Merge tag 'mmc-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-170"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82         HPSA_DRIVER_VERSION);
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
87
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91         "Use 'simple mode' rather than 'performant mode'");
92
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
136         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
151                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
152         {0,}
153 };
154
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156
157 /*  board_id = Subsystem Device ID & Vendor ID
158  *  product = Marketing Name for the board
159  *  access = Address of the struct of function pointers
160  */
161 static struct board_type products[] = {
162         {0x40700E11, "Smart Array 5300", &SA5A_access},
163         {0x40800E11, "Smart Array 5i", &SA5B_access},
164         {0x40820E11, "Smart Array 532", &SA5B_access},
165         {0x40830E11, "Smart Array 5312", &SA5B_access},
166         {0x409A0E11, "Smart Array 641", &SA5A_access},
167         {0x409B0E11, "Smart Array 642", &SA5A_access},
168         {0x409C0E11, "Smart Array 6400", &SA5A_access},
169         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170         {0x40910E11, "Smart Array 6i", &SA5A_access},
171         {0x3225103C, "Smart Array P600", &SA5A_access},
172         {0x3223103C, "Smart Array P800", &SA5A_access},
173         {0x3234103C, "Smart Array P400", &SA5A_access},
174         {0x3235103C, "Smart Array P400i", &SA5A_access},
175         {0x3211103C, "Smart Array E200i", &SA5A_access},
176         {0x3212103C, "Smart Array E200", &SA5A_access},
177         {0x3213103C, "Smart Array E200i", &SA5A_access},
178         {0x3214103C, "Smart Array E200i", &SA5A_access},
179         {0x3215103C, "Smart Array E200i", &SA5A_access},
180         {0x3237103C, "Smart Array E500", &SA5A_access},
181         {0x323D103C, "Smart Array P700m", &SA5A_access},
182         {0x3241103C, "Smart Array P212", &SA5_access},
183         {0x3243103C, "Smart Array P410", &SA5_access},
184         {0x3245103C, "Smart Array P410i", &SA5_access},
185         {0x3247103C, "Smart Array P411", &SA5_access},
186         {0x3249103C, "Smart Array P812", &SA5_access},
187         {0x324A103C, "Smart Array P712m", &SA5_access},
188         {0x324B103C, "Smart Array P711m", &SA5_access},
189         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190         {0x3350103C, "Smart Array P222", &SA5_access},
191         {0x3351103C, "Smart Array P420", &SA5_access},
192         {0x3352103C, "Smart Array P421", &SA5_access},
193         {0x3353103C, "Smart Array P822", &SA5_access},
194         {0x3354103C, "Smart Array P420i", &SA5_access},
195         {0x3355103C, "Smart Array P220i", &SA5_access},
196         {0x3356103C, "Smart Array P721m", &SA5_access},
197         {0x1920103C, "Smart Array P430i", &SA5_access},
198         {0x1921103C, "Smart Array P830i", &SA5_access},
199         {0x1922103C, "Smart Array P430", &SA5_access},
200         {0x1923103C, "Smart Array P431", &SA5_access},
201         {0x1924103C, "Smart Array P830", &SA5_access},
202         {0x1925103C, "Smart Array P831", &SA5_access},
203         {0x1926103C, "Smart Array P731m", &SA5_access},
204         {0x1928103C, "Smart Array P230i", &SA5_access},
205         {0x1929103C, "Smart Array P530", &SA5_access},
206         {0x21BD103C, "Smart Array P244br", &SA5_access},
207         {0x21BE103C, "Smart Array P741m", &SA5_access},
208         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
209         {0x21C0103C, "Smart Array P440ar", &SA5_access},
210         {0x21C1103C, "Smart Array P840ar", &SA5_access},
211         {0x21C2103C, "Smart Array P440", &SA5_access},
212         {0x21C3103C, "Smart Array P441", &SA5_access},
213         {0x21C4103C, "Smart Array", &SA5_access},
214         {0x21C5103C, "Smart Array P841", &SA5_access},
215         {0x21C6103C, "Smart HBA H244br", &SA5_access},
216         {0x21C7103C, "Smart HBA H240", &SA5_access},
217         {0x21C8103C, "Smart HBA H241", &SA5_access},
218         {0x21C9103C, "Smart Array", &SA5_access},
219         {0x21CA103C, "Smart Array P246br", &SA5_access},
220         {0x21CB103C, "Smart Array P840", &SA5_access},
221         {0x21CC103C, "Smart Array", &SA5_access},
222         {0x21CD103C, "Smart Array", &SA5_access},
223         {0x21CE103C, "Smart HBA", &SA5_access},
224         {0x05809005, "SmartHBA-SA", &SA5_access},
225         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
226         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
228         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
229         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 };
237
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242                         struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246                 struct sas_rphy *rphy);
247
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
253
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
257                       void __user *arg);
258
259 #ifdef CONFIG_COMPAT
260 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
261         void __user *arg);
262 #endif
263
264 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_alloc(struct ctlr_info *h);
266 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
267 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
268                                             struct scsi_cmnd *scmd);
269 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
270         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
271         int cmd_type);
272 static void hpsa_free_cmd_pool(struct ctlr_info *h);
273 #define VPD_PAGE (1 << 8)
274 #define HPSA_SIMPLE_ERROR_BITS 0x03
275
276 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
277 static void hpsa_scan_start(struct Scsi_Host *);
278 static int hpsa_scan_finished(struct Scsi_Host *sh,
279         unsigned long elapsed_time);
280 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
281
282 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
283 static int hpsa_slave_alloc(struct scsi_device *sdev);
284 static int hpsa_slave_configure(struct scsi_device *sdev);
285 static void hpsa_slave_destroy(struct scsi_device *sdev);
286
287 static void hpsa_update_scsi_devices(struct ctlr_info *h);
288 static int check_for_unit_attention(struct ctlr_info *h,
289         struct CommandList *c);
290 static void check_ioctl_unit_attention(struct ctlr_info *h,
291         struct CommandList *c);
292 /* performant mode helper functions */
293 static void calc_bucket_map(int *bucket, int num_buckets,
294         int nsgs, int min_blocks, u32 *bucket_map);
295 static void hpsa_free_performant_mode(struct ctlr_info *h);
296 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
297 static inline u32 next_command(struct ctlr_info *h, u8 q);
298 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
299                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
300                                u64 *cfg_offset);
301 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
302                                     unsigned long *memory_bar);
303 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
304                                 bool *legacy_board);
305 static int wait_for_device_to_become_ready(struct ctlr_info *h,
306                                            unsigned char lunaddr[],
307                                            int reply_queue);
308 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
309                                      int wait_for_ready);
310 static inline void finish_cmd(struct CommandList *c);
311 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
312 #define BOARD_NOT_READY 0
313 #define BOARD_READY 1
314 static void hpsa_drain_accel_commands(struct ctlr_info *h);
315 static void hpsa_flush_cache(struct ctlr_info *h);
316 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
317         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
318         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
319 static void hpsa_command_resubmit_worker(struct work_struct *work);
320 static u32 lockup_detected(struct ctlr_info *h);
321 static int detect_controller_lockup(struct ctlr_info *h);
322 static void hpsa_disable_rld_caching(struct ctlr_info *h);
323 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
324         struct ReportExtendedLUNdata *buf, int bufsize);
325 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
326         unsigned char scsi3addr[], u8 page);
327 static int hpsa_luns_changed(struct ctlr_info *h);
328 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
329                                struct hpsa_scsi_dev_t *dev,
330                                unsigned char *scsi3addr);
331
332 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
333 {
334         unsigned long *priv = shost_priv(sdev->host);
335         return (struct ctlr_info *) *priv;
336 }
337
338 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
339 {
340         unsigned long *priv = shost_priv(sh);
341         return (struct ctlr_info *) *priv;
342 }
343
344 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
345 {
346         return c->scsi_cmd == SCSI_CMD_IDLE;
347 }
348
349 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
350 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
351                         u8 *sense_key, u8 *asc, u8 *ascq)
352 {
353         struct scsi_sense_hdr sshdr;
354         bool rc;
355
356         *sense_key = -1;
357         *asc = -1;
358         *ascq = -1;
359
360         if (sense_data_len < 1)
361                 return;
362
363         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
364         if (rc) {
365                 *sense_key = sshdr.sense_key;
366                 *asc = sshdr.asc;
367                 *ascq = sshdr.ascq;
368         }
369 }
370
371 static int check_for_unit_attention(struct ctlr_info *h,
372         struct CommandList *c)
373 {
374         u8 sense_key, asc, ascq;
375         int sense_len;
376
377         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
378                 sense_len = sizeof(c->err_info->SenseInfo);
379         else
380                 sense_len = c->err_info->SenseLen;
381
382         decode_sense_data(c->err_info->SenseInfo, sense_len,
383                                 &sense_key, &asc, &ascq);
384         if (sense_key != UNIT_ATTENTION || asc == 0xff)
385                 return 0;
386
387         switch (asc) {
388         case STATE_CHANGED:
389                 dev_warn(&h->pdev->dev,
390                         "%s: a state change detected, command retried\n",
391                         h->devname);
392                 break;
393         case LUN_FAILED:
394                 dev_warn(&h->pdev->dev,
395                         "%s: LUN failure detected\n", h->devname);
396                 break;
397         case REPORT_LUNS_CHANGED:
398                 dev_warn(&h->pdev->dev,
399                         "%s: report LUN data changed\n", h->devname);
400         /*
401          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
402          * target (array) devices.
403          */
404                 break;
405         case POWER_OR_RESET:
406                 dev_warn(&h->pdev->dev,
407                         "%s: a power on or device reset detected\n",
408                         h->devname);
409                 break;
410         case UNIT_ATTENTION_CLEARED:
411                 dev_warn(&h->pdev->dev,
412                         "%s: unit attention cleared by another initiator\n",
413                         h->devname);
414                 break;
415         default:
416                 dev_warn(&h->pdev->dev,
417                         "%s: unknown unit attention detected\n",
418                         h->devname);
419                 break;
420         }
421         return 1;
422 }
423
424 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
425 {
426         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
427                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
428                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
429                 return 0;
430         dev_warn(&h->pdev->dev, HPSA "device busy");
431         return 1;
432 }
433
434 static u32 lockup_detected(struct ctlr_info *h);
435 static ssize_t host_show_lockup_detected(struct device *dev,
436                 struct device_attribute *attr, char *buf)
437 {
438         int ld;
439         struct ctlr_info *h;
440         struct Scsi_Host *shost = class_to_shost(dev);
441
442         h = shost_to_hba(shost);
443         ld = lockup_detected(h);
444
445         return sprintf(buf, "ld=%d\n", ld);
446 }
447
448 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
449                                          struct device_attribute *attr,
450                                          const char *buf, size_t count)
451 {
452         int status, len;
453         struct ctlr_info *h;
454         struct Scsi_Host *shost = class_to_shost(dev);
455         char tmpbuf[10];
456
457         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
458                 return -EACCES;
459         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
460         strncpy(tmpbuf, buf, len);
461         tmpbuf[len] = '\0';
462         if (sscanf(tmpbuf, "%d", &status) != 1)
463                 return -EINVAL;
464         h = shost_to_hba(shost);
465         h->acciopath_status = !!status;
466         dev_warn(&h->pdev->dev,
467                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
468                 h->acciopath_status ? "enabled" : "disabled");
469         return count;
470 }
471
472 static ssize_t host_store_raid_offload_debug(struct device *dev,
473                                          struct device_attribute *attr,
474                                          const char *buf, size_t count)
475 {
476         int debug_level, len;
477         struct ctlr_info *h;
478         struct Scsi_Host *shost = class_to_shost(dev);
479         char tmpbuf[10];
480
481         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
482                 return -EACCES;
483         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
484         strncpy(tmpbuf, buf, len);
485         tmpbuf[len] = '\0';
486         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
487                 return -EINVAL;
488         if (debug_level < 0)
489                 debug_level = 0;
490         h = shost_to_hba(shost);
491         h->raid_offload_debug = debug_level;
492         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
493                 h->raid_offload_debug);
494         return count;
495 }
496
497 static ssize_t host_store_rescan(struct device *dev,
498                                  struct device_attribute *attr,
499                                  const char *buf, size_t count)
500 {
501         struct ctlr_info *h;
502         struct Scsi_Host *shost = class_to_shost(dev);
503         h = shost_to_hba(shost);
504         hpsa_scan_start(h->scsi_host);
505         return count;
506 }
507
508 static ssize_t host_show_firmware_revision(struct device *dev,
509              struct device_attribute *attr, char *buf)
510 {
511         struct ctlr_info *h;
512         struct Scsi_Host *shost = class_to_shost(dev);
513         unsigned char *fwrev;
514
515         h = shost_to_hba(shost);
516         if (!h->hba_inquiry_data)
517                 return 0;
518         fwrev = &h->hba_inquiry_data[32];
519         return snprintf(buf, 20, "%c%c%c%c\n",
520                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
521 }
522
523 static ssize_t host_show_commands_outstanding(struct device *dev,
524              struct device_attribute *attr, char *buf)
525 {
526         struct Scsi_Host *shost = class_to_shost(dev);
527         struct ctlr_info *h = shost_to_hba(shost);
528
529         return snprintf(buf, 20, "%d\n",
530                         atomic_read(&h->commands_outstanding));
531 }
532
533 static ssize_t host_show_transport_mode(struct device *dev,
534         struct device_attribute *attr, char *buf)
535 {
536         struct ctlr_info *h;
537         struct Scsi_Host *shost = class_to_shost(dev);
538
539         h = shost_to_hba(shost);
540         return snprintf(buf, 20, "%s\n",
541                 h->transMethod & CFGTBL_Trans_Performant ?
542                         "performant" : "simple");
543 }
544
545 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
546         struct device_attribute *attr, char *buf)
547 {
548         struct ctlr_info *h;
549         struct Scsi_Host *shost = class_to_shost(dev);
550
551         h = shost_to_hba(shost);
552         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
553                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
554 }
555
556 /* List of controllers which cannot be hard reset on kexec with reset_devices */
557 static u32 unresettable_controller[] = {
558         0x324a103C, /* Smart Array P712m */
559         0x324b103C, /* Smart Array P711m */
560         0x3223103C, /* Smart Array P800 */
561         0x3234103C, /* Smart Array P400 */
562         0x3235103C, /* Smart Array P400i */
563         0x3211103C, /* Smart Array E200i */
564         0x3212103C, /* Smart Array E200 */
565         0x3213103C, /* Smart Array E200i */
566         0x3214103C, /* Smart Array E200i */
567         0x3215103C, /* Smart Array E200i */
568         0x3237103C, /* Smart Array E500 */
569         0x323D103C, /* Smart Array P700m */
570         0x40800E11, /* Smart Array 5i */
571         0x409C0E11, /* Smart Array 6400 */
572         0x409D0E11, /* Smart Array 6400 EM */
573         0x40700E11, /* Smart Array 5300 */
574         0x40820E11, /* Smart Array 532 */
575         0x40830E11, /* Smart Array 5312 */
576         0x409A0E11, /* Smart Array 641 */
577         0x409B0E11, /* Smart Array 642 */
578         0x40910E11, /* Smart Array 6i */
579 };
580
581 /* List of controllers which cannot even be soft reset */
582 static u32 soft_unresettable_controller[] = {
583         0x40800E11, /* Smart Array 5i */
584         0x40700E11, /* Smart Array 5300 */
585         0x40820E11, /* Smart Array 532 */
586         0x40830E11, /* Smart Array 5312 */
587         0x409A0E11, /* Smart Array 641 */
588         0x409B0E11, /* Smart Array 642 */
589         0x40910E11, /* Smart Array 6i */
590         /* Exclude 640x boards.  These are two pci devices in one slot
591          * which share a battery backed cache module.  One controls the
592          * cache, the other accesses the cache through the one that controls
593          * it.  If we reset the one controlling the cache, the other will
594          * likely not be happy.  Just forbid resetting this conjoined mess.
595          * The 640x isn't really supported by hpsa anyway.
596          */
597         0x409C0E11, /* Smart Array 6400 */
598         0x409D0E11, /* Smart Array 6400 EM */
599 };
600
601 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
602 {
603         int i;
604
605         for (i = 0; i < nelems; i++)
606                 if (a[i] == board_id)
607                         return 1;
608         return 0;
609 }
610
611 static int ctlr_is_hard_resettable(u32 board_id)
612 {
613         return !board_id_in_array(unresettable_controller,
614                         ARRAY_SIZE(unresettable_controller), board_id);
615 }
616
617 static int ctlr_is_soft_resettable(u32 board_id)
618 {
619         return !board_id_in_array(soft_unresettable_controller,
620                         ARRAY_SIZE(soft_unresettable_controller), board_id);
621 }
622
623 static int ctlr_is_resettable(u32 board_id)
624 {
625         return ctlr_is_hard_resettable(board_id) ||
626                 ctlr_is_soft_resettable(board_id);
627 }
628
629 static ssize_t host_show_resettable(struct device *dev,
630         struct device_attribute *attr, char *buf)
631 {
632         struct ctlr_info *h;
633         struct Scsi_Host *shost = class_to_shost(dev);
634
635         h = shost_to_hba(shost);
636         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
637 }
638
639 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
640 {
641         return (scsi3addr[3] & 0xC0) == 0x40;
642 }
643
644 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
645         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
646 };
647 #define HPSA_RAID_0     0
648 #define HPSA_RAID_4     1
649 #define HPSA_RAID_1     2       /* also used for RAID 10 */
650 #define HPSA_RAID_5     3       /* also used for RAID 50 */
651 #define HPSA_RAID_51    4
652 #define HPSA_RAID_6     5       /* also used for RAID 60 */
653 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
654 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
655 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
656
657 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
658 {
659         return !device->physical_device;
660 }
661
662 static ssize_t raid_level_show(struct device *dev,
663              struct device_attribute *attr, char *buf)
664 {
665         ssize_t l = 0;
666         unsigned char rlevel;
667         struct ctlr_info *h;
668         struct scsi_device *sdev;
669         struct hpsa_scsi_dev_t *hdev;
670         unsigned long flags;
671
672         sdev = to_scsi_device(dev);
673         h = sdev_to_hba(sdev);
674         spin_lock_irqsave(&h->lock, flags);
675         hdev = sdev->hostdata;
676         if (!hdev) {
677                 spin_unlock_irqrestore(&h->lock, flags);
678                 return -ENODEV;
679         }
680
681         /* Is this even a logical drive? */
682         if (!is_logical_device(hdev)) {
683                 spin_unlock_irqrestore(&h->lock, flags);
684                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
685                 return l;
686         }
687
688         rlevel = hdev->raid_level;
689         spin_unlock_irqrestore(&h->lock, flags);
690         if (rlevel > RAID_UNKNOWN)
691                 rlevel = RAID_UNKNOWN;
692         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
693         return l;
694 }
695
696 static ssize_t lunid_show(struct device *dev,
697              struct device_attribute *attr, char *buf)
698 {
699         struct ctlr_info *h;
700         struct scsi_device *sdev;
701         struct hpsa_scsi_dev_t *hdev;
702         unsigned long flags;
703         unsigned char lunid[8];
704
705         sdev = to_scsi_device(dev);
706         h = sdev_to_hba(sdev);
707         spin_lock_irqsave(&h->lock, flags);
708         hdev = sdev->hostdata;
709         if (!hdev) {
710                 spin_unlock_irqrestore(&h->lock, flags);
711                 return -ENODEV;
712         }
713         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
714         spin_unlock_irqrestore(&h->lock, flags);
715         return snprintf(buf, 20, "0x%8phN\n", lunid);
716 }
717
718 static ssize_t unique_id_show(struct device *dev,
719              struct device_attribute *attr, char *buf)
720 {
721         struct ctlr_info *h;
722         struct scsi_device *sdev;
723         struct hpsa_scsi_dev_t *hdev;
724         unsigned long flags;
725         unsigned char sn[16];
726
727         sdev = to_scsi_device(dev);
728         h = sdev_to_hba(sdev);
729         spin_lock_irqsave(&h->lock, flags);
730         hdev = sdev->hostdata;
731         if (!hdev) {
732                 spin_unlock_irqrestore(&h->lock, flags);
733                 return -ENODEV;
734         }
735         memcpy(sn, hdev->device_id, sizeof(sn));
736         spin_unlock_irqrestore(&h->lock, flags);
737         return snprintf(buf, 16 * 2 + 2,
738                         "%02X%02X%02X%02X%02X%02X%02X%02X"
739                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
740                         sn[0], sn[1], sn[2], sn[3],
741                         sn[4], sn[5], sn[6], sn[7],
742                         sn[8], sn[9], sn[10], sn[11],
743                         sn[12], sn[13], sn[14], sn[15]);
744 }
745
746 static ssize_t sas_address_show(struct device *dev,
747               struct device_attribute *attr, char *buf)
748 {
749         struct ctlr_info *h;
750         struct scsi_device *sdev;
751         struct hpsa_scsi_dev_t *hdev;
752         unsigned long flags;
753         u64 sas_address;
754
755         sdev = to_scsi_device(dev);
756         h = sdev_to_hba(sdev);
757         spin_lock_irqsave(&h->lock, flags);
758         hdev = sdev->hostdata;
759         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
760                 spin_unlock_irqrestore(&h->lock, flags);
761                 return -ENODEV;
762         }
763         sas_address = hdev->sas_address;
764         spin_unlock_irqrestore(&h->lock, flags);
765
766         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
767 }
768
769 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
770              struct device_attribute *attr, char *buf)
771 {
772         struct ctlr_info *h;
773         struct scsi_device *sdev;
774         struct hpsa_scsi_dev_t *hdev;
775         unsigned long flags;
776         int offload_enabled;
777
778         sdev = to_scsi_device(dev);
779         h = sdev_to_hba(sdev);
780         spin_lock_irqsave(&h->lock, flags);
781         hdev = sdev->hostdata;
782         if (!hdev) {
783                 spin_unlock_irqrestore(&h->lock, flags);
784                 return -ENODEV;
785         }
786         offload_enabled = hdev->offload_enabled;
787         spin_unlock_irqrestore(&h->lock, flags);
788
789         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
790                 return snprintf(buf, 20, "%d\n", offload_enabled);
791         else
792                 return snprintf(buf, 40, "%s\n",
793                                 "Not applicable for a controller");
794 }
795
796 #define MAX_PATHS 8
797 static ssize_t path_info_show(struct device *dev,
798              struct device_attribute *attr, char *buf)
799 {
800         struct ctlr_info *h;
801         struct scsi_device *sdev;
802         struct hpsa_scsi_dev_t *hdev;
803         unsigned long flags;
804         int i;
805         int output_len = 0;
806         u8 box;
807         u8 bay;
808         u8 path_map_index = 0;
809         char *active;
810         unsigned char phys_connector[2];
811
812         sdev = to_scsi_device(dev);
813         h = sdev_to_hba(sdev);
814         spin_lock_irqsave(&h->devlock, flags);
815         hdev = sdev->hostdata;
816         if (!hdev) {
817                 spin_unlock_irqrestore(&h->devlock, flags);
818                 return -ENODEV;
819         }
820
821         bay = hdev->bay;
822         for (i = 0; i < MAX_PATHS; i++) {
823                 path_map_index = 1<<i;
824                 if (i == hdev->active_path_index)
825                         active = "Active";
826                 else if (hdev->path_map & path_map_index)
827                         active = "Inactive";
828                 else
829                         continue;
830
831                 output_len += scnprintf(buf + output_len,
832                                 PAGE_SIZE - output_len,
833                                 "[%d:%d:%d:%d] %20.20s ",
834                                 h->scsi_host->host_no,
835                                 hdev->bus, hdev->target, hdev->lun,
836                                 scsi_device_type(hdev->devtype));
837
838                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
839                         output_len += scnprintf(buf + output_len,
840                                                 PAGE_SIZE - output_len,
841                                                 "%s\n", active);
842                         continue;
843                 }
844
845                 box = hdev->box[i];
846                 memcpy(&phys_connector, &hdev->phys_connector[i],
847                         sizeof(phys_connector));
848                 if (phys_connector[0] < '0')
849                         phys_connector[0] = '0';
850                 if (phys_connector[1] < '0')
851                         phys_connector[1] = '0';
852                 output_len += scnprintf(buf + output_len,
853                                 PAGE_SIZE - output_len,
854                                 "PORT: %.2s ",
855                                 phys_connector);
856                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
857                         hdev->expose_device) {
858                         if (box == 0 || box == 0xFF) {
859                                 output_len += scnprintf(buf + output_len,
860                                         PAGE_SIZE - output_len,
861                                         "BAY: %hhu %s\n",
862                                         bay, active);
863                         } else {
864                                 output_len += scnprintf(buf + output_len,
865                                         PAGE_SIZE - output_len,
866                                         "BOX: %hhu BAY: %hhu %s\n",
867                                         box, bay, active);
868                         }
869                 } else if (box != 0 && box != 0xFF) {
870                         output_len += scnprintf(buf + output_len,
871                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
872                                 box, active);
873                 } else
874                         output_len += scnprintf(buf + output_len,
875                                 PAGE_SIZE - output_len, "%s\n", active);
876         }
877
878         spin_unlock_irqrestore(&h->devlock, flags);
879         return output_len;
880 }
881
882 static ssize_t host_show_ctlr_num(struct device *dev,
883         struct device_attribute *attr, char *buf)
884 {
885         struct ctlr_info *h;
886         struct Scsi_Host *shost = class_to_shost(dev);
887
888         h = shost_to_hba(shost);
889         return snprintf(buf, 20, "%d\n", h->ctlr);
890 }
891
892 static ssize_t host_show_legacy_board(struct device *dev,
893         struct device_attribute *attr, char *buf)
894 {
895         struct ctlr_info *h;
896         struct Scsi_Host *shost = class_to_shost(dev);
897
898         h = shost_to_hba(shost);
899         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
900 }
901
902 static DEVICE_ATTR_RO(raid_level);
903 static DEVICE_ATTR_RO(lunid);
904 static DEVICE_ATTR_RO(unique_id);
905 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
906 static DEVICE_ATTR_RO(sas_address);
907 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
908                         host_show_hp_ssd_smart_path_enabled, NULL);
909 static DEVICE_ATTR_RO(path_info);
910 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
911                 host_show_hp_ssd_smart_path_status,
912                 host_store_hp_ssd_smart_path_status);
913 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
914                         host_store_raid_offload_debug);
915 static DEVICE_ATTR(firmware_revision, S_IRUGO,
916         host_show_firmware_revision, NULL);
917 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
918         host_show_commands_outstanding, NULL);
919 static DEVICE_ATTR(transport_mode, S_IRUGO,
920         host_show_transport_mode, NULL);
921 static DEVICE_ATTR(resettable, S_IRUGO,
922         host_show_resettable, NULL);
923 static DEVICE_ATTR(lockup_detected, S_IRUGO,
924         host_show_lockup_detected, NULL);
925 static DEVICE_ATTR(ctlr_num, S_IRUGO,
926         host_show_ctlr_num, NULL);
927 static DEVICE_ATTR(legacy_board, S_IRUGO,
928         host_show_legacy_board, NULL);
929
930 static struct device_attribute *hpsa_sdev_attrs[] = {
931         &dev_attr_raid_level,
932         &dev_attr_lunid,
933         &dev_attr_unique_id,
934         &dev_attr_hp_ssd_smart_path_enabled,
935         &dev_attr_path_info,
936         &dev_attr_sas_address,
937         NULL,
938 };
939
940 static struct device_attribute *hpsa_shost_attrs[] = {
941         &dev_attr_rescan,
942         &dev_attr_firmware_revision,
943         &dev_attr_commands_outstanding,
944         &dev_attr_transport_mode,
945         &dev_attr_resettable,
946         &dev_attr_hp_ssd_smart_path_status,
947         &dev_attr_raid_offload_debug,
948         &dev_attr_lockup_detected,
949         &dev_attr_ctlr_num,
950         &dev_attr_legacy_board,
951         NULL,
952 };
953
954 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
955                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
956
957 static struct scsi_host_template hpsa_driver_template = {
958         .module                 = THIS_MODULE,
959         .name                   = HPSA,
960         .proc_name              = HPSA,
961         .queuecommand           = hpsa_scsi_queue_command,
962         .scan_start             = hpsa_scan_start,
963         .scan_finished          = hpsa_scan_finished,
964         .change_queue_depth     = hpsa_change_queue_depth,
965         .this_id                = -1,
966         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
967         .ioctl                  = hpsa_ioctl,
968         .slave_alloc            = hpsa_slave_alloc,
969         .slave_configure        = hpsa_slave_configure,
970         .slave_destroy          = hpsa_slave_destroy,
971 #ifdef CONFIG_COMPAT
972         .compat_ioctl           = hpsa_compat_ioctl,
973 #endif
974         .sdev_attrs = hpsa_sdev_attrs,
975         .shost_attrs = hpsa_shost_attrs,
976         .max_sectors = 2048,
977         .no_write_same = 1,
978 };
979
980 static inline u32 next_command(struct ctlr_info *h, u8 q)
981 {
982         u32 a;
983         struct reply_queue_buffer *rq = &h->reply_queue[q];
984
985         if (h->transMethod & CFGTBL_Trans_io_accel1)
986                 return h->access.command_completed(h, q);
987
988         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
989                 return h->access.command_completed(h, q);
990
991         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
992                 a = rq->head[rq->current_entry];
993                 rq->current_entry++;
994                 atomic_dec(&h->commands_outstanding);
995         } else {
996                 a = FIFO_EMPTY;
997         }
998         /* Check for wraparound */
999         if (rq->current_entry == h->max_commands) {
1000                 rq->current_entry = 0;
1001                 rq->wraparound ^= 1;
1002         }
1003         return a;
1004 }
1005
1006 /*
1007  * There are some special bits in the bus address of the
1008  * command that we have to set for the controller to know
1009  * how to process the command:
1010  *
1011  * Normal performant mode:
1012  * bit 0: 1 means performant mode, 0 means simple mode.
1013  * bits 1-3 = block fetch table entry
1014  * bits 4-6 = command type (== 0)
1015  *
1016  * ioaccel1 mode:
1017  * bit 0 = "performant mode" bit.
1018  * bits 1-3 = block fetch table entry
1019  * bits 4-6 = command type (== 110)
1020  * (command type is needed because ioaccel1 mode
1021  * commands are submitted through the same register as normal
1022  * mode commands, so this is how the controller knows whether
1023  * the command is normal mode or ioaccel1 mode.)
1024  *
1025  * ioaccel2 mode:
1026  * bit 0 = "performant mode" bit.
1027  * bits 1-4 = block fetch table entry (note extra bit)
1028  * bits 4-6 = not needed, because ioaccel2 mode has
1029  * a separate special register for submitting commands.
1030  */
1031
1032 /*
1033  * set_performant_mode: Modify the tag for cciss performant
1034  * set bit 0 for pull model, bits 3-1 for block fetch
1035  * register number
1036  */
1037 #define DEFAULT_REPLY_QUEUE (-1)
1038 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1039                                         int reply_queue)
1040 {
1041         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1042                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1043                 if (unlikely(!h->msix_vectors))
1044                         return;
1045                 c->Header.ReplyQueue = reply_queue;
1046         }
1047 }
1048
1049 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1050                                                 struct CommandList *c,
1051                                                 int reply_queue)
1052 {
1053         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1054
1055         /*
1056          * Tell the controller to post the reply to the queue for this
1057          * processor.  This seems to give the best I/O throughput.
1058          */
1059         cp->ReplyQueue = reply_queue;
1060         /*
1061          * Set the bits in the address sent down to include:
1062          *  - performant mode bit (bit 0)
1063          *  - pull count (bits 1-3)
1064          *  - command type (bits 4-6)
1065          */
1066         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1067                                         IOACCEL1_BUSADDR_CMDTYPE;
1068 }
1069
1070 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1071                                                 struct CommandList *c,
1072                                                 int reply_queue)
1073 {
1074         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1075                 &h->ioaccel2_cmd_pool[c->cmdindex];
1076
1077         /* Tell the controller to post the reply to the queue for this
1078          * processor.  This seems to give the best I/O throughput.
1079          */
1080         cp->reply_queue = reply_queue;
1081         /* Set the bits in the address sent down to include:
1082          *  - performant mode bit not used in ioaccel mode 2
1083          *  - pull count (bits 0-3)
1084          *  - command type isn't needed for ioaccel2
1085          */
1086         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1087 }
1088
1089 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1090                                                 struct CommandList *c,
1091                                                 int reply_queue)
1092 {
1093         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1094
1095         /*
1096          * Tell the controller to post the reply to the queue for this
1097          * processor.  This seems to give the best I/O throughput.
1098          */
1099         cp->reply_queue = reply_queue;
1100         /*
1101          * Set the bits in the address sent down to include:
1102          *  - performant mode bit not used in ioaccel mode 2
1103          *  - pull count (bits 0-3)
1104          *  - command type isn't needed for ioaccel2
1105          */
1106         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1107 }
1108
1109 static int is_firmware_flash_cmd(u8 *cdb)
1110 {
1111         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1112 }
1113
1114 /*
1115  * During firmware flash, the heartbeat register may not update as frequently
1116  * as it should.  So we dial down lockup detection during firmware flash. and
1117  * dial it back up when firmware flash completes.
1118  */
1119 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1120 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1121 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1122 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1123                 struct CommandList *c)
1124 {
1125         if (!is_firmware_flash_cmd(c->Request.CDB))
1126                 return;
1127         atomic_inc(&h->firmware_flash_in_progress);
1128         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1129 }
1130
1131 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1132                 struct CommandList *c)
1133 {
1134         if (is_firmware_flash_cmd(c->Request.CDB) &&
1135                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1136                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1137 }
1138
1139 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1140         struct CommandList *c, int reply_queue)
1141 {
1142         dial_down_lockup_detection_during_fw_flash(h, c);
1143         atomic_inc(&h->commands_outstanding);
1144         if (c->device)
1145                 atomic_inc(&c->device->commands_outstanding);
1146
1147         reply_queue = h->reply_map[raw_smp_processor_id()];
1148         switch (c->cmd_type) {
1149         case CMD_IOACCEL1:
1150                 set_ioaccel1_performant_mode(h, c, reply_queue);
1151                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1152                 break;
1153         case CMD_IOACCEL2:
1154                 set_ioaccel2_performant_mode(h, c, reply_queue);
1155                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1156                 break;
1157         case IOACCEL2_TMF:
1158                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1159                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1160                 break;
1161         default:
1162                 set_performant_mode(h, c, reply_queue);
1163                 h->access.submit_command(h, c);
1164         }
1165 }
1166
1167 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1168 {
1169         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1170 }
1171
1172 static inline int is_hba_lunid(unsigned char scsi3addr[])
1173 {
1174         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1175 }
1176
1177 static inline int is_scsi_rev_5(struct ctlr_info *h)
1178 {
1179         if (!h->hba_inquiry_data)
1180                 return 0;
1181         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1182                 return 1;
1183         return 0;
1184 }
1185
1186 static int hpsa_find_target_lun(struct ctlr_info *h,
1187         unsigned char scsi3addr[], int bus, int *target, int *lun)
1188 {
1189         /* finds an unused bus, target, lun for a new physical device
1190          * assumes h->devlock is held
1191          */
1192         int i, found = 0;
1193         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1194
1195         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1196
1197         for (i = 0; i < h->ndevices; i++) {
1198                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1199                         __set_bit(h->dev[i]->target, lun_taken);
1200         }
1201
1202         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1203         if (i < HPSA_MAX_DEVICES) {
1204                 /* *bus = 1; */
1205                 *target = i;
1206                 *lun = 0;
1207                 found = 1;
1208         }
1209         return !found;
1210 }
1211
1212 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1213         struct hpsa_scsi_dev_t *dev, char *description)
1214 {
1215 #define LABEL_SIZE 25
1216         char label[LABEL_SIZE];
1217
1218         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1219                 return;
1220
1221         switch (dev->devtype) {
1222         case TYPE_RAID:
1223                 snprintf(label, LABEL_SIZE, "controller");
1224                 break;
1225         case TYPE_ENCLOSURE:
1226                 snprintf(label, LABEL_SIZE, "enclosure");
1227                 break;
1228         case TYPE_DISK:
1229         case TYPE_ZBC:
1230                 if (dev->external)
1231                         snprintf(label, LABEL_SIZE, "external");
1232                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1233                         snprintf(label, LABEL_SIZE, "%s",
1234                                 raid_label[PHYSICAL_DRIVE]);
1235                 else
1236                         snprintf(label, LABEL_SIZE, "RAID-%s",
1237                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1238                                 raid_label[dev->raid_level]);
1239                 break;
1240         case TYPE_ROM:
1241                 snprintf(label, LABEL_SIZE, "rom");
1242                 break;
1243         case TYPE_TAPE:
1244                 snprintf(label, LABEL_SIZE, "tape");
1245                 break;
1246         case TYPE_MEDIUM_CHANGER:
1247                 snprintf(label, LABEL_SIZE, "changer");
1248                 break;
1249         default:
1250                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1251                 break;
1252         }
1253
1254         dev_printk(level, &h->pdev->dev,
1255                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1256                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1257                         description,
1258                         scsi_device_type(dev->devtype),
1259                         dev->vendor,
1260                         dev->model,
1261                         label,
1262                         dev->offload_config ? '+' : '-',
1263                         dev->offload_to_be_enabled ? '+' : '-',
1264                         dev->expose_device);
1265 }
1266
1267 /* Add an entry into h->dev[] array. */
1268 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1269                 struct hpsa_scsi_dev_t *device,
1270                 struct hpsa_scsi_dev_t *added[], int *nadded)
1271 {
1272         /* assumes h->devlock is held */
1273         int n = h->ndevices;
1274         int i;
1275         unsigned char addr1[8], addr2[8];
1276         struct hpsa_scsi_dev_t *sd;
1277
1278         if (n >= HPSA_MAX_DEVICES) {
1279                 dev_err(&h->pdev->dev, "too many devices, some will be "
1280                         "inaccessible.\n");
1281                 return -1;
1282         }
1283
1284         /* physical devices do not have lun or target assigned until now. */
1285         if (device->lun != -1)
1286                 /* Logical device, lun is already assigned. */
1287                 goto lun_assigned;
1288
1289         /* If this device a non-zero lun of a multi-lun device
1290          * byte 4 of the 8-byte LUN addr will contain the logical
1291          * unit no, zero otherwise.
1292          */
1293         if (device->scsi3addr[4] == 0) {
1294                 /* This is not a non-zero lun of a multi-lun device */
1295                 if (hpsa_find_target_lun(h, device->scsi3addr,
1296                         device->bus, &device->target, &device->lun) != 0)
1297                         return -1;
1298                 goto lun_assigned;
1299         }
1300
1301         /* This is a non-zero lun of a multi-lun device.
1302          * Search through our list and find the device which
1303          * has the same 8 byte LUN address, excepting byte 4 and 5.
1304          * Assign the same bus and target for this new LUN.
1305          * Use the logical unit number from the firmware.
1306          */
1307         memcpy(addr1, device->scsi3addr, 8);
1308         addr1[4] = 0;
1309         addr1[5] = 0;
1310         for (i = 0; i < n; i++) {
1311                 sd = h->dev[i];
1312                 memcpy(addr2, sd->scsi3addr, 8);
1313                 addr2[4] = 0;
1314                 addr2[5] = 0;
1315                 /* differ only in byte 4 and 5? */
1316                 if (memcmp(addr1, addr2, 8) == 0) {
1317                         device->bus = sd->bus;
1318                         device->target = sd->target;
1319                         device->lun = device->scsi3addr[4];
1320                         break;
1321                 }
1322         }
1323         if (device->lun == -1) {
1324                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1325                         " suspect firmware bug or unsupported hardware "
1326                         "configuration.\n");
1327                 return -1;
1328         }
1329
1330 lun_assigned:
1331
1332         h->dev[n] = device;
1333         h->ndevices++;
1334         added[*nadded] = device;
1335         (*nadded)++;
1336         hpsa_show_dev_msg(KERN_INFO, h, device,
1337                 device->expose_device ? "added" : "masked");
1338         return 0;
1339 }
1340
1341 /*
1342  * Called during a scan operation.
1343  *
1344  * Update an entry in h->dev[] array.
1345  */
1346 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1347         int entry, struct hpsa_scsi_dev_t *new_entry)
1348 {
1349         /* assumes h->devlock is held */
1350         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1351
1352         /* Raid level changed. */
1353         h->dev[entry]->raid_level = new_entry->raid_level;
1354
1355         /*
1356          * ioacccel_handle may have changed for a dual domain disk
1357          */
1358         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1359
1360         /* Raid offload parameters changed.  Careful about the ordering. */
1361         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1362                 /*
1363                  * if drive is newly offload_enabled, we want to copy the
1364                  * raid map data first.  If previously offload_enabled and
1365                  * offload_config were set, raid map data had better be
1366                  * the same as it was before. If raid map data has changed
1367                  * then it had better be the case that
1368                  * h->dev[entry]->offload_enabled is currently 0.
1369                  */
1370                 h->dev[entry]->raid_map = new_entry->raid_map;
1371                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1372         }
1373         if (new_entry->offload_to_be_enabled) {
1374                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1376         }
1377         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1378         h->dev[entry]->offload_config = new_entry->offload_config;
1379         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1380         h->dev[entry]->queue_depth = new_entry->queue_depth;
1381
1382         /*
1383          * We can turn off ioaccel offload now, but need to delay turning
1384          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1385          * can't do that until all the devices are updated.
1386          */
1387         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1388
1389         /*
1390          * turn ioaccel off immediately if told to do so.
1391          */
1392         if (!new_entry->offload_to_be_enabled)
1393                 h->dev[entry]->offload_enabled = 0;
1394
1395         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1396 }
1397
1398 /* Replace an entry from h->dev[] array. */
1399 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1400         int entry, struct hpsa_scsi_dev_t *new_entry,
1401         struct hpsa_scsi_dev_t *added[], int *nadded,
1402         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1403 {
1404         /* assumes h->devlock is held */
1405         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1406         removed[*nremoved] = h->dev[entry];
1407         (*nremoved)++;
1408
1409         /*
1410          * New physical devices won't have target/lun assigned yet
1411          * so we need to preserve the values in the slot we are replacing.
1412          */
1413         if (new_entry->target == -1) {
1414                 new_entry->target = h->dev[entry]->target;
1415                 new_entry->lun = h->dev[entry]->lun;
1416         }
1417
1418         h->dev[entry] = new_entry;
1419         added[*nadded] = new_entry;
1420         (*nadded)++;
1421
1422         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1423 }
1424
1425 /* Remove an entry from h->dev[] array. */
1426 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1427         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1428 {
1429         /* assumes h->devlock is held */
1430         int i;
1431         struct hpsa_scsi_dev_t *sd;
1432
1433         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1434
1435         sd = h->dev[entry];
1436         removed[*nremoved] = h->dev[entry];
1437         (*nremoved)++;
1438
1439         for (i = entry; i < h->ndevices-1; i++)
1440                 h->dev[i] = h->dev[i+1];
1441         h->ndevices--;
1442         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1443 }
1444
1445 #define SCSI3ADDR_EQ(a, b) ( \
1446         (a)[7] == (b)[7] && \
1447         (a)[6] == (b)[6] && \
1448         (a)[5] == (b)[5] && \
1449         (a)[4] == (b)[4] && \
1450         (a)[3] == (b)[3] && \
1451         (a)[2] == (b)[2] && \
1452         (a)[1] == (b)[1] && \
1453         (a)[0] == (b)[0])
1454
1455 static void fixup_botched_add(struct ctlr_info *h,
1456         struct hpsa_scsi_dev_t *added)
1457 {
1458         /* called when scsi_add_device fails in order to re-adjust
1459          * h->dev[] to match the mid layer's view.
1460          */
1461         unsigned long flags;
1462         int i, j;
1463
1464         spin_lock_irqsave(&h->lock, flags);
1465         for (i = 0; i < h->ndevices; i++) {
1466                 if (h->dev[i] == added) {
1467                         for (j = i; j < h->ndevices-1; j++)
1468                                 h->dev[j] = h->dev[j+1];
1469                         h->ndevices--;
1470                         break;
1471                 }
1472         }
1473         spin_unlock_irqrestore(&h->lock, flags);
1474         kfree(added);
1475 }
1476
1477 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1478         struct hpsa_scsi_dev_t *dev2)
1479 {
1480         /* we compare everything except lun and target as these
1481          * are not yet assigned.  Compare parts likely
1482          * to differ first
1483          */
1484         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1485                 sizeof(dev1->scsi3addr)) != 0)
1486                 return 0;
1487         if (memcmp(dev1->device_id, dev2->device_id,
1488                 sizeof(dev1->device_id)) != 0)
1489                 return 0;
1490         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1491                 return 0;
1492         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1493                 return 0;
1494         if (dev1->devtype != dev2->devtype)
1495                 return 0;
1496         if (dev1->bus != dev2->bus)
1497                 return 0;
1498         return 1;
1499 }
1500
1501 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1502         struct hpsa_scsi_dev_t *dev2)
1503 {
1504         /* Device attributes that can change, but don't mean
1505          * that the device is a different device, nor that the OS
1506          * needs to be told anything about the change.
1507          */
1508         if (dev1->raid_level != dev2->raid_level)
1509                 return 1;
1510         if (dev1->offload_config != dev2->offload_config)
1511                 return 1;
1512         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1513                 return 1;
1514         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1515                 if (dev1->queue_depth != dev2->queue_depth)
1516                         return 1;
1517         /*
1518          * This can happen for dual domain devices. An active
1519          * path change causes the ioaccel handle to change
1520          *
1521          * for example note the handle differences between p0 and p1
1522          * Device                    WWN               ,WWN hash,Handle
1523          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1524          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1525          */
1526         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1527                 return 1;
1528         return 0;
1529 }
1530
1531 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1532  * and return needle location in *index.  If scsi3addr matches, but not
1533  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1534  * location in *index.
1535  * In the case of a minor device attribute change, such as RAID level, just
1536  * return DEVICE_UPDATED, along with the updated device's location in index.
1537  * If needle not found, return DEVICE_NOT_FOUND.
1538  */
1539 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1540         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1541         int *index)
1542 {
1543         int i;
1544 #define DEVICE_NOT_FOUND 0
1545 #define DEVICE_CHANGED 1
1546 #define DEVICE_SAME 2
1547 #define DEVICE_UPDATED 3
1548         if (needle == NULL)
1549                 return DEVICE_NOT_FOUND;
1550
1551         for (i = 0; i < haystack_size; i++) {
1552                 if (haystack[i] == NULL) /* previously removed. */
1553                         continue;
1554                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1555                         *index = i;
1556                         if (device_is_the_same(needle, haystack[i])) {
1557                                 if (device_updated(needle, haystack[i]))
1558                                         return DEVICE_UPDATED;
1559                                 return DEVICE_SAME;
1560                         } else {
1561                                 /* Keep offline devices offline */
1562                                 if (needle->volume_offline)
1563                                         return DEVICE_NOT_FOUND;
1564                                 return DEVICE_CHANGED;
1565                         }
1566                 }
1567         }
1568         *index = -1;
1569         return DEVICE_NOT_FOUND;
1570 }
1571
1572 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1573                                         unsigned char scsi3addr[])
1574 {
1575         struct offline_device_entry *device;
1576         unsigned long flags;
1577
1578         /* Check to see if device is already on the list */
1579         spin_lock_irqsave(&h->offline_device_lock, flags);
1580         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1581                 if (memcmp(device->scsi3addr, scsi3addr,
1582                         sizeof(device->scsi3addr)) == 0) {
1583                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1584                         return;
1585                 }
1586         }
1587         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588
1589         /* Device is not on the list, add it. */
1590         device = kmalloc(sizeof(*device), GFP_KERNEL);
1591         if (!device)
1592                 return;
1593
1594         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1595         spin_lock_irqsave(&h->offline_device_lock, flags);
1596         list_add_tail(&device->offline_list, &h->offline_device_list);
1597         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598 }
1599
1600 /* Print a message explaining various offline volume states */
1601 static void hpsa_show_volume_status(struct ctlr_info *h,
1602         struct hpsa_scsi_dev_t *sd)
1603 {
1604         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1605                 dev_info(&h->pdev->dev,
1606                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1607                         h->scsi_host->host_no,
1608                         sd->bus, sd->target, sd->lun);
1609         switch (sd->volume_offline) {
1610         case HPSA_LV_OK:
1611                 break;
1612         case HPSA_LV_UNDERGOING_ERASE:
1613                 dev_info(&h->pdev->dev,
1614                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1615                         h->scsi_host->host_no,
1616                         sd->bus, sd->target, sd->lun);
1617                 break;
1618         case HPSA_LV_NOT_AVAILABLE:
1619                 dev_info(&h->pdev->dev,
1620                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1621                         h->scsi_host->host_no,
1622                         sd->bus, sd->target, sd->lun);
1623                 break;
1624         case HPSA_LV_UNDERGOING_RPI:
1625                 dev_info(&h->pdev->dev,
1626                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1627                         h->scsi_host->host_no,
1628                         sd->bus, sd->target, sd->lun);
1629                 break;
1630         case HPSA_LV_PENDING_RPI:
1631                 dev_info(&h->pdev->dev,
1632                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1633                         h->scsi_host->host_no,
1634                         sd->bus, sd->target, sd->lun);
1635                 break;
1636         case HPSA_LV_ENCRYPTED_NO_KEY:
1637                 dev_info(&h->pdev->dev,
1638                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1639                         h->scsi_host->host_no,
1640                         sd->bus, sd->target, sd->lun);
1641                 break;
1642         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1643                 dev_info(&h->pdev->dev,
1644                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1645                         h->scsi_host->host_no,
1646                         sd->bus, sd->target, sd->lun);
1647                 break;
1648         case HPSA_LV_UNDERGOING_ENCRYPTION:
1649                 dev_info(&h->pdev->dev,
1650                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1651                         h->scsi_host->host_no,
1652                         sd->bus, sd->target, sd->lun);
1653                 break;
1654         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1655                 dev_info(&h->pdev->dev,
1656                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1657                         h->scsi_host->host_no,
1658                         sd->bus, sd->target, sd->lun);
1659                 break;
1660         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1661                 dev_info(&h->pdev->dev,
1662                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1663                         h->scsi_host->host_no,
1664                         sd->bus, sd->target, sd->lun);
1665                 break;
1666         case HPSA_LV_PENDING_ENCRYPTION:
1667                 dev_info(&h->pdev->dev,
1668                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1669                         h->scsi_host->host_no,
1670                         sd->bus, sd->target, sd->lun);
1671                 break;
1672         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1673                 dev_info(&h->pdev->dev,
1674                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1675                         h->scsi_host->host_no,
1676                         sd->bus, sd->target, sd->lun);
1677                 break;
1678         }
1679 }
1680
1681 /*
1682  * Figure the list of physical drive pointers for a logical drive with
1683  * raid offload configured.
1684  */
1685 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1686                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1687                                 struct hpsa_scsi_dev_t *logical_drive)
1688 {
1689         struct raid_map_data *map = &logical_drive->raid_map;
1690         struct raid_map_disk_data *dd = &map->data[0];
1691         int i, j;
1692         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1693                                 le16_to_cpu(map->metadata_disks_per_row);
1694         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1695                                 le16_to_cpu(map->layout_map_count) *
1696                                 total_disks_per_row;
1697         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1698                                 total_disks_per_row;
1699         int qdepth;
1700
1701         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1702                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1703
1704         logical_drive->nphysical_disks = nraid_map_entries;
1705
1706         qdepth = 0;
1707         for (i = 0; i < nraid_map_entries; i++) {
1708                 logical_drive->phys_disk[i] = NULL;
1709                 if (!logical_drive->offload_config)
1710                         continue;
1711                 for (j = 0; j < ndevices; j++) {
1712                         if (dev[j] == NULL)
1713                                 continue;
1714                         if (dev[j]->devtype != TYPE_DISK &&
1715                             dev[j]->devtype != TYPE_ZBC)
1716                                 continue;
1717                         if (is_logical_device(dev[j]))
1718                                 continue;
1719                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1720                                 continue;
1721
1722                         logical_drive->phys_disk[i] = dev[j];
1723                         if (i < nphys_disk)
1724                                 qdepth = min(h->nr_cmds, qdepth +
1725                                     logical_drive->phys_disk[i]->queue_depth);
1726                         break;
1727                 }
1728
1729                 /*
1730                  * This can happen if a physical drive is removed and
1731                  * the logical drive is degraded.  In that case, the RAID
1732                  * map data will refer to a physical disk which isn't actually
1733                  * present.  And in that case offload_enabled should already
1734                  * be 0, but we'll turn it off here just in case
1735                  */
1736                 if (!logical_drive->phys_disk[i]) {
1737                         dev_warn(&h->pdev->dev,
1738                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1739                                 __func__,
1740                                 h->scsi_host->host_no, logical_drive->bus,
1741                                 logical_drive->target, logical_drive->lun);
1742                         logical_drive->offload_enabled = 0;
1743                         logical_drive->offload_to_be_enabled = 0;
1744                         logical_drive->queue_depth = 8;
1745                 }
1746         }
1747         if (nraid_map_entries)
1748                 /*
1749                  * This is correct for reads, too high for full stripe writes,
1750                  * way too high for partial stripe writes
1751                  */
1752                 logical_drive->queue_depth = qdepth;
1753         else {
1754                 if (logical_drive->external)
1755                         logical_drive->queue_depth = EXTERNAL_QD;
1756                 else
1757                         logical_drive->queue_depth = h->nr_cmds;
1758         }
1759 }
1760
1761 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1762                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1763 {
1764         int i;
1765
1766         for (i = 0; i < ndevices; i++) {
1767                 if (dev[i] == NULL)
1768                         continue;
1769                 if (dev[i]->devtype != TYPE_DISK &&
1770                     dev[i]->devtype != TYPE_ZBC)
1771                         continue;
1772                 if (!is_logical_device(dev[i]))
1773                         continue;
1774
1775                 /*
1776                  * If offload is currently enabled, the RAID map and
1777                  * phys_disk[] assignment *better* not be changing
1778                  * because we would be changing ioaccel phsy_disk[] pointers
1779                  * on a ioaccel volume processing I/O requests.
1780                  *
1781                  * If an ioaccel volume status changed, initially because it was
1782                  * re-configured and thus underwent a transformation, or
1783                  * a drive failed, we would have received a state change
1784                  * request and ioaccel should have been turned off. When the
1785                  * transformation completes, we get another state change
1786                  * request to turn ioaccel back on. In this case, we need
1787                  * to update the ioaccel information.
1788                  *
1789                  * Thus: If it is not currently enabled, but will be after
1790                  * the scan completes, make sure the ioaccel pointers
1791                  * are up to date.
1792                  */
1793
1794                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1795                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1796         }
1797 }
1798
1799 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1800 {
1801         int rc = 0;
1802
1803         if (!h->scsi_host)
1804                 return 1;
1805
1806         if (is_logical_device(device)) /* RAID */
1807                 rc = scsi_add_device(h->scsi_host, device->bus,
1808                                         device->target, device->lun);
1809         else /* HBA */
1810                 rc = hpsa_add_sas_device(h->sas_host, device);
1811
1812         return rc;
1813 }
1814
1815 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1816                                                 struct hpsa_scsi_dev_t *dev)
1817 {
1818         int i;
1819         int count = 0;
1820
1821         for (i = 0; i < h->nr_cmds; i++) {
1822                 struct CommandList *c = h->cmd_pool + i;
1823                 int refcount = atomic_inc_return(&c->refcount);
1824
1825                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1826                                 dev->scsi3addr)) {
1827                         unsigned long flags;
1828
1829                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1830                         if (!hpsa_is_cmd_idle(c))
1831                                 ++count;
1832                         spin_unlock_irqrestore(&h->lock, flags);
1833                 }
1834
1835                 cmd_free(h, c);
1836         }
1837
1838         return count;
1839 }
1840
1841 #define NUM_WAIT 20
1842 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1843                                                 struct hpsa_scsi_dev_t *device)
1844 {
1845         int cmds = 0;
1846         int waits = 0;
1847         int num_wait = NUM_WAIT;
1848
1849         if (device->external)
1850                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1851
1852         while (1) {
1853                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1854                 if (cmds == 0)
1855                         break;
1856                 if (++waits > num_wait)
1857                         break;
1858                 msleep(1000);
1859         }
1860
1861         if (waits > num_wait) {
1862                 dev_warn(&h->pdev->dev,
1863                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1864                         __func__,
1865                         h->scsi_host->host_no,
1866                         device->bus, device->target, device->lun, cmds);
1867         }
1868 }
1869
1870 static void hpsa_remove_device(struct ctlr_info *h,
1871                         struct hpsa_scsi_dev_t *device)
1872 {
1873         struct scsi_device *sdev = NULL;
1874
1875         if (!h->scsi_host)
1876                 return;
1877
1878         /*
1879          * Allow for commands to drain
1880          */
1881         device->removed = 1;
1882         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1883
1884         if (is_logical_device(device)) { /* RAID */
1885                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1886                                                 device->target, device->lun);
1887                 if (sdev) {
1888                         scsi_remove_device(sdev);
1889                         scsi_device_put(sdev);
1890                 } else {
1891                         /*
1892                          * We don't expect to get here.  Future commands
1893                          * to this device will get a selection timeout as
1894                          * if the device were gone.
1895                          */
1896                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1897                                         "didn't find device for removal.");
1898                 }
1899         } else { /* HBA */
1900
1901                 hpsa_remove_sas_device(device);
1902         }
1903 }
1904
1905 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1906         struct hpsa_scsi_dev_t *sd[], int nsds)
1907 {
1908         /* sd contains scsi3 addresses and devtypes, and inquiry
1909          * data.  This function takes what's in sd to be the current
1910          * reality and updates h->dev[] to reflect that reality.
1911          */
1912         int i, entry, device_change, changes = 0;
1913         struct hpsa_scsi_dev_t *csd;
1914         unsigned long flags;
1915         struct hpsa_scsi_dev_t **added, **removed;
1916         int nadded, nremoved;
1917
1918         /*
1919          * A reset can cause a device status to change
1920          * re-schedule the scan to see what happened.
1921          */
1922         spin_lock_irqsave(&h->reset_lock, flags);
1923         if (h->reset_in_progress) {
1924                 h->drv_req_rescan = 1;
1925                 spin_unlock_irqrestore(&h->reset_lock, flags);
1926                 return;
1927         }
1928         spin_unlock_irqrestore(&h->reset_lock, flags);
1929
1930         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1931         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1932
1933         if (!added || !removed) {
1934                 dev_warn(&h->pdev->dev, "out of memory in "
1935                         "adjust_hpsa_scsi_table\n");
1936                 goto free_and_out;
1937         }
1938
1939         spin_lock_irqsave(&h->devlock, flags);
1940
1941         /* find any devices in h->dev[] that are not in
1942          * sd[] and remove them from h->dev[], and for any
1943          * devices which have changed, remove the old device
1944          * info and add the new device info.
1945          * If minor device attributes change, just update
1946          * the existing device structure.
1947          */
1948         i = 0;
1949         nremoved = 0;
1950         nadded = 0;
1951         while (i < h->ndevices) {
1952                 csd = h->dev[i];
1953                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1954                 if (device_change == DEVICE_NOT_FOUND) {
1955                         changes++;
1956                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1957                         continue; /* remove ^^^, hence i not incremented */
1958                 } else if (device_change == DEVICE_CHANGED) {
1959                         changes++;
1960                         hpsa_scsi_replace_entry(h, i, sd[entry],
1961                                 added, &nadded, removed, &nremoved);
1962                         /* Set it to NULL to prevent it from being freed
1963                          * at the bottom of hpsa_update_scsi_devices()
1964                          */
1965                         sd[entry] = NULL;
1966                 } else if (device_change == DEVICE_UPDATED) {
1967                         hpsa_scsi_update_entry(h, i, sd[entry]);
1968                 }
1969                 i++;
1970         }
1971
1972         /* Now, make sure every device listed in sd[] is also
1973          * listed in h->dev[], adding them if they aren't found
1974          */
1975
1976         for (i = 0; i < nsds; i++) {
1977                 if (!sd[i]) /* if already added above. */
1978                         continue;
1979
1980                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1981                  * as the SCSI mid-layer does not handle such devices well.
1982                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1983                  * at 160Hz, and prevents the system from coming up.
1984                  */
1985                 if (sd[i]->volume_offline) {
1986                         hpsa_show_volume_status(h, sd[i]);
1987                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1988                         continue;
1989                 }
1990
1991                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1992                                         h->ndevices, &entry);
1993                 if (device_change == DEVICE_NOT_FOUND) {
1994                         changes++;
1995                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1996                                 break;
1997                         sd[i] = NULL; /* prevent from being freed later. */
1998                 } else if (device_change == DEVICE_CHANGED) {
1999                         /* should never happen... */
2000                         changes++;
2001                         dev_warn(&h->pdev->dev,
2002                                 "device unexpectedly changed.\n");
2003                         /* but if it does happen, we just ignore that device */
2004                 }
2005         }
2006         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2007
2008         /*
2009          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2010          * any logical drives that need it enabled.
2011          *
2012          * The raid map should be current by now.
2013          *
2014          * We are updating the device list used for I/O requests.
2015          */
2016         for (i = 0; i < h->ndevices; i++) {
2017                 if (h->dev[i] == NULL)
2018                         continue;
2019                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2020         }
2021
2022         spin_unlock_irqrestore(&h->devlock, flags);
2023
2024         /* Monitor devices which are in one of several NOT READY states to be
2025          * brought online later. This must be done without holding h->devlock,
2026          * so don't touch h->dev[]
2027          */
2028         for (i = 0; i < nsds; i++) {
2029                 if (!sd[i]) /* if already added above. */
2030                         continue;
2031                 if (sd[i]->volume_offline)
2032                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2033         }
2034
2035         /* Don't notify scsi mid layer of any changes the first time through
2036          * (or if there are no changes) scsi_scan_host will do it later the
2037          * first time through.
2038          */
2039         if (!changes)
2040                 goto free_and_out;
2041
2042         /* Notify scsi mid layer of any removed devices */
2043         for (i = 0; i < nremoved; i++) {
2044                 if (removed[i] == NULL)
2045                         continue;
2046                 if (removed[i]->expose_device)
2047                         hpsa_remove_device(h, removed[i]);
2048                 kfree(removed[i]);
2049                 removed[i] = NULL;
2050         }
2051
2052         /* Notify scsi mid layer of any added devices */
2053         for (i = 0; i < nadded; i++) {
2054                 int rc = 0;
2055
2056                 if (added[i] == NULL)
2057                         continue;
2058                 if (!(added[i]->expose_device))
2059                         continue;
2060                 rc = hpsa_add_device(h, added[i]);
2061                 if (!rc)
2062                         continue;
2063                 dev_warn(&h->pdev->dev,
2064                         "addition failed %d, device not added.", rc);
2065                 /* now we have to remove it from h->dev,
2066                  * since it didn't get added to scsi mid layer
2067                  */
2068                 fixup_botched_add(h, added[i]);
2069                 h->drv_req_rescan = 1;
2070         }
2071
2072 free_and_out:
2073         kfree(added);
2074         kfree(removed);
2075 }
2076
2077 /*
2078  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2079  * Assume's h->devlock is held.
2080  */
2081 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2082         int bus, int target, int lun)
2083 {
2084         int i;
2085         struct hpsa_scsi_dev_t *sd;
2086
2087         for (i = 0; i < h->ndevices; i++) {
2088                 sd = h->dev[i];
2089                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2090                         return sd;
2091         }
2092         return NULL;
2093 }
2094
2095 static int hpsa_slave_alloc(struct scsi_device *sdev)
2096 {
2097         struct hpsa_scsi_dev_t *sd = NULL;
2098         unsigned long flags;
2099         struct ctlr_info *h;
2100
2101         h = sdev_to_hba(sdev);
2102         spin_lock_irqsave(&h->devlock, flags);
2103         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2104                 struct scsi_target *starget;
2105                 struct sas_rphy *rphy;
2106
2107                 starget = scsi_target(sdev);
2108                 rphy = target_to_rphy(starget);
2109                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2110                 if (sd) {
2111                         sd->target = sdev_id(sdev);
2112                         sd->lun = sdev->lun;
2113                 }
2114         }
2115         if (!sd)
2116                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2117                                         sdev_id(sdev), sdev->lun);
2118
2119         if (sd && sd->expose_device) {
2120                 atomic_set(&sd->ioaccel_cmds_out, 0);
2121                 sdev->hostdata = sd;
2122         } else
2123                 sdev->hostdata = NULL;
2124         spin_unlock_irqrestore(&h->devlock, flags);
2125         return 0;
2126 }
2127
2128 /* configure scsi device based on internal per-device structure */
2129 static int hpsa_slave_configure(struct scsi_device *sdev)
2130 {
2131         struct hpsa_scsi_dev_t *sd;
2132         int queue_depth;
2133
2134         sd = sdev->hostdata;
2135         sdev->no_uld_attach = !sd || !sd->expose_device;
2136
2137         if (sd) {
2138                 sd->was_removed = 0;
2139                 if (sd->external) {
2140                         queue_depth = EXTERNAL_QD;
2141                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2142                         blk_queue_rq_timeout(sdev->request_queue,
2143                                                 HPSA_EH_PTRAID_TIMEOUT);
2144                 } else {
2145                         queue_depth = sd->queue_depth != 0 ?
2146                                         sd->queue_depth : sdev->host->can_queue;
2147                 }
2148         } else
2149                 queue_depth = sdev->host->can_queue;
2150
2151         scsi_change_queue_depth(sdev, queue_depth);
2152
2153         return 0;
2154 }
2155
2156 static void hpsa_slave_destroy(struct scsi_device *sdev)
2157 {
2158         struct hpsa_scsi_dev_t *hdev = NULL;
2159
2160         hdev = sdev->hostdata;
2161
2162         if (hdev)
2163                 hdev->was_removed = 1;
2164 }
2165
2166 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168         int i;
2169
2170         if (!h->ioaccel2_cmd_sg_list)
2171                 return;
2172         for (i = 0; i < h->nr_cmds; i++) {
2173                 kfree(h->ioaccel2_cmd_sg_list[i]);
2174                 h->ioaccel2_cmd_sg_list[i] = NULL;
2175         }
2176         kfree(h->ioaccel2_cmd_sg_list);
2177         h->ioaccel2_cmd_sg_list = NULL;
2178 }
2179
2180 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181 {
2182         int i;
2183
2184         if (h->chainsize <= 0)
2185                 return 0;
2186
2187         h->ioaccel2_cmd_sg_list =
2188                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2189                                         GFP_KERNEL);
2190         if (!h->ioaccel2_cmd_sg_list)
2191                 return -ENOMEM;
2192         for (i = 0; i < h->nr_cmds; i++) {
2193                 h->ioaccel2_cmd_sg_list[i] =
2194                         kmalloc_array(h->maxsgentries,
2195                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2196                                       GFP_KERNEL);
2197                 if (!h->ioaccel2_cmd_sg_list[i])
2198                         goto clean;
2199         }
2200         return 0;
2201
2202 clean:
2203         hpsa_free_ioaccel2_sg_chain_blocks(h);
2204         return -ENOMEM;
2205 }
2206
2207 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209         int i;
2210
2211         if (!h->cmd_sg_list)
2212                 return;
2213         for (i = 0; i < h->nr_cmds; i++) {
2214                 kfree(h->cmd_sg_list[i]);
2215                 h->cmd_sg_list[i] = NULL;
2216         }
2217         kfree(h->cmd_sg_list);
2218         h->cmd_sg_list = NULL;
2219 }
2220
2221 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2222 {
2223         int i;
2224
2225         if (h->chainsize <= 0)
2226                 return 0;
2227
2228         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2229                                  GFP_KERNEL);
2230         if (!h->cmd_sg_list)
2231                 return -ENOMEM;
2232
2233         for (i = 0; i < h->nr_cmds; i++) {
2234                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2235                                                   sizeof(*h->cmd_sg_list[i]),
2236                                                   GFP_KERNEL);
2237                 if (!h->cmd_sg_list[i])
2238                         goto clean;
2239
2240         }
2241         return 0;
2242
2243 clean:
2244         hpsa_free_sg_chain_blocks(h);
2245         return -ENOMEM;
2246 }
2247
2248 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2249         struct io_accel2_cmd *cp, struct CommandList *c)
2250 {
2251         struct ioaccel2_sg_element *chain_block;
2252         u64 temp64;
2253         u32 chain_size;
2254
2255         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2256         chain_size = le32_to_cpu(cp->sg[0].length);
2257         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2258                                 DMA_TO_DEVICE);
2259         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2260                 /* prevent subsequent unmapping */
2261                 cp->sg->address = 0;
2262                 return -1;
2263         }
2264         cp->sg->address = cpu_to_le64(temp64);
2265         return 0;
2266 }
2267
2268 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269         struct io_accel2_cmd *cp)
2270 {
2271         struct ioaccel2_sg_element *chain_sg;
2272         u64 temp64;
2273         u32 chain_size;
2274
2275         chain_sg = cp->sg;
2276         temp64 = le64_to_cpu(chain_sg->address);
2277         chain_size = le32_to_cpu(cp->sg[0].length);
2278         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2279 }
2280
2281 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2282         struct CommandList *c)
2283 {
2284         struct SGDescriptor *chain_sg, *chain_block;
2285         u64 temp64;
2286         u32 chain_len;
2287
2288         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2289         chain_block = h->cmd_sg_list[c->cmdindex];
2290         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2291         chain_len = sizeof(*chain_sg) *
2292                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2293         chain_sg->Len = cpu_to_le32(chain_len);
2294         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2295                                 DMA_TO_DEVICE);
2296         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2297                 /* prevent subsequent unmapping */
2298                 chain_sg->Addr = cpu_to_le64(0);
2299                 return -1;
2300         }
2301         chain_sg->Addr = cpu_to_le64(temp64);
2302         return 0;
2303 }
2304
2305 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2306         struct CommandList *c)
2307 {
2308         struct SGDescriptor *chain_sg;
2309
2310         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2311                 return;
2312
2313         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2314         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2315                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2316 }
2317
2318
2319 /* Decode the various types of errors on ioaccel2 path.
2320  * Return 1 for any error that should generate a RAID path retry.
2321  * Return 0 for errors that don't require a RAID path retry.
2322  */
2323 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2324                                         struct CommandList *c,
2325                                         struct scsi_cmnd *cmd,
2326                                         struct io_accel2_cmd *c2,
2327                                         struct hpsa_scsi_dev_t *dev)
2328 {
2329         int data_len;
2330         int retry = 0;
2331         u32 ioaccel2_resid = 0;
2332
2333         switch (c2->error_data.serv_response) {
2334         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2335                 switch (c2->error_data.status) {
2336                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2337                         break;
2338                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2339                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2340                         if (c2->error_data.data_present !=
2341                                         IOACCEL2_SENSE_DATA_PRESENT) {
2342                                 memset(cmd->sense_buffer, 0,
2343                                         SCSI_SENSE_BUFFERSIZE);
2344                                 break;
2345                         }
2346                         /* copy the sense data */
2347                         data_len = c2->error_data.sense_data_len;
2348                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2349                                 data_len = SCSI_SENSE_BUFFERSIZE;
2350                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2351                                 data_len =
2352                                         sizeof(c2->error_data.sense_data_buff);
2353                         memcpy(cmd->sense_buffer,
2354                                 c2->error_data.sense_data_buff, data_len);
2355                         retry = 1;
2356                         break;
2357                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2358                         retry = 1;
2359                         break;
2360                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2361                         retry = 1;
2362                         break;
2363                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2364                         retry = 1;
2365                         break;
2366                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2367                         retry = 1;
2368                         break;
2369                 default:
2370                         retry = 1;
2371                         break;
2372                 }
2373                 break;
2374         case IOACCEL2_SERV_RESPONSE_FAILURE:
2375                 switch (c2->error_data.status) {
2376                 case IOACCEL2_STATUS_SR_IO_ERROR:
2377                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2378                 case IOACCEL2_STATUS_SR_OVERRUN:
2379                         retry = 1;
2380                         break;
2381                 case IOACCEL2_STATUS_SR_UNDERRUN:
2382                         cmd->result = (DID_OK << 16);           /* host byte */
2383                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2384                         ioaccel2_resid = get_unaligned_le32(
2385                                                 &c2->error_data.resid_cnt[0]);
2386                         scsi_set_resid(cmd, ioaccel2_resid);
2387                         break;
2388                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2389                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2390                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2391                         /*
2392                          * Did an HBA disk disappear? We will eventually
2393                          * get a state change event from the controller but
2394                          * in the meantime, we need to tell the OS that the
2395                          * HBA disk is no longer there and stop I/O
2396                          * from going down. This allows the potential re-insert
2397                          * of the disk to get the same device node.
2398                          */
2399                         if (dev->physical_device && dev->expose_device) {
2400                                 cmd->result = DID_NO_CONNECT << 16;
2401                                 dev->removed = 1;
2402                                 h->drv_req_rescan = 1;
2403                                 dev_warn(&h->pdev->dev,
2404                                         "%s: device is gone!\n", __func__);
2405                         } else
2406                                 /*
2407                                  * Retry by sending down the RAID path.
2408                                  * We will get an event from ctlr to
2409                                  * trigger rescan regardless.
2410                                  */
2411                                 retry = 1;
2412                         break;
2413                 default:
2414                         retry = 1;
2415                 }
2416                 break;
2417         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2418                 break;
2419         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2420                 break;
2421         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2422                 retry = 1;
2423                 break;
2424         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2425                 break;
2426         default:
2427                 retry = 1;
2428                 break;
2429         }
2430
2431         if (dev->in_reset)
2432                 retry = 0;
2433
2434         return retry;   /* retry on raid path? */
2435 }
2436
2437 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2438                 struct CommandList *c)
2439 {
2440         struct hpsa_scsi_dev_t *dev = c->device;
2441
2442         /*
2443          * Reset c->scsi_cmd here so that the reset handler will know
2444          * this command has completed.  Then, check to see if the handler is
2445          * waiting for this command, and, if so, wake it.
2446          */
2447         c->scsi_cmd = SCSI_CMD_IDLE;
2448         mb();   /* Declare command idle before checking for pending events. */
2449         if (dev) {
2450                 atomic_dec(&dev->commands_outstanding);
2451                 if (dev->in_reset &&
2452                         atomic_read(&dev->commands_outstanding) <= 0)
2453                         wake_up_all(&h->event_sync_wait_queue);
2454         }
2455 }
2456
2457 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2458                                       struct CommandList *c)
2459 {
2460         hpsa_cmd_resolve_events(h, c);
2461         cmd_tagged_free(h, c);
2462 }
2463
2464 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2465                 struct CommandList *c, struct scsi_cmnd *cmd)
2466 {
2467         hpsa_cmd_resolve_and_free(h, c);
2468         if (cmd && cmd->scsi_done)
2469                 cmd->scsi_done(cmd);
2470 }
2471
2472 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2473 {
2474         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2475         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2476 }
2477
2478 static void process_ioaccel2_completion(struct ctlr_info *h,
2479                 struct CommandList *c, struct scsi_cmnd *cmd,
2480                 struct hpsa_scsi_dev_t *dev)
2481 {
2482         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2483
2484         /* check for good status */
2485         if (likely(c2->error_data.serv_response == 0 &&
2486                         c2->error_data.status == 0))
2487                 return hpsa_cmd_free_and_done(h, c, cmd);
2488
2489         /*
2490          * Any RAID offload error results in retry which will use
2491          * the normal I/O path so the controller can handle whatever is
2492          * wrong.
2493          */
2494         if (is_logical_device(dev) &&
2495                 c2->error_data.serv_response ==
2496                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2497                 if (c2->error_data.status ==
2498                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2499                         dev->offload_enabled = 0;
2500                         dev->offload_to_be_enabled = 0;
2501                 }
2502
2503                 if (dev->in_reset) {
2504                         cmd->result = DID_RESET << 16;
2505                         return hpsa_cmd_free_and_done(h, c, cmd);
2506                 }
2507
2508                 return hpsa_retry_cmd(h, c);
2509         }
2510
2511         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2512                 return hpsa_retry_cmd(h, c);
2513
2514         return hpsa_cmd_free_and_done(h, c, cmd);
2515 }
2516
2517 /* Returns 0 on success, < 0 otherwise. */
2518 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2519                                         struct CommandList *cp)
2520 {
2521         u8 tmf_status = cp->err_info->ScsiStatus;
2522
2523         switch (tmf_status) {
2524         case CISS_TMF_COMPLETE:
2525                 /*
2526                  * CISS_TMF_COMPLETE never happens, instead,
2527                  * ei->CommandStatus == 0 for this case.
2528                  */
2529         case CISS_TMF_SUCCESS:
2530                 return 0;
2531         case CISS_TMF_INVALID_FRAME:
2532         case CISS_TMF_NOT_SUPPORTED:
2533         case CISS_TMF_FAILED:
2534         case CISS_TMF_WRONG_LUN:
2535         case CISS_TMF_OVERLAPPED_TAG:
2536                 break;
2537         default:
2538                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2539                                 tmf_status);
2540                 break;
2541         }
2542         return -tmf_status;
2543 }
2544
2545 static void complete_scsi_command(struct CommandList *cp)
2546 {
2547         struct scsi_cmnd *cmd;
2548         struct ctlr_info *h;
2549         struct ErrorInfo *ei;
2550         struct hpsa_scsi_dev_t *dev;
2551         struct io_accel2_cmd *c2;
2552
2553         u8 sense_key;
2554         u8 asc;      /* additional sense code */
2555         u8 ascq;     /* additional sense code qualifier */
2556         unsigned long sense_data_size;
2557
2558         ei = cp->err_info;
2559         cmd = cp->scsi_cmd;
2560         h = cp->h;
2561
2562         if (!cmd->device) {
2563                 cmd->result = DID_NO_CONNECT << 16;
2564                 return hpsa_cmd_free_and_done(h, cp, cmd);
2565         }
2566
2567         dev = cmd->device->hostdata;
2568         if (!dev) {
2569                 cmd->result = DID_NO_CONNECT << 16;
2570                 return hpsa_cmd_free_and_done(h, cp, cmd);
2571         }
2572         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2573
2574         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2575         if ((cp->cmd_type == CMD_SCSI) &&
2576                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2577                 hpsa_unmap_sg_chain_block(h, cp);
2578
2579         if ((cp->cmd_type == CMD_IOACCEL2) &&
2580                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2581                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2582
2583         cmd->result = (DID_OK << 16);           /* host byte */
2584         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2585
2586         /* SCSI command has already been cleaned up in SML */
2587         if (dev->was_removed) {
2588                 hpsa_cmd_resolve_and_free(h, cp);
2589                 return;
2590         }
2591
2592         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2593                 if (dev->physical_device && dev->expose_device &&
2594                         dev->removed) {
2595                         cmd->result = DID_NO_CONNECT << 16;
2596                         return hpsa_cmd_free_and_done(h, cp, cmd);
2597                 }
2598                 if (likely(cp->phys_disk != NULL))
2599                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2600         }
2601
2602         /*
2603          * We check for lockup status here as it may be set for
2604          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2605          * fail_all_oustanding_cmds()
2606          */
2607         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2608                 /* DID_NO_CONNECT will prevent a retry */
2609                 cmd->result = DID_NO_CONNECT << 16;
2610                 return hpsa_cmd_free_and_done(h, cp, cmd);
2611         }
2612
2613         if (cp->cmd_type == CMD_IOACCEL2)
2614                 return process_ioaccel2_completion(h, cp, cmd, dev);
2615
2616         scsi_set_resid(cmd, ei->ResidualCnt);
2617         if (ei->CommandStatus == 0)
2618                 return hpsa_cmd_free_and_done(h, cp, cmd);
2619
2620         /* For I/O accelerator commands, copy over some fields to the normal
2621          * CISS header used below for error handling.
2622          */
2623         if (cp->cmd_type == CMD_IOACCEL1) {
2624                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2625                 cp->Header.SGList = scsi_sg_count(cmd);
2626                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2627                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2628                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2629                 cp->Header.tag = c->tag;
2630                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2631                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2632
2633                 /* Any RAID offload error results in retry which will use
2634                  * the normal I/O path so the controller can handle whatever's
2635                  * wrong.
2636                  */
2637                 if (is_logical_device(dev)) {
2638                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2639                                 dev->offload_enabled = 0;
2640                         return hpsa_retry_cmd(h, cp);
2641                 }
2642         }
2643
2644         /* an error has occurred */
2645         switch (ei->CommandStatus) {
2646
2647         case CMD_TARGET_STATUS:
2648                 cmd->result |= ei->ScsiStatus;
2649                 /* copy the sense data */
2650                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2651                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2652                 else
2653                         sense_data_size = sizeof(ei->SenseInfo);
2654                 if (ei->SenseLen < sense_data_size)
2655                         sense_data_size = ei->SenseLen;
2656                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2657                 if (ei->ScsiStatus)
2658                         decode_sense_data(ei->SenseInfo, sense_data_size,
2659                                 &sense_key, &asc, &ascq);
2660                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2661                         switch (sense_key) {
2662                         case ABORTED_COMMAND:
2663                                 cmd->result |= DID_SOFT_ERROR << 16;
2664                                 break;
2665                         case UNIT_ATTENTION:
2666                                 if (asc == 0x3F && ascq == 0x0E)
2667                                         h->drv_req_rescan = 1;
2668                                 break;
2669                         case ILLEGAL_REQUEST:
2670                                 if (asc == 0x25 && ascq == 0x00) {
2671                                         dev->removed = 1;
2672                                         cmd->result = DID_NO_CONNECT << 16;
2673                                 }
2674                                 break;
2675                         }
2676                         break;
2677                 }
2678                 /* Problem was not a check condition
2679                  * Pass it up to the upper layers...
2680                  */
2681                 if (ei->ScsiStatus) {
2682                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2683                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2684                                 "Returning result: 0x%x\n",
2685                                 cp, ei->ScsiStatus,
2686                                 sense_key, asc, ascq,
2687                                 cmd->result);
2688                 } else {  /* scsi status is zero??? How??? */
2689                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2690                                 "Returning no connection.\n", cp),
2691
2692                         /* Ordinarily, this case should never happen,
2693                          * but there is a bug in some released firmware
2694                          * revisions that allows it to happen if, for
2695                          * example, a 4100 backplane loses power and
2696                          * the tape drive is in it.  We assume that
2697                          * it's a fatal error of some kind because we
2698                          * can't show that it wasn't. We will make it
2699                          * look like selection timeout since that is
2700                          * the most common reason for this to occur,
2701                          * and it's severe enough.
2702                          */
2703
2704                         cmd->result = DID_NO_CONNECT << 16;
2705                 }
2706                 break;
2707
2708         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2709                 break;
2710         case CMD_DATA_OVERRUN:
2711                 dev_warn(&h->pdev->dev,
2712                         "CDB %16phN data overrun\n", cp->Request.CDB);
2713                 break;
2714         case CMD_INVALID: {
2715                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2716                 print_cmd(cp); */
2717                 /* We get CMD_INVALID if you address a non-existent device
2718                  * instead of a selection timeout (no response).  You will
2719                  * see this if you yank out a drive, then try to access it.
2720                  * This is kind of a shame because it means that any other
2721                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2722                  * missing target. */
2723                 cmd->result = DID_NO_CONNECT << 16;
2724         }
2725                 break;
2726         case CMD_PROTOCOL_ERR:
2727                 cmd->result = DID_ERROR << 16;
2728                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2729                                 cp->Request.CDB);
2730                 break;
2731         case CMD_HARDWARE_ERR:
2732                 cmd->result = DID_ERROR << 16;
2733                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2734                         cp->Request.CDB);
2735                 break;
2736         case CMD_CONNECTION_LOST:
2737                 cmd->result = DID_ERROR << 16;
2738                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2739                         cp->Request.CDB);
2740                 break;
2741         case CMD_ABORTED:
2742                 cmd->result = DID_ABORT << 16;
2743                 break;
2744         case CMD_ABORT_FAILED:
2745                 cmd->result = DID_ERROR << 16;
2746                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2747                         cp->Request.CDB);
2748                 break;
2749         case CMD_UNSOLICITED_ABORT:
2750                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2751                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2752                         cp->Request.CDB);
2753                 break;
2754         case CMD_TIMEOUT:
2755                 cmd->result = DID_TIME_OUT << 16;
2756                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2757                         cp->Request.CDB);
2758                 break;
2759         case CMD_UNABORTABLE:
2760                 cmd->result = DID_ERROR << 16;
2761                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2762                 break;
2763         case CMD_TMF_STATUS:
2764                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2765                         cmd->result = DID_ERROR << 16;
2766                 break;
2767         case CMD_IOACCEL_DISABLED:
2768                 /* This only handles the direct pass-through case since RAID
2769                  * offload is handled above.  Just attempt a retry.
2770                  */
2771                 cmd->result = DID_SOFT_ERROR << 16;
2772                 dev_warn(&h->pdev->dev,
2773                                 "cp %p had HP SSD Smart Path error\n", cp);
2774                 break;
2775         default:
2776                 cmd->result = DID_ERROR << 16;
2777                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2778                                 cp, ei->CommandStatus);
2779         }
2780
2781         return hpsa_cmd_free_and_done(h, cp, cmd);
2782 }
2783
2784 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2785                 int sg_used, enum dma_data_direction data_direction)
2786 {
2787         int i;
2788
2789         for (i = 0; i < sg_used; i++)
2790                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2791                                 le32_to_cpu(c->SG[i].Len),
2792                                 data_direction);
2793 }
2794
2795 static int hpsa_map_one(struct pci_dev *pdev,
2796                 struct CommandList *cp,
2797                 unsigned char *buf,
2798                 size_t buflen,
2799                 enum dma_data_direction data_direction)
2800 {
2801         u64 addr64;
2802
2803         if (buflen == 0 || data_direction == DMA_NONE) {
2804                 cp->Header.SGList = 0;
2805                 cp->Header.SGTotal = cpu_to_le16(0);
2806                 return 0;
2807         }
2808
2809         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2810         if (dma_mapping_error(&pdev->dev, addr64)) {
2811                 /* Prevent subsequent unmap of something never mapped */
2812                 cp->Header.SGList = 0;
2813                 cp->Header.SGTotal = cpu_to_le16(0);
2814                 return -1;
2815         }
2816         cp->SG[0].Addr = cpu_to_le64(addr64);
2817         cp->SG[0].Len = cpu_to_le32(buflen);
2818         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2819         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2820         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2821         return 0;
2822 }
2823
2824 #define NO_TIMEOUT ((unsigned long) -1)
2825 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2826 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2827         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2828 {
2829         DECLARE_COMPLETION_ONSTACK(wait);
2830
2831         c->waiting = &wait;
2832         __enqueue_cmd_and_start_io(h, c, reply_queue);
2833         if (timeout_msecs == NO_TIMEOUT) {
2834                 /* TODO: get rid of this no-timeout thing */
2835                 wait_for_completion_io(&wait);
2836                 return IO_OK;
2837         }
2838         if (!wait_for_completion_io_timeout(&wait,
2839                                         msecs_to_jiffies(timeout_msecs))) {
2840                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2841                 return -ETIMEDOUT;
2842         }
2843         return IO_OK;
2844 }
2845
2846 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2847                                    int reply_queue, unsigned long timeout_msecs)
2848 {
2849         if (unlikely(lockup_detected(h))) {
2850                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2851                 return IO_OK;
2852         }
2853         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2854 }
2855
2856 static u32 lockup_detected(struct ctlr_info *h)
2857 {
2858         int cpu;
2859         u32 rc, *lockup_detected;
2860
2861         cpu = get_cpu();
2862         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2863         rc = *lockup_detected;
2864         put_cpu();
2865         return rc;
2866 }
2867
2868 #define MAX_DRIVER_CMD_RETRIES 25
2869 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2870                 struct CommandList *c, enum dma_data_direction data_direction,
2871                 unsigned long timeout_msecs)
2872 {
2873         int backoff_time = 10, retry_count = 0;
2874         int rc;
2875
2876         do {
2877                 memset(c->err_info, 0, sizeof(*c->err_info));
2878                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2879                                                   timeout_msecs);
2880                 if (rc)
2881                         break;
2882                 retry_count++;
2883                 if (retry_count > 3) {
2884                         msleep(backoff_time);
2885                         if (backoff_time < 1000)
2886                                 backoff_time *= 2;
2887                 }
2888         } while ((check_for_unit_attention(h, c) ||
2889                         check_for_busy(h, c)) &&
2890                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2891         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2892         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2893                 rc = -EIO;
2894         return rc;
2895 }
2896
2897 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2898                                 struct CommandList *c)
2899 {
2900         const u8 *cdb = c->Request.CDB;
2901         const u8 *lun = c->Header.LUN.LunAddrBytes;
2902
2903         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2904                  txt, lun, cdb);
2905 }
2906
2907 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2908                         struct CommandList *cp)
2909 {
2910         const struct ErrorInfo *ei = cp->err_info;
2911         struct device *d = &cp->h->pdev->dev;
2912         u8 sense_key, asc, ascq;
2913         int sense_len;
2914
2915         switch (ei->CommandStatus) {
2916         case CMD_TARGET_STATUS:
2917                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2918                         sense_len = sizeof(ei->SenseInfo);
2919                 else
2920                         sense_len = ei->SenseLen;
2921                 decode_sense_data(ei->SenseInfo, sense_len,
2922                                         &sense_key, &asc, &ascq);
2923                 hpsa_print_cmd(h, "SCSI status", cp);
2924                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2925                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2926                                 sense_key, asc, ascq);
2927                 else
2928                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2929                 if (ei->ScsiStatus == 0)
2930                         dev_warn(d, "SCSI status is abnormally zero.  "
2931                         "(probably indicates selection timeout "
2932                         "reported incorrectly due to a known "
2933                         "firmware bug, circa July, 2001.)\n");
2934                 break;
2935         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2936                 break;
2937         case CMD_DATA_OVERRUN:
2938                 hpsa_print_cmd(h, "overrun condition", cp);
2939                 break;
2940         case CMD_INVALID: {
2941                 /* controller unfortunately reports SCSI passthru's
2942                  * to non-existent targets as invalid commands.
2943                  */
2944                 hpsa_print_cmd(h, "invalid command", cp);
2945                 dev_warn(d, "probably means device no longer present\n");
2946                 }
2947                 break;
2948         case CMD_PROTOCOL_ERR:
2949                 hpsa_print_cmd(h, "protocol error", cp);
2950                 break;
2951         case CMD_HARDWARE_ERR:
2952                 hpsa_print_cmd(h, "hardware error", cp);
2953                 break;
2954         case CMD_CONNECTION_LOST:
2955                 hpsa_print_cmd(h, "connection lost", cp);
2956                 break;
2957         case CMD_ABORTED:
2958                 hpsa_print_cmd(h, "aborted", cp);
2959                 break;
2960         case CMD_ABORT_FAILED:
2961                 hpsa_print_cmd(h, "abort failed", cp);
2962                 break;
2963         case CMD_UNSOLICITED_ABORT:
2964                 hpsa_print_cmd(h, "unsolicited abort", cp);
2965                 break;
2966         case CMD_TIMEOUT:
2967                 hpsa_print_cmd(h, "timed out", cp);
2968                 break;
2969         case CMD_UNABORTABLE:
2970                 hpsa_print_cmd(h, "unabortable", cp);
2971                 break;
2972         case CMD_CTLR_LOCKUP:
2973                 hpsa_print_cmd(h, "controller lockup detected", cp);
2974                 break;
2975         default:
2976                 hpsa_print_cmd(h, "unknown status", cp);
2977                 dev_warn(d, "Unknown command status %x\n",
2978                                 ei->CommandStatus);
2979         }
2980 }
2981
2982 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2983                                         u8 page, u8 *buf, size_t bufsize)
2984 {
2985         int rc = IO_OK;
2986         struct CommandList *c;
2987         struct ErrorInfo *ei;
2988
2989         c = cmd_alloc(h);
2990         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2991                         page, scsi3addr, TYPE_CMD)) {
2992                 rc = -1;
2993                 goto out;
2994         }
2995         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
2996                         NO_TIMEOUT);
2997         if (rc)
2998                 goto out;
2999         ei = c->err_info;
3000         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3001                 hpsa_scsi_interpret_error(h, c);
3002                 rc = -1;
3003         }
3004 out:
3005         cmd_free(h, c);
3006         return rc;
3007 }
3008
3009 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3010                                                 u8 *scsi3addr)
3011 {
3012         u8 *buf;
3013         u64 sa = 0;
3014         int rc = 0;
3015
3016         buf = kzalloc(1024, GFP_KERNEL);
3017         if (!buf)
3018                 return 0;
3019
3020         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3021                                         buf, 1024);
3022
3023         if (rc)
3024                 goto out;
3025
3026         sa = get_unaligned_be64(buf+12);
3027
3028 out:
3029         kfree(buf);
3030         return sa;
3031 }
3032
3033 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3034                         u16 page, unsigned char *buf,
3035                         unsigned char bufsize)
3036 {
3037         int rc = IO_OK;
3038         struct CommandList *c;
3039         struct ErrorInfo *ei;
3040
3041         c = cmd_alloc(h);
3042
3043         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3044                         page, scsi3addr, TYPE_CMD)) {
3045                 rc = -1;
3046                 goto out;
3047         }
3048         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3049                         NO_TIMEOUT);
3050         if (rc)
3051                 goto out;
3052         ei = c->err_info;
3053         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3054                 hpsa_scsi_interpret_error(h, c);
3055                 rc = -1;
3056         }
3057 out:
3058         cmd_free(h, c);
3059         return rc;
3060 }
3061
3062 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3063         u8 reset_type, int reply_queue)
3064 {
3065         int rc = IO_OK;
3066         struct CommandList *c;
3067         struct ErrorInfo *ei;
3068
3069         c = cmd_alloc(h);
3070         c->device = dev;
3071
3072         /* fill_cmd can't fail here, no data buffer to map. */
3073         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3074         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3075         if (rc) {
3076                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3077                 goto out;
3078         }
3079         /* no unmap needed here because no data xfer. */
3080
3081         ei = c->err_info;
3082         if (ei->CommandStatus != 0) {
3083                 hpsa_scsi_interpret_error(h, c);
3084                 rc = -1;
3085         }
3086 out:
3087         cmd_free(h, c);
3088         return rc;
3089 }
3090
3091 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3092                                struct hpsa_scsi_dev_t *dev,
3093                                unsigned char *scsi3addr)
3094 {
3095         int i;
3096         bool match = false;
3097         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3098         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3099
3100         if (hpsa_is_cmd_idle(c))
3101                 return false;
3102
3103         switch (c->cmd_type) {
3104         case CMD_SCSI:
3105         case CMD_IOCTL_PEND:
3106                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3107                                 sizeof(c->Header.LUN.LunAddrBytes));
3108                 break;
3109
3110         case CMD_IOACCEL1:
3111         case CMD_IOACCEL2:
3112                 if (c->phys_disk == dev) {
3113                         /* HBA mode match */
3114                         match = true;
3115                 } else {
3116                         /* Possible RAID mode -- check each phys dev. */
3117                         /* FIXME:  Do we need to take out a lock here?  If
3118                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3119                          * instead. */
3120                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3121                                 /* FIXME: an alternate test might be
3122                                  *
3123                                  * match = dev->phys_disk[i]->ioaccel_handle
3124                                  *              == c2->scsi_nexus;      */
3125                                 match = dev->phys_disk[i] == c->phys_disk;
3126                         }
3127                 }
3128                 break;
3129
3130         case IOACCEL2_TMF:
3131                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3132                         match = dev->phys_disk[i]->ioaccel_handle ==
3133                                         le32_to_cpu(ac->it_nexus);
3134                 }
3135                 break;
3136
3137         case 0:         /* The command is in the middle of being initialized. */
3138                 match = false;
3139                 break;
3140
3141         default:
3142                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3143                         c->cmd_type);
3144                 BUG();
3145         }
3146
3147         return match;
3148 }
3149
3150 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3151         u8 reset_type, int reply_queue)
3152 {
3153         int rc = 0;
3154
3155         /* We can really only handle one reset at a time */
3156         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3157                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3158                 return -EINTR;
3159         }
3160
3161         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3162         if (!rc) {
3163                 /* incremented by sending the reset request */
3164                 atomic_dec(&dev->commands_outstanding);
3165                 wait_event(h->event_sync_wait_queue,
3166                         atomic_read(&dev->commands_outstanding) <= 0 ||
3167                         lockup_detected(h));
3168         }
3169
3170         if (unlikely(lockup_detected(h))) {
3171                 dev_warn(&h->pdev->dev,
3172                          "Controller lockup detected during reset wait\n");
3173                 rc = -ENODEV;
3174         }
3175
3176         if (!rc)
3177                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3178
3179         mutex_unlock(&h->reset_mutex);
3180         return rc;
3181 }
3182
3183 static void hpsa_get_raid_level(struct ctlr_info *h,
3184         unsigned char *scsi3addr, unsigned char *raid_level)
3185 {
3186         int rc;
3187         unsigned char *buf;
3188
3189         *raid_level = RAID_UNKNOWN;
3190         buf = kzalloc(64, GFP_KERNEL);
3191         if (!buf)
3192                 return;
3193
3194         if (!hpsa_vpd_page_supported(h, scsi3addr,
3195                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3196                 goto exit;
3197
3198         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3199                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3200
3201         if (rc == 0)
3202                 *raid_level = buf[8];
3203         if (*raid_level > RAID_UNKNOWN)
3204                 *raid_level = RAID_UNKNOWN;
3205 exit:
3206         kfree(buf);
3207         return;
3208 }
3209
3210 #define HPSA_MAP_DEBUG
3211 #ifdef HPSA_MAP_DEBUG
3212 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3213                                 struct raid_map_data *map_buff)
3214 {
3215         struct raid_map_disk_data *dd = &map_buff->data[0];
3216         int map, row, col;
3217         u16 map_cnt, row_cnt, disks_per_row;
3218
3219         if (rc != 0)
3220                 return;
3221
3222         /* Show details only if debugging has been activated. */
3223         if (h->raid_offload_debug < 2)
3224                 return;
3225
3226         dev_info(&h->pdev->dev, "structure_size = %u\n",
3227                                 le32_to_cpu(map_buff->structure_size));
3228         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3229                         le32_to_cpu(map_buff->volume_blk_size));
3230         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3231                         le64_to_cpu(map_buff->volume_blk_cnt));
3232         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3233                         map_buff->phys_blk_shift);
3234         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3235                         map_buff->parity_rotation_shift);
3236         dev_info(&h->pdev->dev, "strip_size = %u\n",
3237                         le16_to_cpu(map_buff->strip_size));
3238         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3239                         le64_to_cpu(map_buff->disk_starting_blk));
3240         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3241                         le64_to_cpu(map_buff->disk_blk_cnt));
3242         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3243                         le16_to_cpu(map_buff->data_disks_per_row));
3244         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3245                         le16_to_cpu(map_buff->metadata_disks_per_row));
3246         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3247                         le16_to_cpu(map_buff->row_cnt));
3248         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3249                         le16_to_cpu(map_buff->layout_map_count));
3250         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3251                         le16_to_cpu(map_buff->flags));
3252         dev_info(&h->pdev->dev, "encryption = %s\n",
3253                         le16_to_cpu(map_buff->flags) &
3254                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3255         dev_info(&h->pdev->dev, "dekindex = %u\n",
3256                         le16_to_cpu(map_buff->dekindex));
3257         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3258         for (map = 0; map < map_cnt; map++) {
3259                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3260                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3261                 for (row = 0; row < row_cnt; row++) {
3262                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3263                         disks_per_row =
3264                                 le16_to_cpu(map_buff->data_disks_per_row);
3265                         for (col = 0; col < disks_per_row; col++, dd++)
3266                                 dev_info(&h->pdev->dev,
3267                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3268                                         col, dd->ioaccel_handle,
3269                                         dd->xor_mult[0], dd->xor_mult[1]);
3270                         disks_per_row =
3271                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3272                         for (col = 0; col < disks_per_row; col++, dd++)
3273                                 dev_info(&h->pdev->dev,
3274                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3275                                         col, dd->ioaccel_handle,
3276                                         dd->xor_mult[0], dd->xor_mult[1]);
3277                 }
3278         }
3279 }
3280 #else
3281 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3282                         __attribute__((unused)) int rc,
3283                         __attribute__((unused)) struct raid_map_data *map_buff)
3284 {
3285 }
3286 #endif
3287
3288 static int hpsa_get_raid_map(struct ctlr_info *h,
3289         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3290 {
3291         int rc = 0;
3292         struct CommandList *c;
3293         struct ErrorInfo *ei;
3294
3295         c = cmd_alloc(h);
3296
3297         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3298                         sizeof(this_device->raid_map), 0,
3299                         scsi3addr, TYPE_CMD)) {
3300                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3301                 cmd_free(h, c);
3302                 return -1;
3303         }
3304         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3305                         NO_TIMEOUT);
3306         if (rc)
3307                 goto out;
3308         ei = c->err_info;
3309         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3310                 hpsa_scsi_interpret_error(h, c);
3311                 rc = -1;
3312                 goto out;
3313         }
3314         cmd_free(h, c);
3315
3316         /* @todo in the future, dynamically allocate RAID map memory */
3317         if (le32_to_cpu(this_device->raid_map.structure_size) >
3318                                 sizeof(this_device->raid_map)) {
3319                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3320                 rc = -1;
3321         }
3322         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3323         return rc;
3324 out:
3325         cmd_free(h, c);
3326         return rc;
3327 }
3328
3329 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3330                 unsigned char scsi3addr[], u16 bmic_device_index,
3331                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3332 {
3333         int rc = IO_OK;
3334         struct CommandList *c;
3335         struct ErrorInfo *ei;
3336
3337         c = cmd_alloc(h);
3338
3339         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3340                 0, RAID_CTLR_LUNID, TYPE_CMD);
3341         if (rc)
3342                 goto out;
3343
3344         c->Request.CDB[2] = bmic_device_index & 0xff;
3345         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3346
3347         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3348                         NO_TIMEOUT);
3349         if (rc)
3350                 goto out;
3351         ei = c->err_info;
3352         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3353                 hpsa_scsi_interpret_error(h, c);
3354                 rc = -1;
3355         }
3356 out:
3357         cmd_free(h, c);
3358         return rc;
3359 }
3360
3361 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3362         struct bmic_identify_controller *buf, size_t bufsize)
3363 {
3364         int rc = IO_OK;
3365         struct CommandList *c;
3366         struct ErrorInfo *ei;
3367
3368         c = cmd_alloc(h);
3369
3370         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3371                 0, RAID_CTLR_LUNID, TYPE_CMD);
3372         if (rc)
3373                 goto out;
3374
3375         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3376                         NO_TIMEOUT);
3377         if (rc)
3378                 goto out;
3379         ei = c->err_info;
3380         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3381                 hpsa_scsi_interpret_error(h, c);
3382                 rc = -1;
3383         }
3384 out:
3385         cmd_free(h, c);
3386         return rc;
3387 }
3388
3389 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3390                 unsigned char scsi3addr[], u16 bmic_device_index,
3391                 struct bmic_identify_physical_device *buf, size_t bufsize)
3392 {
3393         int rc = IO_OK;
3394         struct CommandList *c;
3395         struct ErrorInfo *ei;
3396
3397         c = cmd_alloc(h);
3398         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3399                 0, RAID_CTLR_LUNID, TYPE_CMD);
3400         if (rc)
3401                 goto out;
3402
3403         c->Request.CDB[2] = bmic_device_index & 0xff;
3404         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3405
3406         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3407                                                 NO_TIMEOUT);
3408         ei = c->err_info;
3409         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3410                 hpsa_scsi_interpret_error(h, c);
3411                 rc = -1;
3412         }
3413 out:
3414         cmd_free(h, c);
3415
3416         return rc;
3417 }
3418
3419 /*
3420  * get enclosure information
3421  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3422  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3423  * Uses id_physical_device to determine the box_index.
3424  */
3425 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3426                         unsigned char *scsi3addr,
3427                         struct ReportExtendedLUNdata *rlep, int rle_index,
3428                         struct hpsa_scsi_dev_t *encl_dev)
3429 {
3430         int rc = -1;
3431         struct CommandList *c = NULL;
3432         struct ErrorInfo *ei = NULL;
3433         struct bmic_sense_storage_box_params *bssbp = NULL;
3434         struct bmic_identify_physical_device *id_phys = NULL;
3435         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3436         u16 bmic_device_index = 0;
3437
3438         encl_dev->eli =
3439                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3440
3441         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3442
3443         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3444                 rc = IO_OK;
3445                 goto out;
3446         }
3447
3448         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3449                 rc = IO_OK;
3450                 goto out;
3451         }
3452
3453         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3454         if (!bssbp)
3455                 goto out;
3456
3457         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3458         if (!id_phys)
3459                 goto out;
3460
3461         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3462                                                 id_phys, sizeof(*id_phys));
3463         if (rc) {
3464                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3465                         __func__, encl_dev->external, bmic_device_index);
3466                 goto out;
3467         }
3468
3469         c = cmd_alloc(h);
3470
3471         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3472                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3473
3474         if (rc)
3475                 goto out;
3476
3477         if (id_phys->phys_connector[1] == 'E')
3478                 c->Request.CDB[5] = id_phys->box_index;
3479         else
3480                 c->Request.CDB[5] = 0;
3481
3482         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3483                                                 NO_TIMEOUT);
3484         if (rc)
3485                 goto out;
3486
3487         ei = c->err_info;
3488         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3489                 rc = -1;
3490                 goto out;
3491         }
3492
3493         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3494         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3495                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3496
3497         rc = IO_OK;
3498 out:
3499         kfree(bssbp);
3500         kfree(id_phys);
3501
3502         if (c)
3503                 cmd_free(h, c);
3504
3505         if (rc != IO_OK)
3506                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3507                         "Error, could not get enclosure information");
3508 }
3509
3510 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3511                                                 unsigned char *scsi3addr)
3512 {
3513         struct ReportExtendedLUNdata *physdev;
3514         u32 nphysicals;
3515         u64 sa = 0;
3516         int i;
3517
3518         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3519         if (!physdev)
3520                 return 0;
3521
3522         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3523                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3524                 kfree(physdev);
3525                 return 0;
3526         }
3527         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3528
3529         for (i = 0; i < nphysicals; i++)
3530                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3531                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3532                         break;
3533                 }
3534
3535         kfree(physdev);
3536
3537         return sa;
3538 }
3539
3540 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3541                                         struct hpsa_scsi_dev_t *dev)
3542 {
3543         int rc;
3544         u64 sa = 0;
3545
3546         if (is_hba_lunid(scsi3addr)) {
3547                 struct bmic_sense_subsystem_info *ssi;
3548
3549                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3550                 if (!ssi)
3551                         return;
3552
3553                 rc = hpsa_bmic_sense_subsystem_information(h,
3554                                         scsi3addr, 0, ssi, sizeof(*ssi));
3555                 if (rc == 0) {
3556                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3557                         h->sas_address = sa;
3558                 }
3559
3560                 kfree(ssi);
3561         } else
3562                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3563
3564         dev->sas_address = sa;
3565 }
3566
3567 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3568         struct ReportExtendedLUNdata *physdev)
3569 {
3570         u32 nphysicals;
3571         int i;
3572
3573         if (h->discovery_polling)
3574                 return;
3575
3576         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3577
3578         for (i = 0; i < nphysicals; i++) {
3579                 if (physdev->LUN[i].device_type ==
3580                         BMIC_DEVICE_TYPE_CONTROLLER
3581                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3582                         dev_info(&h->pdev->dev,
3583                                 "External controller present, activate discovery polling and disable rld caching\n");
3584                         hpsa_disable_rld_caching(h);
3585                         h->discovery_polling = 1;
3586                         break;
3587                 }
3588         }
3589 }
3590
3591 /* Get a device id from inquiry page 0x83 */
3592 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3593         unsigned char scsi3addr[], u8 page)
3594 {
3595         int rc;
3596         int i;
3597         int pages;
3598         unsigned char *buf, bufsize;
3599
3600         buf = kzalloc(256, GFP_KERNEL);
3601         if (!buf)
3602                 return false;
3603
3604         /* Get the size of the page list first */
3605         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3606                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3607                                 buf, HPSA_VPD_HEADER_SZ);
3608         if (rc != 0)
3609                 goto exit_unsupported;
3610         pages = buf[3];
3611         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3612                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3613         else
3614                 bufsize = 255;
3615
3616         /* Get the whole VPD page list */
3617         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3618                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3619                                 buf, bufsize);
3620         if (rc != 0)
3621                 goto exit_unsupported;
3622
3623         pages = buf[3];
3624         for (i = 1; i <= pages; i++)
3625                 if (buf[3 + i] == page)
3626                         goto exit_supported;
3627 exit_unsupported:
3628         kfree(buf);
3629         return false;
3630 exit_supported:
3631         kfree(buf);
3632         return true;
3633 }
3634
3635 /*
3636  * Called during a scan operation.
3637  * Sets ioaccel status on the new device list, not the existing device list
3638  *
3639  * The device list used during I/O will be updated later in
3640  * adjust_hpsa_scsi_table.
3641  */
3642 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3643         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3644 {
3645         int rc;
3646         unsigned char *buf;
3647         u8 ioaccel_status;
3648
3649         this_device->offload_config = 0;
3650         this_device->offload_enabled = 0;
3651         this_device->offload_to_be_enabled = 0;
3652
3653         buf = kzalloc(64, GFP_KERNEL);
3654         if (!buf)
3655                 return;
3656         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3657                 goto out;
3658         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3659                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3660         if (rc != 0)
3661                 goto out;
3662
3663 #define IOACCEL_STATUS_BYTE 4
3664 #define OFFLOAD_CONFIGURED_BIT 0x01
3665 #define OFFLOAD_ENABLED_BIT 0x02
3666         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3667         this_device->offload_config =
3668                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3669         if (this_device->offload_config) {
3670                 this_device->offload_to_be_enabled =
3671                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3672                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3673                         this_device->offload_to_be_enabled = 0;
3674         }
3675
3676 out:
3677         kfree(buf);
3678         return;
3679 }
3680
3681 /* Get the device id from inquiry page 0x83 */
3682 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3683         unsigned char *device_id, int index, int buflen)
3684 {
3685         int rc;
3686         unsigned char *buf;
3687
3688         /* Does controller have VPD for device id? */
3689         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3690                 return 1; /* not supported */
3691
3692         buf = kzalloc(64, GFP_KERNEL);
3693         if (!buf)
3694                 return -ENOMEM;
3695
3696         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3697                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3698         if (rc == 0) {
3699                 if (buflen > 16)
3700                         buflen = 16;
3701                 memcpy(device_id, &buf[8], buflen);
3702         }
3703
3704         kfree(buf);
3705
3706         return rc; /*0 - got id,  otherwise, didn't */
3707 }
3708
3709 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3710                 void *buf, int bufsize,
3711                 int extended_response)
3712 {
3713         int rc = IO_OK;
3714         struct CommandList *c;
3715         unsigned char scsi3addr[8];
3716         struct ErrorInfo *ei;
3717
3718         c = cmd_alloc(h);
3719
3720         /* address the controller */
3721         memset(scsi3addr, 0, sizeof(scsi3addr));
3722         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3723                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3724                 rc = -EAGAIN;
3725                 goto out;
3726         }
3727         if (extended_response)
3728                 c->Request.CDB[1] = extended_response;
3729         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3730                         NO_TIMEOUT);
3731         if (rc)
3732                 goto out;
3733         ei = c->err_info;
3734         if (ei->CommandStatus != 0 &&
3735             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3736                 hpsa_scsi_interpret_error(h, c);
3737                 rc = -EIO;
3738         } else {
3739                 struct ReportLUNdata *rld = buf;
3740
3741                 if (rld->extended_response_flag != extended_response) {
3742                         if (!h->legacy_board) {
3743                                 dev_err(&h->pdev->dev,
3744                                         "report luns requested format %u, got %u\n",
3745                                         extended_response,
3746                                         rld->extended_response_flag);
3747                                 rc = -EINVAL;
3748                         } else
3749                                 rc = -EOPNOTSUPP;
3750                 }
3751         }
3752 out:
3753         cmd_free(h, c);
3754         return rc;
3755 }
3756
3757 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3758                 struct ReportExtendedLUNdata *buf, int bufsize)
3759 {
3760         int rc;
3761         struct ReportLUNdata *lbuf;
3762
3763         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3764                                       HPSA_REPORT_PHYS_EXTENDED);
3765         if (!rc || rc != -EOPNOTSUPP)
3766                 return rc;
3767
3768         /* REPORT PHYS EXTENDED is not supported */
3769         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3770         if (!lbuf)
3771                 return -ENOMEM;
3772
3773         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3774         if (!rc) {
3775                 int i;
3776                 u32 nphys;
3777
3778                 /* Copy ReportLUNdata header */
3779                 memcpy(buf, lbuf, 8);
3780                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3781                 for (i = 0; i < nphys; i++)
3782                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3783         }
3784         kfree(lbuf);
3785         return rc;
3786 }
3787
3788 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3789                 struct ReportLUNdata *buf, int bufsize)
3790 {
3791         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3792 }
3793
3794 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3795         int bus, int target, int lun)
3796 {
3797         device->bus = bus;
3798         device->target = target;
3799         device->lun = lun;
3800 }
3801
3802 /* Use VPD inquiry to get details of volume status */
3803 static int hpsa_get_volume_status(struct ctlr_info *h,
3804                                         unsigned char scsi3addr[])
3805 {
3806         int rc;
3807         int status;
3808         int size;
3809         unsigned char *buf;
3810
3811         buf = kzalloc(64, GFP_KERNEL);
3812         if (!buf)
3813                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3814
3815         /* Does controller have VPD for logical volume status? */
3816         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3817                 goto exit_failed;
3818
3819         /* Get the size of the VPD return buffer */
3820         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3821                                         buf, HPSA_VPD_HEADER_SZ);
3822         if (rc != 0)
3823                 goto exit_failed;
3824         size = buf[3];
3825
3826         /* Now get the whole VPD buffer */
3827         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3828                                         buf, size + HPSA_VPD_HEADER_SZ);
3829         if (rc != 0)
3830                 goto exit_failed;
3831         status = buf[4]; /* status byte */
3832
3833         kfree(buf);
3834         return status;
3835 exit_failed:
3836         kfree(buf);
3837         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3838 }
3839
3840 /* Determine offline status of a volume.
3841  * Return either:
3842  *  0 (not offline)
3843  *  0xff (offline for unknown reasons)
3844  *  # (integer code indicating one of several NOT READY states
3845  *     describing why a volume is to be kept offline)
3846  */
3847 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3848                                         unsigned char scsi3addr[])
3849 {
3850         struct CommandList *c;
3851         unsigned char *sense;
3852         u8 sense_key, asc, ascq;
3853         int sense_len;
3854         int rc, ldstat = 0;
3855         u16 cmd_status;
3856         u8 scsi_status;
3857 #define ASC_LUN_NOT_READY 0x04
3858 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3859 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3860
3861         c = cmd_alloc(h);
3862
3863         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3864         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3865                                         NO_TIMEOUT);
3866         if (rc) {
3867                 cmd_free(h, c);
3868                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3869         }
3870         sense = c->err_info->SenseInfo;
3871         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3872                 sense_len = sizeof(c->err_info->SenseInfo);
3873         else
3874                 sense_len = c->err_info->SenseLen;
3875         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3876         cmd_status = c->err_info->CommandStatus;
3877         scsi_status = c->err_info->ScsiStatus;
3878         cmd_free(h, c);
3879
3880         /* Determine the reason for not ready state */
3881         ldstat = hpsa_get_volume_status(h, scsi3addr);
3882
3883         /* Keep volume offline in certain cases: */
3884         switch (ldstat) {
3885         case HPSA_LV_FAILED:
3886         case HPSA_LV_UNDERGOING_ERASE:
3887         case HPSA_LV_NOT_AVAILABLE:
3888         case HPSA_LV_UNDERGOING_RPI:
3889         case HPSA_LV_PENDING_RPI:
3890         case HPSA_LV_ENCRYPTED_NO_KEY:
3891         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3892         case HPSA_LV_UNDERGOING_ENCRYPTION:
3893         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3894         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3895                 return ldstat;
3896         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3897                 /* If VPD status page isn't available,
3898                  * use ASC/ASCQ to determine state
3899                  */
3900                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3901                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3902                         return ldstat;
3903                 break;
3904         default:
3905                 break;
3906         }
3907         return HPSA_LV_OK;
3908 }
3909
3910 static int hpsa_update_device_info(struct ctlr_info *h,
3911         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3912         unsigned char *is_OBDR_device)
3913 {
3914
3915 #define OBDR_SIG_OFFSET 43
3916 #define OBDR_TAPE_SIG "$DR-10"
3917 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3918 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3919
3920         unsigned char *inq_buff;
3921         unsigned char *obdr_sig;
3922         int rc = 0;
3923
3924         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3925         if (!inq_buff) {
3926                 rc = -ENOMEM;
3927                 goto bail_out;
3928         }
3929
3930         /* Do an inquiry to the device to see what it is. */
3931         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3932                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3933                 dev_err(&h->pdev->dev,
3934                         "%s: inquiry failed, device will be skipped.\n",
3935                         __func__);
3936                 rc = HPSA_INQUIRY_FAILED;
3937                 goto bail_out;
3938         }
3939
3940         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3941         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3942
3943         this_device->devtype = (inq_buff[0] & 0x1f);
3944         memcpy(this_device->scsi3addr, scsi3addr, 8);
3945         memcpy(this_device->vendor, &inq_buff[8],
3946                 sizeof(this_device->vendor));
3947         memcpy(this_device->model, &inq_buff[16],
3948                 sizeof(this_device->model));
3949         this_device->rev = inq_buff[2];
3950         memset(this_device->device_id, 0,
3951                 sizeof(this_device->device_id));
3952         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3953                 sizeof(this_device->device_id)) < 0) {
3954                 dev_err(&h->pdev->dev,
3955                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3956                         h->ctlr, __func__,
3957                         h->scsi_host->host_no,
3958                         this_device->bus, this_device->target,
3959                         this_device->lun,
3960                         scsi_device_type(this_device->devtype),
3961                         this_device->model);
3962                 rc = HPSA_LV_FAILED;
3963                 goto bail_out;
3964         }
3965
3966         if ((this_device->devtype == TYPE_DISK ||
3967                 this_device->devtype == TYPE_ZBC) &&
3968                 is_logical_dev_addr_mode(scsi3addr)) {
3969                 unsigned char volume_offline;
3970
3971                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3972                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3973                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3974                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3975                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3976                     h->legacy_board) {
3977                         /*
3978                          * Legacy boards might not support volume status
3979                          */
3980                         dev_info(&h->pdev->dev,
3981                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3982                                  this_device->target, this_device->lun);
3983                         volume_offline = 0;
3984                 }
3985                 this_device->volume_offline = volume_offline;
3986                 if (volume_offline == HPSA_LV_FAILED) {
3987                         rc = HPSA_LV_FAILED;
3988                         dev_err(&h->pdev->dev,
3989                                 "%s: LV failed, device will be skipped.\n",
3990                                 __func__);
3991                         goto bail_out;
3992                 }
3993         } else {
3994                 this_device->raid_level = RAID_UNKNOWN;
3995                 this_device->offload_config = 0;
3996                 this_device->offload_enabled = 0;
3997                 this_device->offload_to_be_enabled = 0;
3998                 this_device->hba_ioaccel_enabled = 0;
3999                 this_device->volume_offline = 0;
4000                 this_device->queue_depth = h->nr_cmds;
4001         }
4002
4003         if (this_device->external)
4004                 this_device->queue_depth = EXTERNAL_QD;
4005
4006         if (is_OBDR_device) {
4007                 /* See if this is a One-Button-Disaster-Recovery device
4008                  * by looking for "$DR-10" at offset 43 in inquiry data.
4009                  */
4010                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4011                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4012                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4013                                                 OBDR_SIG_LEN) == 0);
4014         }
4015         kfree(inq_buff);
4016         return 0;
4017
4018 bail_out:
4019         kfree(inq_buff);
4020         return rc;
4021 }
4022
4023 /*
4024  * Helper function to assign bus, target, lun mapping of devices.
4025  * Logical drive target and lun are assigned at this time, but
4026  * physical device lun and target assignment are deferred (assigned
4027  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4028 */
4029 static void figure_bus_target_lun(struct ctlr_info *h,
4030         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4031 {
4032         u32 lunid = get_unaligned_le32(lunaddrbytes);
4033
4034         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4035                 /* physical device, target and lun filled in later */
4036                 if (is_hba_lunid(lunaddrbytes)) {
4037                         int bus = HPSA_HBA_BUS;
4038
4039                         if (!device->rev)
4040                                 bus = HPSA_LEGACY_HBA_BUS;
4041                         hpsa_set_bus_target_lun(device,
4042                                         bus, 0, lunid & 0x3fff);
4043                 } else
4044                         /* defer target, lun assignment for physical devices */
4045                         hpsa_set_bus_target_lun(device,
4046                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4047                 return;
4048         }
4049         /* It's a logical device */
4050         if (device->external) {
4051                 hpsa_set_bus_target_lun(device,
4052                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4053                         lunid & 0x00ff);
4054                 return;
4055         }
4056         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4057                                 0, lunid & 0x3fff);
4058 }
4059
4060 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4061         int i, int nphysicals, int nlocal_logicals)
4062 {
4063         /* In report logicals, local logicals are listed first,
4064         * then any externals.
4065         */
4066         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4067
4068         if (i == raid_ctlr_position)
4069                 return 0;
4070
4071         if (i < logicals_start)
4072                 return 0;
4073
4074         /* i is in logicals range, but still within local logicals */
4075         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4076                 return 0;
4077
4078         return 1; /* it's an external lun */
4079 }
4080
4081 /*
4082  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4083  * logdev.  The number of luns in physdev and logdev are returned in
4084  * *nphysicals and *nlogicals, respectively.
4085  * Returns 0 on success, -1 otherwise.
4086  */
4087 static int hpsa_gather_lun_info(struct ctlr_info *h,
4088         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4089         struct ReportLUNdata *logdev, u32 *nlogicals)
4090 {
4091         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4092                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4093                 return -1;
4094         }
4095         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4096         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4097                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4098                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4099                 *nphysicals = HPSA_MAX_PHYS_LUN;
4100         }
4101         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4102                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4103                 return -1;
4104         }
4105         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4106         /* Reject Logicals in excess of our max capability. */
4107         if (*nlogicals > HPSA_MAX_LUN) {
4108                 dev_warn(&h->pdev->dev,
4109                         "maximum logical LUNs (%d) exceeded.  "
4110                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4111                         *nlogicals - HPSA_MAX_LUN);
4112                 *nlogicals = HPSA_MAX_LUN;
4113         }
4114         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4115                 dev_warn(&h->pdev->dev,
4116                         "maximum logical + physical LUNs (%d) exceeded. "
4117                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4118                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4119                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4120         }
4121         return 0;
4122 }
4123
4124 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4125         int i, int nphysicals, int nlogicals,
4126         struct ReportExtendedLUNdata *physdev_list,
4127         struct ReportLUNdata *logdev_list)
4128 {
4129         /* Helper function, figure out where the LUN ID info is coming from
4130          * given index i, lists of physical and logical devices, where in
4131          * the list the raid controller is supposed to appear (first or last)
4132          */
4133
4134         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4135         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4136
4137         if (i == raid_ctlr_position)
4138                 return RAID_CTLR_LUNID;
4139
4140         if (i < logicals_start)
4141                 return &physdev_list->LUN[i -
4142                                 (raid_ctlr_position == 0)].lunid[0];
4143
4144         if (i < last_device)
4145                 return &logdev_list->LUN[i - nphysicals -
4146                         (raid_ctlr_position == 0)][0];
4147         BUG();
4148         return NULL;
4149 }
4150
4151 /* get physical drive ioaccel handle and queue depth */
4152 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4153                 struct hpsa_scsi_dev_t *dev,
4154                 struct ReportExtendedLUNdata *rlep, int rle_index,
4155                 struct bmic_identify_physical_device *id_phys)
4156 {
4157         int rc;
4158         struct ext_report_lun_entry *rle;
4159
4160         rle = &rlep->LUN[rle_index];
4161
4162         dev->ioaccel_handle = rle->ioaccel_handle;
4163         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4164                 dev->hba_ioaccel_enabled = 1;
4165         memset(id_phys, 0, sizeof(*id_phys));
4166         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4167                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4168                         sizeof(*id_phys));
4169         if (!rc)
4170                 /* Reserve space for FW operations */
4171 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4172 #define DRIVE_QUEUE_DEPTH 7
4173                 dev->queue_depth =
4174                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4175                                 DRIVE_CMDS_RESERVED_FOR_FW;
4176         else
4177                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4178 }
4179
4180 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4181         struct ReportExtendedLUNdata *rlep, int rle_index,
4182         struct bmic_identify_physical_device *id_phys)
4183 {
4184         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4185
4186         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4187                 this_device->hba_ioaccel_enabled = 1;
4188
4189         memcpy(&this_device->active_path_index,
4190                 &id_phys->active_path_number,
4191                 sizeof(this_device->active_path_index));
4192         memcpy(&this_device->path_map,
4193                 &id_phys->redundant_path_present_map,
4194                 sizeof(this_device->path_map));
4195         memcpy(&this_device->box,
4196                 &id_phys->alternate_paths_phys_box_on_port,
4197                 sizeof(this_device->box));
4198         memcpy(&this_device->phys_connector,
4199                 &id_phys->alternate_paths_phys_connector,
4200                 sizeof(this_device->phys_connector));
4201         memcpy(&this_device->bay,
4202                 &id_phys->phys_bay_in_box,
4203                 sizeof(this_device->bay));
4204 }
4205
4206 /* get number of local logical disks. */
4207 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4208         struct bmic_identify_controller *id_ctlr,
4209         u32 *nlocals)
4210 {
4211         int rc;
4212
4213         if (!id_ctlr) {
4214                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4215                         __func__);
4216                 return -ENOMEM;
4217         }
4218         memset(id_ctlr, 0, sizeof(*id_ctlr));
4219         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4220         if (!rc)
4221                 if (id_ctlr->configured_logical_drive_count < 255)
4222                         *nlocals = id_ctlr->configured_logical_drive_count;
4223                 else
4224                         *nlocals = le16_to_cpu(
4225                                         id_ctlr->extended_logical_unit_count);
4226         else
4227                 *nlocals = -1;
4228         return rc;
4229 }
4230
4231 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4232 {
4233         struct bmic_identify_physical_device *id_phys;
4234         bool is_spare = false;
4235         int rc;
4236
4237         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4238         if (!id_phys)
4239                 return false;
4240
4241         rc = hpsa_bmic_id_physical_device(h,
4242                                         lunaddrbytes,
4243                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4244                                         id_phys, sizeof(*id_phys));
4245         if (rc == 0)
4246                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4247
4248         kfree(id_phys);
4249         return is_spare;
4250 }
4251
4252 #define RPL_DEV_FLAG_NON_DISK                           0x1
4253 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4254 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4255
4256 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4257
4258 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4259                                 struct ext_report_lun_entry *rle)
4260 {
4261         u8 device_flags;
4262         u8 device_type;
4263
4264         if (!MASKED_DEVICE(lunaddrbytes))
4265                 return false;
4266
4267         device_flags = rle->device_flags;
4268         device_type = rle->device_type;
4269
4270         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4271                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4272                         return false;
4273                 return true;
4274         }
4275
4276         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4277                 return false;
4278
4279         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4280                 return false;
4281
4282         /*
4283          * Spares may be spun down, we do not want to
4284          * do an Inquiry to a RAID set spare drive as
4285          * that would have them spun up, that is a
4286          * performance hit because I/O to the RAID device
4287          * stops while the spin up occurs which can take
4288          * over 50 seconds.
4289          */
4290         if (hpsa_is_disk_spare(h, lunaddrbytes))
4291                 return true;
4292
4293         return false;
4294 }
4295
4296 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4297 {
4298         /* the idea here is we could get notified
4299          * that some devices have changed, so we do a report
4300          * physical luns and report logical luns cmd, and adjust
4301          * our list of devices accordingly.
4302          *
4303          * The scsi3addr's of devices won't change so long as the
4304          * adapter is not reset.  That means we can rescan and
4305          * tell which devices we already know about, vs. new
4306          * devices, vs.  disappearing devices.
4307          */
4308         struct ReportExtendedLUNdata *physdev_list = NULL;
4309         struct ReportLUNdata *logdev_list = NULL;
4310         struct bmic_identify_physical_device *id_phys = NULL;
4311         struct bmic_identify_controller *id_ctlr = NULL;
4312         u32 nphysicals = 0;
4313         u32 nlogicals = 0;
4314         u32 nlocal_logicals = 0;
4315         u32 ndev_allocated = 0;
4316         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4317         int ncurrent = 0;
4318         int i, n_ext_target_devs, ndevs_to_allocate;
4319         int raid_ctlr_position;
4320         bool physical_device;
4321         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4322
4323         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4324         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4325         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4326         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4327         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4328         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4329
4330         if (!currentsd || !physdev_list || !logdev_list ||
4331                 !tmpdevice || !id_phys || !id_ctlr) {
4332                 dev_err(&h->pdev->dev, "out of memory\n");
4333                 goto out;
4334         }
4335         memset(lunzerobits, 0, sizeof(lunzerobits));
4336
4337         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4338
4339         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4340                         logdev_list, &nlogicals)) {
4341                 h->drv_req_rescan = 1;
4342                 goto out;
4343         }
4344
4345         /* Set number of local logicals (non PTRAID) */
4346         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4347                 dev_warn(&h->pdev->dev,
4348                         "%s: Can't determine number of local logical devices.\n",
4349                         __func__);
4350         }
4351
4352         /* We might see up to the maximum number of logical and physical disks
4353          * plus external target devices, and a device for the local RAID
4354          * controller.
4355          */
4356         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4357
4358         hpsa_ext_ctrl_present(h, physdev_list);
4359
4360         /* Allocate the per device structures */
4361         for (i = 0; i < ndevs_to_allocate; i++) {
4362                 if (i >= HPSA_MAX_DEVICES) {
4363                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4364                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4365                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4366                         break;
4367                 }
4368
4369                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4370                 if (!currentsd[i]) {
4371                         h->drv_req_rescan = 1;
4372                         goto out;
4373                 }
4374                 ndev_allocated++;
4375         }
4376
4377         if (is_scsi_rev_5(h))
4378                 raid_ctlr_position = 0;
4379         else
4380                 raid_ctlr_position = nphysicals + nlogicals;
4381
4382         /* adjust our table of devices */
4383         n_ext_target_devs = 0;
4384         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4385                 u8 *lunaddrbytes, is_OBDR = 0;
4386                 int rc = 0;
4387                 int phys_dev_index = i - (raid_ctlr_position == 0);
4388                 bool skip_device = false;
4389
4390                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4391
4392                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4393
4394                 /* Figure out where the LUN ID info is coming from */
4395                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4396                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4397
4398                 /* Determine if this is a lun from an external target array */
4399                 tmpdevice->external =
4400                         figure_external_status(h, raid_ctlr_position, i,
4401                                                 nphysicals, nlocal_logicals);
4402
4403                 /*
4404                  * Skip over some devices such as a spare.
4405                  */
4406                 if (!tmpdevice->external && physical_device) {
4407                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4408                                         &physdev_list->LUN[phys_dev_index]);
4409                         if (skip_device)
4410                                 continue;
4411                 }
4412
4413                 /* Get device type, vendor, model, device id, raid_map */
4414                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4415                                                         &is_OBDR);
4416                 if (rc == -ENOMEM) {
4417                         dev_warn(&h->pdev->dev,
4418                                 "Out of memory, rescan deferred.\n");
4419                         h->drv_req_rescan = 1;
4420                         goto out;
4421                 }
4422                 if (rc) {
4423                         h->drv_req_rescan = 1;
4424                         continue;
4425                 }
4426
4427                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4428                 this_device = currentsd[ncurrent];
4429
4430                 *this_device = *tmpdevice;
4431                 this_device->physical_device = physical_device;
4432
4433                 /*
4434                  * Expose all devices except for physical devices that
4435                  * are masked.
4436                  */
4437                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4438                         this_device->expose_device = 0;
4439                 else
4440                         this_device->expose_device = 1;
4441
4442
4443                 /*
4444                  * Get the SAS address for physical devices that are exposed.
4445                  */
4446                 if (this_device->physical_device && this_device->expose_device)
4447                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4448
4449                 switch (this_device->devtype) {
4450                 case TYPE_ROM:
4451                         /* We don't *really* support actual CD-ROM devices,
4452                          * just "One Button Disaster Recovery" tape drive
4453                          * which temporarily pretends to be a CD-ROM drive.
4454                          * So we check that the device is really an OBDR tape
4455                          * device by checking for "$DR-10" in bytes 43-48 of
4456                          * the inquiry data.
4457                          */
4458                         if (is_OBDR)
4459                                 ncurrent++;
4460                         break;
4461                 case TYPE_DISK:
4462                 case TYPE_ZBC:
4463                         if (this_device->physical_device) {
4464                                 /* The disk is in HBA mode. */
4465                                 /* Never use RAID mapper in HBA mode. */
4466                                 this_device->offload_enabled = 0;
4467                                 hpsa_get_ioaccel_drive_info(h, this_device,
4468                                         physdev_list, phys_dev_index, id_phys);
4469                                 hpsa_get_path_info(this_device,
4470                                         physdev_list, phys_dev_index, id_phys);
4471                         }
4472                         ncurrent++;
4473                         break;
4474                 case TYPE_TAPE:
4475                 case TYPE_MEDIUM_CHANGER:
4476                         ncurrent++;
4477                         break;
4478                 case TYPE_ENCLOSURE:
4479                         if (!this_device->external)
4480                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4481                                                 physdev_list, phys_dev_index,
4482                                                 this_device);
4483                         ncurrent++;
4484                         break;
4485                 case TYPE_RAID:
4486                         /* Only present the Smartarray HBA as a RAID controller.
4487                          * If it's a RAID controller other than the HBA itself
4488                          * (an external RAID controller, MSA500 or similar)
4489                          * don't present it.
4490                          */
4491                         if (!is_hba_lunid(lunaddrbytes))
4492                                 break;
4493                         ncurrent++;
4494                         break;
4495                 default:
4496                         break;
4497                 }
4498                 if (ncurrent >= HPSA_MAX_DEVICES)
4499                         break;
4500         }
4501
4502         if (h->sas_host == NULL) {
4503                 int rc = 0;
4504
4505                 rc = hpsa_add_sas_host(h);
4506                 if (rc) {
4507                         dev_warn(&h->pdev->dev,
4508                                 "Could not add sas host %d\n", rc);
4509                         goto out;
4510                 }
4511         }
4512
4513         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4514 out:
4515         kfree(tmpdevice);
4516         for (i = 0; i < ndev_allocated; i++)
4517                 kfree(currentsd[i]);
4518         kfree(currentsd);
4519         kfree(physdev_list);
4520         kfree(logdev_list);
4521         kfree(id_ctlr);
4522         kfree(id_phys);
4523 }
4524
4525 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4526                                    struct scatterlist *sg)
4527 {
4528         u64 addr64 = (u64) sg_dma_address(sg);
4529         unsigned int len = sg_dma_len(sg);
4530
4531         desc->Addr = cpu_to_le64(addr64);
4532         desc->Len = cpu_to_le32(len);
4533         desc->Ext = 0;
4534 }
4535
4536 /*
4537  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4538  * dma mapping  and fills in the scatter gather entries of the
4539  * hpsa command, cp.
4540  */
4541 static int hpsa_scatter_gather(struct ctlr_info *h,
4542                 struct CommandList *cp,
4543                 struct scsi_cmnd *cmd)
4544 {
4545         struct scatterlist *sg;
4546         int use_sg, i, sg_limit, chained, last_sg;
4547         struct SGDescriptor *curr_sg;
4548
4549         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4550
4551         use_sg = scsi_dma_map(cmd);
4552         if (use_sg < 0)
4553                 return use_sg;
4554
4555         if (!use_sg)
4556                 goto sglist_finished;
4557
4558         /*
4559          * If the number of entries is greater than the max for a single list,
4560          * then we have a chained list; we will set up all but one entry in the
4561          * first list (the last entry is saved for link information);
4562          * otherwise, we don't have a chained list and we'll set up at each of
4563          * the entries in the one list.
4564          */
4565         curr_sg = cp->SG;
4566         chained = use_sg > h->max_cmd_sg_entries;
4567         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4568         last_sg = scsi_sg_count(cmd) - 1;
4569         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4570                 hpsa_set_sg_descriptor(curr_sg, sg);
4571                 curr_sg++;
4572         }
4573
4574         if (chained) {
4575                 /*
4576                  * Continue with the chained list.  Set curr_sg to the chained
4577                  * list.  Modify the limit to the total count less the entries
4578                  * we've already set up.  Resume the scan at the list entry
4579                  * where the previous loop left off.
4580                  */
4581                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4582                 sg_limit = use_sg - sg_limit;
4583                 for_each_sg(sg, sg, sg_limit, i) {
4584                         hpsa_set_sg_descriptor(curr_sg, sg);
4585                         curr_sg++;
4586                 }
4587         }
4588
4589         /* Back the pointer up to the last entry and mark it as "last". */
4590         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4591
4592         if (use_sg + chained > h->maxSG)
4593                 h->maxSG = use_sg + chained;
4594
4595         if (chained) {
4596                 cp->Header.SGList = h->max_cmd_sg_entries;
4597                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4598                 if (hpsa_map_sg_chain_block(h, cp)) {
4599                         scsi_dma_unmap(cmd);
4600                         return -1;
4601                 }
4602                 return 0;
4603         }
4604
4605 sglist_finished:
4606
4607         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4608         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4609         return 0;
4610 }
4611
4612 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4613                                                 u8 *cdb, int cdb_len,
4614                                                 const char *func)
4615 {
4616         dev_warn(&h->pdev->dev,
4617                  "%s: Blocking zero-length request: CDB:%*phN\n",
4618                  func, cdb_len, cdb);
4619 }
4620
4621 #define IO_ACCEL_INELIGIBLE 1
4622 /* zero-length transfers trigger hardware errors. */
4623 static bool is_zero_length_transfer(u8 *cdb)
4624 {
4625         u32 block_cnt;
4626
4627         /* Block zero-length transfer sizes on certain commands. */
4628         switch (cdb[0]) {
4629         case READ_10:
4630         case WRITE_10:
4631         case VERIFY:            /* 0x2F */
4632         case WRITE_VERIFY:      /* 0x2E */
4633                 block_cnt = get_unaligned_be16(&cdb[7]);
4634                 break;
4635         case READ_12:
4636         case WRITE_12:
4637         case VERIFY_12: /* 0xAF */
4638         case WRITE_VERIFY_12:   /* 0xAE */
4639                 block_cnt = get_unaligned_be32(&cdb[6]);
4640                 break;
4641         case READ_16:
4642         case WRITE_16:
4643         case VERIFY_16:         /* 0x8F */
4644                 block_cnt = get_unaligned_be32(&cdb[10]);
4645                 break;
4646         default:
4647                 return false;
4648         }
4649
4650         return block_cnt == 0;
4651 }
4652
4653 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4654 {
4655         int is_write = 0;
4656         u32 block;
4657         u32 block_cnt;
4658
4659         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4660         switch (cdb[0]) {
4661         case WRITE_6:
4662         case WRITE_12:
4663                 is_write = 1;
4664                 /* fall through */
4665         case READ_6:
4666         case READ_12:
4667                 if (*cdb_len == 6) {
4668                         block = (((cdb[1] & 0x1F) << 16) |
4669                                 (cdb[2] << 8) |
4670                                 cdb[3]);
4671                         block_cnt = cdb[4];
4672                         if (block_cnt == 0)
4673                                 block_cnt = 256;
4674                 } else {
4675                         BUG_ON(*cdb_len != 12);
4676                         block = get_unaligned_be32(&cdb[2]);
4677                         block_cnt = get_unaligned_be32(&cdb[6]);
4678                 }
4679                 if (block_cnt > 0xffff)
4680                         return IO_ACCEL_INELIGIBLE;
4681
4682                 cdb[0] = is_write ? WRITE_10 : READ_10;
4683                 cdb[1] = 0;
4684                 cdb[2] = (u8) (block >> 24);
4685                 cdb[3] = (u8) (block >> 16);
4686                 cdb[4] = (u8) (block >> 8);
4687                 cdb[5] = (u8) (block);
4688                 cdb[6] = 0;
4689                 cdb[7] = (u8) (block_cnt >> 8);
4690                 cdb[8] = (u8) (block_cnt);
4691                 cdb[9] = 0;
4692                 *cdb_len = 10;
4693                 break;
4694         }
4695         return 0;
4696 }
4697
4698 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4699         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4700         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4701 {
4702         struct scsi_cmnd *cmd = c->scsi_cmd;
4703         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4704         unsigned int len;
4705         unsigned int total_len = 0;
4706         struct scatterlist *sg;
4707         u64 addr64;
4708         int use_sg, i;
4709         struct SGDescriptor *curr_sg;
4710         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4711
4712         /* TODO: implement chaining support */
4713         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4714                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4715                 return IO_ACCEL_INELIGIBLE;
4716         }
4717
4718         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4719
4720         if (is_zero_length_transfer(cdb)) {
4721                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4722                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4723                 return IO_ACCEL_INELIGIBLE;
4724         }
4725
4726         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4727                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4728                 return IO_ACCEL_INELIGIBLE;
4729         }
4730
4731         c->cmd_type = CMD_IOACCEL1;
4732
4733         /* Adjust the DMA address to point to the accelerated command buffer */
4734         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4735                                 (c->cmdindex * sizeof(*cp));
4736         BUG_ON(c->busaddr & 0x0000007F);
4737
4738         use_sg = scsi_dma_map(cmd);
4739         if (use_sg < 0) {
4740                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4741                 return use_sg;
4742         }
4743
4744         if (use_sg) {
4745                 curr_sg = cp->SG;
4746                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4747                         addr64 = (u64) sg_dma_address(sg);
4748                         len  = sg_dma_len(sg);
4749                         total_len += len;
4750                         curr_sg->Addr = cpu_to_le64(addr64);
4751                         curr_sg->Len = cpu_to_le32(len);
4752                         curr_sg->Ext = cpu_to_le32(0);
4753                         curr_sg++;
4754                 }
4755                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4756
4757                 switch (cmd->sc_data_direction) {
4758                 case DMA_TO_DEVICE:
4759                         control |= IOACCEL1_CONTROL_DATA_OUT;
4760                         break;
4761                 case DMA_FROM_DEVICE:
4762                         control |= IOACCEL1_CONTROL_DATA_IN;
4763                         break;
4764                 case DMA_NONE:
4765                         control |= IOACCEL1_CONTROL_NODATAXFER;
4766                         break;
4767                 default:
4768                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4769                         cmd->sc_data_direction);
4770                         BUG();
4771                         break;
4772                 }
4773         } else {
4774                 control |= IOACCEL1_CONTROL_NODATAXFER;
4775         }
4776
4777         c->Header.SGList = use_sg;
4778         /* Fill out the command structure to submit */
4779         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4780         cp->transfer_len = cpu_to_le32(total_len);
4781         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4782                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4783         cp->control = cpu_to_le32(control);
4784         memcpy(cp->CDB, cdb, cdb_len);
4785         memcpy(cp->CISS_LUN, scsi3addr, 8);
4786         /* Tag was already set at init time. */
4787         enqueue_cmd_and_start_io(h, c);
4788         return 0;
4789 }
4790
4791 /*
4792  * Queue a command directly to a device behind the controller using the
4793  * I/O accelerator path.
4794  */
4795 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4796         struct CommandList *c)
4797 {
4798         struct scsi_cmnd *cmd = c->scsi_cmd;
4799         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4800
4801         if (!dev)
4802                 return -1;
4803
4804         c->phys_disk = dev;
4805
4806         if (dev->in_reset)
4807                 return -1;
4808
4809         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4810                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4811 }
4812
4813 /*
4814  * Set encryption parameters for the ioaccel2 request
4815  */
4816 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4817         struct CommandList *c, struct io_accel2_cmd *cp)
4818 {
4819         struct scsi_cmnd *cmd = c->scsi_cmd;
4820         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4821         struct raid_map_data *map = &dev->raid_map;
4822         u64 first_block;
4823
4824         /* Are we doing encryption on this device */
4825         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4826                 return;
4827         /* Set the data encryption key index. */
4828         cp->dekindex = map->dekindex;
4829
4830         /* Set the encryption enable flag, encoded into direction field. */
4831         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4832
4833         /* Set encryption tweak values based on logical block address
4834          * If block size is 512, tweak value is LBA.
4835          * For other block sizes, tweak is (LBA * block size)/ 512)
4836          */
4837         switch (cmd->cmnd[0]) {
4838         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4839         case READ_6:
4840         case WRITE_6:
4841                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4842                                 (cmd->cmnd[2] << 8) |
4843                                 cmd->cmnd[3]);
4844                 break;
4845         case WRITE_10:
4846         case READ_10:
4847         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4848         case WRITE_12:
4849         case READ_12:
4850                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4851                 break;
4852         case WRITE_16:
4853         case READ_16:
4854                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4855                 break;
4856         default:
4857                 dev_err(&h->pdev->dev,
4858                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4859                         __func__, cmd->cmnd[0]);
4860                 BUG();
4861                 break;
4862         }
4863
4864         if (le32_to_cpu(map->volume_blk_size) != 512)
4865                 first_block = first_block *
4866                                 le32_to_cpu(map->volume_blk_size)/512;
4867
4868         cp->tweak_lower = cpu_to_le32(first_block);
4869         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4870 }
4871
4872 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4873         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4874         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4875 {
4876         struct scsi_cmnd *cmd = c->scsi_cmd;
4877         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4878         struct ioaccel2_sg_element *curr_sg;
4879         int use_sg, i;
4880         struct scatterlist *sg;
4881         u64 addr64;
4882         u32 len;
4883         u32 total_len = 0;
4884
4885         if (!cmd->device)
4886                 return -1;
4887
4888         if (!cmd->device->hostdata)
4889                 return -1;
4890
4891         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4892
4893         if (is_zero_length_transfer(cdb)) {
4894                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4895                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4896                 return IO_ACCEL_INELIGIBLE;
4897         }
4898
4899         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4900                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4901                 return IO_ACCEL_INELIGIBLE;
4902         }
4903
4904         c->cmd_type = CMD_IOACCEL2;
4905         /* Adjust the DMA address to point to the accelerated command buffer */
4906         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4907                                 (c->cmdindex * sizeof(*cp));
4908         BUG_ON(c->busaddr & 0x0000007F);
4909
4910         memset(cp, 0, sizeof(*cp));
4911         cp->IU_type = IOACCEL2_IU_TYPE;
4912
4913         use_sg = scsi_dma_map(cmd);
4914         if (use_sg < 0) {
4915                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4916                 return use_sg;
4917         }
4918
4919         if (use_sg) {
4920                 curr_sg = cp->sg;
4921                 if (use_sg > h->ioaccel_maxsg) {
4922                         addr64 = le64_to_cpu(
4923                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4924                         curr_sg->address = cpu_to_le64(addr64);
4925                         curr_sg->length = 0;
4926                         curr_sg->reserved[0] = 0;
4927                         curr_sg->reserved[1] = 0;
4928                         curr_sg->reserved[2] = 0;
4929                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4930
4931                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4932                 }
4933                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4934                         addr64 = (u64) sg_dma_address(sg);
4935                         len  = sg_dma_len(sg);
4936                         total_len += len;
4937                         curr_sg->address = cpu_to_le64(addr64);
4938                         curr_sg->length = cpu_to_le32(len);
4939                         curr_sg->reserved[0] = 0;
4940                         curr_sg->reserved[1] = 0;
4941                         curr_sg->reserved[2] = 0;
4942                         curr_sg->chain_indicator = 0;
4943                         curr_sg++;
4944                 }
4945
4946                 /*
4947                  * Set the last s/g element bit
4948                  */
4949                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4950
4951                 switch (cmd->sc_data_direction) {
4952                 case DMA_TO_DEVICE:
4953                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4954                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4955                         break;
4956                 case DMA_FROM_DEVICE:
4957                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4958                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4959                         break;
4960                 case DMA_NONE:
4961                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4962                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4963                         break;
4964                 default:
4965                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4966                                 cmd->sc_data_direction);
4967                         BUG();
4968                         break;
4969                 }
4970         } else {
4971                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4972                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4973         }
4974
4975         /* Set encryption parameters, if necessary */
4976         set_encrypt_ioaccel2(h, c, cp);
4977
4978         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4979         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4980         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4981
4982         cp->data_len = cpu_to_le32(total_len);
4983         cp->err_ptr = cpu_to_le64(c->busaddr +
4984                         offsetof(struct io_accel2_cmd, error_data));
4985         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4986
4987         /* fill in sg elements */
4988         if (use_sg > h->ioaccel_maxsg) {
4989                 cp->sg_count = 1;
4990                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4991                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4992                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4993                         scsi_dma_unmap(cmd);
4994                         return -1;
4995                 }
4996         } else
4997                 cp->sg_count = (u8) use_sg;
4998
4999         if (phys_disk->in_reset) {
5000                 cmd->result = DID_RESET << 16;
5001                 return -1;
5002         }
5003
5004         enqueue_cmd_and_start_io(h, c);
5005         return 0;
5006 }
5007
5008 /*
5009  * Queue a command to the correct I/O accelerator path.
5010  */
5011 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5012         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5013         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5014 {
5015         if (!c->scsi_cmd->device)
5016                 return -1;
5017
5018         if (!c->scsi_cmd->device->hostdata)
5019                 return -1;
5020
5021         if (phys_disk->in_reset)
5022                 return -1;
5023
5024         /* Try to honor the device's queue depth */
5025         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5026                                         phys_disk->queue_depth) {
5027                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5028                 return IO_ACCEL_INELIGIBLE;
5029         }
5030         if (h->transMethod & CFGTBL_Trans_io_accel1)
5031                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5032                                                 cdb, cdb_len, scsi3addr,
5033                                                 phys_disk);
5034         else
5035                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5036                                                 cdb, cdb_len, scsi3addr,
5037                                                 phys_disk);
5038 }
5039
5040 static void raid_map_helper(struct raid_map_data *map,
5041                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5042 {
5043         if (offload_to_mirror == 0)  {
5044                 /* use physical disk in the first mirrored group. */
5045                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5046                 return;
5047         }
5048         do {
5049                 /* determine mirror group that *map_index indicates */
5050                 *current_group = *map_index /
5051                         le16_to_cpu(map->data_disks_per_row);
5052                 if (offload_to_mirror == *current_group)
5053                         continue;
5054                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5055                         /* select map index from next group */
5056                         *map_index += le16_to_cpu(map->data_disks_per_row);
5057                         (*current_group)++;
5058                 } else {
5059                         /* select map index from first group */
5060                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5061                         *current_group = 0;
5062                 }
5063         } while (offload_to_mirror != *current_group);
5064 }
5065
5066 /*
5067  * Attempt to perform offload RAID mapping for a logical volume I/O.
5068  */
5069 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5070         struct CommandList *c)
5071 {
5072         struct scsi_cmnd *cmd = c->scsi_cmd;
5073         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5074         struct raid_map_data *map = &dev->raid_map;
5075         struct raid_map_disk_data *dd = &map->data[0];
5076         int is_write = 0;
5077         u32 map_index;
5078         u64 first_block, last_block;
5079         u32 block_cnt;
5080         u32 blocks_per_row;
5081         u64 first_row, last_row;
5082         u32 first_row_offset, last_row_offset;
5083         u32 first_column, last_column;
5084         u64 r0_first_row, r0_last_row;
5085         u32 r5or6_blocks_per_row;
5086         u64 r5or6_first_row, r5or6_last_row;
5087         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5088         u32 r5or6_first_column, r5or6_last_column;
5089         u32 total_disks_per_row;
5090         u32 stripesize;
5091         u32 first_group, last_group, current_group;
5092         u32 map_row;
5093         u32 disk_handle;
5094         u64 disk_block;
5095         u32 disk_block_cnt;
5096         u8 cdb[16];
5097         u8 cdb_len;
5098         u16 strip_size;
5099 #if BITS_PER_LONG == 32
5100         u64 tmpdiv;
5101 #endif
5102         int offload_to_mirror;
5103
5104         if (!dev)
5105                 return -1;
5106
5107         if (dev->in_reset)
5108                 return -1;
5109
5110         /* check for valid opcode, get LBA and block count */
5111         switch (cmd->cmnd[0]) {
5112         case WRITE_6:
5113                 is_write = 1;
5114                 /* fall through */
5115         case READ_6:
5116                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5117                                 (cmd->cmnd[2] << 8) |
5118                                 cmd->cmnd[3]);
5119                 block_cnt = cmd->cmnd[4];
5120                 if (block_cnt == 0)
5121                         block_cnt = 256;
5122                 break;
5123         case WRITE_10:
5124                 is_write = 1;
5125                 /* fall through */
5126         case READ_10:
5127                 first_block =
5128                         (((u64) cmd->cmnd[2]) << 24) |
5129                         (((u64) cmd->cmnd[3]) << 16) |
5130                         (((u64) cmd->cmnd[4]) << 8) |
5131                         cmd->cmnd[5];
5132                 block_cnt =
5133                         (((u32) cmd->cmnd[7]) << 8) |
5134                         cmd->cmnd[8];
5135                 break;
5136         case WRITE_12:
5137                 is_write = 1;
5138                 /* fall through */
5139         case READ_12:
5140                 first_block =
5141                         (((u64) cmd->cmnd[2]) << 24) |
5142                         (((u64) cmd->cmnd[3]) << 16) |
5143                         (((u64) cmd->cmnd[4]) << 8) |
5144                         cmd->cmnd[5];
5145                 block_cnt =
5146                         (((u32) cmd->cmnd[6]) << 24) |
5147                         (((u32) cmd->cmnd[7]) << 16) |
5148                         (((u32) cmd->cmnd[8]) << 8) |
5149                 cmd->cmnd[9];
5150                 break;
5151         case WRITE_16:
5152                 is_write = 1;
5153                 /* fall through */
5154         case READ_16:
5155                 first_block =
5156                         (((u64) cmd->cmnd[2]) << 56) |
5157                         (((u64) cmd->cmnd[3]) << 48) |
5158                         (((u64) cmd->cmnd[4]) << 40) |
5159                         (((u64) cmd->cmnd[5]) << 32) |
5160                         (((u64) cmd->cmnd[6]) << 24) |
5161                         (((u64) cmd->cmnd[7]) << 16) |
5162                         (((u64) cmd->cmnd[8]) << 8) |
5163                         cmd->cmnd[9];
5164                 block_cnt =
5165                         (((u32) cmd->cmnd[10]) << 24) |
5166                         (((u32) cmd->cmnd[11]) << 16) |
5167                         (((u32) cmd->cmnd[12]) << 8) |
5168                         cmd->cmnd[13];
5169                 break;
5170         default:
5171                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5172         }
5173         last_block = first_block + block_cnt - 1;
5174
5175         /* check for write to non-RAID-0 */
5176         if (is_write && dev->raid_level != 0)
5177                 return IO_ACCEL_INELIGIBLE;
5178
5179         /* check for invalid block or wraparound */
5180         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5181                 last_block < first_block)
5182                 return IO_ACCEL_INELIGIBLE;
5183
5184         /* calculate stripe information for the request */
5185         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5186                                 le16_to_cpu(map->strip_size);
5187         strip_size = le16_to_cpu(map->strip_size);
5188 #if BITS_PER_LONG == 32
5189         tmpdiv = first_block;
5190         (void) do_div(tmpdiv, blocks_per_row);
5191         first_row = tmpdiv;
5192         tmpdiv = last_block;
5193         (void) do_div(tmpdiv, blocks_per_row);
5194         last_row = tmpdiv;
5195         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5196         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5197         tmpdiv = first_row_offset;
5198         (void) do_div(tmpdiv, strip_size);
5199         first_column = tmpdiv;
5200         tmpdiv = last_row_offset;
5201         (void) do_div(tmpdiv, strip_size);
5202         last_column = tmpdiv;
5203 #else
5204         first_row = first_block / blocks_per_row;
5205         last_row = last_block / blocks_per_row;
5206         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5207         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5208         first_column = first_row_offset / strip_size;
5209         last_column = last_row_offset / strip_size;
5210 #endif
5211
5212         /* if this isn't a single row/column then give to the controller */
5213         if ((first_row != last_row) || (first_column != last_column))
5214                 return IO_ACCEL_INELIGIBLE;
5215
5216         /* proceeding with driver mapping */
5217         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5218                                 le16_to_cpu(map->metadata_disks_per_row);
5219         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5220                                 le16_to_cpu(map->row_cnt);
5221         map_index = (map_row * total_disks_per_row) + first_column;
5222
5223         switch (dev->raid_level) {
5224         case HPSA_RAID_0:
5225                 break; /* nothing special to do */
5226         case HPSA_RAID_1:
5227                 /* Handles load balance across RAID 1 members.
5228                  * (2-drive R1 and R10 with even # of drives.)
5229                  * Appropriate for SSDs, not optimal for HDDs
5230                  */
5231                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5232                 if (dev->offload_to_mirror)
5233                         map_index += le16_to_cpu(map->data_disks_per_row);
5234                 dev->offload_to_mirror = !dev->offload_to_mirror;
5235                 break;
5236         case HPSA_RAID_ADM:
5237                 /* Handles N-way mirrors  (R1-ADM)
5238                  * and R10 with # of drives divisible by 3.)
5239                  */
5240                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5241
5242                 offload_to_mirror = dev->offload_to_mirror;
5243                 raid_map_helper(map, offload_to_mirror,
5244                                 &map_index, &current_group);
5245                 /* set mirror group to use next time */
5246                 offload_to_mirror =
5247                         (offload_to_mirror >=
5248                         le16_to_cpu(map->layout_map_count) - 1)
5249                         ? 0 : offload_to_mirror + 1;
5250                 dev->offload_to_mirror = offload_to_mirror;
5251                 /* Avoid direct use of dev->offload_to_mirror within this
5252                  * function since multiple threads might simultaneously
5253                  * increment it beyond the range of dev->layout_map_count -1.
5254                  */
5255                 break;
5256         case HPSA_RAID_5:
5257         case HPSA_RAID_6:
5258                 if (le16_to_cpu(map->layout_map_count) <= 1)
5259                         break;
5260
5261                 /* Verify first and last block are in same RAID group */
5262                 r5or6_blocks_per_row =
5263                         le16_to_cpu(map->strip_size) *
5264                         le16_to_cpu(map->data_disks_per_row);
5265                 BUG_ON(r5or6_blocks_per_row == 0);
5266                 stripesize = r5or6_blocks_per_row *
5267                         le16_to_cpu(map->layout_map_count);
5268 #if BITS_PER_LONG == 32
5269                 tmpdiv = first_block;
5270                 first_group = do_div(tmpdiv, stripesize);
5271                 tmpdiv = first_group;
5272                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5273                 first_group = tmpdiv;
5274                 tmpdiv = last_block;
5275                 last_group = do_div(tmpdiv, stripesize);
5276                 tmpdiv = last_group;
5277                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5278                 last_group = tmpdiv;
5279 #else
5280                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5281                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5282 #endif
5283                 if (first_group != last_group)
5284                         return IO_ACCEL_INELIGIBLE;
5285
5286                 /* Verify request is in a single row of RAID 5/6 */
5287 #if BITS_PER_LONG == 32
5288                 tmpdiv = first_block;
5289                 (void) do_div(tmpdiv, stripesize);
5290                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5291                 tmpdiv = last_block;
5292                 (void) do_div(tmpdiv, stripesize);
5293                 r5or6_last_row = r0_last_row = tmpdiv;
5294 #else
5295                 first_row = r5or6_first_row = r0_first_row =
5296                                                 first_block / stripesize;
5297                 r5or6_last_row = r0_last_row = last_block / stripesize;
5298 #endif
5299                 if (r5or6_first_row != r5or6_last_row)
5300                         return IO_ACCEL_INELIGIBLE;
5301
5302
5303                 /* Verify request is in a single column */
5304 #if BITS_PER_LONG == 32
5305                 tmpdiv = first_block;
5306                 first_row_offset = do_div(tmpdiv, stripesize);
5307                 tmpdiv = first_row_offset;
5308                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5309                 r5or6_first_row_offset = first_row_offset;
5310                 tmpdiv = last_block;
5311                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5312                 tmpdiv = r5or6_last_row_offset;
5313                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5314                 tmpdiv = r5or6_first_row_offset;
5315                 (void) do_div(tmpdiv, map->strip_size);
5316                 first_column = r5or6_first_column = tmpdiv;
5317                 tmpdiv = r5or6_last_row_offset;
5318                 (void) do_div(tmpdiv, map->strip_size);
5319                 r5or6_last_column = tmpdiv;
5320 #else
5321                 first_row_offset = r5or6_first_row_offset =
5322                         (u32)((first_block % stripesize) %
5323                                                 r5or6_blocks_per_row);
5324
5325                 r5or6_last_row_offset =
5326                         (u32)((last_block % stripesize) %
5327                                                 r5or6_blocks_per_row);
5328
5329                 first_column = r5or6_first_column =
5330                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5331                 r5or6_last_column =
5332                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5333 #endif
5334                 if (r5or6_first_column != r5or6_last_column)
5335                         return IO_ACCEL_INELIGIBLE;
5336
5337                 /* Request is eligible */
5338                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5339                         le16_to_cpu(map->row_cnt);
5340
5341                 map_index = (first_group *
5342                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5343                         (map_row * total_disks_per_row) + first_column;
5344                 break;
5345         default:
5346                 return IO_ACCEL_INELIGIBLE;
5347         }
5348
5349         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5350                 return IO_ACCEL_INELIGIBLE;
5351
5352         c->phys_disk = dev->phys_disk[map_index];
5353         if (!c->phys_disk)
5354                 return IO_ACCEL_INELIGIBLE;
5355
5356         disk_handle = dd[map_index].ioaccel_handle;
5357         disk_block = le64_to_cpu(map->disk_starting_blk) +
5358                         first_row * le16_to_cpu(map->strip_size) +
5359                         (first_row_offset - first_column *
5360                         le16_to_cpu(map->strip_size));
5361         disk_block_cnt = block_cnt;
5362
5363         /* handle differing logical/physical block sizes */
5364         if (map->phys_blk_shift) {
5365                 disk_block <<= map->phys_blk_shift;
5366                 disk_block_cnt <<= map->phys_blk_shift;
5367         }
5368         BUG_ON(disk_block_cnt > 0xffff);
5369
5370         /* build the new CDB for the physical disk I/O */
5371         if (disk_block > 0xffffffff) {
5372                 cdb[0] = is_write ? WRITE_16 : READ_16;
5373                 cdb[1] = 0;
5374                 cdb[2] = (u8) (disk_block >> 56);
5375                 cdb[3] = (u8) (disk_block >> 48);
5376                 cdb[4] = (u8) (disk_block >> 40);
5377                 cdb[5] = (u8) (disk_block >> 32);
5378                 cdb[6] = (u8) (disk_block >> 24);
5379                 cdb[7] = (u8) (disk_block >> 16);
5380                 cdb[8] = (u8) (disk_block >> 8);
5381                 cdb[9] = (u8) (disk_block);
5382                 cdb[10] = (u8) (disk_block_cnt >> 24);
5383                 cdb[11] = (u8) (disk_block_cnt >> 16);
5384                 cdb[12] = (u8) (disk_block_cnt >> 8);
5385                 cdb[13] = (u8) (disk_block_cnt);
5386                 cdb[14] = 0;
5387                 cdb[15] = 0;
5388                 cdb_len = 16;
5389         } else {
5390                 cdb[0] = is_write ? WRITE_10 : READ_10;
5391                 cdb[1] = 0;
5392                 cdb[2] = (u8) (disk_block >> 24);
5393                 cdb[3] = (u8) (disk_block >> 16);
5394                 cdb[4] = (u8) (disk_block >> 8);
5395                 cdb[5] = (u8) (disk_block);
5396                 cdb[6] = 0;
5397                 cdb[7] = (u8) (disk_block_cnt >> 8);
5398                 cdb[8] = (u8) (disk_block_cnt);
5399                 cdb[9] = 0;
5400                 cdb_len = 10;
5401         }
5402         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5403                                                 dev->scsi3addr,
5404                                                 dev->phys_disk[map_index]);
5405 }
5406
5407 /*
5408  * Submit commands down the "normal" RAID stack path
5409  * All callers to hpsa_ciss_submit must check lockup_detected
5410  * beforehand, before (opt.) and after calling cmd_alloc
5411  */
5412 static int hpsa_ciss_submit(struct ctlr_info *h,
5413         struct CommandList *c, struct scsi_cmnd *cmd,
5414         struct hpsa_scsi_dev_t *dev)
5415 {
5416         cmd->host_scribble = (unsigned char *) c;
5417         c->cmd_type = CMD_SCSI;
5418         c->scsi_cmd = cmd;
5419         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5420         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5421         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5422
5423         /* Fill in the request block... */
5424
5425         c->Request.Timeout = 0;
5426         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5427         c->Request.CDBLen = cmd->cmd_len;
5428         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5429         switch (cmd->sc_data_direction) {
5430         case DMA_TO_DEVICE:
5431                 c->Request.type_attr_dir =
5432                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5433                 break;
5434         case DMA_FROM_DEVICE:
5435                 c->Request.type_attr_dir =
5436                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5437                 break;
5438         case DMA_NONE:
5439                 c->Request.type_attr_dir =
5440                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5441                 break;
5442         case DMA_BIDIRECTIONAL:
5443                 /* This can happen if a buggy application does a scsi passthru
5444                  * and sets both inlen and outlen to non-zero. ( see
5445                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5446                  */
5447
5448                 c->Request.type_attr_dir =
5449                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5450                 /* This is technically wrong, and hpsa controllers should
5451                  * reject it with CMD_INVALID, which is the most correct
5452                  * response, but non-fibre backends appear to let it
5453                  * slide by, and give the same results as if this field
5454                  * were set correctly.  Either way is acceptable for
5455                  * our purposes here.
5456                  */
5457
5458                 break;
5459
5460         default:
5461                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5462                         cmd->sc_data_direction);
5463                 BUG();
5464                 break;
5465         }
5466
5467         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5468                 hpsa_cmd_resolve_and_free(h, c);
5469                 return SCSI_MLQUEUE_HOST_BUSY;
5470         }
5471
5472         if (dev->in_reset) {
5473                 hpsa_cmd_resolve_and_free(h, c);
5474                 return SCSI_MLQUEUE_HOST_BUSY;
5475         }
5476
5477         enqueue_cmd_and_start_io(h, c);
5478         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5479         return 0;
5480 }
5481
5482 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5483                                 struct CommandList *c)
5484 {
5485         dma_addr_t cmd_dma_handle, err_dma_handle;
5486
5487         /* Zero out all of commandlist except the last field, refcount */
5488         memset(c, 0, offsetof(struct CommandList, refcount));
5489         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5490         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5491         c->err_info = h->errinfo_pool + index;
5492         memset(c->err_info, 0, sizeof(*c->err_info));
5493         err_dma_handle = h->errinfo_pool_dhandle
5494             + index * sizeof(*c->err_info);
5495         c->cmdindex = index;
5496         c->busaddr = (u32) cmd_dma_handle;
5497         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5498         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5499         c->h = h;
5500         c->scsi_cmd = SCSI_CMD_IDLE;
5501 }
5502
5503 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5504 {
5505         int i;
5506
5507         for (i = 0; i < h->nr_cmds; i++) {
5508                 struct CommandList *c = h->cmd_pool + i;
5509
5510                 hpsa_cmd_init(h, i, c);
5511                 atomic_set(&c->refcount, 0);
5512         }
5513 }
5514
5515 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5516                                 struct CommandList *c)
5517 {
5518         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5519
5520         BUG_ON(c->cmdindex != index);
5521
5522         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5523         memset(c->err_info, 0, sizeof(*c->err_info));
5524         c->busaddr = (u32) cmd_dma_handle;
5525 }
5526
5527 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5528                 struct CommandList *c, struct scsi_cmnd *cmd)
5529 {
5530         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5531         int rc = IO_ACCEL_INELIGIBLE;
5532
5533         if (!dev)
5534                 return SCSI_MLQUEUE_HOST_BUSY;
5535
5536         if (dev->in_reset)
5537                 return SCSI_MLQUEUE_HOST_BUSY;
5538
5539         if (hpsa_simple_mode)
5540                 return IO_ACCEL_INELIGIBLE;
5541
5542         cmd->host_scribble = (unsigned char *) c;
5543
5544         if (dev->offload_enabled) {
5545                 hpsa_cmd_init(h, c->cmdindex, c);
5546                 c->cmd_type = CMD_SCSI;
5547                 c->scsi_cmd = cmd;
5548                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5549                 if (rc < 0)     /* scsi_dma_map failed. */
5550                         rc = SCSI_MLQUEUE_HOST_BUSY;
5551         } else if (dev->hba_ioaccel_enabled) {
5552                 hpsa_cmd_init(h, c->cmdindex, c);
5553                 c->cmd_type = CMD_SCSI;
5554                 c->scsi_cmd = cmd;
5555                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5556                 if (rc < 0)     /* scsi_dma_map failed. */
5557                         rc = SCSI_MLQUEUE_HOST_BUSY;
5558         }
5559         return rc;
5560 }
5561
5562 static void hpsa_command_resubmit_worker(struct work_struct *work)
5563 {
5564         struct scsi_cmnd *cmd;
5565         struct hpsa_scsi_dev_t *dev;
5566         struct CommandList *c = container_of(work, struct CommandList, work);
5567
5568         cmd = c->scsi_cmd;
5569         dev = cmd->device->hostdata;
5570         if (!dev) {
5571                 cmd->result = DID_NO_CONNECT << 16;
5572                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5573         }
5574
5575         if (dev->in_reset) {
5576                 cmd->result = DID_RESET << 16;
5577                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5578         }
5579
5580         if (c->cmd_type == CMD_IOACCEL2) {
5581                 struct ctlr_info *h = c->h;
5582                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5583                 int rc;
5584
5585                 if (c2->error_data.serv_response ==
5586                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5587                         rc = hpsa_ioaccel_submit(h, c, cmd);
5588                         if (rc == 0)
5589                                 return;
5590                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5591                                 /*
5592                                  * If we get here, it means dma mapping failed.
5593                                  * Try again via scsi mid layer, which will
5594                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5595                                  */
5596                                 cmd->result = DID_IMM_RETRY << 16;
5597                                 return hpsa_cmd_free_and_done(h, c, cmd);
5598                         }
5599                         /* else, fall thru and resubmit down CISS path */
5600                 }
5601         }
5602         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5603         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5604                 /*
5605                  * If we get here, it means dma mapping failed. Try
5606                  * again via scsi mid layer, which will then get
5607                  * SCSI_MLQUEUE_HOST_BUSY.
5608                  *
5609                  * hpsa_ciss_submit will have already freed c
5610                  * if it encountered a dma mapping failure.
5611                  */
5612                 cmd->result = DID_IMM_RETRY << 16;
5613                 cmd->scsi_done(cmd);
5614         }
5615 }
5616
5617 /* Running in struct Scsi_Host->host_lock less mode */
5618 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5619 {
5620         struct ctlr_info *h;
5621         struct hpsa_scsi_dev_t *dev;
5622         struct CommandList *c;
5623         int rc = 0;
5624
5625         /* Get the ptr to our adapter structure out of cmd->host. */
5626         h = sdev_to_hba(cmd->device);
5627
5628         BUG_ON(cmd->request->tag < 0);
5629
5630         dev = cmd->device->hostdata;
5631         if (!dev) {
5632                 cmd->result = DID_NO_CONNECT << 16;
5633                 cmd->scsi_done(cmd);
5634                 return 0;
5635         }
5636
5637         if (dev->removed) {
5638                 cmd->result = DID_NO_CONNECT << 16;
5639                 cmd->scsi_done(cmd);
5640                 return 0;
5641         }
5642
5643         if (unlikely(lockup_detected(h))) {
5644                 cmd->result = DID_NO_CONNECT << 16;
5645                 cmd->scsi_done(cmd);
5646                 return 0;
5647         }
5648
5649         if (dev->in_reset)
5650                 return SCSI_MLQUEUE_DEVICE_BUSY;
5651
5652         c = cmd_tagged_alloc(h, cmd);
5653         if (c == NULL)
5654                 return SCSI_MLQUEUE_DEVICE_BUSY;
5655
5656         /*
5657          * Call alternate submit routine for I/O accelerated commands.
5658          * Retries always go down the normal I/O path.
5659          */
5660         if (likely(cmd->retries == 0 &&
5661                         !blk_rq_is_passthrough(cmd->request) &&
5662                         h->acciopath_status)) {
5663                 rc = hpsa_ioaccel_submit(h, c, cmd);
5664                 if (rc == 0)
5665                         return 0;
5666                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5667                         hpsa_cmd_resolve_and_free(h, c);
5668                         return SCSI_MLQUEUE_HOST_BUSY;
5669                 }
5670         }
5671         return hpsa_ciss_submit(h, c, cmd, dev);
5672 }
5673
5674 static void hpsa_scan_complete(struct ctlr_info *h)
5675 {
5676         unsigned long flags;
5677
5678         spin_lock_irqsave(&h->scan_lock, flags);
5679         h->scan_finished = 1;
5680         wake_up(&h->scan_wait_queue);
5681         spin_unlock_irqrestore(&h->scan_lock, flags);
5682 }
5683
5684 static void hpsa_scan_start(struct Scsi_Host *sh)
5685 {
5686         struct ctlr_info *h = shost_to_hba(sh);
5687         unsigned long flags;
5688
5689         /*
5690          * Don't let rescans be initiated on a controller known to be locked
5691          * up.  If the controller locks up *during* a rescan, that thread is
5692          * probably hosed, but at least we can prevent new rescan threads from
5693          * piling up on a locked up controller.
5694          */
5695         if (unlikely(lockup_detected(h)))
5696                 return hpsa_scan_complete(h);
5697
5698         /*
5699          * If a scan is already waiting to run, no need to add another
5700          */
5701         spin_lock_irqsave(&h->scan_lock, flags);
5702         if (h->scan_waiting) {
5703                 spin_unlock_irqrestore(&h->scan_lock, flags);
5704                 return;
5705         }
5706
5707         spin_unlock_irqrestore(&h->scan_lock, flags);
5708
5709         /* wait until any scan already in progress is finished. */
5710         while (1) {
5711                 spin_lock_irqsave(&h->scan_lock, flags);
5712                 if (h->scan_finished)
5713                         break;
5714                 h->scan_waiting = 1;
5715                 spin_unlock_irqrestore(&h->scan_lock, flags);
5716                 wait_event(h->scan_wait_queue, h->scan_finished);
5717                 /* Note: We don't need to worry about a race between this
5718                  * thread and driver unload because the midlayer will
5719                  * have incremented the reference count, so unload won't
5720                  * happen if we're in here.
5721                  */
5722         }
5723         h->scan_finished = 0; /* mark scan as in progress */
5724         h->scan_waiting = 0;
5725         spin_unlock_irqrestore(&h->scan_lock, flags);
5726
5727         if (unlikely(lockup_detected(h)))
5728                 return hpsa_scan_complete(h);
5729
5730         /*
5731          * Do the scan after a reset completion
5732          */
5733         spin_lock_irqsave(&h->reset_lock, flags);
5734         if (h->reset_in_progress) {
5735                 h->drv_req_rescan = 1;
5736                 spin_unlock_irqrestore(&h->reset_lock, flags);
5737                 hpsa_scan_complete(h);
5738                 return;
5739         }
5740         spin_unlock_irqrestore(&h->reset_lock, flags);
5741
5742         hpsa_update_scsi_devices(h);
5743
5744         hpsa_scan_complete(h);
5745 }
5746
5747 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5748 {
5749         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5750
5751         if (!logical_drive)
5752                 return -ENODEV;
5753
5754         if (qdepth < 1)
5755                 qdepth = 1;
5756         else if (qdepth > logical_drive->queue_depth)
5757                 qdepth = logical_drive->queue_depth;
5758
5759         return scsi_change_queue_depth(sdev, qdepth);
5760 }
5761
5762 static int hpsa_scan_finished(struct Scsi_Host *sh,
5763         unsigned long elapsed_time)
5764 {
5765         struct ctlr_info *h = shost_to_hba(sh);
5766         unsigned long flags;
5767         int finished;
5768
5769         spin_lock_irqsave(&h->scan_lock, flags);
5770         finished = h->scan_finished;
5771         spin_unlock_irqrestore(&h->scan_lock, flags);
5772         return finished;
5773 }
5774
5775 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5776 {
5777         struct Scsi_Host *sh;
5778
5779         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5780         if (sh == NULL) {
5781                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5782                 return -ENOMEM;
5783         }
5784
5785         sh->io_port = 0;
5786         sh->n_io_port = 0;
5787         sh->this_id = -1;
5788         sh->max_channel = 3;
5789         sh->max_cmd_len = MAX_COMMAND_SIZE;
5790         sh->max_lun = HPSA_MAX_LUN;
5791         sh->max_id = HPSA_MAX_LUN;
5792         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5793         sh->cmd_per_lun = sh->can_queue;
5794         sh->sg_tablesize = h->maxsgentries;
5795         sh->transportt = hpsa_sas_transport_template;
5796         sh->hostdata[0] = (unsigned long) h;
5797         sh->irq = pci_irq_vector(h->pdev, 0);
5798         sh->unique_id = sh->irq;
5799
5800         h->scsi_host = sh;
5801         return 0;
5802 }
5803
5804 static int hpsa_scsi_add_host(struct ctlr_info *h)
5805 {
5806         int rv;
5807
5808         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5809         if (rv) {
5810                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5811                 return rv;
5812         }
5813         scsi_scan_host(h->scsi_host);
5814         return 0;
5815 }
5816
5817 /*
5818  * The block layer has already gone to the trouble of picking out a unique,
5819  * small-integer tag for this request.  We use an offset from that value as
5820  * an index to select our command block.  (The offset allows us to reserve the
5821  * low-numbered entries for our own uses.)
5822  */
5823 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5824 {
5825         int idx = scmd->request->tag;
5826
5827         if (idx < 0)
5828                 return idx;
5829
5830         /* Offset to leave space for internal cmds. */
5831         return idx += HPSA_NRESERVED_CMDS;
5832 }
5833
5834 /*
5835  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5836  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5837  */
5838 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5839                                 struct CommandList *c, unsigned char lunaddr[],
5840                                 int reply_queue)
5841 {
5842         int rc;
5843
5844         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5845         (void) fill_cmd(c, TEST_UNIT_READY, h,
5846                         NULL, 0, 0, lunaddr, TYPE_CMD);
5847         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5848         if (rc)
5849                 return rc;
5850         /* no unmap needed here because no data xfer. */
5851
5852         /* Check if the unit is already ready. */
5853         if (c->err_info->CommandStatus == CMD_SUCCESS)
5854                 return 0;
5855
5856         /*
5857          * The first command sent after reset will receive "unit attention" to
5858          * indicate that the LUN has been reset...this is actually what we're
5859          * looking for (but, success is good too).
5860          */
5861         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5862                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5863                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5864                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5865                 return 0;
5866
5867         return 1;
5868 }
5869
5870 /*
5871  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5872  * returns zero when the unit is ready, and non-zero when giving up.
5873  */
5874 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5875                                 struct CommandList *c,
5876                                 unsigned char lunaddr[], int reply_queue)
5877 {
5878         int rc;
5879         int count = 0;
5880         int waittime = 1; /* seconds */
5881
5882         /* Send test unit ready until device ready, or give up. */
5883         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5884
5885                 /*
5886                  * Wait for a bit.  do this first, because if we send
5887                  * the TUR right away, the reset will just abort it.
5888                  */
5889                 msleep(1000 * waittime);
5890
5891                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5892                 if (!rc)
5893                         break;
5894
5895                 /* Increase wait time with each try, up to a point. */
5896                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5897                         waittime *= 2;
5898
5899                 dev_warn(&h->pdev->dev,
5900                          "waiting %d secs for device to become ready.\n",
5901                          waittime);
5902         }
5903
5904         return rc;
5905 }
5906
5907 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5908                                            unsigned char lunaddr[],
5909                                            int reply_queue)
5910 {
5911         int first_queue;
5912         int last_queue;
5913         int rq;
5914         int rc = 0;
5915         struct CommandList *c;
5916
5917         c = cmd_alloc(h);
5918
5919         /*
5920          * If no specific reply queue was requested, then send the TUR
5921          * repeatedly, requesting a reply on each reply queue; otherwise execute
5922          * the loop exactly once using only the specified queue.
5923          */
5924         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5925                 first_queue = 0;
5926                 last_queue = h->nreply_queues - 1;
5927         } else {
5928                 first_queue = reply_queue;
5929                 last_queue = reply_queue;
5930         }
5931
5932         for (rq = first_queue; rq <= last_queue; rq++) {
5933                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5934                 if (rc)
5935                         break;
5936         }
5937
5938         if (rc)
5939                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5940         else
5941                 dev_warn(&h->pdev->dev, "device is ready.\n");
5942
5943         cmd_free(h, c);
5944         return rc;
5945 }
5946
5947 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5948  * complaining.  Doing a host- or bus-reset can't do anything good here.
5949  */
5950 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5951 {
5952         int rc = SUCCESS;
5953         int i;
5954         struct ctlr_info *h;
5955         struct hpsa_scsi_dev_t *dev = NULL;
5956         u8 reset_type;
5957         char msg[48];
5958         unsigned long flags;
5959
5960         /* find the controller to which the command to be aborted was sent */
5961         h = sdev_to_hba(scsicmd->device);
5962         if (h == NULL) /* paranoia */
5963                 return FAILED;
5964
5965         spin_lock_irqsave(&h->reset_lock, flags);
5966         h->reset_in_progress = 1;
5967         spin_unlock_irqrestore(&h->reset_lock, flags);
5968
5969         if (lockup_detected(h)) {
5970                 rc = FAILED;
5971                 goto return_reset_status;
5972         }
5973
5974         dev = scsicmd->device->hostdata;
5975         if (!dev) {
5976                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5977                 rc = FAILED;
5978                 goto return_reset_status;
5979         }
5980
5981         if (dev->devtype == TYPE_ENCLOSURE) {
5982                 rc = SUCCESS;
5983                 goto return_reset_status;
5984         }
5985
5986         /* if controller locked up, we can guarantee command won't complete */
5987         if (lockup_detected(h)) {
5988                 snprintf(msg, sizeof(msg),
5989                          "cmd %d RESET FAILED, lockup detected",
5990                          hpsa_get_cmd_index(scsicmd));
5991                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5992                 rc = FAILED;
5993                 goto return_reset_status;
5994         }
5995
5996         /* this reset request might be the result of a lockup; check */
5997         if (detect_controller_lockup(h)) {
5998                 snprintf(msg, sizeof(msg),
5999                          "cmd %d RESET FAILED, new lockup detected",
6000                          hpsa_get_cmd_index(scsicmd));
6001                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6002                 rc = FAILED;
6003                 goto return_reset_status;
6004         }
6005
6006         /* Do not attempt on controller */
6007         if (is_hba_lunid(dev->scsi3addr)) {
6008                 rc = SUCCESS;
6009                 goto return_reset_status;
6010         }
6011
6012         if (is_logical_dev_addr_mode(dev->scsi3addr))
6013                 reset_type = HPSA_DEVICE_RESET_MSG;
6014         else
6015                 reset_type = HPSA_PHYS_TARGET_RESET;
6016
6017         sprintf(msg, "resetting %s",
6018                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6019         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6020
6021         /*
6022          * wait to see if any commands will complete before sending reset
6023          */
6024         dev->in_reset = true; /* block any new cmds from OS for this device */
6025         for (i = 0; i < 10; i++) {
6026                 if (atomic_read(&dev->commands_outstanding) > 0)
6027                         msleep(1000);
6028                 else
6029                         break;
6030         }
6031
6032         /* send a reset to the SCSI LUN which the command was sent to */
6033         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6034         if (rc == 0)
6035                 rc = SUCCESS;
6036         else
6037                 rc = FAILED;
6038
6039         sprintf(msg, "reset %s %s",
6040                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6041                 rc == SUCCESS ? "completed successfully" : "failed");
6042         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6043
6044 return_reset_status:
6045         spin_lock_irqsave(&h->reset_lock, flags);
6046         h->reset_in_progress = 0;
6047         if (dev)
6048                 dev->in_reset = false;
6049         spin_unlock_irqrestore(&h->reset_lock, flags);
6050         return rc;
6051 }
6052
6053 /*
6054  * For operations with an associated SCSI command, a command block is allocated
6055  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6056  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6057  * the complement, although cmd_free() may be called instead.
6058  */
6059 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6060                                             struct scsi_cmnd *scmd)
6061 {
6062         int idx = hpsa_get_cmd_index(scmd);
6063         struct CommandList *c = h->cmd_pool + idx;
6064
6065         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6066                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6067                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6068                 /* The index value comes from the block layer, so if it's out of
6069                  * bounds, it's probably not our bug.
6070                  */
6071                 BUG();
6072         }
6073
6074         if (unlikely(!hpsa_is_cmd_idle(c))) {
6075                 /*
6076                  * We expect that the SCSI layer will hand us a unique tag
6077                  * value.  Thus, there should never be a collision here between
6078                  * two requests...because if the selected command isn't idle
6079                  * then someone is going to be very disappointed.
6080                  */
6081                 if (idx != h->last_collision_tag) { /* Print once per tag */
6082                         dev_warn(&h->pdev->dev,
6083                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6084                         if (c->scsi_cmd != NULL)
6085                                 scsi_print_command(c->scsi_cmd);
6086                         if (scmd)
6087                                 scsi_print_command(scmd);
6088                         h->last_collision_tag = idx;
6089                 }
6090                 return NULL;
6091         }
6092
6093         atomic_inc(&c->refcount);
6094
6095         hpsa_cmd_partial_init(h, idx, c);
6096         return c;
6097 }
6098
6099 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6100 {
6101         /*
6102          * Release our reference to the block.  We don't need to do anything
6103          * else to free it, because it is accessed by index.
6104          */
6105         (void)atomic_dec(&c->refcount);
6106 }
6107
6108 /*
6109  * For operations that cannot sleep, a command block is allocated at init,
6110  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6111  * which ones are free or in use.  Lock must be held when calling this.
6112  * cmd_free() is the complement.
6113  * This function never gives up and returns NULL.  If it hangs,
6114  * another thread must call cmd_free() to free some tags.
6115  */
6116
6117 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6118 {
6119         struct CommandList *c;
6120         int refcount, i;
6121         int offset = 0;
6122
6123         /*
6124          * There is some *extremely* small but non-zero chance that that
6125          * multiple threads could get in here, and one thread could
6126          * be scanning through the list of bits looking for a free
6127          * one, but the free ones are always behind him, and other
6128          * threads sneak in behind him and eat them before he can
6129          * get to them, so that while there is always a free one, a
6130          * very unlucky thread might be starved anyway, never able to
6131          * beat the other threads.  In reality, this happens so
6132          * infrequently as to be indistinguishable from never.
6133          *
6134          * Note that we start allocating commands before the SCSI host structure
6135          * is initialized.  Since the search starts at bit zero, this
6136          * all works, since we have at least one command structure available;
6137          * however, it means that the structures with the low indexes have to be
6138          * reserved for driver-initiated requests, while requests from the block
6139          * layer will use the higher indexes.
6140          */
6141
6142         for (;;) {
6143                 i = find_next_zero_bit(h->cmd_pool_bits,
6144                                         HPSA_NRESERVED_CMDS,
6145                                         offset);
6146                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6147                         offset = 0;
6148                         continue;
6149                 }
6150                 c = h->cmd_pool + i;
6151                 refcount = atomic_inc_return(&c->refcount);
6152                 if (unlikely(refcount > 1)) {
6153                         cmd_free(h, c); /* already in use */
6154                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6155                         continue;
6156                 }
6157                 set_bit(i & (BITS_PER_LONG - 1),
6158                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6159                 break; /* it's ours now. */
6160         }
6161         hpsa_cmd_partial_init(h, i, c);
6162         c->device = NULL;
6163         return c;
6164 }
6165
6166 /*
6167  * This is the complementary operation to cmd_alloc().  Note, however, in some
6168  * corner cases it may also be used to free blocks allocated by
6169  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6170  * the clear-bit is harmless.
6171  */
6172 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6173 {
6174         if (atomic_dec_and_test(&c->refcount)) {
6175                 int i;
6176
6177                 i = c - h->cmd_pool;
6178                 clear_bit(i & (BITS_PER_LONG - 1),
6179                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6180         }
6181 }
6182
6183 #ifdef CONFIG_COMPAT
6184
6185 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6186         void __user *arg)
6187 {
6188         IOCTL32_Command_struct __user *arg32 =
6189             (IOCTL32_Command_struct __user *) arg;
6190         IOCTL_Command_struct arg64;
6191         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6192         int err;
6193         u32 cp;
6194
6195         memset(&arg64, 0, sizeof(arg64));
6196         err = 0;
6197         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6198                            sizeof(arg64.LUN_info));
6199         err |= copy_from_user(&arg64.Request, &arg32->Request,
6200                            sizeof(arg64.Request));
6201         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6202                            sizeof(arg64.error_info));
6203         err |= get_user(arg64.buf_size, &arg32->buf_size);
6204         err |= get_user(cp, &arg32->buf);
6205         arg64.buf = compat_ptr(cp);
6206         err |= copy_to_user(p, &arg64, sizeof(arg64));
6207
6208         if (err)
6209                 return -EFAULT;
6210
6211         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6212         if (err)
6213                 return err;
6214         err |= copy_in_user(&arg32->error_info, &p->error_info,
6215                          sizeof(arg32->error_info));
6216         if (err)
6217                 return -EFAULT;
6218         return err;
6219 }
6220
6221 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6222         unsigned int cmd, void __user *arg)
6223 {
6224         BIG_IOCTL32_Command_struct __user *arg32 =
6225             (BIG_IOCTL32_Command_struct __user *) arg;
6226         BIG_IOCTL_Command_struct arg64;
6227         BIG_IOCTL_Command_struct __user *p =
6228             compat_alloc_user_space(sizeof(arg64));
6229         int err;
6230         u32 cp;
6231
6232         memset(&arg64, 0, sizeof(arg64));
6233         err = 0;
6234         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6235                            sizeof(arg64.LUN_info));
6236         err |= copy_from_user(&arg64.Request, &arg32->Request,
6237                            sizeof(arg64.Request));
6238         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6239                            sizeof(arg64.error_info));
6240         err |= get_user(arg64.buf_size, &arg32->buf_size);
6241         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6242         err |= get_user(cp, &arg32->buf);
6243         arg64.buf = compat_ptr(cp);
6244         err |= copy_to_user(p, &arg64, sizeof(arg64));
6245
6246         if (err)
6247                 return -EFAULT;
6248
6249         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6250         if (err)
6251                 return err;
6252         err |= copy_in_user(&arg32->error_info, &p->error_info,
6253                          sizeof(arg32->error_info));
6254         if (err)
6255                 return -EFAULT;
6256         return err;
6257 }
6258
6259 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6260                              void __user *arg)
6261 {
6262         switch (cmd) {
6263         case CCISS_GETPCIINFO:
6264         case CCISS_GETINTINFO:
6265         case CCISS_SETINTINFO:
6266         case CCISS_GETNODENAME:
6267         case CCISS_SETNODENAME:
6268         case CCISS_GETHEARTBEAT:
6269         case CCISS_GETBUSTYPES:
6270         case CCISS_GETFIRMVER:
6271         case CCISS_GETDRIVVER:
6272         case CCISS_REVALIDVOLS:
6273         case CCISS_DEREGDISK:
6274         case CCISS_REGNEWDISK:
6275         case CCISS_REGNEWD:
6276         case CCISS_RESCANDISK:
6277         case CCISS_GETLUNINFO:
6278                 return hpsa_ioctl(dev, cmd, arg);
6279
6280         case CCISS_PASSTHRU32:
6281                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6282         case CCISS_BIG_PASSTHRU32:
6283                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6284
6285         default:
6286                 return -ENOIOCTLCMD;
6287         }
6288 }
6289 #endif
6290
6291 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6292 {
6293         struct hpsa_pci_info pciinfo;
6294
6295         if (!argp)
6296                 return -EINVAL;
6297         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6298         pciinfo.bus = h->pdev->bus->number;
6299         pciinfo.dev_fn = h->pdev->devfn;
6300         pciinfo.board_id = h->board_id;
6301         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6302                 return -EFAULT;
6303         return 0;
6304 }
6305
6306 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6307 {
6308         DriverVer_type DriverVer;
6309         unsigned char vmaj, vmin, vsubmin;
6310         int rc;
6311
6312         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6313                 &vmaj, &vmin, &vsubmin);
6314         if (rc != 3) {
6315                 dev_info(&h->pdev->dev, "driver version string '%s' "
6316                         "unrecognized.", HPSA_DRIVER_VERSION);
6317                 vmaj = 0;
6318                 vmin = 0;
6319                 vsubmin = 0;
6320         }
6321         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6322         if (!argp)
6323                 return -EINVAL;
6324         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6325                 return -EFAULT;
6326         return 0;
6327 }
6328
6329 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6330 {
6331         IOCTL_Command_struct iocommand;
6332         struct CommandList *c;
6333         char *buff = NULL;
6334         u64 temp64;
6335         int rc = 0;
6336
6337         if (!argp)
6338                 return -EINVAL;
6339         if (!capable(CAP_SYS_RAWIO))
6340                 return -EPERM;
6341         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6342                 return -EFAULT;
6343         if ((iocommand.buf_size < 1) &&
6344             (iocommand.Request.Type.Direction != XFER_NONE)) {
6345                 return -EINVAL;
6346         }
6347         if (iocommand.buf_size > 0) {
6348                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6349                 if (buff == NULL)
6350                         return -ENOMEM;
6351                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6352                         /* Copy the data into the buffer we created */
6353                         if (copy_from_user(buff, iocommand.buf,
6354                                 iocommand.buf_size)) {
6355                                 rc = -EFAULT;
6356                                 goto out_kfree;
6357                         }
6358                 } else {
6359                         memset(buff, 0, iocommand.buf_size);
6360                 }
6361         }
6362         c = cmd_alloc(h);
6363
6364         /* Fill in the command type */
6365         c->cmd_type = CMD_IOCTL_PEND;
6366         c->scsi_cmd = SCSI_CMD_BUSY;
6367         /* Fill in Command Header */
6368         c->Header.ReplyQueue = 0; /* unused in simple mode */
6369         if (iocommand.buf_size > 0) {   /* buffer to fill */
6370                 c->Header.SGList = 1;
6371                 c->Header.SGTotal = cpu_to_le16(1);
6372         } else  { /* no buffers to fill */
6373                 c->Header.SGList = 0;
6374                 c->Header.SGTotal = cpu_to_le16(0);
6375         }
6376         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6377
6378         /* Fill in Request block */
6379         memcpy(&c->Request, &iocommand.Request,
6380                 sizeof(c->Request));
6381
6382         /* Fill in the scatter gather information */
6383         if (iocommand.buf_size > 0) {
6384                 temp64 = dma_map_single(&h->pdev->dev, buff,
6385                         iocommand.buf_size, DMA_BIDIRECTIONAL);
6386                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6387                         c->SG[0].Addr = cpu_to_le64(0);
6388                         c->SG[0].Len = cpu_to_le32(0);
6389                         rc = -ENOMEM;
6390                         goto out;
6391                 }
6392                 c->SG[0].Addr = cpu_to_le64(temp64);
6393                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6394                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6395         }
6396         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6397                                         NO_TIMEOUT);
6398         if (iocommand.buf_size > 0)
6399                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6400         check_ioctl_unit_attention(h, c);
6401         if (rc) {
6402                 rc = -EIO;
6403                 goto out;
6404         }
6405
6406         /* Copy the error information out */
6407         memcpy(&iocommand.error_info, c->err_info,
6408                 sizeof(iocommand.error_info));
6409         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6410                 rc = -EFAULT;
6411                 goto out;
6412         }
6413         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6414                 iocommand.buf_size > 0) {
6415                 /* Copy the data out of the buffer we created */
6416                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6417                         rc = -EFAULT;
6418                         goto out;
6419                 }
6420         }
6421 out:
6422         cmd_free(h, c);
6423 out_kfree:
6424         kfree(buff);
6425         return rc;
6426 }
6427
6428 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6429 {
6430         BIG_IOCTL_Command_struct *ioc;
6431         struct CommandList *c;
6432         unsigned char **buff = NULL;
6433         int *buff_size = NULL;
6434         u64 temp64;
6435         BYTE sg_used = 0;
6436         int status = 0;
6437         u32 left;
6438         u32 sz;
6439         BYTE __user *data_ptr;
6440
6441         if (!argp)
6442                 return -EINVAL;
6443         if (!capable(CAP_SYS_RAWIO))
6444                 return -EPERM;
6445         ioc = vmemdup_user(argp, sizeof(*ioc));
6446         if (IS_ERR(ioc)) {
6447                 status = PTR_ERR(ioc);
6448                 goto cleanup1;
6449         }
6450         if ((ioc->buf_size < 1) &&
6451             (ioc->Request.Type.Direction != XFER_NONE)) {
6452                 status = -EINVAL;
6453                 goto cleanup1;
6454         }
6455         /* Check kmalloc limits  using all SGs */
6456         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6457                 status = -EINVAL;
6458                 goto cleanup1;
6459         }
6460         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6461                 status = -EINVAL;
6462                 goto cleanup1;
6463         }
6464         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6465         if (!buff) {
6466                 status = -ENOMEM;
6467                 goto cleanup1;
6468         }
6469         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6470         if (!buff_size) {
6471                 status = -ENOMEM;
6472                 goto cleanup1;
6473         }
6474         left = ioc->buf_size;
6475         data_ptr = ioc->buf;
6476         while (left) {
6477                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6478                 buff_size[sg_used] = sz;
6479                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6480                 if (buff[sg_used] == NULL) {
6481                         status = -ENOMEM;
6482                         goto cleanup1;
6483                 }
6484                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6485                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6486                                 status = -EFAULT;
6487                                 goto cleanup1;
6488                         }
6489                 } else
6490                         memset(buff[sg_used], 0, sz);
6491                 left -= sz;
6492                 data_ptr += sz;
6493                 sg_used++;
6494         }
6495         c = cmd_alloc(h);
6496
6497         c->cmd_type = CMD_IOCTL_PEND;
6498         c->scsi_cmd = SCSI_CMD_BUSY;
6499         c->Header.ReplyQueue = 0;
6500         c->Header.SGList = (u8) sg_used;
6501         c->Header.SGTotal = cpu_to_le16(sg_used);
6502         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6503         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6504         if (ioc->buf_size > 0) {
6505                 int i;
6506                 for (i = 0; i < sg_used; i++) {
6507                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6508                                     buff_size[i], DMA_BIDIRECTIONAL);
6509                         if (dma_mapping_error(&h->pdev->dev,
6510                                                         (dma_addr_t) temp64)) {
6511                                 c->SG[i].Addr = cpu_to_le64(0);
6512                                 c->SG[i].Len = cpu_to_le32(0);
6513                                 hpsa_pci_unmap(h->pdev, c, i,
6514                                         DMA_BIDIRECTIONAL);
6515                                 status = -ENOMEM;
6516                                 goto cleanup0;
6517                         }
6518                         c->SG[i].Addr = cpu_to_le64(temp64);
6519                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6520                         c->SG[i].Ext = cpu_to_le32(0);
6521                 }
6522                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6523         }
6524         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6525                                                 NO_TIMEOUT);
6526         if (sg_used)
6527                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6528         check_ioctl_unit_attention(h, c);
6529         if (status) {
6530                 status = -EIO;
6531                 goto cleanup0;
6532         }
6533
6534         /* Copy the error information out */
6535         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6536         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6537                 status = -EFAULT;
6538                 goto cleanup0;
6539         }
6540         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6541                 int i;
6542
6543                 /* Copy the data out of the buffer we created */
6544                 BYTE __user *ptr = ioc->buf;
6545                 for (i = 0; i < sg_used; i++) {
6546                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6547                                 status = -EFAULT;
6548                                 goto cleanup0;
6549                         }
6550                         ptr += buff_size[i];
6551                 }
6552         }
6553         status = 0;
6554 cleanup0:
6555         cmd_free(h, c);
6556 cleanup1:
6557         if (buff) {
6558                 int i;
6559
6560                 for (i = 0; i < sg_used; i++)
6561                         kfree(buff[i]);
6562                 kfree(buff);
6563         }
6564         kfree(buff_size);
6565         kvfree(ioc);
6566         return status;
6567 }
6568
6569 static void check_ioctl_unit_attention(struct ctlr_info *h,
6570         struct CommandList *c)
6571 {
6572         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6573                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6574                 (void) check_for_unit_attention(h, c);
6575 }
6576
6577 /*
6578  * ioctl
6579  */
6580 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6581                       void __user *arg)
6582 {
6583         struct ctlr_info *h;
6584         void __user *argp = (void __user *)arg;
6585         int rc;
6586
6587         h = sdev_to_hba(dev);
6588
6589         switch (cmd) {
6590         case CCISS_DEREGDISK:
6591         case CCISS_REGNEWDISK:
6592         case CCISS_REGNEWD:
6593                 hpsa_scan_start(h->scsi_host);
6594                 return 0;
6595         case CCISS_GETPCIINFO:
6596                 return hpsa_getpciinfo_ioctl(h, argp);
6597         case CCISS_GETDRIVVER:
6598                 return hpsa_getdrivver_ioctl(h, argp);
6599         case CCISS_PASSTHRU:
6600                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6601                         return -EAGAIN;
6602                 rc = hpsa_passthru_ioctl(h, argp);
6603                 atomic_inc(&h->passthru_cmds_avail);
6604                 return rc;
6605         case CCISS_BIG_PASSTHRU:
6606                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6607                         return -EAGAIN;
6608                 rc = hpsa_big_passthru_ioctl(h, argp);
6609                 atomic_inc(&h->passthru_cmds_avail);
6610                 return rc;
6611         default:
6612                 return -ENOTTY;
6613         }
6614 }
6615
6616 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6617 {
6618         struct CommandList *c;
6619
6620         c = cmd_alloc(h);
6621
6622         /* fill_cmd can't fail here, no data buffer to map */
6623         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6624                 RAID_CTLR_LUNID, TYPE_MSG);
6625         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6626         c->waiting = NULL;
6627         enqueue_cmd_and_start_io(h, c);
6628         /* Don't wait for completion, the reset won't complete.  Don't free
6629          * the command either.  This is the last command we will send before
6630          * re-initializing everything, so it doesn't matter and won't leak.
6631          */
6632         return;
6633 }
6634
6635 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6636         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6637         int cmd_type)
6638 {
6639         enum dma_data_direction dir = DMA_NONE;
6640
6641         c->cmd_type = CMD_IOCTL_PEND;
6642         c->scsi_cmd = SCSI_CMD_BUSY;
6643         c->Header.ReplyQueue = 0;
6644         if (buff != NULL && size > 0) {
6645                 c->Header.SGList = 1;
6646                 c->Header.SGTotal = cpu_to_le16(1);
6647         } else {
6648                 c->Header.SGList = 0;
6649                 c->Header.SGTotal = cpu_to_le16(0);
6650         }
6651         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6652
6653         if (cmd_type == TYPE_CMD) {
6654                 switch (cmd) {
6655                 case HPSA_INQUIRY:
6656                         /* are we trying to read a vital product page */
6657                         if (page_code & VPD_PAGE) {
6658                                 c->Request.CDB[1] = 0x01;
6659                                 c->Request.CDB[2] = (page_code & 0xff);
6660                         }
6661                         c->Request.CDBLen = 6;
6662                         c->Request.type_attr_dir =
6663                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6664                         c->Request.Timeout = 0;
6665                         c->Request.CDB[0] = HPSA_INQUIRY;
6666                         c->Request.CDB[4] = size & 0xFF;
6667                         break;
6668                 case RECEIVE_DIAGNOSTIC:
6669                         c->Request.CDBLen = 6;
6670                         c->Request.type_attr_dir =
6671                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6672                         c->Request.Timeout = 0;
6673                         c->Request.CDB[0] = cmd;
6674                         c->Request.CDB[1] = 1;
6675                         c->Request.CDB[2] = 1;
6676                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6677                         c->Request.CDB[4] = size & 0xFF;
6678                         break;
6679                 case HPSA_REPORT_LOG:
6680                 case HPSA_REPORT_PHYS:
6681                         /* Talking to controller so It's a physical command
6682                            mode = 00 target = 0.  Nothing to write.
6683                          */
6684                         c->Request.CDBLen = 12;
6685                         c->Request.type_attr_dir =
6686                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6687                         c->Request.Timeout = 0;
6688                         c->Request.CDB[0] = cmd;
6689                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6690                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6691                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6692                         c->Request.CDB[9] = size & 0xFF;
6693                         break;
6694                 case BMIC_SENSE_DIAG_OPTIONS:
6695                         c->Request.CDBLen = 16;
6696                         c->Request.type_attr_dir =
6697                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6698                         c->Request.Timeout = 0;
6699                         /* Spec says this should be BMIC_WRITE */
6700                         c->Request.CDB[0] = BMIC_READ;
6701                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6702                         break;
6703                 case BMIC_SET_DIAG_OPTIONS:
6704                         c->Request.CDBLen = 16;
6705                         c->Request.type_attr_dir =
6706                                         TYPE_ATTR_DIR(cmd_type,
6707                                                 ATTR_SIMPLE, XFER_WRITE);
6708                         c->Request.Timeout = 0;
6709                         c->Request.CDB[0] = BMIC_WRITE;
6710                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6711                         break;
6712                 case HPSA_CACHE_FLUSH:
6713                         c->Request.CDBLen = 12;
6714                         c->Request.type_attr_dir =
6715                                         TYPE_ATTR_DIR(cmd_type,
6716                                                 ATTR_SIMPLE, XFER_WRITE);
6717                         c->Request.Timeout = 0;
6718                         c->Request.CDB[0] = BMIC_WRITE;
6719                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6720                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6721                         c->Request.CDB[8] = size & 0xFF;
6722                         break;
6723                 case TEST_UNIT_READY:
6724                         c->Request.CDBLen = 6;
6725                         c->Request.type_attr_dir =
6726                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6727                         c->Request.Timeout = 0;
6728                         break;
6729                 case HPSA_GET_RAID_MAP:
6730                         c->Request.CDBLen = 12;
6731                         c->Request.type_attr_dir =
6732                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733                         c->Request.Timeout = 0;
6734                         c->Request.CDB[0] = HPSA_CISS_READ;
6735                         c->Request.CDB[1] = cmd;
6736                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6737                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6738                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6739                         c->Request.CDB[9] = size & 0xFF;
6740                         break;
6741                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6742                         c->Request.CDBLen = 10;
6743                         c->Request.type_attr_dir =
6744                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6745                         c->Request.Timeout = 0;
6746                         c->Request.CDB[0] = BMIC_READ;
6747                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6748                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6749                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6750                         break;
6751                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6752                         c->Request.CDBLen = 10;
6753                         c->Request.type_attr_dir =
6754                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6755                         c->Request.Timeout = 0;
6756                         c->Request.CDB[0] = BMIC_READ;
6757                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6758                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6759                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6760                         break;
6761                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6762                         c->Request.CDBLen = 10;
6763                         c->Request.type_attr_dir =
6764                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6765                         c->Request.Timeout = 0;
6766                         c->Request.CDB[0] = BMIC_READ;
6767                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6768                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6769                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6770                         break;
6771                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6772                         c->Request.CDBLen = 10;
6773                         c->Request.type_attr_dir =
6774                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6775                         c->Request.Timeout = 0;
6776                         c->Request.CDB[0] = BMIC_READ;
6777                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6778                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6779                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6780                         break;
6781                 case BMIC_IDENTIFY_CONTROLLER:
6782                         c->Request.CDBLen = 10;
6783                         c->Request.type_attr_dir =
6784                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6785                         c->Request.Timeout = 0;
6786                         c->Request.CDB[0] = BMIC_READ;
6787                         c->Request.CDB[1] = 0;
6788                         c->Request.CDB[2] = 0;
6789                         c->Request.CDB[3] = 0;
6790                         c->Request.CDB[4] = 0;
6791                         c->Request.CDB[5] = 0;
6792                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6793                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6794                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6795                         c->Request.CDB[9] = 0;
6796                         break;
6797                 default:
6798                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6799                         BUG();
6800                 }
6801         } else if (cmd_type == TYPE_MSG) {
6802                 switch (cmd) {
6803
6804                 case  HPSA_PHYS_TARGET_RESET:
6805                         c->Request.CDBLen = 16;
6806                         c->Request.type_attr_dir =
6807                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6808                         c->Request.Timeout = 0; /* Don't time out */
6809                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6810                         c->Request.CDB[0] = HPSA_RESET;
6811                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6812                         /* Physical target reset needs no control bytes 4-7*/
6813                         c->Request.CDB[4] = 0x00;
6814                         c->Request.CDB[5] = 0x00;
6815                         c->Request.CDB[6] = 0x00;
6816                         c->Request.CDB[7] = 0x00;
6817                         break;
6818                 case  HPSA_DEVICE_RESET_MSG:
6819                         c->Request.CDBLen = 16;
6820                         c->Request.type_attr_dir =
6821                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6822                         c->Request.Timeout = 0; /* Don't time out */
6823                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6824                         c->Request.CDB[0] =  cmd;
6825                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6826                         /* If bytes 4-7 are zero, it means reset the */
6827                         /* LunID device */
6828                         c->Request.CDB[4] = 0x00;
6829                         c->Request.CDB[5] = 0x00;
6830                         c->Request.CDB[6] = 0x00;
6831                         c->Request.CDB[7] = 0x00;
6832                         break;
6833                 default:
6834                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6835                                 cmd);
6836                         BUG();
6837                 }
6838         } else {
6839                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6840                 BUG();
6841         }
6842
6843         switch (GET_DIR(c->Request.type_attr_dir)) {
6844         case XFER_READ:
6845                 dir = DMA_FROM_DEVICE;
6846                 break;
6847         case XFER_WRITE:
6848                 dir = DMA_TO_DEVICE;
6849                 break;
6850         case XFER_NONE:
6851                 dir = DMA_NONE;
6852                 break;
6853         default:
6854                 dir = DMA_BIDIRECTIONAL;
6855         }
6856         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6857                 return -1;
6858         return 0;
6859 }
6860
6861 /*
6862  * Map (physical) PCI mem into (virtual) kernel space
6863  */
6864 static void __iomem *remap_pci_mem(ulong base, ulong size)
6865 {
6866         ulong page_base = ((ulong) base) & PAGE_MASK;
6867         ulong page_offs = ((ulong) base) - page_base;
6868         void __iomem *page_remapped = ioremap_nocache(page_base,
6869                 page_offs + size);
6870
6871         return page_remapped ? (page_remapped + page_offs) : NULL;
6872 }
6873
6874 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6875 {
6876         return h->access.command_completed(h, q);
6877 }
6878
6879 static inline bool interrupt_pending(struct ctlr_info *h)
6880 {
6881         return h->access.intr_pending(h);
6882 }
6883
6884 static inline long interrupt_not_for_us(struct ctlr_info *h)
6885 {
6886         return (h->access.intr_pending(h) == 0) ||
6887                 (h->interrupts_enabled == 0);
6888 }
6889
6890 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6891         u32 raw_tag)
6892 {
6893         if (unlikely(tag_index >= h->nr_cmds)) {
6894                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6895                 return 1;
6896         }
6897         return 0;
6898 }
6899
6900 static inline void finish_cmd(struct CommandList *c)
6901 {
6902         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6903         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6904                         || c->cmd_type == CMD_IOACCEL2))
6905                 complete_scsi_command(c);
6906         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6907                 complete(c->waiting);
6908 }
6909
6910 /* process completion of an indexed ("direct lookup") command */
6911 static inline void process_indexed_cmd(struct ctlr_info *h,
6912         u32 raw_tag)
6913 {
6914         u32 tag_index;
6915         struct CommandList *c;
6916
6917         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6918         if (!bad_tag(h, tag_index, raw_tag)) {
6919                 c = h->cmd_pool + tag_index;
6920                 finish_cmd(c);
6921         }
6922 }
6923
6924 /* Some controllers, like p400, will give us one interrupt
6925  * after a soft reset, even if we turned interrupts off.
6926  * Only need to check for this in the hpsa_xxx_discard_completions
6927  * functions.
6928  */
6929 static int ignore_bogus_interrupt(struct ctlr_info *h)
6930 {
6931         if (likely(!reset_devices))
6932                 return 0;
6933
6934         if (likely(h->interrupts_enabled))
6935                 return 0;
6936
6937         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6938                 "(known firmware bug.)  Ignoring.\n");
6939
6940         return 1;
6941 }
6942
6943 /*
6944  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6945  * Relies on (h-q[x] == x) being true for x such that
6946  * 0 <= x < MAX_REPLY_QUEUES.
6947  */
6948 static struct ctlr_info *queue_to_hba(u8 *queue)
6949 {
6950         return container_of((queue - *queue), struct ctlr_info, q[0]);
6951 }
6952
6953 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6954 {
6955         struct ctlr_info *h = queue_to_hba(queue);
6956         u8 q = *(u8 *) queue;
6957         u32 raw_tag;
6958
6959         if (ignore_bogus_interrupt(h))
6960                 return IRQ_NONE;
6961
6962         if (interrupt_not_for_us(h))
6963                 return IRQ_NONE;
6964         h->last_intr_timestamp = get_jiffies_64();
6965         while (interrupt_pending(h)) {
6966                 raw_tag = get_next_completion(h, q);
6967                 while (raw_tag != FIFO_EMPTY)
6968                         raw_tag = next_command(h, q);
6969         }
6970         return IRQ_HANDLED;
6971 }
6972
6973 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6974 {
6975         struct ctlr_info *h = queue_to_hba(queue);
6976         u32 raw_tag;
6977         u8 q = *(u8 *) queue;
6978
6979         if (ignore_bogus_interrupt(h))
6980                 return IRQ_NONE;
6981
6982         h->last_intr_timestamp = get_jiffies_64();
6983         raw_tag = get_next_completion(h, q);
6984         while (raw_tag != FIFO_EMPTY)
6985                 raw_tag = next_command(h, q);
6986         return IRQ_HANDLED;
6987 }
6988
6989 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6990 {
6991         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6992         u32 raw_tag;
6993         u8 q = *(u8 *) queue;
6994
6995         if (interrupt_not_for_us(h))
6996                 return IRQ_NONE;
6997         h->last_intr_timestamp = get_jiffies_64();
6998         while (interrupt_pending(h)) {
6999                 raw_tag = get_next_completion(h, q);
7000                 while (raw_tag != FIFO_EMPTY) {
7001                         process_indexed_cmd(h, raw_tag);
7002                         raw_tag = next_command(h, q);
7003                 }
7004         }
7005         return IRQ_HANDLED;
7006 }
7007
7008 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7009 {
7010         struct ctlr_info *h = queue_to_hba(queue);
7011         u32 raw_tag;
7012         u8 q = *(u8 *) queue;
7013
7014         h->last_intr_timestamp = get_jiffies_64();
7015         raw_tag = get_next_completion(h, q);
7016         while (raw_tag != FIFO_EMPTY) {
7017                 process_indexed_cmd(h, raw_tag);
7018                 raw_tag = next_command(h, q);
7019         }
7020         return IRQ_HANDLED;
7021 }
7022
7023 /* Send a message CDB to the firmware. Careful, this only works
7024  * in simple mode, not performant mode due to the tag lookup.
7025  * We only ever use this immediately after a controller reset.
7026  */
7027 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7028                         unsigned char type)
7029 {
7030         struct Command {
7031                 struct CommandListHeader CommandHeader;
7032                 struct RequestBlock Request;
7033                 struct ErrDescriptor ErrorDescriptor;
7034         };
7035         struct Command *cmd;
7036         static const size_t cmd_sz = sizeof(*cmd) +
7037                                         sizeof(cmd->ErrorDescriptor);
7038         dma_addr_t paddr64;
7039         __le32 paddr32;
7040         u32 tag;
7041         void __iomem *vaddr;
7042         int i, err;
7043
7044         vaddr = pci_ioremap_bar(pdev, 0);
7045         if (vaddr == NULL)
7046                 return -ENOMEM;
7047
7048         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7049          * CCISS commands, so they must be allocated from the lower 4GiB of
7050          * memory.
7051          */
7052         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7053         if (err) {
7054                 iounmap(vaddr);
7055                 return err;
7056         }
7057
7058         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7059         if (cmd == NULL) {
7060                 iounmap(vaddr);
7061                 return -ENOMEM;
7062         }
7063
7064         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7065          * although there's no guarantee, we assume that the address is at
7066          * least 4-byte aligned (most likely, it's page-aligned).
7067          */
7068         paddr32 = cpu_to_le32(paddr64);
7069
7070         cmd->CommandHeader.ReplyQueue = 0;
7071         cmd->CommandHeader.SGList = 0;
7072         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7073         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7074         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7075
7076         cmd->Request.CDBLen = 16;
7077         cmd->Request.type_attr_dir =
7078                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7079         cmd->Request.Timeout = 0; /* Don't time out */
7080         cmd->Request.CDB[0] = opcode;
7081         cmd->Request.CDB[1] = type;
7082         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7083         cmd->ErrorDescriptor.Addr =
7084                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7085         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7086
7087         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7088
7089         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7090                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7091                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7092                         break;
7093                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7094         }
7095
7096         iounmap(vaddr);
7097
7098         /* we leak the DMA buffer here ... no choice since the controller could
7099          *  still complete the command.
7100          */
7101         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7102                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7103                         opcode, type);
7104                 return -ETIMEDOUT;
7105         }
7106
7107         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7108
7109         if (tag & HPSA_ERROR_BIT) {
7110                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7111                         opcode, type);
7112                 return -EIO;
7113         }
7114
7115         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7116                 opcode, type);
7117         return 0;
7118 }
7119
7120 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7121
7122 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7123         void __iomem *vaddr, u32 use_doorbell)
7124 {
7125
7126         if (use_doorbell) {
7127                 /* For everything after the P600, the PCI power state method
7128                  * of resetting the controller doesn't work, so we have this
7129                  * other way using the doorbell register.
7130                  */
7131                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7132                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7133
7134                 /* PMC hardware guys tell us we need a 10 second delay after
7135                  * doorbell reset and before any attempt to talk to the board
7136                  * at all to ensure that this actually works and doesn't fall
7137                  * over in some weird corner cases.
7138                  */
7139                 msleep(10000);
7140         } else { /* Try to do it the PCI power state way */
7141
7142                 /* Quoting from the Open CISS Specification: "The Power
7143                  * Management Control/Status Register (CSR) controls the power
7144                  * state of the device.  The normal operating state is D0,
7145                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7146                  * the controller, place the interface device in D3 then to D0,
7147                  * this causes a secondary PCI reset which will reset the
7148                  * controller." */
7149
7150                 int rc = 0;
7151
7152                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7153
7154                 /* enter the D3hot power management state */
7155                 rc = pci_set_power_state(pdev, PCI_D3hot);
7156                 if (rc)
7157                         return rc;
7158
7159                 msleep(500);
7160
7161                 /* enter the D0 power management state */
7162                 rc = pci_set_power_state(pdev, PCI_D0);
7163                 if (rc)
7164                         return rc;
7165
7166                 /*
7167                  * The P600 requires a small delay when changing states.
7168                  * Otherwise we may think the board did not reset and we bail.
7169                  * This for kdump only and is particular to the P600.
7170                  */
7171                 msleep(500);
7172         }
7173         return 0;
7174 }
7175
7176 static void init_driver_version(char *driver_version, int len)
7177 {
7178         memset(driver_version, 0, len);
7179         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7180 }
7181
7182 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7183 {
7184         char *driver_version;
7185         int i, size = sizeof(cfgtable->driver_version);
7186
7187         driver_version = kmalloc(size, GFP_KERNEL);
7188         if (!driver_version)
7189                 return -ENOMEM;
7190
7191         init_driver_version(driver_version, size);
7192         for (i = 0; i < size; i++)
7193                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7194         kfree(driver_version);
7195         return 0;
7196 }
7197
7198 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7199                                           unsigned char *driver_ver)
7200 {
7201         int i;
7202
7203         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7204                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7205 }
7206
7207 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7208 {
7209
7210         char *driver_ver, *old_driver_ver;
7211         int rc, size = sizeof(cfgtable->driver_version);
7212
7213         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7214         if (!old_driver_ver)
7215                 return -ENOMEM;
7216         driver_ver = old_driver_ver + size;
7217
7218         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7219          * should have been changed, otherwise we know the reset failed.
7220          */
7221         init_driver_version(old_driver_ver, size);
7222         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7223         rc = !memcmp(driver_ver, old_driver_ver, size);
7224         kfree(old_driver_ver);
7225         return rc;
7226 }
7227 /* This does a hard reset of the controller using PCI power management
7228  * states or the using the doorbell register.
7229  */
7230 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7231 {
7232         u64 cfg_offset;
7233         u32 cfg_base_addr;
7234         u64 cfg_base_addr_index;
7235         void __iomem *vaddr;
7236         unsigned long paddr;
7237         u32 misc_fw_support;
7238         int rc;
7239         struct CfgTable __iomem *cfgtable;
7240         u32 use_doorbell;
7241         u16 command_register;
7242
7243         /* For controllers as old as the P600, this is very nearly
7244          * the same thing as
7245          *
7246          * pci_save_state(pci_dev);
7247          * pci_set_power_state(pci_dev, PCI_D3hot);
7248          * pci_set_power_state(pci_dev, PCI_D0);
7249          * pci_restore_state(pci_dev);
7250          *
7251          * For controllers newer than the P600, the pci power state
7252          * method of resetting doesn't work so we have another way
7253          * using the doorbell register.
7254          */
7255
7256         if (!ctlr_is_resettable(board_id)) {
7257                 dev_warn(&pdev->dev, "Controller not resettable\n");
7258                 return -ENODEV;
7259         }
7260
7261         /* if controller is soft- but not hard resettable... */
7262         if (!ctlr_is_hard_resettable(board_id))
7263                 return -ENOTSUPP; /* try soft reset later. */
7264
7265         /* Save the PCI command register */
7266         pci_read_config_word(pdev, 4, &command_register);
7267         pci_save_state(pdev);
7268
7269         /* find the first memory BAR, so we can find the cfg table */
7270         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7271         if (rc)
7272                 return rc;
7273         vaddr = remap_pci_mem(paddr, 0x250);
7274         if (!vaddr)
7275                 return -ENOMEM;
7276
7277         /* find cfgtable in order to check if reset via doorbell is supported */
7278         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7279                                         &cfg_base_addr_index, &cfg_offset);
7280         if (rc)
7281                 goto unmap_vaddr;
7282         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7283                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7284         if (!cfgtable) {
7285                 rc = -ENOMEM;
7286                 goto unmap_vaddr;
7287         }
7288         rc = write_driver_ver_to_cfgtable(cfgtable);
7289         if (rc)
7290                 goto unmap_cfgtable;
7291
7292         /* If reset via doorbell register is supported, use that.
7293          * There are two such methods.  Favor the newest method.
7294          */
7295         misc_fw_support = readl(&cfgtable->misc_fw_support);
7296         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7297         if (use_doorbell) {
7298                 use_doorbell = DOORBELL_CTLR_RESET2;
7299         } else {
7300                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7301                 if (use_doorbell) {
7302                         dev_warn(&pdev->dev,
7303                                 "Soft reset not supported. Firmware update is required.\n");
7304                         rc = -ENOTSUPP; /* try soft reset */
7305                         goto unmap_cfgtable;
7306                 }
7307         }
7308
7309         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7310         if (rc)
7311                 goto unmap_cfgtable;
7312
7313         pci_restore_state(pdev);
7314         pci_write_config_word(pdev, 4, command_register);
7315
7316         /* Some devices (notably the HP Smart Array 5i Controller)
7317            need a little pause here */
7318         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7319
7320         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7321         if (rc) {
7322                 dev_warn(&pdev->dev,
7323                         "Failed waiting for board to become ready after hard reset\n");
7324                 goto unmap_cfgtable;
7325         }
7326
7327         rc = controller_reset_failed(vaddr);
7328         if (rc < 0)
7329                 goto unmap_cfgtable;
7330         if (rc) {
7331                 dev_warn(&pdev->dev, "Unable to successfully reset "
7332                         "controller. Will try soft reset.\n");
7333                 rc = -ENOTSUPP;
7334         } else {
7335                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7336         }
7337
7338 unmap_cfgtable:
7339         iounmap(cfgtable);
7340
7341 unmap_vaddr:
7342         iounmap(vaddr);
7343         return rc;
7344 }
7345
7346 /*
7347  *  We cannot read the structure directly, for portability we must use
7348  *   the io functions.
7349  *   This is for debug only.
7350  */
7351 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7352 {
7353 #ifdef HPSA_DEBUG
7354         int i;
7355         char temp_name[17];
7356
7357         dev_info(dev, "Controller Configuration information\n");
7358         dev_info(dev, "------------------------------------\n");
7359         for (i = 0; i < 4; i++)
7360                 temp_name[i] = readb(&(tb->Signature[i]));
7361         temp_name[4] = '\0';
7362         dev_info(dev, "   Signature = %s\n", temp_name);
7363         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7364         dev_info(dev, "   Transport methods supported = 0x%x\n",
7365                readl(&(tb->TransportSupport)));
7366         dev_info(dev, "   Transport methods active = 0x%x\n",
7367                readl(&(tb->TransportActive)));
7368         dev_info(dev, "   Requested transport Method = 0x%x\n",
7369                readl(&(tb->HostWrite.TransportRequest)));
7370         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7371                readl(&(tb->HostWrite.CoalIntDelay)));
7372         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7373                readl(&(tb->HostWrite.CoalIntCount)));
7374         dev_info(dev, "   Max outstanding commands = %d\n",
7375                readl(&(tb->CmdsOutMax)));
7376         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7377         for (i = 0; i < 16; i++)
7378                 temp_name[i] = readb(&(tb->ServerName[i]));
7379         temp_name[16] = '\0';
7380         dev_info(dev, "   Server Name = %s\n", temp_name);
7381         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7382                 readl(&(tb->HeartBeat)));
7383 #endif                          /* HPSA_DEBUG */
7384 }
7385
7386 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7387 {
7388         int i, offset, mem_type, bar_type;
7389
7390         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7391                 return 0;
7392         offset = 0;
7393         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7394                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7395                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7396                         offset += 4;
7397                 else {
7398                         mem_type = pci_resource_flags(pdev, i) &
7399                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7400                         switch (mem_type) {
7401                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7402                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7403                                 offset += 4;    /* 32 bit */
7404                                 break;
7405                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7406                                 offset += 8;
7407                                 break;
7408                         default:        /* reserved in PCI 2.2 */
7409                                 dev_warn(&pdev->dev,
7410                                        "base address is invalid\n");
7411                                 return -1;
7412                                 break;
7413                         }
7414                 }
7415                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7416                         return i + 1;
7417         }
7418         return -1;
7419 }
7420
7421 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7422 {
7423         pci_free_irq_vectors(h->pdev);
7424         h->msix_vectors = 0;
7425 }
7426
7427 static void hpsa_setup_reply_map(struct ctlr_info *h)
7428 {
7429         const struct cpumask *mask;
7430         unsigned int queue, cpu;
7431
7432         for (queue = 0; queue < h->msix_vectors; queue++) {
7433                 mask = pci_irq_get_affinity(h->pdev, queue);
7434                 if (!mask)
7435                         goto fallback;
7436
7437                 for_each_cpu(cpu, mask)
7438                         h->reply_map[cpu] = queue;
7439         }
7440         return;
7441
7442 fallback:
7443         for_each_possible_cpu(cpu)
7444                 h->reply_map[cpu] = 0;
7445 }
7446
7447 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7448  * controllers that are capable. If not, we use legacy INTx mode.
7449  */
7450 static int hpsa_interrupt_mode(struct ctlr_info *h)
7451 {
7452         unsigned int flags = PCI_IRQ_LEGACY;
7453         int ret;
7454
7455         /* Some boards advertise MSI but don't really support it */
7456         switch (h->board_id) {
7457         case 0x40700E11:
7458         case 0x40800E11:
7459         case 0x40820E11:
7460         case 0x40830E11:
7461                 break;
7462         default:
7463                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7464                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7465                 if (ret > 0) {
7466                         h->msix_vectors = ret;
7467                         return 0;
7468                 }
7469
7470                 flags |= PCI_IRQ_MSI;
7471                 break;
7472         }
7473
7474         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7475         if (ret < 0)
7476                 return ret;
7477         return 0;
7478 }
7479
7480 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7481                                 bool *legacy_board)
7482 {
7483         int i;
7484         u32 subsystem_vendor_id, subsystem_device_id;
7485
7486         subsystem_vendor_id = pdev->subsystem_vendor;
7487         subsystem_device_id = pdev->subsystem_device;
7488         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7489                     subsystem_vendor_id;
7490
7491         if (legacy_board)
7492                 *legacy_board = false;
7493         for (i = 0; i < ARRAY_SIZE(products); i++)
7494                 if (*board_id == products[i].board_id) {
7495                         if (products[i].access != &SA5A_access &&
7496                             products[i].access != &SA5B_access)
7497                                 return i;
7498                         dev_warn(&pdev->dev,
7499                                  "legacy board ID: 0x%08x\n",
7500                                  *board_id);
7501                         if (legacy_board)
7502                             *legacy_board = true;
7503                         return i;
7504                 }
7505
7506         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7507         if (legacy_board)
7508                 *legacy_board = true;
7509         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7510 }
7511
7512 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7513                                     unsigned long *memory_bar)
7514 {
7515         int i;
7516
7517         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7518                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7519                         /* addressing mode bits already removed */
7520                         *memory_bar = pci_resource_start(pdev, i);
7521                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7522                                 *memory_bar);
7523                         return 0;
7524                 }
7525         dev_warn(&pdev->dev, "no memory BAR found\n");
7526         return -ENODEV;
7527 }
7528
7529 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7530                                      int wait_for_ready)
7531 {
7532         int i, iterations;
7533         u32 scratchpad;
7534         if (wait_for_ready)
7535                 iterations = HPSA_BOARD_READY_ITERATIONS;
7536         else
7537                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7538
7539         for (i = 0; i < iterations; i++) {
7540                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7541                 if (wait_for_ready) {
7542                         if (scratchpad == HPSA_FIRMWARE_READY)
7543                                 return 0;
7544                 } else {
7545                         if (scratchpad != HPSA_FIRMWARE_READY)
7546                                 return 0;
7547                 }
7548                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7549         }
7550         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7551         return -ENODEV;
7552 }
7553
7554 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7555                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7556                                u64 *cfg_offset)
7557 {
7558         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7559         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7560         *cfg_base_addr &= (u32) 0x0000ffff;
7561         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7562         if (*cfg_base_addr_index == -1) {
7563                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7564                 return -ENODEV;
7565         }
7566         return 0;
7567 }
7568
7569 static void hpsa_free_cfgtables(struct ctlr_info *h)
7570 {
7571         if (h->transtable) {
7572                 iounmap(h->transtable);
7573                 h->transtable = NULL;
7574         }
7575         if (h->cfgtable) {
7576                 iounmap(h->cfgtable);
7577                 h->cfgtable = NULL;
7578         }
7579 }
7580
7581 /* Find and map CISS config table and transfer table
7582 + * several items must be unmapped (freed) later
7583 + * */
7584 static int hpsa_find_cfgtables(struct ctlr_info *h)
7585 {
7586         u64 cfg_offset;
7587         u32 cfg_base_addr;
7588         u64 cfg_base_addr_index;
7589         u32 trans_offset;
7590         int rc;
7591
7592         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7593                 &cfg_base_addr_index, &cfg_offset);
7594         if (rc)
7595                 return rc;
7596         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7597                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7598         if (!h->cfgtable) {
7599                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7600                 return -ENOMEM;
7601         }
7602         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7603         if (rc)
7604                 return rc;
7605         /* Find performant mode table. */
7606         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7607         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7608                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7609                                 sizeof(*h->transtable));
7610         if (!h->transtable) {
7611                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7612                 hpsa_free_cfgtables(h);
7613                 return -ENOMEM;
7614         }
7615         return 0;
7616 }
7617
7618 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7619 {
7620 #define MIN_MAX_COMMANDS 16
7621         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7622
7623         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7624
7625         /* Limit commands in memory limited kdump scenario. */
7626         if (reset_devices && h->max_commands > 32)
7627                 h->max_commands = 32;
7628
7629         if (h->max_commands < MIN_MAX_COMMANDS) {
7630                 dev_warn(&h->pdev->dev,
7631                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7632                         h->max_commands,
7633                         MIN_MAX_COMMANDS);
7634                 h->max_commands = MIN_MAX_COMMANDS;
7635         }
7636 }
7637
7638 /* If the controller reports that the total max sg entries is greater than 512,
7639  * then we know that chained SG blocks work.  (Original smart arrays did not
7640  * support chained SG blocks and would return zero for max sg entries.)
7641  */
7642 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7643 {
7644         return h->maxsgentries > 512;
7645 }
7646
7647 /* Interrogate the hardware for some limits:
7648  * max commands, max SG elements without chaining, and with chaining,
7649  * SG chain block size, etc.
7650  */
7651 static void hpsa_find_board_params(struct ctlr_info *h)
7652 {
7653         hpsa_get_max_perf_mode_cmds(h);
7654         h->nr_cmds = h->max_commands;
7655         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7656         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7657         if (hpsa_supports_chained_sg_blocks(h)) {
7658                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7659                 h->max_cmd_sg_entries = 32;
7660                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7661                 h->maxsgentries--; /* save one for chain pointer */
7662         } else {
7663                 /*
7664                  * Original smart arrays supported at most 31 s/g entries
7665                  * embedded inline in the command (trying to use more
7666                  * would lock up the controller)
7667                  */
7668                 h->max_cmd_sg_entries = 31;
7669                 h->maxsgentries = 31; /* default to traditional values */
7670                 h->chainsize = 0;
7671         }
7672
7673         /* Find out what task management functions are supported and cache */
7674         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7675         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7676                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7677         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7678                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7679         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7680                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7681 }
7682
7683 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7684 {
7685         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7686                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7687                 return false;
7688         }
7689         return true;
7690 }
7691
7692 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7693 {
7694         u32 driver_support;
7695
7696         driver_support = readl(&(h->cfgtable->driver_support));
7697         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7698 #ifdef CONFIG_X86
7699         driver_support |= ENABLE_SCSI_PREFETCH;
7700 #endif
7701         driver_support |= ENABLE_UNIT_ATTN;
7702         writel(driver_support, &(h->cfgtable->driver_support));
7703 }
7704
7705 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7706  * in a prefetch beyond physical memory.
7707  */
7708 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7709 {
7710         u32 dma_prefetch;
7711
7712         if (h->board_id != 0x3225103C)
7713                 return;
7714         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7715         dma_prefetch |= 0x8000;
7716         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7717 }
7718
7719 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7720 {
7721         int i;
7722         u32 doorbell_value;
7723         unsigned long flags;
7724         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7725         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7726                 spin_lock_irqsave(&h->lock, flags);
7727                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7728                 spin_unlock_irqrestore(&h->lock, flags);
7729                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7730                         goto done;
7731                 /* delay and try again */
7732                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7733         }
7734         return -ENODEV;
7735 done:
7736         return 0;
7737 }
7738
7739 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7740 {
7741         int i;
7742         u32 doorbell_value;
7743         unsigned long flags;
7744
7745         /* under certain very rare conditions, this can take awhile.
7746          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7747          * as we enter this code.)
7748          */
7749         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7750                 if (h->remove_in_progress)
7751                         goto done;
7752                 spin_lock_irqsave(&h->lock, flags);
7753                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7754                 spin_unlock_irqrestore(&h->lock, flags);
7755                 if (!(doorbell_value & CFGTBL_ChangeReq))
7756                         goto done;
7757                 /* delay and try again */
7758                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7759         }
7760         return -ENODEV;
7761 done:
7762         return 0;
7763 }
7764
7765 /* return -ENODEV or other reason on error, 0 on success */
7766 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7767 {
7768         u32 trans_support;
7769
7770         trans_support = readl(&(h->cfgtable->TransportSupport));
7771         if (!(trans_support & SIMPLE_MODE))
7772                 return -ENOTSUPP;
7773
7774         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7775
7776         /* Update the field, and then ring the doorbell */
7777         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7778         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7779         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7780         if (hpsa_wait_for_mode_change_ack(h))
7781                 goto error;
7782         print_cfg_table(&h->pdev->dev, h->cfgtable);
7783         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7784                 goto error;
7785         h->transMethod = CFGTBL_Trans_Simple;
7786         return 0;
7787 error:
7788         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7789         return -ENODEV;
7790 }
7791
7792 /* free items allocated or mapped by hpsa_pci_init */
7793 static void hpsa_free_pci_init(struct ctlr_info *h)
7794 {
7795         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7796         iounmap(h->vaddr);                      /* pci_init 3 */
7797         h->vaddr = NULL;
7798         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7799         /*
7800          * call pci_disable_device before pci_release_regions per
7801          * Documentation/PCI/pci.rst
7802          */
7803         pci_disable_device(h->pdev);            /* pci_init 1 */
7804         pci_release_regions(h->pdev);           /* pci_init 2 */
7805 }
7806
7807 /* several items must be freed later */
7808 static int hpsa_pci_init(struct ctlr_info *h)
7809 {
7810         int prod_index, err;
7811         bool legacy_board;
7812
7813         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7814         if (prod_index < 0)
7815                 return prod_index;
7816         h->product_name = products[prod_index].product_name;
7817         h->access = *(products[prod_index].access);
7818         h->legacy_board = legacy_board;
7819         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7820                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7821
7822         err = pci_enable_device(h->pdev);
7823         if (err) {
7824                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7825                 pci_disable_device(h->pdev);
7826                 return err;
7827         }
7828
7829         err = pci_request_regions(h->pdev, HPSA);
7830         if (err) {
7831                 dev_err(&h->pdev->dev,
7832                         "failed to obtain PCI resources\n");
7833                 pci_disable_device(h->pdev);
7834                 return err;
7835         }
7836
7837         pci_set_master(h->pdev);
7838
7839         err = hpsa_interrupt_mode(h);
7840         if (err)
7841                 goto clean1;
7842
7843         /* setup mapping between CPU and reply queue */
7844         hpsa_setup_reply_map(h);
7845
7846         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7847         if (err)
7848                 goto clean2;    /* intmode+region, pci */
7849         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7850         if (!h->vaddr) {
7851                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7852                 err = -ENOMEM;
7853                 goto clean2;    /* intmode+region, pci */
7854         }
7855         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7856         if (err)
7857                 goto clean3;    /* vaddr, intmode+region, pci */
7858         err = hpsa_find_cfgtables(h);
7859         if (err)
7860                 goto clean3;    /* vaddr, intmode+region, pci */
7861         hpsa_find_board_params(h);
7862
7863         if (!hpsa_CISS_signature_present(h)) {
7864                 err = -ENODEV;
7865                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7866         }
7867         hpsa_set_driver_support_bits(h);
7868         hpsa_p600_dma_prefetch_quirk(h);
7869         err = hpsa_enter_simple_mode(h);
7870         if (err)
7871                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7872         return 0;
7873
7874 clean4: /* cfgtables, vaddr, intmode+region, pci */
7875         hpsa_free_cfgtables(h);
7876 clean3: /* vaddr, intmode+region, pci */
7877         iounmap(h->vaddr);
7878         h->vaddr = NULL;
7879 clean2: /* intmode+region, pci */
7880         hpsa_disable_interrupt_mode(h);
7881 clean1:
7882         /*
7883          * call pci_disable_device before pci_release_regions per
7884          * Documentation/PCI/pci.rst
7885          */
7886         pci_disable_device(h->pdev);
7887         pci_release_regions(h->pdev);
7888         return err;
7889 }
7890
7891 static void hpsa_hba_inquiry(struct ctlr_info *h)
7892 {
7893         int rc;
7894
7895 #define HBA_INQUIRY_BYTE_COUNT 64
7896         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7897         if (!h->hba_inquiry_data)
7898                 return;
7899         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7900                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7901         if (rc != 0) {
7902                 kfree(h->hba_inquiry_data);
7903                 h->hba_inquiry_data = NULL;
7904         }
7905 }
7906
7907 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7908 {
7909         int rc, i;
7910         void __iomem *vaddr;
7911
7912         if (!reset_devices)
7913                 return 0;
7914
7915         /* kdump kernel is loading, we don't know in which state is
7916          * the pci interface. The dev->enable_cnt is equal zero
7917          * so we call enable+disable, wait a while and switch it on.
7918          */
7919         rc = pci_enable_device(pdev);
7920         if (rc) {
7921                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7922                 return -ENODEV;
7923         }
7924         pci_disable_device(pdev);
7925         msleep(260);                    /* a randomly chosen number */
7926         rc = pci_enable_device(pdev);
7927         if (rc) {
7928                 dev_warn(&pdev->dev, "failed to enable device.\n");
7929                 return -ENODEV;
7930         }
7931
7932         pci_set_master(pdev);
7933
7934         vaddr = pci_ioremap_bar(pdev, 0);
7935         if (vaddr == NULL) {
7936                 rc = -ENOMEM;
7937                 goto out_disable;
7938         }
7939         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7940         iounmap(vaddr);
7941
7942         /* Reset the controller with a PCI power-cycle or via doorbell */
7943         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7944
7945         /* -ENOTSUPP here means we cannot reset the controller
7946          * but it's already (and still) up and running in
7947          * "performant mode".  Or, it might be 640x, which can't reset
7948          * due to concerns about shared bbwc between 6402/6404 pair.
7949          */
7950         if (rc)
7951                 goto out_disable;
7952
7953         /* Now try to get the controller to respond to a no-op */
7954         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7955         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7956                 if (hpsa_noop(pdev) == 0)
7957                         break;
7958                 else
7959                         dev_warn(&pdev->dev, "no-op failed%s\n",
7960                                         (i < 11 ? "; re-trying" : ""));
7961         }
7962
7963 out_disable:
7964
7965         pci_disable_device(pdev);
7966         return rc;
7967 }
7968
7969 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7970 {
7971         kfree(h->cmd_pool_bits);
7972         h->cmd_pool_bits = NULL;
7973         if (h->cmd_pool) {
7974                 dma_free_coherent(&h->pdev->dev,
7975                                 h->nr_cmds * sizeof(struct CommandList),
7976                                 h->cmd_pool,
7977                                 h->cmd_pool_dhandle);
7978                 h->cmd_pool = NULL;
7979                 h->cmd_pool_dhandle = 0;
7980         }
7981         if (h->errinfo_pool) {
7982                 dma_free_coherent(&h->pdev->dev,
7983                                 h->nr_cmds * sizeof(struct ErrorInfo),
7984                                 h->errinfo_pool,
7985                                 h->errinfo_pool_dhandle);
7986                 h->errinfo_pool = NULL;
7987                 h->errinfo_pool_dhandle = 0;
7988         }
7989 }
7990
7991 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7992 {
7993         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7994                                    sizeof(unsigned long),
7995                                    GFP_KERNEL);
7996         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7997                     h->nr_cmds * sizeof(*h->cmd_pool),
7998                     &h->cmd_pool_dhandle, GFP_KERNEL);
7999         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8000                     h->nr_cmds * sizeof(*h->errinfo_pool),
8001                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8002         if ((h->cmd_pool_bits == NULL)
8003             || (h->cmd_pool == NULL)
8004             || (h->errinfo_pool == NULL)) {
8005                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8006                 goto clean_up;
8007         }
8008         hpsa_preinitialize_commands(h);
8009         return 0;
8010 clean_up:
8011         hpsa_free_cmd_pool(h);
8012         return -ENOMEM;
8013 }
8014
8015 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8016 static void hpsa_free_irqs(struct ctlr_info *h)
8017 {
8018         int i;
8019         int irq_vector = 0;
8020
8021         if (hpsa_simple_mode)
8022                 irq_vector = h->intr_mode;
8023
8024         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8025                 /* Single reply queue, only one irq to free */
8026                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8027                                 &h->q[h->intr_mode]);
8028                 h->q[h->intr_mode] = 0;
8029                 return;
8030         }
8031
8032         for (i = 0; i < h->msix_vectors; i++) {
8033                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8034                 h->q[i] = 0;
8035         }
8036         for (; i < MAX_REPLY_QUEUES; i++)
8037                 h->q[i] = 0;
8038 }
8039
8040 /* returns 0 on success; cleans up and returns -Enn on error */
8041 static int hpsa_request_irqs(struct ctlr_info *h,
8042         irqreturn_t (*msixhandler)(int, void *),
8043         irqreturn_t (*intxhandler)(int, void *))
8044 {
8045         int rc, i;
8046         int irq_vector = 0;
8047
8048         if (hpsa_simple_mode)
8049                 irq_vector = h->intr_mode;
8050
8051         /*
8052          * initialize h->q[x] = x so that interrupt handlers know which
8053          * queue to process.
8054          */
8055         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8056                 h->q[i] = (u8) i;
8057
8058         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8059                 /* If performant mode and MSI-X, use multiple reply queues */
8060                 for (i = 0; i < h->msix_vectors; i++) {
8061                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8062                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8063                                         0, h->intrname[i],
8064                                         &h->q[i]);
8065                         if (rc) {
8066                                 int j;
8067
8068                                 dev_err(&h->pdev->dev,
8069                                         "failed to get irq %d for %s\n",
8070                                        pci_irq_vector(h->pdev, i), h->devname);
8071                                 for (j = 0; j < i; j++) {
8072                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8073                                         h->q[j] = 0;
8074                                 }
8075                                 for (; j < MAX_REPLY_QUEUES; j++)
8076                                         h->q[j] = 0;
8077                                 return rc;
8078                         }
8079                 }
8080         } else {
8081                 /* Use single reply pool */
8082                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8083                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8084                                 h->msix_vectors ? "x" : "");
8085                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8086                                 msixhandler, 0,
8087                                 h->intrname[0],
8088                                 &h->q[h->intr_mode]);
8089                 } else {
8090                         sprintf(h->intrname[h->intr_mode],
8091                                 "%s-intx", h->devname);
8092                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8093                                 intxhandler, IRQF_SHARED,
8094                                 h->intrname[0],
8095                                 &h->q[h->intr_mode]);
8096                 }
8097         }
8098         if (rc) {
8099                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8100                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8101                 hpsa_free_irqs(h);
8102                 return -ENODEV;
8103         }
8104         return 0;
8105 }
8106
8107 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8108 {
8109         int rc;
8110         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8111
8112         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8113         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8114         if (rc) {
8115                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8116                 return rc;
8117         }
8118
8119         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8120         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8121         if (rc) {
8122                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8123                         "after soft reset.\n");
8124                 return rc;
8125         }
8126
8127         return 0;
8128 }
8129
8130 static void hpsa_free_reply_queues(struct ctlr_info *h)
8131 {
8132         int i;
8133
8134         for (i = 0; i < h->nreply_queues; i++) {
8135                 if (!h->reply_queue[i].head)
8136                         continue;
8137                 dma_free_coherent(&h->pdev->dev,
8138                                         h->reply_queue_size,
8139                                         h->reply_queue[i].head,
8140                                         h->reply_queue[i].busaddr);
8141                 h->reply_queue[i].head = NULL;
8142                 h->reply_queue[i].busaddr = 0;
8143         }
8144         h->reply_queue_size = 0;
8145 }
8146
8147 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8148 {
8149         hpsa_free_performant_mode(h);           /* init_one 7 */
8150         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8151         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8152         hpsa_free_irqs(h);                      /* init_one 4 */
8153         scsi_host_put(h->scsi_host);            /* init_one 3 */
8154         h->scsi_host = NULL;                    /* init_one 3 */
8155         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8156         free_percpu(h->lockup_detected);        /* init_one 2 */
8157         h->lockup_detected = NULL;              /* init_one 2 */
8158         if (h->resubmit_wq) {
8159                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8160                 h->resubmit_wq = NULL;
8161         }
8162         if (h->rescan_ctlr_wq) {
8163                 destroy_workqueue(h->rescan_ctlr_wq);
8164                 h->rescan_ctlr_wq = NULL;
8165         }
8166         if (h->monitor_ctlr_wq) {
8167                 destroy_workqueue(h->monitor_ctlr_wq);
8168                 h->monitor_ctlr_wq = NULL;
8169         }
8170
8171         kfree(h);                               /* init_one 1 */
8172 }
8173
8174 /* Called when controller lockup detected. */
8175 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8176 {
8177         int i, refcount;
8178         struct CommandList *c;
8179         int failcount = 0;
8180
8181         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8182         for (i = 0; i < h->nr_cmds; i++) {
8183                 c = h->cmd_pool + i;
8184                 refcount = atomic_inc_return(&c->refcount);
8185                 if (refcount > 1) {
8186                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8187                         finish_cmd(c);
8188                         atomic_dec(&h->commands_outstanding);
8189                         failcount++;
8190                 }
8191                 cmd_free(h, c);
8192         }
8193         dev_warn(&h->pdev->dev,
8194                 "failed %d commands in fail_all\n", failcount);
8195 }
8196
8197 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8198 {
8199         int cpu;
8200
8201         for_each_online_cpu(cpu) {
8202                 u32 *lockup_detected;
8203                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8204                 *lockup_detected = value;
8205         }
8206         wmb(); /* be sure the per-cpu variables are out to memory */
8207 }
8208
8209 static void controller_lockup_detected(struct ctlr_info *h)
8210 {
8211         unsigned long flags;
8212         u32 lockup_detected;
8213
8214         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8215         spin_lock_irqsave(&h->lock, flags);
8216         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8217         if (!lockup_detected) {
8218                 /* no heartbeat, but controller gave us a zero. */
8219                 dev_warn(&h->pdev->dev,
8220                         "lockup detected after %d but scratchpad register is zero\n",
8221                         h->heartbeat_sample_interval / HZ);
8222                 lockup_detected = 0xffffffff;
8223         }
8224         set_lockup_detected_for_all_cpus(h, lockup_detected);
8225         spin_unlock_irqrestore(&h->lock, flags);
8226         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8227                         lockup_detected, h->heartbeat_sample_interval / HZ);
8228         if (lockup_detected == 0xffff0000) {
8229                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8230                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8231         }
8232         pci_disable_device(h->pdev);
8233         fail_all_outstanding_cmds(h);
8234 }
8235
8236 static int detect_controller_lockup(struct ctlr_info *h)
8237 {
8238         u64 now;
8239         u32 heartbeat;
8240         unsigned long flags;
8241
8242         now = get_jiffies_64();
8243         /* If we've received an interrupt recently, we're ok. */
8244         if (time_after64(h->last_intr_timestamp +
8245                                 (h->heartbeat_sample_interval), now))
8246                 return false;
8247
8248         /*
8249          * If we've already checked the heartbeat recently, we're ok.
8250          * This could happen if someone sends us a signal. We
8251          * otherwise don't care about signals in this thread.
8252          */
8253         if (time_after64(h->last_heartbeat_timestamp +
8254                                 (h->heartbeat_sample_interval), now))
8255                 return false;
8256
8257         /* If heartbeat has not changed since we last looked, we're not ok. */
8258         spin_lock_irqsave(&h->lock, flags);
8259         heartbeat = readl(&h->cfgtable->HeartBeat);
8260         spin_unlock_irqrestore(&h->lock, flags);
8261         if (h->last_heartbeat == heartbeat) {
8262                 controller_lockup_detected(h);
8263                 return true;
8264         }
8265
8266         /* We're ok. */
8267         h->last_heartbeat = heartbeat;
8268         h->last_heartbeat_timestamp = now;
8269         return false;
8270 }
8271
8272 /*
8273  * Set ioaccel status for all ioaccel volumes.
8274  *
8275  * Called from monitor controller worker (hpsa_event_monitor_worker)
8276  *
8277  * A Volume (or Volumes that comprise an Array set may be undergoing a
8278  * transformation, so we will be turning off ioaccel for all volumes that
8279  * make up the Array.
8280  */
8281 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8282 {
8283         int rc;
8284         int i;
8285         u8 ioaccel_status;
8286         unsigned char *buf;
8287         struct hpsa_scsi_dev_t *device;
8288
8289         if (!h)
8290                 return;
8291
8292         buf = kmalloc(64, GFP_KERNEL);
8293         if (!buf)
8294                 return;
8295
8296         /*
8297          * Run through current device list used during I/O requests.
8298          */
8299         for (i = 0; i < h->ndevices; i++) {
8300                 device = h->dev[i];
8301
8302                 if (!device)
8303                         continue;
8304                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8305                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8306                         continue;
8307
8308                 memset(buf, 0, 64);
8309
8310                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8311                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8312                                         buf, 64);
8313                 if (rc != 0)
8314                         continue;
8315
8316                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8317                 device->offload_config =
8318                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8319                 if (device->offload_config)
8320                         device->offload_to_be_enabled =
8321                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8322
8323                 /*
8324                  * Immediately turn off ioaccel for any volume the
8325                  * controller tells us to. Some of the reasons could be:
8326                  *    transformation - change to the LVs of an Array.
8327                  *    degraded volume - component failure
8328                  *
8329                  * If ioaccel is to be re-enabled, re-enable later during the
8330                  * scan operation so the driver can get a fresh raidmap
8331                  * before turning ioaccel back on.
8332                  *
8333                  */
8334                 if (!device->offload_to_be_enabled)
8335                         device->offload_enabled = 0;
8336         }
8337
8338         kfree(buf);
8339 }
8340
8341 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8342 {
8343         char *event_type;
8344
8345         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8346                 return;
8347
8348         /* Ask the controller to clear the events we're handling. */
8349         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8350                         | CFGTBL_Trans_io_accel2)) &&
8351                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8352                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8353
8354                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8355                         event_type = "state change";
8356                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8357                         event_type = "configuration change";
8358                 /* Stop sending new RAID offload reqs via the IO accelerator */
8359                 scsi_block_requests(h->scsi_host);
8360                 hpsa_set_ioaccel_status(h);
8361                 hpsa_drain_accel_commands(h);
8362                 /* Set 'accelerator path config change' bit */
8363                 dev_warn(&h->pdev->dev,
8364                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8365                         h->events, event_type);
8366                 writel(h->events, &(h->cfgtable->clear_event_notify));
8367                 /* Set the "clear event notify field update" bit 6 */
8368                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8369                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8370                 hpsa_wait_for_clear_event_notify_ack(h);
8371                 scsi_unblock_requests(h->scsi_host);
8372         } else {
8373                 /* Acknowledge controller notification events. */
8374                 writel(h->events, &(h->cfgtable->clear_event_notify));
8375                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8376                 hpsa_wait_for_clear_event_notify_ack(h);
8377         }
8378         return;
8379 }
8380
8381 /* Check a register on the controller to see if there are configuration
8382  * changes (added/changed/removed logical drives, etc.) which mean that
8383  * we should rescan the controller for devices.
8384  * Also check flag for driver-initiated rescan.
8385  */
8386 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8387 {
8388         if (h->drv_req_rescan) {
8389                 h->drv_req_rescan = 0;
8390                 return 1;
8391         }
8392
8393         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8394                 return 0;
8395
8396         h->events = readl(&(h->cfgtable->event_notify));
8397         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8398 }
8399
8400 /*
8401  * Check if any of the offline devices have become ready
8402  */
8403 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8404 {
8405         unsigned long flags;
8406         struct offline_device_entry *d;
8407         struct list_head *this, *tmp;
8408
8409         spin_lock_irqsave(&h->offline_device_lock, flags);
8410         list_for_each_safe(this, tmp, &h->offline_device_list) {
8411                 d = list_entry(this, struct offline_device_entry,
8412                                 offline_list);
8413                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8414                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8415                         spin_lock_irqsave(&h->offline_device_lock, flags);
8416                         list_del(&d->offline_list);
8417                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8418                         return 1;
8419                 }
8420                 spin_lock_irqsave(&h->offline_device_lock, flags);
8421         }
8422         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8423         return 0;
8424 }
8425
8426 static int hpsa_luns_changed(struct ctlr_info *h)
8427 {
8428         int rc = 1; /* assume there are changes */
8429         struct ReportLUNdata *logdev = NULL;
8430
8431         /* if we can't find out if lun data has changed,
8432          * assume that it has.
8433          */
8434
8435         if (!h->lastlogicals)
8436                 return rc;
8437
8438         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8439         if (!logdev)
8440                 return rc;
8441
8442         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8443                 dev_warn(&h->pdev->dev,
8444                         "report luns failed, can't track lun changes.\n");
8445                 goto out;
8446         }
8447         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8448                 dev_info(&h->pdev->dev,
8449                         "Lun changes detected.\n");
8450                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8451                 goto out;
8452         } else
8453                 rc = 0; /* no changes detected. */
8454 out:
8455         kfree(logdev);
8456         return rc;
8457 }
8458
8459 static void hpsa_perform_rescan(struct ctlr_info *h)
8460 {
8461         struct Scsi_Host *sh = NULL;
8462         unsigned long flags;
8463
8464         /*
8465          * Do the scan after the reset
8466          */
8467         spin_lock_irqsave(&h->reset_lock, flags);
8468         if (h->reset_in_progress) {
8469                 h->drv_req_rescan = 1;
8470                 spin_unlock_irqrestore(&h->reset_lock, flags);
8471                 return;
8472         }
8473         spin_unlock_irqrestore(&h->reset_lock, flags);
8474
8475         sh = scsi_host_get(h->scsi_host);
8476         if (sh != NULL) {
8477                 hpsa_scan_start(sh);
8478                 scsi_host_put(sh);
8479                 h->drv_req_rescan = 0;
8480         }
8481 }
8482
8483 /*
8484  * watch for controller events
8485  */
8486 static void hpsa_event_monitor_worker(struct work_struct *work)
8487 {
8488         struct ctlr_info *h = container_of(to_delayed_work(work),
8489                                         struct ctlr_info, event_monitor_work);
8490         unsigned long flags;
8491
8492         spin_lock_irqsave(&h->lock, flags);
8493         if (h->remove_in_progress) {
8494                 spin_unlock_irqrestore(&h->lock, flags);
8495                 return;
8496         }
8497         spin_unlock_irqrestore(&h->lock, flags);
8498
8499         if (hpsa_ctlr_needs_rescan(h)) {
8500                 hpsa_ack_ctlr_events(h);
8501                 hpsa_perform_rescan(h);
8502         }
8503
8504         spin_lock_irqsave(&h->lock, flags);
8505         if (!h->remove_in_progress)
8506                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8507                                 HPSA_EVENT_MONITOR_INTERVAL);
8508         spin_unlock_irqrestore(&h->lock, flags);
8509 }
8510
8511 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8512 {
8513         unsigned long flags;
8514         struct ctlr_info *h = container_of(to_delayed_work(work),
8515                                         struct ctlr_info, rescan_ctlr_work);
8516
8517         spin_lock_irqsave(&h->lock, flags);
8518         if (h->remove_in_progress) {
8519                 spin_unlock_irqrestore(&h->lock, flags);
8520                 return;
8521         }
8522         spin_unlock_irqrestore(&h->lock, flags);
8523
8524         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8525                 hpsa_perform_rescan(h);
8526         } else if (h->discovery_polling) {
8527                 if (hpsa_luns_changed(h)) {
8528                         dev_info(&h->pdev->dev,
8529                                 "driver discovery polling rescan.\n");
8530                         hpsa_perform_rescan(h);
8531                 }
8532         }
8533         spin_lock_irqsave(&h->lock, flags);
8534         if (!h->remove_in_progress)
8535                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8536                                 h->heartbeat_sample_interval);
8537         spin_unlock_irqrestore(&h->lock, flags);
8538 }
8539
8540 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8541 {
8542         unsigned long flags;
8543         struct ctlr_info *h = container_of(to_delayed_work(work),
8544                                         struct ctlr_info, monitor_ctlr_work);
8545
8546         detect_controller_lockup(h);
8547         if (lockup_detected(h))
8548                 return;
8549
8550         spin_lock_irqsave(&h->lock, flags);
8551         if (!h->remove_in_progress)
8552                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8553                                 h->heartbeat_sample_interval);
8554         spin_unlock_irqrestore(&h->lock, flags);
8555 }
8556
8557 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8558                                                 char *name)
8559 {
8560         struct workqueue_struct *wq = NULL;
8561
8562         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8563         if (!wq)
8564                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8565
8566         return wq;
8567 }
8568
8569 static void hpda_free_ctlr_info(struct ctlr_info *h)
8570 {
8571         kfree(h->reply_map);
8572         kfree(h);
8573 }
8574
8575 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8576 {
8577         struct ctlr_info *h;
8578
8579         h = kzalloc(sizeof(*h), GFP_KERNEL);
8580         if (!h)
8581                 return NULL;
8582
8583         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8584         if (!h->reply_map) {
8585                 kfree(h);
8586                 return NULL;
8587         }
8588         return h;
8589 }
8590
8591 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8592 {
8593         int dac, rc;
8594         struct ctlr_info *h;
8595         int try_soft_reset = 0;
8596         unsigned long flags;
8597         u32 board_id;
8598
8599         if (number_of_controllers == 0)
8600                 printk(KERN_INFO DRIVER_NAME "\n");
8601
8602         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8603         if (rc < 0) {
8604                 dev_warn(&pdev->dev, "Board ID not found\n");
8605                 return rc;
8606         }
8607
8608         rc = hpsa_init_reset_devices(pdev, board_id);
8609         if (rc) {
8610                 if (rc != -ENOTSUPP)
8611                         return rc;
8612                 /* If the reset fails in a particular way (it has no way to do
8613                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8614                  * a soft reset once we get the controller configured up to the
8615                  * point that it can accept a command.
8616                  */
8617                 try_soft_reset = 1;
8618                 rc = 0;
8619         }
8620
8621 reinit_after_soft_reset:
8622
8623         /* Command structures must be aligned on a 32-byte boundary because
8624          * the 5 lower bits of the address are used by the hardware. and by
8625          * the driver.  See comments in hpsa.h for more info.
8626          */
8627         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8628         h = hpda_alloc_ctlr_info();
8629         if (!h) {
8630                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8631                 return -ENOMEM;
8632         }
8633
8634         h->pdev = pdev;
8635
8636         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8637         INIT_LIST_HEAD(&h->offline_device_list);
8638         spin_lock_init(&h->lock);
8639         spin_lock_init(&h->offline_device_lock);
8640         spin_lock_init(&h->scan_lock);
8641         spin_lock_init(&h->reset_lock);
8642         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8643
8644         /* Allocate and clear per-cpu variable lockup_detected */
8645         h->lockup_detected = alloc_percpu(u32);
8646         if (!h->lockup_detected) {
8647                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8648                 rc = -ENOMEM;
8649                 goto clean1;    /* aer/h */
8650         }
8651         set_lockup_detected_for_all_cpus(h, 0);
8652
8653         rc = hpsa_pci_init(h);
8654         if (rc)
8655                 goto clean2;    /* lu, aer/h */
8656
8657         /* relies on h-> settings made by hpsa_pci_init, including
8658          * interrupt_mode h->intr */
8659         rc = hpsa_scsi_host_alloc(h);
8660         if (rc)
8661                 goto clean2_5;  /* pci, lu, aer/h */
8662
8663         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8664         h->ctlr = number_of_controllers;
8665         number_of_controllers++;
8666
8667         /* configure PCI DMA stuff */
8668         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8669         if (rc == 0) {
8670                 dac = 1;
8671         } else {
8672                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8673                 if (rc == 0) {
8674                         dac = 0;
8675                 } else {
8676                         dev_err(&pdev->dev, "no suitable DMA available\n");
8677                         goto clean3;    /* shost, pci, lu, aer/h */
8678                 }
8679         }
8680
8681         /* make sure the board interrupts are off */
8682         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8683
8684         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8685         if (rc)
8686                 goto clean3;    /* shost, pci, lu, aer/h */
8687         rc = hpsa_alloc_cmd_pool(h);
8688         if (rc)
8689                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8690         rc = hpsa_alloc_sg_chain_blocks(h);
8691         if (rc)
8692                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8693         init_waitqueue_head(&h->scan_wait_queue);
8694         init_waitqueue_head(&h->event_sync_wait_queue);
8695         mutex_init(&h->reset_mutex);
8696         h->scan_finished = 1; /* no scan currently in progress */
8697         h->scan_waiting = 0;
8698
8699         pci_set_drvdata(pdev, h);
8700         h->ndevices = 0;
8701
8702         spin_lock_init(&h->devlock);
8703         rc = hpsa_put_ctlr_into_performant_mode(h);
8704         if (rc)
8705                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8706
8707         /* create the resubmit workqueue */
8708         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8709         if (!h->rescan_ctlr_wq) {
8710                 rc = -ENOMEM;
8711                 goto clean7;
8712         }
8713
8714         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8715         if (!h->resubmit_wq) {
8716                 rc = -ENOMEM;
8717                 goto clean7;    /* aer/h */
8718         }
8719
8720         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8721         if (!h->monitor_ctlr_wq) {
8722                 rc = -ENOMEM;
8723                 goto clean7;
8724         }
8725
8726         /*
8727          * At this point, the controller is ready to take commands.
8728          * Now, if reset_devices and the hard reset didn't work, try
8729          * the soft reset and see if that works.
8730          */
8731         if (try_soft_reset) {
8732
8733                 /* This is kind of gross.  We may or may not get a completion
8734                  * from the soft reset command, and if we do, then the value
8735                  * from the fifo may or may not be valid.  So, we wait 10 secs
8736                  * after the reset throwing away any completions we get during
8737                  * that time.  Unregister the interrupt handler and register
8738                  * fake ones to scoop up any residual completions.
8739                  */
8740                 spin_lock_irqsave(&h->lock, flags);
8741                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8742                 spin_unlock_irqrestore(&h->lock, flags);
8743                 hpsa_free_irqs(h);
8744                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8745                                         hpsa_intx_discard_completions);
8746                 if (rc) {
8747                         dev_warn(&h->pdev->dev,
8748                                 "Failed to request_irq after soft reset.\n");
8749                         /*
8750                          * cannot goto clean7 or free_irqs will be called
8751                          * again. Instead, do its work
8752                          */
8753                         hpsa_free_performant_mode(h);   /* clean7 */
8754                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8755                         hpsa_free_cmd_pool(h);          /* clean5 */
8756                         /*
8757                          * skip hpsa_free_irqs(h) clean4 since that
8758                          * was just called before request_irqs failed
8759                          */
8760                         goto clean3;
8761                 }
8762
8763                 rc = hpsa_kdump_soft_reset(h);
8764                 if (rc)
8765                         /* Neither hard nor soft reset worked, we're hosed. */
8766                         goto clean7;
8767
8768                 dev_info(&h->pdev->dev, "Board READY.\n");
8769                 dev_info(&h->pdev->dev,
8770                         "Waiting for stale completions to drain.\n");
8771                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8772                 msleep(10000);
8773                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8774
8775                 rc = controller_reset_failed(h->cfgtable);
8776                 if (rc)
8777                         dev_info(&h->pdev->dev,
8778                                 "Soft reset appears to have failed.\n");
8779
8780                 /* since the controller's reset, we have to go back and re-init
8781                  * everything.  Easiest to just forget what we've done and do it
8782                  * all over again.
8783                  */
8784                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8785                 try_soft_reset = 0;
8786                 if (rc)
8787                         /* don't goto clean, we already unallocated */
8788                         return -ENODEV;
8789
8790                 goto reinit_after_soft_reset;
8791         }
8792
8793         /* Enable Accelerated IO path at driver layer */
8794         h->acciopath_status = 1;
8795         /* Disable discovery polling.*/
8796         h->discovery_polling = 0;
8797
8798
8799         /* Turn the interrupts on so we can service requests */
8800         h->access.set_intr_mask(h, HPSA_INTR_ON);
8801
8802         hpsa_hba_inquiry(h);
8803
8804         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8805         if (!h->lastlogicals)
8806                 dev_info(&h->pdev->dev,
8807                         "Can't track change to report lun data\n");
8808
8809         /* hook into SCSI subsystem */
8810         rc = hpsa_scsi_add_host(h);
8811         if (rc)
8812                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8813
8814         /* Monitor the controller for firmware lockups */
8815         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8816         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8817         schedule_delayed_work(&h->monitor_ctlr_work,
8818                                 h->heartbeat_sample_interval);
8819         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8820         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8821                                 h->heartbeat_sample_interval);
8822         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8823         schedule_delayed_work(&h->event_monitor_work,
8824                                 HPSA_EVENT_MONITOR_INTERVAL);
8825         return 0;
8826
8827 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8828         hpsa_free_performant_mode(h);
8829         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8830 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8831         hpsa_free_sg_chain_blocks(h);
8832 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8833         hpsa_free_cmd_pool(h);
8834 clean4: /* irq, shost, pci, lu, aer/h */
8835         hpsa_free_irqs(h);
8836 clean3: /* shost, pci, lu, aer/h */
8837         scsi_host_put(h->scsi_host);
8838         h->scsi_host = NULL;
8839 clean2_5: /* pci, lu, aer/h */
8840         hpsa_free_pci_init(h);
8841 clean2: /* lu, aer/h */
8842         if (h->lockup_detected) {
8843                 free_percpu(h->lockup_detected);
8844                 h->lockup_detected = NULL;
8845         }
8846 clean1: /* wq/aer/h */
8847         if (h->resubmit_wq) {
8848                 destroy_workqueue(h->resubmit_wq);
8849                 h->resubmit_wq = NULL;
8850         }
8851         if (h->rescan_ctlr_wq) {
8852                 destroy_workqueue(h->rescan_ctlr_wq);
8853                 h->rescan_ctlr_wq = NULL;
8854         }
8855         if (h->monitor_ctlr_wq) {
8856                 destroy_workqueue(h->monitor_ctlr_wq);
8857                 h->monitor_ctlr_wq = NULL;
8858         }
8859         kfree(h);
8860         return rc;
8861 }
8862
8863 static void hpsa_flush_cache(struct ctlr_info *h)
8864 {
8865         char *flush_buf;
8866         struct CommandList *c;
8867         int rc;
8868
8869         if (unlikely(lockup_detected(h)))
8870                 return;
8871         flush_buf = kzalloc(4, GFP_KERNEL);
8872         if (!flush_buf)
8873                 return;
8874
8875         c = cmd_alloc(h);
8876
8877         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8878                 RAID_CTLR_LUNID, TYPE_CMD)) {
8879                 goto out;
8880         }
8881         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8882                         DEFAULT_TIMEOUT);
8883         if (rc)
8884                 goto out;
8885         if (c->err_info->CommandStatus != 0)
8886 out:
8887                 dev_warn(&h->pdev->dev,
8888                         "error flushing cache on controller\n");
8889         cmd_free(h, c);
8890         kfree(flush_buf);
8891 }
8892
8893 /* Make controller gather fresh report lun data each time we
8894  * send down a report luns request
8895  */
8896 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8897 {
8898         u32 *options;
8899         struct CommandList *c;
8900         int rc;
8901
8902         /* Don't bother trying to set diag options if locked up */
8903         if (unlikely(h->lockup_detected))
8904                 return;
8905
8906         options = kzalloc(sizeof(*options), GFP_KERNEL);
8907         if (!options)
8908                 return;
8909
8910         c = cmd_alloc(h);
8911
8912         /* first, get the current diag options settings */
8913         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8914                 RAID_CTLR_LUNID, TYPE_CMD))
8915                 goto errout;
8916
8917         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8918                         NO_TIMEOUT);
8919         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8920                 goto errout;
8921
8922         /* Now, set the bit for disabling the RLD caching */
8923         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8924
8925         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8926                 RAID_CTLR_LUNID, TYPE_CMD))
8927                 goto errout;
8928
8929         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8930                         NO_TIMEOUT);
8931         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8932                 goto errout;
8933
8934         /* Now verify that it got set: */
8935         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8936                 RAID_CTLR_LUNID, TYPE_CMD))
8937                 goto errout;
8938
8939         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8940                         NO_TIMEOUT);
8941         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8942                 goto errout;
8943
8944         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8945                 goto out;
8946
8947 errout:
8948         dev_err(&h->pdev->dev,
8949                         "Error: failed to disable report lun data caching.\n");
8950 out:
8951         cmd_free(h, c);
8952         kfree(options);
8953 }
8954
8955 static void __hpsa_shutdown(struct pci_dev *pdev)
8956 {
8957         struct ctlr_info *h;
8958
8959         h = pci_get_drvdata(pdev);
8960         /* Turn board interrupts off  and send the flush cache command
8961          * sendcmd will turn off interrupt, and send the flush...
8962          * To write all data in the battery backed cache to disks
8963          */
8964         hpsa_flush_cache(h);
8965         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8966         hpsa_free_irqs(h);                      /* init_one 4 */
8967         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8968 }
8969
8970 static void hpsa_shutdown(struct pci_dev *pdev)
8971 {
8972         __hpsa_shutdown(pdev);
8973         pci_disable_device(pdev);
8974 }
8975
8976 static void hpsa_free_device_info(struct ctlr_info *h)
8977 {
8978         int i;
8979
8980         for (i = 0; i < h->ndevices; i++) {
8981                 kfree(h->dev[i]);
8982                 h->dev[i] = NULL;
8983         }
8984 }
8985
8986 static void hpsa_remove_one(struct pci_dev *pdev)
8987 {
8988         struct ctlr_info *h;
8989         unsigned long flags;
8990
8991         if (pci_get_drvdata(pdev) == NULL) {
8992                 dev_err(&pdev->dev, "unable to remove device\n");
8993                 return;
8994         }
8995         h = pci_get_drvdata(pdev);
8996
8997         /* Get rid of any controller monitoring work items */
8998         spin_lock_irqsave(&h->lock, flags);
8999         h->remove_in_progress = 1;
9000         spin_unlock_irqrestore(&h->lock, flags);
9001         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9002         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9003         cancel_delayed_work_sync(&h->event_monitor_work);
9004         destroy_workqueue(h->rescan_ctlr_wq);
9005         destroy_workqueue(h->resubmit_wq);
9006         destroy_workqueue(h->monitor_ctlr_wq);
9007
9008         hpsa_delete_sas_host(h);
9009
9010         /*
9011          * Call before disabling interrupts.
9012          * scsi_remove_host can trigger I/O operations especially
9013          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9014          * operations which cannot complete and will hang the system.
9015          */
9016         if (h->scsi_host)
9017                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9018         /* includes hpsa_free_irqs - init_one 4 */
9019         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9020         __hpsa_shutdown(pdev);
9021
9022         hpsa_free_device_info(h);               /* scan */
9023
9024         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9025         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9026         hpsa_free_ioaccel2_sg_chain_blocks(h);
9027         hpsa_free_performant_mode(h);                   /* init_one 7 */
9028         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9029         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9030         kfree(h->lastlogicals);
9031
9032         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9033
9034         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9035         h->scsi_host = NULL;                            /* init_one 3 */
9036
9037         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9038         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9039
9040         free_percpu(h->lockup_detected);                /* init_one 2 */
9041         h->lockup_detected = NULL;                      /* init_one 2 */
9042         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9043
9044         hpda_free_ctlr_info(h);                         /* init_one 1 */
9045 }
9046
9047 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9048         __attribute__((unused)) pm_message_t state)
9049 {
9050         return -ENOSYS;
9051 }
9052
9053 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9054 {
9055         return -ENOSYS;
9056 }
9057
9058 static struct pci_driver hpsa_pci_driver = {
9059         .name = HPSA,
9060         .probe = hpsa_init_one,
9061         .remove = hpsa_remove_one,
9062         .id_table = hpsa_pci_device_id, /* id_table */
9063         .shutdown = hpsa_shutdown,
9064         .suspend = hpsa_suspend,
9065         .resume = hpsa_resume,
9066 };
9067
9068 /* Fill in bucket_map[], given nsgs (the max number of
9069  * scatter gather elements supported) and bucket[],
9070  * which is an array of 8 integers.  The bucket[] array
9071  * contains 8 different DMA transfer sizes (in 16
9072  * byte increments) which the controller uses to fetch
9073  * commands.  This function fills in bucket_map[], which
9074  * maps a given number of scatter gather elements to one of
9075  * the 8 DMA transfer sizes.  The point of it is to allow the
9076  * controller to only do as much DMA as needed to fetch the
9077  * command, with the DMA transfer size encoded in the lower
9078  * bits of the command address.
9079  */
9080 static void  calc_bucket_map(int bucket[], int num_buckets,
9081         int nsgs, int min_blocks, u32 *bucket_map)
9082 {
9083         int i, j, b, size;
9084
9085         /* Note, bucket_map must have nsgs+1 entries. */
9086         for (i = 0; i <= nsgs; i++) {
9087                 /* Compute size of a command with i SG entries */
9088                 size = i + min_blocks;
9089                 b = num_buckets; /* Assume the biggest bucket */
9090                 /* Find the bucket that is just big enough */
9091                 for (j = 0; j < num_buckets; j++) {
9092                         if (bucket[j] >= size) {
9093                                 b = j;
9094                                 break;
9095                         }
9096                 }
9097                 /* for a command with i SG entries, use bucket b. */
9098                 bucket_map[i] = b;
9099         }
9100 }
9101
9102 /*
9103  * return -ENODEV on err, 0 on success (or no action)
9104  * allocates numerous items that must be freed later
9105  */
9106 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9107 {
9108         int i;
9109         unsigned long register_value;
9110         unsigned long transMethod = CFGTBL_Trans_Performant |
9111                         (trans_support & CFGTBL_Trans_use_short_tags) |
9112                                 CFGTBL_Trans_enable_directed_msix |
9113                         (trans_support & (CFGTBL_Trans_io_accel1 |
9114                                 CFGTBL_Trans_io_accel2));
9115         struct access_method access = SA5_performant_access;
9116
9117         /* This is a bit complicated.  There are 8 registers on
9118          * the controller which we write to to tell it 8 different
9119          * sizes of commands which there may be.  It's a way of
9120          * reducing the DMA done to fetch each command.  Encoded into
9121          * each command's tag are 3 bits which communicate to the controller
9122          * which of the eight sizes that command fits within.  The size of
9123          * each command depends on how many scatter gather entries there are.
9124          * Each SG entry requires 16 bytes.  The eight registers are programmed
9125          * with the number of 16-byte blocks a command of that size requires.
9126          * The smallest command possible requires 5 such 16 byte blocks.
9127          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9128          * blocks.  Note, this only extends to the SG entries contained
9129          * within the command block, and does not extend to chained blocks
9130          * of SG elements.   bft[] contains the eight values we write to
9131          * the registers.  They are not evenly distributed, but have more
9132          * sizes for small commands, and fewer sizes for larger commands.
9133          */
9134         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9135 #define MIN_IOACCEL2_BFT_ENTRY 5
9136 #define HPSA_IOACCEL2_HEADER_SZ 4
9137         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9138                         13, 14, 15, 16, 17, 18, 19,
9139                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9140         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9141         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9142         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9143                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9144         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9145         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9146         /*  5 = 1 s/g entry or 4k
9147          *  6 = 2 s/g entry or 8k
9148          *  8 = 4 s/g entry or 16k
9149          * 10 = 6 s/g entry or 24k
9150          */
9151
9152         /* If the controller supports either ioaccel method then
9153          * we can also use the RAID stack submit path that does not
9154          * perform the superfluous readl() after each command submission.
9155          */
9156         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9157                 access = SA5_performant_access_no_read;
9158
9159         /* Controller spec: zero out this buffer. */
9160         for (i = 0; i < h->nreply_queues; i++)
9161                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9162
9163         bft[7] = SG_ENTRIES_IN_CMD + 4;
9164         calc_bucket_map(bft, ARRAY_SIZE(bft),
9165                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9166         for (i = 0; i < 8; i++)
9167                 writel(bft[i], &h->transtable->BlockFetch[i]);
9168
9169         /* size of controller ring buffer */
9170         writel(h->max_commands, &h->transtable->RepQSize);
9171         writel(h->nreply_queues, &h->transtable->RepQCount);
9172         writel(0, &h->transtable->RepQCtrAddrLow32);
9173         writel(0, &h->transtable->RepQCtrAddrHigh32);
9174
9175         for (i = 0; i < h->nreply_queues; i++) {
9176                 writel(0, &h->transtable->RepQAddr[i].upper);
9177                 writel(h->reply_queue[i].busaddr,
9178                         &h->transtable->RepQAddr[i].lower);
9179         }
9180
9181         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9182         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9183         /*
9184          * enable outbound interrupt coalescing in accelerator mode;
9185          */
9186         if (trans_support & CFGTBL_Trans_io_accel1) {
9187                 access = SA5_ioaccel_mode1_access;
9188                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9189                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9190         } else
9191                 if (trans_support & CFGTBL_Trans_io_accel2)
9192                         access = SA5_ioaccel_mode2_access;
9193         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9194         if (hpsa_wait_for_mode_change_ack(h)) {
9195                 dev_err(&h->pdev->dev,
9196                         "performant mode problem - doorbell timeout\n");
9197                 return -ENODEV;
9198         }
9199         register_value = readl(&(h->cfgtable->TransportActive));
9200         if (!(register_value & CFGTBL_Trans_Performant)) {
9201                 dev_err(&h->pdev->dev,
9202                         "performant mode problem - transport not active\n");
9203                 return -ENODEV;
9204         }
9205         /* Change the access methods to the performant access methods */
9206         h->access = access;
9207         h->transMethod = transMethod;
9208
9209         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9210                 (trans_support & CFGTBL_Trans_io_accel2)))
9211                 return 0;
9212
9213         if (trans_support & CFGTBL_Trans_io_accel1) {
9214                 /* Set up I/O accelerator mode */
9215                 for (i = 0; i < h->nreply_queues; i++) {
9216                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9217                         h->reply_queue[i].current_entry =
9218                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9219                 }
9220                 bft[7] = h->ioaccel_maxsg + 8;
9221                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9222                                 h->ioaccel1_blockFetchTable);
9223
9224                 /* initialize all reply queue entries to unused */
9225                 for (i = 0; i < h->nreply_queues; i++)
9226                         memset(h->reply_queue[i].head,
9227                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9228                                 h->reply_queue_size);
9229
9230                 /* set all the constant fields in the accelerator command
9231                  * frames once at init time to save CPU cycles later.
9232                  */
9233                 for (i = 0; i < h->nr_cmds; i++) {
9234                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9235
9236                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9237                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9238                                         (i * sizeof(struct ErrorInfo)));
9239                         cp->err_info_len = sizeof(struct ErrorInfo);
9240                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9241                         cp->host_context_flags =
9242                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9243                         cp->timeout_sec = 0;
9244                         cp->ReplyQueue = 0;
9245                         cp->tag =
9246                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9247                         cp->host_addr =
9248                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9249                                         (i * sizeof(struct io_accel1_cmd)));
9250                 }
9251         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9252                 u64 cfg_offset, cfg_base_addr_index;
9253                 u32 bft2_offset, cfg_base_addr;
9254                 int rc;
9255
9256                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9257                         &cfg_base_addr_index, &cfg_offset);
9258                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9259                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9260                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9261                                 4, h->ioaccel2_blockFetchTable);
9262                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9263                 BUILD_BUG_ON(offsetof(struct CfgTable,
9264                                 io_accel_request_size_offset) != 0xb8);
9265                 h->ioaccel2_bft2_regs =
9266                         remap_pci_mem(pci_resource_start(h->pdev,
9267                                         cfg_base_addr_index) +
9268                                         cfg_offset + bft2_offset,
9269                                         ARRAY_SIZE(bft2) *
9270                                         sizeof(*h->ioaccel2_bft2_regs));
9271                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9272                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9273         }
9274         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9275         if (hpsa_wait_for_mode_change_ack(h)) {
9276                 dev_err(&h->pdev->dev,
9277                         "performant mode problem - enabling ioaccel mode\n");
9278                 return -ENODEV;
9279         }
9280         return 0;
9281 }
9282
9283 /* Free ioaccel1 mode command blocks and block fetch table */
9284 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9285 {
9286         if (h->ioaccel_cmd_pool) {
9287                 pci_free_consistent(h->pdev,
9288                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9289                         h->ioaccel_cmd_pool,
9290                         h->ioaccel_cmd_pool_dhandle);
9291                 h->ioaccel_cmd_pool = NULL;
9292                 h->ioaccel_cmd_pool_dhandle = 0;
9293         }
9294         kfree(h->ioaccel1_blockFetchTable);
9295         h->ioaccel1_blockFetchTable = NULL;
9296 }
9297
9298 /* Allocate ioaccel1 mode command blocks and block fetch table */
9299 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9300 {
9301         h->ioaccel_maxsg =
9302                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9303         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9304                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9305
9306         /* Command structures must be aligned on a 128-byte boundary
9307          * because the 7 lower bits of the address are used by the
9308          * hardware.
9309          */
9310         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9311                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9312         h->ioaccel_cmd_pool =
9313                 dma_alloc_coherent(&h->pdev->dev,
9314                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9315                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9316
9317         h->ioaccel1_blockFetchTable =
9318                 kmalloc(((h->ioaccel_maxsg + 1) *
9319                                 sizeof(u32)), GFP_KERNEL);
9320
9321         if ((h->ioaccel_cmd_pool == NULL) ||
9322                 (h->ioaccel1_blockFetchTable == NULL))
9323                 goto clean_up;
9324
9325         memset(h->ioaccel_cmd_pool, 0,
9326                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9327         return 0;
9328
9329 clean_up:
9330         hpsa_free_ioaccel1_cmd_and_bft(h);
9331         return -ENOMEM;
9332 }
9333
9334 /* Free ioaccel2 mode command blocks and block fetch table */
9335 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9336 {
9337         hpsa_free_ioaccel2_sg_chain_blocks(h);
9338
9339         if (h->ioaccel2_cmd_pool) {
9340                 pci_free_consistent(h->pdev,
9341                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9342                         h->ioaccel2_cmd_pool,
9343                         h->ioaccel2_cmd_pool_dhandle);
9344                 h->ioaccel2_cmd_pool = NULL;
9345                 h->ioaccel2_cmd_pool_dhandle = 0;
9346         }
9347         kfree(h->ioaccel2_blockFetchTable);
9348         h->ioaccel2_blockFetchTable = NULL;
9349 }
9350
9351 /* Allocate ioaccel2 mode command blocks and block fetch table */
9352 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9353 {
9354         int rc;
9355
9356         /* Allocate ioaccel2 mode command blocks and block fetch table */
9357
9358         h->ioaccel_maxsg =
9359                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9360         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9361                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9362
9363         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9364                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9365         h->ioaccel2_cmd_pool =
9366                 dma_alloc_coherent(&h->pdev->dev,
9367                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9368                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9369
9370         h->ioaccel2_blockFetchTable =
9371                 kmalloc(((h->ioaccel_maxsg + 1) *
9372                                 sizeof(u32)), GFP_KERNEL);
9373
9374         if ((h->ioaccel2_cmd_pool == NULL) ||
9375                 (h->ioaccel2_blockFetchTable == NULL)) {
9376                 rc = -ENOMEM;
9377                 goto clean_up;
9378         }
9379
9380         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9381         if (rc)
9382                 goto clean_up;
9383
9384         memset(h->ioaccel2_cmd_pool, 0,
9385                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9386         return 0;
9387
9388 clean_up:
9389         hpsa_free_ioaccel2_cmd_and_bft(h);
9390         return rc;
9391 }
9392
9393 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9394 static void hpsa_free_performant_mode(struct ctlr_info *h)
9395 {
9396         kfree(h->blockFetchTable);
9397         h->blockFetchTable = NULL;
9398         hpsa_free_reply_queues(h);
9399         hpsa_free_ioaccel1_cmd_and_bft(h);
9400         hpsa_free_ioaccel2_cmd_and_bft(h);
9401 }
9402
9403 /* return -ENODEV on error, 0 on success (or no action)
9404  * allocates numerous items that must be freed later
9405  */
9406 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9407 {
9408         u32 trans_support;
9409         unsigned long transMethod = CFGTBL_Trans_Performant |
9410                                         CFGTBL_Trans_use_short_tags;
9411         int i, rc;
9412
9413         if (hpsa_simple_mode)
9414                 return 0;
9415
9416         trans_support = readl(&(h->cfgtable->TransportSupport));
9417         if (!(trans_support & PERFORMANT_MODE))
9418                 return 0;
9419
9420         /* Check for I/O accelerator mode support */
9421         if (trans_support & CFGTBL_Trans_io_accel1) {
9422                 transMethod |= CFGTBL_Trans_io_accel1 |
9423                                 CFGTBL_Trans_enable_directed_msix;
9424                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9425                 if (rc)
9426                         return rc;
9427         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9428                 transMethod |= CFGTBL_Trans_io_accel2 |
9429                                 CFGTBL_Trans_enable_directed_msix;
9430                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9431                 if (rc)
9432                         return rc;
9433         }
9434
9435         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9436         hpsa_get_max_perf_mode_cmds(h);
9437         /* Performant mode ring buffer and supporting data structures */
9438         h->reply_queue_size = h->max_commands * sizeof(u64);
9439
9440         for (i = 0; i < h->nreply_queues; i++) {
9441                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9442                                                 h->reply_queue_size,
9443                                                 &h->reply_queue[i].busaddr,
9444                                                 GFP_KERNEL);
9445                 if (!h->reply_queue[i].head) {
9446                         rc = -ENOMEM;
9447                         goto clean1;    /* rq, ioaccel */
9448                 }
9449                 h->reply_queue[i].size = h->max_commands;
9450                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9451                 h->reply_queue[i].current_entry = 0;
9452         }
9453
9454         /* Need a block fetch table for performant mode */
9455         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9456                                 sizeof(u32)), GFP_KERNEL);
9457         if (!h->blockFetchTable) {
9458                 rc = -ENOMEM;
9459                 goto clean1;    /* rq, ioaccel */
9460         }
9461
9462         rc = hpsa_enter_performant_mode(h, trans_support);
9463         if (rc)
9464                 goto clean2;    /* bft, rq, ioaccel */
9465         return 0;
9466
9467 clean2: /* bft, rq, ioaccel */
9468         kfree(h->blockFetchTable);
9469         h->blockFetchTable = NULL;
9470 clean1: /* rq, ioaccel */
9471         hpsa_free_reply_queues(h);
9472         hpsa_free_ioaccel1_cmd_and_bft(h);
9473         hpsa_free_ioaccel2_cmd_and_bft(h);
9474         return rc;
9475 }
9476
9477 static int is_accelerated_cmd(struct CommandList *c)
9478 {
9479         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9480 }
9481
9482 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9483 {
9484         struct CommandList *c = NULL;
9485         int i, accel_cmds_out;
9486         int refcount;
9487
9488         do { /* wait for all outstanding ioaccel commands to drain out */
9489                 accel_cmds_out = 0;
9490                 for (i = 0; i < h->nr_cmds; i++) {
9491                         c = h->cmd_pool + i;
9492                         refcount = atomic_inc_return(&c->refcount);
9493                         if (refcount > 1) /* Command is allocated */
9494                                 accel_cmds_out += is_accelerated_cmd(c);
9495                         cmd_free(h, c);
9496                 }
9497                 if (accel_cmds_out <= 0)
9498                         break;
9499                 msleep(100);
9500         } while (1);
9501 }
9502
9503 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9504                                 struct hpsa_sas_port *hpsa_sas_port)
9505 {
9506         struct hpsa_sas_phy *hpsa_sas_phy;
9507         struct sas_phy *phy;
9508
9509         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9510         if (!hpsa_sas_phy)
9511                 return NULL;
9512
9513         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9514                 hpsa_sas_port->next_phy_index);
9515         if (!phy) {
9516                 kfree(hpsa_sas_phy);
9517                 return NULL;
9518         }
9519
9520         hpsa_sas_port->next_phy_index++;
9521         hpsa_sas_phy->phy = phy;
9522         hpsa_sas_phy->parent_port = hpsa_sas_port;
9523
9524         return hpsa_sas_phy;
9525 }
9526
9527 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9528 {
9529         struct sas_phy *phy = hpsa_sas_phy->phy;
9530
9531         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9532         if (hpsa_sas_phy->added_to_port)
9533                 list_del(&hpsa_sas_phy->phy_list_entry);
9534         sas_phy_delete(phy);
9535         kfree(hpsa_sas_phy);
9536 }
9537
9538 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9539 {
9540         int rc;
9541         struct hpsa_sas_port *hpsa_sas_port;
9542         struct sas_phy *phy;
9543         struct sas_identify *identify;
9544
9545         hpsa_sas_port = hpsa_sas_phy->parent_port;
9546         phy = hpsa_sas_phy->phy;
9547
9548         identify = &phy->identify;
9549         memset(identify, 0, sizeof(*identify));
9550         identify->sas_address = hpsa_sas_port->sas_address;
9551         identify->device_type = SAS_END_DEVICE;
9552         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9553         identify->target_port_protocols = SAS_PROTOCOL_STP;
9554         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9555         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9556         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9557         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9558         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9559
9560         rc = sas_phy_add(hpsa_sas_phy->phy);
9561         if (rc)
9562                 return rc;
9563
9564         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9565         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9566                         &hpsa_sas_port->phy_list_head);
9567         hpsa_sas_phy->added_to_port = true;
9568
9569         return 0;
9570 }
9571
9572 static int
9573         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9574                                 struct sas_rphy *rphy)
9575 {
9576         struct sas_identify *identify;
9577
9578         identify = &rphy->identify;
9579         identify->sas_address = hpsa_sas_port->sas_address;
9580         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9581         identify->target_port_protocols = SAS_PROTOCOL_STP;
9582
9583         return sas_rphy_add(rphy);
9584 }
9585
9586 static struct hpsa_sas_port
9587         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9588                                 u64 sas_address)
9589 {
9590         int rc;
9591         struct hpsa_sas_port *hpsa_sas_port;
9592         struct sas_port *port;
9593
9594         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9595         if (!hpsa_sas_port)
9596                 return NULL;
9597
9598         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9599         hpsa_sas_port->parent_node = hpsa_sas_node;
9600
9601         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9602         if (!port)
9603                 goto free_hpsa_port;
9604
9605         rc = sas_port_add(port);
9606         if (rc)
9607                 goto free_sas_port;
9608
9609         hpsa_sas_port->port = port;
9610         hpsa_sas_port->sas_address = sas_address;
9611         list_add_tail(&hpsa_sas_port->port_list_entry,
9612                         &hpsa_sas_node->port_list_head);
9613
9614         return hpsa_sas_port;
9615
9616 free_sas_port:
9617         sas_port_free(port);
9618 free_hpsa_port:
9619         kfree(hpsa_sas_port);
9620
9621         return NULL;
9622 }
9623
9624 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9625 {
9626         struct hpsa_sas_phy *hpsa_sas_phy;
9627         struct hpsa_sas_phy *next;
9628
9629         list_for_each_entry_safe(hpsa_sas_phy, next,
9630                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9631                 hpsa_free_sas_phy(hpsa_sas_phy);
9632
9633         sas_port_delete(hpsa_sas_port->port);
9634         list_del(&hpsa_sas_port->port_list_entry);
9635         kfree(hpsa_sas_port);
9636 }
9637
9638 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9639 {
9640         struct hpsa_sas_node *hpsa_sas_node;
9641
9642         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9643         if (hpsa_sas_node) {
9644                 hpsa_sas_node->parent_dev = parent_dev;
9645                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9646         }
9647
9648         return hpsa_sas_node;
9649 }
9650
9651 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9652 {
9653         struct hpsa_sas_port *hpsa_sas_port;
9654         struct hpsa_sas_port *next;
9655
9656         if (!hpsa_sas_node)
9657                 return;
9658
9659         list_for_each_entry_safe(hpsa_sas_port, next,
9660                         &hpsa_sas_node->port_list_head, port_list_entry)
9661                 hpsa_free_sas_port(hpsa_sas_port);
9662
9663         kfree(hpsa_sas_node);
9664 }
9665
9666 static struct hpsa_scsi_dev_t
9667         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9668                                         struct sas_rphy *rphy)
9669 {
9670         int i;
9671         struct hpsa_scsi_dev_t *device;
9672
9673         for (i = 0; i < h->ndevices; i++) {
9674                 device = h->dev[i];
9675                 if (!device->sas_port)
9676                         continue;
9677                 if (device->sas_port->rphy == rphy)
9678                         return device;
9679         }
9680
9681         return NULL;
9682 }
9683
9684 static int hpsa_add_sas_host(struct ctlr_info *h)
9685 {
9686         int rc;
9687         struct device *parent_dev;
9688         struct hpsa_sas_node *hpsa_sas_node;
9689         struct hpsa_sas_port *hpsa_sas_port;
9690         struct hpsa_sas_phy *hpsa_sas_phy;
9691
9692         parent_dev = &h->scsi_host->shost_dev;
9693
9694         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9695         if (!hpsa_sas_node)
9696                 return -ENOMEM;
9697
9698         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9699         if (!hpsa_sas_port) {
9700                 rc = -ENODEV;
9701                 goto free_sas_node;
9702         }
9703
9704         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9705         if (!hpsa_sas_phy) {
9706                 rc = -ENODEV;
9707                 goto free_sas_port;
9708         }
9709
9710         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9711         if (rc)
9712                 goto free_sas_phy;
9713
9714         h->sas_host = hpsa_sas_node;
9715
9716         return 0;
9717
9718 free_sas_phy:
9719         hpsa_free_sas_phy(hpsa_sas_phy);
9720 free_sas_port:
9721         hpsa_free_sas_port(hpsa_sas_port);
9722 free_sas_node:
9723         hpsa_free_sas_node(hpsa_sas_node);
9724
9725         return rc;
9726 }
9727
9728 static void hpsa_delete_sas_host(struct ctlr_info *h)
9729 {
9730         hpsa_free_sas_node(h->sas_host);
9731 }
9732
9733 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9734                                 struct hpsa_scsi_dev_t *device)
9735 {
9736         int rc;
9737         struct hpsa_sas_port *hpsa_sas_port;
9738         struct sas_rphy *rphy;
9739
9740         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9741         if (!hpsa_sas_port)
9742                 return -ENOMEM;
9743
9744         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9745         if (!rphy) {
9746                 rc = -ENODEV;
9747                 goto free_sas_port;
9748         }
9749
9750         hpsa_sas_port->rphy = rphy;
9751         device->sas_port = hpsa_sas_port;
9752
9753         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9754         if (rc)
9755                 goto free_sas_port;
9756
9757         return 0;
9758
9759 free_sas_port:
9760         hpsa_free_sas_port(hpsa_sas_port);
9761         device->sas_port = NULL;
9762
9763         return rc;
9764 }
9765
9766 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9767 {
9768         if (device->sas_port) {
9769                 hpsa_free_sas_port(device->sas_port);
9770                 device->sas_port = NULL;
9771         }
9772 }
9773
9774 static int
9775 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9776 {
9777         return 0;
9778 }
9779
9780 static int
9781 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9782 {
9783         struct Scsi_Host *shost = phy_to_shost(rphy);
9784         struct ctlr_info *h;
9785         struct hpsa_scsi_dev_t *sd;
9786
9787         if (!shost)
9788                 return -ENXIO;
9789
9790         h = shost_to_hba(shost);
9791
9792         if (!h)
9793                 return -ENXIO;
9794
9795         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9796         if (!sd)
9797                 return -ENXIO;
9798
9799         *identifier = sd->eli;
9800
9801         return 0;
9802 }
9803
9804 static int
9805 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9806 {
9807         return -ENXIO;
9808 }
9809
9810 static int
9811 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9812 {
9813         return 0;
9814 }
9815
9816 static int
9817 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9818 {
9819         return 0;
9820 }
9821
9822 static int
9823 hpsa_sas_phy_setup(struct sas_phy *phy)
9824 {
9825         return 0;
9826 }
9827
9828 static void
9829 hpsa_sas_phy_release(struct sas_phy *phy)
9830 {
9831 }
9832
9833 static int
9834 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9835 {
9836         return -EINVAL;
9837 }
9838
9839 static struct sas_function_template hpsa_sas_transport_functions = {
9840         .get_linkerrors = hpsa_sas_get_linkerrors,
9841         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9842         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9843         .phy_reset = hpsa_sas_phy_reset,
9844         .phy_enable = hpsa_sas_phy_enable,
9845         .phy_setup = hpsa_sas_phy_setup,
9846         .phy_release = hpsa_sas_phy_release,
9847         .set_phy_speed = hpsa_sas_phy_speed,
9848 };
9849
9850 /*
9851  *  This is it.  Register the PCI driver information for the cards we control
9852  *  the OS will call our registered routines when it finds one of our cards.
9853  */
9854 static int __init hpsa_init(void)
9855 {
9856         int rc;
9857
9858         hpsa_sas_transport_template =
9859                 sas_attach_transport(&hpsa_sas_transport_functions);
9860         if (!hpsa_sas_transport_template)
9861                 return -ENODEV;
9862
9863         rc = pci_register_driver(&hpsa_pci_driver);
9864
9865         if (rc)
9866                 sas_release_transport(hpsa_sas_transport_template);
9867
9868         return rc;
9869 }
9870
9871 static void __exit hpsa_cleanup(void)
9872 {
9873         pci_unregister_driver(&hpsa_pci_driver);
9874         sas_release_transport(hpsa_sas_transport_template);
9875 }
9876
9877 static void __attribute__((unused)) verify_offsets(void)
9878 {
9879 #define VERIFY_OFFSET(member, offset) \
9880         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9881
9882         VERIFY_OFFSET(structure_size, 0);
9883         VERIFY_OFFSET(volume_blk_size, 4);
9884         VERIFY_OFFSET(volume_blk_cnt, 8);
9885         VERIFY_OFFSET(phys_blk_shift, 16);
9886         VERIFY_OFFSET(parity_rotation_shift, 17);
9887         VERIFY_OFFSET(strip_size, 18);
9888         VERIFY_OFFSET(disk_starting_blk, 20);
9889         VERIFY_OFFSET(disk_blk_cnt, 28);
9890         VERIFY_OFFSET(data_disks_per_row, 36);
9891         VERIFY_OFFSET(metadata_disks_per_row, 38);
9892         VERIFY_OFFSET(row_cnt, 40);
9893         VERIFY_OFFSET(layout_map_count, 42);
9894         VERIFY_OFFSET(flags, 44);
9895         VERIFY_OFFSET(dekindex, 46);
9896         /* VERIFY_OFFSET(reserved, 48 */
9897         VERIFY_OFFSET(data, 64);
9898
9899 #undef VERIFY_OFFSET
9900
9901 #define VERIFY_OFFSET(member, offset) \
9902         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9903
9904         VERIFY_OFFSET(IU_type, 0);
9905         VERIFY_OFFSET(direction, 1);
9906         VERIFY_OFFSET(reply_queue, 2);
9907         /* VERIFY_OFFSET(reserved1, 3);  */
9908         VERIFY_OFFSET(scsi_nexus, 4);
9909         VERIFY_OFFSET(Tag, 8);
9910         VERIFY_OFFSET(cdb, 16);
9911         VERIFY_OFFSET(cciss_lun, 32);
9912         VERIFY_OFFSET(data_len, 40);
9913         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9914         VERIFY_OFFSET(sg_count, 45);
9915         /* VERIFY_OFFSET(reserved3 */
9916         VERIFY_OFFSET(err_ptr, 48);
9917         VERIFY_OFFSET(err_len, 56);
9918         /* VERIFY_OFFSET(reserved4  */
9919         VERIFY_OFFSET(sg, 64);
9920
9921 #undef VERIFY_OFFSET
9922
9923 #define VERIFY_OFFSET(member, offset) \
9924         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9925
9926         VERIFY_OFFSET(dev_handle, 0x00);
9927         VERIFY_OFFSET(reserved1, 0x02);
9928         VERIFY_OFFSET(function, 0x03);
9929         VERIFY_OFFSET(reserved2, 0x04);
9930         VERIFY_OFFSET(err_info, 0x0C);
9931         VERIFY_OFFSET(reserved3, 0x10);
9932         VERIFY_OFFSET(err_info_len, 0x12);
9933         VERIFY_OFFSET(reserved4, 0x13);
9934         VERIFY_OFFSET(sgl_offset, 0x14);
9935         VERIFY_OFFSET(reserved5, 0x15);
9936         VERIFY_OFFSET(transfer_len, 0x1C);
9937         VERIFY_OFFSET(reserved6, 0x20);
9938         VERIFY_OFFSET(io_flags, 0x24);
9939         VERIFY_OFFSET(reserved7, 0x26);
9940         VERIFY_OFFSET(LUN, 0x34);
9941         VERIFY_OFFSET(control, 0x3C);
9942         VERIFY_OFFSET(CDB, 0x40);
9943         VERIFY_OFFSET(reserved8, 0x50);
9944         VERIFY_OFFSET(host_context_flags, 0x60);
9945         VERIFY_OFFSET(timeout_sec, 0x62);
9946         VERIFY_OFFSET(ReplyQueue, 0x64);
9947         VERIFY_OFFSET(reserved9, 0x65);
9948         VERIFY_OFFSET(tag, 0x68);
9949         VERIFY_OFFSET(host_addr, 0x70);
9950         VERIFY_OFFSET(CISS_LUN, 0x78);
9951         VERIFY_OFFSET(SG, 0x78 + 8);
9952 #undef VERIFY_OFFSET
9953 }
9954
9955 module_init(hpsa_init);
9956 module_exit(hpsa_cleanup);