
8093                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8094                                 msixhandler, 0,
8095                                 h->intrname[0],
8096                                 &h->q[h->intr_mode]);
8097                 } else {
8098                         sprintf(h->intrname[h->intr_mode],
8099                                 "%s-intx", h->devname);
8100                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8101                                 intxhandler, IRQF_SHARED,
8102                                 h->intrname[0],
8103                                 &h->q[h->intr_mode]);
8104                 }
8105         }
8106         if (rc) {
8107                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8108                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8109                 hpsa_free_irqs(h);
8110                 return -ENODEV;
8111         }
8112         return 0;
8113 }
8114
8115 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8116 {
8117         int rc;
8118         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8119
8120         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8121         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8122         if (rc) {
8123                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8124                 return rc;
8125         }
8126
8127         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8128         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8129         if (rc) {
8130                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8131                         "after soft reset.\n");
8132                 return rc;
8133         }
8134
8135         return 0;
8136 }
8137
8138 static void hpsa_free_reply_queues(struct ctlr_info *h)
8139 {
8140         int i;
8141
8142         for (i = 0; i < h->nreply_queues; i++) {
8143                 if (!h->reply_queue[i].head)
8144                         continue;
8145                 dma_free_coherent(&h->pdev->dev,
8146                                         h->reply_queue_size,
8147                                         h->reply_queue[i].head,
8148                                         h->reply_queue[i].busaddr);
8149                 h->reply_queue[i].head = NULL;
8150                 h->reply_queue[i].busaddr = 0;
8151         }
8152         h->reply_queue_size = 0;
8153 }
8154
8155 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8156 {
8157         hpsa_free_performant_mode(h);           /* init_one 7 */
8158         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8159         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8160         hpsa_free_irqs(h);                      /* init_one 4 */
8161         scsi_host_put(h->scsi_host);            /* init_one 3 */
8162         h->scsi_host = NULL;                    /* init_one 3 */
8163         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8164         free_percpu(h->lockup_detected);        /* init_one 2 */
8165         h->lockup_detected = NULL;              /* init_one 2 */
8166         if (h->resubmit_wq) {
8167                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8168                 h->resubmit_wq = NULL;
8169         }
8170         if (h->rescan_ctlr_wq) {
8171                 destroy_workqueue(h->rescan_ctlr_wq);
8172                 h->rescan_ctlr_wq = NULL;
8173         }
8174         if (h->monitor_ctlr_wq) {
8175                 destroy_workqueue(h->monitor_ctlr_wq);
8176                 h->monitor_ctlr_wq = NULL;
8177         }
8178
8179         kfree(h);                               /* init_one 1 */
8180 }
8181
8182 /* Called when controller lockup detected. */
8183 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8184 {
8185         int i, refcount;
8186         struct CommandList *c;
8187         int failcount = 0;
8188
8189         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8190         for (i = 0; i < h->nr_cmds; i++) {
8191                 c = h->cmd_pool + i;
8192                 refcount = atomic_inc_return(&c->refcount);
8193                 if (refcount > 1) {
8194                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8195                         finish_cmd(c);
8196                         atomic_dec(&h->commands_outstanding);
8197                         failcount++;
8198                 }
8199                 cmd_free(h, c);
8200         }
8201         dev_warn(&h->pdev->dev,
8202                 "failed %d commands in fail_all\n", failcount);
8203 }
8204
8205 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8206 {
8207         int cpu;
8208
8209         for_each_online_cpu(cpu) {
8210                 u32 *lockup_detected;
8211                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8212                 *lockup_detected = value;
8213         }
8214         wmb(); /* be sure the per-cpu variables are out to memory */
8215 }
8216
8217 static void controller_lockup_detected(struct ctlr_info *h)
8218 {
8219         unsigned long flags;
8220         u32 lockup_detected;
8221
8222         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8223         spin_lock_irqsave(&h->lock, flags);
8224         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8225         if (!lockup_detected) {
8226                 /* no heartbeat, but controller gave us a zero. */
8227                 dev_warn(&h->pdev->dev,
8228                         "lockup detected after %d but scratchpad register is zero\n",
8229                         h->heartbeat_sample_interval / HZ);
8230                 lockup_detected = 0xffffffff;
8231         }
8232         set_lockup_detected_for_all_cpus(h, lockup_detected);
8233         spin_unlock_irqrestore(&h->lock, flags);
8234         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8235                         lockup_detected, h->heartbeat_sample_interval / HZ);
8236         if (lockup_detected == 0xffff0000) {
8237                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8238                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8239         }
8240         pci_disable_device(h->pdev);
8241         fail_all_outstanding_cmds(h);
8242 }
8243
8244 static int detect_controller_lockup(struct ctlr_info *h)
8245 {
8246         u64 now;
8247         u32 heartbeat;
8248         unsigned long flags;
8249
8250         now = get_jiffies_64();
8251         /* If we've received an interrupt recently, we're ok. */
8252         if (time_after64(h->last_intr_timestamp +
8253                                 (h->heartbeat_sample_interval), now))
8254                 return false;
8255
8256         /*
8257          * If we've already checked the heartbeat recently, we're ok.
8258          * This could happen if someone sends us a signal. We
8259          * otherwise don't care about signals in this thread.
8260          */
8261         if (time_after64(h->last_heartbeat_timestamp +
8262                                 (h->heartbeat_sample_interval), now))
8263                 return false;
8264
8265         /* If heartbeat has not changed since we last looked, we're not ok. */
8266         spin_lock_irqsave(&h->lock, flags);
8267         heartbeat = readl(&h->cfgtable->HeartBeat);
8268         spin_unlock_irqrestore(&h->lock, flags);
8269         if (h->last_heartbeat == heartbeat) {
8270                 controller_lockup_detected(h);
8271                 return true;
8272         }
8273
8274         /* We're ok. */
8275         h->last_heartbeat = heartbeat;
8276         h->last_heartbeat_timestamp = now;
8277         return false;
8278 }
8279
8280 /*
8281  * Set ioaccel status for all ioaccel volumes.
8282  *
8283  * Called from monitor controller worker (hpsa_event_monitor_worker)
8284  *
8285  * A Volume (or Volumes that comprise an Array set may be undergoing a
8286  * transformation, so we will be turning off ioaccel for all volumes that
8287  * make up the Array.
8288  */
8289 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8290 {
8291         int rc;
8292         int i;
8293         u8 ioaccel_status;
8294         unsigned char *buf;
8295         struct hpsa_scsi_dev_t *device;
8296
8297         if (!h)
8298                 return;
8299
8300         buf = kmalloc(64, GFP_KERNEL);
8301         if (!buf)
8302                 return;
8303
8304         /*
8305          * Run through current device list used during I/O requests.
8306          */
8307         for (i = 0; i < h->ndevices; i++) {
8308                 device = h->dev[i];
8309
8310                 if (!device)
8311                         continue;
8312                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8313                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8314                         continue;
8315
8316                 memset(buf, 0, 64);
8317
8318                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8319                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8320                                         buf, 64);
8321                 if (rc != 0)
8322                         continue;
8323
8324                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8325                 device->offload_config =
8326                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8327                 if (device->offload_config)
8328                         device->offload_to_be_enabled =
8329                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8330
8331                 /*
8332                  * Immediately turn off ioaccel for any volume the
8333                  * controller tells us to. Some of the reasons could be:
8334                  *    transformation - change to the LVs of an Array.
8335                  *    degraded volume - component failure
8336                  *
8337                  * If ioaccel is to be re-enabled, re-enable later during the
8338                  * scan operation so the driver can get a fresh raidmap
8339                  * before turning ioaccel back on.
8340                  *
8341                  */
8342                 if (!device->offload_to_be_enabled)
8343                         device->offload_enabled = 0;
8344         }
8345
8346         kfree(buf);
8347 }
8348
8349 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8350 {
8351         char *event_type;
8352
8353         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8354                 return;
8355
8356         /* Ask the controller to clear the events we're handling. */
8357         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8358                         | CFGTBL_Trans_io_accel2)) &&
8359                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8360                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8361
8362                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8363                         event_type = "state change";
8364                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8365                         event_type = "configuration change";
8366                 /* Stop sending new RAID offload reqs via the IO accelerator */
8367                 scsi_block_requests(h->scsi_host);
8368                 hpsa_set_ioaccel_status(h);
8369                 hpsa_drain_accel_commands(h);
8370                 /* Set 'accelerator path config change' bit */
8371                 dev_warn(&h->pdev->dev,
8372                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8373                         h->events, event_type);
8374                 writel(h->events, &(h->cfgtable->clear_event_notify));
8375                 /* Set the "clear event notify field update" bit 6 */
8376                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8377                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8378                 hpsa_wait_for_clear_event_notify_ack(h);
8379                 scsi_unblock_requests(h->scsi_host);
8380         } else {
8381                 /* Acknowledge controller notification events. */
8382                 writel(h->events, &(h->cfgtable->clear_event_notify));
8383                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8384                 hpsa_wait_for_clear_event_notify_ack(h);
8385         }
8386         return;
8387 }
8388
8389 /* Check a register on the controller to see if there are configuration
8390  * changes (added/changed/removed logical drives, etc.) which mean that
8391  * we should rescan the controller for devices.
8392  * Also check flag for driver-initiated rescan.
8393  */
8394 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8395 {
8396         if (h->drv_req_rescan) {
8397                 h->drv_req_rescan = 0;
8398                 return 1;
8399         }
8400
8401         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8402                 return 0;
8403
8404         h->events = readl(&(h->cfgtable->event_notify));
8405         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8406 }
8407
8408 /*
8409  * Check if any of the offline devices have become ready
8410  */
8411 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8412 {
8413         unsigned long flags;
8414         struct offline_device_entry *d;
8415         struct list_head *this, *tmp;
8416
8417         spin_lock_irqsave(&h->offline_device_lock, flags);
8418         list_for_each_safe(this, tmp, &h->offline_device_list) {
8419                 d = list_entry(this, struct offline_device_entry,
8420                                 offline_list);
8421                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8422                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8423                         spin_lock_irqsave(&h->offline_device_lock, flags);
8424                         list_del(&d->offline_list);
8425                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8426                         return 1;
8427                 }
8428                 spin_lock_irqsave(&h->offline_device_lock, flags);
8429         }
8430         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8431         return 0;
8432 }
8433
8434 static int hpsa_luns_changed(struct ctlr_info *h)
8435 {
8436         int rc = 1; /* assume there are changes */
8437         struct ReportLUNdata *logdev = NULL;
8438
8439         /* if we can't find out if lun data has changed,
8440          * assume that it has.
8441          */
8442
8443         if (!h->lastlogicals)
8444                 return rc;
8445
8446         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8447         if (!logdev)
8448                 return rc;
8449
8450         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8451                 dev_warn(&h->pdev->dev,
8452                         "report luns failed, can't track lun changes.\n");
8453                 goto out;
8454         }
8455         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8456                 dev_info(&h->pdev->dev,
8457                         "Lun changes detected.\n");
8458                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8459                 goto out;
8460         } else
8461                 rc = 0; /* no changes detected. */
8462 out:
8463         kfree(logdev);
8464         return rc;
8465 }
8466
8467 static void hpsa_perform_rescan(struct ctlr_info *h)
8468 {
8469         struct Scsi_Host *sh = NULL;
8470         unsigned long flags;
8471
8472         /*
8473          * Do the scan after the reset
8474          */
8475         spin_lock_irqsave(&h->reset_lock, flags);
8476         if (h->reset_in_progress) {
8477                 h->drv_req_rescan = 1;
8478                 spin_unlock_irqrestore(&h->reset_lock, flags);
8479                 return;
8480         }
8481         spin_unlock_irqrestore(&h->reset_lock, flags);
8482
8483         sh = scsi_host_get(h->scsi_host);
8484         if (sh != NULL) {
8485                 hpsa_scan_start(sh);
8486                 scsi_host_put(sh);
8487                 h->drv_req_rescan = 0;
8488         }
8489 }
8490
8491 /*
8492  * watch for controller events
8493  */
8494 static void hpsa_event_monitor_worker(struct work_struct *work)
8495 {
8496         struct ctlr_info *h = container_of(to_delayed_work(work),
8497                                         struct ctlr_info, event_monitor_work);
8498         unsigned long flags;
8499
8500         spin_lock_irqsave(&h->lock, flags);
8501         if (h->remove_in_progress) {
8502                 spin_unlock_irqrestore(&h->lock, flags);
8503                 return;
8504         }
8505         spin_unlock_irqrestore(&h->lock, flags);
8506
8507         if (hpsa_ctlr_needs_rescan(h)) {
8508                 hpsa_ack_ctlr_events(h);
8509                 hpsa_perform_rescan(h);
8510         }
8511
8512         spin_lock_irqsave(&h->lock, flags);
8513         if (!h->remove_in_progress)
8514                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8515                                 HPSA_EVENT_MONITOR_INTERVAL);
8516         spin_unlock_irqrestore(&h->lock, flags);
8517 }
8518
8519 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8520 {
8521         unsigned long flags;
8522         struct ctlr_info *h = container_of(to_delayed_work(work),
8523                                         struct ctlr_info, rescan_ctlr_work);
8524
8525         spin_lock_irqsave(&h->lock, flags);
8526         if (h->remove_in_progress) {
8527                 spin_unlock_irqrestore(&h->lock, flags);
8528                 return;
8529         }
8530         spin_unlock_irqrestore(&h->lock, flags);
8531
8532         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8533                 hpsa_perform_rescan(h);
8534         } else if (h->discovery_polling) {
8535                 if (hpsa_luns_changed(h)) {
8536                         dev_info(&h->pdev->dev,
8537                                 "driver discovery polling rescan.\n");
8538                         hpsa_perform_rescan(h);
8539                 }
8540         }
8541         spin_lock_irqsave(&h->lock, flags);
8542         if (!h->remove_in_progress)
8543                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8544                                 h->heartbeat_sample_interval);
8545         spin_unlock_irqrestore(&h->lock, flags);
8546 }
8547
8548 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8549 {
8550         unsigned long flags;
8551         struct ctlr_info *h = container_of(to_delayed_work(work),
8552                                         struct ctlr_info, monitor_ctlr_work);
8553
8554         detect_controller_lockup(h);
8555         if (lockup_detected(h))
8556                 return;
8557
8558         spin_lock_irqsave(&h->lock, flags);
8559         if (!h->remove_in_progress)
8560                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8561                                 h->heartbeat_sample_interval);
8562         spin_unlock_irqrestore(&h->lock, flags);
8563 }
8564
8565 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8566                                                 char *name)
8567 {
8568         struct workqueue_struct *wq = NULL;
8569
8570         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8571         if (!wq)
8572                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8573
8574         return wq;
8575 }
8576
8577 static void hpda_free_ctlr_info(struct ctlr_info *h)
8578 {
8579         kfree(h->reply_map);
8580         kfree(h);
8581 }
8582
8583 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8584 {
8585         struct ctlr_info *h;
8586
8587         h = kzalloc(sizeof(*h), GFP_KERNEL);
8588         if (!h)
8589                 return NULL;
8590
8591         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8592         if (!h->reply_map) {
8593                 kfree(h);
8594                 return NULL;
8595         }
8596         return h;
8597 }
8598
8599 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8600 {
8601         int dac, rc;
8602         struct ctlr_info *h;
8603         int try_soft_reset = 0;
8604         unsigned long flags;
8605         u32 board_id;
8606
8607         if (number_of_controllers == 0)
8608                 printk(KERN_INFO DRIVER_NAME "\n");
8609
8610         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8611         if (rc < 0) {
8612                 dev_warn(&pdev->dev, "Board ID not found\n");
8613                 return rc;
8614         }
8615
8616         rc = hpsa_init_reset_devices(pdev, board_id);
8617         if (rc) {
8618                 if (rc != -ENOTSUPP)
8619                         return rc;
8620                 /* If the reset fails in a particular way (it has no way to do
8621                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8622                  * a soft reset once we get the controller configured up to the
8623                  * point that it can accept a command.
8624                  */
8625                 try_soft_reset = 1;
8626                 rc = 0;
8627         }
8628
8629 reinit_after_soft_reset:
8630
8631         /* Command structures must be aligned on a 32-byte boundary because
8632          * the 5 lower bits of the address are used by the hardware. and by
8633          * the driver.  See comments in hpsa.h for more info.
8634          */
8635         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8636         h = hpda_alloc_ctlr_info();
8637         if (!h) {
8638                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8639                 return -ENOMEM;
8640         }
8641
8642         h->pdev = pdev;
8643
8644         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8645         INIT_LIST_HEAD(&h->offline_device_list);
8646         spin_lock_init(&h->lock);
8647         spin_lock_init(&h->offline_device_lock);
8648         spin_lock_init(&h->scan_lock);
8649         spin_lock_init(&h->reset_lock);
8650         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8651
8652         /* Allocate and clear per-cpu variable lockup_detected */
8653         h->lockup_detected = alloc_percpu(u32);
8654         if (!h->lockup_detected) {
8655                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8656                 rc = -ENOMEM;
8657                 goto clean1;    /* aer/h */
8658         }
8659         set_lockup_detected_for_all_cpus(h, 0);
8660
8661         rc = hpsa_pci_init(h);
8662         if (rc)
8663                 goto clean2;    /* lu, aer/h */
8664
8665         /* relies on h-> settings made by hpsa_pci_init, including
8666          * interrupt_mode h->intr */
8667         rc = hpsa_scsi_host_alloc(h);
8668         if (rc)
8669                 goto clean2_5;  /* pci, lu, aer/h */
8670
8671         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8672         h->ctlr = number_of_controllers;
8673         number_of_controllers++;
8674
8675         /* configure PCI DMA stuff */
8676         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8677         if (rc == 0) {
8678                 dac = 1;
8679         } else {
8680                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8681                 if (rc == 0) {
8682                         dac = 0;
8683                 } else {
8684                         dev_err(&pdev->dev, "no suitable DMA available\n");
8685                         goto clean3;    /* shost, pci, lu, aer/h */
8686                 }
8687         }
8688
8689         /* make sure the board interrupts are off */
8690         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8691
8692         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8693         if (rc)
8694                 goto clean3;    /* shost, pci, lu, aer/h */
8695         rc = hpsa_alloc_cmd_pool(h);
8696         if (rc)
8697                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8698         rc = hpsa_alloc_sg_chain_blocks(h);
8699         if (rc)
8700                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8701         init_waitqueue_head(&h->scan_wait_queue);
8702         init_waitqueue_head(&h->event_sync_wait_queue);
8703         mutex_init(&h->reset_mutex);
8704         h->scan_finished = 1; /* no scan currently in progress */
8705         h->scan_waiting = 0;
8706
8707         pci_set_drvdata(pdev, h);
8708         h->ndevices = 0;
8709
8710         spin_lock_init(&h->devlock);
8711         rc = hpsa_put_ctlr_into_performant_mode(h);
8712         if (rc)
8713                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8714
8715         /* create the resubmit workqueue */
8716         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8717         if (!h->rescan_ctlr_wq) {
8718                 rc = -ENOMEM;
8719                 goto clean7;
8720         }
8721
8722         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8723         if (!h->resubmit_wq) {
8724                 rc = -ENOMEM;
8725                 goto clean7;    /* aer/h */
8726         }
8727
8728         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8729         if (!h->monitor_ctlr_wq) {
8730                 rc = -ENOMEM;
8731                 goto clean7;
8732         }
8733
8734         /*
8735          * At this point, the controller is ready to take commands.
8736          * Now, if reset_devices and the hard reset didn't work, try
8737          * the soft reset and see if that works.
8738          */
8739         if (try_soft_reset) {
8740
8741                 /* This is kind of gross.  We may or may not get a completion
8742                  * from the soft reset command, and if we do, then the value
8743                  * from the fifo may or may not be valid.  So, we wait 10 secs
8744                  * after the reset throwing away any completions we get during
8745                  * that time.  Unregister the interrupt handler and register
8746                  * fake ones to scoop up any residual completions.
8747                  */
8748                 spin_lock_irqsave(&h->lock, flags);
8749                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8750                 spin_unlock_irqrestore(&h->lock, flags);
8751                 hpsa_free_irqs(h);
8752                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8753                                         hpsa_intx_discard_completions);
8754                 if (rc) {
8755                         dev_warn(&h->pdev->dev,
8756                                 "Failed to request_irq after soft reset.\n");
8757                         /*
8758                          * cannot goto clean7 or free_irqs will be called
8759                          * again. Instead, do its work
8760                          */
8761                         hpsa_free_performant_mode(h);   /* clean7 */
8762                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8763                         hpsa_free_cmd_pool(h);          /* clean5 */
8764                         /*
8765                          * skip hpsa_free_irqs(h) clean4 since that
8766                          * was just called before request_irqs failed
8767                          */
8768                         goto clean3;
8769                 }
8770
8771                 rc = hpsa_kdump_soft_reset(h);
8772                 if (rc)
8773                         /* Neither hard nor soft reset worked, we're hosed. */
8774                         goto clean7;
8775
8776                 dev_info(&h->pdev->dev, "Board READY.\n");
8777                 dev_info(&h->pdev->dev,
8778                         "Waiting for stale completions to drain.\n");
8779                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8780                 msleep(10000);
8781                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8782
8783                 rc = controller_reset_failed(h->cfgtable);
8784                 if (rc)
8785                         dev_info(&h->pdev->dev,
8786                                 "Soft reset appears to have failed.\n");
8787
8788                 /* since the controller's reset, we have to go back and re-init
8789                  * everything.  Easiest to just forget what we've done and do it
8790                  * all over again.
8791                  */
8792                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8793                 try_soft_reset = 0;
8794                 if (rc)
8795                         /* don't goto clean, we already unallocated */
8796                         return -ENODEV;
8797
8798                 goto reinit_after_soft_reset;
8799         }
8800
8801         /* Enable Accelerated IO path at driver layer */
8802         h->acciopath_status = 1;
8803         /* Disable discovery polling.*/
8804         h->discovery_polling = 0;
8805
8806
8807         /* Turn the interrupts on so we can service requests */
8808         h->access.set_intr_mask(h, HPSA_INTR_ON);
8809
8810         hpsa_hba_inquiry(h);
8811
8812         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8813         if (!h->lastlogicals)
8814                 dev_info(&h->pdev->dev,
8815                         "Can't track change to report lun data\n");
8816
8817         /* hook into SCSI subsystem */
8818         rc = hpsa_scsi_add_host(h);
8819         if (rc)
8820                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8821
8822         /* Monitor the controller for firmware lockups */
8823         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8824         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8825         schedule_delayed_work(&h->monitor_ctlr_work,
8826                                 h->heartbeat_sample_interval);
8827         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8828         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8829                                 h->heartbeat_sample_interval);
8830         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8831         schedule_delayed_work(&h->event_monitor_work,
8832                                 HPSA_EVENT_MONITOR_INTERVAL);
8833         return 0;
8834
8835 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8836         hpsa_free_performant_mode(h);
8837         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8838 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8839         hpsa_free_sg_chain_blocks(h);
8840 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8841         hpsa_free_cmd_pool(h);
8842 clean4: /* irq, shost, pci, lu, aer/h */
8843         hpsa_free_irqs(h);
8844 clean3: /* shost, pci, lu, aer/h */
8845         scsi_host_put(h->scsi_host);
8846         h->scsi_host = NULL;
8847 clean2_5: /* pci, lu, aer/h */
8848         hpsa_free_pci_init(h);
8849 clean2: /* lu, aer/h */
8850         if (h->lockup_detected) {
8851                 free_percpu(h->lockup_detected);
8852                 h->lockup_detected = NULL;
8853         }
8854 clean1: /* wq/aer/h */
8855         if (h->resubmit_wq) {
8856                 destroy_workqueue(h->resubmit_wq);
8857                 h->resubmit_wq = NULL;
8858         }
8859         if (h->rescan_ctlr_wq) {
8860                 destroy_workqueue(h->rescan_ctlr_wq);
8861                 h->rescan_ctlr_wq = NULL;
8862         }
8863         if (h->monitor_ctlr_wq) {
8864                 destroy_workqueue(h->monitor_ctlr_wq);
8865                 h->monitor_ctlr_wq = NULL;
8866         }
8867         kfree(h);
8868         return rc;
8869 }
8870
8871 static void hpsa_flush_cache(struct ctlr_info *h)
8872 {
8873         char *flush_buf;
8874         struct CommandList *c;
8875         int rc;
8876
8877         if (unlikely(lockup_detected(h)))
8878                 return;
8879         flush_buf = kzalloc(4, GFP_KERNEL);
8880         if (!flush_buf)
8881                 return;
8882
8883         c = cmd_alloc(h);
8884
8885         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8886                 RAID_CTLR_LUNID, TYPE_CMD)) {
8887                 goto out;
8888         }
8889         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8890                         DEFAULT_TIMEOUT);
8891         if (rc)
8892                 goto out;
8893         if (c->err_info->CommandStatus != 0)
8894 out:
8895                 dev_warn(&h->pdev->dev,
8896                         "error flushing cache on controller\n");
8897         cmd_free(h, c);
8898         kfree(flush_buf);
8899 }
8900
8901 /* Make controller gather fresh report lun data each time we
8902  * send down a report luns request
8903  */
8904 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8905 {
8906         u32 *options;
8907         struct CommandList *c;
8908         int rc;
8909
8910         /* Don't bother trying to set diag options if locked up */
8911         if (unlikely(h->lockup_detected))
8912                 return;
8913
8914         options = kzalloc(sizeof(*options), GFP_KERNEL);
8915         if (!options)
8916                 return;
8917
8918         c = cmd_alloc(h);
8919
8920         /* first, get the current diag options settings */
8921         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8922                 RAID_CTLR_LUNID, TYPE_CMD))
8923                 goto errout;
8924
8925         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8926                         NO_TIMEOUT);
8927         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8928                 goto errout;
8929
8930         /* Now, set the bit for disabling the RLD caching */
8931         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8932
8933         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8934                 RAID_CTLR_LUNID, TYPE_CMD))
8935                 goto errout;
8936
8937         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8938                         NO_TIMEOUT);
8939         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8940                 goto errout;
8941
8942         /* Now verify that it got set: */
8943         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8944                 RAID_CTLR_LUNID, TYPE_CMD))
8945                 goto errout;
8946
8947         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8948                         NO_TIMEOUT);
8949         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8950                 goto errout;
8951
8952         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8953                 goto out;
8954
8955 errout:
8956         dev_err(&h->pdev->dev,
8957                         "Error: failed to disable report lun data caching.\n");
8958 out:
8959         cmd_free(h, c);
8960         kfree(options);
8961 }
8962
8963 static void __hpsa_shutdown(struct pci_dev *pdev)
8964 {
8965         struct ctlr_info *h;
8966
8967         h = pci_get_drvdata(pdev);
8968         /* Turn board interrupts off  and send the flush cache command
8969          * sendcmd will turn off interrupt, and send the flush...
8970          * To write all data in the battery backed cache to disks
8971          */
8972         hpsa_flush_cache(h);
8973         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8974         hpsa_free_irqs(h);                      /* init_one 4 */
8975         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8976 }
8977
8978 static void hpsa_shutdown(struct pci_dev *pdev)
8979 {
8980         __hpsa_shutdown(pdev);
8981         pci_disable_device(pdev);
8982 }
8983
8984 static void hpsa_free_device_info(struct ctlr_info *h)
8985 {
8986         int i;
8987
8988         for (i = 0; i < h->ndevices; i++) {
8989                 kfree(h->dev[i]);
8990                 h->dev[i] = NULL;
8991         }
8992 }
8993
8994 static void hpsa_remove_one(struct pci_dev *pdev)
8995 {
8996         struct ctlr_info *h;
8997         unsigned long flags;
8998
8999         if (pci_get_drvdata(pdev) == NULL) {
9000                 dev_err(&pdev->dev, "unable to remove device\n");
9001                 return;
9002         }
9003         h = pci_get_drvdata(pdev);
9004
9005         /* Get rid of any controller monitoring work items */
9006         spin_lock_irqsave(&h->lock, flags);
9007         h->remove_in_progress = 1;
9008         spin_unlock_irqrestore(&h->lock, flags);
9009         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9010         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9011         cancel_delayed_work_sync(&h->event_monitor_work);
9012         destroy_workqueue(h->rescan_ctlr_wq);
9013         destroy_workqueue(h->resubmit_wq);
9014         destroy_workqueue(h->monitor_ctlr_wq);
9015
9016         hpsa_delete_sas_host(h);
9017
9018         /*
9019          * Call before disabling interrupts.
9020          * scsi_remove_host can trigger I/O operations especially
9021          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9022          * operations which cannot complete and will hang the system.
9023          */
9024         if (h->scsi_host)
9025                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9026         /* includes hpsa_free_irqs - init_one 4 */
9027         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9028         __hpsa_shutdown(pdev);
9029
9030         hpsa_free_device_info(h);               /* scan */
9031
9032         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9033         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9034         hpsa_free_ioaccel2_sg_chain_blocks(h);
9035         hpsa_free_performant_mode(h);                   /* init_one 7 */
9036         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9037         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9038         kfree(h->lastlogicals);
9039
9040         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9041
9042         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9043         h->scsi_host = NULL;                            /* init_one 3 */
9044
9045         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9046         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9047
9048         free_percpu(h->lockup_detected);                /* init_one 2 */
9049         h->lockup_detected = NULL;                      /* init_one 2 */
9050         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9051
9052         hpda_free_ctlr_info(h);                         /* init_one 1 */
9053 }
9054
9055 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9056         __attribute__((unused)) pm_message_t state)
9057 {
9058         return -ENOSYS;
9059 }
9060
9061 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9062 {
9063         return -ENOSYS;
9064 }
9065
9066 static struct pci_driver hpsa_pci_driver = {
9067         .name = HPSA,
9068         .probe = hpsa_init_one,
9069         .remove = hpsa_remove_one,
9070         .id_table = hpsa_pci_device_id, /* id_table */
9071         .shutdown = hpsa_shutdown,
9072         .suspend = hpsa_suspend,
9073         .resume = hpsa_resume,
9074 };
9075
9076 /* Fill in bucket_map[], given nsgs (the max number of
9077  * scatter gather elements supported) and bucket[],
9078  * which is an array of 8 integers.  The bucket[] array
9079  * contains 8 different DMA transfer sizes (in 16
9080  * byte increments) which the controller uses to fetch
9081  * commands.  This function fills in bucket_map[], which
9082  * maps a given number of scatter gather elements to one of
9083  * the 8 DMA transfer sizes.  The point of it is to allow the
9084  * controller to only do as much DMA as needed to fetch the
9085  * command, with the DMA transfer size encoded in the lower
9086  * bits of the command address.
9087  */
9088 static void  calc_bucket_map(int bucket[], int num_buckets,
9089         int nsgs, int min_blocks, u32 *bucket_map)
9090 {
9091         int i, j, b, size;
9092
9093         /* Note, bucket_map must have nsgs+1 entries. */
9094         for (i = 0; i <= nsgs; i++) {
9095                 /* Compute size of a command with i SG entries */
9096                 size = i + min_blocks;
9097                 b = num_buckets; /* Assume the biggest bucket */
9098                 /* Find the bucket that is just big enough */
9099                 for (j = 0; j < num_buckets; j++) {
9100                         if (bucket[j] >= size) {
9101                                 b = j;
9102                                 break;
9103                         }
9104                 }
9105                 /* for a command with i SG entries, use bucket b. */
9106                 bucket_map[i] = b;
9107         }
9108 }
9109
9110 /*
9111  * return -ENODEV on err, 0 on success (or no action)
9112  * allocates numerous items that must be freed later
9113  */
9114 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9115 {
9116         int i;
9117         unsigned long register_value;
9118         unsigned long transMethod = CFGTBL_Trans_Performant |
9119                         (trans_support & CFGTBL_Trans_use_short_tags) |
9120                                 CFGTBL_Trans_enable_directed_msix |
9121                         (trans_support & (CFGTBL_Trans_io_accel1 |
9122                                 CFGTBL_Trans_io_accel2));
9123         struct access_method access = SA5_performant_access;
9124
9125         /* This is a bit complicated.  There are 8 registers on
9126          * the controller which we write to to tell it 8 different
9127          * sizes of commands which there may be.  It's a way of
9128          * reducing the DMA done to fetch each command.  Encoded into
9129          * each command's tag are 3 bits which communicate to the controller
9130          * which of the eight sizes that command fits within.  The size of
9131          * each command depends on how many scatter gather entries there are.
9132          * Each SG entry requires 16 bytes.  The eight registers are programmed
9133          * with the number of 16-byte blocks a command of that size requires.
9134          * The smallest command possible requires 5 such 16 byte blocks.
9135          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9136          * blocks.  Note, this only extends to the SG entries contained
9137          * within the command block, and does not extend to chained blocks
9138          * of SG elements.   bft[] contains the eight values we write to
9139          * the registers.  They are not evenly distributed, but have more
9140          * sizes for small commands, and fewer sizes for larger commands.
9141          */
9142         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9143 #define MIN_IOACCEL2_BFT_ENTRY 5
9144 #define HPSA_IOACCEL2_HEADER_SZ 4
9145         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9146                         13, 14, 15, 16, 17, 18, 19,
9147                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9148         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9149         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9150         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9151                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9152         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9153         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9154         /*  5 = 1 s/g entry or 4k
9155          *  6 = 2 s/g entry or 8k
9156          *  8 = 4 s/g entry or 16k
9157          * 10 = 6 s/g entry or 24k
9158          */
9159
9160         /* If the controller supports either ioaccel method then
9161          * we can also use the RAID stack submit path that does not
9162          * perform the superfluous readl() after each command submission.
9163          */
9164         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9165                 access = SA5_performant_access_no_read;
9166
9167         /* Controller spec: zero out this buffer. */
9168         for (i = 0; i < h->nreply_queues; i++)
9169                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9170
9171         bft[7] = SG_ENTRIES_IN_CMD + 4;
9172         calc_bucket_map(bft, ARRAY_SIZE(bft),
9173                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9174         for (i = 0; i < 8; i++)
9175                 writel(bft[i], &h->transtable->BlockFetch[i]);
9176
9177         /* size of controller ring buffer */
9178         writel(h->max_commands, &h->transtable->RepQSize);
9179         writel(h->nreply_queues, &h->transtable->RepQCount);
9180         writel(0, &h->transtable->RepQCtrAddrLow32);
9181         writel(0, &h->transtable->RepQCtrAddrHigh32);
9182
9183         for (i = 0; i < h->nreply_queues; i++) {
9184                 writel(0, &h->transtable->RepQAddr[i].upper);
9185                 writel(h->reply_queue[i].busaddr,
9186                         &h->transtable->RepQAddr[i].lower);
9187         }
9188
9189         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9190         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9191         /*
9192          * enable outbound interrupt coalescing in accelerator mode;
9193          */
9194         if (trans_support & CFGTBL_Trans_io_accel1) {
9195                 access = SA5_ioaccel_mode1_access;
9196                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9197                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9198         } else
9199                 if (trans_support & CFGTBL_Trans_io_accel2)
9200                         access = SA5_ioaccel_mode2_access;
9201         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9202         if (hpsa_wait_for_mode_change_ack(h)) {
9203                 dev_err(&h->pdev->dev,
9204                         "performant mode problem - doorbell timeout\n");
9205                 return -ENODEV;
9206         }
9207         register_value = readl(&(h->cfgtable->TransportActive));
9208         if (!(register_value & CFGTBL_Trans_Performant)) {
9209                 dev_err(&h->pdev->dev,
9210                         "performant mode problem - transport not active\n");
9211                 return -ENODEV;
9212         }
9213         /* Change the access methods to the performant access methods */
9214         h->access = access;
9215         h->transMethod = transMethod;
9216
9217         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9218                 (trans_support & CFGTBL_Trans_io_accel2)))
9219                 return 0;
9220
9221         if (trans_support & CFGTBL_Trans_io_accel1) {
9222                 /* Set up I/O accelerator mode */
9223                 for (i = 0; i < h->nreply_queues; i++) {
9224                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9225                         h->reply_queue[i].current_entry =
9226                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9227                 }
9228                 bft[7] = h->ioaccel_maxsg + 8;
9229                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9230                                 h->ioaccel1_blockFetchTable);
9231
9232                 /* initialize all reply queue entries to unused */
9233                 for (i = 0; i < h->nreply_queues; i++)
9234                         memset(h->reply_queue[i].head,
9235                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9236                                 h->reply_queue_size);
9237
9238                 /* set all the constant fields in the accelerator command
9239                  * frames once at init time to save CPU cycles later.
9240                  */
9241                 for (i = 0; i < h->nr_cmds; i++) {
9242                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9243
9244                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9245                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9246                                         (i * sizeof(struct ErrorInfo)));
9247                         cp->err_info_len = sizeof(struct ErrorInfo);
9248                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9249                         cp->host_context_flags =
9250                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9251                         cp->timeout_sec = 0;
9252                         cp->ReplyQueue = 0;
9253                         cp->tag =
9254                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9255                         cp->host_addr =
9256                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9257                                         (i * sizeof(struct io_accel1_cmd)));
9258                 }
9259         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9260                 u64 cfg_offset, cfg_base_addr_index;
9261                 u32 bft2_offset, cfg_base_addr;
9262                 int rc;
9263
9264                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9265                         &cfg_base_addr_index, &cfg_offset);
9266                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9267                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9268                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9269                                 4, h->ioaccel2_blockFetchTable);
9270                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9271                 BUILD_BUG_ON(offsetof(struct CfgTable,
9272                                 io_accel_request_size_offset) != 0xb8);
9273                 h->ioaccel2_bft2_regs =
9274                         remap_pci_mem(pci_resource_start(h->pdev,
9275                                         cfg_base_addr_index) +
9276                                         cfg_offset + bft2_offset,
9277                                         ARRAY_SIZE(bft2) *
9278                                         sizeof(*h->ioaccel2_bft2_regs));
9279                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9280                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9281         }
9282         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9283         if (hpsa_wait_for_mode_change_ack(h)) {
9284                 dev_err(&h->pdev->dev,
9285                         "performant mode problem - enabling ioaccel mode\n");
9286                 return -ENODEV;
9287         }
9288         return 0;
9289 }
9290
9291 /* Free ioaccel1 mode command blocks and block fetch table */
9292 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9293 {
9294         if (h->ioaccel_cmd_pool) {
9295                 pci_free_consistent(h->pdev,
9296                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9297                         h->ioaccel_cmd_pool,
9298                         h->ioaccel_cmd_pool_dhandle);
9299                 h->ioaccel_cmd_pool = NULL;
9300                 h->ioaccel_cmd_pool_dhandle = 0;
9301         }
9302         kfree(h->ioaccel1_blockFetchTable);
9303         h->ioaccel1_blockFetchTable = NULL;
9304 }
9305
9306 /* Allocate ioaccel1 mode command blocks and block fetch table */
9307 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9308 {
9309         h->ioaccel_maxsg =
9310                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9311         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9312                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9313
9314         /* Command structures must be aligned on a 128-byte boundary
9315          * because the 7 lower bits of the address are used by the
9316          * hardware.
9317          */
9318         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9319                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9320         h->ioaccel_cmd_pool =
9321                 dma_alloc_coherent(&h->pdev->dev,
9322                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9323                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9324
9325         h->ioaccel1_blockFetchTable =
9326                 kmalloc(((h->ioaccel_maxsg + 1) *
9327                                 sizeof(u32)), GFP_KERNEL);
9328
9329         if ((h->ioaccel_cmd_pool == NULL) ||
9330                 (h->ioaccel1_blockFetchTable == NULL))
9331                 goto clean_up;
9332
9333         memset(h->ioaccel_cmd_pool, 0,
9334                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9335         return 0;
9336
9337 clean_up:
9338         hpsa_free_ioaccel1_cmd_and_bft(h);
9339         return -ENOMEM;
9340 }
9341
9342 /* Free ioaccel2 mode command blocks and block fetch table */
9343 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9344 {
9345         hpsa_free_ioaccel2_sg_chain_blocks(h);
9346
9347         if (h->ioaccel2_cmd_pool) {
9348                 pci_free_consistent(h->pdev,
9349                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9350                         h->ioaccel2_cmd_pool,
9351                         h->ioaccel2_cmd_pool_dhandle);
9352                 h->ioaccel2_cmd_pool = NULL;
9353                 h->ioaccel2_cmd_pool_dhandle = 0;
9354         }
9355         kfree(h->ioaccel2_blockFetchTable);
9356         h->ioaccel2_blockFetchTable = NULL;
9357 }
9358
9359 /* Allocate ioaccel2 mode command blocks and block fetch table */
9360 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9361 {
9362         int rc;
9363
9364         /* Allocate ioaccel2 mode command blocks and block fetch table */
9365
9366         h->ioaccel_maxsg =
9367                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9368         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9369                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9370
9371         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9372                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9373         h->ioaccel2_cmd_pool =
9374                 dma_alloc_coherent(&h->pdev->dev,
9375                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9376                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9377
9378         h->ioaccel2_blockFetchTable =
9379                 kmalloc(((h->ioaccel_maxsg + 1) *
9380                                 sizeof(u32)), GFP_KERNEL);
9381
9382         if ((h->ioaccel2_cmd_pool == NULL) ||
9383                 (h->ioaccel2_blockFetchTable == NULL)) {
9384                 rc = -ENOMEM;
9385                 goto clean_up;
9386         }
9387
9388         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9389         if (rc)
9390                 goto clean_up;
9391
9392         memset(h->ioaccel2_cmd_pool, 0,
9393                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9394         return 0;
9395
9396 clean_up:
9397         hpsa_free_ioaccel2_cmd_and_bft(h);
9398         return rc;
9399 }
9400
9401 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9402 static void hpsa_free_performant_mode(struct ctlr_info *h)
9403 {
9404         kfree(h->blockFetchTable);
9405         h->blockFetchTable = NULL;
9406         hpsa_free_reply_queues(h);
9407         hpsa_free_ioaccel1_cmd_and_bft(h);
9408         hpsa_free_ioaccel2_cmd_and_bft(h);
9409 }
9410
9411 /* return -ENODEV on error, 0 on success (or no action)
9412  * allocates numerous items that must be freed later
9413  */
9414 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9415 {
9416         u32 trans_support;
9417         unsigned long transMethod = CFGTBL_Trans_Performant |
9418                                         CFGTBL_Trans_use_short_tags;
9419         int i, rc;
9420
9421         if (hpsa_simple_mode)
9422                 return 0;
9423
9424         trans_support = readl(&(h->cfgtable->TransportSupport));
9425         if (!(trans_support & PERFORMANT_MODE))
9426                 return 0;
9427
9428         /* Check for I/O accelerator mode support */
9429         if (trans_support & CFGTBL_Trans_io_accel1) {
9430                 transMethod |= CFGTBL_Trans_io_accel1 |
9431                                 CFGTBL_Trans_enable_directed_msix;
9432                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9433                 if (rc)
9434                         return rc;
9435         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9436                 transMethod |= CFGTBL_Trans_io_accel2 |
9437                                 CFGTBL_Trans_enable_directed_msix;
9438                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9439                 if (rc)
9440                         return rc;
9441         }
9442
9443         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9444         hpsa_get_max_perf_mode_cmds(h);
9445         /* Performant mode ring buffer and supporting data structures */
9446         h->reply_queue_size = h->max_commands * sizeof(u64);
9447
9448         for (i = 0; i < h->nreply_queues; i++) {
9449                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9450                                                 h->reply_queue_size,
9451                                                 &h->reply_queue[i].busaddr,
9452                                                 GFP_KERNEL);
9453                 if (!h->reply_queue[i].head) {
9454                         rc = -ENOMEM;
9455                         goto clean1;    /* rq, ioaccel */
9456                 }
9457                 h->reply_queue[i].size = h->max_commands;
9458                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9459                 h->reply_queue[i].current_entry = 0;
9460         }
9461
9462         /* Need a block fetch table for performant mode */
9463         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9464                                 sizeof(u32)), GFP_KERNEL);
9465         if (!h->blockFetchTable) {
9466                 rc = -ENOMEM;
9467                 goto clean1;    /* rq, ioaccel */
9468         }
9469
9470         rc = hpsa_enter_performant_mode(h, trans_support);
9471         if (rc)
9472                 goto clean2;    /* bft, rq, ioaccel */
9473         return 0;
9474
9475 clean2: /* bft, rq, ioaccel */
9476         kfree(h->blockFetchTable);
9477         h->blockFetchTable = NULL;
9478 clean1: /* rq, ioaccel */
9479         hpsa_free_reply_queues(h);
9480         hpsa_free_ioaccel1_cmd_and_bft(h);
9481         hpsa_free_ioaccel2_cmd_and_bft(h);
9482         return rc;
9483 }
9484
9485 static int is_accelerated_cmd(struct CommandList *c)
9486 {
9487         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9488 }
9489
9490 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9491 {
9492         struct CommandList *c = NULL;
9493         int i, accel_cmds_out;
9494         int refcount;
9495
9496         do { /* wait for all outstanding ioaccel commands to drain out */
9497                 accel_cmds_out = 0;
9498                 for (i = 0; i < h->nr_cmds; i++) {
9499                         c = h->cmd_pool + i;
9500                         refcount = atomic_inc_return(&c->refcount);
9501                         if (refcount > 1) /* Command is allocated */
9502                                 accel_cmds_out += is_accelerated_cmd(c);
9503                         cmd_free(h, c);
9504                 }
9505                 if (accel_cmds_out <= 0)
9506                         break;
9507                 msleep(100);
9508         } while (1);
9509 }
9510
9511 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9512                                 struct hpsa_sas_port *hpsa_sas_port)
9513 {
9514         struct hpsa_sas_phy *hpsa_sas_phy;
9515         struct sas_phy *phy;
9516
9517         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9518         if (!hpsa_sas_phy)
9519                 return NULL;
9520
9521         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9522                 hpsa_sas_port->next_phy_index);
9523         if (!phy) {
9524                 kfree(hpsa_sas_phy);
9525                 return NULL;
9526         }
9527
9528         hpsa_sas_port->next_phy_index++;
9529         hpsa_sas_phy->phy = phy;
9530         hpsa_sas_phy->parent_port = hpsa_sas_port;
9531
9532         return hpsa_sas_phy;
9533 }
9534
9535 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9536 {
9537         struct sas_phy *phy = hpsa_sas_phy->phy;
9538
9539         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9540         if (hpsa_sas_phy->added_to_port)
9541                 list_del(&hpsa_sas_phy->phy_list_entry);
9542         sas_phy_delete(phy);
9543         kfree(hpsa_sas_phy);
9544 }
9545
9546 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9547 {
9548         int rc;
9549         struct hpsa_sas_port *hpsa_sas_port;
9550         struct sas_phy *phy;
9551         struct sas_identify *identify;
9552
9553         hpsa_sas_port = hpsa_sas_phy->parent_port;
9554         phy = hpsa_sas_phy->phy;
9555
9556         identify = &phy->identify;
9557         memset(identify, 0, sizeof(*identify));
9558         identify->sas_address = hpsa_sas_port->sas_address;
9559         identify->device_type = SAS_END_DEVICE;
9560         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9561         identify->target_port_protocols = SAS_PROTOCOL_STP;
9562         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9563         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9564         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9565         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9566         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9567
9568         rc = sas_phy_add(hpsa_sas_phy->phy);
9569         if (rc)
9570                 return rc;
9571
9572         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9573         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9574                         &hpsa_sas_port->phy_list_head);
9575         hpsa_sas_phy->added_to_port = true;
9576
9577         return 0;
9578 }
9579
9580 static int
9581         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9582                                 struct sas_rphy *rphy)
9583 {
9584         struct sas_identify *identify;
9585
9586         identify = &rphy->identify;
9587         identify->sas_address = hpsa_sas_port->sas_address;
9588         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9589         identify->target_port_protocols = SAS_PROTOCOL_STP;
9590
9591         return sas_rphy_add(rphy);
9592 }
9593
9594 static struct hpsa_sas_port
9595         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9596                                 u64 sas_address)
9597 {
9598         int rc;
9599         struct hpsa_sas_port *hpsa_sas_port;
9600         struct sas_port *port;
9601
9602         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9603         if (!hpsa_sas_port)
9604                 return NULL;
9605
9606         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9607         hpsa_sas_port->parent_node = hpsa_sas_node;
9608
9609         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9610         if (!port)
9611                 goto free_hpsa_port;
9612
9613         rc = sas_port_add(port);
9614         if (rc)
9615                 goto free_sas_port;
9616
9617         hpsa_sas_port->port = port;
9618         hpsa_sas_port->sas_address = sas_address;
9619         list_add_tail(&hpsa_sas_port->port_list_entry,
9620                         &hpsa_sas_node->port_list_head);
9621
9622         return hpsa_sas_port;
9623
9624 free_sas_port:
9625         sas_port_free(port);
9626 free_hpsa_port:
9627         kfree(hpsa_sas_port);
9628
9629         return NULL;
9630 }
9631
9632 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9633 {
9634         struct hpsa_sas_phy *hpsa_sas_phy;
9635         struct hpsa_sas_phy *next;
9636
9637         list_for_each_entry_safe(hpsa_sas_phy, next,
9638                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9639                 hpsa_free_sas_phy(hpsa_sas_phy);
9640
9641         sas_port_delete(hpsa_sas_port->port);
9642         list_del(&hpsa_sas_port->port_list_entry);
9643         kfree(hpsa_sas_port);
9644 }
9645
9646 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9647 {
9648         struct hpsa_sas_node *hpsa_sas_node;
9649
9650         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9651         if (hpsa_sas_node) {
9652                 hpsa_sas_node->parent_dev = parent_dev;
9653                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9654         }
9655
9656         return hpsa_sas_node;
9657 }
9658
9659 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9660 {
9661         struct hpsa_sas_port *hpsa_sas_port;
9662         struct hpsa_sas_port *next;
9663
9664         if (!hpsa_sas_node)
9665                 return;
9666
9667         list_for_each_entry_safe(hpsa_sas_port, next,
9668                         &hpsa_sas_node->port_list_head, port_list_entry)
9669                 hpsa_free_sas_port(hpsa_sas_port);
9670
9671         kfree(hpsa_sas_node);
9672 }
9673
9674 static struct hpsa_scsi_dev_t
9675         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9676                                         struct sas_rphy *rphy)
9677 {
9678         int i;
9679         struct hpsa_scsi_dev_t *device;
9680
9681         for (i = 0; i < h->ndevices; i++) {
9682                 device = h->dev[i];
9683                 if (!device->sas_port)
9684                         continue;
9685                 if (device->sas_port->rphy == rphy)
9686                         return device;
9687         }
9688
9689         return NULL;
9690 }
9691
9692 static int hpsa_add_sas_host(struct ctlr_info *h)
9693 {
9694         int rc;
9695         struct device *parent_dev;
9696         struct hpsa_sas_node *hpsa_sas_node;
9697         struct hpsa_sas_port *hpsa_sas_port;
9698         struct hpsa_sas_phy *hpsa_sas_phy;
9699
9700         parent_dev = &h->scsi_host->shost_dev;
9701
9702         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9703         if (!hpsa_sas_node)
9704                 return -ENOMEM;
9705
9706         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9707         if (!hpsa_sas_port) {
9708                 rc = -ENODEV;
9709                 goto free_sas_node;
9710         }
9711
9712         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9713         if (!hpsa_sas_phy) {
9714                 rc = -ENODEV;
9715                 goto free_sas_port;
9716         }
9717
9718         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9719         if (rc)
9720                 goto free_sas_phy;
9721
9722         h->sas_host = hpsa_sas_node;
9723
9724         return 0;
9725
9726 free_sas_phy:
9727         hpsa_free_sas_phy(hpsa_sas_phy);
9728 free_sas_port:
9729         hpsa_free_sas_port(hpsa_sas_port);
9730 free_sas_node:
9731         hpsa_free_sas_node(hpsa_sas_node);
9732
9733         return rc;
9734 }
9735
9736 static void hpsa_delete_sas_host(struct ctlr_info *h)
9737 {
9738         hpsa_free_sas_node(h->sas_host);
9739 }
9740
9741 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9742                                 struct hpsa_scsi_dev_t *device)
9743 {
9744         int rc;
9745         struct hpsa_sas_port *hpsa_sas_port;
9746         struct sas_rphy *rphy;
9747
9748         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9749         if (!hpsa_sas_port)
9750                 return -ENOMEM;
9751
9752         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9753         if (!rphy) {
9754                 rc = -ENODEV;
9755                 goto free_sas_port;
9756         }
9757
9758         hpsa_sas_port->rphy = rphy;
9759         device->sas_port = hpsa_sas_port;
9760
9761         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9762         if (rc)
9763                 goto free_sas_port;
9764
9765         return 0;
9766
9767 free_sas_port:
9768         hpsa_free_sas_port(hpsa_sas_port);
9769         device->sas_port = NULL;
9770
9771         return rc;
9772 }
9773
9774 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9775 {
9776         if (device->sas_port) {
9777                 hpsa_free_sas_port(device->sas_port);
9778                 device->sas_port = NULL;
9779         }
9780 }
9781
9782 static int
9783 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9784 {
9785         return 0;
9786 }
9787
9788 static int
9789 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9790 {
9791         struct Scsi_Host *shost = phy_to_shost(rphy);
9792         struct ctlr_info *h;
9793         struct hpsa_scsi_dev_t *sd;
9794
9795         if (!shost)
9796                 return -ENXIO;
9797
9798         h = shost_to_hba(shost);
9799
9800         if (!h)
9801                 return -ENXIO;
9802
9803         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9804         if (!sd)
9805                 return -ENXIO;
9806
9807         *identifier = sd->eli;
9808
9809         return 0;
9810 }
9811
9812 static int
9813 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9814 {
9815         return -ENXIO;
9816 }
9817
9818 static int
9819 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9820 {
9821         return 0;
9822 }
9823
9824 static int
9825 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9826 {
9827         return 0;
9828 }
9829
9830 static int
9831 hpsa_sas_phy_setup(struct sas_phy *phy)
9832 {
9833         return 0;
9834 }
9835
9836 static void
9837 hpsa_sas_phy_release(struct sas_phy *phy)
9838 {
9839 }
9840
9841 static int
9842 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9843 {
9844         return -EINVAL;
9845 }
9846
9847 static struct sas_function_template hpsa_sas_transport_functions = {
9848         .get_linkerrors = hpsa_sas_get_linkerrors,
9849         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9850         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9851         .phy_reset = hpsa_sas_phy_reset,
9852         .phy_enable = hpsa_sas_phy_enable,
9853         .phy_setup = hpsa_sas_phy_setup,
9854         .phy_release = hpsa_sas_phy_release,
9855         .set_phy_speed = hpsa_sas_phy_speed,
9856 };
9857
9858 /*
9859  *  This is it.  Register the PCI driver information for the cards we control
9860  *  the OS will call our registered routines when it finds one of our cards.
9861  */
9862 static int __init hpsa_init(void)
9863 {
9864         int rc;
9865
9866         hpsa_sas_transport_template =
9867                 sas_attach_transport(&hpsa_sas_transport_functions);
9868         if (!hpsa_sas_transport_template)
9869                 return -ENODEV;
9870
9871         rc = pci_register_driver(&hpsa_pci_driver);
9872
9873         if (rc)
9874                 sas_release_transport(hpsa_sas_transport_template);
9875
9876         return rc;
9877 }
9878
9879 static void __exit hpsa_cleanup(void)
9880 {
9881         pci_unregister_driver(&hpsa_pci_driver);
9882         sas_release_transport(hpsa_sas_transport_template);
9883 }
9884
9885 static void __attribute__((unused)) verify_offsets(void)
9886 {
9887 #define VERIFY_OFFSET(member, offset) \
9888         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9889
9890         VERIFY_OFFSET(structure_size, 0);
9891         VERIFY_OFFSET(volume_blk_size, 4);
9892         VERIFY_OFFSET(volume_blk_cnt, 8);
9893         VERIFY_OFFSET(phys_blk_shift, 16);
9894         VERIFY_OFFSET(parity_rotation_shift, 17);
9895         VERIFY_OFFSET(strip_size, 18);
9896         VERIFY_OFFSET(disk_starting_blk, 20);
9897         VERIFY_OFFSET(disk_blk_cnt, 28);
9898         VERIFY_OFFSET(data_disks_per_row, 36);
9899         VERIFY_OFFSET(metadata_disks_per_row, 38);
9900         VERIFY_OFFSET(row_cnt, 40);
9901         VERIFY_OFFSET(layout_map_count, 42);
9902         VERIFY_OFFSET(flags, 44);
9903         VERIFY_OFFSET(dekindex, 46);
9904         /* VERIFY_OFFSET(reserved, 48 */
9905         VERIFY_OFFSET(data, 64);
9906
9907 #undef VERIFY_OFFSET
9908
9909 #define VERIFY_OFFSET(member, offset) \
9910         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9911
9912         VERIFY_OFFSET(IU_type, 0);
9913         VERIFY_OFFSET(direction, 1);
9914         VERIFY_OFFSET(reply_queue, 2);
9915         /* VERIFY_OFFSET(reserved1, 3);  */
9916         VERIFY_OFFSET(scsi_nexus, 4);
9917         VERIFY_OFFSET(Tag, 8);
9918         VERIFY_OFFSET(cdb, 16);
9919         VERIFY_OFFSET(cciss_lun, 32);
9920         VERIFY_OFFSET(data_len, 40);
9921         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9922         VERIFY_OFFSET(sg_count, 45);
9923         /* VERIFY_OFFSET(reserved3 */
9924         VERIFY_OFFSET(err_ptr, 48);
9925         VERIFY_OFFSET(err_len, 56);
9926         /* VERIFY_OFFSET(reserved4  */
9927         VERIFY_OFFSET(sg, 64);
9928
9929 #undef VERIFY_OFFSET
9930
9931 #define VERIFY_OFFSET(member, offset) \
9932         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9933
9934         VERIFY_OFFSET(dev_handle, 0x00);
9935         VERIFY_OFFSET(reserved1, 0x02);
9936         VERIFY_OFFSET(function, 0x03);
9937         VERIFY_OFFSET(reserved2, 0x04);
9938         VERIFY_OFFSET(err_info, 0x0C);
9939         VERIFY_OFFSET(reserved3, 0x10);
9940         VERIFY_OFFSET(err_info_len, 0x12);
9941         VERIFY_OFFSET(reserved4, 0x13);
9942         VERIFY_OFFSET(sgl_offset, 0x14);
9943         VERIFY_OFFSET(reserved5, 0x15);
9944         VERIFY_OFFSET(transfer_len, 0x1C);
9945         VERIFY_OFFSET(reserved6, 0x20);
9946         VERIFY_OFFSET(io_flags, 0x24);
9947         VERIFY_OFFSET(reserved7, 0x26);
9948         VERIFY_OFFSET(LUN, 0x34);
9949         VERIFY_OFFSET(control, 0x3C);
9950         VERIFY_OFFSET(CDB, 0x40);
9951         VERIFY_OFFSET(reserved8, 0x50);
9952         VERIFY_OFFSET(host_context_flags, 0x60);
9953         VERIFY_OFFSET(timeout_sec, 0x62);
9954         VERIFY_OFFSET(ReplyQueue, 0x64);
9955         VERIFY_OFFSET(reserved9, 0x65);
9956         VERIFY_OFFSET(tag, 0x68);
9957         VERIFY_OFFSET(host_addr, 0x70);
9958         VERIFY_OFFSET(CISS_LUN, 0x78);
9959         VERIFY_OFFSET(SG, 0x78 + 8);
9960 #undef VERIFY_OFFSET
9961 }
9962
9963 module_init(hpsa_init);
9964 module_exit(hpsa_cleanup);