Merge tag 'for-linus-20180204' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89         "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160         {0x40700E11, "Smart Array 5300", &SA5A_access},
161         {0x40800E11, "Smart Array 5i", &SA5B_access},
162         {0x40820E11, "Smart Array 532", &SA5B_access},
163         {0x40830E11, "Smart Array 5312", &SA5B_access},
164         {0x409A0E11, "Smart Array 641", &SA5A_access},
165         {0x409B0E11, "Smart Array 642", &SA5A_access},
166         {0x409C0E11, "Smart Array 6400", &SA5A_access},
167         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168         {0x40910E11, "Smart Array 6i", &SA5A_access},
169         {0x3225103C, "Smart Array P600", &SA5A_access},
170         {0x3223103C, "Smart Array P800", &SA5A_access},
171         {0x3234103C, "Smart Array P400", &SA5A_access},
172         {0x3235103C, "Smart Array P400i", &SA5A_access},
173         {0x3211103C, "Smart Array E200i", &SA5A_access},
174         {0x3212103C, "Smart Array E200", &SA5A_access},
175         {0x3213103C, "Smart Array E200i", &SA5A_access},
176         {0x3214103C, "Smart Array E200i", &SA5A_access},
177         {0x3215103C, "Smart Array E200i", &SA5A_access},
178         {0x3237103C, "Smart Array E500", &SA5A_access},
179         {0x323D103C, "Smart Array P700m", &SA5A_access},
180         {0x3241103C, "Smart Array P212", &SA5_access},
181         {0x3243103C, "Smart Array P410", &SA5_access},
182         {0x3245103C, "Smart Array P410i", &SA5_access},
183         {0x3247103C, "Smart Array P411", &SA5_access},
184         {0x3249103C, "Smart Array P812", &SA5_access},
185         {0x324A103C, "Smart Array P712m", &SA5_access},
186         {0x324B103C, "Smart Array P711m", &SA5_access},
187         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188         {0x3350103C, "Smart Array P222", &SA5_access},
189         {0x3351103C, "Smart Array P420", &SA5_access},
190         {0x3352103C, "Smart Array P421", &SA5_access},
191         {0x3353103C, "Smart Array P822", &SA5_access},
192         {0x3354103C, "Smart Array P420i", &SA5_access},
193         {0x3355103C, "Smart Array P220i", &SA5_access},
194         {0x3356103C, "Smart Array P721m", &SA5_access},
195         {0x1920103C, "Smart Array P430i", &SA5_access},
196         {0x1921103C, "Smart Array P830i", &SA5_access},
197         {0x1922103C, "Smart Array P430", &SA5_access},
198         {0x1923103C, "Smart Array P431", &SA5_access},
199         {0x1924103C, "Smart Array P830", &SA5_access},
200         {0x1925103C, "Smart Array P831", &SA5_access},
201         {0x1926103C, "Smart Array P731m", &SA5_access},
202         {0x1928103C, "Smart Array P230i", &SA5_access},
203         {0x1929103C, "Smart Array P530", &SA5_access},
204         {0x21BD103C, "Smart Array P244br", &SA5_access},
205         {0x21BE103C, "Smart Array P741m", &SA5_access},
206         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207         {0x21C0103C, "Smart Array P440ar", &SA5_access},
208         {0x21C1103C, "Smart Array P840ar", &SA5_access},
209         {0x21C2103C, "Smart Array P440", &SA5_access},
210         {0x21C3103C, "Smart Array P441", &SA5_access},
211         {0x21C4103C, "Smart Array", &SA5_access},
212         {0x21C5103C, "Smart Array P841", &SA5_access},
213         {0x21C6103C, "Smart HBA H244br", &SA5_access},
214         {0x21C7103C, "Smart HBA H240", &SA5_access},
215         {0x21C8103C, "Smart HBA H241", &SA5_access},
216         {0x21C9103C, "Smart Array", &SA5_access},
217         {0x21CA103C, "Smart Array P246br", &SA5_access},
218         {0x21CB103C, "Smart Array P840", &SA5_access},
219         {0x21CC103C, "Smart Array", &SA5_access},
220         {0x21CD103C, "Smart Array", &SA5_access},
221         {0x21CE103C, "Smart HBA", &SA5_access},
222         {0x05809005, "SmartHBA-SA", &SA5_access},
223         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240                         struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244                 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258         void __user *arg);
259 #endif
260
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265                                             struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268         int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276         unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286         struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288         struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291         int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297                                u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299                                     unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301                                 bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303                                            unsigned char lunaddr[],
304                                            int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306                                      int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321         struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323         unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326                                struct hpsa_scsi_dev_t *dev,
327                                unsigned char *scsi3addr);
328
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331         unsigned long *priv = shost_priv(sdev->host);
332         return (struct ctlr_info *) *priv;
333 }
334
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337         unsigned long *priv = shost_priv(sh);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343         return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348         return c->reset_pending;
349 }
350
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353                         u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355         struct scsi_sense_hdr sshdr;
356         bool rc;
357
358         *sense_key = -1;
359         *asc = -1;
360         *ascq = -1;
361
362         if (sense_data_len < 1)
363                 return;
364
365         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366         if (rc) {
367                 *sense_key = sshdr.sense_key;
368                 *asc = sshdr.asc;
369                 *ascq = sshdr.ascq;
370         }
371 }
372
373 static int check_for_unit_attention(struct ctlr_info *h,
374         struct CommandList *c)
375 {
376         u8 sense_key, asc, ascq;
377         int sense_len;
378
379         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380                 sense_len = sizeof(c->err_info->SenseInfo);
381         else
382                 sense_len = c->err_info->SenseLen;
383
384         decode_sense_data(c->err_info->SenseInfo, sense_len,
385                                 &sense_key, &asc, &ascq);
386         if (sense_key != UNIT_ATTENTION || asc == 0xff)
387                 return 0;
388
389         switch (asc) {
390         case STATE_CHANGED:
391                 dev_warn(&h->pdev->dev,
392                         "%s: a state change detected, command retried\n",
393                         h->devname);
394                 break;
395         case LUN_FAILED:
396                 dev_warn(&h->pdev->dev,
397                         "%s: LUN failure detected\n", h->devname);
398                 break;
399         case REPORT_LUNS_CHANGED:
400                 dev_warn(&h->pdev->dev,
401                         "%s: report LUN data changed\n", h->devname);
402         /*
403          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404          * target (array) devices.
405          */
406                 break;
407         case POWER_OR_RESET:
408                 dev_warn(&h->pdev->dev,
409                         "%s: a power on or device reset detected\n",
410                         h->devname);
411                 break;
412         case UNIT_ATTENTION_CLEARED:
413                 dev_warn(&h->pdev->dev,
414                         "%s: unit attention cleared by another initiator\n",
415                         h->devname);
416                 break;
417         default:
418                 dev_warn(&h->pdev->dev,
419                         "%s: unknown unit attention detected\n",
420                         h->devname);
421                 break;
422         }
423         return 1;
424 }
425
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431                 return 0;
432         dev_warn(&h->pdev->dev, HPSA "device busy");
433         return 1;
434 }
435
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438                 struct device_attribute *attr, char *buf)
439 {
440         int ld;
441         struct ctlr_info *h;
442         struct Scsi_Host *shost = class_to_shost(dev);
443
444         h = shost_to_hba(shost);
445         ld = lockup_detected(h);
446
447         return sprintf(buf, "ld=%d\n", ld);
448 }
449
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451                                          struct device_attribute *attr,
452                                          const char *buf, size_t count)
453 {
454         int status, len;
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         char tmpbuf[10];
458
459         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460                 return -EACCES;
461         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462         strncpy(tmpbuf, buf, len);
463         tmpbuf[len] = '\0';
464         if (sscanf(tmpbuf, "%d", &status) != 1)
465                 return -EINVAL;
466         h = shost_to_hba(shost);
467         h->acciopath_status = !!status;
468         dev_warn(&h->pdev->dev,
469                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470                 h->acciopath_status ? "enabled" : "disabled");
471         return count;
472 }
473
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475                                          struct device_attribute *attr,
476                                          const char *buf, size_t count)
477 {
478         int debug_level, len;
479         struct ctlr_info *h;
480         struct Scsi_Host *shost = class_to_shost(dev);
481         char tmpbuf[10];
482
483         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484                 return -EACCES;
485         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486         strncpy(tmpbuf, buf, len);
487         tmpbuf[len] = '\0';
488         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489                 return -EINVAL;
490         if (debug_level < 0)
491                 debug_level = 0;
492         h = shost_to_hba(shost);
493         h->raid_offload_debug = debug_level;
494         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495                 h->raid_offload_debug);
496         return count;
497 }
498
499 static ssize_t host_store_rescan(struct device *dev,
500                                  struct device_attribute *attr,
501                                  const char *buf, size_t count)
502 {
503         struct ctlr_info *h;
504         struct Scsi_Host *shost = class_to_shost(dev);
505         h = shost_to_hba(shost);
506         hpsa_scan_start(h->scsi_host);
507         return count;
508 }
509
510 static ssize_t host_show_firmware_revision(struct device *dev,
511              struct device_attribute *attr, char *buf)
512 {
513         struct ctlr_info *h;
514         struct Scsi_Host *shost = class_to_shost(dev);
515         unsigned char *fwrev;
516
517         h = shost_to_hba(shost);
518         if (!h->hba_inquiry_data)
519                 return 0;
520         fwrev = &h->hba_inquiry_data[32];
521         return snprintf(buf, 20, "%c%c%c%c\n",
522                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526              struct device_attribute *attr, char *buf)
527 {
528         struct Scsi_Host *shost = class_to_shost(dev);
529         struct ctlr_info *h = shost_to_hba(shost);
530
531         return snprintf(buf, 20, "%d\n",
532                         atomic_read(&h->commands_outstanding));
533 }
534
535 static ssize_t host_show_transport_mode(struct device *dev,
536         struct device_attribute *attr, char *buf)
537 {
538         struct ctlr_info *h;
539         struct Scsi_Host *shost = class_to_shost(dev);
540
541         h = shost_to_hba(shost);
542         return snprintf(buf, 20, "%s\n",
543                 h->transMethod & CFGTBL_Trans_Performant ?
544                         "performant" : "simple");
545 }
546
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548         struct device_attribute *attr, char *buf)
549 {
550         struct ctlr_info *h;
551         struct Scsi_Host *shost = class_to_shost(dev);
552
553         h = shost_to_hba(shost);
554         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560         0x324a103C, /* Smart Array P712m */
561         0x324b103C, /* Smart Array P711m */
562         0x3223103C, /* Smart Array P800 */
563         0x3234103C, /* Smart Array P400 */
564         0x3235103C, /* Smart Array P400i */
565         0x3211103C, /* Smart Array E200i */
566         0x3212103C, /* Smart Array E200 */
567         0x3213103C, /* Smart Array E200i */
568         0x3214103C, /* Smart Array E200i */
569         0x3215103C, /* Smart Array E200i */
570         0x3237103C, /* Smart Array E500 */
571         0x323D103C, /* Smart Array P700m */
572         0x40800E11, /* Smart Array 5i */
573         0x409C0E11, /* Smart Array 6400 */
574         0x409D0E11, /* Smart Array 6400 EM */
575         0x40700E11, /* Smart Array 5300 */
576         0x40820E11, /* Smart Array 532 */
577         0x40830E11, /* Smart Array 5312 */
578         0x409A0E11, /* Smart Array 641 */
579         0x409B0E11, /* Smart Array 642 */
580         0x40910E11, /* Smart Array 6i */
581 };
582
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585         0x40800E11, /* Smart Array 5i */
586         0x40700E11, /* Smart Array 5300 */
587         0x40820E11, /* Smart Array 532 */
588         0x40830E11, /* Smart Array 5312 */
589         0x409A0E11, /* Smart Array 641 */
590         0x409B0E11, /* Smart Array 642 */
591         0x40910E11, /* Smart Array 6i */
592         /* Exclude 640x boards.  These are two pci devices in one slot
593          * which share a battery backed cache module.  One controls the
594          * cache, the other accesses the cache through the one that controls
595          * it.  If we reset the one controlling the cache, the other will
596          * likely not be happy.  Just forbid resetting this conjoined mess.
597          * The 640x isn't really supported by hpsa anyway.
598          */
599         0x409C0E11, /* Smart Array 6400 */
600         0x409D0E11, /* Smart Array 6400 EM */
601 };
602
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605         int i;
606
607         for (i = 0; i < nelems; i++)
608                 if (a[i] == board_id)
609                         return 1;
610         return 0;
611 }
612
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615         return !board_id_in_array(unresettable_controller,
616                         ARRAY_SIZE(unresettable_controller), board_id);
617 }
618
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621         return !board_id_in_array(soft_unresettable_controller,
622                         ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624
625 static int ctlr_is_resettable(u32 board_id)
626 {
627         return ctlr_is_hard_resettable(board_id) ||
628                 ctlr_is_soft_resettable(board_id);
629 }
630
631 static ssize_t host_show_resettable(struct device *dev,
632         struct device_attribute *attr, char *buf)
633 {
634         struct ctlr_info *h;
635         struct Scsi_Host *shost = class_to_shost(dev);
636
637         h = shost_to_hba(shost);
638         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643         return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0     0
650 #define HPSA_RAID_4     1
651 #define HPSA_RAID_1     2       /* also used for RAID 10 */
652 #define HPSA_RAID_5     3       /* also used for RAID 50 */
653 #define HPSA_RAID_51    4
654 #define HPSA_RAID_6     5       /* also used for RAID 60 */
655 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661         return !device->physical_device;
662 }
663
664 static ssize_t raid_level_show(struct device *dev,
665              struct device_attribute *attr, char *buf)
666 {
667         ssize_t l = 0;
668         unsigned char rlevel;
669         struct ctlr_info *h;
670         struct scsi_device *sdev;
671         struct hpsa_scsi_dev_t *hdev;
672         unsigned long flags;
673
674         sdev = to_scsi_device(dev);
675         h = sdev_to_hba(sdev);
676         spin_lock_irqsave(&h->lock, flags);
677         hdev = sdev->hostdata;
678         if (!hdev) {
679                 spin_unlock_irqrestore(&h->lock, flags);
680                 return -ENODEV;
681         }
682
683         /* Is this even a logical drive? */
684         if (!is_logical_device(hdev)) {
685                 spin_unlock_irqrestore(&h->lock, flags);
686                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
687                 return l;
688         }
689
690         rlevel = hdev->raid_level;
691         spin_unlock_irqrestore(&h->lock, flags);
692         if (rlevel > RAID_UNKNOWN)
693                 rlevel = RAID_UNKNOWN;
694         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695         return l;
696 }
697
698 static ssize_t lunid_show(struct device *dev,
699              struct device_attribute *attr, char *buf)
700 {
701         struct ctlr_info *h;
702         struct scsi_device *sdev;
703         struct hpsa_scsi_dev_t *hdev;
704         unsigned long flags;
705         unsigned char lunid[8];
706
707         sdev = to_scsi_device(dev);
708         h = sdev_to_hba(sdev);
709         spin_lock_irqsave(&h->lock, flags);
710         hdev = sdev->hostdata;
711         if (!hdev) {
712                 spin_unlock_irqrestore(&h->lock, flags);
713                 return -ENODEV;
714         }
715         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716         spin_unlock_irqrestore(&h->lock, flags);
717         return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719
720 static ssize_t unique_id_show(struct device *dev,
721              struct device_attribute *attr, char *buf)
722 {
723         struct ctlr_info *h;
724         struct scsi_device *sdev;
725         struct hpsa_scsi_dev_t *hdev;
726         unsigned long flags;
727         unsigned char sn[16];
728
729         sdev = to_scsi_device(dev);
730         h = sdev_to_hba(sdev);
731         spin_lock_irqsave(&h->lock, flags);
732         hdev = sdev->hostdata;
733         if (!hdev) {
734                 spin_unlock_irqrestore(&h->lock, flags);
735                 return -ENODEV;
736         }
737         memcpy(sn, hdev->device_id, sizeof(sn));
738         spin_unlock_irqrestore(&h->lock, flags);
739         return snprintf(buf, 16 * 2 + 2,
740                         "%02X%02X%02X%02X%02X%02X%02X%02X"
741                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742                         sn[0], sn[1], sn[2], sn[3],
743                         sn[4], sn[5], sn[6], sn[7],
744                         sn[8], sn[9], sn[10], sn[11],
745                         sn[12], sn[13], sn[14], sn[15]);
746 }
747
748 static ssize_t sas_address_show(struct device *dev,
749               struct device_attribute *attr, char *buf)
750 {
751         struct ctlr_info *h;
752         struct scsi_device *sdev;
753         struct hpsa_scsi_dev_t *hdev;
754         unsigned long flags;
755         u64 sas_address;
756
757         sdev = to_scsi_device(dev);
758         h = sdev_to_hba(sdev);
759         spin_lock_irqsave(&h->lock, flags);
760         hdev = sdev->hostdata;
761         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762                 spin_unlock_irqrestore(&h->lock, flags);
763                 return -ENODEV;
764         }
765         sas_address = hdev->sas_address;
766         spin_unlock_irqrestore(&h->lock, flags);
767
768         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772              struct device_attribute *attr, char *buf)
773 {
774         struct ctlr_info *h;
775         struct scsi_device *sdev;
776         struct hpsa_scsi_dev_t *hdev;
777         unsigned long flags;
778         int offload_enabled;
779
780         sdev = to_scsi_device(dev);
781         h = sdev_to_hba(sdev);
782         spin_lock_irqsave(&h->lock, flags);
783         hdev = sdev->hostdata;
784         if (!hdev) {
785                 spin_unlock_irqrestore(&h->lock, flags);
786                 return -ENODEV;
787         }
788         offload_enabled = hdev->offload_enabled;
789         spin_unlock_irqrestore(&h->lock, flags);
790
791         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792                 return snprintf(buf, 20, "%d\n", offload_enabled);
793         else
794                 return snprintf(buf, 40, "%s\n",
795                                 "Not applicable for a controller");
796 }
797
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800              struct device_attribute *attr, char *buf)
801 {
802         struct ctlr_info *h;
803         struct scsi_device *sdev;
804         struct hpsa_scsi_dev_t *hdev;
805         unsigned long flags;
806         int i;
807         int output_len = 0;
808         u8 box;
809         u8 bay;
810         u8 path_map_index = 0;
811         char *active;
812         unsigned char phys_connector[2];
813
814         sdev = to_scsi_device(dev);
815         h = sdev_to_hba(sdev);
816         spin_lock_irqsave(&h->devlock, flags);
817         hdev = sdev->hostdata;
818         if (!hdev) {
819                 spin_unlock_irqrestore(&h->devlock, flags);
820                 return -ENODEV;
821         }
822
823         bay = hdev->bay;
824         for (i = 0; i < MAX_PATHS; i++) {
825                 path_map_index = 1<<i;
826                 if (i == hdev->active_path_index)
827                         active = "Active";
828                 else if (hdev->path_map & path_map_index)
829                         active = "Inactive";
830                 else
831                         continue;
832
833                 output_len += scnprintf(buf + output_len,
834                                 PAGE_SIZE - output_len,
835                                 "[%d:%d:%d:%d] %20.20s ",
836                                 h->scsi_host->host_no,
837                                 hdev->bus, hdev->target, hdev->lun,
838                                 scsi_device_type(hdev->devtype));
839
840                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841                         output_len += scnprintf(buf + output_len,
842                                                 PAGE_SIZE - output_len,
843                                                 "%s\n", active);
844                         continue;
845                 }
846
847                 box = hdev->box[i];
848                 memcpy(&phys_connector, &hdev->phys_connector[i],
849                         sizeof(phys_connector));
850                 if (phys_connector[0] < '0')
851                         phys_connector[0] = '0';
852                 if (phys_connector[1] < '0')
853                         phys_connector[1] = '0';
854                 output_len += scnprintf(buf + output_len,
855                                 PAGE_SIZE - output_len,
856                                 "PORT: %.2s ",
857                                 phys_connector);
858                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859                         hdev->expose_device) {
860                         if (box == 0 || box == 0xFF) {
861                                 output_len += scnprintf(buf + output_len,
862                                         PAGE_SIZE - output_len,
863                                         "BAY: %hhu %s\n",
864                                         bay, active);
865                         } else {
866                                 output_len += scnprintf(buf + output_len,
867                                         PAGE_SIZE - output_len,
868                                         "BOX: %hhu BAY: %hhu %s\n",
869                                         box, bay, active);
870                         }
871                 } else if (box != 0 && box != 0xFF) {
872                         output_len += scnprintf(buf + output_len,
873                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874                                 box, active);
875                 } else
876                         output_len += scnprintf(buf + output_len,
877                                 PAGE_SIZE - output_len, "%s\n", active);
878         }
879
880         spin_unlock_irqrestore(&h->devlock, flags);
881         return output_len;
882 }
883
884 static ssize_t host_show_ctlr_num(struct device *dev,
885         struct device_attribute *attr, char *buf)
886 {
887         struct ctlr_info *h;
888         struct Scsi_Host *shost = class_to_shost(dev);
889
890         h = shost_to_hba(shost);
891         return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893
894 static ssize_t host_show_legacy_board(struct device *dev,
895         struct device_attribute *attr, char *buf)
896 {
897         struct ctlr_info *h;
898         struct Scsi_Host *shost = class_to_shost(dev);
899
900         h = shost_to_hba(shost);
901         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910                         host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913                 host_show_hp_ssd_smart_path_status,
914                 host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916                         host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918         host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920         host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922         host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924         host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926         host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928         host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930         host_show_legacy_board, NULL);
931
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933         &dev_attr_raid_level,
934         &dev_attr_lunid,
935         &dev_attr_unique_id,
936         &dev_attr_hp_ssd_smart_path_enabled,
937         &dev_attr_path_info,
938         &dev_attr_sas_address,
939         NULL,
940 };
941
942 static struct device_attribute *hpsa_shost_attrs[] = {
943         &dev_attr_rescan,
944         &dev_attr_firmware_revision,
945         &dev_attr_commands_outstanding,
946         &dev_attr_transport_mode,
947         &dev_attr_resettable,
948         &dev_attr_hp_ssd_smart_path_status,
949         &dev_attr_raid_offload_debug,
950         &dev_attr_lockup_detected,
951         &dev_attr_ctlr_num,
952         &dev_attr_legacy_board,
953         NULL,
954 };
955
956 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
957                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
958
959 static struct scsi_host_template hpsa_driver_template = {
960         .module                 = THIS_MODULE,
961         .name                   = HPSA,
962         .proc_name              = HPSA,
963         .queuecommand           = hpsa_scsi_queue_command,
964         .scan_start             = hpsa_scan_start,
965         .scan_finished          = hpsa_scan_finished,
966         .change_queue_depth     = hpsa_change_queue_depth,
967         .this_id                = -1,
968         .use_clustering         = ENABLE_CLUSTERING,
969         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
970         .ioctl                  = hpsa_ioctl,
971         .slave_alloc            = hpsa_slave_alloc,
972         .slave_configure        = hpsa_slave_configure,
973         .slave_destroy          = hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975         .compat_ioctl           = hpsa_compat_ioctl,
976 #endif
977         .sdev_attrs = hpsa_sdev_attrs,
978         .shost_attrs = hpsa_shost_attrs,
979         .max_sectors = 1024,
980         .no_write_same = 1,
981 };
982
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985         u32 a;
986         struct reply_queue_buffer *rq = &h->reply_queue[q];
987
988         if (h->transMethod & CFGTBL_Trans_io_accel1)
989                 return h->access.command_completed(h, q);
990
991         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992                 return h->access.command_completed(h, q);
993
994         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995                 a = rq->head[rq->current_entry];
996                 rq->current_entry++;
997                 atomic_dec(&h->commands_outstanding);
998         } else {
999                 a = FIFO_EMPTY;
1000         }
1001         /* Check for wraparound */
1002         if (rq->current_entry == h->max_commands) {
1003                 rq->current_entry = 0;
1004                 rq->wraparound ^= 1;
1005         }
1006         return a;
1007 }
1008
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042                                         int reply_queue)
1043 {
1044         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046                 if (unlikely(!h->msix_vectors))
1047                         return;
1048                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1049                         c->Header.ReplyQueue =
1050                                 raw_smp_processor_id() % h->nreply_queues;
1051                 else
1052                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1053         }
1054 }
1055
1056 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1057                                                 struct CommandList *c,
1058                                                 int reply_queue)
1059 {
1060         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1061
1062         /*
1063          * Tell the controller to post the reply to the queue for this
1064          * processor.  This seems to give the best I/O throughput.
1065          */
1066         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1068         else
1069                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1070         /*
1071          * Set the bits in the address sent down to include:
1072          *  - performant mode bit (bit 0)
1073          *  - pull count (bits 1-3)
1074          *  - command type (bits 4-6)
1075          */
1076         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077                                         IOACCEL1_BUSADDR_CMDTYPE;
1078 }
1079
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081                                                 struct CommandList *c,
1082                                                 int reply_queue)
1083 {
1084         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085                 &h->ioaccel2_cmd_pool[c->cmdindex];
1086
1087         /* Tell the controller to post the reply to the queue for this
1088          * processor.  This seems to give the best I/O throughput.
1089          */
1090         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1091                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1092         else
1093                 cp->reply_queue = reply_queue % h->nreply_queues;
1094         /* Set the bits in the address sent down to include:
1095          *  - performant mode bit not used in ioaccel mode 2
1096          *  - pull count (bits 0-3)
1097          *  - command type isn't needed for ioaccel2
1098          */
1099         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1100 }
1101
1102 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103                                                 struct CommandList *c,
1104                                                 int reply_queue)
1105 {
1106         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1107
1108         /*
1109          * Tell the controller to post the reply to the queue for this
1110          * processor.  This seems to give the best I/O throughput.
1111          */
1112         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1113                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1114         else
1115                 cp->reply_queue = reply_queue % h->nreply_queues;
1116         /*
1117          * Set the bits in the address sent down to include:
1118          *  - performant mode bit not used in ioaccel mode 2
1119          *  - pull count (bits 0-3)
1120          *  - command type isn't needed for ioaccel2
1121          */
1122         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1123 }
1124
1125 static int is_firmware_flash_cmd(u8 *cdb)
1126 {
1127         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1128 }
1129
1130 /*
1131  * During firmware flash, the heartbeat register may not update as frequently
1132  * as it should.  So we dial down lockup detection during firmware flash. and
1133  * dial it back up when firmware flash completes.
1134  */
1135 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1136 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1137 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1138 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1139                 struct CommandList *c)
1140 {
1141         if (!is_firmware_flash_cmd(c->Request.CDB))
1142                 return;
1143         atomic_inc(&h->firmware_flash_in_progress);
1144         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1145 }
1146
1147 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1148                 struct CommandList *c)
1149 {
1150         if (is_firmware_flash_cmd(c->Request.CDB) &&
1151                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1152                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1153 }
1154
1155 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1156         struct CommandList *c, int reply_queue)
1157 {
1158         dial_down_lockup_detection_during_fw_flash(h, c);
1159         atomic_inc(&h->commands_outstanding);
1160         switch (c->cmd_type) {
1161         case CMD_IOACCEL1:
1162                 set_ioaccel1_performant_mode(h, c, reply_queue);
1163                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1164                 break;
1165         case CMD_IOACCEL2:
1166                 set_ioaccel2_performant_mode(h, c, reply_queue);
1167                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1168                 break;
1169         case IOACCEL2_TMF:
1170                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1171                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172                 break;
1173         default:
1174                 set_performant_mode(h, c, reply_queue);
1175                 h->access.submit_command(h, c);
1176         }
1177 }
1178
1179 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1180 {
1181         if (unlikely(hpsa_is_pending_event(c)))
1182                 return finish_cmd(c);
1183
1184         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1185 }
1186
1187 static inline int is_hba_lunid(unsigned char scsi3addr[])
1188 {
1189         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1190 }
1191
1192 static inline int is_scsi_rev_5(struct ctlr_info *h)
1193 {
1194         if (!h->hba_inquiry_data)
1195                 return 0;
1196         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1197                 return 1;
1198         return 0;
1199 }
1200
1201 static int hpsa_find_target_lun(struct ctlr_info *h,
1202         unsigned char scsi3addr[], int bus, int *target, int *lun)
1203 {
1204         /* finds an unused bus, target, lun for a new physical device
1205          * assumes h->devlock is held
1206          */
1207         int i, found = 0;
1208         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1209
1210         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1211
1212         for (i = 0; i < h->ndevices; i++) {
1213                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1214                         __set_bit(h->dev[i]->target, lun_taken);
1215         }
1216
1217         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1218         if (i < HPSA_MAX_DEVICES) {
1219                 /* *bus = 1; */
1220                 *target = i;
1221                 *lun = 0;
1222                 found = 1;
1223         }
1224         return !found;
1225 }
1226
1227 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1228         struct hpsa_scsi_dev_t *dev, char *description)
1229 {
1230 #define LABEL_SIZE 25
1231         char label[LABEL_SIZE];
1232
1233         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1234                 return;
1235
1236         switch (dev->devtype) {
1237         case TYPE_RAID:
1238                 snprintf(label, LABEL_SIZE, "controller");
1239                 break;
1240         case TYPE_ENCLOSURE:
1241                 snprintf(label, LABEL_SIZE, "enclosure");
1242                 break;
1243         case TYPE_DISK:
1244         case TYPE_ZBC:
1245                 if (dev->external)
1246                         snprintf(label, LABEL_SIZE, "external");
1247                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1248                         snprintf(label, LABEL_SIZE, "%s",
1249                                 raid_label[PHYSICAL_DRIVE]);
1250                 else
1251                         snprintf(label, LABEL_SIZE, "RAID-%s",
1252                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1253                                 raid_label[dev->raid_level]);
1254                 break;
1255         case TYPE_ROM:
1256                 snprintf(label, LABEL_SIZE, "rom");
1257                 break;
1258         case TYPE_TAPE:
1259                 snprintf(label, LABEL_SIZE, "tape");
1260                 break;
1261         case TYPE_MEDIUM_CHANGER:
1262                 snprintf(label, LABEL_SIZE, "changer");
1263                 break;
1264         default:
1265                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1266                 break;
1267         }
1268
1269         dev_printk(level, &h->pdev->dev,
1270                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1271                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1272                         description,
1273                         scsi_device_type(dev->devtype),
1274                         dev->vendor,
1275                         dev->model,
1276                         label,
1277                         dev->offload_config ? '+' : '-',
1278                         dev->offload_to_be_enabled ? '+' : '-',
1279                         dev->expose_device);
1280 }
1281
1282 /* Add an entry into h->dev[] array. */
1283 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1284                 struct hpsa_scsi_dev_t *device,
1285                 struct hpsa_scsi_dev_t *added[], int *nadded)
1286 {
1287         /* assumes h->devlock is held */
1288         int n = h->ndevices;
1289         int i;
1290         unsigned char addr1[8], addr2[8];
1291         struct hpsa_scsi_dev_t *sd;
1292
1293         if (n >= HPSA_MAX_DEVICES) {
1294                 dev_err(&h->pdev->dev, "too many devices, some will be "
1295                         "inaccessible.\n");
1296                 return -1;
1297         }
1298
1299         /* physical devices do not have lun or target assigned until now. */
1300         if (device->lun != -1)
1301                 /* Logical device, lun is already assigned. */
1302                 goto lun_assigned;
1303
1304         /* If this device a non-zero lun of a multi-lun device
1305          * byte 4 of the 8-byte LUN addr will contain the logical
1306          * unit no, zero otherwise.
1307          */
1308         if (device->scsi3addr[4] == 0) {
1309                 /* This is not a non-zero lun of a multi-lun device */
1310                 if (hpsa_find_target_lun(h, device->scsi3addr,
1311                         device->bus, &device->target, &device->lun) != 0)
1312                         return -1;
1313                 goto lun_assigned;
1314         }
1315
1316         /* This is a non-zero lun of a multi-lun device.
1317          * Search through our list and find the device which
1318          * has the same 8 byte LUN address, excepting byte 4 and 5.
1319          * Assign the same bus and target for this new LUN.
1320          * Use the logical unit number from the firmware.
1321          */
1322         memcpy(addr1, device->scsi3addr, 8);
1323         addr1[4] = 0;
1324         addr1[5] = 0;
1325         for (i = 0; i < n; i++) {
1326                 sd = h->dev[i];
1327                 memcpy(addr2, sd->scsi3addr, 8);
1328                 addr2[4] = 0;
1329                 addr2[5] = 0;
1330                 /* differ only in byte 4 and 5? */
1331                 if (memcmp(addr1, addr2, 8) == 0) {
1332                         device->bus = sd->bus;
1333                         device->target = sd->target;
1334                         device->lun = device->scsi3addr[4];
1335                         break;
1336                 }
1337         }
1338         if (device->lun == -1) {
1339                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1340                         " suspect firmware bug or unsupported hardware "
1341                         "configuration.\n");
1342                         return -1;
1343         }
1344
1345 lun_assigned:
1346
1347         h->dev[n] = device;
1348         h->ndevices++;
1349         added[*nadded] = device;
1350         (*nadded)++;
1351         hpsa_show_dev_msg(KERN_INFO, h, device,
1352                 device->expose_device ? "added" : "masked");
1353         return 0;
1354 }
1355
1356 /*
1357  * Called during a scan operation.
1358  *
1359  * Update an entry in h->dev[] array.
1360  */
1361 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1362         int entry, struct hpsa_scsi_dev_t *new_entry)
1363 {
1364         /* assumes h->devlock is held */
1365         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1366
1367         /* Raid level changed. */
1368         h->dev[entry]->raid_level = new_entry->raid_level;
1369
1370         /*
1371          * ioacccel_handle may have changed for a dual domain disk
1372          */
1373         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1374
1375         /* Raid offload parameters changed.  Careful about the ordering. */
1376         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1377                 /*
1378                  * if drive is newly offload_enabled, we want to copy the
1379                  * raid map data first.  If previously offload_enabled and
1380                  * offload_config were set, raid map data had better be
1381                  * the same as it was before. If raid map data has changed
1382                  * then it had better be the case that
1383                  * h->dev[entry]->offload_enabled is currently 0.
1384                  */
1385                 h->dev[entry]->raid_map = new_entry->raid_map;
1386                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1387         }
1388         if (new_entry->offload_to_be_enabled) {
1389                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1390                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1391         }
1392         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1393         h->dev[entry]->offload_config = new_entry->offload_config;
1394         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1395         h->dev[entry]->queue_depth = new_entry->queue_depth;
1396
1397         /*
1398          * We can turn off ioaccel offload now, but need to delay turning
1399          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1400          * can't do that until all the devices are updated.
1401          */
1402         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1403
1404         /*
1405          * turn ioaccel off immediately if told to do so.
1406          */
1407         if (!new_entry->offload_to_be_enabled)
1408                 h->dev[entry]->offload_enabled = 0;
1409
1410         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1411 }
1412
1413 /* Replace an entry from h->dev[] array. */
1414 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1415         int entry, struct hpsa_scsi_dev_t *new_entry,
1416         struct hpsa_scsi_dev_t *added[], int *nadded,
1417         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1418 {
1419         /* assumes h->devlock is held */
1420         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1421         removed[*nremoved] = h->dev[entry];
1422         (*nremoved)++;
1423
1424         /*
1425          * New physical devices won't have target/lun assigned yet
1426          * so we need to preserve the values in the slot we are replacing.
1427          */
1428         if (new_entry->target == -1) {
1429                 new_entry->target = h->dev[entry]->target;
1430                 new_entry->lun = h->dev[entry]->lun;
1431         }
1432
1433         h->dev[entry] = new_entry;
1434         added[*nadded] = new_entry;
1435         (*nadded)++;
1436
1437         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1438 }
1439
1440 /* Remove an entry from h->dev[] array. */
1441 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1442         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1443 {
1444         /* assumes h->devlock is held */
1445         int i;
1446         struct hpsa_scsi_dev_t *sd;
1447
1448         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1449
1450         sd = h->dev[entry];
1451         removed[*nremoved] = h->dev[entry];
1452         (*nremoved)++;
1453
1454         for (i = entry; i < h->ndevices-1; i++)
1455                 h->dev[i] = h->dev[i+1];
1456         h->ndevices--;
1457         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1458 }
1459
1460 #define SCSI3ADDR_EQ(a, b) ( \
1461         (a)[7] == (b)[7] && \
1462         (a)[6] == (b)[6] && \
1463         (a)[5] == (b)[5] && \
1464         (a)[4] == (b)[4] && \
1465         (a)[3] == (b)[3] && \
1466         (a)[2] == (b)[2] && \
1467         (a)[1] == (b)[1] && \
1468         (a)[0] == (b)[0])
1469
1470 static void fixup_botched_add(struct ctlr_info *h,
1471         struct hpsa_scsi_dev_t *added)
1472 {
1473         /* called when scsi_add_device fails in order to re-adjust
1474          * h->dev[] to match the mid layer's view.
1475          */
1476         unsigned long flags;
1477         int i, j;
1478
1479         spin_lock_irqsave(&h->lock, flags);
1480         for (i = 0; i < h->ndevices; i++) {
1481                 if (h->dev[i] == added) {
1482                         for (j = i; j < h->ndevices-1; j++)
1483                                 h->dev[j] = h->dev[j+1];
1484                         h->ndevices--;
1485                         break;
1486                 }
1487         }
1488         spin_unlock_irqrestore(&h->lock, flags);
1489         kfree(added);
1490 }
1491
1492 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1493         struct hpsa_scsi_dev_t *dev2)
1494 {
1495         /* we compare everything except lun and target as these
1496          * are not yet assigned.  Compare parts likely
1497          * to differ first
1498          */
1499         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1500                 sizeof(dev1->scsi3addr)) != 0)
1501                 return 0;
1502         if (memcmp(dev1->device_id, dev2->device_id,
1503                 sizeof(dev1->device_id)) != 0)
1504                 return 0;
1505         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1506                 return 0;
1507         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1508                 return 0;
1509         if (dev1->devtype != dev2->devtype)
1510                 return 0;
1511         if (dev1->bus != dev2->bus)
1512                 return 0;
1513         return 1;
1514 }
1515
1516 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1517         struct hpsa_scsi_dev_t *dev2)
1518 {
1519         /* Device attributes that can change, but don't mean
1520          * that the device is a different device, nor that the OS
1521          * needs to be told anything about the change.
1522          */
1523         if (dev1->raid_level != dev2->raid_level)
1524                 return 1;
1525         if (dev1->offload_config != dev2->offload_config)
1526                 return 1;
1527         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1528                 return 1;
1529         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1530                 if (dev1->queue_depth != dev2->queue_depth)
1531                         return 1;
1532         /*
1533          * This can happen for dual domain devices. An active
1534          * path change causes the ioaccel handle to change
1535          *
1536          * for example note the handle differences between p0 and p1
1537          * Device                    WWN               ,WWN hash,Handle
1538          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1539          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1540          */
1541         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1542                 return 1;
1543         return 0;
1544 }
1545
1546 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1547  * and return needle location in *index.  If scsi3addr matches, but not
1548  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1549  * location in *index.
1550  * In the case of a minor device attribute change, such as RAID level, just
1551  * return DEVICE_UPDATED, along with the updated device's location in index.
1552  * If needle not found, return DEVICE_NOT_FOUND.
1553  */
1554 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1555         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1556         int *index)
1557 {
1558         int i;
1559 #define DEVICE_NOT_FOUND 0
1560 #define DEVICE_CHANGED 1
1561 #define DEVICE_SAME 2
1562 #define DEVICE_UPDATED 3
1563         if (needle == NULL)
1564                 return DEVICE_NOT_FOUND;
1565
1566         for (i = 0; i < haystack_size; i++) {
1567                 if (haystack[i] == NULL) /* previously removed. */
1568                         continue;
1569                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1570                         *index = i;
1571                         if (device_is_the_same(needle, haystack[i])) {
1572                                 if (device_updated(needle, haystack[i]))
1573                                         return DEVICE_UPDATED;
1574                                 return DEVICE_SAME;
1575                         } else {
1576                                 /* Keep offline devices offline */
1577                                 if (needle->volume_offline)
1578                                         return DEVICE_NOT_FOUND;
1579                                 return DEVICE_CHANGED;
1580                         }
1581                 }
1582         }
1583         *index = -1;
1584         return DEVICE_NOT_FOUND;
1585 }
1586
1587 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1588                                         unsigned char scsi3addr[])
1589 {
1590         struct offline_device_entry *device;
1591         unsigned long flags;
1592
1593         /* Check to see if device is already on the list */
1594         spin_lock_irqsave(&h->offline_device_lock, flags);
1595         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1596                 if (memcmp(device->scsi3addr, scsi3addr,
1597                         sizeof(device->scsi3addr)) == 0) {
1598                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1599                         return;
1600                 }
1601         }
1602         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1603
1604         /* Device is not on the list, add it. */
1605         device = kmalloc(sizeof(*device), GFP_KERNEL);
1606         if (!device)
1607                 return;
1608
1609         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1610         spin_lock_irqsave(&h->offline_device_lock, flags);
1611         list_add_tail(&device->offline_list, &h->offline_device_list);
1612         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1613 }
1614
1615 /* Print a message explaining various offline volume states */
1616 static void hpsa_show_volume_status(struct ctlr_info *h,
1617         struct hpsa_scsi_dev_t *sd)
1618 {
1619         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1620                 dev_info(&h->pdev->dev,
1621                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1622                         h->scsi_host->host_no,
1623                         sd->bus, sd->target, sd->lun);
1624         switch (sd->volume_offline) {
1625         case HPSA_LV_OK:
1626                 break;
1627         case HPSA_LV_UNDERGOING_ERASE:
1628                 dev_info(&h->pdev->dev,
1629                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1630                         h->scsi_host->host_no,
1631                         sd->bus, sd->target, sd->lun);
1632                 break;
1633         case HPSA_LV_NOT_AVAILABLE:
1634                 dev_info(&h->pdev->dev,
1635                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1636                         h->scsi_host->host_no,
1637                         sd->bus, sd->target, sd->lun);
1638                 break;
1639         case HPSA_LV_UNDERGOING_RPI:
1640                 dev_info(&h->pdev->dev,
1641                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1642                         h->scsi_host->host_no,
1643                         sd->bus, sd->target, sd->lun);
1644                 break;
1645         case HPSA_LV_PENDING_RPI:
1646                 dev_info(&h->pdev->dev,
1647                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1648                         h->scsi_host->host_no,
1649                         sd->bus, sd->target, sd->lun);
1650                 break;
1651         case HPSA_LV_ENCRYPTED_NO_KEY:
1652                 dev_info(&h->pdev->dev,
1653                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1654                         h->scsi_host->host_no,
1655                         sd->bus, sd->target, sd->lun);
1656                 break;
1657         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1658                 dev_info(&h->pdev->dev,
1659                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1660                         h->scsi_host->host_no,
1661                         sd->bus, sd->target, sd->lun);
1662                 break;
1663         case HPSA_LV_UNDERGOING_ENCRYPTION:
1664                 dev_info(&h->pdev->dev,
1665                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1666                         h->scsi_host->host_no,
1667                         sd->bus, sd->target, sd->lun);
1668                 break;
1669         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1670                 dev_info(&h->pdev->dev,
1671                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1672                         h->scsi_host->host_no,
1673                         sd->bus, sd->target, sd->lun);
1674                 break;
1675         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1676                 dev_info(&h->pdev->dev,
1677                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1678                         h->scsi_host->host_no,
1679                         sd->bus, sd->target, sd->lun);
1680                 break;
1681         case HPSA_LV_PENDING_ENCRYPTION:
1682                 dev_info(&h->pdev->dev,
1683                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1684                         h->scsi_host->host_no,
1685                         sd->bus, sd->target, sd->lun);
1686                 break;
1687         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1688                 dev_info(&h->pdev->dev,
1689                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1690                         h->scsi_host->host_no,
1691                         sd->bus, sd->target, sd->lun);
1692                 break;
1693         }
1694 }
1695
1696 /*
1697  * Figure the list of physical drive pointers for a logical drive with
1698  * raid offload configured.
1699  */
1700 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1701                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1702                                 struct hpsa_scsi_dev_t *logical_drive)
1703 {
1704         struct raid_map_data *map = &logical_drive->raid_map;
1705         struct raid_map_disk_data *dd = &map->data[0];
1706         int i, j;
1707         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1708                                 le16_to_cpu(map->metadata_disks_per_row);
1709         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1710                                 le16_to_cpu(map->layout_map_count) *
1711                                 total_disks_per_row;
1712         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1713                                 total_disks_per_row;
1714         int qdepth;
1715
1716         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1717                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1718
1719         logical_drive->nphysical_disks = nraid_map_entries;
1720
1721         qdepth = 0;
1722         for (i = 0; i < nraid_map_entries; i++) {
1723                 logical_drive->phys_disk[i] = NULL;
1724                 if (!logical_drive->offload_config)
1725                         continue;
1726                 for (j = 0; j < ndevices; j++) {
1727                         if (dev[j] == NULL)
1728                                 continue;
1729                         if (dev[j]->devtype != TYPE_DISK &&
1730                             dev[j]->devtype != TYPE_ZBC)
1731                                 continue;
1732                         if (is_logical_device(dev[j]))
1733                                 continue;
1734                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1735                                 continue;
1736
1737                         logical_drive->phys_disk[i] = dev[j];
1738                         if (i < nphys_disk)
1739                                 qdepth = min(h->nr_cmds, qdepth +
1740                                     logical_drive->phys_disk[i]->queue_depth);
1741                         break;
1742                 }
1743
1744                 /*
1745                  * This can happen if a physical drive is removed and
1746                  * the logical drive is degraded.  In that case, the RAID
1747                  * map data will refer to a physical disk which isn't actually
1748                  * present.  And in that case offload_enabled should already
1749                  * be 0, but we'll turn it off here just in case
1750                  */
1751                 if (!logical_drive->phys_disk[i]) {
1752                         dev_warn(&h->pdev->dev,
1753                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1754                                 __func__,
1755                                 h->scsi_host->host_no, logical_drive->bus,
1756                                 logical_drive->target, logical_drive->lun);
1757                         logical_drive->offload_enabled = 0;
1758                         logical_drive->offload_to_be_enabled = 0;
1759                         logical_drive->queue_depth = 8;
1760                 }
1761         }
1762         if (nraid_map_entries)
1763                 /*
1764                  * This is correct for reads, too high for full stripe writes,
1765                  * way too high for partial stripe writes
1766                  */
1767                 logical_drive->queue_depth = qdepth;
1768         else {
1769                 if (logical_drive->external)
1770                         logical_drive->queue_depth = EXTERNAL_QD;
1771                 else
1772                         logical_drive->queue_depth = h->nr_cmds;
1773         }
1774 }
1775
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1778 {
1779         int i;
1780
1781         for (i = 0; i < ndevices; i++) {
1782                 if (dev[i] == NULL)
1783                         continue;
1784                 if (dev[i]->devtype != TYPE_DISK &&
1785                     dev[i]->devtype != TYPE_ZBC)
1786                         continue;
1787                 if (!is_logical_device(dev[i]))
1788                         continue;
1789
1790                 /*
1791                  * If offload is currently enabled, the RAID map and
1792                  * phys_disk[] assignment *better* not be changing
1793                  * because we would be changing ioaccel phsy_disk[] pointers
1794                  * on a ioaccel volume processing I/O requests.
1795                  *
1796                  * If an ioaccel volume status changed, initially because it was
1797                  * re-configured and thus underwent a transformation, or
1798                  * a drive failed, we would have received a state change
1799                  * request and ioaccel should have been turned off. When the
1800                  * transformation completes, we get another state change
1801                  * request to turn ioaccel back on. In this case, we need
1802                  * to update the ioaccel information.
1803                  *
1804                  * Thus: If it is not currently enabled, but will be after
1805                  * the scan completes, make sure the ioaccel pointers
1806                  * are up to date.
1807                  */
1808
1809                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1811         }
1812 }
1813
1814 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1815 {
1816         int rc = 0;
1817
1818         if (!h->scsi_host)
1819                 return 1;
1820
1821         if (is_logical_device(device)) /* RAID */
1822                 rc = scsi_add_device(h->scsi_host, device->bus,
1823                                         device->target, device->lun);
1824         else /* HBA */
1825                 rc = hpsa_add_sas_device(h->sas_host, device);
1826
1827         return rc;
1828 }
1829
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831                                                 struct hpsa_scsi_dev_t *dev)
1832 {
1833         int i;
1834         int count = 0;
1835
1836         for (i = 0; i < h->nr_cmds; i++) {
1837                 struct CommandList *c = h->cmd_pool + i;
1838                 int refcount = atomic_inc_return(&c->refcount);
1839
1840                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1841                                 dev->scsi3addr)) {
1842                         unsigned long flags;
1843
1844                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1845                         if (!hpsa_is_cmd_idle(c))
1846                                 ++count;
1847                         spin_unlock_irqrestore(&h->lock, flags);
1848                 }
1849
1850                 cmd_free(h, c);
1851         }
1852
1853         return count;
1854 }
1855
1856 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1857                                                 struct hpsa_scsi_dev_t *device)
1858 {
1859         int cmds = 0;
1860         int waits = 0;
1861
1862         while (1) {
1863                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1864                 if (cmds == 0)
1865                         break;
1866                 if (++waits > 20)
1867                         break;
1868                 msleep(1000);
1869         }
1870
1871         if (waits > 20)
1872                 dev_warn(&h->pdev->dev,
1873                         "%s: removing device with %d outstanding commands!\n",
1874                         __func__, cmds);
1875 }
1876
1877 static void hpsa_remove_device(struct ctlr_info *h,
1878                         struct hpsa_scsi_dev_t *device)
1879 {
1880         struct scsi_device *sdev = NULL;
1881
1882         if (!h->scsi_host)
1883                 return;
1884
1885         /*
1886          * Allow for commands to drain
1887          */
1888         device->removed = 1;
1889         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1890
1891         if (is_logical_device(device)) { /* RAID */
1892                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1893                                                 device->target, device->lun);
1894                 if (sdev) {
1895                         scsi_remove_device(sdev);
1896                         scsi_device_put(sdev);
1897                 } else {
1898                         /*
1899                          * We don't expect to get here.  Future commands
1900                          * to this device will get a selection timeout as
1901                          * if the device were gone.
1902                          */
1903                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1904                                         "didn't find device for removal.");
1905                 }
1906         } else { /* HBA */
1907
1908                 hpsa_remove_sas_device(device);
1909         }
1910 }
1911
1912 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1913         struct hpsa_scsi_dev_t *sd[], int nsds)
1914 {
1915         /* sd contains scsi3 addresses and devtypes, and inquiry
1916          * data.  This function takes what's in sd to be the current
1917          * reality and updates h->dev[] to reflect that reality.
1918          */
1919         int i, entry, device_change, changes = 0;
1920         struct hpsa_scsi_dev_t *csd;
1921         unsigned long flags;
1922         struct hpsa_scsi_dev_t **added, **removed;
1923         int nadded, nremoved;
1924
1925         /*
1926          * A reset can cause a device status to change
1927          * re-schedule the scan to see what happened.
1928          */
1929         spin_lock_irqsave(&h->reset_lock, flags);
1930         if (h->reset_in_progress) {
1931                 h->drv_req_rescan = 1;
1932                 spin_unlock_irqrestore(&h->reset_lock, flags);
1933                 return;
1934         }
1935         spin_unlock_irqrestore(&h->reset_lock, flags);
1936
1937         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1938         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1939
1940         if (!added || !removed) {
1941                 dev_warn(&h->pdev->dev, "out of memory in "
1942                         "adjust_hpsa_scsi_table\n");
1943                 goto free_and_out;
1944         }
1945
1946         spin_lock_irqsave(&h->devlock, flags);
1947
1948         /* find any devices in h->dev[] that are not in
1949          * sd[] and remove them from h->dev[], and for any
1950          * devices which have changed, remove the old device
1951          * info and add the new device info.
1952          * If minor device attributes change, just update
1953          * the existing device structure.
1954          */
1955         i = 0;
1956         nremoved = 0;
1957         nadded = 0;
1958         while (i < h->ndevices) {
1959                 csd = h->dev[i];
1960                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1961                 if (device_change == DEVICE_NOT_FOUND) {
1962                         changes++;
1963                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1964                         continue; /* remove ^^^, hence i not incremented */
1965                 } else if (device_change == DEVICE_CHANGED) {
1966                         changes++;
1967                         hpsa_scsi_replace_entry(h, i, sd[entry],
1968                                 added, &nadded, removed, &nremoved);
1969                         /* Set it to NULL to prevent it from being freed
1970                          * at the bottom of hpsa_update_scsi_devices()
1971                          */
1972                         sd[entry] = NULL;
1973                 } else if (device_change == DEVICE_UPDATED) {
1974                         hpsa_scsi_update_entry(h, i, sd[entry]);
1975                 }
1976                 i++;
1977         }
1978
1979         /* Now, make sure every device listed in sd[] is also
1980          * listed in h->dev[], adding them if they aren't found
1981          */
1982
1983         for (i = 0; i < nsds; i++) {
1984                 if (!sd[i]) /* if already added above. */
1985                         continue;
1986
1987                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1988                  * as the SCSI mid-layer does not handle such devices well.
1989                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1990                  * at 160Hz, and prevents the system from coming up.
1991                  */
1992                 if (sd[i]->volume_offline) {
1993                         hpsa_show_volume_status(h, sd[i]);
1994                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1995                         continue;
1996                 }
1997
1998                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1999                                         h->ndevices, &entry);
2000                 if (device_change == DEVICE_NOT_FOUND) {
2001                         changes++;
2002                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2003                                 break;
2004                         sd[i] = NULL; /* prevent from being freed later. */
2005                 } else if (device_change == DEVICE_CHANGED) {
2006                         /* should never happen... */
2007                         changes++;
2008                         dev_warn(&h->pdev->dev,
2009                                 "device unexpectedly changed.\n");
2010                         /* but if it does happen, we just ignore that device */
2011                 }
2012         }
2013         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2014
2015         /*
2016          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2017          * any logical drives that need it enabled.
2018          *
2019          * The raid map should be current by now.
2020          *
2021          * We are updating the device list used for I/O requests.
2022          */
2023         for (i = 0; i < h->ndevices; i++) {
2024                 if (h->dev[i] == NULL)
2025                         continue;
2026                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2027         }
2028
2029         spin_unlock_irqrestore(&h->devlock, flags);
2030
2031         /* Monitor devices which are in one of several NOT READY states to be
2032          * brought online later. This must be done without holding h->devlock,
2033          * so don't touch h->dev[]
2034          */
2035         for (i = 0; i < nsds; i++) {
2036                 if (!sd[i]) /* if already added above. */
2037                         continue;
2038                 if (sd[i]->volume_offline)
2039                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2040         }
2041
2042         /* Don't notify scsi mid layer of any changes the first time through
2043          * (or if there are no changes) scsi_scan_host will do it later the
2044          * first time through.
2045          */
2046         if (!changes)
2047                 goto free_and_out;
2048
2049         /* Notify scsi mid layer of any removed devices */
2050         for (i = 0; i < nremoved; i++) {
2051                 if (removed[i] == NULL)
2052                         continue;
2053                 if (removed[i]->expose_device)
2054                         hpsa_remove_device(h, removed[i]);
2055                 kfree(removed[i]);
2056                 removed[i] = NULL;
2057         }
2058
2059         /* Notify scsi mid layer of any added devices */
2060         for (i = 0; i < nadded; i++) {
2061                 int rc = 0;
2062
2063                 if (added[i] == NULL)
2064                         continue;
2065                 if (!(added[i]->expose_device))
2066                         continue;
2067                 rc = hpsa_add_device(h, added[i]);
2068                 if (!rc)
2069                         continue;
2070                 dev_warn(&h->pdev->dev,
2071                         "addition failed %d, device not added.", rc);
2072                 /* now we have to remove it from h->dev,
2073                  * since it didn't get added to scsi mid layer
2074                  */
2075                 fixup_botched_add(h, added[i]);
2076                 h->drv_req_rescan = 1;
2077         }
2078
2079 free_and_out:
2080         kfree(added);
2081         kfree(removed);
2082 }
2083
2084 /*
2085  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2086  * Assume's h->devlock is held.
2087  */
2088 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2089         int bus, int target, int lun)
2090 {
2091         int i;
2092         struct hpsa_scsi_dev_t *sd;
2093
2094         for (i = 0; i < h->ndevices; i++) {
2095                 sd = h->dev[i];
2096                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2097                         return sd;
2098         }
2099         return NULL;
2100 }
2101
2102 static int hpsa_slave_alloc(struct scsi_device *sdev)
2103 {
2104         struct hpsa_scsi_dev_t *sd = NULL;
2105         unsigned long flags;
2106         struct ctlr_info *h;
2107
2108         h = sdev_to_hba(sdev);
2109         spin_lock_irqsave(&h->devlock, flags);
2110         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2111                 struct scsi_target *starget;
2112                 struct sas_rphy *rphy;
2113
2114                 starget = scsi_target(sdev);
2115                 rphy = target_to_rphy(starget);
2116                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2117                 if (sd) {
2118                         sd->target = sdev_id(sdev);
2119                         sd->lun = sdev->lun;
2120                 }
2121         }
2122         if (!sd)
2123                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2124                                         sdev_id(sdev), sdev->lun);
2125
2126         if (sd && sd->expose_device) {
2127                 atomic_set(&sd->ioaccel_cmds_out, 0);
2128                 sdev->hostdata = sd;
2129         } else
2130                 sdev->hostdata = NULL;
2131         spin_unlock_irqrestore(&h->devlock, flags);
2132         return 0;
2133 }
2134
2135 /* configure scsi device based on internal per-device structure */
2136 static int hpsa_slave_configure(struct scsi_device *sdev)
2137 {
2138         struct hpsa_scsi_dev_t *sd;
2139         int queue_depth;
2140
2141         sd = sdev->hostdata;
2142         sdev->no_uld_attach = !sd || !sd->expose_device;
2143
2144         if (sd) {
2145                 if (sd->external)
2146                         queue_depth = EXTERNAL_QD;
2147                 else
2148                         queue_depth = sd->queue_depth != 0 ?
2149                                         sd->queue_depth : sdev->host->can_queue;
2150         } else
2151                 queue_depth = sdev->host->can_queue;
2152
2153         scsi_change_queue_depth(sdev, queue_depth);
2154
2155         return 0;
2156 }
2157
2158 static void hpsa_slave_destroy(struct scsi_device *sdev)
2159 {
2160         /* nothing to do. */
2161 }
2162
2163 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2164 {
2165         int i;
2166
2167         if (!h->ioaccel2_cmd_sg_list)
2168                 return;
2169         for (i = 0; i < h->nr_cmds; i++) {
2170                 kfree(h->ioaccel2_cmd_sg_list[i]);
2171                 h->ioaccel2_cmd_sg_list[i] = NULL;
2172         }
2173         kfree(h->ioaccel2_cmd_sg_list);
2174         h->ioaccel2_cmd_sg_list = NULL;
2175 }
2176
2177 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2178 {
2179         int i;
2180
2181         if (h->chainsize <= 0)
2182                 return 0;
2183
2184         h->ioaccel2_cmd_sg_list =
2185                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2186                                         GFP_KERNEL);
2187         if (!h->ioaccel2_cmd_sg_list)
2188                 return -ENOMEM;
2189         for (i = 0; i < h->nr_cmds; i++) {
2190                 h->ioaccel2_cmd_sg_list[i] =
2191                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2192                                         h->maxsgentries, GFP_KERNEL);
2193                 if (!h->ioaccel2_cmd_sg_list[i])
2194                         goto clean;
2195         }
2196         return 0;
2197
2198 clean:
2199         hpsa_free_ioaccel2_sg_chain_blocks(h);
2200         return -ENOMEM;
2201 }
2202
2203 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2204 {
2205         int i;
2206
2207         if (!h->cmd_sg_list)
2208                 return;
2209         for (i = 0; i < h->nr_cmds; i++) {
2210                 kfree(h->cmd_sg_list[i]);
2211                 h->cmd_sg_list[i] = NULL;
2212         }
2213         kfree(h->cmd_sg_list);
2214         h->cmd_sg_list = NULL;
2215 }
2216
2217 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2218 {
2219         int i;
2220
2221         if (h->chainsize <= 0)
2222                 return 0;
2223
2224         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2225                                 GFP_KERNEL);
2226         if (!h->cmd_sg_list)
2227                 return -ENOMEM;
2228
2229         for (i = 0; i < h->nr_cmds; i++) {
2230                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2231                                                 h->chainsize, GFP_KERNEL);
2232                 if (!h->cmd_sg_list[i])
2233                         goto clean;
2234
2235         }
2236         return 0;
2237
2238 clean:
2239         hpsa_free_sg_chain_blocks(h);
2240         return -ENOMEM;
2241 }
2242
2243 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2244         struct io_accel2_cmd *cp, struct CommandList *c)
2245 {
2246         struct ioaccel2_sg_element *chain_block;
2247         u64 temp64;
2248         u32 chain_size;
2249
2250         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2251         chain_size = le32_to_cpu(cp->sg[0].length);
2252         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2253                                 PCI_DMA_TODEVICE);
2254         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2255                 /* prevent subsequent unmapping */
2256                 cp->sg->address = 0;
2257                 return -1;
2258         }
2259         cp->sg->address = cpu_to_le64(temp64);
2260         return 0;
2261 }
2262
2263 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2264         struct io_accel2_cmd *cp)
2265 {
2266         struct ioaccel2_sg_element *chain_sg;
2267         u64 temp64;
2268         u32 chain_size;
2269
2270         chain_sg = cp->sg;
2271         temp64 = le64_to_cpu(chain_sg->address);
2272         chain_size = le32_to_cpu(cp->sg[0].length);
2273         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2274 }
2275
2276 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2277         struct CommandList *c)
2278 {
2279         struct SGDescriptor *chain_sg, *chain_block;
2280         u64 temp64;
2281         u32 chain_len;
2282
2283         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2284         chain_block = h->cmd_sg_list[c->cmdindex];
2285         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2286         chain_len = sizeof(*chain_sg) *
2287                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2288         chain_sg->Len = cpu_to_le32(chain_len);
2289         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2290                                 PCI_DMA_TODEVICE);
2291         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2292                 /* prevent subsequent unmapping */
2293                 chain_sg->Addr = cpu_to_le64(0);
2294                 return -1;
2295         }
2296         chain_sg->Addr = cpu_to_le64(temp64);
2297         return 0;
2298 }
2299
2300 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2301         struct CommandList *c)
2302 {
2303         struct SGDescriptor *chain_sg;
2304
2305         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2306                 return;
2307
2308         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2310                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2311 }
2312
2313
2314 /* Decode the various types of errors on ioaccel2 path.
2315  * Return 1 for any error that should generate a RAID path retry.
2316  * Return 0 for errors that don't require a RAID path retry.
2317  */
2318 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2319                                         struct CommandList *c,
2320                                         struct scsi_cmnd *cmd,
2321                                         struct io_accel2_cmd *c2,
2322                                         struct hpsa_scsi_dev_t *dev)
2323 {
2324         int data_len;
2325         int retry = 0;
2326         u32 ioaccel2_resid = 0;
2327
2328         switch (c2->error_data.serv_response) {
2329         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2330                 switch (c2->error_data.status) {
2331                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2332                         break;
2333                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2334                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2335                         if (c2->error_data.data_present !=
2336                                         IOACCEL2_SENSE_DATA_PRESENT) {
2337                                 memset(cmd->sense_buffer, 0,
2338                                         SCSI_SENSE_BUFFERSIZE);
2339                                 break;
2340                         }
2341                         /* copy the sense data */
2342                         data_len = c2->error_data.sense_data_len;
2343                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2344                                 data_len = SCSI_SENSE_BUFFERSIZE;
2345                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2346                                 data_len =
2347                                         sizeof(c2->error_data.sense_data_buff);
2348                         memcpy(cmd->sense_buffer,
2349                                 c2->error_data.sense_data_buff, data_len);
2350                         retry = 1;
2351                         break;
2352                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2353                         retry = 1;
2354                         break;
2355                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2356                         retry = 1;
2357                         break;
2358                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2359                         retry = 1;
2360                         break;
2361                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2362                         retry = 1;
2363                         break;
2364                 default:
2365                         retry = 1;
2366                         break;
2367                 }
2368                 break;
2369         case IOACCEL2_SERV_RESPONSE_FAILURE:
2370                 switch (c2->error_data.status) {
2371                 case IOACCEL2_STATUS_SR_IO_ERROR:
2372                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2373                 case IOACCEL2_STATUS_SR_OVERRUN:
2374                         retry = 1;
2375                         break;
2376                 case IOACCEL2_STATUS_SR_UNDERRUN:
2377                         cmd->result = (DID_OK << 16);           /* host byte */
2378                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2379                         ioaccel2_resid = get_unaligned_le32(
2380                                                 &c2->error_data.resid_cnt[0]);
2381                         scsi_set_resid(cmd, ioaccel2_resid);
2382                         break;
2383                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2384                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2385                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2386                         /*
2387                          * Did an HBA disk disappear? We will eventually
2388                          * get a state change event from the controller but
2389                          * in the meantime, we need to tell the OS that the
2390                          * HBA disk is no longer there and stop I/O
2391                          * from going down. This allows the potential re-insert
2392                          * of the disk to get the same device node.
2393                          */
2394                         if (dev->physical_device && dev->expose_device) {
2395                                 cmd->result = DID_NO_CONNECT << 16;
2396                                 dev->removed = 1;
2397                                 h->drv_req_rescan = 1;
2398                                 dev_warn(&h->pdev->dev,
2399                                         "%s: device is gone!\n", __func__);
2400                         } else
2401                                 /*
2402                                  * Retry by sending down the RAID path.
2403                                  * We will get an event from ctlr to
2404                                  * trigger rescan regardless.
2405                                  */
2406                                 retry = 1;
2407                         break;
2408                 default:
2409                         retry = 1;
2410                 }
2411                 break;
2412         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2413                 break;
2414         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2415                 break;
2416         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2417                 retry = 1;
2418                 break;
2419         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2420                 break;
2421         default:
2422                 retry = 1;
2423                 break;
2424         }
2425
2426         return retry;   /* retry on raid path? */
2427 }
2428
2429 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2430                 struct CommandList *c)
2431 {
2432         bool do_wake = false;
2433
2434         /*
2435          * Reset c->scsi_cmd here so that the reset handler will know
2436          * this command has completed.  Then, check to see if the handler is
2437          * waiting for this command, and, if so, wake it.
2438          */
2439         c->scsi_cmd = SCSI_CMD_IDLE;
2440         mb();   /* Declare command idle before checking for pending events. */
2441         if (c->reset_pending) {
2442                 unsigned long flags;
2443                 struct hpsa_scsi_dev_t *dev;
2444
2445                 /*
2446                  * There appears to be a reset pending; lock the lock and
2447                  * reconfirm.  If so, then decrement the count of outstanding
2448                  * commands and wake the reset command if this is the last one.
2449                  */
2450                 spin_lock_irqsave(&h->lock, flags);
2451                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2452                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2453                         do_wake = true;
2454                 c->reset_pending = NULL;
2455                 spin_unlock_irqrestore(&h->lock, flags);
2456         }
2457
2458         if (do_wake)
2459                 wake_up_all(&h->event_sync_wait_queue);
2460 }
2461
2462 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2463                                       struct CommandList *c)
2464 {
2465         hpsa_cmd_resolve_events(h, c);
2466         cmd_tagged_free(h, c);
2467 }
2468
2469 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2470                 struct CommandList *c, struct scsi_cmnd *cmd)
2471 {
2472         hpsa_cmd_resolve_and_free(h, c);
2473         if (cmd && cmd->scsi_done)
2474                 cmd->scsi_done(cmd);
2475 }
2476
2477 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2478 {
2479         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2480         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2481 }
2482
2483 static void process_ioaccel2_completion(struct ctlr_info *h,
2484                 struct CommandList *c, struct scsi_cmnd *cmd,
2485                 struct hpsa_scsi_dev_t *dev)
2486 {
2487         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2488
2489         /* check for good status */
2490         if (likely(c2->error_data.serv_response == 0 &&
2491                         c2->error_data.status == 0))
2492                 return hpsa_cmd_free_and_done(h, c, cmd);
2493
2494         /*
2495          * Any RAID offload error results in retry which will use
2496          * the normal I/O path so the controller can handle whatever is
2497          * wrong.
2498          */
2499         if (is_logical_device(dev) &&
2500                 c2->error_data.serv_response ==
2501                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2502                 if (c2->error_data.status ==
2503                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2504                         dev->offload_enabled = 0;
2505                         dev->offload_to_be_enabled = 0;
2506                 }
2507
2508                 return hpsa_retry_cmd(h, c);
2509         }
2510
2511         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2512                 return hpsa_retry_cmd(h, c);
2513
2514         return hpsa_cmd_free_and_done(h, c, cmd);
2515 }
2516
2517 /* Returns 0 on success, < 0 otherwise. */
2518 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2519                                         struct CommandList *cp)
2520 {
2521         u8 tmf_status = cp->err_info->ScsiStatus;
2522
2523         switch (tmf_status) {
2524         case CISS_TMF_COMPLETE:
2525                 /*
2526                  * CISS_TMF_COMPLETE never happens, instead,
2527                  * ei->CommandStatus == 0 for this case.
2528                  */
2529         case CISS_TMF_SUCCESS:
2530                 return 0;
2531         case CISS_TMF_INVALID_FRAME:
2532         case CISS_TMF_NOT_SUPPORTED:
2533         case CISS_TMF_FAILED:
2534         case CISS_TMF_WRONG_LUN:
2535         case CISS_TMF_OVERLAPPED_TAG:
2536                 break;
2537         default:
2538                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2539                                 tmf_status);
2540                 break;
2541         }
2542         return -tmf_status;
2543 }
2544
2545 static void complete_scsi_command(struct CommandList *cp)
2546 {
2547         struct scsi_cmnd *cmd;
2548         struct ctlr_info *h;
2549         struct ErrorInfo *ei;
2550         struct hpsa_scsi_dev_t *dev;
2551         struct io_accel2_cmd *c2;
2552
2553         u8 sense_key;
2554         u8 asc;      /* additional sense code */
2555         u8 ascq;     /* additional sense code qualifier */
2556         unsigned long sense_data_size;
2557
2558         ei = cp->err_info;
2559         cmd = cp->scsi_cmd;
2560         h = cp->h;
2561
2562         if (!cmd->device) {
2563                 cmd->result = DID_NO_CONNECT << 16;
2564                 return hpsa_cmd_free_and_done(h, cp, cmd);
2565         }
2566
2567         dev = cmd->device->hostdata;
2568         if (!dev) {
2569                 cmd->result = DID_NO_CONNECT << 16;
2570                 return hpsa_cmd_free_and_done(h, cp, cmd);
2571         }
2572         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2573
2574         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2575         if ((cp->cmd_type == CMD_SCSI) &&
2576                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2577                 hpsa_unmap_sg_chain_block(h, cp);
2578
2579         if ((cp->cmd_type == CMD_IOACCEL2) &&
2580                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2581                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2582
2583         cmd->result = (DID_OK << 16);           /* host byte */
2584         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2585
2586         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2587                 if (dev->physical_device && dev->expose_device &&
2588                         dev->removed) {
2589                         cmd->result = DID_NO_CONNECT << 16;
2590                         return hpsa_cmd_free_and_done(h, cp, cmd);
2591                 }
2592                 if (likely(cp->phys_disk != NULL))
2593                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2594         }
2595
2596         /*
2597          * We check for lockup status here as it may be set for
2598          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2599          * fail_all_oustanding_cmds()
2600          */
2601         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2602                 /* DID_NO_CONNECT will prevent a retry */
2603                 cmd->result = DID_NO_CONNECT << 16;
2604                 return hpsa_cmd_free_and_done(h, cp, cmd);
2605         }
2606
2607         if ((unlikely(hpsa_is_pending_event(cp))))
2608                 if (cp->reset_pending)
2609                         return hpsa_cmd_free_and_done(h, cp, cmd);
2610
2611         if (cp->cmd_type == CMD_IOACCEL2)
2612                 return process_ioaccel2_completion(h, cp, cmd, dev);
2613
2614         scsi_set_resid(cmd, ei->ResidualCnt);
2615         if (ei->CommandStatus == 0)
2616                 return hpsa_cmd_free_and_done(h, cp, cmd);
2617
2618         /* For I/O accelerator commands, copy over some fields to the normal
2619          * CISS header used below for error handling.
2620          */
2621         if (cp->cmd_type == CMD_IOACCEL1) {
2622                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2623                 cp->Header.SGList = scsi_sg_count(cmd);
2624                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2625                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2626                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2627                 cp->Header.tag = c->tag;
2628                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2629                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2630
2631                 /* Any RAID offload error results in retry which will use
2632                  * the normal I/O path so the controller can handle whatever's
2633                  * wrong.
2634                  */
2635                 if (is_logical_device(dev)) {
2636                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2637                                 dev->offload_enabled = 0;
2638                         return hpsa_retry_cmd(h, cp);
2639                 }
2640         }
2641
2642         /* an error has occurred */
2643         switch (ei->CommandStatus) {
2644
2645         case CMD_TARGET_STATUS:
2646                 cmd->result |= ei->ScsiStatus;
2647                 /* copy the sense data */
2648                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2649                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2650                 else
2651                         sense_data_size = sizeof(ei->SenseInfo);
2652                 if (ei->SenseLen < sense_data_size)
2653                         sense_data_size = ei->SenseLen;
2654                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2655                 if (ei->ScsiStatus)
2656                         decode_sense_data(ei->SenseInfo, sense_data_size,
2657                                 &sense_key, &asc, &ascq);
2658                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2659                         if (sense_key == ABORTED_COMMAND) {
2660                                 cmd->result |= DID_SOFT_ERROR << 16;
2661                                 break;
2662                         }
2663                         break;
2664                 }
2665                 /* Problem was not a check condition
2666                  * Pass it up to the upper layers...
2667                  */
2668                 if (ei->ScsiStatus) {
2669                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2670                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2671                                 "Returning result: 0x%x\n",
2672                                 cp, ei->ScsiStatus,
2673                                 sense_key, asc, ascq,
2674                                 cmd->result);
2675                 } else {  /* scsi status is zero??? How??? */
2676                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2677                                 "Returning no connection.\n", cp),
2678
2679                         /* Ordinarily, this case should never happen,
2680                          * but there is a bug in some released firmware
2681                          * revisions that allows it to happen if, for
2682                          * example, a 4100 backplane loses power and
2683                          * the tape drive is in it.  We assume that
2684                          * it's a fatal error of some kind because we
2685                          * can't show that it wasn't. We will make it
2686                          * look like selection timeout since that is
2687                          * the most common reason for this to occur,
2688                          * and it's severe enough.
2689                          */
2690
2691                         cmd->result = DID_NO_CONNECT << 16;
2692                 }
2693                 break;
2694
2695         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2696                 break;
2697         case CMD_DATA_OVERRUN:
2698                 dev_warn(&h->pdev->dev,
2699                         "CDB %16phN data overrun\n", cp->Request.CDB);
2700                 break;
2701         case CMD_INVALID: {
2702                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2703                 print_cmd(cp); */
2704                 /* We get CMD_INVALID if you address a non-existent device
2705                  * instead of a selection timeout (no response).  You will
2706                  * see this if you yank out a drive, then try to access it.
2707                  * This is kind of a shame because it means that any other
2708                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2709                  * missing target. */
2710                 cmd->result = DID_NO_CONNECT << 16;
2711         }
2712                 break;
2713         case CMD_PROTOCOL_ERR:
2714                 cmd->result = DID_ERROR << 16;
2715                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2716                                 cp->Request.CDB);
2717                 break;
2718         case CMD_HARDWARE_ERR:
2719                 cmd->result = DID_ERROR << 16;
2720                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2721                         cp->Request.CDB);
2722                 break;
2723         case CMD_CONNECTION_LOST:
2724                 cmd->result = DID_ERROR << 16;
2725                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2726                         cp->Request.CDB);
2727                 break;
2728         case CMD_ABORTED:
2729                 cmd->result = DID_ABORT << 16;
2730                 break;
2731         case CMD_ABORT_FAILED:
2732                 cmd->result = DID_ERROR << 16;
2733                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2734                         cp->Request.CDB);
2735                 break;
2736         case CMD_UNSOLICITED_ABORT:
2737                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2738                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2739                         cp->Request.CDB);
2740                 break;
2741         case CMD_TIMEOUT:
2742                 cmd->result = DID_TIME_OUT << 16;
2743                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2744                         cp->Request.CDB);
2745                 break;
2746         case CMD_UNABORTABLE:
2747                 cmd->result = DID_ERROR << 16;
2748                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2749                 break;
2750         case CMD_TMF_STATUS:
2751                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2752                         cmd->result = DID_ERROR << 16;
2753                 break;
2754         case CMD_IOACCEL_DISABLED:
2755                 /* This only handles the direct pass-through case since RAID
2756                  * offload is handled above.  Just attempt a retry.
2757                  */
2758                 cmd->result = DID_SOFT_ERROR << 16;
2759                 dev_warn(&h->pdev->dev,
2760                                 "cp %p had HP SSD Smart Path error\n", cp);
2761                 break;
2762         default:
2763                 cmd->result = DID_ERROR << 16;
2764                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2765                                 cp, ei->CommandStatus);
2766         }
2767
2768         return hpsa_cmd_free_and_done(h, cp, cmd);
2769 }
2770
2771 static void hpsa_pci_unmap(struct pci_dev *pdev,
2772         struct CommandList *c, int sg_used, int data_direction)
2773 {
2774         int i;
2775
2776         for (i = 0; i < sg_used; i++)
2777                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2778                                 le32_to_cpu(c->SG[i].Len),
2779                                 data_direction);
2780 }
2781
2782 static int hpsa_map_one(struct pci_dev *pdev,
2783                 struct CommandList *cp,
2784                 unsigned char *buf,
2785                 size_t buflen,
2786                 int data_direction)
2787 {
2788         u64 addr64;
2789
2790         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2791                 cp->Header.SGList = 0;
2792                 cp->Header.SGTotal = cpu_to_le16(0);
2793                 return 0;
2794         }
2795
2796         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2797         if (dma_mapping_error(&pdev->dev, addr64)) {
2798                 /* Prevent subsequent unmap of something never mapped */
2799                 cp->Header.SGList = 0;
2800                 cp->Header.SGTotal = cpu_to_le16(0);
2801                 return -1;
2802         }
2803         cp->SG[0].Addr = cpu_to_le64(addr64);
2804         cp->SG[0].Len = cpu_to_le32(buflen);
2805         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2806         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2807         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2808         return 0;
2809 }
2810
2811 #define NO_TIMEOUT ((unsigned long) -1)
2812 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2813 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2814         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2815 {
2816         DECLARE_COMPLETION_ONSTACK(wait);
2817
2818         c->waiting = &wait;
2819         __enqueue_cmd_and_start_io(h, c, reply_queue);
2820         if (timeout_msecs == NO_TIMEOUT) {
2821                 /* TODO: get rid of this no-timeout thing */
2822                 wait_for_completion_io(&wait);
2823                 return IO_OK;
2824         }
2825         if (!wait_for_completion_io_timeout(&wait,
2826                                         msecs_to_jiffies(timeout_msecs))) {
2827                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2828                 return -ETIMEDOUT;
2829         }
2830         return IO_OK;
2831 }
2832
2833 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2834                                    int reply_queue, unsigned long timeout_msecs)
2835 {
2836         if (unlikely(lockup_detected(h))) {
2837                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2838                 return IO_OK;
2839         }
2840         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2841 }
2842
2843 static u32 lockup_detected(struct ctlr_info *h)
2844 {
2845         int cpu;
2846         u32 rc, *lockup_detected;
2847
2848         cpu = get_cpu();
2849         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2850         rc = *lockup_detected;
2851         put_cpu();
2852         return rc;
2853 }
2854
2855 #define MAX_DRIVER_CMD_RETRIES 25
2856 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2857         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2858 {
2859         int backoff_time = 10, retry_count = 0;
2860         int rc;
2861
2862         do {
2863                 memset(c->err_info, 0, sizeof(*c->err_info));
2864                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2865                                                   timeout_msecs);
2866                 if (rc)
2867                         break;
2868                 retry_count++;
2869                 if (retry_count > 3) {
2870                         msleep(backoff_time);
2871                         if (backoff_time < 1000)
2872                                 backoff_time *= 2;
2873                 }
2874         } while ((check_for_unit_attention(h, c) ||
2875                         check_for_busy(h, c)) &&
2876                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2877         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2878         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2879                 rc = -EIO;
2880         return rc;
2881 }
2882
2883 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2884                                 struct CommandList *c)
2885 {
2886         const u8 *cdb = c->Request.CDB;
2887         const u8 *lun = c->Header.LUN.LunAddrBytes;
2888
2889         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2890                  txt, lun, cdb);
2891 }
2892
2893 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2894                         struct CommandList *cp)
2895 {
2896         const struct ErrorInfo *ei = cp->err_info;
2897         struct device *d = &cp->h->pdev->dev;
2898         u8 sense_key, asc, ascq;
2899         int sense_len;
2900
2901         switch (ei->CommandStatus) {
2902         case CMD_TARGET_STATUS:
2903                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2904                         sense_len = sizeof(ei->SenseInfo);
2905                 else
2906                         sense_len = ei->SenseLen;
2907                 decode_sense_data(ei->SenseInfo, sense_len,
2908                                         &sense_key, &asc, &ascq);
2909                 hpsa_print_cmd(h, "SCSI status", cp);
2910                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2911                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2912                                 sense_key, asc, ascq);
2913                 else
2914                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2915                 if (ei->ScsiStatus == 0)
2916                         dev_warn(d, "SCSI status is abnormally zero.  "
2917                         "(probably indicates selection timeout "
2918                         "reported incorrectly due to a known "
2919                         "firmware bug, circa July, 2001.)\n");
2920                 break;
2921         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2922                 break;
2923         case CMD_DATA_OVERRUN:
2924                 hpsa_print_cmd(h, "overrun condition", cp);
2925                 break;
2926         case CMD_INVALID: {
2927                 /* controller unfortunately reports SCSI passthru's
2928                  * to non-existent targets as invalid commands.
2929                  */
2930                 hpsa_print_cmd(h, "invalid command", cp);
2931                 dev_warn(d, "probably means device no longer present\n");
2932                 }
2933                 break;
2934         case CMD_PROTOCOL_ERR:
2935                 hpsa_print_cmd(h, "protocol error", cp);
2936                 break;
2937         case CMD_HARDWARE_ERR:
2938                 hpsa_print_cmd(h, "hardware error", cp);
2939                 break;
2940         case CMD_CONNECTION_LOST:
2941                 hpsa_print_cmd(h, "connection lost", cp);
2942                 break;
2943         case CMD_ABORTED:
2944                 hpsa_print_cmd(h, "aborted", cp);
2945                 break;
2946         case CMD_ABORT_FAILED:
2947                 hpsa_print_cmd(h, "abort failed", cp);
2948                 break;
2949         case CMD_UNSOLICITED_ABORT:
2950                 hpsa_print_cmd(h, "unsolicited abort", cp);
2951                 break;
2952         case CMD_TIMEOUT:
2953                 hpsa_print_cmd(h, "timed out", cp);
2954                 break;
2955         case CMD_UNABORTABLE:
2956                 hpsa_print_cmd(h, "unabortable", cp);
2957                 break;
2958         case CMD_CTLR_LOCKUP:
2959                 hpsa_print_cmd(h, "controller lockup detected", cp);
2960                 break;
2961         default:
2962                 hpsa_print_cmd(h, "unknown status", cp);
2963                 dev_warn(d, "Unknown command status %x\n",
2964                                 ei->CommandStatus);
2965         }
2966 }
2967
2968 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2969                                         u8 page, u8 *buf, size_t bufsize)
2970 {
2971         int rc = IO_OK;
2972         struct CommandList *c;
2973         struct ErrorInfo *ei;
2974
2975         c = cmd_alloc(h);
2976         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2977                         page, scsi3addr, TYPE_CMD)) {
2978                 rc = -1;
2979                 goto out;
2980         }
2981         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2982                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2983         if (rc)
2984                 goto out;
2985         ei = c->err_info;
2986         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2987                 hpsa_scsi_interpret_error(h, c);
2988                 rc = -1;
2989         }
2990 out:
2991         cmd_free(h, c);
2992         return rc;
2993 }
2994
2995 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2996                                                 u8 *scsi3addr)
2997 {
2998         u8 *buf;
2999         u64 sa = 0;
3000         int rc = 0;
3001
3002         buf = kzalloc(1024, GFP_KERNEL);
3003         if (!buf)
3004                 return 0;
3005
3006         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3007                                         buf, 1024);
3008
3009         if (rc)
3010                 goto out;
3011
3012         sa = get_unaligned_be64(buf+12);
3013
3014 out:
3015         kfree(buf);
3016         return sa;
3017 }
3018
3019 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3020                         u16 page, unsigned char *buf,
3021                         unsigned char bufsize)
3022 {
3023         int rc = IO_OK;
3024         struct CommandList *c;
3025         struct ErrorInfo *ei;
3026
3027         c = cmd_alloc(h);
3028
3029         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3030                         page, scsi3addr, TYPE_CMD)) {
3031                 rc = -1;
3032                 goto out;
3033         }
3034         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3035                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3036         if (rc)
3037                 goto out;
3038         ei = c->err_info;
3039         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3040                 hpsa_scsi_interpret_error(h, c);
3041                 rc = -1;
3042         }
3043 out:
3044         cmd_free(h, c);
3045         return rc;
3046 }
3047
3048 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3049         u8 reset_type, int reply_queue)
3050 {
3051         int rc = IO_OK;
3052         struct CommandList *c;
3053         struct ErrorInfo *ei;
3054
3055         c = cmd_alloc(h);
3056
3057
3058         /* fill_cmd can't fail here, no data buffer to map. */
3059         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3060                         scsi3addr, TYPE_MSG);
3061         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3062         if (rc) {
3063                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3064                 goto out;
3065         }
3066         /* no unmap needed here because no data xfer. */
3067
3068         ei = c->err_info;
3069         if (ei->CommandStatus != 0) {
3070                 hpsa_scsi_interpret_error(h, c);
3071                 rc = -1;
3072         }
3073 out:
3074         cmd_free(h, c);
3075         return rc;
3076 }
3077
3078 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3079                                struct hpsa_scsi_dev_t *dev,
3080                                unsigned char *scsi3addr)
3081 {
3082         int i;
3083         bool match = false;
3084         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3085         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3086
3087         if (hpsa_is_cmd_idle(c))
3088                 return false;
3089
3090         switch (c->cmd_type) {
3091         case CMD_SCSI:
3092         case CMD_IOCTL_PEND:
3093                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3094                                 sizeof(c->Header.LUN.LunAddrBytes));
3095                 break;
3096
3097         case CMD_IOACCEL1:
3098         case CMD_IOACCEL2:
3099                 if (c->phys_disk == dev) {
3100                         /* HBA mode match */
3101                         match = true;
3102                 } else {
3103                         /* Possible RAID mode -- check each phys dev. */
3104                         /* FIXME:  Do we need to take out a lock here?  If
3105                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3106                          * instead. */
3107                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3108                                 /* FIXME: an alternate test might be
3109                                  *
3110                                  * match = dev->phys_disk[i]->ioaccel_handle
3111                                  *              == c2->scsi_nexus;      */
3112                                 match = dev->phys_disk[i] == c->phys_disk;
3113                         }
3114                 }
3115                 break;
3116
3117         case IOACCEL2_TMF:
3118                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3119                         match = dev->phys_disk[i]->ioaccel_handle ==
3120                                         le32_to_cpu(ac->it_nexus);
3121                 }
3122                 break;
3123
3124         case 0:         /* The command is in the middle of being initialized. */
3125                 match = false;
3126                 break;
3127
3128         default:
3129                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3130                         c->cmd_type);
3131                 BUG();
3132         }
3133
3134         return match;
3135 }
3136
3137 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3138         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3139 {
3140         int i;
3141         int rc = 0;
3142
3143         /* We can really only handle one reset at a time */
3144         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3145                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3146                 return -EINTR;
3147         }
3148
3149         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3150
3151         for (i = 0; i < h->nr_cmds; i++) {
3152                 struct CommandList *c = h->cmd_pool + i;
3153                 int refcount = atomic_inc_return(&c->refcount);
3154
3155                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3156                         unsigned long flags;
3157
3158                         /*
3159                          * Mark the target command as having a reset pending,
3160                          * then lock a lock so that the command cannot complete
3161                          * while we're considering it.  If the command is not
3162                          * idle then count it; otherwise revoke the event.
3163                          */
3164                         c->reset_pending = dev;
3165                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3166                         if (!hpsa_is_cmd_idle(c))
3167                                 atomic_inc(&dev->reset_cmds_out);
3168                         else
3169                                 c->reset_pending = NULL;
3170                         spin_unlock_irqrestore(&h->lock, flags);
3171                 }
3172
3173                 cmd_free(h, c);
3174         }
3175
3176         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3177         if (!rc)
3178                 wait_event(h->event_sync_wait_queue,
3179                         atomic_read(&dev->reset_cmds_out) == 0 ||
3180                         lockup_detected(h));
3181
3182         if (unlikely(lockup_detected(h))) {
3183                 dev_warn(&h->pdev->dev,
3184                          "Controller lockup detected during reset wait\n");
3185                 rc = -ENODEV;
3186         }
3187
3188         if (unlikely(rc))
3189                 atomic_set(&dev->reset_cmds_out, 0);
3190         else
3191                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3192
3193         mutex_unlock(&h->reset_mutex);
3194         return rc;
3195 }
3196
3197 static void hpsa_get_raid_level(struct ctlr_info *h,
3198         unsigned char *scsi3addr, unsigned char *raid_level)
3199 {
3200         int rc;
3201         unsigned char *buf;
3202
3203         *raid_level = RAID_UNKNOWN;
3204         buf = kzalloc(64, GFP_KERNEL);
3205         if (!buf)
3206                 return;
3207
3208         if (!hpsa_vpd_page_supported(h, scsi3addr,
3209                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3210                 goto exit;
3211
3212         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3213                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3214
3215         if (rc == 0)
3216                 *raid_level = buf[8];
3217         if (*raid_level > RAID_UNKNOWN)
3218                 *raid_level = RAID_UNKNOWN;
3219 exit:
3220         kfree(buf);
3221         return;
3222 }
3223
3224 #define HPSA_MAP_DEBUG
3225 #ifdef HPSA_MAP_DEBUG
3226 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3227                                 struct raid_map_data *map_buff)
3228 {
3229         struct raid_map_disk_data *dd = &map_buff->data[0];
3230         int map, row, col;
3231         u16 map_cnt, row_cnt, disks_per_row;
3232
3233         if (rc != 0)
3234                 return;
3235
3236         /* Show details only if debugging has been activated. */
3237         if (h->raid_offload_debug < 2)
3238                 return;
3239
3240         dev_info(&h->pdev->dev, "structure_size = %u\n",
3241                                 le32_to_cpu(map_buff->structure_size));
3242         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3243                         le32_to_cpu(map_buff->volume_blk_size));
3244         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3245                         le64_to_cpu(map_buff->volume_blk_cnt));
3246         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3247                         map_buff->phys_blk_shift);
3248         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3249                         map_buff->parity_rotation_shift);
3250         dev_info(&h->pdev->dev, "strip_size = %u\n",
3251                         le16_to_cpu(map_buff->strip_size));
3252         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3253                         le64_to_cpu(map_buff->disk_starting_blk));
3254         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3255                         le64_to_cpu(map_buff->disk_blk_cnt));
3256         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3257                         le16_to_cpu(map_buff->data_disks_per_row));
3258         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3259                         le16_to_cpu(map_buff->metadata_disks_per_row));
3260         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3261                         le16_to_cpu(map_buff->row_cnt));
3262         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3263                         le16_to_cpu(map_buff->layout_map_count));
3264         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3265                         le16_to_cpu(map_buff->flags));
3266         dev_info(&h->pdev->dev, "encryption = %s\n",
3267                         le16_to_cpu(map_buff->flags) &
3268                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3269         dev_info(&h->pdev->dev, "dekindex = %u\n",
3270                         le16_to_cpu(map_buff->dekindex));
3271         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3272         for (map = 0; map < map_cnt; map++) {
3273                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3274                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3275                 for (row = 0; row < row_cnt; row++) {
3276                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3277                         disks_per_row =
3278                                 le16_to_cpu(map_buff->data_disks_per_row);
3279                         for (col = 0; col < disks_per_row; col++, dd++)
3280                                 dev_info(&h->pdev->dev,
3281                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3282                                         col, dd->ioaccel_handle,
3283                                         dd->xor_mult[0], dd->xor_mult[1]);
3284                         disks_per_row =
3285                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3286                         for (col = 0; col < disks_per_row; col++, dd++)
3287                                 dev_info(&h->pdev->dev,
3288                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3289                                         col, dd->ioaccel_handle,
3290                                         dd->xor_mult[0], dd->xor_mult[1]);
3291                 }
3292         }
3293 }
3294 #else
3295 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3296                         __attribute__((unused)) int rc,
3297                         __attribute__((unused)) struct raid_map_data *map_buff)
3298 {
3299 }
3300 #endif
3301
3302 static int hpsa_get_raid_map(struct ctlr_info *h,
3303         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3304 {
3305         int rc = 0;
3306         struct CommandList *c;
3307         struct ErrorInfo *ei;
3308
3309         c = cmd_alloc(h);
3310
3311         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3312                         sizeof(this_device->raid_map), 0,
3313                         scsi3addr, TYPE_CMD)) {
3314                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3315                 cmd_free(h, c);
3316                 return -1;
3317         }
3318         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3319                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3320         if (rc)
3321                 goto out;
3322         ei = c->err_info;
3323         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3324                 hpsa_scsi_interpret_error(h, c);
3325                 rc = -1;
3326                 goto out;
3327         }
3328         cmd_free(h, c);
3329
3330         /* @todo in the future, dynamically allocate RAID map memory */
3331         if (le32_to_cpu(this_device->raid_map.structure_size) >
3332                                 sizeof(this_device->raid_map)) {
3333                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3334                 rc = -1;
3335         }
3336         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3337         return rc;
3338 out:
3339         cmd_free(h, c);
3340         return rc;
3341 }
3342
3343 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3344                 unsigned char scsi3addr[], u16 bmic_device_index,
3345                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3346 {
3347         int rc = IO_OK;
3348         struct CommandList *c;
3349         struct ErrorInfo *ei;
3350
3351         c = cmd_alloc(h);
3352
3353         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3354                 0, RAID_CTLR_LUNID, TYPE_CMD);
3355         if (rc)
3356                 goto out;
3357
3358         c->Request.CDB[2] = bmic_device_index & 0xff;
3359         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3360
3361         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3362                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3363         if (rc)
3364                 goto out;
3365         ei = c->err_info;
3366         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3367                 hpsa_scsi_interpret_error(h, c);
3368                 rc = -1;
3369         }
3370 out:
3371         cmd_free(h, c);
3372         return rc;
3373 }
3374
3375 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3376         struct bmic_identify_controller *buf, size_t bufsize)
3377 {
3378         int rc = IO_OK;
3379         struct CommandList *c;
3380         struct ErrorInfo *ei;
3381
3382         c = cmd_alloc(h);
3383
3384         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3385                 0, RAID_CTLR_LUNID, TYPE_CMD);
3386         if (rc)
3387                 goto out;
3388
3389         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3390                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3391         if (rc)
3392                 goto out;
3393         ei = c->err_info;
3394         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3395                 hpsa_scsi_interpret_error(h, c);
3396                 rc = -1;
3397         }
3398 out:
3399         cmd_free(h, c);
3400         return rc;
3401 }
3402
3403 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3404                 unsigned char scsi3addr[], u16 bmic_device_index,
3405                 struct bmic_identify_physical_device *buf, size_t bufsize)
3406 {
3407         int rc = IO_OK;
3408         struct CommandList *c;
3409         struct ErrorInfo *ei;
3410
3411         c = cmd_alloc(h);
3412         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3413                 0, RAID_CTLR_LUNID, TYPE_CMD);
3414         if (rc)
3415                 goto out;
3416
3417         c->Request.CDB[2] = bmic_device_index & 0xff;
3418         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3419
3420         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3421                                                 NO_TIMEOUT);
3422         ei = c->err_info;
3423         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3424                 hpsa_scsi_interpret_error(h, c);
3425                 rc = -1;
3426         }
3427 out:
3428         cmd_free(h, c);
3429
3430         return rc;
3431 }
3432
3433 /*
3434  * get enclosure information
3435  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3436  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3437  * Uses id_physical_device to determine the box_index.
3438  */
3439 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3440                         unsigned char *scsi3addr,
3441                         struct ReportExtendedLUNdata *rlep, int rle_index,
3442                         struct hpsa_scsi_dev_t *encl_dev)
3443 {
3444         int rc = -1;
3445         struct CommandList *c = NULL;
3446         struct ErrorInfo *ei = NULL;
3447         struct bmic_sense_storage_box_params *bssbp = NULL;
3448         struct bmic_identify_physical_device *id_phys = NULL;
3449         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3450         u16 bmic_device_index = 0;
3451
3452         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3453
3454         encl_dev->sas_address =
3455                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3456
3457         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3458                 rc = IO_OK;
3459                 goto out;
3460         }
3461
3462         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3463                 rc = IO_OK;
3464                 goto out;
3465         }
3466
3467         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3468         if (!bssbp)
3469                 goto out;
3470
3471         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3472         if (!id_phys)
3473                 goto out;
3474
3475         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3476                                                 id_phys, sizeof(*id_phys));
3477         if (rc) {
3478                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3479                         __func__, encl_dev->external, bmic_device_index);
3480                 goto out;
3481         }
3482
3483         c = cmd_alloc(h);
3484
3485         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3486                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3487
3488         if (rc)
3489                 goto out;
3490
3491         if (id_phys->phys_connector[1] == 'E')
3492                 c->Request.CDB[5] = id_phys->box_index;
3493         else
3494                 c->Request.CDB[5] = 0;
3495
3496         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3497                                                 NO_TIMEOUT);
3498         if (rc)
3499                 goto out;
3500
3501         ei = c->err_info;
3502         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3503                 rc = -1;
3504                 goto out;
3505         }
3506
3507         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3508         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3509                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3510
3511         rc = IO_OK;
3512 out:
3513         kfree(bssbp);
3514         kfree(id_phys);
3515
3516         if (c)
3517                 cmd_free(h, c);
3518
3519         if (rc != IO_OK)
3520                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3521                         "Error, could not get enclosure information");
3522 }
3523
3524 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3525                                                 unsigned char *scsi3addr)
3526 {
3527         struct ReportExtendedLUNdata *physdev;
3528         u32 nphysicals;
3529         u64 sa = 0;
3530         int i;
3531
3532         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3533         if (!physdev)
3534                 return 0;
3535
3536         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3537                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3538                 kfree(physdev);
3539                 return 0;
3540         }
3541         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3542
3543         for (i = 0; i < nphysicals; i++)
3544                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3545                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3546                         break;
3547                 }
3548
3549         kfree(physdev);
3550
3551         return sa;
3552 }
3553
3554 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3555                                         struct hpsa_scsi_dev_t *dev)
3556 {
3557         int rc;
3558         u64 sa = 0;
3559
3560         if (is_hba_lunid(scsi3addr)) {
3561                 struct bmic_sense_subsystem_info *ssi;
3562
3563                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3564                 if (!ssi)
3565                         return;
3566
3567                 rc = hpsa_bmic_sense_subsystem_information(h,
3568                                         scsi3addr, 0, ssi, sizeof(*ssi));
3569                 if (rc == 0) {
3570                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3571                         h->sas_address = sa;
3572                 }
3573
3574                 kfree(ssi);
3575         } else
3576                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3577
3578         dev->sas_address = sa;
3579 }
3580
3581 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3582         struct ReportExtendedLUNdata *physdev)
3583 {
3584         u32 nphysicals;
3585         int i;
3586
3587         if (h->discovery_polling)
3588                 return;
3589
3590         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3591
3592         for (i = 0; i < nphysicals; i++) {
3593                 if (physdev->LUN[i].device_type ==
3594                         BMIC_DEVICE_TYPE_CONTROLLER
3595                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3596                         dev_info(&h->pdev->dev,
3597                                 "External controller present, activate discovery polling and disable rld caching\n");
3598                         hpsa_disable_rld_caching(h);
3599                         h->discovery_polling = 1;
3600                         break;
3601                 }
3602         }
3603 }
3604
3605 /* Get a device id from inquiry page 0x83 */
3606 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3607         unsigned char scsi3addr[], u8 page)
3608 {
3609         int rc;
3610         int i;
3611         int pages;
3612         unsigned char *buf, bufsize;
3613
3614         buf = kzalloc(256, GFP_KERNEL);
3615         if (!buf)
3616                 return false;
3617
3618         /* Get the size of the page list first */
3619         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3620                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3621                                 buf, HPSA_VPD_HEADER_SZ);
3622         if (rc != 0)
3623                 goto exit_unsupported;
3624         pages = buf[3];
3625         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3626                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3627         else
3628                 bufsize = 255;
3629
3630         /* Get the whole VPD page list */
3631         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633                                 buf, bufsize);
3634         if (rc != 0)
3635                 goto exit_unsupported;
3636
3637         pages = buf[3];
3638         for (i = 1; i <= pages; i++)
3639                 if (buf[3 + i] == page)
3640                         goto exit_supported;
3641 exit_unsupported:
3642         kfree(buf);
3643         return false;
3644 exit_supported:
3645         kfree(buf);
3646         return true;
3647 }
3648
3649 /*
3650  * Called during a scan operation.
3651  * Sets ioaccel status on the new device list, not the existing device list
3652  *
3653  * The device list used during I/O will be updated later in
3654  * adjust_hpsa_scsi_table.
3655  */
3656 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3657         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3658 {
3659         int rc;
3660         unsigned char *buf;
3661         u8 ioaccel_status;
3662
3663         this_device->offload_config = 0;
3664         this_device->offload_enabled = 0;
3665         this_device->offload_to_be_enabled = 0;
3666
3667         buf = kzalloc(64, GFP_KERNEL);
3668         if (!buf)
3669                 return;
3670         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3671                 goto out;
3672         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3673                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3674         if (rc != 0)
3675                 goto out;
3676
3677 #define IOACCEL_STATUS_BYTE 4
3678 #define OFFLOAD_CONFIGURED_BIT 0x01
3679 #define OFFLOAD_ENABLED_BIT 0x02
3680         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3681         this_device->offload_config =
3682                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3683         if (this_device->offload_config) {
3684                 this_device->offload_to_be_enabled =
3685                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3686                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3687                         this_device->offload_to_be_enabled = 0;
3688         }
3689
3690 out:
3691         kfree(buf);
3692         return;
3693 }
3694
3695 /* Get the device id from inquiry page 0x83 */
3696 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3697         unsigned char *device_id, int index, int buflen)
3698 {
3699         int rc;
3700         unsigned char *buf;
3701
3702         /* Does controller have VPD for device id? */
3703         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3704                 return 1; /* not supported */
3705
3706         buf = kzalloc(64, GFP_KERNEL);
3707         if (!buf)
3708                 return -ENOMEM;
3709
3710         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3711                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3712         if (rc == 0) {
3713                 if (buflen > 16)
3714                         buflen = 16;
3715                 memcpy(device_id, &buf[8], buflen);
3716         }
3717
3718         kfree(buf);
3719
3720         return rc; /*0 - got id,  otherwise, didn't */
3721 }
3722
3723 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3724                 void *buf, int bufsize,
3725                 int extended_response)
3726 {
3727         int rc = IO_OK;
3728         struct CommandList *c;
3729         unsigned char scsi3addr[8];
3730         struct ErrorInfo *ei;
3731
3732         c = cmd_alloc(h);
3733
3734         /* address the controller */
3735         memset(scsi3addr, 0, sizeof(scsi3addr));
3736         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3737                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3738                 rc = -EAGAIN;
3739                 goto out;
3740         }
3741         if (extended_response)
3742                 c->Request.CDB[1] = extended_response;
3743         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3744                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3745         if (rc)
3746                 goto out;
3747         ei = c->err_info;
3748         if (ei->CommandStatus != 0 &&
3749             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3750                 hpsa_scsi_interpret_error(h, c);
3751                 rc = -EIO;
3752         } else {
3753                 struct ReportLUNdata *rld = buf;
3754
3755                 if (rld->extended_response_flag != extended_response) {
3756                         if (!h->legacy_board) {
3757                                 dev_err(&h->pdev->dev,
3758                                         "report luns requested format %u, got %u\n",
3759                                         extended_response,
3760                                         rld->extended_response_flag);
3761                                 rc = -EINVAL;
3762                         } else
3763                                 rc = -EOPNOTSUPP;
3764                 }
3765         }
3766 out:
3767         cmd_free(h, c);
3768         return rc;
3769 }
3770
3771 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3772                 struct ReportExtendedLUNdata *buf, int bufsize)
3773 {
3774         int rc;
3775         struct ReportLUNdata *lbuf;
3776
3777         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3778                                       HPSA_REPORT_PHYS_EXTENDED);
3779         if (!rc || rc != -EOPNOTSUPP)
3780                 return rc;
3781
3782         /* REPORT PHYS EXTENDED is not supported */
3783         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3784         if (!lbuf)
3785                 return -ENOMEM;
3786
3787         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3788         if (!rc) {
3789                 int i;
3790                 u32 nphys;
3791
3792                 /* Copy ReportLUNdata header */
3793                 memcpy(buf, lbuf, 8);
3794                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3795                 for (i = 0; i < nphys; i++)
3796                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3797         }
3798         kfree(lbuf);
3799         return rc;
3800 }
3801
3802 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3803                 struct ReportLUNdata *buf, int bufsize)
3804 {
3805         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3806 }
3807
3808 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3809         int bus, int target, int lun)
3810 {
3811         device->bus = bus;
3812         device->target = target;
3813         device->lun = lun;
3814 }
3815
3816 /* Use VPD inquiry to get details of volume status */
3817 static int hpsa_get_volume_status(struct ctlr_info *h,
3818                                         unsigned char scsi3addr[])
3819 {
3820         int rc;
3821         int status;
3822         int size;
3823         unsigned char *buf;
3824
3825         buf = kzalloc(64, GFP_KERNEL);
3826         if (!buf)
3827                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3828
3829         /* Does controller have VPD for logical volume status? */
3830         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3831                 goto exit_failed;
3832
3833         /* Get the size of the VPD return buffer */
3834         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3835                                         buf, HPSA_VPD_HEADER_SZ);
3836         if (rc != 0)
3837                 goto exit_failed;
3838         size = buf[3];
3839
3840         /* Now get the whole VPD buffer */
3841         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3842                                         buf, size + HPSA_VPD_HEADER_SZ);
3843         if (rc != 0)
3844                 goto exit_failed;
3845         status = buf[4]; /* status byte */
3846
3847         kfree(buf);
3848         return status;
3849 exit_failed:
3850         kfree(buf);
3851         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3852 }
3853
3854 /* Determine offline status of a volume.
3855  * Return either:
3856  *  0 (not offline)
3857  *  0xff (offline for unknown reasons)
3858  *  # (integer code indicating one of several NOT READY states
3859  *     describing why a volume is to be kept offline)
3860  */
3861 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3862                                         unsigned char scsi3addr[])
3863 {
3864         struct CommandList *c;
3865         unsigned char *sense;
3866         u8 sense_key, asc, ascq;
3867         int sense_len;
3868         int rc, ldstat = 0;
3869         u16 cmd_status;
3870         u8 scsi_status;
3871 #define ASC_LUN_NOT_READY 0x04
3872 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3873 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3874
3875         c = cmd_alloc(h);
3876
3877         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3878         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3879                                         NO_TIMEOUT);
3880         if (rc) {
3881                 cmd_free(h, c);
3882                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3883         }
3884         sense = c->err_info->SenseInfo;
3885         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3886                 sense_len = sizeof(c->err_info->SenseInfo);
3887         else
3888                 sense_len = c->err_info->SenseLen;
3889         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3890         cmd_status = c->err_info->CommandStatus;
3891         scsi_status = c->err_info->ScsiStatus;
3892         cmd_free(h, c);
3893
3894         /* Determine the reason for not ready state */
3895         ldstat = hpsa_get_volume_status(h, scsi3addr);
3896
3897         /* Keep volume offline in certain cases: */
3898         switch (ldstat) {
3899         case HPSA_LV_FAILED:
3900         case HPSA_LV_UNDERGOING_ERASE:
3901         case HPSA_LV_NOT_AVAILABLE:
3902         case HPSA_LV_UNDERGOING_RPI:
3903         case HPSA_LV_PENDING_RPI:
3904         case HPSA_LV_ENCRYPTED_NO_KEY:
3905         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3906         case HPSA_LV_UNDERGOING_ENCRYPTION:
3907         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3908         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3909                 return ldstat;
3910         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3911                 /* If VPD status page isn't available,
3912                  * use ASC/ASCQ to determine state
3913                  */
3914                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3915                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3916                         return ldstat;
3917                 break;
3918         default:
3919                 break;
3920         }
3921         return HPSA_LV_OK;
3922 }
3923
3924 static int hpsa_update_device_info(struct ctlr_info *h,
3925         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3926         unsigned char *is_OBDR_device)
3927 {
3928
3929 #define OBDR_SIG_OFFSET 43
3930 #define OBDR_TAPE_SIG "$DR-10"
3931 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3932 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3933
3934         unsigned char *inq_buff;
3935         unsigned char *obdr_sig;
3936         int rc = 0;
3937
3938         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3939         if (!inq_buff) {
3940                 rc = -ENOMEM;
3941                 goto bail_out;
3942         }
3943
3944         /* Do an inquiry to the device to see what it is. */
3945         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3946                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3947                 dev_err(&h->pdev->dev,
3948                         "%s: inquiry failed, device will be skipped.\n",
3949                         __func__);
3950                 rc = HPSA_INQUIRY_FAILED;
3951                 goto bail_out;
3952         }
3953
3954         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3955         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3956
3957         this_device->devtype = (inq_buff[0] & 0x1f);
3958         memcpy(this_device->scsi3addr, scsi3addr, 8);
3959         memcpy(this_device->vendor, &inq_buff[8],
3960                 sizeof(this_device->vendor));
3961         memcpy(this_device->model, &inq_buff[16],
3962                 sizeof(this_device->model));
3963         this_device->rev = inq_buff[2];
3964         memset(this_device->device_id, 0,
3965                 sizeof(this_device->device_id));
3966         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3967                 sizeof(this_device->device_id)) < 0)
3968                 dev_err(&h->pdev->dev,
3969                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3970                         h->ctlr, __func__,
3971                         h->scsi_host->host_no,
3972                         this_device->target, this_device->lun,
3973                         scsi_device_type(this_device->devtype),
3974                         this_device->model);
3975
3976         if ((this_device->devtype == TYPE_DISK ||
3977                 this_device->devtype == TYPE_ZBC) &&
3978                 is_logical_dev_addr_mode(scsi3addr)) {
3979                 unsigned char volume_offline;
3980
3981                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3982                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3983                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3984                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3985                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3986                     h->legacy_board) {
3987                         /*
3988                          * Legacy boards might not support volume status
3989                          */
3990                         dev_info(&h->pdev->dev,
3991                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3992                                  this_device->target, this_device->lun);
3993                         volume_offline = 0;
3994                 }
3995                 this_device->volume_offline = volume_offline;
3996                 if (volume_offline == HPSA_LV_FAILED) {
3997                         rc = HPSA_LV_FAILED;
3998                         dev_err(&h->pdev->dev,
3999                                 "%s: LV failed, device will be skipped.\n",
4000                                 __func__);
4001                         goto bail_out;
4002                 }
4003         } else {
4004                 this_device->raid_level = RAID_UNKNOWN;
4005                 this_device->offload_config = 0;
4006                 this_device->offload_enabled = 0;
4007                 this_device->offload_to_be_enabled = 0;
4008                 this_device->hba_ioaccel_enabled = 0;
4009                 this_device->volume_offline = 0;
4010                 this_device->queue_depth = h->nr_cmds;
4011         }
4012
4013         if (this_device->external)
4014                 this_device->queue_depth = EXTERNAL_QD;
4015
4016         if (is_OBDR_device) {
4017                 /* See if this is a One-Button-Disaster-Recovery device
4018                  * by looking for "$DR-10" at offset 43 in inquiry data.
4019                  */
4020                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4021                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4022                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4023                                                 OBDR_SIG_LEN) == 0);
4024         }
4025         kfree(inq_buff);
4026         return 0;
4027
4028 bail_out:
4029         kfree(inq_buff);
4030         return rc;
4031 }
4032
4033 /*
4034  * Helper function to assign bus, target, lun mapping of devices.
4035  * Logical drive target and lun are assigned at this time, but
4036  * physical device lun and target assignment are deferred (assigned
4037  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4038 */
4039 static void figure_bus_target_lun(struct ctlr_info *h,
4040         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4041 {
4042         u32 lunid = get_unaligned_le32(lunaddrbytes);
4043
4044         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4045                 /* physical device, target and lun filled in later */
4046                 if (is_hba_lunid(lunaddrbytes)) {
4047                         int bus = HPSA_HBA_BUS;
4048
4049                         if (!device->rev)
4050                                 bus = HPSA_LEGACY_HBA_BUS;
4051                         hpsa_set_bus_target_lun(device,
4052                                         bus, 0, lunid & 0x3fff);
4053                 } else
4054                         /* defer target, lun assignment for physical devices */
4055                         hpsa_set_bus_target_lun(device,
4056                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4057                 return;
4058         }
4059         /* It's a logical device */
4060         if (device->external) {
4061                 hpsa_set_bus_target_lun(device,
4062                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4063                         lunid & 0x00ff);
4064                 return;
4065         }
4066         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4067                                 0, lunid & 0x3fff);
4068 }
4069
4070 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4071         int i, int nphysicals, int nlocal_logicals)
4072 {
4073         /* In report logicals, local logicals are listed first,
4074         * then any externals.
4075         */
4076         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4077
4078         if (i == raid_ctlr_position)
4079                 return 0;
4080
4081         if (i < logicals_start)
4082                 return 0;
4083
4084         /* i is in logicals range, but still within local logicals */
4085         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4086                 return 0;
4087
4088         return 1; /* it's an external lun */
4089 }
4090
4091 /*
4092  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4093  * logdev.  The number of luns in physdev and logdev are returned in
4094  * *nphysicals and *nlogicals, respectively.
4095  * Returns 0 on success, -1 otherwise.
4096  */
4097 static int hpsa_gather_lun_info(struct ctlr_info *h,
4098         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4099         struct ReportLUNdata *logdev, u32 *nlogicals)
4100 {
4101         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4102                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4103                 return -1;
4104         }
4105         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4106         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4107                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4108                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4109                 *nphysicals = HPSA_MAX_PHYS_LUN;
4110         }
4111         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4112                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4113                 return -1;
4114         }
4115         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4116         /* Reject Logicals in excess of our max capability. */
4117         if (*nlogicals > HPSA_MAX_LUN) {
4118                 dev_warn(&h->pdev->dev,
4119                         "maximum logical LUNs (%d) exceeded.  "
4120                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4121                         *nlogicals - HPSA_MAX_LUN);
4122                         *nlogicals = HPSA_MAX_LUN;
4123         }
4124         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4125                 dev_warn(&h->pdev->dev,
4126                         "maximum logical + physical LUNs (%d) exceeded. "
4127                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4128                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4129                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4130         }
4131         return 0;
4132 }
4133
4134 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4135         int i, int nphysicals, int nlogicals,
4136         struct ReportExtendedLUNdata *physdev_list,
4137         struct ReportLUNdata *logdev_list)
4138 {
4139         /* Helper function, figure out where the LUN ID info is coming from
4140          * given index i, lists of physical and logical devices, where in
4141          * the list the raid controller is supposed to appear (first or last)
4142          */
4143
4144         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4145         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4146
4147         if (i == raid_ctlr_position)
4148                 return RAID_CTLR_LUNID;
4149
4150         if (i < logicals_start)
4151                 return &physdev_list->LUN[i -
4152                                 (raid_ctlr_position == 0)].lunid[0];
4153
4154         if (i < last_device)
4155                 return &logdev_list->LUN[i - nphysicals -
4156                         (raid_ctlr_position == 0)][0];
4157         BUG();
4158         return NULL;
4159 }
4160
4161 /* get physical drive ioaccel handle and queue depth */
4162 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4163                 struct hpsa_scsi_dev_t *dev,
4164                 struct ReportExtendedLUNdata *rlep, int rle_index,
4165                 struct bmic_identify_physical_device *id_phys)
4166 {
4167         int rc;
4168         struct ext_report_lun_entry *rle;
4169
4170         rle = &rlep->LUN[rle_index];
4171
4172         dev->ioaccel_handle = rle->ioaccel_handle;
4173         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4174                 dev->hba_ioaccel_enabled = 1;
4175         memset(id_phys, 0, sizeof(*id_phys));
4176         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4177                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4178                         sizeof(*id_phys));
4179         if (!rc)
4180                 /* Reserve space for FW operations */
4181 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4182 #define DRIVE_QUEUE_DEPTH 7
4183                 dev->queue_depth =
4184                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4185                                 DRIVE_CMDS_RESERVED_FOR_FW;
4186         else
4187                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4188 }
4189
4190 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4191         struct ReportExtendedLUNdata *rlep, int rle_index,
4192         struct bmic_identify_physical_device *id_phys)
4193 {
4194         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4195
4196         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4197                 this_device->hba_ioaccel_enabled = 1;
4198
4199         memcpy(&this_device->active_path_index,
4200                 &id_phys->active_path_number,
4201                 sizeof(this_device->active_path_index));
4202         memcpy(&this_device->path_map,
4203                 &id_phys->redundant_path_present_map,
4204                 sizeof(this_device->path_map));
4205         memcpy(&this_device->box,
4206                 &id_phys->alternate_paths_phys_box_on_port,
4207                 sizeof(this_device->box));
4208         memcpy(&this_device->phys_connector,
4209                 &id_phys->alternate_paths_phys_connector,
4210                 sizeof(this_device->phys_connector));
4211         memcpy(&this_device->bay,
4212                 &id_phys->phys_bay_in_box,
4213                 sizeof(this_device->bay));
4214 }
4215
4216 /* get number of local logical disks. */
4217 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4218         struct bmic_identify_controller *id_ctlr,
4219         u32 *nlocals)
4220 {
4221         int rc;
4222
4223         if (!id_ctlr) {
4224                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4225                         __func__);
4226                 return -ENOMEM;
4227         }
4228         memset(id_ctlr, 0, sizeof(*id_ctlr));
4229         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4230         if (!rc)
4231                 if (id_ctlr->configured_logical_drive_count < 255)
4232                         *nlocals = id_ctlr->configured_logical_drive_count;
4233                 else
4234                         *nlocals = le16_to_cpu(
4235                                         id_ctlr->extended_logical_unit_count);
4236         else
4237                 *nlocals = -1;
4238         return rc;
4239 }
4240
4241 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4242 {
4243         struct bmic_identify_physical_device *id_phys;
4244         bool is_spare = false;
4245         int rc;
4246
4247         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4248         if (!id_phys)
4249                 return false;
4250
4251         rc = hpsa_bmic_id_physical_device(h,
4252                                         lunaddrbytes,
4253                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4254                                         id_phys, sizeof(*id_phys));
4255         if (rc == 0)
4256                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4257
4258         kfree(id_phys);
4259         return is_spare;
4260 }
4261
4262 #define RPL_DEV_FLAG_NON_DISK                           0x1
4263 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4264 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4265
4266 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4267
4268 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4269                                 struct ext_report_lun_entry *rle)
4270 {
4271         u8 device_flags;
4272         u8 device_type;
4273
4274         if (!MASKED_DEVICE(lunaddrbytes))
4275                 return false;
4276
4277         device_flags = rle->device_flags;
4278         device_type = rle->device_type;
4279
4280         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4281                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4282                         return false;
4283                 return true;
4284         }
4285
4286         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4287                 return false;
4288
4289         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4290                 return false;
4291
4292         /*
4293          * Spares may be spun down, we do not want to
4294          * do an Inquiry to a RAID set spare drive as
4295          * that would have them spun up, that is a
4296          * performance hit because I/O to the RAID device
4297          * stops while the spin up occurs which can take
4298          * over 50 seconds.
4299          */
4300         if (hpsa_is_disk_spare(h, lunaddrbytes))
4301                 return true;
4302
4303         return false;
4304 }
4305
4306 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4307 {
4308         /* the idea here is we could get notified
4309          * that some devices have changed, so we do a report
4310          * physical luns and report logical luns cmd, and adjust
4311          * our list of devices accordingly.
4312          *
4313          * The scsi3addr's of devices won't change so long as the
4314          * adapter is not reset.  That means we can rescan and
4315          * tell which devices we already know about, vs. new
4316          * devices, vs.  disappearing devices.
4317          */
4318         struct ReportExtendedLUNdata *physdev_list = NULL;
4319         struct ReportLUNdata *logdev_list = NULL;
4320         struct bmic_identify_physical_device *id_phys = NULL;
4321         struct bmic_identify_controller *id_ctlr = NULL;
4322         u32 nphysicals = 0;
4323         u32 nlogicals = 0;
4324         u32 nlocal_logicals = 0;
4325         u32 ndev_allocated = 0;
4326         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4327         int ncurrent = 0;
4328         int i, n_ext_target_devs, ndevs_to_allocate;
4329         int raid_ctlr_position;
4330         bool physical_device;
4331         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4332
4333         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4334         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4335         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4336         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4337         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4338         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4339
4340         if (!currentsd || !physdev_list || !logdev_list ||
4341                 !tmpdevice || !id_phys || !id_ctlr) {
4342                 dev_err(&h->pdev->dev, "out of memory\n");
4343                 goto out;
4344         }
4345         memset(lunzerobits, 0, sizeof(lunzerobits));
4346
4347         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4348
4349         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4350                         logdev_list, &nlogicals)) {
4351                 h->drv_req_rescan = 1;
4352                 goto out;
4353         }
4354
4355         /* Set number of local logicals (non PTRAID) */
4356         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4357                 dev_warn(&h->pdev->dev,
4358                         "%s: Can't determine number of local logical devices.\n",
4359                         __func__);
4360         }
4361
4362         /* We might see up to the maximum number of logical and physical disks
4363          * plus external target devices, and a device for the local RAID
4364          * controller.
4365          */
4366         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4367
4368         hpsa_ext_ctrl_present(h, physdev_list);
4369
4370         /* Allocate the per device structures */
4371         for (i = 0; i < ndevs_to_allocate; i++) {
4372                 if (i >= HPSA_MAX_DEVICES) {
4373                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4374                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4375                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4376                         break;
4377                 }
4378
4379                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4380                 if (!currentsd[i]) {
4381                         h->drv_req_rescan = 1;
4382                         goto out;
4383                 }
4384                 ndev_allocated++;
4385         }
4386
4387         if (is_scsi_rev_5(h))
4388                 raid_ctlr_position = 0;
4389         else
4390                 raid_ctlr_position = nphysicals + nlogicals;
4391
4392         /* adjust our table of devices */
4393         n_ext_target_devs = 0;
4394         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4395                 u8 *lunaddrbytes, is_OBDR = 0;
4396                 int rc = 0;
4397                 int phys_dev_index = i - (raid_ctlr_position == 0);
4398                 bool skip_device = false;
4399
4400                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4401
4402                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4403
4404                 /* Figure out where the LUN ID info is coming from */
4405                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4406                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4407
4408                 /* Determine if this is a lun from an external target array */
4409                 tmpdevice->external =
4410                         figure_external_status(h, raid_ctlr_position, i,
4411                                                 nphysicals, nlocal_logicals);
4412
4413                 /*
4414                  * Skip over some devices such as a spare.
4415                  */
4416                 if (!tmpdevice->external && physical_device) {
4417                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4418                                         &physdev_list->LUN[phys_dev_index]);
4419                         if (skip_device)
4420                                 continue;
4421                 }
4422
4423                 /* Get device type, vendor, model, device id, raid_map */
4424                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4425                                                         &is_OBDR);
4426                 if (rc == -ENOMEM) {
4427                         dev_warn(&h->pdev->dev,
4428                                 "Out of memory, rescan deferred.\n");
4429                         h->drv_req_rescan = 1;
4430                         goto out;
4431                 }
4432                 if (rc) {
4433                         h->drv_req_rescan = 1;
4434                         continue;
4435                 }
4436
4437                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4438                 this_device = currentsd[ncurrent];
4439
4440                 *this_device = *tmpdevice;
4441                 this_device->physical_device = physical_device;
4442
4443                 /*
4444                  * Expose all devices except for physical devices that
4445                  * are masked.
4446                  */
4447                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4448                         this_device->expose_device = 0;
4449                 else
4450                         this_device->expose_device = 1;
4451
4452
4453                 /*
4454                  * Get the SAS address for physical devices that are exposed.
4455                  */
4456                 if (this_device->physical_device && this_device->expose_device)
4457                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4458
4459                 switch (this_device->devtype) {
4460                 case TYPE_ROM:
4461                         /* We don't *really* support actual CD-ROM devices,
4462                          * just "One Button Disaster Recovery" tape drive
4463                          * which temporarily pretends to be a CD-ROM drive.
4464                          * So we check that the device is really an OBDR tape
4465                          * device by checking for "$DR-10" in bytes 43-48 of
4466                          * the inquiry data.
4467                          */
4468                         if (is_OBDR)
4469                                 ncurrent++;
4470                         break;
4471                 case TYPE_DISK:
4472                 case TYPE_ZBC:
4473                         if (this_device->physical_device) {
4474                                 /* The disk is in HBA mode. */
4475                                 /* Never use RAID mapper in HBA mode. */
4476                                 this_device->offload_enabled = 0;
4477                                 hpsa_get_ioaccel_drive_info(h, this_device,
4478                                         physdev_list, phys_dev_index, id_phys);
4479                                 hpsa_get_path_info(this_device,
4480                                         physdev_list, phys_dev_index, id_phys);
4481                         }
4482                         ncurrent++;
4483                         break;
4484                 case TYPE_TAPE:
4485                 case TYPE_MEDIUM_CHANGER:
4486                         ncurrent++;
4487                         break;
4488                 case TYPE_ENCLOSURE:
4489                         if (!this_device->external)
4490                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4491                                                 physdev_list, phys_dev_index,
4492                                                 this_device);
4493                         ncurrent++;
4494                         break;
4495                 case TYPE_RAID:
4496                         /* Only present the Smartarray HBA as a RAID controller.
4497                          * If it's a RAID controller other than the HBA itself
4498                          * (an external RAID controller, MSA500 or similar)
4499                          * don't present it.
4500                          */
4501                         if (!is_hba_lunid(lunaddrbytes))
4502                                 break;
4503                         ncurrent++;
4504                         break;
4505                 default:
4506                         break;
4507                 }
4508                 if (ncurrent >= HPSA_MAX_DEVICES)
4509                         break;
4510         }
4511
4512         if (h->sas_host == NULL) {
4513                 int rc = 0;
4514
4515                 rc = hpsa_add_sas_host(h);
4516                 if (rc) {
4517                         dev_warn(&h->pdev->dev,
4518                                 "Could not add sas host %d\n", rc);
4519                         goto out;
4520                 }
4521         }
4522
4523         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4524 out:
4525         kfree(tmpdevice);
4526         for (i = 0; i < ndev_allocated; i++)
4527                 kfree(currentsd[i]);
4528         kfree(currentsd);
4529         kfree(physdev_list);
4530         kfree(logdev_list);
4531         kfree(id_ctlr);
4532         kfree(id_phys);
4533 }
4534
4535 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4536                                    struct scatterlist *sg)
4537 {
4538         u64 addr64 = (u64) sg_dma_address(sg);
4539         unsigned int len = sg_dma_len(sg);
4540
4541         desc->Addr = cpu_to_le64(addr64);
4542         desc->Len = cpu_to_le32(len);
4543         desc->Ext = 0;
4544 }
4545
4546 /*
4547  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4548  * dma mapping  and fills in the scatter gather entries of the
4549  * hpsa command, cp.
4550  */
4551 static int hpsa_scatter_gather(struct ctlr_info *h,
4552                 struct CommandList *cp,
4553                 struct scsi_cmnd *cmd)
4554 {
4555         struct scatterlist *sg;
4556         int use_sg, i, sg_limit, chained, last_sg;
4557         struct SGDescriptor *curr_sg;
4558
4559         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4560
4561         use_sg = scsi_dma_map(cmd);
4562         if (use_sg < 0)
4563                 return use_sg;
4564
4565         if (!use_sg)
4566                 goto sglist_finished;
4567
4568         /*
4569          * If the number of entries is greater than the max for a single list,
4570          * then we have a chained list; we will set up all but one entry in the
4571          * first list (the last entry is saved for link information);
4572          * otherwise, we don't have a chained list and we'll set up at each of
4573          * the entries in the one list.
4574          */
4575         curr_sg = cp->SG;
4576         chained = use_sg > h->max_cmd_sg_entries;
4577         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4578         last_sg = scsi_sg_count(cmd) - 1;
4579         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4580                 hpsa_set_sg_descriptor(curr_sg, sg);
4581                 curr_sg++;
4582         }
4583
4584         if (chained) {
4585                 /*
4586                  * Continue with the chained list.  Set curr_sg to the chained
4587                  * list.  Modify the limit to the total count less the entries
4588                  * we've already set up.  Resume the scan at the list entry
4589                  * where the previous loop left off.
4590                  */
4591                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4592                 sg_limit = use_sg - sg_limit;
4593                 for_each_sg(sg, sg, sg_limit, i) {
4594                         hpsa_set_sg_descriptor(curr_sg, sg);
4595                         curr_sg++;
4596                 }
4597         }
4598
4599         /* Back the pointer up to the last entry and mark it as "last". */
4600         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4601
4602         if (use_sg + chained > h->maxSG)
4603                 h->maxSG = use_sg + chained;
4604
4605         if (chained) {
4606                 cp->Header.SGList = h->max_cmd_sg_entries;
4607                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4608                 if (hpsa_map_sg_chain_block(h, cp)) {
4609                         scsi_dma_unmap(cmd);
4610                         return -1;
4611                 }
4612                 return 0;
4613         }
4614
4615 sglist_finished:
4616
4617         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4618         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4619         return 0;
4620 }
4621
4622 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4623                                                 u8 *cdb, int cdb_len,
4624                                                 const char *func)
4625 {
4626         dev_warn(&h->pdev->dev,
4627                  "%s: Blocking zero-length request: CDB:%*phN\n",
4628                  func, cdb_len, cdb);
4629 }
4630
4631 #define IO_ACCEL_INELIGIBLE 1
4632 /* zero-length transfers trigger hardware errors. */
4633 static bool is_zero_length_transfer(u8 *cdb)
4634 {
4635         u32 block_cnt;
4636
4637         /* Block zero-length transfer sizes on certain commands. */
4638         switch (cdb[0]) {
4639         case READ_10:
4640         case WRITE_10:
4641         case VERIFY:            /* 0x2F */
4642         case WRITE_VERIFY:      /* 0x2E */
4643                 block_cnt = get_unaligned_be16(&cdb[7]);
4644                 break;
4645         case READ_12:
4646         case WRITE_12:
4647         case VERIFY_12: /* 0xAF */
4648         case WRITE_VERIFY_12:   /* 0xAE */
4649                 block_cnt = get_unaligned_be32(&cdb[6]);
4650                 break;
4651         case READ_16:
4652         case WRITE_16:
4653         case VERIFY_16:         /* 0x8F */
4654                 block_cnt = get_unaligned_be32(&cdb[10]);
4655                 break;
4656         default:
4657                 return false;
4658         }
4659
4660         return block_cnt == 0;
4661 }
4662
4663 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4664 {
4665         int is_write = 0;
4666         u32 block;
4667         u32 block_cnt;
4668
4669         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4670         switch (cdb[0]) {
4671         case WRITE_6:
4672         case WRITE_12:
4673                 is_write = 1;
4674         case READ_6:
4675         case READ_12:
4676                 if (*cdb_len == 6) {
4677                         block = (((cdb[1] & 0x1F) << 16) |
4678                                 (cdb[2] << 8) |
4679                                 cdb[3]);
4680                         block_cnt = cdb[4];
4681                         if (block_cnt == 0)
4682                                 block_cnt = 256;
4683                 } else {
4684                         BUG_ON(*cdb_len != 12);
4685                         block = get_unaligned_be32(&cdb[2]);
4686                         block_cnt = get_unaligned_be32(&cdb[6]);
4687                 }
4688                 if (block_cnt > 0xffff)
4689                         return IO_ACCEL_INELIGIBLE;
4690
4691                 cdb[0] = is_write ? WRITE_10 : READ_10;
4692                 cdb[1] = 0;
4693                 cdb[2] = (u8) (block >> 24);
4694                 cdb[3] = (u8) (block >> 16);
4695                 cdb[4] = (u8) (block >> 8);
4696                 cdb[5] = (u8) (block);
4697                 cdb[6] = 0;
4698                 cdb[7] = (u8) (block_cnt >> 8);
4699                 cdb[8] = (u8) (block_cnt);
4700                 cdb[9] = 0;
4701                 *cdb_len = 10;
4702                 break;
4703         }
4704         return 0;
4705 }
4706
4707 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4708         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4709         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4710 {
4711         struct scsi_cmnd *cmd = c->scsi_cmd;
4712         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4713         unsigned int len;
4714         unsigned int total_len = 0;
4715         struct scatterlist *sg;
4716         u64 addr64;
4717         int use_sg, i;
4718         struct SGDescriptor *curr_sg;
4719         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4720
4721         /* TODO: implement chaining support */
4722         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4723                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4724                 return IO_ACCEL_INELIGIBLE;
4725         }
4726
4727         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4728
4729         if (is_zero_length_transfer(cdb)) {
4730                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4731                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4732                 return IO_ACCEL_INELIGIBLE;
4733         }
4734
4735         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4736                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4737                 return IO_ACCEL_INELIGIBLE;
4738         }
4739
4740         c->cmd_type = CMD_IOACCEL1;
4741
4742         /* Adjust the DMA address to point to the accelerated command buffer */
4743         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4744                                 (c->cmdindex * sizeof(*cp));
4745         BUG_ON(c->busaddr & 0x0000007F);
4746
4747         use_sg = scsi_dma_map(cmd);
4748         if (use_sg < 0) {
4749                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4750                 return use_sg;
4751         }
4752
4753         if (use_sg) {
4754                 curr_sg = cp->SG;
4755                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4756                         addr64 = (u64) sg_dma_address(sg);
4757                         len  = sg_dma_len(sg);
4758                         total_len += len;
4759                         curr_sg->Addr = cpu_to_le64(addr64);
4760                         curr_sg->Len = cpu_to_le32(len);
4761                         curr_sg->Ext = cpu_to_le32(0);
4762                         curr_sg++;
4763                 }
4764                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4765
4766                 switch (cmd->sc_data_direction) {
4767                 case DMA_TO_DEVICE:
4768                         control |= IOACCEL1_CONTROL_DATA_OUT;
4769                         break;
4770                 case DMA_FROM_DEVICE:
4771                         control |= IOACCEL1_CONTROL_DATA_IN;
4772                         break;
4773                 case DMA_NONE:
4774                         control |= IOACCEL1_CONTROL_NODATAXFER;
4775                         break;
4776                 default:
4777                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4778                         cmd->sc_data_direction);
4779                         BUG();
4780                         break;
4781                 }
4782         } else {
4783                 control |= IOACCEL1_CONTROL_NODATAXFER;
4784         }
4785
4786         c->Header.SGList = use_sg;
4787         /* Fill out the command structure to submit */
4788         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4789         cp->transfer_len = cpu_to_le32(total_len);
4790         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4791                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4792         cp->control = cpu_to_le32(control);
4793         memcpy(cp->CDB, cdb, cdb_len);
4794         memcpy(cp->CISS_LUN, scsi3addr, 8);
4795         /* Tag was already set at init time. */
4796         enqueue_cmd_and_start_io(h, c);
4797         return 0;
4798 }
4799
4800 /*
4801  * Queue a command directly to a device behind the controller using the
4802  * I/O accelerator path.
4803  */
4804 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4805         struct CommandList *c)
4806 {
4807         struct scsi_cmnd *cmd = c->scsi_cmd;
4808         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4809
4810         if (!dev)
4811                 return -1;
4812
4813         c->phys_disk = dev;
4814
4815         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4816                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4817 }
4818
4819 /*
4820  * Set encryption parameters for the ioaccel2 request
4821  */
4822 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4823         struct CommandList *c, struct io_accel2_cmd *cp)
4824 {
4825         struct scsi_cmnd *cmd = c->scsi_cmd;
4826         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4827         struct raid_map_data *map = &dev->raid_map;
4828         u64 first_block;
4829
4830         /* Are we doing encryption on this device */
4831         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4832                 return;
4833         /* Set the data encryption key index. */
4834         cp->dekindex = map->dekindex;
4835
4836         /* Set the encryption enable flag, encoded into direction field. */
4837         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4838
4839         /* Set encryption tweak values based on logical block address
4840          * If block size is 512, tweak value is LBA.
4841          * For other block sizes, tweak is (LBA * block size)/ 512)
4842          */
4843         switch (cmd->cmnd[0]) {
4844         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4845         case READ_6:
4846         case WRITE_6:
4847                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4848                                 (cmd->cmnd[2] << 8) |
4849                                 cmd->cmnd[3]);
4850                 break;
4851         case WRITE_10:
4852         case READ_10:
4853         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4854         case WRITE_12:
4855         case READ_12:
4856                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4857                 break;
4858         case WRITE_16:
4859         case READ_16:
4860                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4861                 break;
4862         default:
4863                 dev_err(&h->pdev->dev,
4864                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4865                         __func__, cmd->cmnd[0]);
4866                 BUG();
4867                 break;
4868         }
4869
4870         if (le32_to_cpu(map->volume_blk_size) != 512)
4871                 first_block = first_block *
4872                                 le32_to_cpu(map->volume_blk_size)/512;
4873
4874         cp->tweak_lower = cpu_to_le32(first_block);
4875         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4876 }
4877
4878 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4879         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4880         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4881 {
4882         struct scsi_cmnd *cmd = c->scsi_cmd;
4883         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4884         struct ioaccel2_sg_element *curr_sg;
4885         int use_sg, i;
4886         struct scatterlist *sg;
4887         u64 addr64;
4888         u32 len;
4889         u32 total_len = 0;
4890
4891         if (!cmd->device)
4892                 return -1;
4893
4894         if (!cmd->device->hostdata)
4895                 return -1;
4896
4897         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4898
4899         if (is_zero_length_transfer(cdb)) {
4900                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4901                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4902                 return IO_ACCEL_INELIGIBLE;
4903         }
4904
4905         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4906                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4907                 return IO_ACCEL_INELIGIBLE;
4908         }
4909
4910         c->cmd_type = CMD_IOACCEL2;
4911         /* Adjust the DMA address to point to the accelerated command buffer */
4912         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4913                                 (c->cmdindex * sizeof(*cp));
4914         BUG_ON(c->busaddr & 0x0000007F);
4915
4916         memset(cp, 0, sizeof(*cp));
4917         cp->IU_type = IOACCEL2_IU_TYPE;
4918
4919         use_sg = scsi_dma_map(cmd);
4920         if (use_sg < 0) {
4921                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4922                 return use_sg;
4923         }
4924
4925         if (use_sg) {
4926                 curr_sg = cp->sg;
4927                 if (use_sg > h->ioaccel_maxsg) {
4928                         addr64 = le64_to_cpu(
4929                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4930                         curr_sg->address = cpu_to_le64(addr64);
4931                         curr_sg->length = 0;
4932                         curr_sg->reserved[0] = 0;
4933                         curr_sg->reserved[1] = 0;
4934                         curr_sg->reserved[2] = 0;
4935                         curr_sg->chain_indicator = 0x80;
4936
4937                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4938                 }
4939                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4940                         addr64 = (u64) sg_dma_address(sg);
4941                         len  = sg_dma_len(sg);
4942                         total_len += len;
4943                         curr_sg->address = cpu_to_le64(addr64);
4944                         curr_sg->length = cpu_to_le32(len);
4945                         curr_sg->reserved[0] = 0;
4946                         curr_sg->reserved[1] = 0;
4947                         curr_sg->reserved[2] = 0;
4948                         curr_sg->chain_indicator = 0;
4949                         curr_sg++;
4950                 }
4951
4952                 switch (cmd->sc_data_direction) {
4953                 case DMA_TO_DEVICE:
4954                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4955                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4956                         break;
4957                 case DMA_FROM_DEVICE:
4958                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4959                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4960                         break;
4961                 case DMA_NONE:
4962                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4963                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4964                         break;
4965                 default:
4966                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4967                                 cmd->sc_data_direction);
4968                         BUG();
4969                         break;
4970                 }
4971         } else {
4972                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4973                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4974         }
4975
4976         /* Set encryption parameters, if necessary */
4977         set_encrypt_ioaccel2(h, c, cp);
4978
4979         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4980         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4981         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4982
4983         cp->data_len = cpu_to_le32(total_len);
4984         cp->err_ptr = cpu_to_le64(c->busaddr +
4985                         offsetof(struct io_accel2_cmd, error_data));
4986         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4987
4988         /* fill in sg elements */
4989         if (use_sg > h->ioaccel_maxsg) {
4990                 cp->sg_count = 1;
4991                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4992                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4993                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4994                         scsi_dma_unmap(cmd);
4995                         return -1;
4996                 }
4997         } else
4998                 cp->sg_count = (u8) use_sg;
4999
5000         enqueue_cmd_and_start_io(h, c);
5001         return 0;
5002 }
5003
5004 /*
5005  * Queue a command to the correct I/O accelerator path.
5006  */
5007 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5008         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5009         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5010 {
5011         if (!c->scsi_cmd->device)
5012                 return -1;
5013
5014         if (!c->scsi_cmd->device->hostdata)
5015                 return -1;
5016
5017         /* Try to honor the device's queue depth */
5018         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5019                                         phys_disk->queue_depth) {
5020                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5021                 return IO_ACCEL_INELIGIBLE;
5022         }
5023         if (h->transMethod & CFGTBL_Trans_io_accel1)
5024                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5025                                                 cdb, cdb_len, scsi3addr,
5026                                                 phys_disk);
5027         else
5028                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5029                                                 cdb, cdb_len, scsi3addr,
5030                                                 phys_disk);
5031 }
5032
5033 static void raid_map_helper(struct raid_map_data *map,
5034                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5035 {
5036         if (offload_to_mirror == 0)  {
5037                 /* use physical disk in the first mirrored group. */
5038                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5039                 return;
5040         }
5041         do {
5042                 /* determine mirror group that *map_index indicates */
5043                 *current_group = *map_index /
5044                         le16_to_cpu(map->data_disks_per_row);
5045                 if (offload_to_mirror == *current_group)
5046                         continue;
5047                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5048                         /* select map index from next group */
5049                         *map_index += le16_to_cpu(map->data_disks_per_row);
5050                         (*current_group)++;
5051                 } else {
5052                         /* select map index from first group */
5053                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5054                         *current_group = 0;
5055                 }
5056         } while (offload_to_mirror != *current_group);
5057 }
5058
5059 /*
5060  * Attempt to perform offload RAID mapping for a logical volume I/O.
5061  */
5062 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5063         struct CommandList *c)
5064 {
5065         struct scsi_cmnd *cmd = c->scsi_cmd;
5066         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5067         struct raid_map_data *map = &dev->raid_map;
5068         struct raid_map_disk_data *dd = &map->data[0];
5069         int is_write = 0;
5070         u32 map_index;
5071         u64 first_block, last_block;
5072         u32 block_cnt;
5073         u32 blocks_per_row;
5074         u64 first_row, last_row;
5075         u32 first_row_offset, last_row_offset;
5076         u32 first_column, last_column;
5077         u64 r0_first_row, r0_last_row;
5078         u32 r5or6_blocks_per_row;
5079         u64 r5or6_first_row, r5or6_last_row;
5080         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5081         u32 r5or6_first_column, r5or6_last_column;
5082         u32 total_disks_per_row;
5083         u32 stripesize;
5084         u32 first_group, last_group, current_group;
5085         u32 map_row;
5086         u32 disk_handle;
5087         u64 disk_block;
5088         u32 disk_block_cnt;
5089         u8 cdb[16];
5090         u8 cdb_len;
5091         u16 strip_size;
5092 #if BITS_PER_LONG == 32
5093         u64 tmpdiv;
5094 #endif
5095         int offload_to_mirror;
5096
5097         if (!dev)
5098                 return -1;
5099
5100         /* check for valid opcode, get LBA and block count */
5101         switch (cmd->cmnd[0]) {
5102         case WRITE_6:
5103                 is_write = 1;
5104         case READ_6:
5105                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5106                                 (cmd->cmnd[2] << 8) |
5107                                 cmd->cmnd[3]);
5108                 block_cnt = cmd->cmnd[4];
5109                 if (block_cnt == 0)
5110                         block_cnt = 256;
5111                 break;
5112         case WRITE_10:
5113                 is_write = 1;
5114         case READ_10:
5115                 first_block =
5116                         (((u64) cmd->cmnd[2]) << 24) |
5117                         (((u64) cmd->cmnd[3]) << 16) |
5118                         (((u64) cmd->cmnd[4]) << 8) |
5119                         cmd->cmnd[5];
5120                 block_cnt =
5121                         (((u32) cmd->cmnd[7]) << 8) |
5122                         cmd->cmnd[8];
5123                 break;
5124         case WRITE_12:
5125                 is_write = 1;
5126         case READ_12:
5127                 first_block =
5128                         (((u64) cmd->cmnd[2]) << 24) |
5129                         (((u64) cmd->cmnd[3]) << 16) |
5130                         (((u64) cmd->cmnd[4]) << 8) |
5131                         cmd->cmnd[5];
5132                 block_cnt =
5133                         (((u32) cmd->cmnd[6]) << 24) |
5134                         (((u32) cmd->cmnd[7]) << 16) |
5135                         (((u32) cmd->cmnd[8]) << 8) |
5136                 cmd->cmnd[9];
5137                 break;
5138         case WRITE_16:
5139                 is_write = 1;
5140         case READ_16:
5141                 first_block =
5142                         (((u64) cmd->cmnd[2]) << 56) |
5143                         (((u64) cmd->cmnd[3]) << 48) |
5144                         (((u64) cmd->cmnd[4]) << 40) |
5145                         (((u64) cmd->cmnd[5]) << 32) |
5146                         (((u64) cmd->cmnd[6]) << 24) |
5147                         (((u64) cmd->cmnd[7]) << 16) |
5148                         (((u64) cmd->cmnd[8]) << 8) |
5149                         cmd->cmnd[9];
5150                 block_cnt =
5151                         (((u32) cmd->cmnd[10]) << 24) |
5152                         (((u32) cmd->cmnd[11]) << 16) |
5153                         (((u32) cmd->cmnd[12]) << 8) |
5154                         cmd->cmnd[13];
5155                 break;
5156         default:
5157                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5158         }
5159         last_block = first_block + block_cnt - 1;
5160
5161         /* check for write to non-RAID-0 */
5162         if (is_write && dev->raid_level != 0)
5163                 return IO_ACCEL_INELIGIBLE;
5164
5165         /* check for invalid block or wraparound */
5166         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5167                 last_block < first_block)
5168                 return IO_ACCEL_INELIGIBLE;
5169
5170         /* calculate stripe information for the request */
5171         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5172                                 le16_to_cpu(map->strip_size);
5173         strip_size = le16_to_cpu(map->strip_size);
5174 #if BITS_PER_LONG == 32
5175         tmpdiv = first_block;
5176         (void) do_div(tmpdiv, blocks_per_row);
5177         first_row = tmpdiv;
5178         tmpdiv = last_block;
5179         (void) do_div(tmpdiv, blocks_per_row);
5180         last_row = tmpdiv;
5181         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5182         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5183         tmpdiv = first_row_offset;
5184         (void) do_div(tmpdiv, strip_size);
5185         first_column = tmpdiv;
5186         tmpdiv = last_row_offset;
5187         (void) do_div(tmpdiv, strip_size);
5188         last_column = tmpdiv;
5189 #else
5190         first_row = first_block / blocks_per_row;
5191         last_row = last_block / blocks_per_row;
5192         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5193         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5194         first_column = first_row_offset / strip_size;
5195         last_column = last_row_offset / strip_size;
5196 #endif
5197
5198         /* if this isn't a single row/column then give to the controller */
5199         if ((first_row != last_row) || (first_column != last_column))
5200                 return IO_ACCEL_INELIGIBLE;
5201
5202         /* proceeding with driver mapping */
5203         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5204                                 le16_to_cpu(map->metadata_disks_per_row);
5205         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5206                                 le16_to_cpu(map->row_cnt);
5207         map_index = (map_row * total_disks_per_row) + first_column;
5208
5209         switch (dev->raid_level) {
5210         case HPSA_RAID_0:
5211                 break; /* nothing special to do */
5212         case HPSA_RAID_1:
5213                 /* Handles load balance across RAID 1 members.
5214                  * (2-drive R1 and R10 with even # of drives.)
5215                  * Appropriate for SSDs, not optimal for HDDs
5216                  */
5217                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5218                 if (dev->offload_to_mirror)
5219                         map_index += le16_to_cpu(map->data_disks_per_row);
5220                 dev->offload_to_mirror = !dev->offload_to_mirror;
5221                 break;
5222         case HPSA_RAID_ADM:
5223                 /* Handles N-way mirrors  (R1-ADM)
5224                  * and R10 with # of drives divisible by 3.)
5225                  */
5226                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5227
5228                 offload_to_mirror = dev->offload_to_mirror;
5229                 raid_map_helper(map, offload_to_mirror,
5230                                 &map_index, &current_group);
5231                 /* set mirror group to use next time */
5232                 offload_to_mirror =
5233                         (offload_to_mirror >=
5234                         le16_to_cpu(map->layout_map_count) - 1)
5235                         ? 0 : offload_to_mirror + 1;
5236                 dev->offload_to_mirror = offload_to_mirror;
5237                 /* Avoid direct use of dev->offload_to_mirror within this
5238                  * function since multiple threads might simultaneously
5239                  * increment it beyond the range of dev->layout_map_count -1.
5240                  */
5241                 break;
5242         case HPSA_RAID_5:
5243         case HPSA_RAID_6:
5244                 if (le16_to_cpu(map->layout_map_count) <= 1)
5245                         break;
5246
5247                 /* Verify first and last block are in same RAID group */
5248                 r5or6_blocks_per_row =
5249                         le16_to_cpu(map->strip_size) *
5250                         le16_to_cpu(map->data_disks_per_row);
5251                 BUG_ON(r5or6_blocks_per_row == 0);
5252                 stripesize = r5or6_blocks_per_row *
5253                         le16_to_cpu(map->layout_map_count);
5254 #if BITS_PER_LONG == 32
5255                 tmpdiv = first_block;
5256                 first_group = do_div(tmpdiv, stripesize);
5257                 tmpdiv = first_group;
5258                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5259                 first_group = tmpdiv;
5260                 tmpdiv = last_block;
5261                 last_group = do_div(tmpdiv, stripesize);
5262                 tmpdiv = last_group;
5263                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5264                 last_group = tmpdiv;
5265 #else
5266                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5267                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5268 #endif
5269                 if (first_group != last_group)
5270                         return IO_ACCEL_INELIGIBLE;
5271
5272                 /* Verify request is in a single row of RAID 5/6 */
5273 #if BITS_PER_LONG == 32
5274                 tmpdiv = first_block;
5275                 (void) do_div(tmpdiv, stripesize);
5276                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5277                 tmpdiv = last_block;
5278                 (void) do_div(tmpdiv, stripesize);
5279                 r5or6_last_row = r0_last_row = tmpdiv;
5280 #else
5281                 first_row = r5or6_first_row = r0_first_row =
5282                                                 first_block / stripesize;
5283                 r5or6_last_row = r0_last_row = last_block / stripesize;
5284 #endif
5285                 if (r5or6_first_row != r5or6_last_row)
5286                         return IO_ACCEL_INELIGIBLE;
5287
5288
5289                 /* Verify request is in a single column */
5290 #if BITS_PER_LONG == 32
5291                 tmpdiv = first_block;
5292                 first_row_offset = do_div(tmpdiv, stripesize);
5293                 tmpdiv = first_row_offset;
5294                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5295                 r5or6_first_row_offset = first_row_offset;
5296                 tmpdiv = last_block;
5297                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5298                 tmpdiv = r5or6_last_row_offset;
5299                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5300                 tmpdiv = r5or6_first_row_offset;
5301                 (void) do_div(tmpdiv, map->strip_size);
5302                 first_column = r5or6_first_column = tmpdiv;
5303                 tmpdiv = r5or6_last_row_offset;
5304                 (void) do_div(tmpdiv, map->strip_size);
5305                 r5or6_last_column = tmpdiv;
5306 #else
5307                 first_row_offset = r5or6_first_row_offset =
5308                         (u32)((first_block % stripesize) %
5309                                                 r5or6_blocks_per_row);
5310
5311                 r5or6_last_row_offset =
5312                         (u32)((last_block % stripesize) %
5313                                                 r5or6_blocks_per_row);
5314
5315                 first_column = r5or6_first_column =
5316                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5317                 r5or6_last_column =
5318                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5319 #endif
5320                 if (r5or6_first_column != r5or6_last_column)
5321                         return IO_ACCEL_INELIGIBLE;
5322
5323                 /* Request is eligible */
5324                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5325                         le16_to_cpu(map->row_cnt);
5326
5327                 map_index = (first_group *
5328                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5329                         (map_row * total_disks_per_row) + first_column;
5330                 break;
5331         default:
5332                 return IO_ACCEL_INELIGIBLE;
5333         }
5334
5335         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5336                 return IO_ACCEL_INELIGIBLE;
5337
5338         c->phys_disk = dev->phys_disk[map_index];
5339         if (!c->phys_disk)
5340                 return IO_ACCEL_INELIGIBLE;
5341
5342         disk_handle = dd[map_index].ioaccel_handle;
5343         disk_block = le64_to_cpu(map->disk_starting_blk) +
5344                         first_row * le16_to_cpu(map->strip_size) +
5345                         (first_row_offset - first_column *
5346                         le16_to_cpu(map->strip_size));
5347         disk_block_cnt = block_cnt;
5348
5349         /* handle differing logical/physical block sizes */
5350         if (map->phys_blk_shift) {
5351                 disk_block <<= map->phys_blk_shift;
5352                 disk_block_cnt <<= map->phys_blk_shift;
5353         }
5354         BUG_ON(disk_block_cnt > 0xffff);
5355
5356         /* build the new CDB for the physical disk I/O */
5357         if (disk_block > 0xffffffff) {
5358                 cdb[0] = is_write ? WRITE_16 : READ_16;
5359                 cdb[1] = 0;
5360                 cdb[2] = (u8) (disk_block >> 56);
5361                 cdb[3] = (u8) (disk_block >> 48);
5362                 cdb[4] = (u8) (disk_block >> 40);
5363                 cdb[5] = (u8) (disk_block >> 32);
5364                 cdb[6] = (u8) (disk_block >> 24);
5365                 cdb[7] = (u8) (disk_block >> 16);
5366                 cdb[8] = (u8) (disk_block >> 8);
5367                 cdb[9] = (u8) (disk_block);
5368                 cdb[10] = (u8) (disk_block_cnt >> 24);
5369                 cdb[11] = (u8) (disk_block_cnt >> 16);
5370                 cdb[12] = (u8) (disk_block_cnt >> 8);
5371                 cdb[13] = (u8) (disk_block_cnt);
5372                 cdb[14] = 0;
5373                 cdb[15] = 0;
5374                 cdb_len = 16;
5375         } else {
5376                 cdb[0] = is_write ? WRITE_10 : READ_10;
5377                 cdb[1] = 0;
5378                 cdb[2] = (u8) (disk_block >> 24);
5379                 cdb[3] = (u8) (disk_block >> 16);
5380                 cdb[4] = (u8) (disk_block >> 8);
5381                 cdb[5] = (u8) (disk_block);
5382                 cdb[6] = 0;
5383                 cdb[7] = (u8) (disk_block_cnt >> 8);
5384                 cdb[8] = (u8) (disk_block_cnt);
5385                 cdb[9] = 0;
5386                 cdb_len = 10;
5387         }
5388         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5389                                                 dev->scsi3addr,
5390                                                 dev->phys_disk[map_index]);
5391 }
5392
5393 /*
5394  * Submit commands down the "normal" RAID stack path
5395  * All callers to hpsa_ciss_submit must check lockup_detected
5396  * beforehand, before (opt.) and after calling cmd_alloc
5397  */
5398 static int hpsa_ciss_submit(struct ctlr_info *h,
5399         struct CommandList *c, struct scsi_cmnd *cmd,
5400         unsigned char scsi3addr[])
5401 {
5402         cmd->host_scribble = (unsigned char *) c;
5403         c->cmd_type = CMD_SCSI;
5404         c->scsi_cmd = cmd;
5405         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5406         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5407         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5408
5409         /* Fill in the request block... */
5410
5411         c->Request.Timeout = 0;
5412         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5413         c->Request.CDBLen = cmd->cmd_len;
5414         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5415         switch (cmd->sc_data_direction) {
5416         case DMA_TO_DEVICE:
5417                 c->Request.type_attr_dir =
5418                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5419                 break;
5420         case DMA_FROM_DEVICE:
5421                 c->Request.type_attr_dir =
5422                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5423                 break;
5424         case DMA_NONE:
5425                 c->Request.type_attr_dir =
5426                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5427                 break;
5428         case DMA_BIDIRECTIONAL:
5429                 /* This can happen if a buggy application does a scsi passthru
5430                  * and sets both inlen and outlen to non-zero. ( see
5431                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5432                  */
5433
5434                 c->Request.type_attr_dir =
5435                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5436                 /* This is technically wrong, and hpsa controllers should
5437                  * reject it with CMD_INVALID, which is the most correct
5438                  * response, but non-fibre backends appear to let it
5439                  * slide by, and give the same results as if this field
5440                  * were set correctly.  Either way is acceptable for
5441                  * our purposes here.
5442                  */
5443
5444                 break;
5445
5446         default:
5447                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5448                         cmd->sc_data_direction);
5449                 BUG();
5450                 break;
5451         }
5452
5453         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5454                 hpsa_cmd_resolve_and_free(h, c);
5455                 return SCSI_MLQUEUE_HOST_BUSY;
5456         }
5457         enqueue_cmd_and_start_io(h, c);
5458         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5459         return 0;
5460 }
5461
5462 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5463                                 struct CommandList *c)
5464 {
5465         dma_addr_t cmd_dma_handle, err_dma_handle;
5466
5467         /* Zero out all of commandlist except the last field, refcount */
5468         memset(c, 0, offsetof(struct CommandList, refcount));
5469         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5470         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5471         c->err_info = h->errinfo_pool + index;
5472         memset(c->err_info, 0, sizeof(*c->err_info));
5473         err_dma_handle = h->errinfo_pool_dhandle
5474             + index * sizeof(*c->err_info);
5475         c->cmdindex = index;
5476         c->busaddr = (u32) cmd_dma_handle;
5477         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5478         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5479         c->h = h;
5480         c->scsi_cmd = SCSI_CMD_IDLE;
5481 }
5482
5483 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5484 {
5485         int i;
5486
5487         for (i = 0; i < h->nr_cmds; i++) {
5488                 struct CommandList *c = h->cmd_pool + i;
5489
5490                 hpsa_cmd_init(h, i, c);
5491                 atomic_set(&c->refcount, 0);
5492         }
5493 }
5494
5495 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5496                                 struct CommandList *c)
5497 {
5498         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5499
5500         BUG_ON(c->cmdindex != index);
5501
5502         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5503         memset(c->err_info, 0, sizeof(*c->err_info));
5504         c->busaddr = (u32) cmd_dma_handle;
5505 }
5506
5507 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5508                 struct CommandList *c, struct scsi_cmnd *cmd,
5509                 unsigned char *scsi3addr)
5510 {
5511         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5512         int rc = IO_ACCEL_INELIGIBLE;
5513
5514         if (!dev)
5515                 return SCSI_MLQUEUE_HOST_BUSY;
5516
5517         cmd->host_scribble = (unsigned char *) c;
5518
5519         if (dev->offload_enabled) {
5520                 hpsa_cmd_init(h, c->cmdindex, c);
5521                 c->cmd_type = CMD_SCSI;
5522                 c->scsi_cmd = cmd;
5523                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5524                 if (rc < 0)     /* scsi_dma_map failed. */
5525                         rc = SCSI_MLQUEUE_HOST_BUSY;
5526         } else if (dev->hba_ioaccel_enabled) {
5527                 hpsa_cmd_init(h, c->cmdindex, c);
5528                 c->cmd_type = CMD_SCSI;
5529                 c->scsi_cmd = cmd;
5530                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5531                 if (rc < 0)     /* scsi_dma_map failed. */
5532                         rc = SCSI_MLQUEUE_HOST_BUSY;
5533         }
5534         return rc;
5535 }
5536
5537 static void hpsa_command_resubmit_worker(struct work_struct *work)
5538 {
5539         struct scsi_cmnd *cmd;
5540         struct hpsa_scsi_dev_t *dev;
5541         struct CommandList *c = container_of(work, struct CommandList, work);
5542
5543         cmd = c->scsi_cmd;
5544         dev = cmd->device->hostdata;
5545         if (!dev) {
5546                 cmd->result = DID_NO_CONNECT << 16;
5547                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5548         }
5549         if (c->reset_pending)
5550                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5551         if (c->cmd_type == CMD_IOACCEL2) {
5552                 struct ctlr_info *h = c->h;
5553                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5554                 int rc;
5555
5556                 if (c2->error_data.serv_response ==
5557                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5558                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5559                         if (rc == 0)
5560                                 return;
5561                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5562                                 /*
5563                                  * If we get here, it means dma mapping failed.
5564                                  * Try again via scsi mid layer, which will
5565                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5566                                  */
5567                                 cmd->result = DID_IMM_RETRY << 16;
5568                                 return hpsa_cmd_free_and_done(h, c, cmd);
5569                         }
5570                         /* else, fall thru and resubmit down CISS path */
5571                 }
5572         }
5573         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5574         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5575                 /*
5576                  * If we get here, it means dma mapping failed. Try
5577                  * again via scsi mid layer, which will then get
5578                  * SCSI_MLQUEUE_HOST_BUSY.
5579                  *
5580                  * hpsa_ciss_submit will have already freed c
5581                  * if it encountered a dma mapping failure.
5582                  */
5583                 cmd->result = DID_IMM_RETRY << 16;
5584                 cmd->scsi_done(cmd);
5585         }
5586 }
5587
5588 /* Running in struct Scsi_Host->host_lock less mode */
5589 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5590 {
5591         struct ctlr_info *h;
5592         struct hpsa_scsi_dev_t *dev;
5593         unsigned char scsi3addr[8];
5594         struct CommandList *c;
5595         int rc = 0;
5596
5597         /* Get the ptr to our adapter structure out of cmd->host. */
5598         h = sdev_to_hba(cmd->device);
5599
5600         BUG_ON(cmd->request->tag < 0);
5601
5602         dev = cmd->device->hostdata;
5603         if (!dev) {
5604                 cmd->result = DID_NO_CONNECT << 16;
5605                 cmd->scsi_done(cmd);
5606                 return 0;
5607         }
5608
5609         if (dev->removed) {
5610                 cmd->result = DID_NO_CONNECT << 16;
5611                 cmd->scsi_done(cmd);
5612                 return 0;
5613         }
5614
5615         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5616
5617         if (unlikely(lockup_detected(h))) {
5618                 cmd->result = DID_NO_CONNECT << 16;
5619                 cmd->scsi_done(cmd);
5620                 return 0;
5621         }
5622         c = cmd_tagged_alloc(h, cmd);
5623
5624         /*
5625          * Call alternate submit routine for I/O accelerated commands.
5626          * Retries always go down the normal I/O path.
5627          */
5628         if (likely(cmd->retries == 0 &&
5629                         !blk_rq_is_passthrough(cmd->request) &&
5630                         h->acciopath_status)) {
5631                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5632                 if (rc == 0)
5633                         return 0;
5634                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5635                         hpsa_cmd_resolve_and_free(h, c);
5636                         return SCSI_MLQUEUE_HOST_BUSY;
5637                 }
5638         }
5639         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5640 }
5641
5642 static void hpsa_scan_complete(struct ctlr_info *h)
5643 {
5644         unsigned long flags;
5645
5646         spin_lock_irqsave(&h->scan_lock, flags);
5647         h->scan_finished = 1;
5648         wake_up(&h->scan_wait_queue);
5649         spin_unlock_irqrestore(&h->scan_lock, flags);
5650 }
5651
5652 static void hpsa_scan_start(struct Scsi_Host *sh)
5653 {
5654         struct ctlr_info *h = shost_to_hba(sh);
5655         unsigned long flags;
5656
5657         /*
5658          * Don't let rescans be initiated on a controller known to be locked
5659          * up.  If the controller locks up *during* a rescan, that thread is
5660          * probably hosed, but at least we can prevent new rescan threads from
5661          * piling up on a locked up controller.
5662          */
5663         if (unlikely(lockup_detected(h)))
5664                 return hpsa_scan_complete(h);
5665
5666         /*
5667          * If a scan is already waiting to run, no need to add another
5668          */
5669         spin_lock_irqsave(&h->scan_lock, flags);
5670         if (h->scan_waiting) {
5671                 spin_unlock_irqrestore(&h->scan_lock, flags);
5672                 return;
5673         }
5674
5675         spin_unlock_irqrestore(&h->scan_lock, flags);
5676
5677         /* wait until any scan already in progress is finished. */
5678         while (1) {
5679                 spin_lock_irqsave(&h->scan_lock, flags);
5680                 if (h->scan_finished)
5681                         break;
5682                 h->scan_waiting = 1;
5683                 spin_unlock_irqrestore(&h->scan_lock, flags);
5684                 wait_event(h->scan_wait_queue, h->scan_finished);
5685                 /* Note: We don't need to worry about a race between this
5686                  * thread and driver unload because the midlayer will
5687                  * have incremented the reference count, so unload won't
5688                  * happen if we're in here.
5689                  */
5690         }
5691         h->scan_finished = 0; /* mark scan as in progress */
5692         h->scan_waiting = 0;
5693         spin_unlock_irqrestore(&h->scan_lock, flags);
5694
5695         if (unlikely(lockup_detected(h)))
5696                 return hpsa_scan_complete(h);
5697
5698         /*
5699          * Do the scan after a reset completion
5700          */
5701         spin_lock_irqsave(&h->reset_lock, flags);
5702         if (h->reset_in_progress) {
5703                 h->drv_req_rescan = 1;
5704                 spin_unlock_irqrestore(&h->reset_lock, flags);
5705                 hpsa_scan_complete(h);
5706                 return;
5707         }
5708         spin_unlock_irqrestore(&h->reset_lock, flags);
5709
5710         hpsa_update_scsi_devices(h);
5711
5712         hpsa_scan_complete(h);
5713 }
5714
5715 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5716 {
5717         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5718
5719         if (!logical_drive)
5720                 return -ENODEV;
5721
5722         if (qdepth < 1)
5723                 qdepth = 1;
5724         else if (qdepth > logical_drive->queue_depth)
5725                 qdepth = logical_drive->queue_depth;
5726
5727         return scsi_change_queue_depth(sdev, qdepth);
5728 }
5729
5730 static int hpsa_scan_finished(struct Scsi_Host *sh,
5731         unsigned long elapsed_time)
5732 {
5733         struct ctlr_info *h = shost_to_hba(sh);
5734         unsigned long flags;
5735         int finished;
5736
5737         spin_lock_irqsave(&h->scan_lock, flags);
5738         finished = h->scan_finished;
5739         spin_unlock_irqrestore(&h->scan_lock, flags);
5740         return finished;
5741 }
5742
5743 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5744 {
5745         struct Scsi_Host *sh;
5746
5747         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5748         if (sh == NULL) {
5749                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5750                 return -ENOMEM;
5751         }
5752
5753         sh->io_port = 0;
5754         sh->n_io_port = 0;
5755         sh->this_id = -1;
5756         sh->max_channel = 3;
5757         sh->max_cmd_len = MAX_COMMAND_SIZE;
5758         sh->max_lun = HPSA_MAX_LUN;
5759         sh->max_id = HPSA_MAX_LUN;
5760         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5761         sh->cmd_per_lun = sh->can_queue;
5762         sh->sg_tablesize = h->maxsgentries;
5763         sh->transportt = hpsa_sas_transport_template;
5764         sh->hostdata[0] = (unsigned long) h;
5765         sh->irq = pci_irq_vector(h->pdev, 0);
5766         sh->unique_id = sh->irq;
5767
5768         h->scsi_host = sh;
5769         return 0;
5770 }
5771
5772 static int hpsa_scsi_add_host(struct ctlr_info *h)
5773 {
5774         int rv;
5775
5776         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5777         if (rv) {
5778                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5779                 return rv;
5780         }
5781         scsi_scan_host(h->scsi_host);
5782         return 0;
5783 }
5784
5785 /*
5786  * The block layer has already gone to the trouble of picking out a unique,
5787  * small-integer tag for this request.  We use an offset from that value as
5788  * an index to select our command block.  (The offset allows us to reserve the
5789  * low-numbered entries for our own uses.)
5790  */
5791 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5792 {
5793         int idx = scmd->request->tag;
5794
5795         if (idx < 0)
5796                 return idx;
5797
5798         /* Offset to leave space for internal cmds. */
5799         return idx += HPSA_NRESERVED_CMDS;
5800 }
5801
5802 /*
5803  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5804  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5805  */
5806 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5807                                 struct CommandList *c, unsigned char lunaddr[],
5808                                 int reply_queue)
5809 {
5810         int rc;
5811
5812         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5813         (void) fill_cmd(c, TEST_UNIT_READY, h,
5814                         NULL, 0, 0, lunaddr, TYPE_CMD);
5815         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5816         if (rc)
5817                 return rc;
5818         /* no unmap needed here because no data xfer. */
5819
5820         /* Check if the unit is already ready. */
5821         if (c->err_info->CommandStatus == CMD_SUCCESS)
5822                 return 0;
5823
5824         /*
5825          * The first command sent after reset will receive "unit attention" to
5826          * indicate that the LUN has been reset...this is actually what we're
5827          * looking for (but, success is good too).
5828          */
5829         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5830                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5831                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5832                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5833                 return 0;
5834
5835         return 1;
5836 }
5837
5838 /*
5839  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5840  * returns zero when the unit is ready, and non-zero when giving up.
5841  */
5842 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5843                                 struct CommandList *c,
5844                                 unsigned char lunaddr[], int reply_queue)
5845 {
5846         int rc;
5847         int count = 0;
5848         int waittime = 1; /* seconds */
5849
5850         /* Send test unit ready until device ready, or give up. */
5851         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5852
5853                 /*
5854                  * Wait for a bit.  do this first, because if we send
5855                  * the TUR right away, the reset will just abort it.
5856                  */
5857                 msleep(1000 * waittime);
5858
5859                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5860                 if (!rc)
5861                         break;
5862
5863                 /* Increase wait time with each try, up to a point. */
5864                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5865                         waittime *= 2;
5866
5867                 dev_warn(&h->pdev->dev,
5868                          "waiting %d secs for device to become ready.\n",
5869                          waittime);
5870         }
5871
5872         return rc;
5873 }
5874
5875 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5876                                            unsigned char lunaddr[],
5877                                            int reply_queue)
5878 {
5879         int first_queue;
5880         int last_queue;
5881         int rq;
5882         int rc = 0;
5883         struct CommandList *c;
5884
5885         c = cmd_alloc(h);
5886
5887         /*
5888          * If no specific reply queue was requested, then send the TUR
5889          * repeatedly, requesting a reply on each reply queue; otherwise execute
5890          * the loop exactly once using only the specified queue.
5891          */
5892         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5893                 first_queue = 0;
5894                 last_queue = h->nreply_queues - 1;
5895         } else {
5896                 first_queue = reply_queue;
5897                 last_queue = reply_queue;
5898         }
5899
5900         for (rq = first_queue; rq <= last_queue; rq++) {
5901                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5902                 if (rc)
5903                         break;
5904         }
5905
5906         if (rc)
5907                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5908         else
5909                 dev_warn(&h->pdev->dev, "device is ready.\n");
5910
5911         cmd_free(h, c);
5912         return rc;
5913 }
5914
5915 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5916  * complaining.  Doing a host- or bus-reset can't do anything good here.
5917  */
5918 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5919 {
5920         int rc = SUCCESS;
5921         struct ctlr_info *h;
5922         struct hpsa_scsi_dev_t *dev;
5923         u8 reset_type;
5924         char msg[48];
5925         unsigned long flags;
5926
5927         /* find the controller to which the command to be aborted was sent */
5928         h = sdev_to_hba(scsicmd->device);
5929         if (h == NULL) /* paranoia */
5930                 return FAILED;
5931
5932         spin_lock_irqsave(&h->reset_lock, flags);
5933         h->reset_in_progress = 1;
5934         spin_unlock_irqrestore(&h->reset_lock, flags);
5935
5936         if (lockup_detected(h)) {
5937                 rc = FAILED;
5938                 goto return_reset_status;
5939         }
5940
5941         dev = scsicmd->device->hostdata;
5942         if (!dev) {
5943                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5944                 rc = FAILED;
5945                 goto return_reset_status;
5946         }
5947
5948         if (dev->devtype == TYPE_ENCLOSURE) {
5949                 rc = SUCCESS;
5950                 goto return_reset_status;
5951         }
5952
5953         /* if controller locked up, we can guarantee command won't complete */
5954         if (lockup_detected(h)) {
5955                 snprintf(msg, sizeof(msg),
5956                          "cmd %d RESET FAILED, lockup detected",
5957                          hpsa_get_cmd_index(scsicmd));
5958                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5959                 rc = FAILED;
5960                 goto return_reset_status;
5961         }
5962
5963         /* this reset request might be the result of a lockup; check */
5964         if (detect_controller_lockup(h)) {
5965                 snprintf(msg, sizeof(msg),
5966                          "cmd %d RESET FAILED, new lockup detected",
5967                          hpsa_get_cmd_index(scsicmd));
5968                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5969                 rc = FAILED;
5970                 goto return_reset_status;
5971         }
5972
5973         /* Do not attempt on controller */
5974         if (is_hba_lunid(dev->scsi3addr)) {
5975                 rc = SUCCESS;
5976                 goto return_reset_status;
5977         }
5978
5979         if (is_logical_dev_addr_mode(dev->scsi3addr))
5980                 reset_type = HPSA_DEVICE_RESET_MSG;
5981         else
5982                 reset_type = HPSA_PHYS_TARGET_RESET;
5983
5984         sprintf(msg, "resetting %s",
5985                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5986         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5987
5988         /* send a reset to the SCSI LUN which the command was sent to */
5989         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5990                            DEFAULT_REPLY_QUEUE);
5991         if (rc == 0)
5992                 rc = SUCCESS;
5993         else
5994                 rc = FAILED;
5995
5996         sprintf(msg, "reset %s %s",
5997                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5998                 rc == SUCCESS ? "completed successfully" : "failed");
5999         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6000
6001 return_reset_status:
6002         spin_lock_irqsave(&h->reset_lock, flags);
6003         h->reset_in_progress = 0;
6004         spin_unlock_irqrestore(&h->reset_lock, flags);
6005         return rc;
6006 }
6007
6008 /*
6009  * For operations with an associated SCSI command, a command block is allocated
6010  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6011  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6012  * the complement, although cmd_free() may be called instead.
6013  */
6014 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6015                                             struct scsi_cmnd *scmd)
6016 {
6017         int idx = hpsa_get_cmd_index(scmd);
6018         struct CommandList *c = h->cmd_pool + idx;
6019
6020         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6021                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6022                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6023                 /* The index value comes from the block layer, so if it's out of
6024                  * bounds, it's probably not our bug.
6025                  */
6026                 BUG();
6027         }
6028
6029         atomic_inc(&c->refcount);
6030         if (unlikely(!hpsa_is_cmd_idle(c))) {
6031                 /*
6032                  * We expect that the SCSI layer will hand us a unique tag
6033                  * value.  Thus, there should never be a collision here between
6034                  * two requests...because if the selected command isn't idle
6035                  * then someone is going to be very disappointed.
6036                  */
6037                 dev_err(&h->pdev->dev,
6038                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6039                         idx);
6040                 if (c->scsi_cmd != NULL)
6041                         scsi_print_command(c->scsi_cmd);
6042                 scsi_print_command(scmd);
6043         }
6044
6045         hpsa_cmd_partial_init(h, idx, c);
6046         return c;
6047 }
6048
6049 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6050 {
6051         /*
6052          * Release our reference to the block.  We don't need to do anything
6053          * else to free it, because it is accessed by index.
6054          */
6055         (void)atomic_dec(&c->refcount);
6056 }
6057
6058 /*
6059  * For operations that cannot sleep, a command block is allocated at init,
6060  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6061  * which ones are free or in use.  Lock must be held when calling this.
6062  * cmd_free() is the complement.
6063  * This function never gives up and returns NULL.  If it hangs,
6064  * another thread must call cmd_free() to free some tags.
6065  */
6066
6067 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6068 {
6069         struct CommandList *c;
6070         int refcount, i;
6071         int offset = 0;
6072
6073         /*
6074          * There is some *extremely* small but non-zero chance that that
6075          * multiple threads could get in here, and one thread could
6076          * be scanning through the list of bits looking for a free
6077          * one, but the free ones are always behind him, and other
6078          * threads sneak in behind him and eat them before he can
6079          * get to them, so that while there is always a free one, a
6080          * very unlucky thread might be starved anyway, never able to
6081          * beat the other threads.  In reality, this happens so
6082          * infrequently as to be indistinguishable from never.
6083          *
6084          * Note that we start allocating commands before the SCSI host structure
6085          * is initialized.  Since the search starts at bit zero, this
6086          * all works, since we have at least one command structure available;
6087          * however, it means that the structures with the low indexes have to be
6088          * reserved for driver-initiated requests, while requests from the block
6089          * layer will use the higher indexes.
6090          */
6091
6092         for (;;) {
6093                 i = find_next_zero_bit(h->cmd_pool_bits,
6094                                         HPSA_NRESERVED_CMDS,
6095                                         offset);
6096                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6097                         offset = 0;
6098                         continue;
6099                 }
6100                 c = h->cmd_pool + i;
6101                 refcount = atomic_inc_return(&c->refcount);
6102                 if (unlikely(refcount > 1)) {
6103                         cmd_free(h, c); /* already in use */
6104                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6105                         continue;
6106                 }
6107                 set_bit(i & (BITS_PER_LONG - 1),
6108                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6109                 break; /* it's ours now. */
6110         }
6111         hpsa_cmd_partial_init(h, i, c);
6112         return c;
6113 }
6114
6115 /*
6116  * This is the complementary operation to cmd_alloc().  Note, however, in some
6117  * corner cases it may also be used to free blocks allocated by
6118  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6119  * the clear-bit is harmless.
6120  */
6121 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6122 {
6123         if (atomic_dec_and_test(&c->refcount)) {
6124                 int i;
6125
6126                 i = c - h->cmd_pool;
6127                 clear_bit(i & (BITS_PER_LONG - 1),
6128                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6129         }
6130 }
6131
6132 #ifdef CONFIG_COMPAT
6133
6134 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6135         void __user *arg)
6136 {
6137         IOCTL32_Command_struct __user *arg32 =
6138             (IOCTL32_Command_struct __user *) arg;
6139         IOCTL_Command_struct arg64;
6140         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6141         int err;
6142         u32 cp;
6143
6144         memset(&arg64, 0, sizeof(arg64));
6145         err = 0;
6146         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6147                            sizeof(arg64.LUN_info));
6148         err |= copy_from_user(&arg64.Request, &arg32->Request,
6149                            sizeof(arg64.Request));
6150         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6151                            sizeof(arg64.error_info));
6152         err |= get_user(arg64.buf_size, &arg32->buf_size);
6153         err |= get_user(cp, &arg32->buf);
6154         arg64.buf = compat_ptr(cp);
6155         err |= copy_to_user(p, &arg64, sizeof(arg64));
6156
6157         if (err)
6158                 return -EFAULT;
6159
6160         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6161         if (err)
6162                 return err;
6163         err |= copy_in_user(&arg32->error_info, &p->error_info,
6164                          sizeof(arg32->error_info));
6165         if (err)
6166                 return -EFAULT;
6167         return err;
6168 }
6169
6170 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6171         int cmd, void __user *arg)
6172 {
6173         BIG_IOCTL32_Command_struct __user *arg32 =
6174             (BIG_IOCTL32_Command_struct __user *) arg;
6175         BIG_IOCTL_Command_struct arg64;
6176         BIG_IOCTL_Command_struct __user *p =
6177             compat_alloc_user_space(sizeof(arg64));
6178         int err;
6179         u32 cp;
6180
6181         memset(&arg64, 0, sizeof(arg64));
6182         err = 0;
6183         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6184                            sizeof(arg64.LUN_info));
6185         err |= copy_from_user(&arg64.Request, &arg32->Request,
6186                            sizeof(arg64.Request));
6187         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6188                            sizeof(arg64.error_info));
6189         err |= get_user(arg64.buf_size, &arg32->buf_size);
6190         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6191         err |= get_user(cp, &arg32->buf);
6192         arg64.buf = compat_ptr(cp);
6193         err |= copy_to_user(p, &arg64, sizeof(arg64));
6194
6195         if (err)
6196                 return -EFAULT;
6197
6198         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6199         if (err)
6200                 return err;
6201         err |= copy_in_user(&arg32->error_info, &p->error_info,
6202                          sizeof(arg32->error_info));
6203         if (err)
6204                 return -EFAULT;
6205         return err;
6206 }
6207
6208 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6209 {
6210         switch (cmd) {
6211         case CCISS_GETPCIINFO:
6212         case CCISS_GETINTINFO:
6213         case CCISS_SETINTINFO:
6214         case CCISS_GETNODENAME:
6215         case CCISS_SETNODENAME:
6216         case CCISS_GETHEARTBEAT:
6217         case CCISS_GETBUSTYPES:
6218         case CCISS_GETFIRMVER:
6219         case CCISS_GETDRIVVER:
6220         case CCISS_REVALIDVOLS:
6221         case CCISS_DEREGDISK:
6222         case CCISS_REGNEWDISK:
6223         case CCISS_REGNEWD:
6224         case CCISS_RESCANDISK:
6225         case CCISS_GETLUNINFO:
6226                 return hpsa_ioctl(dev, cmd, arg);
6227
6228         case CCISS_PASSTHRU32:
6229                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6230         case CCISS_BIG_PASSTHRU32:
6231                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6232
6233         default:
6234                 return -ENOIOCTLCMD;
6235         }
6236 }
6237 #endif
6238
6239 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6240 {
6241         struct hpsa_pci_info pciinfo;
6242
6243         if (!argp)
6244                 return -EINVAL;
6245         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6246         pciinfo.bus = h->pdev->bus->number;
6247         pciinfo.dev_fn = h->pdev->devfn;
6248         pciinfo.board_id = h->board_id;
6249         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6250                 return -EFAULT;
6251         return 0;
6252 }
6253
6254 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6255 {
6256         DriverVer_type DriverVer;
6257         unsigned char vmaj, vmin, vsubmin;
6258         int rc;
6259
6260         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6261                 &vmaj, &vmin, &vsubmin);
6262         if (rc != 3) {
6263                 dev_info(&h->pdev->dev, "driver version string '%s' "
6264                         "unrecognized.", HPSA_DRIVER_VERSION);
6265                 vmaj = 0;
6266                 vmin = 0;
6267                 vsubmin = 0;
6268         }
6269         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6270         if (!argp)
6271                 return -EINVAL;
6272         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6273                 return -EFAULT;
6274         return 0;
6275 }
6276
6277 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6278 {
6279         IOCTL_Command_struct iocommand;
6280         struct CommandList *c;
6281         char *buff = NULL;
6282         u64 temp64;
6283         int rc = 0;
6284
6285         if (!argp)
6286                 return -EINVAL;
6287         if (!capable(CAP_SYS_RAWIO))
6288                 return -EPERM;
6289         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6290                 return -EFAULT;
6291         if ((iocommand.buf_size < 1) &&
6292             (iocommand.Request.Type.Direction != XFER_NONE)) {
6293                 return -EINVAL;
6294         }
6295         if (iocommand.buf_size > 0) {
6296                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6297                 if (buff == NULL)
6298                         return -ENOMEM;
6299                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6300                         /* Copy the data into the buffer we created */
6301                         if (copy_from_user(buff, iocommand.buf,
6302                                 iocommand.buf_size)) {
6303                                 rc = -EFAULT;
6304                                 goto out_kfree;
6305                         }
6306                 } else {
6307                         memset(buff, 0, iocommand.buf_size);
6308                 }
6309         }
6310         c = cmd_alloc(h);
6311
6312         /* Fill in the command type */
6313         c->cmd_type = CMD_IOCTL_PEND;
6314         c->scsi_cmd = SCSI_CMD_BUSY;
6315         /* Fill in Command Header */
6316         c->Header.ReplyQueue = 0; /* unused in simple mode */
6317         if (iocommand.buf_size > 0) {   /* buffer to fill */
6318                 c->Header.SGList = 1;
6319                 c->Header.SGTotal = cpu_to_le16(1);
6320         } else  { /* no buffers to fill */
6321                 c->Header.SGList = 0;
6322                 c->Header.SGTotal = cpu_to_le16(0);
6323         }
6324         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6325
6326         /* Fill in Request block */
6327         memcpy(&c->Request, &iocommand.Request,
6328                 sizeof(c->Request));
6329
6330         /* Fill in the scatter gather information */
6331         if (iocommand.buf_size > 0) {
6332                 temp64 = pci_map_single(h->pdev, buff,
6333                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6334                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6335                         c->SG[0].Addr = cpu_to_le64(0);
6336                         c->SG[0].Len = cpu_to_le32(0);
6337                         rc = -ENOMEM;
6338                         goto out;
6339                 }
6340                 c->SG[0].Addr = cpu_to_le64(temp64);
6341                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6342                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6343         }
6344         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6345                                         NO_TIMEOUT);
6346         if (iocommand.buf_size > 0)
6347                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6348         check_ioctl_unit_attention(h, c);
6349         if (rc) {
6350                 rc = -EIO;
6351                 goto out;
6352         }
6353
6354         /* Copy the error information out */
6355         memcpy(&iocommand.error_info, c->err_info,
6356                 sizeof(iocommand.error_info));
6357         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6358                 rc = -EFAULT;
6359                 goto out;
6360         }
6361         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6362                 iocommand.buf_size > 0) {
6363                 /* Copy the data out of the buffer we created */
6364                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6365                         rc = -EFAULT;
6366                         goto out;
6367                 }
6368         }
6369 out:
6370         cmd_free(h, c);
6371 out_kfree:
6372         kfree(buff);
6373         return rc;
6374 }
6375
6376 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6377 {
6378         BIG_IOCTL_Command_struct *ioc;
6379         struct CommandList *c;
6380         unsigned char **buff = NULL;
6381         int *buff_size = NULL;
6382         u64 temp64;
6383         BYTE sg_used = 0;
6384         int status = 0;
6385         u32 left;
6386         u32 sz;
6387         BYTE __user *data_ptr;
6388
6389         if (!argp)
6390                 return -EINVAL;
6391         if (!capable(CAP_SYS_RAWIO))
6392                 return -EPERM;
6393         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6394         if (!ioc) {
6395                 status = -ENOMEM;
6396                 goto cleanup1;
6397         }
6398         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6399                 status = -EFAULT;
6400                 goto cleanup1;
6401         }
6402         if ((ioc->buf_size < 1) &&
6403             (ioc->Request.Type.Direction != XFER_NONE)) {
6404                 status = -EINVAL;
6405                 goto cleanup1;
6406         }
6407         /* Check kmalloc limits  using all SGs */
6408         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6409                 status = -EINVAL;
6410                 goto cleanup1;
6411         }
6412         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6413                 status = -EINVAL;
6414                 goto cleanup1;
6415         }
6416         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6417         if (!buff) {
6418                 status = -ENOMEM;
6419                 goto cleanup1;
6420         }
6421         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6422         if (!buff_size) {
6423                 status = -ENOMEM;
6424                 goto cleanup1;
6425         }
6426         left = ioc->buf_size;
6427         data_ptr = ioc->buf;
6428         while (left) {
6429                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6430                 buff_size[sg_used] = sz;
6431                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6432                 if (buff[sg_used] == NULL) {
6433                         status = -ENOMEM;
6434                         goto cleanup1;
6435                 }
6436                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6437                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6438                                 status = -EFAULT;
6439                                 goto cleanup1;
6440                         }
6441                 } else
6442                         memset(buff[sg_used], 0, sz);
6443                 left -= sz;
6444                 data_ptr += sz;
6445                 sg_used++;
6446         }
6447         c = cmd_alloc(h);
6448
6449         c->cmd_type = CMD_IOCTL_PEND;
6450         c->scsi_cmd = SCSI_CMD_BUSY;
6451         c->Header.ReplyQueue = 0;
6452         c->Header.SGList = (u8) sg_used;
6453         c->Header.SGTotal = cpu_to_le16(sg_used);
6454         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6455         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6456         if (ioc->buf_size > 0) {
6457                 int i;
6458                 for (i = 0; i < sg_used; i++) {
6459                         temp64 = pci_map_single(h->pdev, buff[i],
6460                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6461                         if (dma_mapping_error(&h->pdev->dev,
6462                                                         (dma_addr_t) temp64)) {
6463                                 c->SG[i].Addr = cpu_to_le64(0);
6464                                 c->SG[i].Len = cpu_to_le32(0);
6465                                 hpsa_pci_unmap(h->pdev, c, i,
6466                                         PCI_DMA_BIDIRECTIONAL);
6467                                 status = -ENOMEM;
6468                                 goto cleanup0;
6469                         }
6470                         c->SG[i].Addr = cpu_to_le64(temp64);
6471                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6472                         c->SG[i].Ext = cpu_to_le32(0);
6473                 }
6474                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6475         }
6476         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6477                                                 NO_TIMEOUT);
6478         if (sg_used)
6479                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6480         check_ioctl_unit_attention(h, c);
6481         if (status) {
6482                 status = -EIO;
6483                 goto cleanup0;
6484         }
6485
6486         /* Copy the error information out */
6487         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6488         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6489                 status = -EFAULT;
6490                 goto cleanup0;
6491         }
6492         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6493                 int i;
6494
6495                 /* Copy the data out of the buffer we created */
6496                 BYTE __user *ptr = ioc->buf;
6497                 for (i = 0; i < sg_used; i++) {
6498                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6499                                 status = -EFAULT;
6500                                 goto cleanup0;
6501                         }
6502                         ptr += buff_size[i];
6503                 }
6504         }
6505         status = 0;
6506 cleanup0:
6507         cmd_free(h, c);
6508 cleanup1:
6509         if (buff) {
6510                 int i;
6511
6512                 for (i = 0; i < sg_used; i++)
6513                         kfree(buff[i]);
6514                 kfree(buff);
6515         }
6516         kfree(buff_size);
6517         kfree(ioc);
6518         return status;
6519 }
6520
6521 static void check_ioctl_unit_attention(struct ctlr_info *h,
6522         struct CommandList *c)
6523 {
6524         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6525                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6526                 (void) check_for_unit_attention(h, c);
6527 }
6528
6529 /*
6530  * ioctl
6531  */
6532 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6533 {
6534         struct ctlr_info *h;
6535         void __user *argp = (void __user *)arg;
6536         int rc;
6537
6538         h = sdev_to_hba(dev);
6539
6540         switch (cmd) {
6541         case CCISS_DEREGDISK:
6542         case CCISS_REGNEWDISK:
6543         case CCISS_REGNEWD:
6544                 hpsa_scan_start(h->scsi_host);
6545                 return 0;
6546         case CCISS_GETPCIINFO:
6547                 return hpsa_getpciinfo_ioctl(h, argp);
6548         case CCISS_GETDRIVVER:
6549                 return hpsa_getdrivver_ioctl(h, argp);
6550         case CCISS_PASSTHRU:
6551                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6552                         return -EAGAIN;
6553                 rc = hpsa_passthru_ioctl(h, argp);
6554                 atomic_inc(&h->passthru_cmds_avail);
6555                 return rc;
6556         case CCISS_BIG_PASSTHRU:
6557                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6558                         return -EAGAIN;
6559                 rc = hpsa_big_passthru_ioctl(h, argp);
6560                 atomic_inc(&h->passthru_cmds_avail);
6561                 return rc;
6562         default:
6563                 return -ENOTTY;
6564         }
6565 }
6566
6567 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6568                                 u8 reset_type)
6569 {
6570         struct CommandList *c;
6571
6572         c = cmd_alloc(h);
6573
6574         /* fill_cmd can't fail here, no data buffer to map */
6575         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6576                 RAID_CTLR_LUNID, TYPE_MSG);
6577         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6578         c->waiting = NULL;
6579         enqueue_cmd_and_start_io(h, c);
6580         /* Don't wait for completion, the reset won't complete.  Don't free
6581          * the command either.  This is the last command we will send before
6582          * re-initializing everything, so it doesn't matter and won't leak.
6583          */
6584         return;
6585 }
6586
6587 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6588         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6589         int cmd_type)
6590 {
6591         int pci_dir = XFER_NONE;
6592
6593         c->cmd_type = CMD_IOCTL_PEND;
6594         c->scsi_cmd = SCSI_CMD_BUSY;
6595         c->Header.ReplyQueue = 0;
6596         if (buff != NULL && size > 0) {
6597                 c->Header.SGList = 1;
6598                 c->Header.SGTotal = cpu_to_le16(1);
6599         } else {
6600                 c->Header.SGList = 0;
6601                 c->Header.SGTotal = cpu_to_le16(0);
6602         }
6603         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6604
6605         if (cmd_type == TYPE_CMD) {
6606                 switch (cmd) {
6607                 case HPSA_INQUIRY:
6608                         /* are we trying to read a vital product page */
6609                         if (page_code & VPD_PAGE) {
6610                                 c->Request.CDB[1] = 0x01;
6611                                 c->Request.CDB[2] = (page_code & 0xff);
6612                         }
6613                         c->Request.CDBLen = 6;
6614                         c->Request.type_attr_dir =
6615                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6616                         c->Request.Timeout = 0;
6617                         c->Request.CDB[0] = HPSA_INQUIRY;
6618                         c->Request.CDB[4] = size & 0xFF;
6619                         break;
6620                 case RECEIVE_DIAGNOSTIC:
6621                         c->Request.CDBLen = 6;
6622                         c->Request.type_attr_dir =
6623                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6624                         c->Request.Timeout = 0;
6625                         c->Request.CDB[0] = cmd;
6626                         c->Request.CDB[1] = 1;
6627                         c->Request.CDB[2] = 1;
6628                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6629                         c->Request.CDB[4] = size & 0xFF;
6630                         break;
6631                 case HPSA_REPORT_LOG:
6632                 case HPSA_REPORT_PHYS:
6633                         /* Talking to controller so It's a physical command
6634                            mode = 00 target = 0.  Nothing to write.
6635                          */
6636                         c->Request.CDBLen = 12;
6637                         c->Request.type_attr_dir =
6638                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639                         c->Request.Timeout = 0;
6640                         c->Request.CDB[0] = cmd;
6641                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6642                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6643                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6644                         c->Request.CDB[9] = size & 0xFF;
6645                         break;
6646                 case BMIC_SENSE_DIAG_OPTIONS:
6647                         c->Request.CDBLen = 16;
6648                         c->Request.type_attr_dir =
6649                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6650                         c->Request.Timeout = 0;
6651                         /* Spec says this should be BMIC_WRITE */
6652                         c->Request.CDB[0] = BMIC_READ;
6653                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6654                         break;
6655                 case BMIC_SET_DIAG_OPTIONS:
6656                         c->Request.CDBLen = 16;
6657                         c->Request.type_attr_dir =
6658                                         TYPE_ATTR_DIR(cmd_type,
6659                                                 ATTR_SIMPLE, XFER_WRITE);
6660                         c->Request.Timeout = 0;
6661                         c->Request.CDB[0] = BMIC_WRITE;
6662                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6663                         break;
6664                 case HPSA_CACHE_FLUSH:
6665                         c->Request.CDBLen = 12;
6666                         c->Request.type_attr_dir =
6667                                         TYPE_ATTR_DIR(cmd_type,
6668                                                 ATTR_SIMPLE, XFER_WRITE);
6669                         c->Request.Timeout = 0;
6670                         c->Request.CDB[0] = BMIC_WRITE;
6671                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6672                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6673                         c->Request.CDB[8] = size & 0xFF;
6674                         break;
6675                 case TEST_UNIT_READY:
6676                         c->Request.CDBLen = 6;
6677                         c->Request.type_attr_dir =
6678                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6679                         c->Request.Timeout = 0;
6680                         break;
6681                 case HPSA_GET_RAID_MAP:
6682                         c->Request.CDBLen = 12;
6683                         c->Request.type_attr_dir =
6684                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6685                         c->Request.Timeout = 0;
6686                         c->Request.CDB[0] = HPSA_CISS_READ;
6687                         c->Request.CDB[1] = cmd;
6688                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6689                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6690                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6691                         c->Request.CDB[9] = size & 0xFF;
6692                         break;
6693                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6694                         c->Request.CDBLen = 10;
6695                         c->Request.type_attr_dir =
6696                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6697                         c->Request.Timeout = 0;
6698                         c->Request.CDB[0] = BMIC_READ;
6699                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6700                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6701                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6702                         break;
6703                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6704                         c->Request.CDBLen = 10;
6705                         c->Request.type_attr_dir =
6706                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6707                         c->Request.Timeout = 0;
6708                         c->Request.CDB[0] = BMIC_READ;
6709                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6710                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6711                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6712                         break;
6713                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6714                         c->Request.CDBLen = 10;
6715                         c->Request.type_attr_dir =
6716                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6717                         c->Request.Timeout = 0;
6718                         c->Request.CDB[0] = BMIC_READ;
6719                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6720                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6721                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6722                         break;
6723                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6724                         c->Request.CDBLen = 10;
6725                         c->Request.type_attr_dir =
6726                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6727                         c->Request.Timeout = 0;
6728                         c->Request.CDB[0] = BMIC_READ;
6729                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6730                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6731                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6732                         break;
6733                 case BMIC_IDENTIFY_CONTROLLER:
6734                         c->Request.CDBLen = 10;
6735                         c->Request.type_attr_dir =
6736                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6737                         c->Request.Timeout = 0;
6738                         c->Request.CDB[0] = BMIC_READ;
6739                         c->Request.CDB[1] = 0;
6740                         c->Request.CDB[2] = 0;
6741                         c->Request.CDB[3] = 0;
6742                         c->Request.CDB[4] = 0;
6743                         c->Request.CDB[5] = 0;
6744                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6745                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6746                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6747                         c->Request.CDB[9] = 0;
6748                         break;
6749                 default:
6750                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6751                         BUG();
6752                 }
6753         } else if (cmd_type == TYPE_MSG) {
6754                 switch (cmd) {
6755
6756                 case  HPSA_PHYS_TARGET_RESET:
6757                         c->Request.CDBLen = 16;
6758                         c->Request.type_attr_dir =
6759                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6760                         c->Request.Timeout = 0; /* Don't time out */
6761                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6762                         c->Request.CDB[0] = HPSA_RESET;
6763                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6764                         /* Physical target reset needs no control bytes 4-7*/
6765                         c->Request.CDB[4] = 0x00;
6766                         c->Request.CDB[5] = 0x00;
6767                         c->Request.CDB[6] = 0x00;
6768                         c->Request.CDB[7] = 0x00;
6769                         break;
6770                 case  HPSA_DEVICE_RESET_MSG:
6771                         c->Request.CDBLen = 16;
6772                         c->Request.type_attr_dir =
6773                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6774                         c->Request.Timeout = 0; /* Don't time out */
6775                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6776                         c->Request.CDB[0] =  cmd;
6777                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6778                         /* If bytes 4-7 are zero, it means reset the */
6779                         /* LunID device */
6780                         c->Request.CDB[4] = 0x00;
6781                         c->Request.CDB[5] = 0x00;
6782                         c->Request.CDB[6] = 0x00;
6783                         c->Request.CDB[7] = 0x00;
6784                         break;
6785                 default:
6786                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6787                                 cmd);
6788                         BUG();
6789                 }
6790         } else {
6791                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6792                 BUG();
6793         }
6794
6795         switch (GET_DIR(c->Request.type_attr_dir)) {
6796         case XFER_READ:
6797                 pci_dir = PCI_DMA_FROMDEVICE;
6798                 break;
6799         case XFER_WRITE:
6800                 pci_dir = PCI_DMA_TODEVICE;
6801                 break;
6802         case XFER_NONE:
6803                 pci_dir = PCI_DMA_NONE;
6804                 break;
6805         default:
6806                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6807         }
6808         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6809                 return -1;
6810         return 0;
6811 }
6812
6813 /*
6814  * Map (physical) PCI mem into (virtual) kernel space
6815  */
6816 static void __iomem *remap_pci_mem(ulong base, ulong size)
6817 {
6818         ulong page_base = ((ulong) base) & PAGE_MASK;
6819         ulong page_offs = ((ulong) base) - page_base;
6820         void __iomem *page_remapped = ioremap_nocache(page_base,
6821                 page_offs + size);
6822
6823         return page_remapped ? (page_remapped + page_offs) : NULL;
6824 }
6825
6826 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6827 {
6828         return h->access.command_completed(h, q);
6829 }
6830
6831 static inline bool interrupt_pending(struct ctlr_info *h)
6832 {
6833         return h->access.intr_pending(h);
6834 }
6835
6836 static inline long interrupt_not_for_us(struct ctlr_info *h)
6837 {
6838         return (h->access.intr_pending(h) == 0) ||
6839                 (h->interrupts_enabled == 0);
6840 }
6841
6842 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6843         u32 raw_tag)
6844 {
6845         if (unlikely(tag_index >= h->nr_cmds)) {
6846                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6847                 return 1;
6848         }
6849         return 0;
6850 }
6851
6852 static inline void finish_cmd(struct CommandList *c)
6853 {
6854         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6855         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6856                         || c->cmd_type == CMD_IOACCEL2))
6857                 complete_scsi_command(c);
6858         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6859                 complete(c->waiting);
6860 }
6861
6862 /* process completion of an indexed ("direct lookup") command */
6863 static inline void process_indexed_cmd(struct ctlr_info *h,
6864         u32 raw_tag)
6865 {
6866         u32 tag_index;
6867         struct CommandList *c;
6868
6869         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6870         if (!bad_tag(h, tag_index, raw_tag)) {
6871                 c = h->cmd_pool + tag_index;
6872                 finish_cmd(c);
6873         }
6874 }
6875
6876 /* Some controllers, like p400, will give us one interrupt
6877  * after a soft reset, even if we turned interrupts off.
6878  * Only need to check for this in the hpsa_xxx_discard_completions
6879  * functions.
6880  */
6881 static int ignore_bogus_interrupt(struct ctlr_info *h)
6882 {
6883         if (likely(!reset_devices))
6884                 return 0;
6885
6886         if (likely(h->interrupts_enabled))
6887                 return 0;
6888
6889         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6890                 "(known firmware bug.)  Ignoring.\n");
6891
6892         return 1;
6893 }
6894
6895 /*
6896  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6897  * Relies on (h-q[x] == x) being true for x such that
6898  * 0 <= x < MAX_REPLY_QUEUES.
6899  */
6900 static struct ctlr_info *queue_to_hba(u8 *queue)
6901 {
6902         return container_of((queue - *queue), struct ctlr_info, q[0]);
6903 }
6904
6905 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6906 {
6907         struct ctlr_info *h = queue_to_hba(queue);
6908         u8 q = *(u8 *) queue;
6909         u32 raw_tag;
6910
6911         if (ignore_bogus_interrupt(h))
6912                 return IRQ_NONE;
6913
6914         if (interrupt_not_for_us(h))
6915                 return IRQ_NONE;
6916         h->last_intr_timestamp = get_jiffies_64();
6917         while (interrupt_pending(h)) {
6918                 raw_tag = get_next_completion(h, q);
6919                 while (raw_tag != FIFO_EMPTY)
6920                         raw_tag = next_command(h, q);
6921         }
6922         return IRQ_HANDLED;
6923 }
6924
6925 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6926 {
6927         struct ctlr_info *h = queue_to_hba(queue);
6928         u32 raw_tag;
6929         u8 q = *(u8 *) queue;
6930
6931         if (ignore_bogus_interrupt(h))
6932                 return IRQ_NONE;
6933
6934         h->last_intr_timestamp = get_jiffies_64();
6935         raw_tag = get_next_completion(h, q);
6936         while (raw_tag != FIFO_EMPTY)
6937                 raw_tag = next_command(h, q);
6938         return IRQ_HANDLED;
6939 }
6940
6941 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6942 {
6943         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6944         u32 raw_tag;
6945         u8 q = *(u8 *) queue;
6946
6947         if (interrupt_not_for_us(h))
6948                 return IRQ_NONE;
6949         h->last_intr_timestamp = get_jiffies_64();
6950         while (interrupt_pending(h)) {
6951                 raw_tag = get_next_completion(h, q);
6952                 while (raw_tag != FIFO_EMPTY) {
6953                         process_indexed_cmd(h, raw_tag);
6954                         raw_tag = next_command(h, q);
6955                 }
6956         }
6957         return IRQ_HANDLED;
6958 }
6959
6960 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6961 {
6962         struct ctlr_info *h = queue_to_hba(queue);
6963         u32 raw_tag;
6964         u8 q = *(u8 *) queue;
6965
6966         h->last_intr_timestamp = get_jiffies_64();
6967         raw_tag = get_next_completion(h, q);
6968         while (raw_tag != FIFO_EMPTY) {
6969                 process_indexed_cmd(h, raw_tag);
6970                 raw_tag = next_command(h, q);
6971         }
6972         return IRQ_HANDLED;
6973 }
6974
6975 /* Send a message CDB to the firmware. Careful, this only works
6976  * in simple mode, not performant mode due to the tag lookup.
6977  * We only ever use this immediately after a controller reset.
6978  */
6979 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6980                         unsigned char type)
6981 {
6982         struct Command {
6983                 struct CommandListHeader CommandHeader;
6984                 struct RequestBlock Request;
6985                 struct ErrDescriptor ErrorDescriptor;
6986         };
6987         struct Command *cmd;
6988         static const size_t cmd_sz = sizeof(*cmd) +
6989                                         sizeof(cmd->ErrorDescriptor);
6990         dma_addr_t paddr64;
6991         __le32 paddr32;
6992         u32 tag;
6993         void __iomem *vaddr;
6994         int i, err;
6995
6996         vaddr = pci_ioremap_bar(pdev, 0);
6997         if (vaddr == NULL)
6998                 return -ENOMEM;
6999
7000         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7001          * CCISS commands, so they must be allocated from the lower 4GiB of
7002          * memory.
7003          */
7004         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7005         if (err) {
7006                 iounmap(vaddr);
7007                 return err;
7008         }
7009
7010         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7011         if (cmd == NULL) {
7012                 iounmap(vaddr);
7013                 return -ENOMEM;
7014         }
7015
7016         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7017          * although there's no guarantee, we assume that the address is at
7018          * least 4-byte aligned (most likely, it's page-aligned).
7019          */
7020         paddr32 = cpu_to_le32(paddr64);
7021
7022         cmd->CommandHeader.ReplyQueue = 0;
7023         cmd->CommandHeader.SGList = 0;
7024         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7025         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7026         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7027
7028         cmd->Request.CDBLen = 16;
7029         cmd->Request.type_attr_dir =
7030                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7031         cmd->Request.Timeout = 0; /* Don't time out */
7032         cmd->Request.CDB[0] = opcode;
7033         cmd->Request.CDB[1] = type;
7034         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7035         cmd->ErrorDescriptor.Addr =
7036                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7037         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7038
7039         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7040
7041         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7042                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7043                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7044                         break;
7045                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7046         }
7047
7048         iounmap(vaddr);
7049
7050         /* we leak the DMA buffer here ... no choice since the controller could
7051          *  still complete the command.
7052          */
7053         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7054                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7055                         opcode, type);
7056                 return -ETIMEDOUT;
7057         }
7058
7059         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7060
7061         if (tag & HPSA_ERROR_BIT) {
7062                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7063                         opcode, type);
7064                 return -EIO;
7065         }
7066
7067         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7068                 opcode, type);
7069         return 0;
7070 }
7071
7072 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7073
7074 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7075         void __iomem *vaddr, u32 use_doorbell)
7076 {
7077
7078         if (use_doorbell) {
7079                 /* For everything after the P600, the PCI power state method
7080                  * of resetting the controller doesn't work, so we have this
7081                  * other way using the doorbell register.
7082                  */
7083                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7084                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7085
7086                 /* PMC hardware guys tell us we need a 10 second delay after
7087                  * doorbell reset and before any attempt to talk to the board
7088                  * at all to ensure that this actually works and doesn't fall
7089                  * over in some weird corner cases.
7090                  */
7091                 msleep(10000);
7092         } else { /* Try to do it the PCI power state way */
7093
7094                 /* Quoting from the Open CISS Specification: "The Power
7095                  * Management Control/Status Register (CSR) controls the power
7096                  * state of the device.  The normal operating state is D0,
7097                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7098                  * the controller, place the interface device in D3 then to D0,
7099                  * this causes a secondary PCI reset which will reset the
7100                  * controller." */
7101
7102                 int rc = 0;
7103
7104                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7105
7106                 /* enter the D3hot power management state */
7107                 rc = pci_set_power_state(pdev, PCI_D3hot);
7108                 if (rc)
7109                         return rc;
7110
7111                 msleep(500);
7112
7113                 /* enter the D0 power management state */
7114                 rc = pci_set_power_state(pdev, PCI_D0);
7115                 if (rc)
7116                         return rc;
7117
7118                 /*
7119                  * The P600 requires a small delay when changing states.
7120                  * Otherwise we may think the board did not reset and we bail.
7121                  * This for kdump only and is particular to the P600.
7122                  */
7123                 msleep(500);
7124         }
7125         return 0;
7126 }
7127
7128 static void init_driver_version(char *driver_version, int len)
7129 {
7130         memset(driver_version, 0, len);
7131         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7132 }
7133
7134 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7135 {
7136         char *driver_version;
7137         int i, size = sizeof(cfgtable->driver_version);
7138
7139         driver_version = kmalloc(size, GFP_KERNEL);
7140         if (!driver_version)
7141                 return -ENOMEM;
7142
7143         init_driver_version(driver_version, size);
7144         for (i = 0; i < size; i++)
7145                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7146         kfree(driver_version);
7147         return 0;
7148 }
7149
7150 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7151                                           unsigned char *driver_ver)
7152 {
7153         int i;
7154
7155         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7156                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7157 }
7158
7159 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7160 {
7161
7162         char *driver_ver, *old_driver_ver;
7163         int rc, size = sizeof(cfgtable->driver_version);
7164
7165         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7166         if (!old_driver_ver)
7167                 return -ENOMEM;
7168         driver_ver = old_driver_ver + size;
7169
7170         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7171          * should have been changed, otherwise we know the reset failed.
7172          */
7173         init_driver_version(old_driver_ver, size);
7174         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7175         rc = !memcmp(driver_ver, old_driver_ver, size);
7176         kfree(old_driver_ver);
7177         return rc;
7178 }
7179 /* This does a hard reset of the controller using PCI power management
7180  * states or the using the doorbell register.
7181  */
7182 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7183 {
7184         u64 cfg_offset;
7185         u32 cfg_base_addr;
7186         u64 cfg_base_addr_index;
7187         void __iomem *vaddr;
7188         unsigned long paddr;
7189         u32 misc_fw_support;
7190         int rc;
7191         struct CfgTable __iomem *cfgtable;
7192         u32 use_doorbell;
7193         u16 command_register;
7194
7195         /* For controllers as old as the P600, this is very nearly
7196          * the same thing as
7197          *
7198          * pci_save_state(pci_dev);
7199          * pci_set_power_state(pci_dev, PCI_D3hot);
7200          * pci_set_power_state(pci_dev, PCI_D0);
7201          * pci_restore_state(pci_dev);
7202          *
7203          * For controllers newer than the P600, the pci power state
7204          * method of resetting doesn't work so we have another way
7205          * using the doorbell register.
7206          */
7207
7208         if (!ctlr_is_resettable(board_id)) {
7209                 dev_warn(&pdev->dev, "Controller not resettable\n");
7210                 return -ENODEV;
7211         }
7212
7213         /* if controller is soft- but not hard resettable... */
7214         if (!ctlr_is_hard_resettable(board_id))
7215                 return -ENOTSUPP; /* try soft reset later. */
7216
7217         /* Save the PCI command register */
7218         pci_read_config_word(pdev, 4, &command_register);
7219         pci_save_state(pdev);
7220
7221         /* find the first memory BAR, so we can find the cfg table */
7222         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7223         if (rc)
7224                 return rc;
7225         vaddr = remap_pci_mem(paddr, 0x250);
7226         if (!vaddr)
7227                 return -ENOMEM;
7228
7229         /* find cfgtable in order to check if reset via doorbell is supported */
7230         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7231                                         &cfg_base_addr_index, &cfg_offset);
7232         if (rc)
7233                 goto unmap_vaddr;
7234         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7235                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7236         if (!cfgtable) {
7237                 rc = -ENOMEM;
7238                 goto unmap_vaddr;
7239         }
7240         rc = write_driver_ver_to_cfgtable(cfgtable);
7241         if (rc)
7242                 goto unmap_cfgtable;
7243
7244         /* If reset via doorbell register is supported, use that.
7245          * There are two such methods.  Favor the newest method.
7246          */
7247         misc_fw_support = readl(&cfgtable->misc_fw_support);
7248         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7249         if (use_doorbell) {
7250                 use_doorbell = DOORBELL_CTLR_RESET2;
7251         } else {
7252                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7253                 if (use_doorbell) {
7254                         dev_warn(&pdev->dev,
7255                                 "Soft reset not supported. Firmware update is required.\n");
7256                         rc = -ENOTSUPP; /* try soft reset */
7257                         goto unmap_cfgtable;
7258                 }
7259         }
7260
7261         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7262         if (rc)
7263                 goto unmap_cfgtable;
7264
7265         pci_restore_state(pdev);
7266         pci_write_config_word(pdev, 4, command_register);
7267
7268         /* Some devices (notably the HP Smart Array 5i Controller)
7269            need a little pause here */
7270         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7271
7272         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7273         if (rc) {
7274                 dev_warn(&pdev->dev,
7275                         "Failed waiting for board to become ready after hard reset\n");
7276                 goto unmap_cfgtable;
7277         }
7278
7279         rc = controller_reset_failed(vaddr);
7280         if (rc < 0)
7281                 goto unmap_cfgtable;
7282         if (rc) {
7283                 dev_warn(&pdev->dev, "Unable to successfully reset "
7284                         "controller. Will try soft reset.\n");
7285                 rc = -ENOTSUPP;
7286         } else {
7287                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7288         }
7289
7290 unmap_cfgtable:
7291         iounmap(cfgtable);
7292
7293 unmap_vaddr:
7294         iounmap(vaddr);
7295         return rc;
7296 }
7297
7298 /*
7299  *  We cannot read the structure directly, for portability we must use
7300  *   the io functions.
7301  *   This is for debug only.
7302  */
7303 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7304 {
7305 #ifdef HPSA_DEBUG
7306         int i;
7307         char temp_name[17];
7308
7309         dev_info(dev, "Controller Configuration information\n");
7310         dev_info(dev, "------------------------------------\n");
7311         for (i = 0; i < 4; i++)
7312                 temp_name[i] = readb(&(tb->Signature[i]));
7313         temp_name[4] = '\0';
7314         dev_info(dev, "   Signature = %s\n", temp_name);
7315         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7316         dev_info(dev, "   Transport methods supported = 0x%x\n",
7317                readl(&(tb->TransportSupport)));
7318         dev_info(dev, "   Transport methods active = 0x%x\n",
7319                readl(&(tb->TransportActive)));
7320         dev_info(dev, "   Requested transport Method = 0x%x\n",
7321                readl(&(tb->HostWrite.TransportRequest)));
7322         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7323                readl(&(tb->HostWrite.CoalIntDelay)));
7324         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7325                readl(&(tb->HostWrite.CoalIntCount)));
7326         dev_info(dev, "   Max outstanding commands = %d\n",
7327                readl(&(tb->CmdsOutMax)));
7328         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7329         for (i = 0; i < 16; i++)
7330                 temp_name[i] = readb(&(tb->ServerName[i]));
7331         temp_name[16] = '\0';
7332         dev_info(dev, "   Server Name = %s\n", temp_name);
7333         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7334                 readl(&(tb->HeartBeat)));
7335 #endif                          /* HPSA_DEBUG */
7336 }
7337
7338 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7339 {
7340         int i, offset, mem_type, bar_type;
7341
7342         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7343                 return 0;
7344         offset = 0;
7345         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7346                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7347                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7348                         offset += 4;
7349                 else {
7350                         mem_type = pci_resource_flags(pdev, i) &
7351                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7352                         switch (mem_type) {
7353                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7354                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7355                                 offset += 4;    /* 32 bit */
7356                                 break;
7357                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7358                                 offset += 8;
7359                                 break;
7360                         default:        /* reserved in PCI 2.2 */
7361                                 dev_warn(&pdev->dev,
7362                                        "base address is invalid\n");
7363                                 return -1;
7364                                 break;
7365                         }
7366                 }
7367                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7368                         return i + 1;
7369         }
7370         return -1;
7371 }
7372
7373 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7374 {
7375         pci_free_irq_vectors(h->pdev);
7376         h->msix_vectors = 0;
7377 }
7378
7379 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7380  * controllers that are capable. If not, we use legacy INTx mode.
7381  */
7382 static int hpsa_interrupt_mode(struct ctlr_info *h)
7383 {
7384         unsigned int flags = PCI_IRQ_LEGACY;
7385         int ret;
7386
7387         /* Some boards advertise MSI but don't really support it */
7388         switch (h->board_id) {
7389         case 0x40700E11:
7390         case 0x40800E11:
7391         case 0x40820E11:
7392         case 0x40830E11:
7393                 break;
7394         default:
7395                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7396                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7397                 if (ret > 0) {
7398                         h->msix_vectors = ret;
7399                         return 0;
7400                 }
7401
7402                 flags |= PCI_IRQ_MSI;
7403                 break;
7404         }
7405
7406         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7407         if (ret < 0)
7408                 return ret;
7409         return 0;
7410 }
7411
7412 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7413                                 bool *legacy_board)
7414 {
7415         int i;
7416         u32 subsystem_vendor_id, subsystem_device_id;
7417
7418         subsystem_vendor_id = pdev->subsystem_vendor;
7419         subsystem_device_id = pdev->subsystem_device;
7420         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7421                     subsystem_vendor_id;
7422
7423         if (legacy_board)
7424                 *legacy_board = false;
7425         for (i = 0; i < ARRAY_SIZE(products); i++)
7426                 if (*board_id == products[i].board_id) {
7427                         if (products[i].access != &SA5A_access &&
7428                             products[i].access != &SA5B_access)
7429                                 return i;
7430                         dev_warn(&pdev->dev,
7431                                  "legacy board ID: 0x%08x\n",
7432                                  *board_id);
7433                         if (legacy_board)
7434                             *legacy_board = true;
7435                         return i;
7436                 }
7437
7438         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7439         if (legacy_board)
7440                 *legacy_board = true;
7441         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7442 }
7443
7444 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7445                                     unsigned long *memory_bar)
7446 {
7447         int i;
7448
7449         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7450                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7451                         /* addressing mode bits already removed */
7452                         *memory_bar = pci_resource_start(pdev, i);
7453                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7454                                 *memory_bar);
7455                         return 0;
7456                 }
7457         dev_warn(&pdev->dev, "no memory BAR found\n");
7458         return -ENODEV;
7459 }
7460
7461 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7462                                      int wait_for_ready)
7463 {
7464         int i, iterations;
7465         u32 scratchpad;
7466         if (wait_for_ready)
7467                 iterations = HPSA_BOARD_READY_ITERATIONS;
7468         else
7469                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7470
7471         for (i = 0; i < iterations; i++) {
7472                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7473                 if (wait_for_ready) {
7474                         if (scratchpad == HPSA_FIRMWARE_READY)
7475                                 return 0;
7476                 } else {
7477                         if (scratchpad != HPSA_FIRMWARE_READY)
7478                                 return 0;
7479                 }
7480                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7481         }
7482         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7483         return -ENODEV;
7484 }
7485
7486 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7487                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7488                                u64 *cfg_offset)
7489 {
7490         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7491         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7492         *cfg_base_addr &= (u32) 0x0000ffff;
7493         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7494         if (*cfg_base_addr_index == -1) {
7495                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7496                 return -ENODEV;
7497         }
7498         return 0;
7499 }
7500
7501 static void hpsa_free_cfgtables(struct ctlr_info *h)
7502 {
7503         if (h->transtable) {
7504                 iounmap(h->transtable);
7505                 h->transtable = NULL;
7506         }
7507         if (h->cfgtable) {
7508                 iounmap(h->cfgtable);
7509                 h->cfgtable = NULL;
7510         }
7511 }
7512
7513 /* Find and map CISS config table and transfer table
7514 + * several items must be unmapped (freed) later
7515 + * */
7516 static int hpsa_find_cfgtables(struct ctlr_info *h)
7517 {
7518         u64 cfg_offset;
7519         u32 cfg_base_addr;
7520         u64 cfg_base_addr_index;
7521         u32 trans_offset;
7522         int rc;
7523
7524         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7525                 &cfg_base_addr_index, &cfg_offset);
7526         if (rc)
7527                 return rc;
7528         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7529                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7530         if (!h->cfgtable) {
7531                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7532                 return -ENOMEM;
7533         }
7534         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7535         if (rc)
7536                 return rc;
7537         /* Find performant mode table. */
7538         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7539         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7540                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7541                                 sizeof(*h->transtable));
7542         if (!h->transtable) {
7543                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7544                 hpsa_free_cfgtables(h);
7545                 return -ENOMEM;
7546         }
7547         return 0;
7548 }
7549
7550 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7551 {
7552 #define MIN_MAX_COMMANDS 16
7553         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7554
7555         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7556
7557         /* Limit commands in memory limited kdump scenario. */
7558         if (reset_devices && h->max_commands > 32)
7559                 h->max_commands = 32;
7560
7561         if (h->max_commands < MIN_MAX_COMMANDS) {
7562                 dev_warn(&h->pdev->dev,
7563                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7564                         h->max_commands,
7565                         MIN_MAX_COMMANDS);
7566                 h->max_commands = MIN_MAX_COMMANDS;
7567         }
7568 }
7569
7570 /* If the controller reports that the total max sg entries is greater than 512,
7571  * then we know that chained SG blocks work.  (Original smart arrays did not
7572  * support chained SG blocks and would return zero for max sg entries.)
7573  */
7574 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7575 {
7576         return h->maxsgentries > 512;
7577 }
7578
7579 /* Interrogate the hardware for some limits:
7580  * max commands, max SG elements without chaining, and with chaining,
7581  * SG chain block size, etc.
7582  */
7583 static void hpsa_find_board_params(struct ctlr_info *h)
7584 {
7585         hpsa_get_max_perf_mode_cmds(h);
7586         h->nr_cmds = h->max_commands;
7587         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7588         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7589         if (hpsa_supports_chained_sg_blocks(h)) {
7590                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7591                 h->max_cmd_sg_entries = 32;
7592                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7593                 h->maxsgentries--; /* save one for chain pointer */
7594         } else {
7595                 /*
7596                  * Original smart arrays supported at most 31 s/g entries
7597                  * embedded inline in the command (trying to use more
7598                  * would lock up the controller)
7599                  */
7600                 h->max_cmd_sg_entries = 31;
7601                 h->maxsgentries = 31; /* default to traditional values */
7602                 h->chainsize = 0;
7603         }
7604
7605         /* Find out what task management functions are supported and cache */
7606         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7607         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7608                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7609         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7610                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7611         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7612                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7613 }
7614
7615 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7616 {
7617         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7618                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7619                 return false;
7620         }
7621         return true;
7622 }
7623
7624 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7625 {
7626         u32 driver_support;
7627
7628         driver_support = readl(&(h->cfgtable->driver_support));
7629         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7630 #ifdef CONFIG_X86
7631         driver_support |= ENABLE_SCSI_PREFETCH;
7632 #endif
7633         driver_support |= ENABLE_UNIT_ATTN;
7634         writel(driver_support, &(h->cfgtable->driver_support));
7635 }
7636
7637 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7638  * in a prefetch beyond physical memory.
7639  */
7640 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7641 {
7642         u32 dma_prefetch;
7643
7644         if (h->board_id != 0x3225103C)
7645                 return;
7646         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7647         dma_prefetch |= 0x8000;
7648         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7649 }
7650
7651 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7652 {
7653         int i;
7654         u32 doorbell_value;
7655         unsigned long flags;
7656         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7657         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7658                 spin_lock_irqsave(&h->lock, flags);
7659                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7660                 spin_unlock_irqrestore(&h->lock, flags);
7661                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7662                         goto done;
7663                 /* delay and try again */
7664                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7665         }
7666         return -ENODEV;
7667 done:
7668         return 0;
7669 }
7670
7671 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7672 {
7673         int i;
7674         u32 doorbell_value;
7675         unsigned long flags;
7676
7677         /* under certain very rare conditions, this can take awhile.
7678          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7679          * as we enter this code.)
7680          */
7681         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7682                 if (h->remove_in_progress)
7683                         goto done;
7684                 spin_lock_irqsave(&h->lock, flags);
7685                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7686                 spin_unlock_irqrestore(&h->lock, flags);
7687                 if (!(doorbell_value & CFGTBL_ChangeReq))
7688                         goto done;
7689                 /* delay and try again */
7690                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7691         }
7692         return -ENODEV;
7693 done:
7694         return 0;
7695 }
7696
7697 /* return -ENODEV or other reason on error, 0 on success */
7698 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7699 {
7700         u32 trans_support;
7701
7702         trans_support = readl(&(h->cfgtable->TransportSupport));
7703         if (!(trans_support & SIMPLE_MODE))
7704                 return -ENOTSUPP;
7705
7706         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7707
7708         /* Update the field, and then ring the doorbell */
7709         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7710         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7711         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7712         if (hpsa_wait_for_mode_change_ack(h))
7713                 goto error;
7714         print_cfg_table(&h->pdev->dev, h->cfgtable);
7715         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7716                 goto error;
7717         h->transMethod = CFGTBL_Trans_Simple;
7718         return 0;
7719 error:
7720         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7721         return -ENODEV;
7722 }
7723
7724 /* free items allocated or mapped by hpsa_pci_init */
7725 static void hpsa_free_pci_init(struct ctlr_info *h)
7726 {
7727         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7728         iounmap(h->vaddr);                      /* pci_init 3 */
7729         h->vaddr = NULL;
7730         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7731         /*
7732          * call pci_disable_device before pci_release_regions per
7733          * Documentation/PCI/pci.txt
7734          */
7735         pci_disable_device(h->pdev);            /* pci_init 1 */
7736         pci_release_regions(h->pdev);           /* pci_init 2 */
7737 }
7738
7739 /* several items must be freed later */
7740 static int hpsa_pci_init(struct ctlr_info *h)
7741 {
7742         int prod_index, err;
7743         bool legacy_board;
7744
7745         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7746         if (prod_index < 0)
7747                 return prod_index;
7748         h->product_name = products[prod_index].product_name;
7749         h->access = *(products[prod_index].access);
7750         h->legacy_board = legacy_board;
7751         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7752                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7753
7754         err = pci_enable_device(h->pdev);
7755         if (err) {
7756                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7757                 pci_disable_device(h->pdev);
7758                 return err;
7759         }
7760
7761         err = pci_request_regions(h->pdev, HPSA);
7762         if (err) {
7763                 dev_err(&h->pdev->dev,
7764                         "failed to obtain PCI resources\n");
7765                 pci_disable_device(h->pdev);
7766                 return err;
7767         }
7768
7769         pci_set_master(h->pdev);
7770
7771         err = hpsa_interrupt_mode(h);
7772         if (err)
7773                 goto clean1;
7774         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7775         if (err)
7776                 goto clean2;    /* intmode+region, pci */
7777         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7778         if (!h->vaddr) {
7779                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7780                 err = -ENOMEM;
7781                 goto clean2;    /* intmode+region, pci */
7782         }
7783         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7784         if (err)
7785                 goto clean3;    /* vaddr, intmode+region, pci */
7786         err = hpsa_find_cfgtables(h);
7787         if (err)
7788                 goto clean3;    /* vaddr, intmode+region, pci */
7789         hpsa_find_board_params(h);
7790
7791         if (!hpsa_CISS_signature_present(h)) {
7792                 err = -ENODEV;
7793                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7794         }
7795         hpsa_set_driver_support_bits(h);
7796         hpsa_p600_dma_prefetch_quirk(h);
7797         err = hpsa_enter_simple_mode(h);
7798         if (err)
7799                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7800         return 0;
7801
7802 clean4: /* cfgtables, vaddr, intmode+region, pci */
7803         hpsa_free_cfgtables(h);
7804 clean3: /* vaddr, intmode+region, pci */
7805         iounmap(h->vaddr);
7806         h->vaddr = NULL;
7807 clean2: /* intmode+region, pci */
7808         hpsa_disable_interrupt_mode(h);
7809 clean1:
7810         /*
7811          * call pci_disable_device before pci_release_regions per
7812          * Documentation/PCI/pci.txt
7813          */
7814         pci_disable_device(h->pdev);
7815         pci_release_regions(h->pdev);
7816         return err;
7817 }
7818
7819 static void hpsa_hba_inquiry(struct ctlr_info *h)
7820 {
7821         int rc;
7822
7823 #define HBA_INQUIRY_BYTE_COUNT 64
7824         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7825         if (!h->hba_inquiry_data)
7826                 return;
7827         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7828                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7829         if (rc != 0) {
7830                 kfree(h->hba_inquiry_data);
7831                 h->hba_inquiry_data = NULL;
7832         }
7833 }
7834
7835 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7836 {
7837         int rc, i;
7838         void __iomem *vaddr;
7839
7840         if (!reset_devices)
7841                 return 0;
7842
7843         /* kdump kernel is loading, we don't know in which state is
7844          * the pci interface. The dev->enable_cnt is equal zero
7845          * so we call enable+disable, wait a while and switch it on.
7846          */
7847         rc = pci_enable_device(pdev);
7848         if (rc) {
7849                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7850                 return -ENODEV;
7851         }
7852         pci_disable_device(pdev);
7853         msleep(260);                    /* a randomly chosen number */
7854         rc = pci_enable_device(pdev);
7855         if (rc) {
7856                 dev_warn(&pdev->dev, "failed to enable device.\n");
7857                 return -ENODEV;
7858         }
7859
7860         pci_set_master(pdev);
7861
7862         vaddr = pci_ioremap_bar(pdev, 0);
7863         if (vaddr == NULL) {
7864                 rc = -ENOMEM;
7865                 goto out_disable;
7866         }
7867         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7868         iounmap(vaddr);
7869
7870         /* Reset the controller with a PCI power-cycle or via doorbell */
7871         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7872
7873         /* -ENOTSUPP here means we cannot reset the controller
7874          * but it's already (and still) up and running in
7875          * "performant mode".  Or, it might be 640x, which can't reset
7876          * due to concerns about shared bbwc between 6402/6404 pair.
7877          */
7878         if (rc)
7879                 goto out_disable;
7880
7881         /* Now try to get the controller to respond to a no-op */
7882         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7883         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7884                 if (hpsa_noop(pdev) == 0)
7885                         break;
7886                 else
7887                         dev_warn(&pdev->dev, "no-op failed%s\n",
7888                                         (i < 11 ? "; re-trying" : ""));
7889         }
7890
7891 out_disable:
7892
7893         pci_disable_device(pdev);
7894         return rc;
7895 }
7896
7897 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7898 {
7899         kfree(h->cmd_pool_bits);
7900         h->cmd_pool_bits = NULL;
7901         if (h->cmd_pool) {
7902                 pci_free_consistent(h->pdev,
7903                                 h->nr_cmds * sizeof(struct CommandList),
7904                                 h->cmd_pool,
7905                                 h->cmd_pool_dhandle);
7906                 h->cmd_pool = NULL;
7907                 h->cmd_pool_dhandle = 0;
7908         }
7909         if (h->errinfo_pool) {
7910                 pci_free_consistent(h->pdev,
7911                                 h->nr_cmds * sizeof(struct ErrorInfo),
7912                                 h->errinfo_pool,
7913                                 h->errinfo_pool_dhandle);
7914                 h->errinfo_pool = NULL;
7915                 h->errinfo_pool_dhandle = 0;
7916         }
7917 }
7918
7919 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7920 {
7921         h->cmd_pool_bits = kzalloc(
7922                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7923                 sizeof(unsigned long), GFP_KERNEL);
7924         h->cmd_pool = pci_alloc_consistent(h->pdev,
7925                     h->nr_cmds * sizeof(*h->cmd_pool),
7926                     &(h->cmd_pool_dhandle));
7927         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7928                     h->nr_cmds * sizeof(*h->errinfo_pool),
7929                     &(h->errinfo_pool_dhandle));
7930         if ((h->cmd_pool_bits == NULL)
7931             || (h->cmd_pool == NULL)
7932             || (h->errinfo_pool == NULL)) {
7933                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7934                 goto clean_up;
7935         }
7936         hpsa_preinitialize_commands(h);
7937         return 0;
7938 clean_up:
7939         hpsa_free_cmd_pool(h);
7940         return -ENOMEM;
7941 }
7942
7943 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7944 static void hpsa_free_irqs(struct ctlr_info *h)
7945 {
7946         int i;
7947
7948         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7949                 /* Single reply queue, only one irq to free */
7950                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7951                 h->q[h->intr_mode] = 0;
7952                 return;
7953         }
7954
7955         for (i = 0; i < h->msix_vectors; i++) {
7956                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7957                 h->q[i] = 0;
7958         }
7959         for (; i < MAX_REPLY_QUEUES; i++)
7960                 h->q[i] = 0;
7961 }
7962
7963 /* returns 0 on success; cleans up and returns -Enn on error */
7964 static int hpsa_request_irqs(struct ctlr_info *h,
7965         irqreturn_t (*msixhandler)(int, void *),
7966         irqreturn_t (*intxhandler)(int, void *))
7967 {
7968         int rc, i;
7969
7970         /*
7971          * initialize h->q[x] = x so that interrupt handlers know which
7972          * queue to process.
7973          */
7974         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7975                 h->q[i] = (u8) i;
7976
7977         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7978                 /* If performant mode and MSI-X, use multiple reply queues */
7979                 for (i = 0; i < h->msix_vectors; i++) {
7980                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7981                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7982                                         0, h->intrname[i],
7983                                         &h->q[i]);
7984                         if (rc) {
7985                                 int j;
7986
7987                                 dev_err(&h->pdev->dev,
7988                                         "failed to get irq %d for %s\n",
7989                                        pci_irq_vector(h->pdev, i), h->devname);
7990                                 for (j = 0; j < i; j++) {
7991                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
7992                                         h->q[j] = 0;
7993                                 }
7994                                 for (; j < MAX_REPLY_QUEUES; j++)
7995                                         h->q[j] = 0;
7996                                 return rc;
7997                         }
7998                 }
7999         } else {
8000                 /* Use single reply pool */
8001                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8002                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8003                                 h->msix_vectors ? "x" : "");
8004                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8005                                 msixhandler, 0,
8006                                 h->intrname[0],
8007                                 &h->q[h->intr_mode]);
8008                 } else {
8009                         sprintf(h->intrname[h->intr_mode],
8010                                 "%s-intx", h->devname);
8011                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8012                                 intxhandler, IRQF_SHARED,
8013                                 h->intrname[0],
8014                                 &h->q[h->intr_mode]);
8015                 }
8016         }
8017         if (rc) {
8018                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8019                        pci_irq_vector(h->pdev, 0), h->devname);
8020                 hpsa_free_irqs(h);
8021                 return -ENODEV;
8022         }
8023         return 0;
8024 }
8025
8026 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8027 {
8028         int rc;
8029         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8030
8031         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8032         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8033         if (rc) {
8034                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8035                 return rc;
8036         }
8037
8038         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8039         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8040         if (rc) {
8041                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8042                         "after soft reset.\n");
8043                 return rc;
8044         }
8045
8046         return 0;
8047 }
8048
8049 static void hpsa_free_reply_queues(struct ctlr_info *h)
8050 {
8051         int i;
8052
8053         for (i = 0; i < h->nreply_queues; i++) {
8054                 if (!h->reply_queue[i].head)
8055                         continue;
8056                 pci_free_consistent(h->pdev,
8057                                         h->reply_queue_size,
8058                                         h->reply_queue[i].head,
8059                                         h->reply_queue[i].busaddr);
8060                 h->reply_queue[i].head = NULL;
8061                 h->reply_queue[i].busaddr = 0;
8062         }
8063         h->reply_queue_size = 0;
8064 }
8065
8066 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8067 {
8068         hpsa_free_performant_mode(h);           /* init_one 7 */
8069         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8070         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8071         hpsa_free_irqs(h);                      /* init_one 4 */
8072         scsi_host_put(h->scsi_host);            /* init_one 3 */
8073         h->scsi_host = NULL;                    /* init_one 3 */
8074         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8075         free_percpu(h->lockup_detected);        /* init_one 2 */
8076         h->lockup_detected = NULL;              /* init_one 2 */
8077         if (h->resubmit_wq) {
8078                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8079                 h->resubmit_wq = NULL;
8080         }
8081         if (h->rescan_ctlr_wq) {
8082                 destroy_workqueue(h->rescan_ctlr_wq);
8083                 h->rescan_ctlr_wq = NULL;
8084         }
8085         kfree(h);                               /* init_one 1 */
8086 }
8087
8088 /* Called when controller lockup detected. */
8089 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8090 {
8091         int i, refcount;
8092         struct CommandList *c;
8093         int failcount = 0;
8094
8095         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8096         for (i = 0; i < h->nr_cmds; i++) {
8097                 c = h->cmd_pool + i;
8098                 refcount = atomic_inc_return(&c->refcount);
8099                 if (refcount > 1) {
8100                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8101                         finish_cmd(c);
8102                         atomic_dec(&h->commands_outstanding);
8103                         failcount++;
8104                 }
8105                 cmd_free(h, c);
8106         }
8107         dev_warn(&h->pdev->dev,
8108                 "failed %d commands in fail_all\n", failcount);
8109 }
8110
8111 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8112 {
8113         int cpu;
8114
8115         for_each_online_cpu(cpu) {
8116                 u32 *lockup_detected;
8117                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8118                 *lockup_detected = value;
8119         }
8120         wmb(); /* be sure the per-cpu variables are out to memory */
8121 }
8122
8123 static void controller_lockup_detected(struct ctlr_info *h)
8124 {
8125         unsigned long flags;
8126         u32 lockup_detected;
8127
8128         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8129         spin_lock_irqsave(&h->lock, flags);
8130         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8131         if (!lockup_detected) {
8132                 /* no heartbeat, but controller gave us a zero. */
8133                 dev_warn(&h->pdev->dev,
8134                         "lockup detected after %d but scratchpad register is zero\n",
8135                         h->heartbeat_sample_interval / HZ);
8136                 lockup_detected = 0xffffffff;
8137         }
8138         set_lockup_detected_for_all_cpus(h, lockup_detected);
8139         spin_unlock_irqrestore(&h->lock, flags);
8140         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8141                         lockup_detected, h->heartbeat_sample_interval / HZ);
8142         if (lockup_detected == 0xffff0000) {
8143                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8144                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8145         }
8146         pci_disable_device(h->pdev);
8147         fail_all_outstanding_cmds(h);
8148 }
8149
8150 static int detect_controller_lockup(struct ctlr_info *h)
8151 {
8152         u64 now;
8153         u32 heartbeat;
8154         unsigned long flags;
8155
8156         now = get_jiffies_64();
8157         /* If we've received an interrupt recently, we're ok. */
8158         if (time_after64(h->last_intr_timestamp +
8159                                 (h->heartbeat_sample_interval), now))
8160                 return false;
8161
8162         /*
8163          * If we've already checked the heartbeat recently, we're ok.
8164          * This could happen if someone sends us a signal. We
8165          * otherwise don't care about signals in this thread.
8166          */
8167         if (time_after64(h->last_heartbeat_timestamp +
8168                                 (h->heartbeat_sample_interval), now))
8169                 return false;
8170
8171         /* If heartbeat has not changed since we last looked, we're not ok. */
8172         spin_lock_irqsave(&h->lock, flags);
8173         heartbeat = readl(&h->cfgtable->HeartBeat);
8174         spin_unlock_irqrestore(&h->lock, flags);
8175         if (h->last_heartbeat == heartbeat) {
8176                 controller_lockup_detected(h);
8177                 return true;
8178         }
8179
8180         /* We're ok. */
8181         h->last_heartbeat = heartbeat;
8182         h->last_heartbeat_timestamp = now;
8183         return false;
8184 }
8185
8186 /*
8187  * Set ioaccel status for all ioaccel volumes.
8188  *
8189  * Called from monitor controller worker (hpsa_event_monitor_worker)
8190  *
8191  * A Volume (or Volumes that comprise an Array set may be undergoing a
8192  * transformation, so we will be turning off ioaccel for all volumes that
8193  * make up the Array.
8194  */
8195 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8196 {
8197         int rc;
8198         int i;
8199         u8 ioaccel_status;
8200         unsigned char *buf;
8201         struct hpsa_scsi_dev_t *device;
8202
8203         if (!h)
8204                 return;
8205
8206         buf = kmalloc(64, GFP_KERNEL);
8207         if (!buf)
8208                 return;
8209
8210         /*
8211          * Run through current device list used during I/O requests.
8212          */
8213         for (i = 0; i < h->ndevices; i++) {
8214                 device = h->dev[i];
8215
8216                 if (!device)
8217                         continue;
8218                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8219                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8220                         continue;
8221
8222                 memset(buf, 0, 64);
8223
8224                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8225                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8226                                         buf, 64);
8227                 if (rc != 0)
8228                         continue;
8229
8230                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8231                 device->offload_config =
8232                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8233                 if (device->offload_config)
8234                         device->offload_to_be_enabled =
8235                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8236
8237                 /*
8238                  * Immediately turn off ioaccel for any volume the
8239                  * controller tells us to. Some of the reasons could be:
8240                  *    transformation - change to the LVs of an Array.
8241                  *    degraded volume - component failure
8242                  *
8243                  * If ioaccel is to be re-enabled, re-enable later during the
8244                  * scan operation so the driver can get a fresh raidmap
8245                  * before turning ioaccel back on.
8246                  *
8247                  */
8248                 if (!device->offload_to_be_enabled)
8249                         device->offload_enabled = 0;
8250         }
8251
8252         kfree(buf);
8253 }
8254
8255 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8256 {
8257         char *event_type;
8258
8259         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8260                 return;
8261
8262         /* Ask the controller to clear the events we're handling. */
8263         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8264                         | CFGTBL_Trans_io_accel2)) &&
8265                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8266                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8267
8268                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8269                         event_type = "state change";
8270                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8271                         event_type = "configuration change";
8272                 /* Stop sending new RAID offload reqs via the IO accelerator */
8273                 scsi_block_requests(h->scsi_host);
8274                 hpsa_set_ioaccel_status(h);
8275                 hpsa_drain_accel_commands(h);
8276                 /* Set 'accelerator path config change' bit */
8277                 dev_warn(&h->pdev->dev,
8278                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8279                         h->events, event_type);
8280                 writel(h->events, &(h->cfgtable->clear_event_notify));
8281                 /* Set the "clear event notify field update" bit 6 */
8282                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8283                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8284                 hpsa_wait_for_clear_event_notify_ack(h);
8285                 scsi_unblock_requests(h->scsi_host);
8286         } else {
8287                 /* Acknowledge controller notification events. */
8288                 writel(h->events, &(h->cfgtable->clear_event_notify));
8289                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8290                 hpsa_wait_for_clear_event_notify_ack(h);
8291         }
8292         return;
8293 }
8294
8295 /* Check a register on the controller to see if there are configuration
8296  * changes (added/changed/removed logical drives, etc.) which mean that
8297  * we should rescan the controller for devices.
8298  * Also check flag for driver-initiated rescan.
8299  */
8300 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8301 {
8302         if (h->drv_req_rescan) {
8303                 h->drv_req_rescan = 0;
8304                 return 1;
8305         }
8306
8307         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8308                 return 0;
8309
8310         h->events = readl(&(h->cfgtable->event_notify));
8311         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8312 }
8313
8314 /*
8315  * Check if any of the offline devices have become ready
8316  */
8317 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8318 {
8319         unsigned long flags;
8320         struct offline_device_entry *d;
8321         struct list_head *this, *tmp;
8322
8323         spin_lock_irqsave(&h->offline_device_lock, flags);
8324         list_for_each_safe(this, tmp, &h->offline_device_list) {
8325                 d = list_entry(this, struct offline_device_entry,
8326                                 offline_list);
8327                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8328                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8329                         spin_lock_irqsave(&h->offline_device_lock, flags);
8330                         list_del(&d->offline_list);
8331                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8332                         return 1;
8333                 }
8334                 spin_lock_irqsave(&h->offline_device_lock, flags);
8335         }
8336         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8337         return 0;
8338 }
8339
8340 static int hpsa_luns_changed(struct ctlr_info *h)
8341 {
8342         int rc = 1; /* assume there are changes */
8343         struct ReportLUNdata *logdev = NULL;
8344
8345         /* if we can't find out if lun data has changed,
8346          * assume that it has.
8347          */
8348
8349         if (!h->lastlogicals)
8350                 return rc;
8351
8352         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8353         if (!logdev)
8354                 return rc;
8355
8356         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8357                 dev_warn(&h->pdev->dev,
8358                         "report luns failed, can't track lun changes.\n");
8359                 goto out;
8360         }
8361         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8362                 dev_info(&h->pdev->dev,
8363                         "Lun changes detected.\n");
8364                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8365                 goto out;
8366         } else
8367                 rc = 0; /* no changes detected. */
8368 out:
8369         kfree(logdev);
8370         return rc;
8371 }
8372
8373 static void hpsa_perform_rescan(struct ctlr_info *h)
8374 {
8375         struct Scsi_Host *sh = NULL;
8376         unsigned long flags;
8377
8378         /*
8379          * Do the scan after the reset
8380          */
8381         spin_lock_irqsave(&h->reset_lock, flags);
8382         if (h->reset_in_progress) {
8383                 h->drv_req_rescan = 1;
8384                 spin_unlock_irqrestore(&h->reset_lock, flags);
8385                 return;
8386         }
8387         spin_unlock_irqrestore(&h->reset_lock, flags);
8388
8389         sh = scsi_host_get(h->scsi_host);
8390         if (sh != NULL) {
8391                 hpsa_scan_start(sh);
8392                 scsi_host_put(sh);
8393                 h->drv_req_rescan = 0;
8394         }
8395 }
8396
8397 /*
8398  * watch for controller events
8399  */
8400 static void hpsa_event_monitor_worker(struct work_struct *work)
8401 {
8402         struct ctlr_info *h = container_of(to_delayed_work(work),
8403                                         struct ctlr_info, event_monitor_work);
8404         unsigned long flags;
8405
8406         spin_lock_irqsave(&h->lock, flags);
8407         if (h->remove_in_progress) {
8408                 spin_unlock_irqrestore(&h->lock, flags);
8409                 return;
8410         }
8411         spin_unlock_irqrestore(&h->lock, flags);
8412
8413         if (hpsa_ctlr_needs_rescan(h)) {
8414                 hpsa_ack_ctlr_events(h);
8415                 hpsa_perform_rescan(h);
8416         }
8417
8418         spin_lock_irqsave(&h->lock, flags);
8419         if (!h->remove_in_progress)
8420                 schedule_delayed_work(&h->event_monitor_work,
8421                                         HPSA_EVENT_MONITOR_INTERVAL);
8422         spin_unlock_irqrestore(&h->lock, flags);
8423 }
8424
8425 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8426 {
8427         unsigned long flags;
8428         struct ctlr_info *h = container_of(to_delayed_work(work),
8429                                         struct ctlr_info, rescan_ctlr_work);
8430
8431         spin_lock_irqsave(&h->lock, flags);
8432         if (h->remove_in_progress) {
8433                 spin_unlock_irqrestore(&h->lock, flags);
8434                 return;
8435         }
8436         spin_unlock_irqrestore(&h->lock, flags);
8437
8438         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8439                 hpsa_perform_rescan(h);
8440         } else if (h->discovery_polling) {
8441                 if (hpsa_luns_changed(h)) {
8442                         dev_info(&h->pdev->dev,
8443                                 "driver discovery polling rescan.\n");
8444                         hpsa_perform_rescan(h);
8445                 }
8446         }
8447         spin_lock_irqsave(&h->lock, flags);
8448         if (!h->remove_in_progress)
8449                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8450                                 h->heartbeat_sample_interval);
8451         spin_unlock_irqrestore(&h->lock, flags);
8452 }
8453
8454 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8455 {
8456         unsigned long flags;
8457         struct ctlr_info *h = container_of(to_delayed_work(work),
8458                                         struct ctlr_info, monitor_ctlr_work);
8459
8460         detect_controller_lockup(h);
8461         if (lockup_detected(h))
8462                 return;
8463
8464         spin_lock_irqsave(&h->lock, flags);
8465         if (!h->remove_in_progress)
8466                 schedule_delayed_work(&h->monitor_ctlr_work,
8467                                 h->heartbeat_sample_interval);
8468         spin_unlock_irqrestore(&h->lock, flags);
8469 }
8470
8471 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8472                                                 char *name)
8473 {
8474         struct workqueue_struct *wq = NULL;
8475
8476         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8477         if (!wq)
8478                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8479
8480         return wq;
8481 }
8482
8483 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8484 {
8485         int dac, rc;
8486         struct ctlr_info *h;
8487         int try_soft_reset = 0;
8488         unsigned long flags;
8489         u32 board_id;
8490
8491         if (number_of_controllers == 0)
8492                 printk(KERN_INFO DRIVER_NAME "\n");
8493
8494         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8495         if (rc < 0) {
8496                 dev_warn(&pdev->dev, "Board ID not found\n");
8497                 return rc;
8498         }
8499
8500         rc = hpsa_init_reset_devices(pdev, board_id);
8501         if (rc) {
8502                 if (rc != -ENOTSUPP)
8503                         return rc;
8504                 /* If the reset fails in a particular way (it has no way to do
8505                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8506                  * a soft reset once we get the controller configured up to the
8507                  * point that it can accept a command.
8508                  */
8509                 try_soft_reset = 1;
8510                 rc = 0;
8511         }
8512
8513 reinit_after_soft_reset:
8514
8515         /* Command structures must be aligned on a 32-byte boundary because
8516          * the 5 lower bits of the address are used by the hardware. and by
8517          * the driver.  See comments in hpsa.h for more info.
8518          */
8519         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8520         h = kzalloc(sizeof(*h), GFP_KERNEL);
8521         if (!h) {
8522                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8523                 return -ENOMEM;
8524         }
8525
8526         h->pdev = pdev;
8527
8528         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8529         INIT_LIST_HEAD(&h->offline_device_list);
8530         spin_lock_init(&h->lock);
8531         spin_lock_init(&h->offline_device_lock);
8532         spin_lock_init(&h->scan_lock);
8533         spin_lock_init(&h->reset_lock);
8534         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8535
8536         /* Allocate and clear per-cpu variable lockup_detected */
8537         h->lockup_detected = alloc_percpu(u32);
8538         if (!h->lockup_detected) {
8539                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8540                 rc = -ENOMEM;
8541                 goto clean1;    /* aer/h */
8542         }
8543         set_lockup_detected_for_all_cpus(h, 0);
8544
8545         rc = hpsa_pci_init(h);
8546         if (rc)
8547                 goto clean2;    /* lu, aer/h */
8548
8549         /* relies on h-> settings made by hpsa_pci_init, including
8550          * interrupt_mode h->intr */
8551         rc = hpsa_scsi_host_alloc(h);
8552         if (rc)
8553                 goto clean2_5;  /* pci, lu, aer/h */
8554
8555         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8556         h->ctlr = number_of_controllers;
8557         number_of_controllers++;
8558
8559         /* configure PCI DMA stuff */
8560         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8561         if (rc == 0) {
8562                 dac = 1;
8563         } else {
8564                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8565                 if (rc == 0) {
8566                         dac = 0;
8567                 } else {
8568                         dev_err(&pdev->dev, "no suitable DMA available\n");
8569                         goto clean3;    /* shost, pci, lu, aer/h */
8570                 }
8571         }
8572
8573         /* make sure the board interrupts are off */
8574         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8575
8576         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8577         if (rc)
8578                 goto clean3;    /* shost, pci, lu, aer/h */
8579         rc = hpsa_alloc_cmd_pool(h);
8580         if (rc)
8581                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8582         rc = hpsa_alloc_sg_chain_blocks(h);
8583         if (rc)
8584                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8585         init_waitqueue_head(&h->scan_wait_queue);
8586         init_waitqueue_head(&h->event_sync_wait_queue);
8587         mutex_init(&h->reset_mutex);
8588         h->scan_finished = 1; /* no scan currently in progress */
8589         h->scan_waiting = 0;
8590
8591         pci_set_drvdata(pdev, h);
8592         h->ndevices = 0;
8593
8594         spin_lock_init(&h->devlock);
8595         rc = hpsa_put_ctlr_into_performant_mode(h);
8596         if (rc)
8597                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8598
8599         /* create the resubmit workqueue */
8600         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8601         if (!h->rescan_ctlr_wq) {
8602                 rc = -ENOMEM;
8603                 goto clean7;
8604         }
8605
8606         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8607         if (!h->resubmit_wq) {
8608                 rc = -ENOMEM;
8609                 goto clean7;    /* aer/h */
8610         }
8611
8612         /*
8613          * At this point, the controller is ready to take commands.
8614          * Now, if reset_devices and the hard reset didn't work, try
8615          * the soft reset and see if that works.
8616          */
8617         if (try_soft_reset) {
8618
8619                 /* This is kind of gross.  We may or may not get a completion
8620                  * from the soft reset command, and if we do, then the value
8621                  * from the fifo may or may not be valid.  So, we wait 10 secs
8622                  * after the reset throwing away any completions we get during
8623                  * that time.  Unregister the interrupt handler and register
8624                  * fake ones to scoop up any residual completions.
8625                  */
8626                 spin_lock_irqsave(&h->lock, flags);
8627                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8628                 spin_unlock_irqrestore(&h->lock, flags);
8629                 hpsa_free_irqs(h);
8630                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8631                                         hpsa_intx_discard_completions);
8632                 if (rc) {
8633                         dev_warn(&h->pdev->dev,
8634                                 "Failed to request_irq after soft reset.\n");
8635                         /*
8636                          * cannot goto clean7 or free_irqs will be called
8637                          * again. Instead, do its work
8638                          */
8639                         hpsa_free_performant_mode(h);   /* clean7 */
8640                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8641                         hpsa_free_cmd_pool(h);          /* clean5 */
8642                         /*
8643                          * skip hpsa_free_irqs(h) clean4 since that
8644                          * was just called before request_irqs failed
8645                          */
8646                         goto clean3;
8647                 }
8648
8649                 rc = hpsa_kdump_soft_reset(h);
8650                 if (rc)
8651                         /* Neither hard nor soft reset worked, we're hosed. */
8652                         goto clean7;
8653
8654                 dev_info(&h->pdev->dev, "Board READY.\n");
8655                 dev_info(&h->pdev->dev,
8656                         "Waiting for stale completions to drain.\n");
8657                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8658                 msleep(10000);
8659                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8660
8661                 rc = controller_reset_failed(h->cfgtable);
8662                 if (rc)
8663                         dev_info(&h->pdev->dev,
8664                                 "Soft reset appears to have failed.\n");
8665
8666                 /* since the controller's reset, we have to go back and re-init
8667                  * everything.  Easiest to just forget what we've done and do it
8668                  * all over again.
8669                  */
8670                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8671                 try_soft_reset = 0;
8672                 if (rc)
8673                         /* don't goto clean, we already unallocated */
8674                         return -ENODEV;
8675
8676                 goto reinit_after_soft_reset;
8677         }
8678
8679         /* Enable Accelerated IO path at driver layer */
8680         h->acciopath_status = 1;
8681         /* Disable discovery polling.*/
8682         h->discovery_polling = 0;
8683
8684
8685         /* Turn the interrupts on so we can service requests */
8686         h->access.set_intr_mask(h, HPSA_INTR_ON);
8687
8688         hpsa_hba_inquiry(h);
8689
8690         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8691         if (!h->lastlogicals)
8692                 dev_info(&h->pdev->dev,
8693                         "Can't track change to report lun data\n");
8694
8695         /* hook into SCSI subsystem */
8696         rc = hpsa_scsi_add_host(h);
8697         if (rc)
8698                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8699
8700         /* Monitor the controller for firmware lockups */
8701         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8702         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8703         schedule_delayed_work(&h->monitor_ctlr_work,
8704                                 h->heartbeat_sample_interval);
8705         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8706         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8707                                 h->heartbeat_sample_interval);
8708         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8709         schedule_delayed_work(&h->event_monitor_work,
8710                                 HPSA_EVENT_MONITOR_INTERVAL);
8711         return 0;
8712
8713 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8714         hpsa_free_performant_mode(h);
8715         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8716 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8717         hpsa_free_sg_chain_blocks(h);
8718 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8719         hpsa_free_cmd_pool(h);
8720 clean4: /* irq, shost, pci, lu, aer/h */
8721         hpsa_free_irqs(h);
8722 clean3: /* shost, pci, lu, aer/h */
8723         scsi_host_put(h->scsi_host);
8724         h->scsi_host = NULL;
8725 clean2_5: /* pci, lu, aer/h */
8726         hpsa_free_pci_init(h);
8727 clean2: /* lu, aer/h */
8728         if (h->lockup_detected) {
8729                 free_percpu(h->lockup_detected);
8730                 h->lockup_detected = NULL;
8731         }
8732 clean1: /* wq/aer/h */
8733         if (h->resubmit_wq) {
8734                 destroy_workqueue(h->resubmit_wq);
8735                 h->resubmit_wq = NULL;
8736         }
8737         if (h->rescan_ctlr_wq) {
8738                 destroy_workqueue(h->rescan_ctlr_wq);
8739                 h->rescan_ctlr_wq = NULL;
8740         }
8741         kfree(h);
8742         return rc;
8743 }
8744
8745 static void hpsa_flush_cache(struct ctlr_info *h)
8746 {
8747         char *flush_buf;
8748         struct CommandList *c;
8749         int rc;
8750
8751         if (unlikely(lockup_detected(h)))
8752                 return;
8753         flush_buf = kzalloc(4, GFP_KERNEL);
8754         if (!flush_buf)
8755                 return;
8756
8757         c = cmd_alloc(h);
8758
8759         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8760                 RAID_CTLR_LUNID, TYPE_CMD)) {
8761                 goto out;
8762         }
8763         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8764                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8765         if (rc)
8766                 goto out;
8767         if (c->err_info->CommandStatus != 0)
8768 out:
8769                 dev_warn(&h->pdev->dev,
8770                         "error flushing cache on controller\n");
8771         cmd_free(h, c);
8772         kfree(flush_buf);
8773 }
8774
8775 /* Make controller gather fresh report lun data each time we
8776  * send down a report luns request
8777  */
8778 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8779 {
8780         u32 *options;
8781         struct CommandList *c;
8782         int rc;
8783
8784         /* Don't bother trying to set diag options if locked up */
8785         if (unlikely(h->lockup_detected))
8786                 return;
8787
8788         options = kzalloc(sizeof(*options), GFP_KERNEL);
8789         if (!options)
8790                 return;
8791
8792         c = cmd_alloc(h);
8793
8794         /* first, get the current diag options settings */
8795         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8796                 RAID_CTLR_LUNID, TYPE_CMD))
8797                 goto errout;
8798
8799         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8800                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8801         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8802                 goto errout;
8803
8804         /* Now, set the bit for disabling the RLD caching */
8805         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8806
8807         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8808                 RAID_CTLR_LUNID, TYPE_CMD))
8809                 goto errout;
8810
8811         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8812                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8813         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8814                 goto errout;
8815
8816         /* Now verify that it got set: */
8817         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8818                 RAID_CTLR_LUNID, TYPE_CMD))
8819                 goto errout;
8820
8821         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8822                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8823         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8824                 goto errout;
8825
8826         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8827                 goto out;
8828
8829 errout:
8830         dev_err(&h->pdev->dev,
8831                         "Error: failed to disable report lun data caching.\n");
8832 out:
8833         cmd_free(h, c);
8834         kfree(options);
8835 }
8836
8837 static void hpsa_shutdown(struct pci_dev *pdev)
8838 {
8839         struct ctlr_info *h;
8840
8841         h = pci_get_drvdata(pdev);
8842         /* Turn board interrupts off  and send the flush cache command
8843          * sendcmd will turn off interrupt, and send the flush...
8844          * To write all data in the battery backed cache to disks
8845          */
8846         hpsa_flush_cache(h);
8847         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8848         hpsa_free_irqs(h);                      /* init_one 4 */
8849         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8850 }
8851
8852 static void hpsa_free_device_info(struct ctlr_info *h)
8853 {
8854         int i;
8855
8856         for (i = 0; i < h->ndevices; i++) {
8857                 kfree(h->dev[i]);
8858                 h->dev[i] = NULL;
8859         }
8860 }
8861
8862 static void hpsa_remove_one(struct pci_dev *pdev)
8863 {
8864         struct ctlr_info *h;
8865         unsigned long flags;
8866
8867         if (pci_get_drvdata(pdev) == NULL) {
8868                 dev_err(&pdev->dev, "unable to remove device\n");
8869                 return;
8870         }
8871         h = pci_get_drvdata(pdev);
8872
8873         /* Get rid of any controller monitoring work items */
8874         spin_lock_irqsave(&h->lock, flags);
8875         h->remove_in_progress = 1;
8876         spin_unlock_irqrestore(&h->lock, flags);
8877         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8878         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8879         cancel_delayed_work_sync(&h->event_monitor_work);
8880         destroy_workqueue(h->rescan_ctlr_wq);
8881         destroy_workqueue(h->resubmit_wq);
8882
8883         hpsa_delete_sas_host(h);
8884
8885         /*
8886          * Call before disabling interrupts.
8887          * scsi_remove_host can trigger I/O operations especially
8888          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8889          * operations which cannot complete and will hang the system.
8890          */
8891         if (h->scsi_host)
8892                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8893         /* includes hpsa_free_irqs - init_one 4 */
8894         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8895         hpsa_shutdown(pdev);
8896
8897         hpsa_free_device_info(h);               /* scan */
8898
8899         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8900         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8901         hpsa_free_ioaccel2_sg_chain_blocks(h);
8902         hpsa_free_performant_mode(h);                   /* init_one 7 */
8903         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8904         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8905         kfree(h->lastlogicals);
8906
8907         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8908
8909         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8910         h->scsi_host = NULL;                            /* init_one 3 */
8911
8912         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8913         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8914
8915         free_percpu(h->lockup_detected);                /* init_one 2 */
8916         h->lockup_detected = NULL;                      /* init_one 2 */
8917         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8918
8919         kfree(h);                                       /* init_one 1 */
8920 }
8921
8922 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8923         __attribute__((unused)) pm_message_t state)
8924 {
8925         return -ENOSYS;
8926 }
8927
8928 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8929 {
8930         return -ENOSYS;
8931 }
8932
8933 static struct pci_driver hpsa_pci_driver = {
8934         .name = HPSA,
8935         .probe = hpsa_init_one,
8936         .remove = hpsa_remove_one,
8937         .id_table = hpsa_pci_device_id, /* id_table */
8938         .shutdown = hpsa_shutdown,
8939         .suspend = hpsa_suspend,
8940         .resume = hpsa_resume,
8941 };
8942
8943 /* Fill in bucket_map[], given nsgs (the max number of
8944  * scatter gather elements supported) and bucket[],
8945  * which is an array of 8 integers.  The bucket[] array
8946  * contains 8 different DMA transfer sizes (in 16
8947  * byte increments) which the controller uses to fetch
8948  * commands.  This function fills in bucket_map[], which
8949  * maps a given number of scatter gather elements to one of
8950  * the 8 DMA transfer sizes.  The point of it is to allow the
8951  * controller to only do as much DMA as needed to fetch the
8952  * command, with the DMA transfer size encoded in the lower
8953  * bits of the command address.
8954  */
8955 static void  calc_bucket_map(int bucket[], int num_buckets,
8956         int nsgs, int min_blocks, u32 *bucket_map)
8957 {
8958         int i, j, b, size;
8959
8960         /* Note, bucket_map must have nsgs+1 entries. */
8961         for (i = 0; i <= nsgs; i++) {
8962                 /* Compute size of a command with i SG entries */
8963                 size = i + min_blocks;
8964                 b = num_buckets; /* Assume the biggest bucket */
8965                 /* Find the bucket that is just big enough */
8966                 for (j = 0; j < num_buckets; j++) {
8967                         if (bucket[j] >= size) {
8968                                 b = j;
8969                                 break;
8970                         }
8971                 }
8972                 /* for a command with i SG entries, use bucket b. */
8973                 bucket_map[i] = b;
8974         }
8975 }
8976
8977 /*
8978  * return -ENODEV on err, 0 on success (or no action)
8979  * allocates numerous items that must be freed later
8980  */
8981 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8982 {
8983         int i;
8984         unsigned long register_value;
8985         unsigned long transMethod = CFGTBL_Trans_Performant |
8986                         (trans_support & CFGTBL_Trans_use_short_tags) |
8987                                 CFGTBL_Trans_enable_directed_msix |
8988                         (trans_support & (CFGTBL_Trans_io_accel1 |
8989                                 CFGTBL_Trans_io_accel2));
8990         struct access_method access = SA5_performant_access;
8991
8992         /* This is a bit complicated.  There are 8 registers on
8993          * the controller which we write to to tell it 8 different
8994          * sizes of commands which there may be.  It's a way of
8995          * reducing the DMA done to fetch each command.  Encoded into
8996          * each command's tag are 3 bits which communicate to the controller
8997          * which of the eight sizes that command fits within.  The size of
8998          * each command depends on how many scatter gather entries there are.
8999          * Each SG entry requires 16 bytes.  The eight registers are programmed
9000          * with the number of 16-byte blocks a command of that size requires.
9001          * The smallest command possible requires 5 such 16 byte blocks.
9002          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9003          * blocks.  Note, this only extends to the SG entries contained
9004          * within the command block, and does not extend to chained blocks
9005          * of SG elements.   bft[] contains the eight values we write to
9006          * the registers.  They are not evenly distributed, but have more
9007          * sizes for small commands, and fewer sizes for larger commands.
9008          */
9009         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9010 #define MIN_IOACCEL2_BFT_ENTRY 5
9011 #define HPSA_IOACCEL2_HEADER_SZ 4
9012         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9013                         13, 14, 15, 16, 17, 18, 19,
9014                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9015         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9016         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9017         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9018                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9019         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9020         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9021         /*  5 = 1 s/g entry or 4k
9022          *  6 = 2 s/g entry or 8k
9023          *  8 = 4 s/g entry or 16k
9024          * 10 = 6 s/g entry or 24k
9025          */
9026
9027         /* If the controller supports either ioaccel method then
9028          * we can also use the RAID stack submit path that does not
9029          * perform the superfluous readl() after each command submission.
9030          */
9031         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9032                 access = SA5_performant_access_no_read;
9033
9034         /* Controller spec: zero out this buffer. */
9035         for (i = 0; i < h->nreply_queues; i++)
9036                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9037
9038         bft[7] = SG_ENTRIES_IN_CMD + 4;
9039         calc_bucket_map(bft, ARRAY_SIZE(bft),
9040                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9041         for (i = 0; i < 8; i++)
9042                 writel(bft[i], &h->transtable->BlockFetch[i]);
9043
9044         /* size of controller ring buffer */
9045         writel(h->max_commands, &h->transtable->RepQSize);
9046         writel(h->nreply_queues, &h->transtable->RepQCount);
9047         writel(0, &h->transtable->RepQCtrAddrLow32);
9048         writel(0, &h->transtable->RepQCtrAddrHigh32);
9049
9050         for (i = 0; i < h->nreply_queues; i++) {
9051                 writel(0, &h->transtable->RepQAddr[i].upper);
9052                 writel(h->reply_queue[i].busaddr,
9053                         &h->transtable->RepQAddr[i].lower);
9054         }
9055
9056         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9057         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9058         /*
9059          * enable outbound interrupt coalescing in accelerator mode;
9060          */
9061         if (trans_support & CFGTBL_Trans_io_accel1) {
9062                 access = SA5_ioaccel_mode1_access;
9063                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9064                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9065         } else
9066                 if (trans_support & CFGTBL_Trans_io_accel2)
9067                         access = SA5_ioaccel_mode2_access;
9068         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9069         if (hpsa_wait_for_mode_change_ack(h)) {
9070                 dev_err(&h->pdev->dev,
9071                         "performant mode problem - doorbell timeout\n");
9072                 return -ENODEV;
9073         }
9074         register_value = readl(&(h->cfgtable->TransportActive));
9075         if (!(register_value & CFGTBL_Trans_Performant)) {
9076                 dev_err(&h->pdev->dev,
9077                         "performant mode problem - transport not active\n");
9078                 return -ENODEV;
9079         }
9080         /* Change the access methods to the performant access methods */
9081         h->access = access;
9082         h->transMethod = transMethod;
9083
9084         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9085                 (trans_support & CFGTBL_Trans_io_accel2)))
9086                 return 0;
9087
9088         if (trans_support & CFGTBL_Trans_io_accel1) {
9089                 /* Set up I/O accelerator mode */
9090                 for (i = 0; i < h->nreply_queues; i++) {
9091                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9092                         h->reply_queue[i].current_entry =
9093                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9094                 }
9095                 bft[7] = h->ioaccel_maxsg + 8;
9096                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9097                                 h->ioaccel1_blockFetchTable);
9098
9099                 /* initialize all reply queue entries to unused */
9100                 for (i = 0; i < h->nreply_queues; i++)
9101                         memset(h->reply_queue[i].head,
9102                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9103                                 h->reply_queue_size);
9104
9105                 /* set all the constant fields in the accelerator command
9106                  * frames once at init time to save CPU cycles later.
9107                  */
9108                 for (i = 0; i < h->nr_cmds; i++) {
9109                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9110
9111                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9112                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9113                                         (i * sizeof(struct ErrorInfo)));
9114                         cp->err_info_len = sizeof(struct ErrorInfo);
9115                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9116                         cp->host_context_flags =
9117                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9118                         cp->timeout_sec = 0;
9119                         cp->ReplyQueue = 0;
9120                         cp->tag =
9121                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9122                         cp->host_addr =
9123                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9124                                         (i * sizeof(struct io_accel1_cmd)));
9125                 }
9126         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9127                 u64 cfg_offset, cfg_base_addr_index;
9128                 u32 bft2_offset, cfg_base_addr;
9129                 int rc;
9130
9131                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9132                         &cfg_base_addr_index, &cfg_offset);
9133                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9134                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9135                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9136                                 4, h->ioaccel2_blockFetchTable);
9137                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9138                 BUILD_BUG_ON(offsetof(struct CfgTable,
9139                                 io_accel_request_size_offset) != 0xb8);
9140                 h->ioaccel2_bft2_regs =
9141                         remap_pci_mem(pci_resource_start(h->pdev,
9142                                         cfg_base_addr_index) +
9143                                         cfg_offset + bft2_offset,
9144                                         ARRAY_SIZE(bft2) *
9145                                         sizeof(*h->ioaccel2_bft2_regs));
9146                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9147                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9148         }
9149         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9150         if (hpsa_wait_for_mode_change_ack(h)) {
9151                 dev_err(&h->pdev->dev,
9152                         "performant mode problem - enabling ioaccel mode\n");
9153                 return -ENODEV;
9154         }
9155         return 0;
9156 }
9157
9158 /* Free ioaccel1 mode command blocks and block fetch table */
9159 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9160 {
9161         if (h->ioaccel_cmd_pool) {
9162                 pci_free_consistent(h->pdev,
9163                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9164                         h->ioaccel_cmd_pool,
9165                         h->ioaccel_cmd_pool_dhandle);
9166                 h->ioaccel_cmd_pool = NULL;
9167                 h->ioaccel_cmd_pool_dhandle = 0;
9168         }
9169         kfree(h->ioaccel1_blockFetchTable);
9170         h->ioaccel1_blockFetchTable = NULL;
9171 }
9172
9173 /* Allocate ioaccel1 mode command blocks and block fetch table */
9174 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9175 {
9176         h->ioaccel_maxsg =
9177                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9178         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9179                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9180
9181         /* Command structures must be aligned on a 128-byte boundary
9182          * because the 7 lower bits of the address are used by the
9183          * hardware.
9184          */
9185         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9186                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9187         h->ioaccel_cmd_pool =
9188                 pci_alloc_consistent(h->pdev,
9189                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9190                         &(h->ioaccel_cmd_pool_dhandle));
9191
9192         h->ioaccel1_blockFetchTable =
9193                 kmalloc(((h->ioaccel_maxsg + 1) *
9194                                 sizeof(u32)), GFP_KERNEL);
9195
9196         if ((h->ioaccel_cmd_pool == NULL) ||
9197                 (h->ioaccel1_blockFetchTable == NULL))
9198                 goto clean_up;
9199
9200         memset(h->ioaccel_cmd_pool, 0,
9201                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9202         return 0;
9203
9204 clean_up:
9205         hpsa_free_ioaccel1_cmd_and_bft(h);
9206         return -ENOMEM;
9207 }
9208
9209 /* Free ioaccel2 mode command blocks and block fetch table */
9210 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9211 {
9212         hpsa_free_ioaccel2_sg_chain_blocks(h);
9213
9214         if (h->ioaccel2_cmd_pool) {
9215                 pci_free_consistent(h->pdev,
9216                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9217                         h->ioaccel2_cmd_pool,
9218                         h->ioaccel2_cmd_pool_dhandle);
9219                 h->ioaccel2_cmd_pool = NULL;
9220                 h->ioaccel2_cmd_pool_dhandle = 0;
9221         }
9222         kfree(h->ioaccel2_blockFetchTable);
9223         h->ioaccel2_blockFetchTable = NULL;
9224 }
9225
9226 /* Allocate ioaccel2 mode command blocks and block fetch table */
9227 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9228 {
9229         int rc;
9230
9231         /* Allocate ioaccel2 mode command blocks and block fetch table */
9232
9233         h->ioaccel_maxsg =
9234                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9235         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9236                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9237
9238         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9239                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9240         h->ioaccel2_cmd_pool =
9241                 pci_alloc_consistent(h->pdev,
9242                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9243                         &(h->ioaccel2_cmd_pool_dhandle));
9244
9245         h->ioaccel2_blockFetchTable =
9246                 kmalloc(((h->ioaccel_maxsg + 1) *
9247                                 sizeof(u32)), GFP_KERNEL);
9248
9249         if ((h->ioaccel2_cmd_pool == NULL) ||
9250                 (h->ioaccel2_blockFetchTable == NULL)) {
9251                 rc = -ENOMEM;
9252                 goto clean_up;
9253         }
9254
9255         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9256         if (rc)
9257                 goto clean_up;
9258
9259         memset(h->ioaccel2_cmd_pool, 0,
9260                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9261         return 0;
9262
9263 clean_up:
9264         hpsa_free_ioaccel2_cmd_and_bft(h);
9265         return rc;
9266 }
9267
9268 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9269 static void hpsa_free_performant_mode(struct ctlr_info *h)
9270 {
9271         kfree(h->blockFetchTable);
9272         h->blockFetchTable = NULL;
9273         hpsa_free_reply_queues(h);
9274         hpsa_free_ioaccel1_cmd_and_bft(h);
9275         hpsa_free_ioaccel2_cmd_and_bft(h);
9276 }
9277
9278 /* return -ENODEV on error, 0 on success (or no action)
9279  * allocates numerous items that must be freed later
9280  */
9281 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9282 {
9283         u32 trans_support;
9284         unsigned long transMethod = CFGTBL_Trans_Performant |
9285                                         CFGTBL_Trans_use_short_tags;
9286         int i, rc;
9287
9288         if (hpsa_simple_mode)
9289                 return 0;
9290
9291         trans_support = readl(&(h->cfgtable->TransportSupport));
9292         if (!(trans_support & PERFORMANT_MODE))
9293                 return 0;
9294
9295         /* Check for I/O accelerator mode support */
9296         if (trans_support & CFGTBL_Trans_io_accel1) {
9297                 transMethod |= CFGTBL_Trans_io_accel1 |
9298                                 CFGTBL_Trans_enable_directed_msix;
9299                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9300                 if (rc)
9301                         return rc;
9302         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9303                 transMethod |= CFGTBL_Trans_io_accel2 |
9304                                 CFGTBL_Trans_enable_directed_msix;
9305                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9306                 if (rc)
9307                         return rc;
9308         }
9309
9310         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9311         hpsa_get_max_perf_mode_cmds(h);
9312         /* Performant mode ring buffer and supporting data structures */
9313         h->reply_queue_size = h->max_commands * sizeof(u64);
9314
9315         for (i = 0; i < h->nreply_queues; i++) {
9316                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9317                                                 h->reply_queue_size,
9318                                                 &(h->reply_queue[i].busaddr));
9319                 if (!h->reply_queue[i].head) {
9320                         rc = -ENOMEM;
9321                         goto clean1;    /* rq, ioaccel */
9322                 }
9323                 h->reply_queue[i].size = h->max_commands;
9324                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9325                 h->reply_queue[i].current_entry = 0;
9326         }
9327
9328         /* Need a block fetch table for performant mode */
9329         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9330                                 sizeof(u32)), GFP_KERNEL);
9331         if (!h->blockFetchTable) {
9332                 rc = -ENOMEM;
9333                 goto clean1;    /* rq, ioaccel */
9334         }
9335
9336         rc = hpsa_enter_performant_mode(h, trans_support);
9337         if (rc)
9338                 goto clean2;    /* bft, rq, ioaccel */
9339         return 0;
9340
9341 clean2: /* bft, rq, ioaccel */
9342         kfree(h->blockFetchTable);
9343         h->blockFetchTable = NULL;
9344 clean1: /* rq, ioaccel */
9345         hpsa_free_reply_queues(h);
9346         hpsa_free_ioaccel1_cmd_and_bft(h);
9347         hpsa_free_ioaccel2_cmd_and_bft(h);
9348         return rc;
9349 }
9350
9351 static int is_accelerated_cmd(struct CommandList *c)
9352 {
9353         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9354 }
9355
9356 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9357 {
9358         struct CommandList *c = NULL;
9359         int i, accel_cmds_out;
9360         int refcount;
9361
9362         do { /* wait for all outstanding ioaccel commands to drain out */
9363                 accel_cmds_out = 0;
9364                 for (i = 0; i < h->nr_cmds; i++) {
9365                         c = h->cmd_pool + i;
9366                         refcount = atomic_inc_return(&c->refcount);
9367                         if (refcount > 1) /* Command is allocated */
9368                                 accel_cmds_out += is_accelerated_cmd(c);
9369                         cmd_free(h, c);
9370                 }
9371                 if (accel_cmds_out <= 0)
9372                         break;
9373                 msleep(100);
9374         } while (1);
9375 }
9376
9377 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9378                                 struct hpsa_sas_port *hpsa_sas_port)
9379 {
9380         struct hpsa_sas_phy *hpsa_sas_phy;
9381         struct sas_phy *phy;
9382
9383         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9384         if (!hpsa_sas_phy)
9385                 return NULL;
9386
9387         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9388                 hpsa_sas_port->next_phy_index);
9389         if (!phy) {
9390                 kfree(hpsa_sas_phy);
9391                 return NULL;
9392         }
9393
9394         hpsa_sas_port->next_phy_index++;
9395         hpsa_sas_phy->phy = phy;
9396         hpsa_sas_phy->parent_port = hpsa_sas_port;
9397
9398         return hpsa_sas_phy;
9399 }
9400
9401 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9402 {
9403         struct sas_phy *phy = hpsa_sas_phy->phy;
9404
9405         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9406         if (hpsa_sas_phy->added_to_port)
9407                 list_del(&hpsa_sas_phy->phy_list_entry);
9408         sas_phy_delete(phy);
9409         kfree(hpsa_sas_phy);
9410 }
9411
9412 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9413 {
9414         int rc;
9415         struct hpsa_sas_port *hpsa_sas_port;
9416         struct sas_phy *phy;
9417         struct sas_identify *identify;
9418
9419         hpsa_sas_port = hpsa_sas_phy->parent_port;
9420         phy = hpsa_sas_phy->phy;
9421
9422         identify = &phy->identify;
9423         memset(identify, 0, sizeof(*identify));
9424         identify->sas_address = hpsa_sas_port->sas_address;
9425         identify->device_type = SAS_END_DEVICE;
9426         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9427         identify->target_port_protocols = SAS_PROTOCOL_STP;
9428         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9429         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9430         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9431         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9432         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9433
9434         rc = sas_phy_add(hpsa_sas_phy->phy);
9435         if (rc)
9436                 return rc;
9437
9438         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9439         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9440                         &hpsa_sas_port->phy_list_head);
9441         hpsa_sas_phy->added_to_port = true;
9442
9443         return 0;
9444 }
9445
9446 static int
9447         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9448                                 struct sas_rphy *rphy)
9449 {
9450         struct sas_identify *identify;
9451
9452         identify = &rphy->identify;
9453         identify->sas_address = hpsa_sas_port->sas_address;
9454         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9455         identify->target_port_protocols = SAS_PROTOCOL_STP;
9456
9457         return sas_rphy_add(rphy);
9458 }
9459
9460 static struct hpsa_sas_port
9461         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9462                                 u64 sas_address)
9463 {
9464         int rc;
9465         struct hpsa_sas_port *hpsa_sas_port;
9466         struct sas_port *port;
9467
9468         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9469         if (!hpsa_sas_port)
9470                 return NULL;
9471
9472         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9473         hpsa_sas_port->parent_node = hpsa_sas_node;
9474
9475         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9476         if (!port)
9477                 goto free_hpsa_port;
9478
9479         rc = sas_port_add(port);
9480         if (rc)
9481                 goto free_sas_port;
9482
9483         hpsa_sas_port->port = port;
9484         hpsa_sas_port->sas_address = sas_address;
9485         list_add_tail(&hpsa_sas_port->port_list_entry,
9486                         &hpsa_sas_node->port_list_head);
9487
9488         return hpsa_sas_port;
9489
9490 free_sas_port:
9491         sas_port_free(port);
9492 free_hpsa_port:
9493         kfree(hpsa_sas_port);
9494
9495         return NULL;
9496 }
9497
9498 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9499 {
9500         struct hpsa_sas_phy *hpsa_sas_phy;
9501         struct hpsa_sas_phy *next;
9502
9503         list_for_each_entry_safe(hpsa_sas_phy, next,
9504                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9505                 hpsa_free_sas_phy(hpsa_sas_phy);
9506
9507         sas_port_delete(hpsa_sas_port->port);
9508         list_del(&hpsa_sas_port->port_list_entry);
9509         kfree(hpsa_sas_port);
9510 }
9511
9512 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9513 {
9514         struct hpsa_sas_node *hpsa_sas_node;
9515
9516         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9517         if (hpsa_sas_node) {
9518                 hpsa_sas_node->parent_dev = parent_dev;
9519                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9520         }
9521
9522         return hpsa_sas_node;
9523 }
9524
9525 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9526 {
9527         struct hpsa_sas_port *hpsa_sas_port;
9528         struct hpsa_sas_port *next;
9529
9530         if (!hpsa_sas_node)
9531                 return;
9532
9533         list_for_each_entry_safe(hpsa_sas_port, next,
9534                         &hpsa_sas_node->port_list_head, port_list_entry)
9535                 hpsa_free_sas_port(hpsa_sas_port);
9536
9537         kfree(hpsa_sas_node);
9538 }
9539
9540 static struct hpsa_scsi_dev_t
9541         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9542                                         struct sas_rphy *rphy)
9543 {
9544         int i;
9545         struct hpsa_scsi_dev_t *device;
9546
9547         for (i = 0; i < h->ndevices; i++) {
9548                 device = h->dev[i];
9549                 if (!device->sas_port)
9550                         continue;
9551                 if (device->sas_port->rphy == rphy)
9552                         return device;
9553         }
9554
9555         return NULL;
9556 }
9557
9558 static int hpsa_add_sas_host(struct ctlr_info *h)
9559 {
9560         int rc;
9561         struct device *parent_dev;
9562         struct hpsa_sas_node *hpsa_sas_node;
9563         struct hpsa_sas_port *hpsa_sas_port;
9564         struct hpsa_sas_phy *hpsa_sas_phy;
9565
9566         parent_dev = &h->scsi_host->shost_dev;
9567
9568         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9569         if (!hpsa_sas_node)
9570                 return -ENOMEM;
9571
9572         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9573         if (!hpsa_sas_port) {
9574                 rc = -ENODEV;
9575                 goto free_sas_node;
9576         }
9577
9578         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9579         if (!hpsa_sas_phy) {
9580                 rc = -ENODEV;
9581                 goto free_sas_port;
9582         }
9583
9584         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9585         if (rc)
9586                 goto free_sas_phy;
9587
9588         h->sas_host = hpsa_sas_node;
9589
9590         return 0;
9591
9592 free_sas_phy:
9593         hpsa_free_sas_phy(hpsa_sas_phy);
9594 free_sas_port:
9595         hpsa_free_sas_port(hpsa_sas_port);
9596 free_sas_node:
9597         hpsa_free_sas_node(hpsa_sas_node);
9598
9599         return rc;
9600 }
9601
9602 static void hpsa_delete_sas_host(struct ctlr_info *h)
9603 {
9604         hpsa_free_sas_node(h->sas_host);
9605 }
9606
9607 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9608                                 struct hpsa_scsi_dev_t *device)
9609 {
9610         int rc;
9611         struct hpsa_sas_port *hpsa_sas_port;
9612         struct sas_rphy *rphy;
9613
9614         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9615         if (!hpsa_sas_port)
9616                 return -ENOMEM;
9617
9618         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9619         if (!rphy) {
9620                 rc = -ENODEV;
9621                 goto free_sas_port;
9622         }
9623
9624         hpsa_sas_port->rphy = rphy;
9625         device->sas_port = hpsa_sas_port;
9626
9627         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9628         if (rc)
9629                 goto free_sas_port;
9630
9631         return 0;
9632
9633 free_sas_port:
9634         hpsa_free_sas_port(hpsa_sas_port);
9635         device->sas_port = NULL;
9636
9637         return rc;
9638 }
9639
9640 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9641 {
9642         if (device->sas_port) {
9643                 hpsa_free_sas_port(device->sas_port);
9644                 device->sas_port = NULL;
9645         }
9646 }
9647
9648 static int
9649 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9650 {
9651         return 0;
9652 }
9653
9654 static int
9655 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9656 {
9657         *identifier = rphy->identify.sas_address;
9658         return 0;
9659 }
9660
9661 static int
9662 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9663 {
9664         return -ENXIO;
9665 }
9666
9667 static int
9668 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9669 {
9670         return 0;
9671 }
9672
9673 static int
9674 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9675 {
9676         return 0;
9677 }
9678
9679 static int
9680 hpsa_sas_phy_setup(struct sas_phy *phy)
9681 {
9682         return 0;
9683 }
9684
9685 static void
9686 hpsa_sas_phy_release(struct sas_phy *phy)
9687 {
9688 }
9689
9690 static int
9691 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9692 {
9693         return -EINVAL;
9694 }
9695
9696 static struct sas_function_template hpsa_sas_transport_functions = {
9697         .get_linkerrors = hpsa_sas_get_linkerrors,
9698         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9699         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9700         .phy_reset = hpsa_sas_phy_reset,
9701         .phy_enable = hpsa_sas_phy_enable,
9702         .phy_setup = hpsa_sas_phy_setup,
9703         .phy_release = hpsa_sas_phy_release,
9704         .set_phy_speed = hpsa_sas_phy_speed,
9705 };
9706
9707 /*
9708  *  This is it.  Register the PCI driver information for the cards we control
9709  *  the OS will call our registered routines when it finds one of our cards.
9710  */
9711 static int __init hpsa_init(void)
9712 {
9713         int rc;
9714
9715         hpsa_sas_transport_template =
9716                 sas_attach_transport(&hpsa_sas_transport_functions);
9717         if (!hpsa_sas_transport_template)
9718                 return -ENODEV;
9719
9720         rc = pci_register_driver(&hpsa_pci_driver);
9721
9722         if (rc)
9723                 sas_release_transport(hpsa_sas_transport_template);
9724
9725         return rc;
9726 }
9727
9728 static void __exit hpsa_cleanup(void)
9729 {
9730         pci_unregister_driver(&hpsa_pci_driver);
9731         sas_release_transport(hpsa_sas_transport_template);
9732 }
9733
9734 static void __attribute__((unused)) verify_offsets(void)
9735 {
9736 #define VERIFY_OFFSET(member, offset) \
9737         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9738
9739         VERIFY_OFFSET(structure_size, 0);
9740         VERIFY_OFFSET(volume_blk_size, 4);
9741         VERIFY_OFFSET(volume_blk_cnt, 8);
9742         VERIFY_OFFSET(phys_blk_shift, 16);
9743         VERIFY_OFFSET(parity_rotation_shift, 17);
9744         VERIFY_OFFSET(strip_size, 18);
9745         VERIFY_OFFSET(disk_starting_blk, 20);
9746         VERIFY_OFFSET(disk_blk_cnt, 28);
9747         VERIFY_OFFSET(data_disks_per_row, 36);
9748         VERIFY_OFFSET(metadata_disks_per_row, 38);
9749         VERIFY_OFFSET(row_cnt, 40);
9750         VERIFY_OFFSET(layout_map_count, 42);
9751         VERIFY_OFFSET(flags, 44);
9752         VERIFY_OFFSET(dekindex, 46);
9753         /* VERIFY_OFFSET(reserved, 48 */
9754         VERIFY_OFFSET(data, 64);
9755
9756 #undef VERIFY_OFFSET
9757
9758 #define VERIFY_OFFSET(member, offset) \
9759         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9760
9761         VERIFY_OFFSET(IU_type, 0);
9762         VERIFY_OFFSET(direction, 1);
9763         VERIFY_OFFSET(reply_queue, 2);
9764         /* VERIFY_OFFSET(reserved1, 3);  */
9765         VERIFY_OFFSET(scsi_nexus, 4);
9766         VERIFY_OFFSET(Tag, 8);
9767         VERIFY_OFFSET(cdb, 16);
9768         VERIFY_OFFSET(cciss_lun, 32);
9769         VERIFY_OFFSET(data_len, 40);
9770         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9771         VERIFY_OFFSET(sg_count, 45);
9772         /* VERIFY_OFFSET(reserved3 */
9773         VERIFY_OFFSET(err_ptr, 48);
9774         VERIFY_OFFSET(err_len, 56);
9775         /* VERIFY_OFFSET(reserved4  */
9776         VERIFY_OFFSET(sg, 64);
9777
9778 #undef VERIFY_OFFSET
9779
9780 #define VERIFY_OFFSET(member, offset) \
9781         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9782
9783         VERIFY_OFFSET(dev_handle, 0x00);
9784         VERIFY_OFFSET(reserved1, 0x02);
9785         VERIFY_OFFSET(function, 0x03);
9786         VERIFY_OFFSET(reserved2, 0x04);
9787         VERIFY_OFFSET(err_info, 0x0C);
9788         VERIFY_OFFSET(reserved3, 0x10);
9789         VERIFY_OFFSET(err_info_len, 0x12);
9790         VERIFY_OFFSET(reserved4, 0x13);
9791         VERIFY_OFFSET(sgl_offset, 0x14);
9792         VERIFY_OFFSET(reserved5, 0x15);
9793         VERIFY_OFFSET(transfer_len, 0x1C);
9794         VERIFY_OFFSET(reserved6, 0x20);
9795         VERIFY_OFFSET(io_flags, 0x24);
9796         VERIFY_OFFSET(reserved7, 0x26);
9797         VERIFY_OFFSET(LUN, 0x34);
9798         VERIFY_OFFSET(control, 0x3C);
9799         VERIFY_OFFSET(CDB, 0x40);
9800         VERIFY_OFFSET(reserved8, 0x50);
9801         VERIFY_OFFSET(host_context_flags, 0x60);
9802         VERIFY_OFFSET(timeout_sec, 0x62);
9803         VERIFY_OFFSET(ReplyQueue, 0x64);
9804         VERIFY_OFFSET(reserved9, 0x65);
9805         VERIFY_OFFSET(tag, 0x68);
9806         VERIFY_OFFSET(host_addr, 0x70);
9807         VERIFY_OFFSET(CISS_LUN, 0x78);
9808         VERIFY_OFFSET(SG, 0x78 + 8);
9809 #undef VERIFY_OFFSET
9810 }
9811
9812 module_init(hpsa_init);
9813 module_exit(hpsa_cleanup);