[SCSI] hpsa: remove atrophied hpsa_scsi_setup function
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80         "Use 'simple mode' rather than 'performant mode'");
81
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
100                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101         {0,}
102 };
103
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111         {0x3241103C, "Smart Array P212", &SA5_access},
112         {0x3243103C, "Smart Array P410", &SA5_access},
113         {0x3245103C, "Smart Array P410i", &SA5_access},
114         {0x3247103C, "Smart Array P411", &SA5_access},
115         {0x3249103C, "Smart Array P812", &SA5_access},
116         {0x324a103C, "Smart Array P712m", &SA5_access},
117         {0x324b103C, "Smart Array P711m", &SA5_access},
118         {0x3350103C, "Smart Array", &SA5_access},
119         {0x3351103C, "Smart Array", &SA5_access},
120         {0x3352103C, "Smart Array", &SA5_access},
121         {0x3353103C, "Smart Array", &SA5_access},
122         {0x3354103C, "Smart Array", &SA5_access},
123         {0x3355103C, "Smart Array", &SA5_access},
124         {0x3356103C, "Smart Array", &SA5_access},
125         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127
128 static int number_of_controllers;
129
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145         int cmd_type);
146
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150         unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152         int qdepth, int reason);
153
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160         struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162         struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165         int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170         u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172         unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175         void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181         unsigned long *priv = shost_priv(sdev->host);
182         return (struct ctlr_info *) *priv;
183 }
184
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187         unsigned long *priv = shost_priv(sh);
188         return (struct ctlr_info *) *priv;
189 }
190
191 static int check_for_unit_attention(struct ctlr_info *h,
192         struct CommandList *c)
193 {
194         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195                 return 0;
196
197         switch (c->err_info->SenseInfo[12]) {
198         case STATE_CHANGED:
199                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200                         "detected, command retried\n", h->ctlr);
201                 break;
202         case LUN_FAILED:
203                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204                         "detected, action required\n", h->ctlr);
205                 break;
206         case REPORT_LUNS_CHANGED:
207                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208                         "changed, action required\n", h->ctlr);
209         /*
210          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211          */
212                 break;
213         case POWER_OR_RESET:
214                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215                         "or device reset detected\n", h->ctlr);
216                 break;
217         case UNIT_ATTENTION_CLEARED:
218                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219                     "cleared by another initiator\n", h->ctlr);
220                 break;
221         default:
222                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223                         "unit attention detected\n", h->ctlr);
224                 break;
225         }
226         return 1;
227 }
228
229 static ssize_t host_store_rescan(struct device *dev,
230                                  struct device_attribute *attr,
231                                  const char *buf, size_t count)
232 {
233         struct ctlr_info *h;
234         struct Scsi_Host *shost = class_to_shost(dev);
235         h = shost_to_hba(shost);
236         hpsa_scan_start(h->scsi_host);
237         return count;
238 }
239
240 static ssize_t host_show_firmware_revision(struct device *dev,
241              struct device_attribute *attr, char *buf)
242 {
243         struct ctlr_info *h;
244         struct Scsi_Host *shost = class_to_shost(dev);
245         unsigned char *fwrev;
246
247         h = shost_to_hba(shost);
248         if (!h->hba_inquiry_data)
249                 return 0;
250         fwrev = &h->hba_inquiry_data[32];
251         return snprintf(buf, 20, "%c%c%c%c\n",
252                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256              struct device_attribute *attr, char *buf)
257 {
258         struct Scsi_Host *shost = class_to_shost(dev);
259         struct ctlr_info *h = shost_to_hba(shost);
260
261         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263
264 static ssize_t host_show_transport_mode(struct device *dev,
265         struct device_attribute *attr, char *buf)
266 {
267         struct ctlr_info *h;
268         struct Scsi_Host *shost = class_to_shost(dev);
269
270         h = shost_to_hba(shost);
271         return snprintf(buf, 20, "%s\n",
272                 h->transMethod & CFGTBL_Trans_Performant ?
273                         "performant" : "simple");
274 }
275
276 /* List of controllers which cannot be reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278         0x324a103C, /* Smart Array P712m */
279         0x324b103C, /* SmartArray P711m */
280         0x3223103C, /* Smart Array P800 */
281         0x3234103C, /* Smart Array P400 */
282         0x3235103C, /* Smart Array P400i */
283         0x3211103C, /* Smart Array E200i */
284         0x3212103C, /* Smart Array E200 */
285         0x3213103C, /* Smart Array E200i */
286         0x3214103C, /* Smart Array E200i */
287         0x3215103C, /* Smart Array E200i */
288         0x3237103C, /* Smart Array E500 */
289         0x323D103C, /* Smart Array P700m */
290         0x409C0E11, /* Smart Array 6400 */
291         0x409D0E11, /* Smart Array 6400 EM */
292 };
293
294 static int ctlr_is_resettable(struct ctlr_info *h)
295 {
296         int i;
297
298         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
299                 if (unresettable_controller[i] == h->board_id)
300                         return 0;
301         return 1;
302 }
303
304 static ssize_t host_show_resettable(struct device *dev,
305         struct device_attribute *attr, char *buf)
306 {
307         struct ctlr_info *h;
308         struct Scsi_Host *shost = class_to_shost(dev);
309
310         h = shost_to_hba(shost);
311         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h));
312 }
313
314 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
315 {
316         return (scsi3addr[3] & 0xC0) == 0x40;
317 }
318
319 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
320         "UNKNOWN"
321 };
322 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
323
324 static ssize_t raid_level_show(struct device *dev,
325              struct device_attribute *attr, char *buf)
326 {
327         ssize_t l = 0;
328         unsigned char rlevel;
329         struct ctlr_info *h;
330         struct scsi_device *sdev;
331         struct hpsa_scsi_dev_t *hdev;
332         unsigned long flags;
333
334         sdev = to_scsi_device(dev);
335         h = sdev_to_hba(sdev);
336         spin_lock_irqsave(&h->lock, flags);
337         hdev = sdev->hostdata;
338         if (!hdev) {
339                 spin_unlock_irqrestore(&h->lock, flags);
340                 return -ENODEV;
341         }
342
343         /* Is this even a logical drive? */
344         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
345                 spin_unlock_irqrestore(&h->lock, flags);
346                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
347                 return l;
348         }
349
350         rlevel = hdev->raid_level;
351         spin_unlock_irqrestore(&h->lock, flags);
352         if (rlevel > RAID_UNKNOWN)
353                 rlevel = RAID_UNKNOWN;
354         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
355         return l;
356 }
357
358 static ssize_t lunid_show(struct device *dev,
359              struct device_attribute *attr, char *buf)
360 {
361         struct ctlr_info *h;
362         struct scsi_device *sdev;
363         struct hpsa_scsi_dev_t *hdev;
364         unsigned long flags;
365         unsigned char lunid[8];
366
367         sdev = to_scsi_device(dev);
368         h = sdev_to_hba(sdev);
369         spin_lock_irqsave(&h->lock, flags);
370         hdev = sdev->hostdata;
371         if (!hdev) {
372                 spin_unlock_irqrestore(&h->lock, flags);
373                 return -ENODEV;
374         }
375         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
376         spin_unlock_irqrestore(&h->lock, flags);
377         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
378                 lunid[0], lunid[1], lunid[2], lunid[3],
379                 lunid[4], lunid[5], lunid[6], lunid[7]);
380 }
381
382 static ssize_t unique_id_show(struct device *dev,
383              struct device_attribute *attr, char *buf)
384 {
385         struct ctlr_info *h;
386         struct scsi_device *sdev;
387         struct hpsa_scsi_dev_t *hdev;
388         unsigned long flags;
389         unsigned char sn[16];
390
391         sdev = to_scsi_device(dev);
392         h = sdev_to_hba(sdev);
393         spin_lock_irqsave(&h->lock, flags);
394         hdev = sdev->hostdata;
395         if (!hdev) {
396                 spin_unlock_irqrestore(&h->lock, flags);
397                 return -ENODEV;
398         }
399         memcpy(sn, hdev->device_id, sizeof(sn));
400         spin_unlock_irqrestore(&h->lock, flags);
401         return snprintf(buf, 16 * 2 + 2,
402                         "%02X%02X%02X%02X%02X%02X%02X%02X"
403                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
404                         sn[0], sn[1], sn[2], sn[3],
405                         sn[4], sn[5], sn[6], sn[7],
406                         sn[8], sn[9], sn[10], sn[11],
407                         sn[12], sn[13], sn[14], sn[15]);
408 }
409
410 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
411 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
412 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
413 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
414 static DEVICE_ATTR(firmware_revision, S_IRUGO,
415         host_show_firmware_revision, NULL);
416 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
417         host_show_commands_outstanding, NULL);
418 static DEVICE_ATTR(transport_mode, S_IRUGO,
419         host_show_transport_mode, NULL);
420 static DEVICE_ATTR(resettable, S_IRUGO,
421         host_show_resettable, NULL);
422
423 static struct device_attribute *hpsa_sdev_attrs[] = {
424         &dev_attr_raid_level,
425         &dev_attr_lunid,
426         &dev_attr_unique_id,
427         NULL,
428 };
429
430 static struct device_attribute *hpsa_shost_attrs[] = {
431         &dev_attr_rescan,
432         &dev_attr_firmware_revision,
433         &dev_attr_commands_outstanding,
434         &dev_attr_transport_mode,
435         &dev_attr_resettable,
436         NULL,
437 };
438
439 static struct scsi_host_template hpsa_driver_template = {
440         .module                 = THIS_MODULE,
441         .name                   = "hpsa",
442         .proc_name              = "hpsa",
443         .queuecommand           = hpsa_scsi_queue_command,
444         .scan_start             = hpsa_scan_start,
445         .scan_finished          = hpsa_scan_finished,
446         .change_queue_depth     = hpsa_change_queue_depth,
447         .this_id                = -1,
448         .use_clustering         = ENABLE_CLUSTERING,
449         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
450         .ioctl                  = hpsa_ioctl,
451         .slave_alloc            = hpsa_slave_alloc,
452         .slave_destroy          = hpsa_slave_destroy,
453 #ifdef CONFIG_COMPAT
454         .compat_ioctl           = hpsa_compat_ioctl,
455 #endif
456         .sdev_attrs = hpsa_sdev_attrs,
457         .shost_attrs = hpsa_shost_attrs,
458 };
459
460
461 /* Enqueuing and dequeuing functions for cmdlists. */
462 static inline void addQ(struct list_head *list, struct CommandList *c)
463 {
464         list_add_tail(&c->list, list);
465 }
466
467 static inline u32 next_command(struct ctlr_info *h)
468 {
469         u32 a;
470
471         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
472                 return h->access.command_completed(h);
473
474         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
475                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
476                 (h->reply_pool_head)++;
477                 h->commands_outstanding--;
478         } else {
479                 a = FIFO_EMPTY;
480         }
481         /* Check for wraparound */
482         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
483                 h->reply_pool_head = h->reply_pool;
484                 h->reply_pool_wraparound ^= 1;
485         }
486         return a;
487 }
488
489 /* set_performant_mode: Modify the tag for cciss performant
490  * set bit 0 for pull model, bits 3-1 for block fetch
491  * register number
492  */
493 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
494 {
495         if (likely(h->transMethod & CFGTBL_Trans_Performant))
496                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
497 }
498
499 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
500         struct CommandList *c)
501 {
502         unsigned long flags;
503
504         set_performant_mode(h, c);
505         spin_lock_irqsave(&h->lock, flags);
506         addQ(&h->reqQ, c);
507         h->Qdepth++;
508         start_io(h);
509         spin_unlock_irqrestore(&h->lock, flags);
510 }
511
512 static inline void removeQ(struct CommandList *c)
513 {
514         if (WARN_ON(list_empty(&c->list)))
515                 return;
516         list_del_init(&c->list);
517 }
518
519 static inline int is_hba_lunid(unsigned char scsi3addr[])
520 {
521         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
522 }
523
524 static inline int is_scsi_rev_5(struct ctlr_info *h)
525 {
526         if (!h->hba_inquiry_data)
527                 return 0;
528         if ((h->hba_inquiry_data[2] & 0x07) == 5)
529                 return 1;
530         return 0;
531 }
532
533 static int hpsa_find_target_lun(struct ctlr_info *h,
534         unsigned char scsi3addr[], int bus, int *target, int *lun)
535 {
536         /* finds an unused bus, target, lun for a new physical device
537          * assumes h->devlock is held
538          */
539         int i, found = 0;
540         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
541
542         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
543
544         for (i = 0; i < h->ndevices; i++) {
545                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
546                         set_bit(h->dev[i]->target, lun_taken);
547         }
548
549         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
550                 if (!test_bit(i, lun_taken)) {
551                         /* *bus = 1; */
552                         *target = i;
553                         *lun = 0;
554                         found = 1;
555                         break;
556                 }
557         }
558         return !found;
559 }
560
561 /* Add an entry into h->dev[] array. */
562 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
563                 struct hpsa_scsi_dev_t *device,
564                 struct hpsa_scsi_dev_t *added[], int *nadded)
565 {
566         /* assumes h->devlock is held */
567         int n = h->ndevices;
568         int i;
569         unsigned char addr1[8], addr2[8];
570         struct hpsa_scsi_dev_t *sd;
571
572         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
573                 dev_err(&h->pdev->dev, "too many devices, some will be "
574                         "inaccessible.\n");
575                 return -1;
576         }
577
578         /* physical devices do not have lun or target assigned until now. */
579         if (device->lun != -1)
580                 /* Logical device, lun is already assigned. */
581                 goto lun_assigned;
582
583         /* If this device a non-zero lun of a multi-lun device
584          * byte 4 of the 8-byte LUN addr will contain the logical
585          * unit no, zero otherise.
586          */
587         if (device->scsi3addr[4] == 0) {
588                 /* This is not a non-zero lun of a multi-lun device */
589                 if (hpsa_find_target_lun(h, device->scsi3addr,
590                         device->bus, &device->target, &device->lun) != 0)
591                         return -1;
592                 goto lun_assigned;
593         }
594
595         /* This is a non-zero lun of a multi-lun device.
596          * Search through our list and find the device which
597          * has the same 8 byte LUN address, excepting byte 4.
598          * Assign the same bus and target for this new LUN.
599          * Use the logical unit number from the firmware.
600          */
601         memcpy(addr1, device->scsi3addr, 8);
602         addr1[4] = 0;
603         for (i = 0; i < n; i++) {
604                 sd = h->dev[i];
605                 memcpy(addr2, sd->scsi3addr, 8);
606                 addr2[4] = 0;
607                 /* differ only in byte 4? */
608                 if (memcmp(addr1, addr2, 8) == 0) {
609                         device->bus = sd->bus;
610                         device->target = sd->target;
611                         device->lun = device->scsi3addr[4];
612                         break;
613                 }
614         }
615         if (device->lun == -1) {
616                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
617                         " suspect firmware bug or unsupported hardware "
618                         "configuration.\n");
619                         return -1;
620         }
621
622 lun_assigned:
623
624         h->dev[n] = device;
625         h->ndevices++;
626         added[*nadded] = device;
627         (*nadded)++;
628
629         /* initially, (before registering with scsi layer) we don't
630          * know our hostno and we don't want to print anything first
631          * time anyway (the scsi layer's inquiries will show that info)
632          */
633         /* if (hostno != -1) */
634                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
635                         scsi_device_type(device->devtype), hostno,
636                         device->bus, device->target, device->lun);
637         return 0;
638 }
639
640 /* Replace an entry from h->dev[] array. */
641 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
642         int entry, struct hpsa_scsi_dev_t *new_entry,
643         struct hpsa_scsi_dev_t *added[], int *nadded,
644         struct hpsa_scsi_dev_t *removed[], int *nremoved)
645 {
646         /* assumes h->devlock is held */
647         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
648         removed[*nremoved] = h->dev[entry];
649         (*nremoved)++;
650         h->dev[entry] = new_entry;
651         added[*nadded] = new_entry;
652         (*nadded)++;
653         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
654                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
655                         new_entry->target, new_entry->lun);
656 }
657
658 /* Remove an entry from h->dev[] array. */
659 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
660         struct hpsa_scsi_dev_t *removed[], int *nremoved)
661 {
662         /* assumes h->devlock is held */
663         int i;
664         struct hpsa_scsi_dev_t *sd;
665
666         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
667
668         sd = h->dev[entry];
669         removed[*nremoved] = h->dev[entry];
670         (*nremoved)++;
671
672         for (i = entry; i < h->ndevices-1; i++)
673                 h->dev[i] = h->dev[i+1];
674         h->ndevices--;
675         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
676                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
677                 sd->lun);
678 }
679
680 #define SCSI3ADDR_EQ(a, b) ( \
681         (a)[7] == (b)[7] && \
682         (a)[6] == (b)[6] && \
683         (a)[5] == (b)[5] && \
684         (a)[4] == (b)[4] && \
685         (a)[3] == (b)[3] && \
686         (a)[2] == (b)[2] && \
687         (a)[1] == (b)[1] && \
688         (a)[0] == (b)[0])
689
690 static void fixup_botched_add(struct ctlr_info *h,
691         struct hpsa_scsi_dev_t *added)
692 {
693         /* called when scsi_add_device fails in order to re-adjust
694          * h->dev[] to match the mid layer's view.
695          */
696         unsigned long flags;
697         int i, j;
698
699         spin_lock_irqsave(&h->lock, flags);
700         for (i = 0; i < h->ndevices; i++) {
701                 if (h->dev[i] == added) {
702                         for (j = i; j < h->ndevices-1; j++)
703                                 h->dev[j] = h->dev[j+1];
704                         h->ndevices--;
705                         break;
706                 }
707         }
708         spin_unlock_irqrestore(&h->lock, flags);
709         kfree(added);
710 }
711
712 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
713         struct hpsa_scsi_dev_t *dev2)
714 {
715         /* we compare everything except lun and target as these
716          * are not yet assigned.  Compare parts likely
717          * to differ first
718          */
719         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
720                 sizeof(dev1->scsi3addr)) != 0)
721                 return 0;
722         if (memcmp(dev1->device_id, dev2->device_id,
723                 sizeof(dev1->device_id)) != 0)
724                 return 0;
725         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
726                 return 0;
727         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
728                 return 0;
729         if (dev1->devtype != dev2->devtype)
730                 return 0;
731         if (dev1->bus != dev2->bus)
732                 return 0;
733         return 1;
734 }
735
736 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
737  * and return needle location in *index.  If scsi3addr matches, but not
738  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
739  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
740  */
741 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
742         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
743         int *index)
744 {
745         int i;
746 #define DEVICE_NOT_FOUND 0
747 #define DEVICE_CHANGED 1
748 #define DEVICE_SAME 2
749         for (i = 0; i < haystack_size; i++) {
750                 if (haystack[i] == NULL) /* previously removed. */
751                         continue;
752                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
753                         *index = i;
754                         if (device_is_the_same(needle, haystack[i]))
755                                 return DEVICE_SAME;
756                         else
757                                 return DEVICE_CHANGED;
758                 }
759         }
760         *index = -1;
761         return DEVICE_NOT_FOUND;
762 }
763
764 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
765         struct hpsa_scsi_dev_t *sd[], int nsds)
766 {
767         /* sd contains scsi3 addresses and devtypes, and inquiry
768          * data.  This function takes what's in sd to be the current
769          * reality and updates h->dev[] to reflect that reality.
770          */
771         int i, entry, device_change, changes = 0;
772         struct hpsa_scsi_dev_t *csd;
773         unsigned long flags;
774         struct hpsa_scsi_dev_t **added, **removed;
775         int nadded, nremoved;
776         struct Scsi_Host *sh = NULL;
777
778         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
779                 GFP_KERNEL);
780         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
781                 GFP_KERNEL);
782
783         if (!added || !removed) {
784                 dev_warn(&h->pdev->dev, "out of memory in "
785                         "adjust_hpsa_scsi_table\n");
786                 goto free_and_out;
787         }
788
789         spin_lock_irqsave(&h->devlock, flags);
790
791         /* find any devices in h->dev[] that are not in
792          * sd[] and remove them from h->dev[], and for any
793          * devices which have changed, remove the old device
794          * info and add the new device info.
795          */
796         i = 0;
797         nremoved = 0;
798         nadded = 0;
799         while (i < h->ndevices) {
800                 csd = h->dev[i];
801                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
802                 if (device_change == DEVICE_NOT_FOUND) {
803                         changes++;
804                         hpsa_scsi_remove_entry(h, hostno, i,
805                                 removed, &nremoved);
806                         continue; /* remove ^^^, hence i not incremented */
807                 } else if (device_change == DEVICE_CHANGED) {
808                         changes++;
809                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
810                                 added, &nadded, removed, &nremoved);
811                         /* Set it to NULL to prevent it from being freed
812                          * at the bottom of hpsa_update_scsi_devices()
813                          */
814                         sd[entry] = NULL;
815                 }
816                 i++;
817         }
818
819         /* Now, make sure every device listed in sd[] is also
820          * listed in h->dev[], adding them if they aren't found
821          */
822
823         for (i = 0; i < nsds; i++) {
824                 if (!sd[i]) /* if already added above. */
825                         continue;
826                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
827                                         h->ndevices, &entry);
828                 if (device_change == DEVICE_NOT_FOUND) {
829                         changes++;
830                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
831                                 added, &nadded) != 0)
832                                 break;
833                         sd[i] = NULL; /* prevent from being freed later. */
834                 } else if (device_change == DEVICE_CHANGED) {
835                         /* should never happen... */
836                         changes++;
837                         dev_warn(&h->pdev->dev,
838                                 "device unexpectedly changed.\n");
839                         /* but if it does happen, we just ignore that device */
840                 }
841         }
842         spin_unlock_irqrestore(&h->devlock, flags);
843
844         /* Don't notify scsi mid layer of any changes the first time through
845          * (or if there are no changes) scsi_scan_host will do it later the
846          * first time through.
847          */
848         if (hostno == -1 || !changes)
849                 goto free_and_out;
850
851         sh = h->scsi_host;
852         /* Notify scsi mid layer of any removed devices */
853         for (i = 0; i < nremoved; i++) {
854                 struct scsi_device *sdev =
855                         scsi_device_lookup(sh, removed[i]->bus,
856                                 removed[i]->target, removed[i]->lun);
857                 if (sdev != NULL) {
858                         scsi_remove_device(sdev);
859                         scsi_device_put(sdev);
860                 } else {
861                         /* We don't expect to get here.
862                          * future cmds to this device will get selection
863                          * timeout as if the device was gone.
864                          */
865                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
866                                 " for removal.", hostno, removed[i]->bus,
867                                 removed[i]->target, removed[i]->lun);
868                 }
869                 kfree(removed[i]);
870                 removed[i] = NULL;
871         }
872
873         /* Notify scsi mid layer of any added devices */
874         for (i = 0; i < nadded; i++) {
875                 if (scsi_add_device(sh, added[i]->bus,
876                         added[i]->target, added[i]->lun) == 0)
877                         continue;
878                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
879                         "device not added.\n", hostno, added[i]->bus,
880                         added[i]->target, added[i]->lun);
881                 /* now we have to remove it from h->dev,
882                  * since it didn't get added to scsi mid layer
883                  */
884                 fixup_botched_add(h, added[i]);
885         }
886
887 free_and_out:
888         kfree(added);
889         kfree(removed);
890 }
891
892 /*
893  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
894  * Assume's h->devlock is held.
895  */
896 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
897         int bus, int target, int lun)
898 {
899         int i;
900         struct hpsa_scsi_dev_t *sd;
901
902         for (i = 0; i < h->ndevices; i++) {
903                 sd = h->dev[i];
904                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
905                         return sd;
906         }
907         return NULL;
908 }
909
910 /* link sdev->hostdata to our per-device structure. */
911 static int hpsa_slave_alloc(struct scsi_device *sdev)
912 {
913         struct hpsa_scsi_dev_t *sd;
914         unsigned long flags;
915         struct ctlr_info *h;
916
917         h = sdev_to_hba(sdev);
918         spin_lock_irqsave(&h->devlock, flags);
919         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
920                 sdev_id(sdev), sdev->lun);
921         if (sd != NULL)
922                 sdev->hostdata = sd;
923         spin_unlock_irqrestore(&h->devlock, flags);
924         return 0;
925 }
926
927 static void hpsa_slave_destroy(struct scsi_device *sdev)
928 {
929         /* nothing to do. */
930 }
931
932 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
933 {
934         int i;
935
936         if (!h->cmd_sg_list)
937                 return;
938         for (i = 0; i < h->nr_cmds; i++) {
939                 kfree(h->cmd_sg_list[i]);
940                 h->cmd_sg_list[i] = NULL;
941         }
942         kfree(h->cmd_sg_list);
943         h->cmd_sg_list = NULL;
944 }
945
946 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
947 {
948         int i;
949
950         if (h->chainsize <= 0)
951                 return 0;
952
953         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
954                                 GFP_KERNEL);
955         if (!h->cmd_sg_list)
956                 return -ENOMEM;
957         for (i = 0; i < h->nr_cmds; i++) {
958                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
959                                                 h->chainsize, GFP_KERNEL);
960                 if (!h->cmd_sg_list[i])
961                         goto clean;
962         }
963         return 0;
964
965 clean:
966         hpsa_free_sg_chain_blocks(h);
967         return -ENOMEM;
968 }
969
970 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
971         struct CommandList *c)
972 {
973         struct SGDescriptor *chain_sg, *chain_block;
974         u64 temp64;
975
976         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
977         chain_block = h->cmd_sg_list[c->cmdindex];
978         chain_sg->Ext = HPSA_SG_CHAIN;
979         chain_sg->Len = sizeof(*chain_sg) *
980                 (c->Header.SGTotal - h->max_cmd_sg_entries);
981         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
982                                 PCI_DMA_TODEVICE);
983         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
984         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
985 }
986
987 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
988         struct CommandList *c)
989 {
990         struct SGDescriptor *chain_sg;
991         union u64bit temp64;
992
993         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
994                 return;
995
996         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
997         temp64.val32.lower = chain_sg->Addr.lower;
998         temp64.val32.upper = chain_sg->Addr.upper;
999         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1000 }
1001
1002 static void complete_scsi_command(struct CommandList *cp)
1003 {
1004         struct scsi_cmnd *cmd;
1005         struct ctlr_info *h;
1006         struct ErrorInfo *ei;
1007
1008         unsigned char sense_key;
1009         unsigned char asc;      /* additional sense code */
1010         unsigned char ascq;     /* additional sense code qualifier */
1011
1012         ei = cp->err_info;
1013         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1014         h = cp->h;
1015
1016         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1017         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1018                 hpsa_unmap_sg_chain_block(h, cp);
1019
1020         cmd->result = (DID_OK << 16);           /* host byte */
1021         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1022         cmd->result |= ei->ScsiStatus;
1023
1024         /* copy the sense data whether we need to or not. */
1025         memcpy(cmd->sense_buffer, ei->SenseInfo,
1026                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1027                         SCSI_SENSE_BUFFERSIZE :
1028                         ei->SenseLen);
1029         scsi_set_resid(cmd, ei->ResidualCnt);
1030
1031         if (ei->CommandStatus == 0) {
1032                 cmd->scsi_done(cmd);
1033                 cmd_free(h, cp);
1034                 return;
1035         }
1036
1037         /* an error has occurred */
1038         switch (ei->CommandStatus) {
1039
1040         case CMD_TARGET_STATUS:
1041                 if (ei->ScsiStatus) {
1042                         /* Get sense key */
1043                         sense_key = 0xf & ei->SenseInfo[2];
1044                         /* Get additional sense code */
1045                         asc = ei->SenseInfo[12];
1046                         /* Get addition sense code qualifier */
1047                         ascq = ei->SenseInfo[13];
1048                 }
1049
1050                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1051                         if (check_for_unit_attention(h, cp)) {
1052                                 cmd->result = DID_SOFT_ERROR << 16;
1053                                 break;
1054                         }
1055                         if (sense_key == ILLEGAL_REQUEST) {
1056                                 /*
1057                                  * SCSI REPORT_LUNS is commonly unsupported on
1058                                  * Smart Array.  Suppress noisy complaint.
1059                                  */
1060                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1061                                         break;
1062
1063                                 /* If ASC/ASCQ indicate Logical Unit
1064                                  * Not Supported condition,
1065                                  */
1066                                 if ((asc == 0x25) && (ascq == 0x0)) {
1067                                         dev_warn(&h->pdev->dev, "cp %p "
1068                                                 "has check condition\n", cp);
1069                                         break;
1070                                 }
1071                         }
1072
1073                         if (sense_key == NOT_READY) {
1074                                 /* If Sense is Not Ready, Logical Unit
1075                                  * Not ready, Manual Intervention
1076                                  * required
1077                                  */
1078                                 if ((asc == 0x04) && (ascq == 0x03)) {
1079                                         dev_warn(&h->pdev->dev, "cp %p "
1080                                                 "has check condition: unit "
1081                                                 "not ready, manual "
1082                                                 "intervention required\n", cp);
1083                                         break;
1084                                 }
1085                         }
1086                         if (sense_key == ABORTED_COMMAND) {
1087                                 /* Aborted command is retryable */
1088                                 dev_warn(&h->pdev->dev, "cp %p "
1089                                         "has check condition: aborted command: "
1090                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1091                                         cp, asc, ascq);
1092                                 cmd->result = DID_SOFT_ERROR << 16;
1093                                 break;
1094                         }
1095                         /* Must be some other type of check condition */
1096                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1097                                         "unknown type: "
1098                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1099                                         "Returning result: 0x%x, "
1100                                         "cmd=[%02x %02x %02x %02x %02x "
1101                                         "%02x %02x %02x %02x %02x %02x "
1102                                         "%02x %02x %02x %02x %02x]\n",
1103                                         cp, sense_key, asc, ascq,
1104                                         cmd->result,
1105                                         cmd->cmnd[0], cmd->cmnd[1],
1106                                         cmd->cmnd[2], cmd->cmnd[3],
1107                                         cmd->cmnd[4], cmd->cmnd[5],
1108                                         cmd->cmnd[6], cmd->cmnd[7],
1109                                         cmd->cmnd[8], cmd->cmnd[9],
1110                                         cmd->cmnd[10], cmd->cmnd[11],
1111                                         cmd->cmnd[12], cmd->cmnd[13],
1112                                         cmd->cmnd[14], cmd->cmnd[15]);
1113                         break;
1114                 }
1115
1116
1117                 /* Problem was not a check condition
1118                  * Pass it up to the upper layers...
1119                  */
1120                 if (ei->ScsiStatus) {
1121                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1122                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1123                                 "Returning result: 0x%x\n",
1124                                 cp, ei->ScsiStatus,
1125                                 sense_key, asc, ascq,
1126                                 cmd->result);
1127                 } else {  /* scsi status is zero??? How??? */
1128                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1129                                 "Returning no connection.\n", cp),
1130
1131                         /* Ordinarily, this case should never happen,
1132                          * but there is a bug in some released firmware
1133                          * revisions that allows it to happen if, for
1134                          * example, a 4100 backplane loses power and
1135                          * the tape drive is in it.  We assume that
1136                          * it's a fatal error of some kind because we
1137                          * can't show that it wasn't. We will make it
1138                          * look like selection timeout since that is
1139                          * the most common reason for this to occur,
1140                          * and it's severe enough.
1141                          */
1142
1143                         cmd->result = DID_NO_CONNECT << 16;
1144                 }
1145                 break;
1146
1147         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1148                 break;
1149         case CMD_DATA_OVERRUN:
1150                 dev_warn(&h->pdev->dev, "cp %p has"
1151                         " completed with data overrun "
1152                         "reported\n", cp);
1153                 break;
1154         case CMD_INVALID: {
1155                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1156                 print_cmd(cp); */
1157                 /* We get CMD_INVALID if you address a non-existent device
1158                  * instead of a selection timeout (no response).  You will
1159                  * see this if you yank out a drive, then try to access it.
1160                  * This is kind of a shame because it means that any other
1161                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1162                  * missing target. */
1163                 cmd->result = DID_NO_CONNECT << 16;
1164         }
1165                 break;
1166         case CMD_PROTOCOL_ERR:
1167                 dev_warn(&h->pdev->dev, "cp %p has "
1168                         "protocol error \n", cp);
1169                 break;
1170         case CMD_HARDWARE_ERR:
1171                 cmd->result = DID_ERROR << 16;
1172                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1173                 break;
1174         case CMD_CONNECTION_LOST:
1175                 cmd->result = DID_ERROR << 16;
1176                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1177                 break;
1178         case CMD_ABORTED:
1179                 cmd->result = DID_ABORT << 16;
1180                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1181                                 cp, ei->ScsiStatus);
1182                 break;
1183         case CMD_ABORT_FAILED:
1184                 cmd->result = DID_ERROR << 16;
1185                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1186                 break;
1187         case CMD_UNSOLICITED_ABORT:
1188                 cmd->result = DID_RESET << 16;
1189                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1190                         "abort\n", cp);
1191                 break;
1192         case CMD_TIMEOUT:
1193                 cmd->result = DID_TIME_OUT << 16;
1194                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1195                 break;
1196         case CMD_UNABORTABLE:
1197                 cmd->result = DID_ERROR << 16;
1198                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1199                 break;
1200         default:
1201                 cmd->result = DID_ERROR << 16;
1202                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1203                                 cp, ei->CommandStatus);
1204         }
1205         cmd->scsi_done(cmd);
1206         cmd_free(h, cp);
1207 }
1208
1209 static int hpsa_scsi_detect(struct ctlr_info *h)
1210 {
1211         struct Scsi_Host *sh;
1212         int error;
1213
1214         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1215         if (sh == NULL)
1216                 goto fail;
1217
1218         sh->io_port = 0;
1219         sh->n_io_port = 0;
1220         sh->this_id = -1;
1221         sh->max_channel = 3;
1222         sh->max_cmd_len = MAX_COMMAND_SIZE;
1223         sh->max_lun = HPSA_MAX_LUN;
1224         sh->max_id = HPSA_MAX_LUN;
1225         sh->can_queue = h->nr_cmds;
1226         sh->cmd_per_lun = h->nr_cmds;
1227         sh->sg_tablesize = h->maxsgentries;
1228         h->scsi_host = sh;
1229         sh->hostdata[0] = (unsigned long) h;
1230         sh->irq = h->intr[h->intr_mode];
1231         sh->unique_id = sh->irq;
1232         error = scsi_add_host(sh, &h->pdev->dev);
1233         if (error)
1234                 goto fail_host_put;
1235         scsi_scan_host(sh);
1236         return 0;
1237
1238  fail_host_put:
1239         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1240                 " failed for controller %d\n", h->ctlr);
1241         scsi_host_put(sh);
1242         return error;
1243  fail:
1244         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1245                 " failed for controller %d\n", h->ctlr);
1246         return -ENOMEM;
1247 }
1248
1249 static void hpsa_pci_unmap(struct pci_dev *pdev,
1250         struct CommandList *c, int sg_used, int data_direction)
1251 {
1252         int i;
1253         union u64bit addr64;
1254
1255         for (i = 0; i < sg_used; i++) {
1256                 addr64.val32.lower = c->SG[i].Addr.lower;
1257                 addr64.val32.upper = c->SG[i].Addr.upper;
1258                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1259                         data_direction);
1260         }
1261 }
1262
1263 static void hpsa_map_one(struct pci_dev *pdev,
1264                 struct CommandList *cp,
1265                 unsigned char *buf,
1266                 size_t buflen,
1267                 int data_direction)
1268 {
1269         u64 addr64;
1270
1271         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1272                 cp->Header.SGList = 0;
1273                 cp->Header.SGTotal = 0;
1274                 return;
1275         }
1276
1277         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1278         cp->SG[0].Addr.lower =
1279           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1280         cp->SG[0].Addr.upper =
1281           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1282         cp->SG[0].Len = buflen;
1283         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1284         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1285 }
1286
1287 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1288         struct CommandList *c)
1289 {
1290         DECLARE_COMPLETION_ONSTACK(wait);
1291
1292         c->waiting = &wait;
1293         enqueue_cmd_and_start_io(h, c);
1294         wait_for_completion(&wait);
1295 }
1296
1297 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1298         struct CommandList *c, int data_direction)
1299 {
1300         int retry_count = 0;
1301
1302         do {
1303                 memset(c->err_info, 0, sizeof(c->err_info));
1304                 hpsa_scsi_do_simple_cmd_core(h, c);
1305                 retry_count++;
1306         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1307         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1308 }
1309
1310 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1311 {
1312         struct ErrorInfo *ei;
1313         struct device *d = &cp->h->pdev->dev;
1314
1315         ei = cp->err_info;
1316         switch (ei->CommandStatus) {
1317         case CMD_TARGET_STATUS:
1318                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1319                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1320                                 ei->ScsiStatus);
1321                 if (ei->ScsiStatus == 0)
1322                         dev_warn(d, "SCSI status is abnormally zero.  "
1323                         "(probably indicates selection timeout "
1324                         "reported incorrectly due to a known "
1325                         "firmware bug, circa July, 2001.)\n");
1326                 break;
1327         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1328                         dev_info(d, "UNDERRUN\n");
1329                 break;
1330         case CMD_DATA_OVERRUN:
1331                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1332                 break;
1333         case CMD_INVALID: {
1334                 /* controller unfortunately reports SCSI passthru's
1335                  * to non-existent targets as invalid commands.
1336                  */
1337                 dev_warn(d, "cp %p is reported invalid (probably means "
1338                         "target device no longer present)\n", cp);
1339                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1340                 print_cmd(cp);  */
1341                 }
1342                 break;
1343         case CMD_PROTOCOL_ERR:
1344                 dev_warn(d, "cp %p has protocol error \n", cp);
1345                 break;
1346         case CMD_HARDWARE_ERR:
1347                 /* cmd->result = DID_ERROR << 16; */
1348                 dev_warn(d, "cp %p had hardware error\n", cp);
1349                 break;
1350         case CMD_CONNECTION_LOST:
1351                 dev_warn(d, "cp %p had connection lost\n", cp);
1352                 break;
1353         case CMD_ABORTED:
1354                 dev_warn(d, "cp %p was aborted\n", cp);
1355                 break;
1356         case CMD_ABORT_FAILED:
1357                 dev_warn(d, "cp %p reports abort failed\n", cp);
1358                 break;
1359         case CMD_UNSOLICITED_ABORT:
1360                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1361                 break;
1362         case CMD_TIMEOUT:
1363                 dev_warn(d, "cp %p timed out\n", cp);
1364                 break;
1365         case CMD_UNABORTABLE:
1366                 dev_warn(d, "Command unabortable\n");
1367                 break;
1368         default:
1369                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1370                                 ei->CommandStatus);
1371         }
1372 }
1373
1374 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1375                         unsigned char page, unsigned char *buf,
1376                         unsigned char bufsize)
1377 {
1378         int rc = IO_OK;
1379         struct CommandList *c;
1380         struct ErrorInfo *ei;
1381
1382         c = cmd_special_alloc(h);
1383
1384         if (c == NULL) {                        /* trouble... */
1385                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1386                 return -ENOMEM;
1387         }
1388
1389         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1390         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1391         ei = c->err_info;
1392         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1393                 hpsa_scsi_interpret_error(c);
1394                 rc = -1;
1395         }
1396         cmd_special_free(h, c);
1397         return rc;
1398 }
1399
1400 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1401 {
1402         int rc = IO_OK;
1403         struct CommandList *c;
1404         struct ErrorInfo *ei;
1405
1406         c = cmd_special_alloc(h);
1407
1408         if (c == NULL) {                        /* trouble... */
1409                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1410                 return -ENOMEM;
1411         }
1412
1413         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1414         hpsa_scsi_do_simple_cmd_core(h, c);
1415         /* no unmap needed here because no data xfer. */
1416
1417         ei = c->err_info;
1418         if (ei->CommandStatus != 0) {
1419                 hpsa_scsi_interpret_error(c);
1420                 rc = -1;
1421         }
1422         cmd_special_free(h, c);
1423         return rc;
1424 }
1425
1426 static void hpsa_get_raid_level(struct ctlr_info *h,
1427         unsigned char *scsi3addr, unsigned char *raid_level)
1428 {
1429         int rc;
1430         unsigned char *buf;
1431
1432         *raid_level = RAID_UNKNOWN;
1433         buf = kzalloc(64, GFP_KERNEL);
1434         if (!buf)
1435                 return;
1436         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1437         if (rc == 0)
1438                 *raid_level = buf[8];
1439         if (*raid_level > RAID_UNKNOWN)
1440                 *raid_level = RAID_UNKNOWN;
1441         kfree(buf);
1442         return;
1443 }
1444
1445 /* Get the device id from inquiry page 0x83 */
1446 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1447         unsigned char *device_id, int buflen)
1448 {
1449         int rc;
1450         unsigned char *buf;
1451
1452         if (buflen > 16)
1453                 buflen = 16;
1454         buf = kzalloc(64, GFP_KERNEL);
1455         if (!buf)
1456                 return -1;
1457         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1458         if (rc == 0)
1459                 memcpy(device_id, &buf[8], buflen);
1460         kfree(buf);
1461         return rc != 0;
1462 }
1463
1464 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1465                 struct ReportLUNdata *buf, int bufsize,
1466                 int extended_response)
1467 {
1468         int rc = IO_OK;
1469         struct CommandList *c;
1470         unsigned char scsi3addr[8];
1471         struct ErrorInfo *ei;
1472
1473         c = cmd_special_alloc(h);
1474         if (c == NULL) {                        /* trouble... */
1475                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1476                 return -1;
1477         }
1478         /* address the controller */
1479         memset(scsi3addr, 0, sizeof(scsi3addr));
1480         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1481                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1482         if (extended_response)
1483                 c->Request.CDB[1] = extended_response;
1484         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1485         ei = c->err_info;
1486         if (ei->CommandStatus != 0 &&
1487             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1488                 hpsa_scsi_interpret_error(c);
1489                 rc = -1;
1490         }
1491         cmd_special_free(h, c);
1492         return rc;
1493 }
1494
1495 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1496                 struct ReportLUNdata *buf,
1497                 int bufsize, int extended_response)
1498 {
1499         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1500 }
1501
1502 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1503                 struct ReportLUNdata *buf, int bufsize)
1504 {
1505         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1506 }
1507
1508 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1509         int bus, int target, int lun)
1510 {
1511         device->bus = bus;
1512         device->target = target;
1513         device->lun = lun;
1514 }
1515
1516 static int hpsa_update_device_info(struct ctlr_info *h,
1517         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1518 {
1519 #define OBDR_TAPE_INQ_SIZE 49
1520         unsigned char *inq_buff;
1521
1522         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1523         if (!inq_buff)
1524                 goto bail_out;
1525
1526         /* Do an inquiry to the device to see what it is. */
1527         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1528                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1529                 /* Inquiry failed (msg printed already) */
1530                 dev_err(&h->pdev->dev,
1531                         "hpsa_update_device_info: inquiry failed\n");
1532                 goto bail_out;
1533         }
1534
1535         this_device->devtype = (inq_buff[0] & 0x1f);
1536         memcpy(this_device->scsi3addr, scsi3addr, 8);
1537         memcpy(this_device->vendor, &inq_buff[8],
1538                 sizeof(this_device->vendor));
1539         memcpy(this_device->model, &inq_buff[16],
1540                 sizeof(this_device->model));
1541         memset(this_device->device_id, 0,
1542                 sizeof(this_device->device_id));
1543         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1544                 sizeof(this_device->device_id));
1545
1546         if (this_device->devtype == TYPE_DISK &&
1547                 is_logical_dev_addr_mode(scsi3addr))
1548                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1549         else
1550                 this_device->raid_level = RAID_UNKNOWN;
1551
1552         kfree(inq_buff);
1553         return 0;
1554
1555 bail_out:
1556         kfree(inq_buff);
1557         return 1;
1558 }
1559
1560 static unsigned char *msa2xxx_model[] = {
1561         "MSA2012",
1562         "MSA2024",
1563         "MSA2312",
1564         "MSA2324",
1565         NULL,
1566 };
1567
1568 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1569 {
1570         int i;
1571
1572         for (i = 0; msa2xxx_model[i]; i++)
1573                 if (strncmp(device->model, msa2xxx_model[i],
1574                         strlen(msa2xxx_model[i])) == 0)
1575                         return 1;
1576         return 0;
1577 }
1578
1579 /* Helper function to assign bus, target, lun mapping of devices.
1580  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1581  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1582  * Logical drive target and lun are assigned at this time, but
1583  * physical device lun and target assignment are deferred (assigned
1584  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1585  */
1586 static void figure_bus_target_lun(struct ctlr_info *h,
1587         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1588         struct hpsa_scsi_dev_t *device)
1589 {
1590         u32 lunid;
1591
1592         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1593                 /* logical device */
1594                 if (unlikely(is_scsi_rev_5(h))) {
1595                         /* p1210m, logical drives lun assignments
1596                          * match SCSI REPORT LUNS data.
1597                          */
1598                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1599                         *bus = 0;
1600                         *target = 0;
1601                         *lun = (lunid & 0x3fff) + 1;
1602                 } else {
1603                         /* not p1210m... */
1604                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1605                         if (is_msa2xxx(h, device)) {
1606                                 /* msa2xxx way, put logicals on bus 1
1607                                  * and match target/lun numbers box
1608                                  * reports.
1609                                  */
1610                                 *bus = 1;
1611                                 *target = (lunid >> 16) & 0x3fff;
1612                                 *lun = lunid & 0x00ff;
1613                         } else {
1614                                 /* Traditional smart array way. */
1615                                 *bus = 0;
1616                                 *lun = 0;
1617                                 *target = lunid & 0x3fff;
1618                         }
1619                 }
1620         } else {
1621                 /* physical device */
1622                 if (is_hba_lunid(lunaddrbytes))
1623                         if (unlikely(is_scsi_rev_5(h))) {
1624                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1625                                 *target = 0;
1626                                 *lun = 0;
1627                                 return;
1628                         } else
1629                                 *bus = 3; /* traditional smartarray */
1630                 else
1631                         *bus = 2; /* physical disk */
1632                 *target = -1;
1633                 *lun = -1; /* we will fill these in later. */
1634         }
1635 }
1636
1637 /*
1638  * If there is no lun 0 on a target, linux won't find any devices.
1639  * For the MSA2xxx boxes, we have to manually detect the enclosure
1640  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1641  * it for some reason.  *tmpdevice is the target we're adding,
1642  * this_device is a pointer into the current element of currentsd[]
1643  * that we're building up in update_scsi_devices(), below.
1644  * lunzerobits is a bitmap that tracks which targets already have a
1645  * lun 0 assigned.
1646  * Returns 1 if an enclosure was added, 0 if not.
1647  */
1648 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1649         struct hpsa_scsi_dev_t *tmpdevice,
1650         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1651         int bus, int target, int lun, unsigned long lunzerobits[],
1652         int *nmsa2xxx_enclosures)
1653 {
1654         unsigned char scsi3addr[8];
1655
1656         if (test_bit(target, lunzerobits))
1657                 return 0; /* There is already a lun 0 on this target. */
1658
1659         if (!is_logical_dev_addr_mode(lunaddrbytes))
1660                 return 0; /* It's the logical targets that may lack lun 0. */
1661
1662         if (!is_msa2xxx(h, tmpdevice))
1663                 return 0; /* It's only the MSA2xxx that have this problem. */
1664
1665         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1666                 return 0;
1667
1668         memset(scsi3addr, 0, 8);
1669         scsi3addr[3] = target;
1670         if (is_hba_lunid(scsi3addr))
1671                 return 0; /* Don't add the RAID controller here. */
1672
1673         if (is_scsi_rev_5(h))
1674                 return 0; /* p1210m doesn't need to do this. */
1675
1676 #define MAX_MSA2XXX_ENCLOSURES 32
1677         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1678                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1679                         "enclosures exceeded.  Check your hardware "
1680                         "configuration.");
1681                 return 0;
1682         }
1683
1684         if (hpsa_update_device_info(h, scsi3addr, this_device))
1685                 return 0;
1686         (*nmsa2xxx_enclosures)++;
1687         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1688         set_bit(target, lunzerobits);
1689         return 1;
1690 }
1691
1692 /*
1693  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1694  * logdev.  The number of luns in physdev and logdev are returned in
1695  * *nphysicals and *nlogicals, respectively.
1696  * Returns 0 on success, -1 otherwise.
1697  */
1698 static int hpsa_gather_lun_info(struct ctlr_info *h,
1699         int reportlunsize,
1700         struct ReportLUNdata *physdev, u32 *nphysicals,
1701         struct ReportLUNdata *logdev, u32 *nlogicals)
1702 {
1703         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1704                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1705                 return -1;
1706         }
1707         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1708         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1709                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1710                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1711                         *nphysicals - HPSA_MAX_PHYS_LUN);
1712                 *nphysicals = HPSA_MAX_PHYS_LUN;
1713         }
1714         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1715                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1716                 return -1;
1717         }
1718         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1719         /* Reject Logicals in excess of our max capability. */
1720         if (*nlogicals > HPSA_MAX_LUN) {
1721                 dev_warn(&h->pdev->dev,
1722                         "maximum logical LUNs (%d) exceeded.  "
1723                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1724                         *nlogicals - HPSA_MAX_LUN);
1725                         *nlogicals = HPSA_MAX_LUN;
1726         }
1727         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1728                 dev_warn(&h->pdev->dev,
1729                         "maximum logical + physical LUNs (%d) exceeded. "
1730                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1731                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1732                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1733         }
1734         return 0;
1735 }
1736
1737 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1738         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1739         struct ReportLUNdata *logdev_list)
1740 {
1741         /* Helper function, figure out where the LUN ID info is coming from
1742          * given index i, lists of physical and logical devices, where in
1743          * the list the raid controller is supposed to appear (first or last)
1744          */
1745
1746         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1747         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1748
1749         if (i == raid_ctlr_position)
1750                 return RAID_CTLR_LUNID;
1751
1752         if (i < logicals_start)
1753                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1754
1755         if (i < last_device)
1756                 return &logdev_list->LUN[i - nphysicals -
1757                         (raid_ctlr_position == 0)][0];
1758         BUG();
1759         return NULL;
1760 }
1761
1762 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1763 {
1764         /* the idea here is we could get notified
1765          * that some devices have changed, so we do a report
1766          * physical luns and report logical luns cmd, and adjust
1767          * our list of devices accordingly.
1768          *
1769          * The scsi3addr's of devices won't change so long as the
1770          * adapter is not reset.  That means we can rescan and
1771          * tell which devices we already know about, vs. new
1772          * devices, vs.  disappearing devices.
1773          */
1774         struct ReportLUNdata *physdev_list = NULL;
1775         struct ReportLUNdata *logdev_list = NULL;
1776         unsigned char *inq_buff = NULL;
1777         u32 nphysicals = 0;
1778         u32 nlogicals = 0;
1779         u32 ndev_allocated = 0;
1780         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1781         int ncurrent = 0;
1782         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1783         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1784         int bus, target, lun;
1785         int raid_ctlr_position;
1786         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1787
1788         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1789                 GFP_KERNEL);
1790         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1791         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1792         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1793         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1794
1795         if (!currentsd || !physdev_list || !logdev_list ||
1796                 !inq_buff || !tmpdevice) {
1797                 dev_err(&h->pdev->dev, "out of memory\n");
1798                 goto out;
1799         }
1800         memset(lunzerobits, 0, sizeof(lunzerobits));
1801
1802         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1803                         logdev_list, &nlogicals))
1804                 goto out;
1805
1806         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1807          * but each of them 4 times through different paths.  The plus 1
1808          * is for the RAID controller.
1809          */
1810         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1811
1812         /* Allocate the per device structures */
1813         for (i = 0; i < ndevs_to_allocate; i++) {
1814                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1815                 if (!currentsd[i]) {
1816                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1817                                 __FILE__, __LINE__);
1818                         goto out;
1819                 }
1820                 ndev_allocated++;
1821         }
1822
1823         if (unlikely(is_scsi_rev_5(h)))
1824                 raid_ctlr_position = 0;
1825         else
1826                 raid_ctlr_position = nphysicals + nlogicals;
1827
1828         /* adjust our table of devices */
1829         nmsa2xxx_enclosures = 0;
1830         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1831                 u8 *lunaddrbytes;
1832
1833                 /* Figure out where the LUN ID info is coming from */
1834                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1835                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1836                 /* skip masked physical devices. */
1837                 if (lunaddrbytes[3] & 0xC0 &&
1838                         i < nphysicals + (raid_ctlr_position == 0))
1839                         continue;
1840
1841                 /* Get device type, vendor, model, device id */
1842                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1843                         continue; /* skip it if we can't talk to it. */
1844                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1845                         tmpdevice);
1846                 this_device = currentsd[ncurrent];
1847
1848                 /*
1849                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1850                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1851                  * is nonetheless an enclosure device there.  We have to
1852                  * present that otherwise linux won't find anything if
1853                  * there is no lun 0.
1854                  */
1855                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1856                                 lunaddrbytes, bus, target, lun, lunzerobits,
1857                                 &nmsa2xxx_enclosures)) {
1858                         ncurrent++;
1859                         this_device = currentsd[ncurrent];
1860                 }
1861
1862                 *this_device = *tmpdevice;
1863                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1864
1865                 switch (this_device->devtype) {
1866                 case TYPE_ROM: {
1867                         /* We don't *really* support actual CD-ROM devices,
1868                          * just "One Button Disaster Recovery" tape drive
1869                          * which temporarily pretends to be a CD-ROM drive.
1870                          * So we check that the device is really an OBDR tape
1871                          * device by checking for "$DR-10" in bytes 43-48 of
1872                          * the inquiry data.
1873                          */
1874                                 char obdr_sig[7];
1875 #define OBDR_TAPE_SIG "$DR-10"
1876                                 strncpy(obdr_sig, &inq_buff[43], 6);
1877                                 obdr_sig[6] = '\0';
1878                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1879                                         /* Not OBDR device, ignore it. */
1880                                         break;
1881                         }
1882                         ncurrent++;
1883                         break;
1884                 case TYPE_DISK:
1885                         if (i < nphysicals)
1886                                 break;
1887                         ncurrent++;
1888                         break;
1889                 case TYPE_TAPE:
1890                 case TYPE_MEDIUM_CHANGER:
1891                         ncurrent++;
1892                         break;
1893                 case TYPE_RAID:
1894                         /* Only present the Smartarray HBA as a RAID controller.
1895                          * If it's a RAID controller other than the HBA itself
1896                          * (an external RAID controller, MSA500 or similar)
1897                          * don't present it.
1898                          */
1899                         if (!is_hba_lunid(lunaddrbytes))
1900                                 break;
1901                         ncurrent++;
1902                         break;
1903                 default:
1904                         break;
1905                 }
1906                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1907                         break;
1908         }
1909         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1910 out:
1911         kfree(tmpdevice);
1912         for (i = 0; i < ndev_allocated; i++)
1913                 kfree(currentsd[i]);
1914         kfree(currentsd);
1915         kfree(inq_buff);
1916         kfree(physdev_list);
1917         kfree(logdev_list);
1918 }
1919
1920 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1921  * dma mapping  and fills in the scatter gather entries of the
1922  * hpsa command, cp.
1923  */
1924 static int hpsa_scatter_gather(struct ctlr_info *h,
1925                 struct CommandList *cp,
1926                 struct scsi_cmnd *cmd)
1927 {
1928         unsigned int len;
1929         struct scatterlist *sg;
1930         u64 addr64;
1931         int use_sg, i, sg_index, chained;
1932         struct SGDescriptor *curr_sg;
1933
1934         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1935
1936         use_sg = scsi_dma_map(cmd);
1937         if (use_sg < 0)
1938                 return use_sg;
1939
1940         if (!use_sg)
1941                 goto sglist_finished;
1942
1943         curr_sg = cp->SG;
1944         chained = 0;
1945         sg_index = 0;
1946         scsi_for_each_sg(cmd, sg, use_sg, i) {
1947                 if (i == h->max_cmd_sg_entries - 1 &&
1948                         use_sg > h->max_cmd_sg_entries) {
1949                         chained = 1;
1950                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1951                         sg_index = 0;
1952                 }
1953                 addr64 = (u64) sg_dma_address(sg);
1954                 len  = sg_dma_len(sg);
1955                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1956                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1957                 curr_sg->Len = len;
1958                 curr_sg->Ext = 0;  /* we are not chaining */
1959                 curr_sg++;
1960         }
1961
1962         if (use_sg + chained > h->maxSG)
1963                 h->maxSG = use_sg + chained;
1964
1965         if (chained) {
1966                 cp->Header.SGList = h->max_cmd_sg_entries;
1967                 cp->Header.SGTotal = (u16) (use_sg + 1);
1968                 hpsa_map_sg_chain_block(h, cp);
1969                 return 0;
1970         }
1971
1972 sglist_finished:
1973
1974         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1975         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1976         return 0;
1977 }
1978
1979
1980 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1981         void (*done)(struct scsi_cmnd *))
1982 {
1983         struct ctlr_info *h;
1984         struct hpsa_scsi_dev_t *dev;
1985         unsigned char scsi3addr[8];
1986         struct CommandList *c;
1987         unsigned long flags;
1988
1989         /* Get the ptr to our adapter structure out of cmd->host. */
1990         h = sdev_to_hba(cmd->device);
1991         dev = cmd->device->hostdata;
1992         if (!dev) {
1993                 cmd->result = DID_NO_CONNECT << 16;
1994                 done(cmd);
1995                 return 0;
1996         }
1997         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1998
1999         /* Need a lock as this is being allocated from the pool */
2000         spin_lock_irqsave(&h->lock, flags);
2001         c = cmd_alloc(h);
2002         spin_unlock_irqrestore(&h->lock, flags);
2003         if (c == NULL) {                        /* trouble... */
2004                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2005                 return SCSI_MLQUEUE_HOST_BUSY;
2006         }
2007
2008         /* Fill in the command list header */
2009
2010         cmd->scsi_done = done;    /* save this for use by completion code */
2011
2012         /* save c in case we have to abort it  */
2013         cmd->host_scribble = (unsigned char *) c;
2014
2015         c->cmd_type = CMD_SCSI;
2016         c->scsi_cmd = cmd;
2017         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2018         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2019         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2020         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2021
2022         /* Fill in the request block... */
2023
2024         c->Request.Timeout = 0;
2025         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2026         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2027         c->Request.CDBLen = cmd->cmd_len;
2028         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2029         c->Request.Type.Type = TYPE_CMD;
2030         c->Request.Type.Attribute = ATTR_SIMPLE;
2031         switch (cmd->sc_data_direction) {
2032         case DMA_TO_DEVICE:
2033                 c->Request.Type.Direction = XFER_WRITE;
2034                 break;
2035         case DMA_FROM_DEVICE:
2036                 c->Request.Type.Direction = XFER_READ;
2037                 break;
2038         case DMA_NONE:
2039                 c->Request.Type.Direction = XFER_NONE;
2040                 break;
2041         case DMA_BIDIRECTIONAL:
2042                 /* This can happen if a buggy application does a scsi passthru
2043                  * and sets both inlen and outlen to non-zero. ( see
2044                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2045                  */
2046
2047                 c->Request.Type.Direction = XFER_RSVD;
2048                 /* This is technically wrong, and hpsa controllers should
2049                  * reject it with CMD_INVALID, which is the most correct
2050                  * response, but non-fibre backends appear to let it
2051                  * slide by, and give the same results as if this field
2052                  * were set correctly.  Either way is acceptable for
2053                  * our purposes here.
2054                  */
2055
2056                 break;
2057
2058         default:
2059                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2060                         cmd->sc_data_direction);
2061                 BUG();
2062                 break;
2063         }
2064
2065         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2066                 cmd_free(h, c);
2067                 return SCSI_MLQUEUE_HOST_BUSY;
2068         }
2069         enqueue_cmd_and_start_io(h, c);
2070         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2071         return 0;
2072 }
2073
2074 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2075
2076 static void hpsa_scan_start(struct Scsi_Host *sh)
2077 {
2078         struct ctlr_info *h = shost_to_hba(sh);
2079         unsigned long flags;
2080
2081         /* wait until any scan already in progress is finished. */
2082         while (1) {
2083                 spin_lock_irqsave(&h->scan_lock, flags);
2084                 if (h->scan_finished)
2085                         break;
2086                 spin_unlock_irqrestore(&h->scan_lock, flags);
2087                 wait_event(h->scan_wait_queue, h->scan_finished);
2088                 /* Note: We don't need to worry about a race between this
2089                  * thread and driver unload because the midlayer will
2090                  * have incremented the reference count, so unload won't
2091                  * happen if we're in here.
2092                  */
2093         }
2094         h->scan_finished = 0; /* mark scan as in progress */
2095         spin_unlock_irqrestore(&h->scan_lock, flags);
2096
2097         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2098
2099         spin_lock_irqsave(&h->scan_lock, flags);
2100         h->scan_finished = 1; /* mark scan as finished. */
2101         wake_up_all(&h->scan_wait_queue);
2102         spin_unlock_irqrestore(&h->scan_lock, flags);
2103 }
2104
2105 static int hpsa_scan_finished(struct Scsi_Host *sh,
2106         unsigned long elapsed_time)
2107 {
2108         struct ctlr_info *h = shost_to_hba(sh);
2109         unsigned long flags;
2110         int finished;
2111
2112         spin_lock_irqsave(&h->scan_lock, flags);
2113         finished = h->scan_finished;
2114         spin_unlock_irqrestore(&h->scan_lock, flags);
2115         return finished;
2116 }
2117
2118 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2119         int qdepth, int reason)
2120 {
2121         struct ctlr_info *h = sdev_to_hba(sdev);
2122
2123         if (reason != SCSI_QDEPTH_DEFAULT)
2124                 return -ENOTSUPP;
2125
2126         if (qdepth < 1)
2127                 qdepth = 1;
2128         else
2129                 if (qdepth > h->nr_cmds)
2130                         qdepth = h->nr_cmds;
2131         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2132         return sdev->queue_depth;
2133 }
2134
2135 static void hpsa_unregister_scsi(struct ctlr_info *h)
2136 {
2137         /* we are being forcibly unloaded, and may not refuse. */
2138         scsi_remove_host(h->scsi_host);
2139         scsi_host_put(h->scsi_host);
2140         h->scsi_host = NULL;
2141 }
2142
2143 static int hpsa_register_scsi(struct ctlr_info *h)
2144 {
2145         int rc;
2146
2147         rc = hpsa_scsi_detect(h);
2148         if (rc != 0)
2149                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2150                         " hpsa_scsi_detect(), rc is %d\n", rc);
2151         return rc;
2152 }
2153
2154 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2155         unsigned char lunaddr[])
2156 {
2157         int rc = 0;
2158         int count = 0;
2159         int waittime = 1; /* seconds */
2160         struct CommandList *c;
2161
2162         c = cmd_special_alloc(h);
2163         if (!c) {
2164                 dev_warn(&h->pdev->dev, "out of memory in "
2165                         "wait_for_device_to_become_ready.\n");
2166                 return IO_ERROR;
2167         }
2168
2169         /* Send test unit ready until device ready, or give up. */
2170         while (count < HPSA_TUR_RETRY_LIMIT) {
2171
2172                 /* Wait for a bit.  do this first, because if we send
2173                  * the TUR right away, the reset will just abort it.
2174                  */
2175                 msleep(1000 * waittime);
2176                 count++;
2177
2178                 /* Increase wait time with each try, up to a point. */
2179                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2180                         waittime = waittime * 2;
2181
2182                 /* Send the Test Unit Ready */
2183                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2184                 hpsa_scsi_do_simple_cmd_core(h, c);
2185                 /* no unmap needed here because no data xfer. */
2186
2187                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2188                         break;
2189
2190                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2191                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2192                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2193                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2194                         break;
2195
2196                 dev_warn(&h->pdev->dev, "waiting %d secs "
2197                         "for device to become ready.\n", waittime);
2198                 rc = 1; /* device not ready. */
2199         }
2200
2201         if (rc)
2202                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2203         else
2204                 dev_warn(&h->pdev->dev, "device is ready.\n");
2205
2206         cmd_special_free(h, c);
2207         return rc;
2208 }
2209
2210 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2211  * complaining.  Doing a host- or bus-reset can't do anything good here.
2212  */
2213 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2214 {
2215         int rc;
2216         struct ctlr_info *h;
2217         struct hpsa_scsi_dev_t *dev;
2218
2219         /* find the controller to which the command to be aborted was sent */
2220         h = sdev_to_hba(scsicmd->device);
2221         if (h == NULL) /* paranoia */
2222                 return FAILED;
2223         dev = scsicmd->device->hostdata;
2224         if (!dev) {
2225                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2226                         "device lookup failed.\n");
2227                 return FAILED;
2228         }
2229         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2230                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2231         /* send a reset to the SCSI LUN which the command was sent to */
2232         rc = hpsa_send_reset(h, dev->scsi3addr);
2233         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2234                 return SUCCESS;
2235
2236         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2237         return FAILED;
2238 }
2239
2240 /*
2241  * For operations that cannot sleep, a command block is allocated at init,
2242  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2243  * which ones are free or in use.  Lock must be held when calling this.
2244  * cmd_free() is the complement.
2245  */
2246 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2247 {
2248         struct CommandList *c;
2249         int i;
2250         union u64bit temp64;
2251         dma_addr_t cmd_dma_handle, err_dma_handle;
2252
2253         do {
2254                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2255                 if (i == h->nr_cmds)
2256                         return NULL;
2257         } while (test_and_set_bit
2258                  (i & (BITS_PER_LONG - 1),
2259                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2260         c = h->cmd_pool + i;
2261         memset(c, 0, sizeof(*c));
2262         cmd_dma_handle = h->cmd_pool_dhandle
2263             + i * sizeof(*c);
2264         c->err_info = h->errinfo_pool + i;
2265         memset(c->err_info, 0, sizeof(*c->err_info));
2266         err_dma_handle = h->errinfo_pool_dhandle
2267             + i * sizeof(*c->err_info);
2268         h->nr_allocs++;
2269
2270         c->cmdindex = i;
2271
2272         INIT_LIST_HEAD(&c->list);
2273         c->busaddr = (u32) cmd_dma_handle;
2274         temp64.val = (u64) err_dma_handle;
2275         c->ErrDesc.Addr.lower = temp64.val32.lower;
2276         c->ErrDesc.Addr.upper = temp64.val32.upper;
2277         c->ErrDesc.Len = sizeof(*c->err_info);
2278
2279         c->h = h;
2280         return c;
2281 }
2282
2283 /* For operations that can wait for kmalloc to possibly sleep,
2284  * this routine can be called. Lock need not be held to call
2285  * cmd_special_alloc. cmd_special_free() is the complement.
2286  */
2287 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2288 {
2289         struct CommandList *c;
2290         union u64bit temp64;
2291         dma_addr_t cmd_dma_handle, err_dma_handle;
2292
2293         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2294         if (c == NULL)
2295                 return NULL;
2296         memset(c, 0, sizeof(*c));
2297
2298         c->cmdindex = -1;
2299
2300         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2301                     &err_dma_handle);
2302
2303         if (c->err_info == NULL) {
2304                 pci_free_consistent(h->pdev,
2305                         sizeof(*c), c, cmd_dma_handle);
2306                 return NULL;
2307         }
2308         memset(c->err_info, 0, sizeof(*c->err_info));
2309
2310         INIT_LIST_HEAD(&c->list);
2311         c->busaddr = (u32) cmd_dma_handle;
2312         temp64.val = (u64) err_dma_handle;
2313         c->ErrDesc.Addr.lower = temp64.val32.lower;
2314         c->ErrDesc.Addr.upper = temp64.val32.upper;
2315         c->ErrDesc.Len = sizeof(*c->err_info);
2316
2317         c->h = h;
2318         return c;
2319 }
2320
2321 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2322 {
2323         int i;
2324
2325         i = c - h->cmd_pool;
2326         clear_bit(i & (BITS_PER_LONG - 1),
2327                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2328         h->nr_frees++;
2329 }
2330
2331 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2332 {
2333         union u64bit temp64;
2334
2335         temp64.val32.lower = c->ErrDesc.Addr.lower;
2336         temp64.val32.upper = c->ErrDesc.Addr.upper;
2337         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2338                             c->err_info, (dma_addr_t) temp64.val);
2339         pci_free_consistent(h->pdev, sizeof(*c),
2340                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2341 }
2342
2343 #ifdef CONFIG_COMPAT
2344
2345 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2346 {
2347         IOCTL32_Command_struct __user *arg32 =
2348             (IOCTL32_Command_struct __user *) arg;
2349         IOCTL_Command_struct arg64;
2350         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2351         int err;
2352         u32 cp;
2353
2354         memset(&arg64, 0, sizeof(arg64));
2355         err = 0;
2356         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2357                            sizeof(arg64.LUN_info));
2358         err |= copy_from_user(&arg64.Request, &arg32->Request,
2359                            sizeof(arg64.Request));
2360         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2361                            sizeof(arg64.error_info));
2362         err |= get_user(arg64.buf_size, &arg32->buf_size);
2363         err |= get_user(cp, &arg32->buf);
2364         arg64.buf = compat_ptr(cp);
2365         err |= copy_to_user(p, &arg64, sizeof(arg64));
2366
2367         if (err)
2368                 return -EFAULT;
2369
2370         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2371         if (err)
2372                 return err;
2373         err |= copy_in_user(&arg32->error_info, &p->error_info,
2374                          sizeof(arg32->error_info));
2375         if (err)
2376                 return -EFAULT;
2377         return err;
2378 }
2379
2380 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2381         int cmd, void *arg)
2382 {
2383         BIG_IOCTL32_Command_struct __user *arg32 =
2384             (BIG_IOCTL32_Command_struct __user *) arg;
2385         BIG_IOCTL_Command_struct arg64;
2386         BIG_IOCTL_Command_struct __user *p =
2387             compat_alloc_user_space(sizeof(arg64));
2388         int err;
2389         u32 cp;
2390
2391         memset(&arg64, 0, sizeof(arg64));
2392         err = 0;
2393         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2394                            sizeof(arg64.LUN_info));
2395         err |= copy_from_user(&arg64.Request, &arg32->Request,
2396                            sizeof(arg64.Request));
2397         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2398                            sizeof(arg64.error_info));
2399         err |= get_user(arg64.buf_size, &arg32->buf_size);
2400         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2401         err |= get_user(cp, &arg32->buf);
2402         arg64.buf = compat_ptr(cp);
2403         err |= copy_to_user(p, &arg64, sizeof(arg64));
2404
2405         if (err)
2406                 return -EFAULT;
2407
2408         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2409         if (err)
2410                 return err;
2411         err |= copy_in_user(&arg32->error_info, &p->error_info,
2412                          sizeof(arg32->error_info));
2413         if (err)
2414                 return -EFAULT;
2415         return err;
2416 }
2417
2418 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2419 {
2420         switch (cmd) {
2421         case CCISS_GETPCIINFO:
2422         case CCISS_GETINTINFO:
2423         case CCISS_SETINTINFO:
2424         case CCISS_GETNODENAME:
2425         case CCISS_SETNODENAME:
2426         case CCISS_GETHEARTBEAT:
2427         case CCISS_GETBUSTYPES:
2428         case CCISS_GETFIRMVER:
2429         case CCISS_GETDRIVVER:
2430         case CCISS_REVALIDVOLS:
2431         case CCISS_DEREGDISK:
2432         case CCISS_REGNEWDISK:
2433         case CCISS_REGNEWD:
2434         case CCISS_RESCANDISK:
2435         case CCISS_GETLUNINFO:
2436                 return hpsa_ioctl(dev, cmd, arg);
2437
2438         case CCISS_PASSTHRU32:
2439                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2440         case CCISS_BIG_PASSTHRU32:
2441                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2442
2443         default:
2444                 return -ENOIOCTLCMD;
2445         }
2446 }
2447 #endif
2448
2449 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2450 {
2451         struct hpsa_pci_info pciinfo;
2452
2453         if (!argp)
2454                 return -EINVAL;
2455         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2456         pciinfo.bus = h->pdev->bus->number;
2457         pciinfo.dev_fn = h->pdev->devfn;
2458         pciinfo.board_id = h->board_id;
2459         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2460                 return -EFAULT;
2461         return 0;
2462 }
2463
2464 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2465 {
2466         DriverVer_type DriverVer;
2467         unsigned char vmaj, vmin, vsubmin;
2468         int rc;
2469
2470         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2471                 &vmaj, &vmin, &vsubmin);
2472         if (rc != 3) {
2473                 dev_info(&h->pdev->dev, "driver version string '%s' "
2474                         "unrecognized.", HPSA_DRIVER_VERSION);
2475                 vmaj = 0;
2476                 vmin = 0;
2477                 vsubmin = 0;
2478         }
2479         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2480         if (!argp)
2481                 return -EINVAL;
2482         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2483                 return -EFAULT;
2484         return 0;
2485 }
2486
2487 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2488 {
2489         IOCTL_Command_struct iocommand;
2490         struct CommandList *c;
2491         char *buff = NULL;
2492         union u64bit temp64;
2493
2494         if (!argp)
2495                 return -EINVAL;
2496         if (!capable(CAP_SYS_RAWIO))
2497                 return -EPERM;
2498         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2499                 return -EFAULT;
2500         if ((iocommand.buf_size < 1) &&
2501             (iocommand.Request.Type.Direction != XFER_NONE)) {
2502                 return -EINVAL;
2503         }
2504         if (iocommand.buf_size > 0) {
2505                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2506                 if (buff == NULL)
2507                         return -EFAULT;
2508                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2509                         /* Copy the data into the buffer we created */
2510                         if (copy_from_user(buff, iocommand.buf,
2511                                 iocommand.buf_size)) {
2512                                 kfree(buff);
2513                                 return -EFAULT;
2514                         }
2515                 } else {
2516                         memset(buff, 0, iocommand.buf_size);
2517                 }
2518         }
2519         c = cmd_special_alloc(h);
2520         if (c == NULL) {
2521                 kfree(buff);
2522                 return -ENOMEM;
2523         }
2524         /* Fill in the command type */
2525         c->cmd_type = CMD_IOCTL_PEND;
2526         /* Fill in Command Header */
2527         c->Header.ReplyQueue = 0; /* unused in simple mode */
2528         if (iocommand.buf_size > 0) {   /* buffer to fill */
2529                 c->Header.SGList = 1;
2530                 c->Header.SGTotal = 1;
2531         } else  { /* no buffers to fill */
2532                 c->Header.SGList = 0;
2533                 c->Header.SGTotal = 0;
2534         }
2535         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2536         /* use the kernel address the cmd block for tag */
2537         c->Header.Tag.lower = c->busaddr;
2538
2539         /* Fill in Request block */
2540         memcpy(&c->Request, &iocommand.Request,
2541                 sizeof(c->Request));
2542
2543         /* Fill in the scatter gather information */
2544         if (iocommand.buf_size > 0) {
2545                 temp64.val = pci_map_single(h->pdev, buff,
2546                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2547                 c->SG[0].Addr.lower = temp64.val32.lower;
2548                 c->SG[0].Addr.upper = temp64.val32.upper;
2549                 c->SG[0].Len = iocommand.buf_size;
2550                 c->SG[0].Ext = 0; /* we are not chaining*/
2551         }
2552         hpsa_scsi_do_simple_cmd_core(h, c);
2553         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2554         check_ioctl_unit_attention(h, c);
2555
2556         /* Copy the error information out */
2557         memcpy(&iocommand.error_info, c->err_info,
2558                 sizeof(iocommand.error_info));
2559         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2560                 kfree(buff);
2561                 cmd_special_free(h, c);
2562                 return -EFAULT;
2563         }
2564         if (iocommand.Request.Type.Direction == XFER_READ &&
2565                 iocommand.buf_size > 0) {
2566                 /* Copy the data out of the buffer we created */
2567                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2568                         kfree(buff);
2569                         cmd_special_free(h, c);
2570                         return -EFAULT;
2571                 }
2572         }
2573         kfree(buff);
2574         cmd_special_free(h, c);
2575         return 0;
2576 }
2577
2578 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2579 {
2580         BIG_IOCTL_Command_struct *ioc;
2581         struct CommandList *c;
2582         unsigned char **buff = NULL;
2583         int *buff_size = NULL;
2584         union u64bit temp64;
2585         BYTE sg_used = 0;
2586         int status = 0;
2587         int i;
2588         u32 left;
2589         u32 sz;
2590         BYTE __user *data_ptr;
2591
2592         if (!argp)
2593                 return -EINVAL;
2594         if (!capable(CAP_SYS_RAWIO))
2595                 return -EPERM;
2596         ioc = (BIG_IOCTL_Command_struct *)
2597             kmalloc(sizeof(*ioc), GFP_KERNEL);
2598         if (!ioc) {
2599                 status = -ENOMEM;
2600                 goto cleanup1;
2601         }
2602         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2603                 status = -EFAULT;
2604                 goto cleanup1;
2605         }
2606         if ((ioc->buf_size < 1) &&
2607             (ioc->Request.Type.Direction != XFER_NONE)) {
2608                 status = -EINVAL;
2609                 goto cleanup1;
2610         }
2611         /* Check kmalloc limits  using all SGs */
2612         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2613                 status = -EINVAL;
2614                 goto cleanup1;
2615         }
2616         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2617                 status = -EINVAL;
2618                 goto cleanup1;
2619         }
2620         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2621         if (!buff) {
2622                 status = -ENOMEM;
2623                 goto cleanup1;
2624         }
2625         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2626         if (!buff_size) {
2627                 status = -ENOMEM;
2628                 goto cleanup1;
2629         }
2630         left = ioc->buf_size;
2631         data_ptr = ioc->buf;
2632         while (left) {
2633                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2634                 buff_size[sg_used] = sz;
2635                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2636                 if (buff[sg_used] == NULL) {
2637                         status = -ENOMEM;
2638                         goto cleanup1;
2639                 }
2640                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2641                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2642                                 status = -ENOMEM;
2643                                 goto cleanup1;
2644                         }
2645                 } else
2646                         memset(buff[sg_used], 0, sz);
2647                 left -= sz;
2648                 data_ptr += sz;
2649                 sg_used++;
2650         }
2651         c = cmd_special_alloc(h);
2652         if (c == NULL) {
2653                 status = -ENOMEM;
2654                 goto cleanup1;
2655         }
2656         c->cmd_type = CMD_IOCTL_PEND;
2657         c->Header.ReplyQueue = 0;
2658         c->Header.SGList = c->Header.SGTotal = sg_used;
2659         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2660         c->Header.Tag.lower = c->busaddr;
2661         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2662         if (ioc->buf_size > 0) {
2663                 int i;
2664                 for (i = 0; i < sg_used; i++) {
2665                         temp64.val = pci_map_single(h->pdev, buff[i],
2666                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2667                         c->SG[i].Addr.lower = temp64.val32.lower;
2668                         c->SG[i].Addr.upper = temp64.val32.upper;
2669                         c->SG[i].Len = buff_size[i];
2670                         /* we are not chaining */
2671                         c->SG[i].Ext = 0;
2672                 }
2673         }
2674         hpsa_scsi_do_simple_cmd_core(h, c);
2675         if (sg_used)
2676                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2677         check_ioctl_unit_attention(h, c);
2678         /* Copy the error information out */
2679         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2680         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2681                 cmd_special_free(h, c);
2682                 status = -EFAULT;
2683                 goto cleanup1;
2684         }
2685         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2686                 /* Copy the data out of the buffer we created */
2687                 BYTE __user *ptr = ioc->buf;
2688                 for (i = 0; i < sg_used; i++) {
2689                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2690                                 cmd_special_free(h, c);
2691                                 status = -EFAULT;
2692                                 goto cleanup1;
2693                         }
2694                         ptr += buff_size[i];
2695                 }
2696         }
2697         cmd_special_free(h, c);
2698         status = 0;
2699 cleanup1:
2700         if (buff) {
2701                 for (i = 0; i < sg_used; i++)
2702                         kfree(buff[i]);
2703                 kfree(buff);
2704         }
2705         kfree(buff_size);
2706         kfree(ioc);
2707         return status;
2708 }
2709
2710 static void check_ioctl_unit_attention(struct ctlr_info *h,
2711         struct CommandList *c)
2712 {
2713         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2714                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2715                 (void) check_for_unit_attention(h, c);
2716 }
2717 /*
2718  * ioctl
2719  */
2720 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2721 {
2722         struct ctlr_info *h;
2723         void __user *argp = (void __user *)arg;
2724
2725         h = sdev_to_hba(dev);
2726
2727         switch (cmd) {
2728         case CCISS_DEREGDISK:
2729         case CCISS_REGNEWDISK:
2730         case CCISS_REGNEWD:
2731                 hpsa_scan_start(h->scsi_host);
2732                 return 0;
2733         case CCISS_GETPCIINFO:
2734                 return hpsa_getpciinfo_ioctl(h, argp);
2735         case CCISS_GETDRIVVER:
2736                 return hpsa_getdrivver_ioctl(h, argp);
2737         case CCISS_PASSTHRU:
2738                 return hpsa_passthru_ioctl(h, argp);
2739         case CCISS_BIG_PASSTHRU:
2740                 return hpsa_big_passthru_ioctl(h, argp);
2741         default:
2742                 return -ENOTTY;
2743         }
2744 }
2745
2746 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2747         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2748         int cmd_type)
2749 {
2750         int pci_dir = XFER_NONE;
2751
2752         c->cmd_type = CMD_IOCTL_PEND;
2753         c->Header.ReplyQueue = 0;
2754         if (buff != NULL && size > 0) {
2755                 c->Header.SGList = 1;
2756                 c->Header.SGTotal = 1;
2757         } else {
2758                 c->Header.SGList = 0;
2759                 c->Header.SGTotal = 0;
2760         }
2761         c->Header.Tag.lower = c->busaddr;
2762         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2763
2764         c->Request.Type.Type = cmd_type;
2765         if (cmd_type == TYPE_CMD) {
2766                 switch (cmd) {
2767                 case HPSA_INQUIRY:
2768                         /* are we trying to read a vital product page */
2769                         if (page_code != 0) {
2770                                 c->Request.CDB[1] = 0x01;
2771                                 c->Request.CDB[2] = page_code;
2772                         }
2773                         c->Request.CDBLen = 6;
2774                         c->Request.Type.Attribute = ATTR_SIMPLE;
2775                         c->Request.Type.Direction = XFER_READ;
2776                         c->Request.Timeout = 0;
2777                         c->Request.CDB[0] = HPSA_INQUIRY;
2778                         c->Request.CDB[4] = size & 0xFF;
2779                         break;
2780                 case HPSA_REPORT_LOG:
2781                 case HPSA_REPORT_PHYS:
2782                         /* Talking to controller so It's a physical command
2783                            mode = 00 target = 0.  Nothing to write.
2784                          */
2785                         c->Request.CDBLen = 12;
2786                         c->Request.Type.Attribute = ATTR_SIMPLE;
2787                         c->Request.Type.Direction = XFER_READ;
2788                         c->Request.Timeout = 0;
2789                         c->Request.CDB[0] = cmd;
2790                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2791                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2792                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2793                         c->Request.CDB[9] = size & 0xFF;
2794                         break;
2795                 case HPSA_CACHE_FLUSH:
2796                         c->Request.CDBLen = 12;
2797                         c->Request.Type.Attribute = ATTR_SIMPLE;
2798                         c->Request.Type.Direction = XFER_WRITE;
2799                         c->Request.Timeout = 0;
2800                         c->Request.CDB[0] = BMIC_WRITE;
2801                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2802                         break;
2803                 case TEST_UNIT_READY:
2804                         c->Request.CDBLen = 6;
2805                         c->Request.Type.Attribute = ATTR_SIMPLE;
2806                         c->Request.Type.Direction = XFER_NONE;
2807                         c->Request.Timeout = 0;
2808                         break;
2809                 default:
2810                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2811                         BUG();
2812                         return;
2813                 }
2814         } else if (cmd_type == TYPE_MSG) {
2815                 switch (cmd) {
2816
2817                 case  HPSA_DEVICE_RESET_MSG:
2818                         c->Request.CDBLen = 16;
2819                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2820                         c->Request.Type.Attribute = ATTR_SIMPLE;
2821                         c->Request.Type.Direction = XFER_NONE;
2822                         c->Request.Timeout = 0; /* Don't time out */
2823                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2824                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2825                         /* If bytes 4-7 are zero, it means reset the */
2826                         /* LunID device */
2827                         c->Request.CDB[4] = 0x00;
2828                         c->Request.CDB[5] = 0x00;
2829                         c->Request.CDB[6] = 0x00;
2830                         c->Request.CDB[7] = 0x00;
2831                 break;
2832
2833                 default:
2834                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2835                                 cmd);
2836                         BUG();
2837                 }
2838         } else {
2839                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2840                 BUG();
2841         }
2842
2843         switch (c->Request.Type.Direction) {
2844         case XFER_READ:
2845                 pci_dir = PCI_DMA_FROMDEVICE;
2846                 break;
2847         case XFER_WRITE:
2848                 pci_dir = PCI_DMA_TODEVICE;
2849                 break;
2850         case XFER_NONE:
2851                 pci_dir = PCI_DMA_NONE;
2852                 break;
2853         default:
2854                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2855         }
2856
2857         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2858
2859         return;
2860 }
2861
2862 /*
2863  * Map (physical) PCI mem into (virtual) kernel space
2864  */
2865 static void __iomem *remap_pci_mem(ulong base, ulong size)
2866 {
2867         ulong page_base = ((ulong) base) & PAGE_MASK;
2868         ulong page_offs = ((ulong) base) - page_base;
2869         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2870
2871         return page_remapped ? (page_remapped + page_offs) : NULL;
2872 }
2873
2874 /* Takes cmds off the submission queue and sends them to the hardware,
2875  * then puts them on the queue of cmds waiting for completion.
2876  */
2877 static void start_io(struct ctlr_info *h)
2878 {
2879         struct CommandList *c;
2880
2881         while (!list_empty(&h->reqQ)) {
2882                 c = list_entry(h->reqQ.next, struct CommandList, list);
2883                 /* can't do anything if fifo is full */
2884                 if ((h->access.fifo_full(h))) {
2885                         dev_warn(&h->pdev->dev, "fifo full\n");
2886                         break;
2887                 }
2888
2889                 /* Get the first entry from the Request Q */
2890                 removeQ(c);
2891                 h->Qdepth--;
2892
2893                 /* Tell the controller execute command */
2894                 h->access.submit_command(h, c);
2895
2896                 /* Put job onto the completed Q */
2897                 addQ(&h->cmpQ, c);
2898         }
2899 }
2900
2901 static inline unsigned long get_next_completion(struct ctlr_info *h)
2902 {
2903         return h->access.command_completed(h);
2904 }
2905
2906 static inline bool interrupt_pending(struct ctlr_info *h)
2907 {
2908         return h->access.intr_pending(h);
2909 }
2910
2911 static inline long interrupt_not_for_us(struct ctlr_info *h)
2912 {
2913         return (h->access.intr_pending(h) == 0) ||
2914                 (h->interrupts_enabled == 0);
2915 }
2916
2917 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2918         u32 raw_tag)
2919 {
2920         if (unlikely(tag_index >= h->nr_cmds)) {
2921                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2922                 return 1;
2923         }
2924         return 0;
2925 }
2926
2927 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2928 {
2929         removeQ(c);
2930         if (likely(c->cmd_type == CMD_SCSI))
2931                 complete_scsi_command(c);
2932         else if (c->cmd_type == CMD_IOCTL_PEND)
2933                 complete(c->waiting);
2934 }
2935
2936 static inline u32 hpsa_tag_contains_index(u32 tag)
2937 {
2938         return tag & DIRECT_LOOKUP_BIT;
2939 }
2940
2941 static inline u32 hpsa_tag_to_index(u32 tag)
2942 {
2943         return tag >> DIRECT_LOOKUP_SHIFT;
2944 }
2945
2946
2947 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2948 {
2949 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
2950 #define HPSA_SIMPLE_ERROR_BITS 0x03
2951         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
2952                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
2953         return tag & ~HPSA_PERF_ERROR_BITS;
2954 }
2955
2956 /* process completion of an indexed ("direct lookup") command */
2957 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2958         u32 raw_tag)
2959 {
2960         u32 tag_index;
2961         struct CommandList *c;
2962
2963         tag_index = hpsa_tag_to_index(raw_tag);
2964         if (bad_tag(h, tag_index, raw_tag))
2965                 return next_command(h);
2966         c = h->cmd_pool + tag_index;
2967         finish_cmd(c, raw_tag);
2968         return next_command(h);
2969 }
2970
2971 /* process completion of a non-indexed command */
2972 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2973         u32 raw_tag)
2974 {
2975         u32 tag;
2976         struct CommandList *c = NULL;
2977
2978         tag = hpsa_tag_discard_error_bits(h, raw_tag);
2979         list_for_each_entry(c, &h->cmpQ, list) {
2980                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2981                         finish_cmd(c, raw_tag);
2982                         return next_command(h);
2983                 }
2984         }
2985         bad_tag(h, h->nr_cmds + 1, raw_tag);
2986         return next_command(h);
2987 }
2988
2989 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2990 {
2991         struct ctlr_info *h = dev_id;
2992         unsigned long flags;
2993         u32 raw_tag;
2994
2995         if (interrupt_not_for_us(h))
2996                 return IRQ_NONE;
2997         spin_lock_irqsave(&h->lock, flags);
2998         while (interrupt_pending(h)) {
2999                 raw_tag = get_next_completion(h);
3000                 while (raw_tag != FIFO_EMPTY) {
3001                         if (hpsa_tag_contains_index(raw_tag))
3002                                 raw_tag = process_indexed_cmd(h, raw_tag);
3003                         else
3004                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3005                 }
3006         }
3007         spin_unlock_irqrestore(&h->lock, flags);
3008         return IRQ_HANDLED;
3009 }
3010
3011 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3012 {
3013         struct ctlr_info *h = dev_id;
3014         unsigned long flags;
3015         u32 raw_tag;
3016
3017         spin_lock_irqsave(&h->lock, flags);
3018         raw_tag = get_next_completion(h);
3019         while (raw_tag != FIFO_EMPTY) {
3020                 if (hpsa_tag_contains_index(raw_tag))
3021                         raw_tag = process_indexed_cmd(h, raw_tag);
3022                 else
3023                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3024         }
3025         spin_unlock_irqrestore(&h->lock, flags);
3026         return IRQ_HANDLED;
3027 }
3028
3029 /* Send a message CDB to the firmware. Careful, this only works
3030  * in simple mode, not performant mode due to the tag lookup.
3031  * We only ever use this immediately after a controller reset.
3032  */
3033 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3034                                                 unsigned char type)
3035 {
3036         struct Command {
3037                 struct CommandListHeader CommandHeader;
3038                 struct RequestBlock Request;
3039                 struct ErrDescriptor ErrorDescriptor;
3040         };
3041         struct Command *cmd;
3042         static const size_t cmd_sz = sizeof(*cmd) +
3043                                         sizeof(cmd->ErrorDescriptor);
3044         dma_addr_t paddr64;
3045         uint32_t paddr32, tag;
3046         void __iomem *vaddr;
3047         int i, err;
3048
3049         vaddr = pci_ioremap_bar(pdev, 0);
3050         if (vaddr == NULL)
3051                 return -ENOMEM;
3052
3053         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3054          * CCISS commands, so they must be allocated from the lower 4GiB of
3055          * memory.
3056          */
3057         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3058         if (err) {
3059                 iounmap(vaddr);
3060                 return -ENOMEM;
3061         }
3062
3063         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3064         if (cmd == NULL) {
3065                 iounmap(vaddr);
3066                 return -ENOMEM;
3067         }
3068
3069         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3070          * although there's no guarantee, we assume that the address is at
3071          * least 4-byte aligned (most likely, it's page-aligned).
3072          */
3073         paddr32 = paddr64;
3074
3075         cmd->CommandHeader.ReplyQueue = 0;
3076         cmd->CommandHeader.SGList = 0;
3077         cmd->CommandHeader.SGTotal = 0;
3078         cmd->CommandHeader.Tag.lower = paddr32;
3079         cmd->CommandHeader.Tag.upper = 0;
3080         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3081
3082         cmd->Request.CDBLen = 16;
3083         cmd->Request.Type.Type = TYPE_MSG;
3084         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3085         cmd->Request.Type.Direction = XFER_NONE;
3086         cmd->Request.Timeout = 0; /* Don't time out */
3087         cmd->Request.CDB[0] = opcode;
3088         cmd->Request.CDB[1] = type;
3089         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3090         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3091         cmd->ErrorDescriptor.Addr.upper = 0;
3092         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3093
3094         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3095
3096         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3097                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3098                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3099                         break;
3100                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3101         }
3102
3103         iounmap(vaddr);
3104
3105         /* we leak the DMA buffer here ... no choice since the controller could
3106          *  still complete the command.
3107          */
3108         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3109                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3110                         opcode, type);
3111                 return -ETIMEDOUT;
3112         }
3113
3114         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3115
3116         if (tag & HPSA_ERROR_BIT) {
3117                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3118                         opcode, type);
3119                 return -EIO;
3120         }
3121
3122         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3123                 opcode, type);
3124         return 0;
3125 }
3126
3127 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3128 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3129
3130 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3131         void * __iomem vaddr, bool use_doorbell)
3132 {
3133         u16 pmcsr;
3134         int pos;
3135
3136         if (use_doorbell) {
3137                 /* For everything after the P600, the PCI power state method
3138                  * of resetting the controller doesn't work, so we have this
3139                  * other way using the doorbell register.
3140                  */
3141                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3142                 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3143                 msleep(1000);
3144         } else { /* Try to do it the PCI power state way */
3145
3146                 /* Quoting from the Open CISS Specification: "The Power
3147                  * Management Control/Status Register (CSR) controls the power
3148                  * state of the device.  The normal operating state is D0,
3149                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3150                  * the controller, place the interface device in D3 then to D0,
3151                  * this causes a secondary PCI reset which will reset the
3152                  * controller." */
3153
3154                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3155                 if (pos == 0) {
3156                         dev_err(&pdev->dev,
3157                                 "hpsa_reset_controller: "
3158                                 "PCI PM not supported\n");
3159                         return -ENODEV;
3160                 }
3161                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3162                 /* enter the D3hot power management state */
3163                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3164                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3165                 pmcsr |= PCI_D3hot;
3166                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3167
3168                 msleep(500);
3169
3170                 /* enter the D0 power management state */
3171                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3172                 pmcsr |= PCI_D0;
3173                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3174
3175                 msleep(500);
3176         }
3177         return 0;
3178 }
3179
3180 static __devinit void init_driver_version(char *driver_version, int len)
3181 {
3182         memset(driver_version, 0, len);
3183         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3184 }
3185
3186 static __devinit int write_driver_ver_to_cfgtable(
3187         struct CfgTable __iomem *cfgtable)
3188 {
3189         char *driver_version;
3190         int i, size = sizeof(cfgtable->driver_version);
3191
3192         driver_version = kmalloc(size, GFP_KERNEL);
3193         if (!driver_version)
3194                 return -ENOMEM;
3195
3196         init_driver_version(driver_version, size);
3197         for (i = 0; i < size; i++)
3198                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3199         kfree(driver_version);
3200         return 0;
3201 }
3202
3203 static __devinit void read_driver_ver_from_cfgtable(
3204         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3205 {
3206         int i;
3207
3208         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3209                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3210 }
3211
3212 static __devinit int controller_reset_failed(
3213         struct CfgTable __iomem *cfgtable)
3214 {
3215
3216         char *driver_ver, *old_driver_ver;
3217         int rc, size = sizeof(cfgtable->driver_version);
3218
3219         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3220         if (!old_driver_ver)
3221                 return -ENOMEM;
3222         driver_ver = old_driver_ver + size;
3223
3224         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3225          * should have been changed, otherwise we know the reset failed.
3226          */
3227         init_driver_version(old_driver_ver, size);
3228         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3229         rc = !memcmp(driver_ver, old_driver_ver, size);
3230         kfree(old_driver_ver);
3231         return rc;
3232 }
3233 /* This does a hard reset of the controller using PCI power management
3234  * states or the using the doorbell register.
3235  */
3236 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3237 {
3238         u64 cfg_offset;
3239         u32 cfg_base_addr;
3240         u64 cfg_base_addr_index;
3241         void __iomem *vaddr;
3242         unsigned long paddr;
3243         u32 misc_fw_support;
3244         int rc;
3245         struct CfgTable __iomem *cfgtable;
3246         bool use_doorbell;
3247         u32 board_id;
3248         u16 command_register;
3249
3250         /* For controllers as old as the P600, this is very nearly
3251          * the same thing as
3252          *
3253          * pci_save_state(pci_dev);
3254          * pci_set_power_state(pci_dev, PCI_D3hot);
3255          * pci_set_power_state(pci_dev, PCI_D0);
3256          * pci_restore_state(pci_dev);
3257          *
3258          * For controllers newer than the P600, the pci power state
3259          * method of resetting doesn't work so we have another way
3260          * using the doorbell register.
3261          */
3262
3263         /* Exclude 640x boards.  These are two pci devices in one slot
3264          * which share a battery backed cache module.  One controls the
3265          * cache, the other accesses the cache through the one that controls
3266          * it.  If we reset the one controlling the cache, the other will
3267          * likely not be happy.  Just forbid resetting this conjoined mess.
3268          * The 640x isn't really supported by hpsa anyway.
3269          */
3270         rc = hpsa_lookup_board_id(pdev, &board_id);
3271         if (rc < 0) {
3272                 dev_warn(&pdev->dev, "Not resetting device.\n");
3273                 return -ENODEV;
3274         }
3275         if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3276                 return -ENOTSUPP;
3277
3278         /* Save the PCI command register */
3279         pci_read_config_word(pdev, 4, &command_register);
3280         /* Turn the board off.  This is so that later pci_restore_state()
3281          * won't turn the board on before the rest of config space is ready.
3282          */
3283         pci_disable_device(pdev);
3284         pci_save_state(pdev);
3285
3286         /* find the first memory BAR, so we can find the cfg table */
3287         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3288         if (rc)
3289                 return rc;
3290         vaddr = remap_pci_mem(paddr, 0x250);
3291         if (!vaddr)
3292                 return -ENOMEM;
3293
3294         /* find cfgtable in order to check if reset via doorbell is supported */
3295         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3296                                         &cfg_base_addr_index, &cfg_offset);
3297         if (rc)
3298                 goto unmap_vaddr;
3299         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3300                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3301         if (!cfgtable) {
3302                 rc = -ENOMEM;
3303                 goto unmap_vaddr;
3304         }
3305         rc = write_driver_ver_to_cfgtable(cfgtable);
3306         if (rc)
3307                 goto unmap_vaddr;
3308
3309         /* If reset via doorbell register is supported, use that. */
3310         misc_fw_support = readl(&cfgtable->misc_fw_support);
3311         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3312
3313         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3314         if (rc)
3315                 goto unmap_cfgtable;
3316
3317         pci_restore_state(pdev);
3318         rc = pci_enable_device(pdev);
3319         if (rc) {
3320                 dev_warn(&pdev->dev, "failed to enable device.\n");
3321                 goto unmap_cfgtable;
3322         }
3323         pci_write_config_word(pdev, 4, command_register);
3324
3325         /* Some devices (notably the HP Smart Array 5i Controller)
3326            need a little pause here */
3327         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3328
3329         /* Wait for board to become not ready, then ready. */
3330         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3331         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3332         if (rc)
3333                 dev_warn(&pdev->dev,
3334                         "failed waiting for board to reset\n");
3335         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3336         if (rc) {
3337                 dev_warn(&pdev->dev,
3338                         "failed waiting for board to become ready\n");
3339                 goto unmap_cfgtable;
3340         }
3341
3342         rc = controller_reset_failed(vaddr);
3343         if (rc < 0)
3344                 goto unmap_cfgtable;
3345         if (rc) {
3346                 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3347                         " Ignoring controller.\n");
3348                 rc = -ENODEV;
3349         } else {
3350                 dev_info(&pdev->dev, "board ready.\n");
3351         }
3352
3353 unmap_cfgtable:
3354         iounmap(cfgtable);
3355
3356 unmap_vaddr:
3357         iounmap(vaddr);
3358         return rc;
3359 }
3360
3361 /*
3362  *  We cannot read the structure directly, for portability we must use
3363  *   the io functions.
3364  *   This is for debug only.
3365  */
3366 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3367 {
3368 #ifdef HPSA_DEBUG
3369         int i;
3370         char temp_name[17];
3371
3372         dev_info(dev, "Controller Configuration information\n");
3373         dev_info(dev, "------------------------------------\n");
3374         for (i = 0; i < 4; i++)
3375                 temp_name[i] = readb(&(tb->Signature[i]));
3376         temp_name[4] = '\0';
3377         dev_info(dev, "   Signature = %s\n", temp_name);
3378         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3379         dev_info(dev, "   Transport methods supported = 0x%x\n",
3380                readl(&(tb->TransportSupport)));
3381         dev_info(dev, "   Transport methods active = 0x%x\n",
3382                readl(&(tb->TransportActive)));
3383         dev_info(dev, "   Requested transport Method = 0x%x\n",
3384                readl(&(tb->HostWrite.TransportRequest)));
3385         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3386                readl(&(tb->HostWrite.CoalIntDelay)));
3387         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3388                readl(&(tb->HostWrite.CoalIntCount)));
3389         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3390                readl(&(tb->CmdsOutMax)));
3391         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3392         for (i = 0; i < 16; i++)
3393                 temp_name[i] = readb(&(tb->ServerName[i]));
3394         temp_name[16] = '\0';
3395         dev_info(dev, "   Server Name = %s\n", temp_name);
3396         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3397                 readl(&(tb->HeartBeat)));
3398 #endif                          /* HPSA_DEBUG */
3399 }
3400
3401 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3402 {
3403         int i, offset, mem_type, bar_type;
3404
3405         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3406                 return 0;
3407         offset = 0;
3408         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3409                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3410                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3411                         offset += 4;
3412                 else {
3413                         mem_type = pci_resource_flags(pdev, i) &
3414                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3415                         switch (mem_type) {
3416                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3417                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3418                                 offset += 4;    /* 32 bit */
3419                                 break;
3420                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3421                                 offset += 8;
3422                                 break;
3423                         default:        /* reserved in PCI 2.2 */
3424                                 dev_warn(&pdev->dev,
3425                                        "base address is invalid\n");
3426                                 return -1;
3427                                 break;
3428                         }
3429                 }
3430                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3431                         return i + 1;
3432         }
3433         return -1;
3434 }
3435
3436 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3437  * controllers that are capable. If not, we use IO-APIC mode.
3438  */
3439
3440 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3441 {
3442 #ifdef CONFIG_PCI_MSI
3443         int err;
3444         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3445         {0, 2}, {0, 3}
3446         };
3447
3448         /* Some boards advertise MSI but don't really support it */
3449         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3450             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3451                 goto default_int_mode;
3452         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3453                 dev_info(&h->pdev->dev, "MSIX\n");
3454                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3455                 if (!err) {
3456                         h->intr[0] = hpsa_msix_entries[0].vector;
3457                         h->intr[1] = hpsa_msix_entries[1].vector;
3458                         h->intr[2] = hpsa_msix_entries[2].vector;
3459                         h->intr[3] = hpsa_msix_entries[3].vector;
3460                         h->msix_vector = 1;
3461                         return;
3462                 }
3463                 if (err > 0) {
3464                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3465                                "available\n", err);
3466                         goto default_int_mode;
3467                 } else {
3468                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3469                                err);
3470                         goto default_int_mode;
3471                 }
3472         }
3473         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3474                 dev_info(&h->pdev->dev, "MSI\n");
3475                 if (!pci_enable_msi(h->pdev))
3476                         h->msi_vector = 1;
3477                 else
3478                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3479         }
3480 default_int_mode:
3481 #endif                          /* CONFIG_PCI_MSI */
3482         /* if we get here we're going to use the default interrupt mode */
3483         h->intr[h->intr_mode] = h->pdev->irq;
3484 }
3485
3486 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3487 {
3488         int i;
3489         u32 subsystem_vendor_id, subsystem_device_id;
3490
3491         subsystem_vendor_id = pdev->subsystem_vendor;
3492         subsystem_device_id = pdev->subsystem_device;
3493         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3494                     subsystem_vendor_id;
3495
3496         for (i = 0; i < ARRAY_SIZE(products); i++)
3497                 if (*board_id == products[i].board_id)
3498                         return i;
3499
3500         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3501                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3502                 !hpsa_allow_any) {
3503                 dev_warn(&pdev->dev, "unrecognized board ID: "
3504                         "0x%08x, ignoring.\n", *board_id);
3505                         return -ENODEV;
3506         }
3507         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3508 }
3509
3510 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3511 {
3512         u16 command;
3513
3514         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3515         return ((command & PCI_COMMAND_MEMORY) == 0);
3516 }
3517
3518 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3519         unsigned long *memory_bar)
3520 {
3521         int i;
3522
3523         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3524                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3525                         /* addressing mode bits already removed */
3526                         *memory_bar = pci_resource_start(pdev, i);
3527                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3528                                 *memory_bar);
3529                         return 0;
3530                 }
3531         dev_warn(&pdev->dev, "no memory BAR found\n");
3532         return -ENODEV;
3533 }
3534
3535 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3536         void __iomem *vaddr, int wait_for_ready)
3537 {
3538         int i, iterations;
3539         u32 scratchpad;
3540         if (wait_for_ready)
3541                 iterations = HPSA_BOARD_READY_ITERATIONS;
3542         else
3543                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3544
3545         for (i = 0; i < iterations; i++) {
3546                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3547                 if (wait_for_ready) {
3548                         if (scratchpad == HPSA_FIRMWARE_READY)
3549                                 return 0;
3550                 } else {
3551                         if (scratchpad != HPSA_FIRMWARE_READY)
3552                                 return 0;
3553                 }
3554                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3555         }
3556         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3557         return -ENODEV;
3558 }
3559
3560 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3561         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3562         u64 *cfg_offset)
3563 {
3564         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3565         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3566         *cfg_base_addr &= (u32) 0x0000ffff;
3567         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3568         if (*cfg_base_addr_index == -1) {
3569                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3570                 return -ENODEV;
3571         }
3572         return 0;
3573 }
3574
3575 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3576 {
3577         u64 cfg_offset;
3578         u32 cfg_base_addr;
3579         u64 cfg_base_addr_index;
3580         u32 trans_offset;
3581         int rc;
3582
3583         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3584                 &cfg_base_addr_index, &cfg_offset);
3585         if (rc)
3586                 return rc;
3587         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3588                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3589         if (!h->cfgtable)
3590                 return -ENOMEM;
3591         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3592         if (rc)
3593                 return rc;
3594         /* Find performant mode table. */
3595         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3596         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3597                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3598                                 sizeof(*h->transtable));
3599         if (!h->transtable)
3600                 return -ENOMEM;
3601         return 0;
3602 }
3603
3604 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3605 {
3606         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3607
3608         /* Limit commands in memory limited kdump scenario. */
3609         if (reset_devices && h->max_commands > 32)
3610                 h->max_commands = 32;
3611
3612         if (h->max_commands < 16) {
3613                 dev_warn(&h->pdev->dev, "Controller reports "
3614                         "max supported commands of %d, an obvious lie. "
3615                         "Using 16.  Ensure that firmware is up to date.\n",
3616                         h->max_commands);
3617                 h->max_commands = 16;
3618         }
3619 }
3620
3621 /* Interrogate the hardware for some limits:
3622  * max commands, max SG elements without chaining, and with chaining,
3623  * SG chain block size, etc.
3624  */
3625 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3626 {
3627         hpsa_get_max_perf_mode_cmds(h);
3628         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3629         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3630         /*
3631          * Limit in-command s/g elements to 32 save dma'able memory.
3632          * Howvever spec says if 0, use 31
3633          */
3634         h->max_cmd_sg_entries = 31;
3635         if (h->maxsgentries > 512) {
3636                 h->max_cmd_sg_entries = 32;
3637                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3638                 h->maxsgentries--; /* save one for chain pointer */
3639         } else {
3640                 h->maxsgentries = 31; /* default to traditional values */
3641                 h->chainsize = 0;
3642         }
3643 }
3644
3645 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3646 {
3647         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3648             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3649             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3650             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3651                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3652                 return false;
3653         }
3654         return true;
3655 }
3656
3657 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3658 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3659 {
3660 #ifdef CONFIG_X86
3661         u32 prefetch;
3662
3663         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3664         prefetch |= 0x100;
3665         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3666 #endif
3667 }
3668
3669 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3670  * in a prefetch beyond physical memory.
3671  */
3672 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3673 {
3674         u32 dma_prefetch;
3675
3676         if (h->board_id != 0x3225103C)
3677                 return;
3678         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3679         dma_prefetch |= 0x8000;
3680         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3681 }
3682
3683 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3684 {
3685         int i;
3686         u32 doorbell_value;
3687         unsigned long flags;
3688
3689         /* under certain very rare conditions, this can take awhile.
3690          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3691          * as we enter this code.)
3692          */
3693         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3694                 spin_lock_irqsave(&h->lock, flags);
3695                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3696                 spin_unlock_irqrestore(&h->lock, flags);
3697                 if (!(doorbell_value & CFGTBL_ChangeReq))
3698                         break;
3699                 /* delay and try again */
3700                 usleep_range(10000, 20000);
3701         }
3702 }
3703
3704 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3705 {
3706         u32 trans_support;
3707
3708         trans_support = readl(&(h->cfgtable->TransportSupport));
3709         if (!(trans_support & SIMPLE_MODE))
3710                 return -ENOTSUPP;
3711
3712         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3713         /* Update the field, and then ring the doorbell */
3714         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3715         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3716         hpsa_wait_for_mode_change_ack(h);
3717         print_cfg_table(&h->pdev->dev, h->cfgtable);
3718         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3719                 dev_warn(&h->pdev->dev,
3720                         "unable to get board into simple mode\n");
3721                 return -ENODEV;
3722         }
3723         h->transMethod = CFGTBL_Trans_Simple;
3724         return 0;
3725 }
3726
3727 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3728 {
3729         int prod_index, err;
3730
3731         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3732         if (prod_index < 0)
3733                 return -ENODEV;
3734         h->product_name = products[prod_index].product_name;
3735         h->access = *(products[prod_index].access);
3736
3737         if (hpsa_board_disabled(h->pdev)) {
3738                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3739                 return -ENODEV;
3740         }
3741         err = pci_enable_device(h->pdev);
3742         if (err) {
3743                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3744                 return err;
3745         }
3746
3747         err = pci_request_regions(h->pdev, "hpsa");
3748         if (err) {
3749                 dev_err(&h->pdev->dev,
3750                         "cannot obtain PCI resources, aborting\n");
3751                 return err;
3752         }
3753         hpsa_interrupt_mode(h);
3754         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3755         if (err)
3756                 goto err_out_free_res;
3757         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3758         if (!h->vaddr) {
3759                 err = -ENOMEM;
3760                 goto err_out_free_res;
3761         }
3762         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3763         if (err)
3764                 goto err_out_free_res;
3765         err = hpsa_find_cfgtables(h);
3766         if (err)
3767                 goto err_out_free_res;
3768         hpsa_find_board_params(h);
3769
3770         if (!hpsa_CISS_signature_present(h)) {
3771                 err = -ENODEV;
3772                 goto err_out_free_res;
3773         }
3774         hpsa_enable_scsi_prefetch(h);
3775         hpsa_p600_dma_prefetch_quirk(h);
3776         err = hpsa_enter_simple_mode(h);
3777         if (err)
3778                 goto err_out_free_res;
3779         return 0;
3780
3781 err_out_free_res:
3782         if (h->transtable)
3783                 iounmap(h->transtable);
3784         if (h->cfgtable)
3785                 iounmap(h->cfgtable);
3786         if (h->vaddr)
3787                 iounmap(h->vaddr);
3788         /*
3789          * Deliberately omit pci_disable_device(): it does something nasty to
3790          * Smart Array controllers that pci_enable_device does not undo
3791          */
3792         pci_release_regions(h->pdev);
3793         return err;
3794 }
3795
3796 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3797 {
3798         int rc;
3799
3800 #define HBA_INQUIRY_BYTE_COUNT 64
3801         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3802         if (!h->hba_inquiry_data)
3803                 return;
3804         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3805                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3806         if (rc != 0) {
3807                 kfree(h->hba_inquiry_data);
3808                 h->hba_inquiry_data = NULL;
3809         }
3810 }
3811
3812 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3813 {
3814         int rc, i;
3815
3816         if (!reset_devices)
3817                 return 0;
3818
3819         /* Reset the controller with a PCI power-cycle or via doorbell */
3820         rc = hpsa_kdump_hard_reset_controller(pdev);
3821
3822         /* -ENOTSUPP here means we cannot reset the controller
3823          * but it's already (and still) up and running in
3824          * "performant mode".  Or, it might be 640x, which can't reset
3825          * due to concerns about shared bbwc between 6402/6404 pair.
3826          */
3827         if (rc == -ENOTSUPP)
3828                 return 0; /* just try to do the kdump anyhow. */
3829         if (rc)
3830                 return -ENODEV;
3831
3832         /* Now try to get the controller to respond to a no-op */
3833         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3834         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3835                 if (hpsa_noop(pdev) == 0)
3836                         break;
3837                 else
3838                         dev_warn(&pdev->dev, "no-op failed%s\n",
3839                                         (i < 11 ? "; re-trying" : ""));
3840         }
3841         return 0;
3842 }
3843
3844 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3845 {
3846         h->cmd_pool_bits = kzalloc(
3847                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3848                 sizeof(unsigned long), GFP_KERNEL);
3849         h->cmd_pool = pci_alloc_consistent(h->pdev,
3850                     h->nr_cmds * sizeof(*h->cmd_pool),
3851                     &(h->cmd_pool_dhandle));
3852         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3853                     h->nr_cmds * sizeof(*h->errinfo_pool),
3854                     &(h->errinfo_pool_dhandle));
3855         if ((h->cmd_pool_bits == NULL)
3856             || (h->cmd_pool == NULL)
3857             || (h->errinfo_pool == NULL)) {
3858                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3859                 return -ENOMEM;
3860         }
3861         return 0;
3862 }
3863
3864 static void hpsa_free_cmd_pool(struct ctlr_info *h)
3865 {
3866         kfree(h->cmd_pool_bits);
3867         if (h->cmd_pool)
3868                 pci_free_consistent(h->pdev,
3869                             h->nr_cmds * sizeof(struct CommandList),
3870                             h->cmd_pool, h->cmd_pool_dhandle);
3871         if (h->errinfo_pool)
3872                 pci_free_consistent(h->pdev,
3873                             h->nr_cmds * sizeof(struct ErrorInfo),
3874                             h->errinfo_pool,
3875                             h->errinfo_pool_dhandle);
3876 }
3877
3878 static int hpsa_request_irq(struct ctlr_info *h,
3879         irqreturn_t (*msixhandler)(int, void *),
3880         irqreturn_t (*intxhandler)(int, void *))
3881 {
3882         int rc;
3883
3884         if (h->msix_vector || h->msi_vector)
3885                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
3886                                 IRQF_DISABLED, h->devname, h);
3887         else
3888                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
3889                                 IRQF_DISABLED, h->devname, h);
3890         if (rc) {
3891                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
3892                        h->intr[h->intr_mode], h->devname);
3893                 return -ENODEV;
3894         }
3895         return 0;
3896 }
3897
3898 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3899                                     const struct pci_device_id *ent)
3900 {
3901         int dac, rc;
3902         struct ctlr_info *h;
3903
3904         if (number_of_controllers == 0)
3905                 printk(KERN_INFO DRIVER_NAME "\n");
3906
3907         rc = hpsa_init_reset_devices(pdev);
3908         if (rc)
3909                 return rc;
3910
3911         /* Command structures must be aligned on a 32-byte boundary because
3912          * the 5 lower bits of the address are used by the hardware. and by
3913          * the driver.  See comments in hpsa.h for more info.
3914          */
3915 #define COMMANDLIST_ALIGNMENT 32
3916         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3917         h = kzalloc(sizeof(*h), GFP_KERNEL);
3918         if (!h)
3919                 return -ENOMEM;
3920
3921         h->pdev = pdev;
3922         h->busy_initializing = 1;
3923         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
3924         INIT_LIST_HEAD(&h->cmpQ);
3925         INIT_LIST_HEAD(&h->reqQ);
3926         spin_lock_init(&h->lock);
3927         spin_lock_init(&h->scan_lock);
3928         rc = hpsa_pci_init(h);
3929         if (rc != 0)
3930                 goto clean1;
3931
3932         sprintf(h->devname, "hpsa%d", number_of_controllers);
3933         h->ctlr = number_of_controllers;
3934         number_of_controllers++;
3935
3936         /* configure PCI DMA stuff */
3937         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3938         if (rc == 0) {
3939                 dac = 1;
3940         } else {
3941                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3942                 if (rc == 0) {
3943                         dac = 0;
3944                 } else {
3945                         dev_err(&pdev->dev, "no suitable DMA available\n");
3946                         goto clean1;
3947                 }
3948         }
3949
3950         /* make sure the board interrupts are off */
3951         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3952
3953         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
3954                 goto clean2;
3955         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3956                h->devname, pdev->device,
3957                h->intr[h->intr_mode], dac ? "" : " not");
3958         if (hpsa_allocate_cmd_pool(h))
3959                 goto clean4;
3960         if (hpsa_allocate_sg_chain_blocks(h))
3961                 goto clean4;
3962         init_waitqueue_head(&h->scan_wait_queue);
3963         h->scan_finished = 1; /* no scan currently in progress */
3964
3965         pci_set_drvdata(pdev, h);
3966         h->ndevices = 0;
3967         h->scsi_host = NULL;
3968         spin_lock_init(&h->devlock);
3969
3970         /* Turn the interrupts on so we can service requests */
3971         h->access.set_intr_mask(h, HPSA_INTR_ON);
3972
3973         hpsa_put_ctlr_into_performant_mode(h);
3974         hpsa_hba_inquiry(h);
3975         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3976         h->busy_initializing = 0;
3977         return 1;
3978
3979 clean4:
3980         hpsa_free_sg_chain_blocks(h);
3981         hpsa_free_cmd_pool(h);
3982         free_irq(h->intr[h->intr_mode], h);
3983 clean2:
3984 clean1:
3985         h->busy_initializing = 0;
3986         kfree(h);
3987         return rc;
3988 }
3989
3990 static void hpsa_flush_cache(struct ctlr_info *h)
3991 {
3992         char *flush_buf;
3993         struct CommandList *c;
3994
3995         flush_buf = kzalloc(4, GFP_KERNEL);
3996         if (!flush_buf)
3997                 return;
3998
3999         c = cmd_special_alloc(h);
4000         if (!c) {
4001                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4002                 goto out_of_memory;
4003         }
4004         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4005                 RAID_CTLR_LUNID, TYPE_CMD);
4006         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4007         if (c->err_info->CommandStatus != 0)
4008                 dev_warn(&h->pdev->dev,
4009                         "error flushing cache on controller\n");
4010         cmd_special_free(h, c);
4011 out_of_memory:
4012         kfree(flush_buf);
4013 }
4014
4015 static void hpsa_shutdown(struct pci_dev *pdev)
4016 {
4017         struct ctlr_info *h;
4018
4019         h = pci_get_drvdata(pdev);
4020         /* Turn board interrupts off  and send the flush cache command
4021          * sendcmd will turn off interrupt, and send the flush...
4022          * To write all data in the battery backed cache to disks
4023          */
4024         hpsa_flush_cache(h);
4025         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4026         free_irq(h->intr[h->intr_mode], h);
4027 #ifdef CONFIG_PCI_MSI
4028         if (h->msix_vector)
4029                 pci_disable_msix(h->pdev);
4030         else if (h->msi_vector)
4031                 pci_disable_msi(h->pdev);
4032 #endif                          /* CONFIG_PCI_MSI */
4033 }
4034
4035 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4036 {
4037         struct ctlr_info *h;
4038
4039         if (pci_get_drvdata(pdev) == NULL) {
4040                 dev_err(&pdev->dev, "unable to remove device \n");
4041                 return;
4042         }
4043         h = pci_get_drvdata(pdev);
4044         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4045         hpsa_shutdown(pdev);
4046         iounmap(h->vaddr);
4047         iounmap(h->transtable);
4048         iounmap(h->cfgtable);
4049         hpsa_free_sg_chain_blocks(h);
4050         pci_free_consistent(h->pdev,
4051                 h->nr_cmds * sizeof(struct CommandList),
4052                 h->cmd_pool, h->cmd_pool_dhandle);
4053         pci_free_consistent(h->pdev,
4054                 h->nr_cmds * sizeof(struct ErrorInfo),
4055                 h->errinfo_pool, h->errinfo_pool_dhandle);
4056         pci_free_consistent(h->pdev, h->reply_pool_size,
4057                 h->reply_pool, h->reply_pool_dhandle);
4058         kfree(h->cmd_pool_bits);
4059         kfree(h->blockFetchTable);
4060         kfree(h->hba_inquiry_data);
4061         /*
4062          * Deliberately omit pci_disable_device(): it does something nasty to
4063          * Smart Array controllers that pci_enable_device does not undo
4064          */
4065         pci_release_regions(pdev);
4066         pci_set_drvdata(pdev, NULL);
4067         kfree(h);
4068 }
4069
4070 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4071         __attribute__((unused)) pm_message_t state)
4072 {
4073         return -ENOSYS;
4074 }
4075
4076 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4077 {
4078         return -ENOSYS;
4079 }
4080
4081 static struct pci_driver hpsa_pci_driver = {
4082         .name = "hpsa",
4083         .probe = hpsa_init_one,
4084         .remove = __devexit_p(hpsa_remove_one),
4085         .id_table = hpsa_pci_device_id, /* id_table */
4086         .shutdown = hpsa_shutdown,
4087         .suspend = hpsa_suspend,
4088         .resume = hpsa_resume,
4089 };
4090
4091 /* Fill in bucket_map[], given nsgs (the max number of
4092  * scatter gather elements supported) and bucket[],
4093  * which is an array of 8 integers.  The bucket[] array
4094  * contains 8 different DMA transfer sizes (in 16
4095  * byte increments) which the controller uses to fetch
4096  * commands.  This function fills in bucket_map[], which
4097  * maps a given number of scatter gather elements to one of
4098  * the 8 DMA transfer sizes.  The point of it is to allow the
4099  * controller to only do as much DMA as needed to fetch the
4100  * command, with the DMA transfer size encoded in the lower
4101  * bits of the command address.
4102  */
4103 static void  calc_bucket_map(int bucket[], int num_buckets,
4104         int nsgs, int *bucket_map)
4105 {
4106         int i, j, b, size;
4107
4108         /* even a command with 0 SGs requires 4 blocks */
4109 #define MINIMUM_TRANSFER_BLOCKS 4
4110 #define NUM_BUCKETS 8
4111         /* Note, bucket_map must have nsgs+1 entries. */
4112         for (i = 0; i <= nsgs; i++) {
4113                 /* Compute size of a command with i SG entries */
4114                 size = i + MINIMUM_TRANSFER_BLOCKS;
4115                 b = num_buckets; /* Assume the biggest bucket */
4116                 /* Find the bucket that is just big enough */
4117                 for (j = 0; j < 8; j++) {
4118                         if (bucket[j] >= size) {
4119                                 b = j;
4120                                 break;
4121                         }
4122                 }
4123                 /* for a command with i SG entries, use bucket b. */
4124                 bucket_map[i] = b;
4125         }
4126 }
4127
4128 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4129         u32 use_short_tags)
4130 {
4131         int i;
4132         unsigned long register_value;
4133
4134         /* This is a bit complicated.  There are 8 registers on
4135          * the controller which we write to to tell it 8 different
4136          * sizes of commands which there may be.  It's a way of
4137          * reducing the DMA done to fetch each command.  Encoded into
4138          * each command's tag are 3 bits which communicate to the controller
4139          * which of the eight sizes that command fits within.  The size of
4140          * each command depends on how many scatter gather entries there are.
4141          * Each SG entry requires 16 bytes.  The eight registers are programmed
4142          * with the number of 16-byte blocks a command of that size requires.
4143          * The smallest command possible requires 5 such 16 byte blocks.
4144          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4145          * blocks.  Note, this only extends to the SG entries contained
4146          * within the command block, and does not extend to chained blocks
4147          * of SG elements.   bft[] contains the eight values we write to
4148          * the registers.  They are not evenly distributed, but have more
4149          * sizes for small commands, and fewer sizes for larger commands.
4150          */
4151         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4152         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4153         /*  5 = 1 s/g entry or 4k
4154          *  6 = 2 s/g entry or 8k
4155          *  8 = 4 s/g entry or 16k
4156          * 10 = 6 s/g entry or 24k
4157          */
4158
4159         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4160
4161         /* Controller spec: zero out this buffer. */
4162         memset(h->reply_pool, 0, h->reply_pool_size);
4163         h->reply_pool_head = h->reply_pool;
4164
4165         bft[7] = h->max_sg_entries + 4;
4166         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4167         for (i = 0; i < 8; i++)
4168                 writel(bft[i], &h->transtable->BlockFetch[i]);
4169
4170         /* size of controller ring buffer */
4171         writel(h->max_commands, &h->transtable->RepQSize);
4172         writel(1, &h->transtable->RepQCount);
4173         writel(0, &h->transtable->RepQCtrAddrLow32);
4174         writel(0, &h->transtable->RepQCtrAddrHigh32);
4175         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4176         writel(0, &h->transtable->RepQAddr0High32);
4177         writel(CFGTBL_Trans_Performant | use_short_tags,
4178                 &(h->cfgtable->HostWrite.TransportRequest));
4179         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4180         hpsa_wait_for_mode_change_ack(h);
4181         register_value = readl(&(h->cfgtable->TransportActive));
4182         if (!(register_value & CFGTBL_Trans_Performant)) {
4183                 dev_warn(&h->pdev->dev, "unable to get board into"
4184                                         " performant mode\n");
4185                 return;
4186         }
4187         /* Change the access methods to the performant access methods */
4188         h->access = SA5_performant_access;
4189         h->transMethod = CFGTBL_Trans_Performant;
4190 }
4191
4192 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4193 {
4194         u32 trans_support;
4195
4196         if (hpsa_simple_mode)
4197                 return;
4198
4199         trans_support = readl(&(h->cfgtable->TransportSupport));
4200         if (!(trans_support & PERFORMANT_MODE))
4201                 return;
4202
4203         hpsa_get_max_perf_mode_cmds(h);
4204         h->max_sg_entries = 32;
4205         /* Performant mode ring buffer and supporting data structures */
4206         h->reply_pool_size = h->max_commands * sizeof(u64);
4207         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4208                                 &(h->reply_pool_dhandle));
4209
4210         /* Need a block fetch table for performant mode */
4211         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4212                                 sizeof(u32)), GFP_KERNEL);
4213
4214         if ((h->reply_pool == NULL)
4215                 || (h->blockFetchTable == NULL))
4216                 goto clean_up;
4217
4218         hpsa_enter_performant_mode(h,
4219                 trans_support & CFGTBL_Trans_use_short_tags);
4220
4221         return;
4222
4223 clean_up:
4224         if (h->reply_pool)
4225                 pci_free_consistent(h->pdev, h->reply_pool_size,
4226                         h->reply_pool, h->reply_pool_dhandle);
4227         kfree(h->blockFetchTable);
4228 }
4229
4230 /*
4231  *  This is it.  Register the PCI driver information for the cards we control
4232  *  the OS will call our registered routines when it finds one of our cards.
4233  */
4234 static int __init hpsa_init(void)
4235 {
4236         return pci_register_driver(&hpsa_pci_driver);
4237 }
4238
4239 static void __exit hpsa_cleanup(void)
4240 {
4241         pci_unregister_driver(&hpsa_pci_driver);
4242 }
4243
4244 module_init(hpsa_init);
4245 module_exit(hpsa_cleanup);