Merge tag 'iio-fixes-for-5.8a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.20-170"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75 /* How long to wait before giving up on a command */
76 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
77
78 /* Embedded module documentation macros - see modules.h */
79 MODULE_AUTHOR("Hewlett-Packard Company");
80 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81         HPSA_DRIVER_VERSION);
82 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90         "Use 'simple mode' rather than 'performant mode'");
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
150                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151         {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161         {0x40700E11, "Smart Array 5300", &SA5A_access},
162         {0x40800E11, "Smart Array 5i", &SA5B_access},
163         {0x40820E11, "Smart Array 532", &SA5B_access},
164         {0x40830E11, "Smart Array 5312", &SA5B_access},
165         {0x409A0E11, "Smart Array 641", &SA5A_access},
166         {0x409B0E11, "Smart Array 642", &SA5A_access},
167         {0x409C0E11, "Smart Array 6400", &SA5A_access},
168         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169         {0x40910E11, "Smart Array 6i", &SA5A_access},
170         {0x3225103C, "Smart Array P600", &SA5A_access},
171         {0x3223103C, "Smart Array P800", &SA5A_access},
172         {0x3234103C, "Smart Array P400", &SA5A_access},
173         {0x3235103C, "Smart Array P400i", &SA5A_access},
174         {0x3211103C, "Smart Array E200i", &SA5A_access},
175         {0x3212103C, "Smart Array E200", &SA5A_access},
176         {0x3213103C, "Smart Array E200i", &SA5A_access},
177         {0x3214103C, "Smart Array E200i", &SA5A_access},
178         {0x3215103C, "Smart Array E200i", &SA5A_access},
179         {0x3237103C, "Smart Array E500", &SA5A_access},
180         {0x323D103C, "Smart Array P700m", &SA5A_access},
181         {0x3241103C, "Smart Array P212", &SA5_access},
182         {0x3243103C, "Smart Array P410", &SA5_access},
183         {0x3245103C, "Smart Array P410i", &SA5_access},
184         {0x3247103C, "Smart Array P411", &SA5_access},
185         {0x3249103C, "Smart Array P812", &SA5_access},
186         {0x324A103C, "Smart Array P712m", &SA5_access},
187         {0x324B103C, "Smart Array P711m", &SA5_access},
188         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189         {0x3350103C, "Smart Array P222", &SA5_access},
190         {0x3351103C, "Smart Array P420", &SA5_access},
191         {0x3352103C, "Smart Array P421", &SA5_access},
192         {0x3353103C, "Smart Array P822", &SA5_access},
193         {0x3354103C, "Smart Array P420i", &SA5_access},
194         {0x3355103C, "Smart Array P220i", &SA5_access},
195         {0x3356103C, "Smart Array P721m", &SA5_access},
196         {0x1920103C, "Smart Array P430i", &SA5_access},
197         {0x1921103C, "Smart Array P830i", &SA5_access},
198         {0x1922103C, "Smart Array P430", &SA5_access},
199         {0x1923103C, "Smart Array P431", &SA5_access},
200         {0x1924103C, "Smart Array P830", &SA5_access},
201         {0x1925103C, "Smart Array P831", &SA5_access},
202         {0x1926103C, "Smart Array P731m", &SA5_access},
203         {0x1928103C, "Smart Array P230i", &SA5_access},
204         {0x1929103C, "Smart Array P530", &SA5_access},
205         {0x21BD103C, "Smart Array P244br", &SA5_access},
206         {0x21BE103C, "Smart Array P741m", &SA5_access},
207         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208         {0x21C0103C, "Smart Array P440ar", &SA5_access},
209         {0x21C1103C, "Smart Array P840ar", &SA5_access},
210         {0x21C2103C, "Smart Array P440", &SA5_access},
211         {0x21C3103C, "Smart Array P441", &SA5_access},
212         {0x21C4103C, "Smart Array", &SA5_access},
213         {0x21C5103C, "Smart Array P841", &SA5_access},
214         {0x21C6103C, "Smart HBA H244br", &SA5_access},
215         {0x21C7103C, "Smart HBA H240", &SA5_access},
216         {0x21C8103C, "Smart HBA H241", &SA5_access},
217         {0x21C9103C, "Smart Array", &SA5_access},
218         {0x21CA103C, "Smart Array P246br", &SA5_access},
219         {0x21CB103C, "Smart Array P840", &SA5_access},
220         {0x21CC103C, "Smart Array", &SA5_access},
221         {0x21CD103C, "Smart Array", &SA5_access},
222         {0x21CE103C, "Smart HBA", &SA5_access},
223         {0x05809005, "SmartHBA-SA", &SA5_access},
224         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241                         struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245                 struct sas_rphy *rphy);
246
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256                       void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258                                IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260                                    BIG_IOCTL_Command_struct *ioc);
261
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264         void __user *arg);
265 #endif
266
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271                                             struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274         int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282         unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_slave_alloc(struct scsi_device *sdev);
287 static int hpsa_slave_configure(struct scsi_device *sdev);
288 static void hpsa_slave_destroy(struct scsi_device *sdev);
289
290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
291 static int check_for_unit_attention(struct ctlr_info *h,
292         struct CommandList *c);
293 static void check_ioctl_unit_attention(struct ctlr_info *h,
294         struct CommandList *c);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket, int num_buckets,
297         int nsgs, int min_blocks, u32 *bucket_map);
298 static void hpsa_free_performant_mode(struct ctlr_info *h);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300 static inline u32 next_command(struct ctlr_info *h, u8 q);
301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
303                                u64 *cfg_offset);
304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305                                     unsigned long *memory_bar);
306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
307                                 bool *legacy_board);
308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
309                                            unsigned char lunaddr[],
310                                            int reply_queue);
311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
312                                      int wait_for_ready);
313 static inline void finish_cmd(struct CommandList *c);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
318 static void hpsa_flush_cache(struct ctlr_info *h);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322 static void hpsa_command_resubmit_worker(struct work_struct *work);
323 static u32 lockup_detected(struct ctlr_info *h);
324 static int detect_controller_lockup(struct ctlr_info *h);
325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327         struct ReportExtendedLUNdata *buf, int bufsize);
328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329         unsigned char scsi3addr[], u8 page);
330 static int hpsa_luns_changed(struct ctlr_info *h);
331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332                                struct hpsa_scsi_dev_t *dev,
333                                unsigned char *scsi3addr);
334
335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
336 {
337         unsigned long *priv = shost_priv(sdev->host);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
342 {
343         unsigned long *priv = shost_priv(sh);
344         return (struct ctlr_info *) *priv;
345 }
346
347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
348 {
349         return c->scsi_cmd == SCSI_CMD_IDLE;
350 }
351
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354                         u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356         struct scsi_sense_hdr sshdr;
357         bool rc;
358
359         *sense_key = -1;
360         *asc = -1;
361         *ascq = -1;
362
363         if (sense_data_len < 1)
364                 return;
365
366         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367         if (rc) {
368                 *sense_key = sshdr.sense_key;
369                 *asc = sshdr.asc;
370                 *ascq = sshdr.ascq;
371         }
372 }
373
374 static int check_for_unit_attention(struct ctlr_info *h,
375         struct CommandList *c)
376 {
377         u8 sense_key, asc, ascq;
378         int sense_len;
379
380         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381                 sense_len = sizeof(c->err_info->SenseInfo);
382         else
383                 sense_len = c->err_info->SenseLen;
384
385         decode_sense_data(c->err_info->SenseInfo, sense_len,
386                                 &sense_key, &asc, &ascq);
387         if (sense_key != UNIT_ATTENTION || asc == 0xff)
388                 return 0;
389
390         switch (asc) {
391         case STATE_CHANGED:
392                 dev_warn(&h->pdev->dev,
393                         "%s: a state change detected, command retried\n",
394                         h->devname);
395                 break;
396         case LUN_FAILED:
397                 dev_warn(&h->pdev->dev,
398                         "%s: LUN failure detected\n", h->devname);
399                 break;
400         case REPORT_LUNS_CHANGED:
401                 dev_warn(&h->pdev->dev,
402                         "%s: report LUN data changed\n", h->devname);
403         /*
404          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405          * target (array) devices.
406          */
407                 break;
408         case POWER_OR_RESET:
409                 dev_warn(&h->pdev->dev,
410                         "%s: a power on or device reset detected\n",
411                         h->devname);
412                 break;
413         case UNIT_ATTENTION_CLEARED:
414                 dev_warn(&h->pdev->dev,
415                         "%s: unit attention cleared by another initiator\n",
416                         h->devname);
417                 break;
418         default:
419                 dev_warn(&h->pdev->dev,
420                         "%s: unknown unit attention detected\n",
421                         h->devname);
422                 break;
423         }
424         return 1;
425 }
426
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432                 return 0;
433         dev_warn(&h->pdev->dev, HPSA "device busy");
434         return 1;
435 }
436
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439                 struct device_attribute *attr, char *buf)
440 {
441         int ld;
442         struct ctlr_info *h;
443         struct Scsi_Host *shost = class_to_shost(dev);
444
445         h = shost_to_hba(shost);
446         ld = lockup_detected(h);
447
448         return sprintf(buf, "ld=%d\n", ld);
449 }
450
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452                                          struct device_attribute *attr,
453                                          const char *buf, size_t count)
454 {
455         int status, len;
456         struct ctlr_info *h;
457         struct Scsi_Host *shost = class_to_shost(dev);
458         char tmpbuf[10];
459
460         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461                 return -EACCES;
462         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463         strncpy(tmpbuf, buf, len);
464         tmpbuf[len] = '\0';
465         if (sscanf(tmpbuf, "%d", &status) != 1)
466                 return -EINVAL;
467         h = shost_to_hba(shost);
468         h->acciopath_status = !!status;
469         dev_warn(&h->pdev->dev,
470                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471                 h->acciopath_status ? "enabled" : "disabled");
472         return count;
473 }
474
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476                                          struct device_attribute *attr,
477                                          const char *buf, size_t count)
478 {
479         int debug_level, len;
480         struct ctlr_info *h;
481         struct Scsi_Host *shost = class_to_shost(dev);
482         char tmpbuf[10];
483
484         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485                 return -EACCES;
486         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487         strncpy(tmpbuf, buf, len);
488         tmpbuf[len] = '\0';
489         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490                 return -EINVAL;
491         if (debug_level < 0)
492                 debug_level = 0;
493         h = shost_to_hba(shost);
494         h->raid_offload_debug = debug_level;
495         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496                 h->raid_offload_debug);
497         return count;
498 }
499
500 static ssize_t host_store_rescan(struct device *dev,
501                                  struct device_attribute *attr,
502                                  const char *buf, size_t count)
503 {
504         struct ctlr_info *h;
505         struct Scsi_Host *shost = class_to_shost(dev);
506         h = shost_to_hba(shost);
507         hpsa_scan_start(h->scsi_host);
508         return count;
509 }
510
511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
512 {
513         device->offload_enabled = 0;
514         device->offload_to_be_enabled = 0;
515 }
516
517 static ssize_t host_show_firmware_revision(struct device *dev,
518              struct device_attribute *attr, char *buf)
519 {
520         struct ctlr_info *h;
521         struct Scsi_Host *shost = class_to_shost(dev);
522         unsigned char *fwrev;
523
524         h = shost_to_hba(shost);
525         if (!h->hba_inquiry_data)
526                 return 0;
527         fwrev = &h->hba_inquiry_data[32];
528         return snprintf(buf, 20, "%c%c%c%c\n",
529                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
530 }
531
532 static ssize_t host_show_commands_outstanding(struct device *dev,
533              struct device_attribute *attr, char *buf)
534 {
535         struct Scsi_Host *shost = class_to_shost(dev);
536         struct ctlr_info *h = shost_to_hba(shost);
537
538         return snprintf(buf, 20, "%d\n",
539                         atomic_read(&h->commands_outstanding));
540 }
541
542 static ssize_t host_show_transport_mode(struct device *dev,
543         struct device_attribute *attr, char *buf)
544 {
545         struct ctlr_info *h;
546         struct Scsi_Host *shost = class_to_shost(dev);
547
548         h = shost_to_hba(shost);
549         return snprintf(buf, 20, "%s\n",
550                 h->transMethod & CFGTBL_Trans_Performant ?
551                         "performant" : "simple");
552 }
553
554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555         struct device_attribute *attr, char *buf)
556 {
557         struct ctlr_info *h;
558         struct Scsi_Host *shost = class_to_shost(dev);
559
560         h = shost_to_hba(shost);
561         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
563 }
564
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller[] = {
567         0x324a103C, /* Smart Array P712m */
568         0x324b103C, /* Smart Array P711m */
569         0x3223103C, /* Smart Array P800 */
570         0x3234103C, /* Smart Array P400 */
571         0x3235103C, /* Smart Array P400i */
572         0x3211103C, /* Smart Array E200i */
573         0x3212103C, /* Smart Array E200 */
574         0x3213103C, /* Smart Array E200i */
575         0x3214103C, /* Smart Array E200i */
576         0x3215103C, /* Smart Array E200i */
577         0x3237103C, /* Smart Array E500 */
578         0x323D103C, /* Smart Array P700m */
579         0x40800E11, /* Smart Array 5i */
580         0x409C0E11, /* Smart Array 6400 */
581         0x409D0E11, /* Smart Array 6400 EM */
582         0x40700E11, /* Smart Array 5300 */
583         0x40820E11, /* Smart Array 532 */
584         0x40830E11, /* Smart Array 5312 */
585         0x409A0E11, /* Smart Array 641 */
586         0x409B0E11, /* Smart Array 642 */
587         0x40910E11, /* Smart Array 6i */
588 };
589
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592         0x40800E11, /* Smart Array 5i */
593         0x40700E11, /* Smart Array 5300 */
594         0x40820E11, /* Smart Array 532 */
595         0x40830E11, /* Smart Array 5312 */
596         0x409A0E11, /* Smart Array 641 */
597         0x409B0E11, /* Smart Array 642 */
598         0x40910E11, /* Smart Array 6i */
599         /* Exclude 640x boards.  These are two pci devices in one slot
600          * which share a battery backed cache module.  One controls the
601          * cache, the other accesses the cache through the one that controls
602          * it.  If we reset the one controlling the cache, the other will
603          * likely not be happy.  Just forbid resetting this conjoined mess.
604          * The 640x isn't really supported by hpsa anyway.
605          */
606         0x409C0E11, /* Smart Array 6400 */
607         0x409D0E11, /* Smart Array 6400 EM */
608 };
609
610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
611 {
612         int i;
613
614         for (i = 0; i < nelems; i++)
615                 if (a[i] == board_id)
616                         return 1;
617         return 0;
618 }
619
620 static int ctlr_is_hard_resettable(u32 board_id)
621 {
622         return !board_id_in_array(unresettable_controller,
623                         ARRAY_SIZE(unresettable_controller), board_id);
624 }
625
626 static int ctlr_is_soft_resettable(u32 board_id)
627 {
628         return !board_id_in_array(soft_unresettable_controller,
629                         ARRAY_SIZE(soft_unresettable_controller), board_id);
630 }
631
632 static int ctlr_is_resettable(u32 board_id)
633 {
634         return ctlr_is_hard_resettable(board_id) ||
635                 ctlr_is_soft_resettable(board_id);
636 }
637
638 static ssize_t host_show_resettable(struct device *dev,
639         struct device_attribute *attr, char *buf)
640 {
641         struct ctlr_info *h;
642         struct Scsi_Host *shost = class_to_shost(dev);
643
644         h = shost_to_hba(shost);
645         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
646 }
647
648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
649 {
650         return (scsi3addr[3] & 0xC0) == 0x40;
651 }
652
653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
655 };
656 #define HPSA_RAID_0     0
657 #define HPSA_RAID_4     1
658 #define HPSA_RAID_1     2       /* also used for RAID 10 */
659 #define HPSA_RAID_5     3       /* also used for RAID 50 */
660 #define HPSA_RAID_51    4
661 #define HPSA_RAID_6     5       /* also used for RAID 60 */
662 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
665
666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
667 {
668         return !device->physical_device;
669 }
670
671 static ssize_t raid_level_show(struct device *dev,
672              struct device_attribute *attr, char *buf)
673 {
674         ssize_t l = 0;
675         unsigned char rlevel;
676         struct ctlr_info *h;
677         struct scsi_device *sdev;
678         struct hpsa_scsi_dev_t *hdev;
679         unsigned long flags;
680
681         sdev = to_scsi_device(dev);
682         h = sdev_to_hba(sdev);
683         spin_lock_irqsave(&h->lock, flags);
684         hdev = sdev->hostdata;
685         if (!hdev) {
686                 spin_unlock_irqrestore(&h->lock, flags);
687                 return -ENODEV;
688         }
689
690         /* Is this even a logical drive? */
691         if (!is_logical_device(hdev)) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
694                 return l;
695         }
696
697         rlevel = hdev->raid_level;
698         spin_unlock_irqrestore(&h->lock, flags);
699         if (rlevel > RAID_UNKNOWN)
700                 rlevel = RAID_UNKNOWN;
701         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
702         return l;
703 }
704
705 static ssize_t lunid_show(struct device *dev,
706              struct device_attribute *attr, char *buf)
707 {
708         struct ctlr_info *h;
709         struct scsi_device *sdev;
710         struct hpsa_scsi_dev_t *hdev;
711         unsigned long flags;
712         unsigned char lunid[8];
713
714         sdev = to_scsi_device(dev);
715         h = sdev_to_hba(sdev);
716         spin_lock_irqsave(&h->lock, flags);
717         hdev = sdev->hostdata;
718         if (!hdev) {
719                 spin_unlock_irqrestore(&h->lock, flags);
720                 return -ENODEV;
721         }
722         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723         spin_unlock_irqrestore(&h->lock, flags);
724         return snprintf(buf, 20, "0x%8phN\n", lunid);
725 }
726
727 static ssize_t unique_id_show(struct device *dev,
728              struct device_attribute *attr, char *buf)
729 {
730         struct ctlr_info *h;
731         struct scsi_device *sdev;
732         struct hpsa_scsi_dev_t *hdev;
733         unsigned long flags;
734         unsigned char sn[16];
735
736         sdev = to_scsi_device(dev);
737         h = sdev_to_hba(sdev);
738         spin_lock_irqsave(&h->lock, flags);
739         hdev = sdev->hostdata;
740         if (!hdev) {
741                 spin_unlock_irqrestore(&h->lock, flags);
742                 return -ENODEV;
743         }
744         memcpy(sn, hdev->device_id, sizeof(sn));
745         spin_unlock_irqrestore(&h->lock, flags);
746         return snprintf(buf, 16 * 2 + 2,
747                         "%02X%02X%02X%02X%02X%02X%02X%02X"
748                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
749                         sn[0], sn[1], sn[2], sn[3],
750                         sn[4], sn[5], sn[6], sn[7],
751                         sn[8], sn[9], sn[10], sn[11],
752                         sn[12], sn[13], sn[14], sn[15]);
753 }
754
755 static ssize_t sas_address_show(struct device *dev,
756               struct device_attribute *attr, char *buf)
757 {
758         struct ctlr_info *h;
759         struct scsi_device *sdev;
760         struct hpsa_scsi_dev_t *hdev;
761         unsigned long flags;
762         u64 sas_address;
763
764         sdev = to_scsi_device(dev);
765         h = sdev_to_hba(sdev);
766         spin_lock_irqsave(&h->lock, flags);
767         hdev = sdev->hostdata;
768         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769                 spin_unlock_irqrestore(&h->lock, flags);
770                 return -ENODEV;
771         }
772         sas_address = hdev->sas_address;
773         spin_unlock_irqrestore(&h->lock, flags);
774
775         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
776 }
777
778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779              struct device_attribute *attr, char *buf)
780 {
781         struct ctlr_info *h;
782         struct scsi_device *sdev;
783         struct hpsa_scsi_dev_t *hdev;
784         unsigned long flags;
785         int offload_enabled;
786
787         sdev = to_scsi_device(dev);
788         h = sdev_to_hba(sdev);
789         spin_lock_irqsave(&h->lock, flags);
790         hdev = sdev->hostdata;
791         if (!hdev) {
792                 spin_unlock_irqrestore(&h->lock, flags);
793                 return -ENODEV;
794         }
795         offload_enabled = hdev->offload_enabled;
796         spin_unlock_irqrestore(&h->lock, flags);
797
798         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799                 return snprintf(buf, 20, "%d\n", offload_enabled);
800         else
801                 return snprintf(buf, 40, "%s\n",
802                                 "Not applicable for a controller");
803 }
804
805 #define MAX_PATHS 8
806 static ssize_t path_info_show(struct device *dev,
807              struct device_attribute *attr, char *buf)
808 {
809         struct ctlr_info *h;
810         struct scsi_device *sdev;
811         struct hpsa_scsi_dev_t *hdev;
812         unsigned long flags;
813         int i;
814         int output_len = 0;
815         u8 box;
816         u8 bay;
817         u8 path_map_index = 0;
818         char *active;
819         unsigned char phys_connector[2];
820
821         sdev = to_scsi_device(dev);
822         h = sdev_to_hba(sdev);
823         spin_lock_irqsave(&h->devlock, flags);
824         hdev = sdev->hostdata;
825         if (!hdev) {
826                 spin_unlock_irqrestore(&h->devlock, flags);
827                 return -ENODEV;
828         }
829
830         bay = hdev->bay;
831         for (i = 0; i < MAX_PATHS; i++) {
832                 path_map_index = 1<<i;
833                 if (i == hdev->active_path_index)
834                         active = "Active";
835                 else if (hdev->path_map & path_map_index)
836                         active = "Inactive";
837                 else
838                         continue;
839
840                 output_len += scnprintf(buf + output_len,
841                                 PAGE_SIZE - output_len,
842                                 "[%d:%d:%d:%d] %20.20s ",
843                                 h->scsi_host->host_no,
844                                 hdev->bus, hdev->target, hdev->lun,
845                                 scsi_device_type(hdev->devtype));
846
847                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848                         output_len += scnprintf(buf + output_len,
849                                                 PAGE_SIZE - output_len,
850                                                 "%s\n", active);
851                         continue;
852                 }
853
854                 box = hdev->box[i];
855                 memcpy(&phys_connector, &hdev->phys_connector[i],
856                         sizeof(phys_connector));
857                 if (phys_connector[0] < '0')
858                         phys_connector[0] = '0';
859                 if (phys_connector[1] < '0')
860                         phys_connector[1] = '0';
861                 output_len += scnprintf(buf + output_len,
862                                 PAGE_SIZE - output_len,
863                                 "PORT: %.2s ",
864                                 phys_connector);
865                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866                         hdev->expose_device) {
867                         if (box == 0 || box == 0xFF) {
868                                 output_len += scnprintf(buf + output_len,
869                                         PAGE_SIZE - output_len,
870                                         "BAY: %hhu %s\n",
871                                         bay, active);
872                         } else {
873                                 output_len += scnprintf(buf + output_len,
874                                         PAGE_SIZE - output_len,
875                                         "BOX: %hhu BAY: %hhu %s\n",
876                                         box, bay, active);
877                         }
878                 } else if (box != 0 && box != 0xFF) {
879                         output_len += scnprintf(buf + output_len,
880                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
881                                 box, active);
882                 } else
883                         output_len += scnprintf(buf + output_len,
884                                 PAGE_SIZE - output_len, "%s\n", active);
885         }
886
887         spin_unlock_irqrestore(&h->devlock, flags);
888         return output_len;
889 }
890
891 static ssize_t host_show_ctlr_num(struct device *dev,
892         struct device_attribute *attr, char *buf)
893 {
894         struct ctlr_info *h;
895         struct Scsi_Host *shost = class_to_shost(dev);
896
897         h = shost_to_hba(shost);
898         return snprintf(buf, 20, "%d\n", h->ctlr);
899 }
900
901 static ssize_t host_show_legacy_board(struct device *dev,
902         struct device_attribute *attr, char *buf)
903 {
904         struct ctlr_info *h;
905         struct Scsi_Host *shost = class_to_shost(dev);
906
907         h = shost_to_hba(shost);
908         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
909 }
910
911 static DEVICE_ATTR_RO(raid_level);
912 static DEVICE_ATTR_RO(lunid);
913 static DEVICE_ATTR_RO(unique_id);
914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915 static DEVICE_ATTR_RO(sas_address);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917                         host_show_hp_ssd_smart_path_enabled, NULL);
918 static DEVICE_ATTR_RO(path_info);
919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920                 host_show_hp_ssd_smart_path_status,
921                 host_store_hp_ssd_smart_path_status);
922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923                         host_store_raid_offload_debug);
924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
925         host_show_firmware_revision, NULL);
926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927         host_show_commands_outstanding, NULL);
928 static DEVICE_ATTR(transport_mode, S_IRUGO,
929         host_show_transport_mode, NULL);
930 static DEVICE_ATTR(resettable, S_IRUGO,
931         host_show_resettable, NULL);
932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
933         host_show_lockup_detected, NULL);
934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
935         host_show_ctlr_num, NULL);
936 static DEVICE_ATTR(legacy_board, S_IRUGO,
937         host_show_legacy_board, NULL);
938
939 static struct device_attribute *hpsa_sdev_attrs[] = {
940         &dev_attr_raid_level,
941         &dev_attr_lunid,
942         &dev_attr_unique_id,
943         &dev_attr_hp_ssd_smart_path_enabled,
944         &dev_attr_path_info,
945         &dev_attr_sas_address,
946         NULL,
947 };
948
949 static struct device_attribute *hpsa_shost_attrs[] = {
950         &dev_attr_rescan,
951         &dev_attr_firmware_revision,
952         &dev_attr_commands_outstanding,
953         &dev_attr_transport_mode,
954         &dev_attr_resettable,
955         &dev_attr_hp_ssd_smart_path_status,
956         &dev_attr_raid_offload_debug,
957         &dev_attr_lockup_detected,
958         &dev_attr_ctlr_num,
959         &dev_attr_legacy_board,
960         NULL,
961 };
962
963 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
964                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
965
966 static struct scsi_host_template hpsa_driver_template = {
967         .module                 = THIS_MODULE,
968         .name                   = HPSA,
969         .proc_name              = HPSA,
970         .queuecommand           = hpsa_scsi_queue_command,
971         .scan_start             = hpsa_scan_start,
972         .scan_finished          = hpsa_scan_finished,
973         .change_queue_depth     = hpsa_change_queue_depth,
974         .this_id                = -1,
975         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
976         .ioctl                  = hpsa_ioctl,
977         .slave_alloc            = hpsa_slave_alloc,
978         .slave_configure        = hpsa_slave_configure,
979         .slave_destroy          = hpsa_slave_destroy,
980 #ifdef CONFIG_COMPAT
981         .compat_ioctl           = hpsa_compat_ioctl,
982 #endif
983         .sdev_attrs = hpsa_sdev_attrs,
984         .shost_attrs = hpsa_shost_attrs,
985         .max_sectors = 2048,
986         .no_write_same = 1,
987 };
988
989 static inline u32 next_command(struct ctlr_info *h, u8 q)
990 {
991         u32 a;
992         struct reply_queue_buffer *rq = &h->reply_queue[q];
993
994         if (h->transMethod & CFGTBL_Trans_io_accel1)
995                 return h->access.command_completed(h, q);
996
997         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
998                 return h->access.command_completed(h, q);
999
1000         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1001                 a = rq->head[rq->current_entry];
1002                 rq->current_entry++;
1003                 atomic_dec(&h->commands_outstanding);
1004         } else {
1005                 a = FIFO_EMPTY;
1006         }
1007         /* Check for wraparound */
1008         if (rq->current_entry == h->max_commands) {
1009                 rq->current_entry = 0;
1010                 rq->wraparound ^= 1;
1011         }
1012         return a;
1013 }
1014
1015 /*
1016  * There are some special bits in the bus address of the
1017  * command that we have to set for the controller to know
1018  * how to process the command:
1019  *
1020  * Normal performant mode:
1021  * bit 0: 1 means performant mode, 0 means simple mode.
1022  * bits 1-3 = block fetch table entry
1023  * bits 4-6 = command type (== 0)
1024  *
1025  * ioaccel1 mode:
1026  * bit 0 = "performant mode" bit.
1027  * bits 1-3 = block fetch table entry
1028  * bits 4-6 = command type (== 110)
1029  * (command type is needed because ioaccel1 mode
1030  * commands are submitted through the same register as normal
1031  * mode commands, so this is how the controller knows whether
1032  * the command is normal mode or ioaccel1 mode.)
1033  *
1034  * ioaccel2 mode:
1035  * bit 0 = "performant mode" bit.
1036  * bits 1-4 = block fetch table entry (note extra bit)
1037  * bits 4-6 = not needed, because ioaccel2 mode has
1038  * a separate special register for submitting commands.
1039  */
1040
1041 /*
1042  * set_performant_mode: Modify the tag for cciss performant
1043  * set bit 0 for pull model, bits 3-1 for block fetch
1044  * register number
1045  */
1046 #define DEFAULT_REPLY_QUEUE (-1)
1047 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1048                                         int reply_queue)
1049 {
1050         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1051                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1052                 if (unlikely(!h->msix_vectors))
1053                         return;
1054                 c->Header.ReplyQueue = reply_queue;
1055         }
1056 }
1057
1058 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1059                                                 struct CommandList *c,
1060                                                 int reply_queue)
1061 {
1062         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1063
1064         /*
1065          * Tell the controller to post the reply to the queue for this
1066          * processor.  This seems to give the best I/O throughput.
1067          */
1068         cp->ReplyQueue = reply_queue;
1069         /*
1070          * Set the bits in the address sent down to include:
1071          *  - performant mode bit (bit 0)
1072          *  - pull count (bits 1-3)
1073          *  - command type (bits 4-6)
1074          */
1075         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1076                                         IOACCEL1_BUSADDR_CMDTYPE;
1077 }
1078
1079 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1080                                                 struct CommandList *c,
1081                                                 int reply_queue)
1082 {
1083         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1084                 &h->ioaccel2_cmd_pool[c->cmdindex];
1085
1086         /* Tell the controller to post the reply to the queue for this
1087          * processor.  This seems to give the best I/O throughput.
1088          */
1089         cp->reply_queue = reply_queue;
1090         /* Set the bits in the address sent down to include:
1091          *  - performant mode bit not used in ioaccel mode 2
1092          *  - pull count (bits 0-3)
1093          *  - command type isn't needed for ioaccel2
1094          */
1095         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1096 }
1097
1098 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1099                                                 struct CommandList *c,
1100                                                 int reply_queue)
1101 {
1102         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1103
1104         /*
1105          * Tell the controller to post the reply to the queue for this
1106          * processor.  This seems to give the best I/O throughput.
1107          */
1108         cp->reply_queue = reply_queue;
1109         /*
1110          * Set the bits in the address sent down to include:
1111          *  - performant mode bit not used in ioaccel mode 2
1112          *  - pull count (bits 0-3)
1113          *  - command type isn't needed for ioaccel2
1114          */
1115         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1116 }
1117
1118 static int is_firmware_flash_cmd(u8 *cdb)
1119 {
1120         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1121 }
1122
1123 /*
1124  * During firmware flash, the heartbeat register may not update as frequently
1125  * as it should.  So we dial down lockup detection during firmware flash. and
1126  * dial it back up when firmware flash completes.
1127  */
1128 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1129 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1130 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1131 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1132                 struct CommandList *c)
1133 {
1134         if (!is_firmware_flash_cmd(c->Request.CDB))
1135                 return;
1136         atomic_inc(&h->firmware_flash_in_progress);
1137         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1138 }
1139
1140 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1141                 struct CommandList *c)
1142 {
1143         if (is_firmware_flash_cmd(c->Request.CDB) &&
1144                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1145                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1146 }
1147
1148 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1149         struct CommandList *c, int reply_queue)
1150 {
1151         dial_down_lockup_detection_during_fw_flash(h, c);
1152         atomic_inc(&h->commands_outstanding);
1153         if (c->device)
1154                 atomic_inc(&c->device->commands_outstanding);
1155
1156         reply_queue = h->reply_map[raw_smp_processor_id()];
1157         switch (c->cmd_type) {
1158         case CMD_IOACCEL1:
1159                 set_ioaccel1_performant_mode(h, c, reply_queue);
1160                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1161                 break;
1162         case CMD_IOACCEL2:
1163                 set_ioaccel2_performant_mode(h, c, reply_queue);
1164                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1165                 break;
1166         case IOACCEL2_TMF:
1167                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1168                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1169                 break;
1170         default:
1171                 set_performant_mode(h, c, reply_queue);
1172                 h->access.submit_command(h, c);
1173         }
1174 }
1175
1176 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1177 {
1178         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1179 }
1180
1181 static inline int is_hba_lunid(unsigned char scsi3addr[])
1182 {
1183         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1184 }
1185
1186 static inline int is_scsi_rev_5(struct ctlr_info *h)
1187 {
1188         if (!h->hba_inquiry_data)
1189                 return 0;
1190         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1191                 return 1;
1192         return 0;
1193 }
1194
1195 static int hpsa_find_target_lun(struct ctlr_info *h,
1196         unsigned char scsi3addr[], int bus, int *target, int *lun)
1197 {
1198         /* finds an unused bus, target, lun for a new physical device
1199          * assumes h->devlock is held
1200          */
1201         int i, found = 0;
1202         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1203
1204         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1205
1206         for (i = 0; i < h->ndevices; i++) {
1207                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1208                         __set_bit(h->dev[i]->target, lun_taken);
1209         }
1210
1211         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1212         if (i < HPSA_MAX_DEVICES) {
1213                 /* *bus = 1; */
1214                 *target = i;
1215                 *lun = 0;
1216                 found = 1;
1217         }
1218         return !found;
1219 }
1220
1221 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1222         struct hpsa_scsi_dev_t *dev, char *description)
1223 {
1224 #define LABEL_SIZE 25
1225         char label[LABEL_SIZE];
1226
1227         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1228                 return;
1229
1230         switch (dev->devtype) {
1231         case TYPE_RAID:
1232                 snprintf(label, LABEL_SIZE, "controller");
1233                 break;
1234         case TYPE_ENCLOSURE:
1235                 snprintf(label, LABEL_SIZE, "enclosure");
1236                 break;
1237         case TYPE_DISK:
1238         case TYPE_ZBC:
1239                 if (dev->external)
1240                         snprintf(label, LABEL_SIZE, "external");
1241                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1242                         snprintf(label, LABEL_SIZE, "%s",
1243                                 raid_label[PHYSICAL_DRIVE]);
1244                 else
1245                         snprintf(label, LABEL_SIZE, "RAID-%s",
1246                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1247                                 raid_label[dev->raid_level]);
1248                 break;
1249         case TYPE_ROM:
1250                 snprintf(label, LABEL_SIZE, "rom");
1251                 break;
1252         case TYPE_TAPE:
1253                 snprintf(label, LABEL_SIZE, "tape");
1254                 break;
1255         case TYPE_MEDIUM_CHANGER:
1256                 snprintf(label, LABEL_SIZE, "changer");
1257                 break;
1258         default:
1259                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1260                 break;
1261         }
1262
1263         dev_printk(level, &h->pdev->dev,
1264                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1265                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1266                         description,
1267                         scsi_device_type(dev->devtype),
1268                         dev->vendor,
1269                         dev->model,
1270                         label,
1271                         dev->offload_config ? '+' : '-',
1272                         dev->offload_to_be_enabled ? '+' : '-',
1273                         dev->expose_device);
1274 }
1275
1276 /* Add an entry into h->dev[] array. */
1277 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1278                 struct hpsa_scsi_dev_t *device,
1279                 struct hpsa_scsi_dev_t *added[], int *nadded)
1280 {
1281         /* assumes h->devlock is held */
1282         int n = h->ndevices;
1283         int i;
1284         unsigned char addr1[8], addr2[8];
1285         struct hpsa_scsi_dev_t *sd;
1286
1287         if (n >= HPSA_MAX_DEVICES) {
1288                 dev_err(&h->pdev->dev, "too many devices, some will be "
1289                         "inaccessible.\n");
1290                 return -1;
1291         }
1292
1293         /* physical devices do not have lun or target assigned until now. */
1294         if (device->lun != -1)
1295                 /* Logical device, lun is already assigned. */
1296                 goto lun_assigned;
1297
1298         /* If this device a non-zero lun of a multi-lun device
1299          * byte 4 of the 8-byte LUN addr will contain the logical
1300          * unit no, zero otherwise.
1301          */
1302         if (device->scsi3addr[4] == 0) {
1303                 /* This is not a non-zero lun of a multi-lun device */
1304                 if (hpsa_find_target_lun(h, device->scsi3addr,
1305                         device->bus, &device->target, &device->lun) != 0)
1306                         return -1;
1307                 goto lun_assigned;
1308         }
1309
1310         /* This is a non-zero lun of a multi-lun device.
1311          * Search through our list and find the device which
1312          * has the same 8 byte LUN address, excepting byte 4 and 5.
1313          * Assign the same bus and target for this new LUN.
1314          * Use the logical unit number from the firmware.
1315          */
1316         memcpy(addr1, device->scsi3addr, 8);
1317         addr1[4] = 0;
1318         addr1[5] = 0;
1319         for (i = 0; i < n; i++) {
1320                 sd = h->dev[i];
1321                 memcpy(addr2, sd->scsi3addr, 8);
1322                 addr2[4] = 0;
1323                 addr2[5] = 0;
1324                 /* differ only in byte 4 and 5? */
1325                 if (memcmp(addr1, addr2, 8) == 0) {
1326                         device->bus = sd->bus;
1327                         device->target = sd->target;
1328                         device->lun = device->scsi3addr[4];
1329                         break;
1330                 }
1331         }
1332         if (device->lun == -1) {
1333                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1334                         " suspect firmware bug or unsupported hardware "
1335                         "configuration.\n");
1336                 return -1;
1337         }
1338
1339 lun_assigned:
1340
1341         h->dev[n] = device;
1342         h->ndevices++;
1343         added[*nadded] = device;
1344         (*nadded)++;
1345         hpsa_show_dev_msg(KERN_INFO, h, device,
1346                 device->expose_device ? "added" : "masked");
1347         return 0;
1348 }
1349
1350 /*
1351  * Called during a scan operation.
1352  *
1353  * Update an entry in h->dev[] array.
1354  */
1355 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1356         int entry, struct hpsa_scsi_dev_t *new_entry)
1357 {
1358         /* assumes h->devlock is held */
1359         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1360
1361         /* Raid level changed. */
1362         h->dev[entry]->raid_level = new_entry->raid_level;
1363
1364         /*
1365          * ioacccel_handle may have changed for a dual domain disk
1366          */
1367         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1368
1369         /* Raid offload parameters changed.  Careful about the ordering. */
1370         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1371                 /*
1372                  * if drive is newly offload_enabled, we want to copy the
1373                  * raid map data first.  If previously offload_enabled and
1374                  * offload_config were set, raid map data had better be
1375                  * the same as it was before. If raid map data has changed
1376                  * then it had better be the case that
1377                  * h->dev[entry]->offload_enabled is currently 0.
1378                  */
1379                 h->dev[entry]->raid_map = new_entry->raid_map;
1380                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1381         }
1382         if (new_entry->offload_to_be_enabled) {
1383                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1384                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1385         }
1386         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1387         h->dev[entry]->offload_config = new_entry->offload_config;
1388         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1389         h->dev[entry]->queue_depth = new_entry->queue_depth;
1390
1391         /*
1392          * We can turn off ioaccel offload now, but need to delay turning
1393          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1394          * can't do that until all the devices are updated.
1395          */
1396         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1397
1398         /*
1399          * turn ioaccel off immediately if told to do so.
1400          */
1401         if (!new_entry->offload_to_be_enabled)
1402                 h->dev[entry]->offload_enabled = 0;
1403
1404         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1405 }
1406
1407 /* Replace an entry from h->dev[] array. */
1408 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1409         int entry, struct hpsa_scsi_dev_t *new_entry,
1410         struct hpsa_scsi_dev_t *added[], int *nadded,
1411         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1412 {
1413         /* assumes h->devlock is held */
1414         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1415         removed[*nremoved] = h->dev[entry];
1416         (*nremoved)++;
1417
1418         /*
1419          * New physical devices won't have target/lun assigned yet
1420          * so we need to preserve the values in the slot we are replacing.
1421          */
1422         if (new_entry->target == -1) {
1423                 new_entry->target = h->dev[entry]->target;
1424                 new_entry->lun = h->dev[entry]->lun;
1425         }
1426
1427         h->dev[entry] = new_entry;
1428         added[*nadded] = new_entry;
1429         (*nadded)++;
1430
1431         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1432 }
1433
1434 /* Remove an entry from h->dev[] array. */
1435 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1436         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1437 {
1438         /* assumes h->devlock is held */
1439         int i;
1440         struct hpsa_scsi_dev_t *sd;
1441
1442         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1443
1444         sd = h->dev[entry];
1445         removed[*nremoved] = h->dev[entry];
1446         (*nremoved)++;
1447
1448         for (i = entry; i < h->ndevices-1; i++)
1449                 h->dev[i] = h->dev[i+1];
1450         h->ndevices--;
1451         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1452 }
1453
1454 #define SCSI3ADDR_EQ(a, b) ( \
1455         (a)[7] == (b)[7] && \
1456         (a)[6] == (b)[6] && \
1457         (a)[5] == (b)[5] && \
1458         (a)[4] == (b)[4] && \
1459         (a)[3] == (b)[3] && \
1460         (a)[2] == (b)[2] && \
1461         (a)[1] == (b)[1] && \
1462         (a)[0] == (b)[0])
1463
1464 static void fixup_botched_add(struct ctlr_info *h,
1465         struct hpsa_scsi_dev_t *added)
1466 {
1467         /* called when scsi_add_device fails in order to re-adjust
1468          * h->dev[] to match the mid layer's view.
1469          */
1470         unsigned long flags;
1471         int i, j;
1472
1473         spin_lock_irqsave(&h->lock, flags);
1474         for (i = 0; i < h->ndevices; i++) {
1475                 if (h->dev[i] == added) {
1476                         for (j = i; j < h->ndevices-1; j++)
1477                                 h->dev[j] = h->dev[j+1];
1478                         h->ndevices--;
1479                         break;
1480                 }
1481         }
1482         spin_unlock_irqrestore(&h->lock, flags);
1483         kfree(added);
1484 }
1485
1486 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1487         struct hpsa_scsi_dev_t *dev2)
1488 {
1489         /* we compare everything except lun and target as these
1490          * are not yet assigned.  Compare parts likely
1491          * to differ first
1492          */
1493         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1494                 sizeof(dev1->scsi3addr)) != 0)
1495                 return 0;
1496         if (memcmp(dev1->device_id, dev2->device_id,
1497                 sizeof(dev1->device_id)) != 0)
1498                 return 0;
1499         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1500                 return 0;
1501         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1502                 return 0;
1503         if (dev1->devtype != dev2->devtype)
1504                 return 0;
1505         if (dev1->bus != dev2->bus)
1506                 return 0;
1507         return 1;
1508 }
1509
1510 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1511         struct hpsa_scsi_dev_t *dev2)
1512 {
1513         /* Device attributes that can change, but don't mean
1514          * that the device is a different device, nor that the OS
1515          * needs to be told anything about the change.
1516          */
1517         if (dev1->raid_level != dev2->raid_level)
1518                 return 1;
1519         if (dev1->offload_config != dev2->offload_config)
1520                 return 1;
1521         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1522                 return 1;
1523         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1524                 if (dev1->queue_depth != dev2->queue_depth)
1525                         return 1;
1526         /*
1527          * This can happen for dual domain devices. An active
1528          * path change causes the ioaccel handle to change
1529          *
1530          * for example note the handle differences between p0 and p1
1531          * Device                    WWN               ,WWN hash,Handle
1532          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1533          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1534          */
1535         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1536                 return 1;
1537         return 0;
1538 }
1539
1540 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1541  * and return needle location in *index.  If scsi3addr matches, but not
1542  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1543  * location in *index.
1544  * In the case of a minor device attribute change, such as RAID level, just
1545  * return DEVICE_UPDATED, along with the updated device's location in index.
1546  * If needle not found, return DEVICE_NOT_FOUND.
1547  */
1548 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1549         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1550         int *index)
1551 {
1552         int i;
1553 #define DEVICE_NOT_FOUND 0
1554 #define DEVICE_CHANGED 1
1555 #define DEVICE_SAME 2
1556 #define DEVICE_UPDATED 3
1557         if (needle == NULL)
1558                 return DEVICE_NOT_FOUND;
1559
1560         for (i = 0; i < haystack_size; i++) {
1561                 if (haystack[i] == NULL) /* previously removed. */
1562                         continue;
1563                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1564                         *index = i;
1565                         if (device_is_the_same(needle, haystack[i])) {
1566                                 if (device_updated(needle, haystack[i]))
1567                                         return DEVICE_UPDATED;
1568                                 return DEVICE_SAME;
1569                         } else {
1570                                 /* Keep offline devices offline */
1571                                 if (needle->volume_offline)
1572                                         return DEVICE_NOT_FOUND;
1573                                 return DEVICE_CHANGED;
1574                         }
1575                 }
1576         }
1577         *index = -1;
1578         return DEVICE_NOT_FOUND;
1579 }
1580
1581 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1582                                         unsigned char scsi3addr[])
1583 {
1584         struct offline_device_entry *device;
1585         unsigned long flags;
1586
1587         /* Check to see if device is already on the list */
1588         spin_lock_irqsave(&h->offline_device_lock, flags);
1589         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1590                 if (memcmp(device->scsi3addr, scsi3addr,
1591                         sizeof(device->scsi3addr)) == 0) {
1592                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1593                         return;
1594                 }
1595         }
1596         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1597
1598         /* Device is not on the list, add it. */
1599         device = kmalloc(sizeof(*device), GFP_KERNEL);
1600         if (!device)
1601                 return;
1602
1603         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1604         spin_lock_irqsave(&h->offline_device_lock, flags);
1605         list_add_tail(&device->offline_list, &h->offline_device_list);
1606         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1607 }
1608
1609 /* Print a message explaining various offline volume states */
1610 static void hpsa_show_volume_status(struct ctlr_info *h,
1611         struct hpsa_scsi_dev_t *sd)
1612 {
1613         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1614                 dev_info(&h->pdev->dev,
1615                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1616                         h->scsi_host->host_no,
1617                         sd->bus, sd->target, sd->lun);
1618         switch (sd->volume_offline) {
1619         case HPSA_LV_OK:
1620                 break;
1621         case HPSA_LV_UNDERGOING_ERASE:
1622                 dev_info(&h->pdev->dev,
1623                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1624                         h->scsi_host->host_no,
1625                         sd->bus, sd->target, sd->lun);
1626                 break;
1627         case HPSA_LV_NOT_AVAILABLE:
1628                 dev_info(&h->pdev->dev,
1629                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1630                         h->scsi_host->host_no,
1631                         sd->bus, sd->target, sd->lun);
1632                 break;
1633         case HPSA_LV_UNDERGOING_RPI:
1634                 dev_info(&h->pdev->dev,
1635                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1636                         h->scsi_host->host_no,
1637                         sd->bus, sd->target, sd->lun);
1638                 break;
1639         case HPSA_LV_PENDING_RPI:
1640                 dev_info(&h->pdev->dev,
1641                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1642                         h->scsi_host->host_no,
1643                         sd->bus, sd->target, sd->lun);
1644                 break;
1645         case HPSA_LV_ENCRYPTED_NO_KEY:
1646                 dev_info(&h->pdev->dev,
1647                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1648                         h->scsi_host->host_no,
1649                         sd->bus, sd->target, sd->lun);
1650                 break;
1651         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1652                 dev_info(&h->pdev->dev,
1653                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1654                         h->scsi_host->host_no,
1655                         sd->bus, sd->target, sd->lun);
1656                 break;
1657         case HPSA_LV_UNDERGOING_ENCRYPTION:
1658                 dev_info(&h->pdev->dev,
1659                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1660                         h->scsi_host->host_no,
1661                         sd->bus, sd->target, sd->lun);
1662                 break;
1663         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1664                 dev_info(&h->pdev->dev,
1665                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1666                         h->scsi_host->host_no,
1667                         sd->bus, sd->target, sd->lun);
1668                 break;
1669         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1670                 dev_info(&h->pdev->dev,
1671                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1672                         h->scsi_host->host_no,
1673                         sd->bus, sd->target, sd->lun);
1674                 break;
1675         case HPSA_LV_PENDING_ENCRYPTION:
1676                 dev_info(&h->pdev->dev,
1677                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1678                         h->scsi_host->host_no,
1679                         sd->bus, sd->target, sd->lun);
1680                 break;
1681         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1682                 dev_info(&h->pdev->dev,
1683                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1684                         h->scsi_host->host_no,
1685                         sd->bus, sd->target, sd->lun);
1686                 break;
1687         }
1688 }
1689
1690 /*
1691  * Figure the list of physical drive pointers for a logical drive with
1692  * raid offload configured.
1693  */
1694 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1695                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1696                                 struct hpsa_scsi_dev_t *logical_drive)
1697 {
1698         struct raid_map_data *map = &logical_drive->raid_map;
1699         struct raid_map_disk_data *dd = &map->data[0];
1700         int i, j;
1701         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1702                                 le16_to_cpu(map->metadata_disks_per_row);
1703         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1704                                 le16_to_cpu(map->layout_map_count) *
1705                                 total_disks_per_row;
1706         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1707                                 total_disks_per_row;
1708         int qdepth;
1709
1710         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1711                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1712
1713         logical_drive->nphysical_disks = nraid_map_entries;
1714
1715         qdepth = 0;
1716         for (i = 0; i < nraid_map_entries; i++) {
1717                 logical_drive->phys_disk[i] = NULL;
1718                 if (!logical_drive->offload_config)
1719                         continue;
1720                 for (j = 0; j < ndevices; j++) {
1721                         if (dev[j] == NULL)
1722                                 continue;
1723                         if (dev[j]->devtype != TYPE_DISK &&
1724                             dev[j]->devtype != TYPE_ZBC)
1725                                 continue;
1726                         if (is_logical_device(dev[j]))
1727                                 continue;
1728                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1729                                 continue;
1730
1731                         logical_drive->phys_disk[i] = dev[j];
1732                         if (i < nphys_disk)
1733                                 qdepth = min(h->nr_cmds, qdepth +
1734                                     logical_drive->phys_disk[i]->queue_depth);
1735                         break;
1736                 }
1737
1738                 /*
1739                  * This can happen if a physical drive is removed and
1740                  * the logical drive is degraded.  In that case, the RAID
1741                  * map data will refer to a physical disk which isn't actually
1742                  * present.  And in that case offload_enabled should already
1743                  * be 0, but we'll turn it off here just in case
1744                  */
1745                 if (!logical_drive->phys_disk[i]) {
1746                         dev_warn(&h->pdev->dev,
1747                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1748                                 __func__,
1749                                 h->scsi_host->host_no, logical_drive->bus,
1750                                 logical_drive->target, logical_drive->lun);
1751                         hpsa_turn_off_ioaccel_for_device(logical_drive);
1752                         logical_drive->queue_depth = 8;
1753                 }
1754         }
1755         if (nraid_map_entries)
1756                 /*
1757                  * This is correct for reads, too high for full stripe writes,
1758                  * way too high for partial stripe writes
1759                  */
1760                 logical_drive->queue_depth = qdepth;
1761         else {
1762                 if (logical_drive->external)
1763                         logical_drive->queue_depth = EXTERNAL_QD;
1764                 else
1765                         logical_drive->queue_depth = h->nr_cmds;
1766         }
1767 }
1768
1769 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1770                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1771 {
1772         int i;
1773
1774         for (i = 0; i < ndevices; i++) {
1775                 if (dev[i] == NULL)
1776                         continue;
1777                 if (dev[i]->devtype != TYPE_DISK &&
1778                     dev[i]->devtype != TYPE_ZBC)
1779                         continue;
1780                 if (!is_logical_device(dev[i]))
1781                         continue;
1782
1783                 /*
1784                  * If offload is currently enabled, the RAID map and
1785                  * phys_disk[] assignment *better* not be changing
1786                  * because we would be changing ioaccel phsy_disk[] pointers
1787                  * on a ioaccel volume processing I/O requests.
1788                  *
1789                  * If an ioaccel volume status changed, initially because it was
1790                  * re-configured and thus underwent a transformation, or
1791                  * a drive failed, we would have received a state change
1792                  * request and ioaccel should have been turned off. When the
1793                  * transformation completes, we get another state change
1794                  * request to turn ioaccel back on. In this case, we need
1795                  * to update the ioaccel information.
1796                  *
1797                  * Thus: If it is not currently enabled, but will be after
1798                  * the scan completes, make sure the ioaccel pointers
1799                  * are up to date.
1800                  */
1801
1802                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1803                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1804         }
1805 }
1806
1807 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1808 {
1809         int rc = 0;
1810
1811         if (!h->scsi_host)
1812                 return 1;
1813
1814         if (is_logical_device(device)) /* RAID */
1815                 rc = scsi_add_device(h->scsi_host, device->bus,
1816                                         device->target, device->lun);
1817         else /* HBA */
1818                 rc = hpsa_add_sas_device(h->sas_host, device);
1819
1820         return rc;
1821 }
1822
1823 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1824                                                 struct hpsa_scsi_dev_t *dev)
1825 {
1826         int i;
1827         int count = 0;
1828
1829         for (i = 0; i < h->nr_cmds; i++) {
1830                 struct CommandList *c = h->cmd_pool + i;
1831                 int refcount = atomic_inc_return(&c->refcount);
1832
1833                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1834                                 dev->scsi3addr)) {
1835                         unsigned long flags;
1836
1837                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1838                         if (!hpsa_is_cmd_idle(c))
1839                                 ++count;
1840                         spin_unlock_irqrestore(&h->lock, flags);
1841                 }
1842
1843                 cmd_free(h, c);
1844         }
1845
1846         return count;
1847 }
1848
1849 #define NUM_WAIT 20
1850 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1851                                                 struct hpsa_scsi_dev_t *device)
1852 {
1853         int cmds = 0;
1854         int waits = 0;
1855         int num_wait = NUM_WAIT;
1856
1857         if (device->external)
1858                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1859
1860         while (1) {
1861                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1862                 if (cmds == 0)
1863                         break;
1864                 if (++waits > num_wait)
1865                         break;
1866                 msleep(1000);
1867         }
1868
1869         if (waits > num_wait) {
1870                 dev_warn(&h->pdev->dev,
1871                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1872                         __func__,
1873                         h->scsi_host->host_no,
1874                         device->bus, device->target, device->lun, cmds);
1875         }
1876 }
1877
1878 static void hpsa_remove_device(struct ctlr_info *h,
1879                         struct hpsa_scsi_dev_t *device)
1880 {
1881         struct scsi_device *sdev = NULL;
1882
1883         if (!h->scsi_host)
1884                 return;
1885
1886         /*
1887          * Allow for commands to drain
1888          */
1889         device->removed = 1;
1890         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1891
1892         if (is_logical_device(device)) { /* RAID */
1893                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1894                                                 device->target, device->lun);
1895                 if (sdev) {
1896                         scsi_remove_device(sdev);
1897                         scsi_device_put(sdev);
1898                 } else {
1899                         /*
1900                          * We don't expect to get here.  Future commands
1901                          * to this device will get a selection timeout as
1902                          * if the device were gone.
1903                          */
1904                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1905                                         "didn't find device for removal.");
1906                 }
1907         } else { /* HBA */
1908
1909                 hpsa_remove_sas_device(device);
1910         }
1911 }
1912
1913 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1914         struct hpsa_scsi_dev_t *sd[], int nsds)
1915 {
1916         /* sd contains scsi3 addresses and devtypes, and inquiry
1917          * data.  This function takes what's in sd to be the current
1918          * reality and updates h->dev[] to reflect that reality.
1919          */
1920         int i, entry, device_change, changes = 0;
1921         struct hpsa_scsi_dev_t *csd;
1922         unsigned long flags;
1923         struct hpsa_scsi_dev_t **added, **removed;
1924         int nadded, nremoved;
1925
1926         /*
1927          * A reset can cause a device status to change
1928          * re-schedule the scan to see what happened.
1929          */
1930         spin_lock_irqsave(&h->reset_lock, flags);
1931         if (h->reset_in_progress) {
1932                 h->drv_req_rescan = 1;
1933                 spin_unlock_irqrestore(&h->reset_lock, flags);
1934                 return;
1935         }
1936         spin_unlock_irqrestore(&h->reset_lock, flags);
1937
1938         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1939         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1940
1941         if (!added || !removed) {
1942                 dev_warn(&h->pdev->dev, "out of memory in "
1943                         "adjust_hpsa_scsi_table\n");
1944                 goto free_and_out;
1945         }
1946
1947         spin_lock_irqsave(&h->devlock, flags);
1948
1949         /* find any devices in h->dev[] that are not in
1950          * sd[] and remove them from h->dev[], and for any
1951          * devices which have changed, remove the old device
1952          * info and add the new device info.
1953          * If minor device attributes change, just update
1954          * the existing device structure.
1955          */
1956         i = 0;
1957         nremoved = 0;
1958         nadded = 0;
1959         while (i < h->ndevices) {
1960                 csd = h->dev[i];
1961                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1962                 if (device_change == DEVICE_NOT_FOUND) {
1963                         changes++;
1964                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1965                         continue; /* remove ^^^, hence i not incremented */
1966                 } else if (device_change == DEVICE_CHANGED) {
1967                         changes++;
1968                         hpsa_scsi_replace_entry(h, i, sd[entry],
1969                                 added, &nadded, removed, &nremoved);
1970                         /* Set it to NULL to prevent it from being freed
1971                          * at the bottom of hpsa_update_scsi_devices()
1972                          */
1973                         sd[entry] = NULL;
1974                 } else if (device_change == DEVICE_UPDATED) {
1975                         hpsa_scsi_update_entry(h, i, sd[entry]);
1976                 }
1977                 i++;
1978         }
1979
1980         /* Now, make sure every device listed in sd[] is also
1981          * listed in h->dev[], adding them if they aren't found
1982          */
1983
1984         for (i = 0; i < nsds; i++) {
1985                 if (!sd[i]) /* if already added above. */
1986                         continue;
1987
1988                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1989                  * as the SCSI mid-layer does not handle such devices well.
1990                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1991                  * at 160Hz, and prevents the system from coming up.
1992                  */
1993                 if (sd[i]->volume_offline) {
1994                         hpsa_show_volume_status(h, sd[i]);
1995                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1996                         continue;
1997                 }
1998
1999                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2000                                         h->ndevices, &entry);
2001                 if (device_change == DEVICE_NOT_FOUND) {
2002                         changes++;
2003                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2004                                 break;
2005                         sd[i] = NULL; /* prevent from being freed later. */
2006                 } else if (device_change == DEVICE_CHANGED) {
2007                         /* should never happen... */
2008                         changes++;
2009                         dev_warn(&h->pdev->dev,
2010                                 "device unexpectedly changed.\n");
2011                         /* but if it does happen, we just ignore that device */
2012                 }
2013         }
2014         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2015
2016         /*
2017          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2018          * any logical drives that need it enabled.
2019          *
2020          * The raid map should be current by now.
2021          *
2022          * We are updating the device list used for I/O requests.
2023          */
2024         for (i = 0; i < h->ndevices; i++) {
2025                 if (h->dev[i] == NULL)
2026                         continue;
2027                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2028         }
2029
2030         spin_unlock_irqrestore(&h->devlock, flags);
2031
2032         /* Monitor devices which are in one of several NOT READY states to be
2033          * brought online later. This must be done without holding h->devlock,
2034          * so don't touch h->dev[]
2035          */
2036         for (i = 0; i < nsds; i++) {
2037                 if (!sd[i]) /* if already added above. */
2038                         continue;
2039                 if (sd[i]->volume_offline)
2040                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2041         }
2042
2043         /* Don't notify scsi mid layer of any changes the first time through
2044          * (or if there are no changes) scsi_scan_host will do it later the
2045          * first time through.
2046          */
2047         if (!changes)
2048                 goto free_and_out;
2049
2050         /* Notify scsi mid layer of any removed devices */
2051         for (i = 0; i < nremoved; i++) {
2052                 if (removed[i] == NULL)
2053                         continue;
2054                 if (removed[i]->expose_device)
2055                         hpsa_remove_device(h, removed[i]);
2056                 kfree(removed[i]);
2057                 removed[i] = NULL;
2058         }
2059
2060         /* Notify scsi mid layer of any added devices */
2061         for (i = 0; i < nadded; i++) {
2062                 int rc = 0;
2063
2064                 if (added[i] == NULL)
2065                         continue;
2066                 if (!(added[i]->expose_device))
2067                         continue;
2068                 rc = hpsa_add_device(h, added[i]);
2069                 if (!rc)
2070                         continue;
2071                 dev_warn(&h->pdev->dev,
2072                         "addition failed %d, device not added.", rc);
2073                 /* now we have to remove it from h->dev,
2074                  * since it didn't get added to scsi mid layer
2075                  */
2076                 fixup_botched_add(h, added[i]);
2077                 h->drv_req_rescan = 1;
2078         }
2079
2080 free_and_out:
2081         kfree(added);
2082         kfree(removed);
2083 }
2084
2085 /*
2086  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2087  * Assume's h->devlock is held.
2088  */
2089 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2090         int bus, int target, int lun)
2091 {
2092         int i;
2093         struct hpsa_scsi_dev_t *sd;
2094
2095         for (i = 0; i < h->ndevices; i++) {
2096                 sd = h->dev[i];
2097                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2098                         return sd;
2099         }
2100         return NULL;
2101 }
2102
2103 static int hpsa_slave_alloc(struct scsi_device *sdev)
2104 {
2105         struct hpsa_scsi_dev_t *sd = NULL;
2106         unsigned long flags;
2107         struct ctlr_info *h;
2108
2109         h = sdev_to_hba(sdev);
2110         spin_lock_irqsave(&h->devlock, flags);
2111         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2112                 struct scsi_target *starget;
2113                 struct sas_rphy *rphy;
2114
2115                 starget = scsi_target(sdev);
2116                 rphy = target_to_rphy(starget);
2117                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2118                 if (sd) {
2119                         sd->target = sdev_id(sdev);
2120                         sd->lun = sdev->lun;
2121                 }
2122         }
2123         if (!sd)
2124                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2125                                         sdev_id(sdev), sdev->lun);
2126
2127         if (sd && sd->expose_device) {
2128                 atomic_set(&sd->ioaccel_cmds_out, 0);
2129                 sdev->hostdata = sd;
2130         } else
2131                 sdev->hostdata = NULL;
2132         spin_unlock_irqrestore(&h->devlock, flags);
2133         return 0;
2134 }
2135
2136 /* configure scsi device based on internal per-device structure */
2137 static int hpsa_slave_configure(struct scsi_device *sdev)
2138 {
2139         struct hpsa_scsi_dev_t *sd;
2140         int queue_depth;
2141
2142         sd = sdev->hostdata;
2143         sdev->no_uld_attach = !sd || !sd->expose_device;
2144
2145         if (sd) {
2146                 sd->was_removed = 0;
2147                 if (sd->external) {
2148                         queue_depth = EXTERNAL_QD;
2149                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2150                         blk_queue_rq_timeout(sdev->request_queue,
2151                                                 HPSA_EH_PTRAID_TIMEOUT);
2152                 } else {
2153                         queue_depth = sd->queue_depth != 0 ?
2154                                         sd->queue_depth : sdev->host->can_queue;
2155                 }
2156         } else
2157                 queue_depth = sdev->host->can_queue;
2158
2159         scsi_change_queue_depth(sdev, queue_depth);
2160
2161         return 0;
2162 }
2163
2164 static void hpsa_slave_destroy(struct scsi_device *sdev)
2165 {
2166         struct hpsa_scsi_dev_t *hdev = NULL;
2167
2168         hdev = sdev->hostdata;
2169
2170         if (hdev)
2171                 hdev->was_removed = 1;
2172 }
2173
2174 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2175 {
2176         int i;
2177
2178         if (!h->ioaccel2_cmd_sg_list)
2179                 return;
2180         for (i = 0; i < h->nr_cmds; i++) {
2181                 kfree(h->ioaccel2_cmd_sg_list[i]);
2182                 h->ioaccel2_cmd_sg_list[i] = NULL;
2183         }
2184         kfree(h->ioaccel2_cmd_sg_list);
2185         h->ioaccel2_cmd_sg_list = NULL;
2186 }
2187
2188 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2189 {
2190         int i;
2191
2192         if (h->chainsize <= 0)
2193                 return 0;
2194
2195         h->ioaccel2_cmd_sg_list =
2196                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2197                                         GFP_KERNEL);
2198         if (!h->ioaccel2_cmd_sg_list)
2199                 return -ENOMEM;
2200         for (i = 0; i < h->nr_cmds; i++) {
2201                 h->ioaccel2_cmd_sg_list[i] =
2202                         kmalloc_array(h->maxsgentries,
2203                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2204                                       GFP_KERNEL);
2205                 if (!h->ioaccel2_cmd_sg_list[i])
2206                         goto clean;
2207         }
2208         return 0;
2209
2210 clean:
2211         hpsa_free_ioaccel2_sg_chain_blocks(h);
2212         return -ENOMEM;
2213 }
2214
2215 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2216 {
2217         int i;
2218
2219         if (!h->cmd_sg_list)
2220                 return;
2221         for (i = 0; i < h->nr_cmds; i++) {
2222                 kfree(h->cmd_sg_list[i]);
2223                 h->cmd_sg_list[i] = NULL;
2224         }
2225         kfree(h->cmd_sg_list);
2226         h->cmd_sg_list = NULL;
2227 }
2228
2229 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2230 {
2231         int i;
2232
2233         if (h->chainsize <= 0)
2234                 return 0;
2235
2236         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2237                                  GFP_KERNEL);
2238         if (!h->cmd_sg_list)
2239                 return -ENOMEM;
2240
2241         for (i = 0; i < h->nr_cmds; i++) {
2242                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2243                                                   sizeof(*h->cmd_sg_list[i]),
2244                                                   GFP_KERNEL);
2245                 if (!h->cmd_sg_list[i])
2246                         goto clean;
2247
2248         }
2249         return 0;
2250
2251 clean:
2252         hpsa_free_sg_chain_blocks(h);
2253         return -ENOMEM;
2254 }
2255
2256 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2257         struct io_accel2_cmd *cp, struct CommandList *c)
2258 {
2259         struct ioaccel2_sg_element *chain_block;
2260         u64 temp64;
2261         u32 chain_size;
2262
2263         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2264         chain_size = le32_to_cpu(cp->sg[0].length);
2265         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2266                                 DMA_TO_DEVICE);
2267         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2268                 /* prevent subsequent unmapping */
2269                 cp->sg->address = 0;
2270                 return -1;
2271         }
2272         cp->sg->address = cpu_to_le64(temp64);
2273         return 0;
2274 }
2275
2276 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2277         struct io_accel2_cmd *cp)
2278 {
2279         struct ioaccel2_sg_element *chain_sg;
2280         u64 temp64;
2281         u32 chain_size;
2282
2283         chain_sg = cp->sg;
2284         temp64 = le64_to_cpu(chain_sg->address);
2285         chain_size = le32_to_cpu(cp->sg[0].length);
2286         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2287 }
2288
2289 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2290         struct CommandList *c)
2291 {
2292         struct SGDescriptor *chain_sg, *chain_block;
2293         u64 temp64;
2294         u32 chain_len;
2295
2296         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2297         chain_block = h->cmd_sg_list[c->cmdindex];
2298         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2299         chain_len = sizeof(*chain_sg) *
2300                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2301         chain_sg->Len = cpu_to_le32(chain_len);
2302         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2303                                 DMA_TO_DEVICE);
2304         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2305                 /* prevent subsequent unmapping */
2306                 chain_sg->Addr = cpu_to_le64(0);
2307                 return -1;
2308         }
2309         chain_sg->Addr = cpu_to_le64(temp64);
2310         return 0;
2311 }
2312
2313 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2314         struct CommandList *c)
2315 {
2316         struct SGDescriptor *chain_sg;
2317
2318         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2319                 return;
2320
2321         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2322         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2323                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2324 }
2325
2326
2327 /* Decode the various types of errors on ioaccel2 path.
2328  * Return 1 for any error that should generate a RAID path retry.
2329  * Return 0 for errors that don't require a RAID path retry.
2330  */
2331 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2332                                         struct CommandList *c,
2333                                         struct scsi_cmnd *cmd,
2334                                         struct io_accel2_cmd *c2,
2335                                         struct hpsa_scsi_dev_t *dev)
2336 {
2337         int data_len;
2338         int retry = 0;
2339         u32 ioaccel2_resid = 0;
2340
2341         switch (c2->error_data.serv_response) {
2342         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2343                 switch (c2->error_data.status) {
2344                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2345                         if (cmd)
2346                                 cmd->result = 0;
2347                         break;
2348                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2349                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2350                         if (c2->error_data.data_present !=
2351                                         IOACCEL2_SENSE_DATA_PRESENT) {
2352                                 memset(cmd->sense_buffer, 0,
2353                                         SCSI_SENSE_BUFFERSIZE);
2354                                 break;
2355                         }
2356                         /* copy the sense data */
2357                         data_len = c2->error_data.sense_data_len;
2358                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2359                                 data_len = SCSI_SENSE_BUFFERSIZE;
2360                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2361                                 data_len =
2362                                         sizeof(c2->error_data.sense_data_buff);
2363                         memcpy(cmd->sense_buffer,
2364                                 c2->error_data.sense_data_buff, data_len);
2365                         retry = 1;
2366                         break;
2367                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2368                         retry = 1;
2369                         break;
2370                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2371                         retry = 1;
2372                         break;
2373                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2374                         retry = 1;
2375                         break;
2376                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2377                         retry = 1;
2378                         break;
2379                 default:
2380                         retry = 1;
2381                         break;
2382                 }
2383                 break;
2384         case IOACCEL2_SERV_RESPONSE_FAILURE:
2385                 switch (c2->error_data.status) {
2386                 case IOACCEL2_STATUS_SR_IO_ERROR:
2387                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2388                 case IOACCEL2_STATUS_SR_OVERRUN:
2389                         retry = 1;
2390                         break;
2391                 case IOACCEL2_STATUS_SR_UNDERRUN:
2392                         cmd->result = (DID_OK << 16);           /* host byte */
2393                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2394                         ioaccel2_resid = get_unaligned_le32(
2395                                                 &c2->error_data.resid_cnt[0]);
2396                         scsi_set_resid(cmd, ioaccel2_resid);
2397                         break;
2398                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2399                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2400                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2401                         /*
2402                          * Did an HBA disk disappear? We will eventually
2403                          * get a state change event from the controller but
2404                          * in the meantime, we need to tell the OS that the
2405                          * HBA disk is no longer there and stop I/O
2406                          * from going down. This allows the potential re-insert
2407                          * of the disk to get the same device node.
2408                          */
2409                         if (dev->physical_device && dev->expose_device) {
2410                                 cmd->result = DID_NO_CONNECT << 16;
2411                                 dev->removed = 1;
2412                                 h->drv_req_rescan = 1;
2413                                 dev_warn(&h->pdev->dev,
2414                                         "%s: device is gone!\n", __func__);
2415                         } else
2416                                 /*
2417                                  * Retry by sending down the RAID path.
2418                                  * We will get an event from ctlr to
2419                                  * trigger rescan regardless.
2420                                  */
2421                                 retry = 1;
2422                         break;
2423                 default:
2424                         retry = 1;
2425                 }
2426                 break;
2427         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2428                 break;
2429         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2430                 break;
2431         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2432                 retry = 1;
2433                 break;
2434         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2435                 break;
2436         default:
2437                 retry = 1;
2438                 break;
2439         }
2440
2441         if (dev->in_reset)
2442                 retry = 0;
2443
2444         return retry;   /* retry on raid path? */
2445 }
2446
2447 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2448                 struct CommandList *c)
2449 {
2450         struct hpsa_scsi_dev_t *dev = c->device;
2451
2452         /*
2453          * Reset c->scsi_cmd here so that the reset handler will know
2454          * this command has completed.  Then, check to see if the handler is
2455          * waiting for this command, and, if so, wake it.
2456          */
2457         c->scsi_cmd = SCSI_CMD_IDLE;
2458         mb();   /* Declare command idle before checking for pending events. */
2459         if (dev) {
2460                 atomic_dec(&dev->commands_outstanding);
2461                 if (dev->in_reset &&
2462                         atomic_read(&dev->commands_outstanding) <= 0)
2463                         wake_up_all(&h->event_sync_wait_queue);
2464         }
2465 }
2466
2467 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2468                                       struct CommandList *c)
2469 {
2470         hpsa_cmd_resolve_events(h, c);
2471         cmd_tagged_free(h, c);
2472 }
2473
2474 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2475                 struct CommandList *c, struct scsi_cmnd *cmd)
2476 {
2477         hpsa_cmd_resolve_and_free(h, c);
2478         if (cmd && cmd->scsi_done)
2479                 cmd->scsi_done(cmd);
2480 }
2481
2482 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2483 {
2484         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2485         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2486 }
2487
2488 static void process_ioaccel2_completion(struct ctlr_info *h,
2489                 struct CommandList *c, struct scsi_cmnd *cmd,
2490                 struct hpsa_scsi_dev_t *dev)
2491 {
2492         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2493
2494         /* check for good status */
2495         if (likely(c2->error_data.serv_response == 0 &&
2496                         c2->error_data.status == 0)) {
2497                 cmd->result = 0;
2498                 return hpsa_cmd_free_and_done(h, c, cmd);
2499         }
2500
2501         /*
2502          * Any RAID offload error results in retry which will use
2503          * the normal I/O path so the controller can handle whatever is
2504          * wrong.
2505          */
2506         if (is_logical_device(dev) &&
2507                 c2->error_data.serv_response ==
2508                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2509                 if (c2->error_data.status ==
2510                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2511                         hpsa_turn_off_ioaccel_for_device(dev);
2512                 }
2513
2514                 if (dev->in_reset) {
2515                         cmd->result = DID_RESET << 16;
2516                         return hpsa_cmd_free_and_done(h, c, cmd);
2517                 }
2518
2519                 return hpsa_retry_cmd(h, c);
2520         }
2521
2522         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2523                 return hpsa_retry_cmd(h, c);
2524
2525         return hpsa_cmd_free_and_done(h, c, cmd);
2526 }
2527
2528 /* Returns 0 on success, < 0 otherwise. */
2529 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2530                                         struct CommandList *cp)
2531 {
2532         u8 tmf_status = cp->err_info->ScsiStatus;
2533
2534         switch (tmf_status) {
2535         case CISS_TMF_COMPLETE:
2536                 /*
2537                  * CISS_TMF_COMPLETE never happens, instead,
2538                  * ei->CommandStatus == 0 for this case.
2539                  */
2540         case CISS_TMF_SUCCESS:
2541                 return 0;
2542         case CISS_TMF_INVALID_FRAME:
2543         case CISS_TMF_NOT_SUPPORTED:
2544         case CISS_TMF_FAILED:
2545         case CISS_TMF_WRONG_LUN:
2546         case CISS_TMF_OVERLAPPED_TAG:
2547                 break;
2548         default:
2549                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2550                                 tmf_status);
2551                 break;
2552         }
2553         return -tmf_status;
2554 }
2555
2556 static void complete_scsi_command(struct CommandList *cp)
2557 {
2558         struct scsi_cmnd *cmd;
2559         struct ctlr_info *h;
2560         struct ErrorInfo *ei;
2561         struct hpsa_scsi_dev_t *dev;
2562         struct io_accel2_cmd *c2;
2563
2564         u8 sense_key;
2565         u8 asc;      /* additional sense code */
2566         u8 ascq;     /* additional sense code qualifier */
2567         unsigned long sense_data_size;
2568
2569         ei = cp->err_info;
2570         cmd = cp->scsi_cmd;
2571         h = cp->h;
2572
2573         if (!cmd->device) {
2574                 cmd->result = DID_NO_CONNECT << 16;
2575                 return hpsa_cmd_free_and_done(h, cp, cmd);
2576         }
2577
2578         dev = cmd->device->hostdata;
2579         if (!dev) {
2580                 cmd->result = DID_NO_CONNECT << 16;
2581                 return hpsa_cmd_free_and_done(h, cp, cmd);
2582         }
2583         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2584
2585         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2586         if ((cp->cmd_type == CMD_SCSI) &&
2587                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2588                 hpsa_unmap_sg_chain_block(h, cp);
2589
2590         if ((cp->cmd_type == CMD_IOACCEL2) &&
2591                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2592                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2593
2594         cmd->result = (DID_OK << 16);           /* host byte */
2595         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2596
2597         /* SCSI command has already been cleaned up in SML */
2598         if (dev->was_removed) {
2599                 hpsa_cmd_resolve_and_free(h, cp);
2600                 return;
2601         }
2602
2603         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2604                 if (dev->physical_device && dev->expose_device &&
2605                         dev->removed) {
2606                         cmd->result = DID_NO_CONNECT << 16;
2607                         return hpsa_cmd_free_and_done(h, cp, cmd);
2608                 }
2609                 if (likely(cp->phys_disk != NULL))
2610                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2611         }
2612
2613         /*
2614          * We check for lockup status here as it may be set for
2615          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2616          * fail_all_oustanding_cmds()
2617          */
2618         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2619                 /* DID_NO_CONNECT will prevent a retry */
2620                 cmd->result = DID_NO_CONNECT << 16;
2621                 return hpsa_cmd_free_and_done(h, cp, cmd);
2622         }
2623
2624         if (cp->cmd_type == CMD_IOACCEL2)
2625                 return process_ioaccel2_completion(h, cp, cmd, dev);
2626
2627         scsi_set_resid(cmd, ei->ResidualCnt);
2628         if (ei->CommandStatus == 0)
2629                 return hpsa_cmd_free_and_done(h, cp, cmd);
2630
2631         /* For I/O accelerator commands, copy over some fields to the normal
2632          * CISS header used below for error handling.
2633          */
2634         if (cp->cmd_type == CMD_IOACCEL1) {
2635                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2636                 cp->Header.SGList = scsi_sg_count(cmd);
2637                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2638                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2639                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2640                 cp->Header.tag = c->tag;
2641                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2642                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2643
2644                 /* Any RAID offload error results in retry which will use
2645                  * the normal I/O path so the controller can handle whatever's
2646                  * wrong.
2647                  */
2648                 if (is_logical_device(dev)) {
2649                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2650                                 dev->offload_enabled = 0;
2651                         return hpsa_retry_cmd(h, cp);
2652                 }
2653         }
2654
2655         /* an error has occurred */
2656         switch (ei->CommandStatus) {
2657
2658         case CMD_TARGET_STATUS:
2659                 cmd->result |= ei->ScsiStatus;
2660                 /* copy the sense data */
2661                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2662                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2663                 else
2664                         sense_data_size = sizeof(ei->SenseInfo);
2665                 if (ei->SenseLen < sense_data_size)
2666                         sense_data_size = ei->SenseLen;
2667                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2668                 if (ei->ScsiStatus)
2669                         decode_sense_data(ei->SenseInfo, sense_data_size,
2670                                 &sense_key, &asc, &ascq);
2671                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2672                         switch (sense_key) {
2673                         case ABORTED_COMMAND:
2674                                 cmd->result |= DID_SOFT_ERROR << 16;
2675                                 break;
2676                         case UNIT_ATTENTION:
2677                                 if (asc == 0x3F && ascq == 0x0E)
2678                                         h->drv_req_rescan = 1;
2679                                 break;
2680                         case ILLEGAL_REQUEST:
2681                                 if (asc == 0x25 && ascq == 0x00) {
2682                                         dev->removed = 1;
2683                                         cmd->result = DID_NO_CONNECT << 16;
2684                                 }
2685                                 break;
2686                         }
2687                         break;
2688                 }
2689                 /* Problem was not a check condition
2690                  * Pass it up to the upper layers...
2691                  */
2692                 if (ei->ScsiStatus) {
2693                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2694                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2695                                 "Returning result: 0x%x\n",
2696                                 cp, ei->ScsiStatus,
2697                                 sense_key, asc, ascq,
2698                                 cmd->result);
2699                 } else {  /* scsi status is zero??? How??? */
2700                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2701                                 "Returning no connection.\n", cp),
2702
2703                         /* Ordinarily, this case should never happen,
2704                          * but there is a bug in some released firmware
2705                          * revisions that allows it to happen if, for
2706                          * example, a 4100 backplane loses power and
2707                          * the tape drive is in it.  We assume that
2708                          * it's a fatal error of some kind because we
2709                          * can't show that it wasn't. We will make it
2710                          * look like selection timeout since that is
2711                          * the most common reason for this to occur,
2712                          * and it's severe enough.
2713                          */
2714
2715                         cmd->result = DID_NO_CONNECT << 16;
2716                 }
2717                 break;
2718
2719         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2720                 break;
2721         case CMD_DATA_OVERRUN:
2722                 dev_warn(&h->pdev->dev,
2723                         "CDB %16phN data overrun\n", cp->Request.CDB);
2724                 break;
2725         case CMD_INVALID: {
2726                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2727                 print_cmd(cp); */
2728                 /* We get CMD_INVALID if you address a non-existent device
2729                  * instead of a selection timeout (no response).  You will
2730                  * see this if you yank out a drive, then try to access it.
2731                  * This is kind of a shame because it means that any other
2732                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2733                  * missing target. */
2734                 cmd->result = DID_NO_CONNECT << 16;
2735         }
2736                 break;
2737         case CMD_PROTOCOL_ERR:
2738                 cmd->result = DID_ERROR << 16;
2739                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2740                                 cp->Request.CDB);
2741                 break;
2742         case CMD_HARDWARE_ERR:
2743                 cmd->result = DID_ERROR << 16;
2744                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2745                         cp->Request.CDB);
2746                 break;
2747         case CMD_CONNECTION_LOST:
2748                 cmd->result = DID_ERROR << 16;
2749                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2750                         cp->Request.CDB);
2751                 break;
2752         case CMD_ABORTED:
2753                 cmd->result = DID_ABORT << 16;
2754                 break;
2755         case CMD_ABORT_FAILED:
2756                 cmd->result = DID_ERROR << 16;
2757                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2758                         cp->Request.CDB);
2759                 break;
2760         case CMD_UNSOLICITED_ABORT:
2761                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2762                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2763                         cp->Request.CDB);
2764                 break;
2765         case CMD_TIMEOUT:
2766                 cmd->result = DID_TIME_OUT << 16;
2767                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2768                         cp->Request.CDB);
2769                 break;
2770         case CMD_UNABORTABLE:
2771                 cmd->result = DID_ERROR << 16;
2772                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2773                 break;
2774         case CMD_TMF_STATUS:
2775                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2776                         cmd->result = DID_ERROR << 16;
2777                 break;
2778         case CMD_IOACCEL_DISABLED:
2779                 /* This only handles the direct pass-through case since RAID
2780                  * offload is handled above.  Just attempt a retry.
2781                  */
2782                 cmd->result = DID_SOFT_ERROR << 16;
2783                 dev_warn(&h->pdev->dev,
2784                                 "cp %p had HP SSD Smart Path error\n", cp);
2785                 break;
2786         default:
2787                 cmd->result = DID_ERROR << 16;
2788                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2789                                 cp, ei->CommandStatus);
2790         }
2791
2792         return hpsa_cmd_free_and_done(h, cp, cmd);
2793 }
2794
2795 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2796                 int sg_used, enum dma_data_direction data_direction)
2797 {
2798         int i;
2799
2800         for (i = 0; i < sg_used; i++)
2801                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2802                                 le32_to_cpu(c->SG[i].Len),
2803                                 data_direction);
2804 }
2805
2806 static int hpsa_map_one(struct pci_dev *pdev,
2807                 struct CommandList *cp,
2808                 unsigned char *buf,
2809                 size_t buflen,
2810                 enum dma_data_direction data_direction)
2811 {
2812         u64 addr64;
2813
2814         if (buflen == 0 || data_direction == DMA_NONE) {
2815                 cp->Header.SGList = 0;
2816                 cp->Header.SGTotal = cpu_to_le16(0);
2817                 return 0;
2818         }
2819
2820         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2821         if (dma_mapping_error(&pdev->dev, addr64)) {
2822                 /* Prevent subsequent unmap of something never mapped */
2823                 cp->Header.SGList = 0;
2824                 cp->Header.SGTotal = cpu_to_le16(0);
2825                 return -1;
2826         }
2827         cp->SG[0].Addr = cpu_to_le64(addr64);
2828         cp->SG[0].Len = cpu_to_le32(buflen);
2829         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2830         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2831         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2832         return 0;
2833 }
2834
2835 #define NO_TIMEOUT ((unsigned long) -1)
2836 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2837 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2838         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2839 {
2840         DECLARE_COMPLETION_ONSTACK(wait);
2841
2842         c->waiting = &wait;
2843         __enqueue_cmd_and_start_io(h, c, reply_queue);
2844         if (timeout_msecs == NO_TIMEOUT) {
2845                 /* TODO: get rid of this no-timeout thing */
2846                 wait_for_completion_io(&wait);
2847                 return IO_OK;
2848         }
2849         if (!wait_for_completion_io_timeout(&wait,
2850                                         msecs_to_jiffies(timeout_msecs))) {
2851                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2852                 return -ETIMEDOUT;
2853         }
2854         return IO_OK;
2855 }
2856
2857 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2858                                    int reply_queue, unsigned long timeout_msecs)
2859 {
2860         if (unlikely(lockup_detected(h))) {
2861                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2862                 return IO_OK;
2863         }
2864         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2865 }
2866
2867 static u32 lockup_detected(struct ctlr_info *h)
2868 {
2869         int cpu;
2870         u32 rc, *lockup_detected;
2871
2872         cpu = get_cpu();
2873         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2874         rc = *lockup_detected;
2875         put_cpu();
2876         return rc;
2877 }
2878
2879 #define MAX_DRIVER_CMD_RETRIES 25
2880 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2881                 struct CommandList *c, enum dma_data_direction data_direction,
2882                 unsigned long timeout_msecs)
2883 {
2884         int backoff_time = 10, retry_count = 0;
2885         int rc;
2886
2887         do {
2888                 memset(c->err_info, 0, sizeof(*c->err_info));
2889                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2890                                                   timeout_msecs);
2891                 if (rc)
2892                         break;
2893                 retry_count++;
2894                 if (retry_count > 3) {
2895                         msleep(backoff_time);
2896                         if (backoff_time < 1000)
2897                                 backoff_time *= 2;
2898                 }
2899         } while ((check_for_unit_attention(h, c) ||
2900                         check_for_busy(h, c)) &&
2901                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2902         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2903         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2904                 rc = -EIO;
2905         return rc;
2906 }
2907
2908 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2909                                 struct CommandList *c)
2910 {
2911         const u8 *cdb = c->Request.CDB;
2912         const u8 *lun = c->Header.LUN.LunAddrBytes;
2913
2914         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2915                  txt, lun, cdb);
2916 }
2917
2918 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2919                         struct CommandList *cp)
2920 {
2921         const struct ErrorInfo *ei = cp->err_info;
2922         struct device *d = &cp->h->pdev->dev;
2923         u8 sense_key, asc, ascq;
2924         int sense_len;
2925
2926         switch (ei->CommandStatus) {
2927         case CMD_TARGET_STATUS:
2928                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2929                         sense_len = sizeof(ei->SenseInfo);
2930                 else
2931                         sense_len = ei->SenseLen;
2932                 decode_sense_data(ei->SenseInfo, sense_len,
2933                                         &sense_key, &asc, &ascq);
2934                 hpsa_print_cmd(h, "SCSI status", cp);
2935                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2936                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2937                                 sense_key, asc, ascq);
2938                 else
2939                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2940                 if (ei->ScsiStatus == 0)
2941                         dev_warn(d, "SCSI status is abnormally zero.  "
2942                         "(probably indicates selection timeout "
2943                         "reported incorrectly due to a known "
2944                         "firmware bug, circa July, 2001.)\n");
2945                 break;
2946         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2947                 break;
2948         case CMD_DATA_OVERRUN:
2949                 hpsa_print_cmd(h, "overrun condition", cp);
2950                 break;
2951         case CMD_INVALID: {
2952                 /* controller unfortunately reports SCSI passthru's
2953                  * to non-existent targets as invalid commands.
2954                  */
2955                 hpsa_print_cmd(h, "invalid command", cp);
2956                 dev_warn(d, "probably means device no longer present\n");
2957                 }
2958                 break;
2959         case CMD_PROTOCOL_ERR:
2960                 hpsa_print_cmd(h, "protocol error", cp);
2961                 break;
2962         case CMD_HARDWARE_ERR:
2963                 hpsa_print_cmd(h, "hardware error", cp);
2964                 break;
2965         case CMD_CONNECTION_LOST:
2966                 hpsa_print_cmd(h, "connection lost", cp);
2967                 break;
2968         case CMD_ABORTED:
2969                 hpsa_print_cmd(h, "aborted", cp);
2970                 break;
2971         case CMD_ABORT_FAILED:
2972                 hpsa_print_cmd(h, "abort failed", cp);
2973                 break;
2974         case CMD_UNSOLICITED_ABORT:
2975                 hpsa_print_cmd(h, "unsolicited abort", cp);
2976                 break;
2977         case CMD_TIMEOUT:
2978                 hpsa_print_cmd(h, "timed out", cp);
2979                 break;
2980         case CMD_UNABORTABLE:
2981                 hpsa_print_cmd(h, "unabortable", cp);
2982                 break;
2983         case CMD_CTLR_LOCKUP:
2984                 hpsa_print_cmd(h, "controller lockup detected", cp);
2985                 break;
2986         default:
2987                 hpsa_print_cmd(h, "unknown status", cp);
2988                 dev_warn(d, "Unknown command status %x\n",
2989                                 ei->CommandStatus);
2990         }
2991 }
2992
2993 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2994                                         u8 page, u8 *buf, size_t bufsize)
2995 {
2996         int rc = IO_OK;
2997         struct CommandList *c;
2998         struct ErrorInfo *ei;
2999
3000         c = cmd_alloc(h);
3001         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3002                         page, scsi3addr, TYPE_CMD)) {
3003                 rc = -1;
3004                 goto out;
3005         }
3006         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3007                         NO_TIMEOUT);
3008         if (rc)
3009                 goto out;
3010         ei = c->err_info;
3011         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3012                 hpsa_scsi_interpret_error(h, c);
3013                 rc = -1;
3014         }
3015 out:
3016         cmd_free(h, c);
3017         return rc;
3018 }
3019
3020 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3021                                                 u8 *scsi3addr)
3022 {
3023         u8 *buf;
3024         u64 sa = 0;
3025         int rc = 0;
3026
3027         buf = kzalloc(1024, GFP_KERNEL);
3028         if (!buf)
3029                 return 0;
3030
3031         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3032                                         buf, 1024);
3033
3034         if (rc)
3035                 goto out;
3036
3037         sa = get_unaligned_be64(buf+12);
3038
3039 out:
3040         kfree(buf);
3041         return sa;
3042 }
3043
3044 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3045                         u16 page, unsigned char *buf,
3046                         unsigned char bufsize)
3047 {
3048         int rc = IO_OK;
3049         struct CommandList *c;
3050         struct ErrorInfo *ei;
3051
3052         c = cmd_alloc(h);
3053
3054         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3055                         page, scsi3addr, TYPE_CMD)) {
3056                 rc = -1;
3057                 goto out;
3058         }
3059         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3060                         NO_TIMEOUT);
3061         if (rc)
3062                 goto out;
3063         ei = c->err_info;
3064         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3065                 hpsa_scsi_interpret_error(h, c);
3066                 rc = -1;
3067         }
3068 out:
3069         cmd_free(h, c);
3070         return rc;
3071 }
3072
3073 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3074         u8 reset_type, int reply_queue)
3075 {
3076         int rc = IO_OK;
3077         struct CommandList *c;
3078         struct ErrorInfo *ei;
3079
3080         c = cmd_alloc(h);
3081         c->device = dev;
3082
3083         /* fill_cmd can't fail here, no data buffer to map. */
3084         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3085         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3086         if (rc) {
3087                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3088                 goto out;
3089         }
3090         /* no unmap needed here because no data xfer. */
3091
3092         ei = c->err_info;
3093         if (ei->CommandStatus != 0) {
3094                 hpsa_scsi_interpret_error(h, c);
3095                 rc = -1;
3096         }
3097 out:
3098         cmd_free(h, c);
3099         return rc;
3100 }
3101
3102 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3103                                struct hpsa_scsi_dev_t *dev,
3104                                unsigned char *scsi3addr)
3105 {
3106         int i;
3107         bool match = false;
3108         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3109         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3110
3111         if (hpsa_is_cmd_idle(c))
3112                 return false;
3113
3114         switch (c->cmd_type) {
3115         case CMD_SCSI:
3116         case CMD_IOCTL_PEND:
3117                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3118                                 sizeof(c->Header.LUN.LunAddrBytes));
3119                 break;
3120
3121         case CMD_IOACCEL1:
3122         case CMD_IOACCEL2:
3123                 if (c->phys_disk == dev) {
3124                         /* HBA mode match */
3125                         match = true;
3126                 } else {
3127                         /* Possible RAID mode -- check each phys dev. */
3128                         /* FIXME:  Do we need to take out a lock here?  If
3129                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3130                          * instead. */
3131                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3132                                 /* FIXME: an alternate test might be
3133                                  *
3134                                  * match = dev->phys_disk[i]->ioaccel_handle
3135                                  *              == c2->scsi_nexus;      */
3136                                 match = dev->phys_disk[i] == c->phys_disk;
3137                         }
3138                 }
3139                 break;
3140
3141         case IOACCEL2_TMF:
3142                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3143                         match = dev->phys_disk[i]->ioaccel_handle ==
3144                                         le32_to_cpu(ac->it_nexus);
3145                 }
3146                 break;
3147
3148         case 0:         /* The command is in the middle of being initialized. */
3149                 match = false;
3150                 break;
3151
3152         default:
3153                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3154                         c->cmd_type);
3155                 BUG();
3156         }
3157
3158         return match;
3159 }
3160
3161 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3162         u8 reset_type, int reply_queue)
3163 {
3164         int rc = 0;
3165
3166         /* We can really only handle one reset at a time */
3167         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3168                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3169                 return -EINTR;
3170         }
3171
3172         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3173         if (!rc) {
3174                 /* incremented by sending the reset request */
3175                 atomic_dec(&dev->commands_outstanding);
3176                 wait_event(h->event_sync_wait_queue,
3177                         atomic_read(&dev->commands_outstanding) <= 0 ||
3178                         lockup_detected(h));
3179         }
3180
3181         if (unlikely(lockup_detected(h))) {
3182                 dev_warn(&h->pdev->dev,
3183                          "Controller lockup detected during reset wait\n");
3184                 rc = -ENODEV;
3185         }
3186
3187         if (!rc)
3188                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3189
3190         mutex_unlock(&h->reset_mutex);
3191         return rc;
3192 }
3193
3194 static void hpsa_get_raid_level(struct ctlr_info *h,
3195         unsigned char *scsi3addr, unsigned char *raid_level)
3196 {
3197         int rc;
3198         unsigned char *buf;
3199
3200         *raid_level = RAID_UNKNOWN;
3201         buf = kzalloc(64, GFP_KERNEL);
3202         if (!buf)
3203                 return;
3204
3205         if (!hpsa_vpd_page_supported(h, scsi3addr,
3206                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3207                 goto exit;
3208
3209         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3210                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3211
3212         if (rc == 0)
3213                 *raid_level = buf[8];
3214         if (*raid_level > RAID_UNKNOWN)
3215                 *raid_level = RAID_UNKNOWN;
3216 exit:
3217         kfree(buf);
3218         return;
3219 }
3220
3221 #define HPSA_MAP_DEBUG
3222 #ifdef HPSA_MAP_DEBUG
3223 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3224                                 struct raid_map_data *map_buff)
3225 {
3226         struct raid_map_disk_data *dd = &map_buff->data[0];
3227         int map, row, col;
3228         u16 map_cnt, row_cnt, disks_per_row;
3229
3230         if (rc != 0)
3231                 return;
3232
3233         /* Show details only if debugging has been activated. */
3234         if (h->raid_offload_debug < 2)
3235                 return;
3236
3237         dev_info(&h->pdev->dev, "structure_size = %u\n",
3238                                 le32_to_cpu(map_buff->structure_size));
3239         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3240                         le32_to_cpu(map_buff->volume_blk_size));
3241         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3242                         le64_to_cpu(map_buff->volume_blk_cnt));
3243         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3244                         map_buff->phys_blk_shift);
3245         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3246                         map_buff->parity_rotation_shift);
3247         dev_info(&h->pdev->dev, "strip_size = %u\n",
3248                         le16_to_cpu(map_buff->strip_size));
3249         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3250                         le64_to_cpu(map_buff->disk_starting_blk));
3251         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3252                         le64_to_cpu(map_buff->disk_blk_cnt));
3253         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3254                         le16_to_cpu(map_buff->data_disks_per_row));
3255         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3256                         le16_to_cpu(map_buff->metadata_disks_per_row));
3257         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3258                         le16_to_cpu(map_buff->row_cnt));
3259         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3260                         le16_to_cpu(map_buff->layout_map_count));
3261         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3262                         le16_to_cpu(map_buff->flags));
3263         dev_info(&h->pdev->dev, "encryption = %s\n",
3264                         le16_to_cpu(map_buff->flags) &
3265                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3266         dev_info(&h->pdev->dev, "dekindex = %u\n",
3267                         le16_to_cpu(map_buff->dekindex));
3268         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3269         for (map = 0; map < map_cnt; map++) {
3270                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3271                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3272                 for (row = 0; row < row_cnt; row++) {
3273                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3274                         disks_per_row =
3275                                 le16_to_cpu(map_buff->data_disks_per_row);
3276                         for (col = 0; col < disks_per_row; col++, dd++)
3277                                 dev_info(&h->pdev->dev,
3278                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3279                                         col, dd->ioaccel_handle,
3280                                         dd->xor_mult[0], dd->xor_mult[1]);
3281                         disks_per_row =
3282                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3283                         for (col = 0; col < disks_per_row; col++, dd++)
3284                                 dev_info(&h->pdev->dev,
3285                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3286                                         col, dd->ioaccel_handle,
3287                                         dd->xor_mult[0], dd->xor_mult[1]);
3288                 }
3289         }
3290 }
3291 #else
3292 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3293                         __attribute__((unused)) int rc,
3294                         __attribute__((unused)) struct raid_map_data *map_buff)
3295 {
3296 }
3297 #endif
3298
3299 static int hpsa_get_raid_map(struct ctlr_info *h,
3300         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3301 {
3302         int rc = 0;
3303         struct CommandList *c;
3304         struct ErrorInfo *ei;
3305
3306         c = cmd_alloc(h);
3307
3308         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3309                         sizeof(this_device->raid_map), 0,
3310                         scsi3addr, TYPE_CMD)) {
3311                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3312                 cmd_free(h, c);
3313                 return -1;
3314         }
3315         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3316                         NO_TIMEOUT);
3317         if (rc)
3318                 goto out;
3319         ei = c->err_info;
3320         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3321                 hpsa_scsi_interpret_error(h, c);
3322                 rc = -1;
3323                 goto out;
3324         }
3325         cmd_free(h, c);
3326
3327         /* @todo in the future, dynamically allocate RAID map memory */
3328         if (le32_to_cpu(this_device->raid_map.structure_size) >
3329                                 sizeof(this_device->raid_map)) {
3330                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3331                 rc = -1;
3332         }
3333         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3334         return rc;
3335 out:
3336         cmd_free(h, c);
3337         return rc;
3338 }
3339
3340 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3341                 unsigned char scsi3addr[], u16 bmic_device_index,
3342                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3343 {
3344         int rc = IO_OK;
3345         struct CommandList *c;
3346         struct ErrorInfo *ei;
3347
3348         c = cmd_alloc(h);
3349
3350         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3351                 0, RAID_CTLR_LUNID, TYPE_CMD);
3352         if (rc)
3353                 goto out;
3354
3355         c->Request.CDB[2] = bmic_device_index & 0xff;
3356         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3357
3358         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3359                         NO_TIMEOUT);
3360         if (rc)
3361                 goto out;
3362         ei = c->err_info;
3363         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3364                 hpsa_scsi_interpret_error(h, c);
3365                 rc = -1;
3366         }
3367 out:
3368         cmd_free(h, c);
3369         return rc;
3370 }
3371
3372 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3373         struct bmic_identify_controller *buf, size_t bufsize)
3374 {
3375         int rc = IO_OK;
3376         struct CommandList *c;
3377         struct ErrorInfo *ei;
3378
3379         c = cmd_alloc(h);
3380
3381         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3382                 0, RAID_CTLR_LUNID, TYPE_CMD);
3383         if (rc)
3384                 goto out;
3385
3386         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3387                         NO_TIMEOUT);
3388         if (rc)
3389                 goto out;
3390         ei = c->err_info;
3391         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3392                 hpsa_scsi_interpret_error(h, c);
3393                 rc = -1;
3394         }
3395 out:
3396         cmd_free(h, c);
3397         return rc;
3398 }
3399
3400 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3401                 unsigned char scsi3addr[], u16 bmic_device_index,
3402                 struct bmic_identify_physical_device *buf, size_t bufsize)
3403 {
3404         int rc = IO_OK;
3405         struct CommandList *c;
3406         struct ErrorInfo *ei;
3407
3408         c = cmd_alloc(h);
3409         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3410                 0, RAID_CTLR_LUNID, TYPE_CMD);
3411         if (rc)
3412                 goto out;
3413
3414         c->Request.CDB[2] = bmic_device_index & 0xff;
3415         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3416
3417         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3418                                                 NO_TIMEOUT);
3419         ei = c->err_info;
3420         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3421                 hpsa_scsi_interpret_error(h, c);
3422                 rc = -1;
3423         }
3424 out:
3425         cmd_free(h, c);
3426
3427         return rc;
3428 }
3429
3430 /*
3431  * get enclosure information
3432  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3433  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3434  * Uses id_physical_device to determine the box_index.
3435  */
3436 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3437                         unsigned char *scsi3addr,
3438                         struct ReportExtendedLUNdata *rlep, int rle_index,
3439                         struct hpsa_scsi_dev_t *encl_dev)
3440 {
3441         int rc = -1;
3442         struct CommandList *c = NULL;
3443         struct ErrorInfo *ei = NULL;
3444         struct bmic_sense_storage_box_params *bssbp = NULL;
3445         struct bmic_identify_physical_device *id_phys = NULL;
3446         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3447         u16 bmic_device_index = 0;
3448
3449         encl_dev->eli =
3450                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3451
3452         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3453
3454         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3455                 rc = IO_OK;
3456                 goto out;
3457         }
3458
3459         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3460                 rc = IO_OK;
3461                 goto out;
3462         }
3463
3464         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3465         if (!bssbp)
3466                 goto out;
3467
3468         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3469         if (!id_phys)
3470                 goto out;
3471
3472         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3473                                                 id_phys, sizeof(*id_phys));
3474         if (rc) {
3475                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3476                         __func__, encl_dev->external, bmic_device_index);
3477                 goto out;
3478         }
3479
3480         c = cmd_alloc(h);
3481
3482         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3483                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3484
3485         if (rc)
3486                 goto out;
3487
3488         if (id_phys->phys_connector[1] == 'E')
3489                 c->Request.CDB[5] = id_phys->box_index;
3490         else
3491                 c->Request.CDB[5] = 0;
3492
3493         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3494                                                 NO_TIMEOUT);
3495         if (rc)
3496                 goto out;
3497
3498         ei = c->err_info;
3499         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3500                 rc = -1;
3501                 goto out;
3502         }
3503
3504         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3505         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3506                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3507
3508         rc = IO_OK;
3509 out:
3510         kfree(bssbp);
3511         kfree(id_phys);
3512
3513         if (c)
3514                 cmd_free(h, c);
3515
3516         if (rc != IO_OK)
3517                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3518                         "Error, could not get enclosure information");
3519 }
3520
3521 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3522                                                 unsigned char *scsi3addr)
3523 {
3524         struct ReportExtendedLUNdata *physdev;
3525         u32 nphysicals;
3526         u64 sa = 0;
3527         int i;
3528
3529         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3530         if (!physdev)
3531                 return 0;
3532
3533         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3534                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3535                 kfree(physdev);
3536                 return 0;
3537         }
3538         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3539
3540         for (i = 0; i < nphysicals; i++)
3541                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3542                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3543                         break;
3544                 }
3545
3546         kfree(physdev);
3547
3548         return sa;
3549 }
3550
3551 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3552                                         struct hpsa_scsi_dev_t *dev)
3553 {
3554         int rc;
3555         u64 sa = 0;
3556
3557         if (is_hba_lunid(scsi3addr)) {
3558                 struct bmic_sense_subsystem_info *ssi;
3559
3560                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3561                 if (!ssi)
3562                         return;
3563
3564                 rc = hpsa_bmic_sense_subsystem_information(h,
3565                                         scsi3addr, 0, ssi, sizeof(*ssi));
3566                 if (rc == 0) {
3567                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3568                         h->sas_address = sa;
3569                 }
3570
3571                 kfree(ssi);
3572         } else
3573                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3574
3575         dev->sas_address = sa;
3576 }
3577
3578 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3579         struct ReportExtendedLUNdata *physdev)
3580 {
3581         u32 nphysicals;
3582         int i;
3583
3584         if (h->discovery_polling)
3585                 return;
3586
3587         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3588
3589         for (i = 0; i < nphysicals; i++) {
3590                 if (physdev->LUN[i].device_type ==
3591                         BMIC_DEVICE_TYPE_CONTROLLER
3592                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3593                         dev_info(&h->pdev->dev,
3594                                 "External controller present, activate discovery polling and disable rld caching\n");
3595                         hpsa_disable_rld_caching(h);
3596                         h->discovery_polling = 1;
3597                         break;
3598                 }
3599         }
3600 }
3601
3602 /* Get a device id from inquiry page 0x83 */
3603 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3604         unsigned char scsi3addr[], u8 page)
3605 {
3606         int rc;
3607         int i;
3608         int pages;
3609         unsigned char *buf, bufsize;
3610
3611         buf = kzalloc(256, GFP_KERNEL);
3612         if (!buf)
3613                 return false;
3614
3615         /* Get the size of the page list first */
3616         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3617                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3618                                 buf, HPSA_VPD_HEADER_SZ);
3619         if (rc != 0)
3620                 goto exit_unsupported;
3621         pages = buf[3];
3622         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3623                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3624         else
3625                 bufsize = 255;
3626
3627         /* Get the whole VPD page list */
3628         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3629                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3630                                 buf, bufsize);
3631         if (rc != 0)
3632                 goto exit_unsupported;
3633
3634         pages = buf[3];
3635         for (i = 1; i <= pages; i++)
3636                 if (buf[3 + i] == page)
3637                         goto exit_supported;
3638 exit_unsupported:
3639         kfree(buf);
3640         return false;
3641 exit_supported:
3642         kfree(buf);
3643         return true;
3644 }
3645
3646 /*
3647  * Called during a scan operation.
3648  * Sets ioaccel status on the new device list, not the existing device list
3649  *
3650  * The device list used during I/O will be updated later in
3651  * adjust_hpsa_scsi_table.
3652  */
3653 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3654         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3655 {
3656         int rc;
3657         unsigned char *buf;
3658         u8 ioaccel_status;
3659
3660         this_device->offload_config = 0;
3661         this_device->offload_enabled = 0;
3662         this_device->offload_to_be_enabled = 0;
3663
3664         buf = kzalloc(64, GFP_KERNEL);
3665         if (!buf)
3666                 return;
3667         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3668                 goto out;
3669         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3670                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3671         if (rc != 0)
3672                 goto out;
3673
3674 #define IOACCEL_STATUS_BYTE 4
3675 #define OFFLOAD_CONFIGURED_BIT 0x01
3676 #define OFFLOAD_ENABLED_BIT 0x02
3677         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3678         this_device->offload_config =
3679                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3680         if (this_device->offload_config) {
3681                 bool offload_enabled =
3682                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3683                 /*
3684                  * Check to see if offload can be enabled.
3685                  */
3686                 if (offload_enabled) {
3687                         rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3688                         if (rc) /* could not load raid_map */
3689                                 goto out;
3690                         this_device->offload_to_be_enabled = 1;
3691                 }
3692         }
3693
3694 out:
3695         kfree(buf);
3696         return;
3697 }
3698
3699 /* Get the device id from inquiry page 0x83 */
3700 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3701         unsigned char *device_id, int index, int buflen)
3702 {
3703         int rc;
3704         unsigned char *buf;
3705
3706         /* Does controller have VPD for device id? */
3707         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3708                 return 1; /* not supported */
3709
3710         buf = kzalloc(64, GFP_KERNEL);
3711         if (!buf)
3712                 return -ENOMEM;
3713
3714         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3715                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3716         if (rc == 0) {
3717                 if (buflen > 16)
3718                         buflen = 16;
3719                 memcpy(device_id, &buf[8], buflen);
3720         }
3721
3722         kfree(buf);
3723
3724         return rc; /*0 - got id,  otherwise, didn't */
3725 }
3726
3727 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3728                 void *buf, int bufsize,
3729                 int extended_response)
3730 {
3731         int rc = IO_OK;
3732         struct CommandList *c;
3733         unsigned char scsi3addr[8];
3734         struct ErrorInfo *ei;
3735
3736         c = cmd_alloc(h);
3737
3738         /* address the controller */
3739         memset(scsi3addr, 0, sizeof(scsi3addr));
3740         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3741                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3742                 rc = -EAGAIN;
3743                 goto out;
3744         }
3745         if (extended_response)
3746                 c->Request.CDB[1] = extended_response;
3747         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3748                         NO_TIMEOUT);
3749         if (rc)
3750                 goto out;
3751         ei = c->err_info;
3752         if (ei->CommandStatus != 0 &&
3753             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3754                 hpsa_scsi_interpret_error(h, c);
3755                 rc = -EIO;
3756         } else {
3757                 struct ReportLUNdata *rld = buf;
3758
3759                 if (rld->extended_response_flag != extended_response) {
3760                         if (!h->legacy_board) {
3761                                 dev_err(&h->pdev->dev,
3762                                         "report luns requested format %u, got %u\n",
3763                                         extended_response,
3764                                         rld->extended_response_flag);
3765                                 rc = -EINVAL;
3766                         } else
3767                                 rc = -EOPNOTSUPP;
3768                 }
3769         }
3770 out:
3771         cmd_free(h, c);
3772         return rc;
3773 }
3774
3775 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3776                 struct ReportExtendedLUNdata *buf, int bufsize)
3777 {
3778         int rc;
3779         struct ReportLUNdata *lbuf;
3780
3781         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3782                                       HPSA_REPORT_PHYS_EXTENDED);
3783         if (!rc || rc != -EOPNOTSUPP)
3784                 return rc;
3785
3786         /* REPORT PHYS EXTENDED is not supported */
3787         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3788         if (!lbuf)
3789                 return -ENOMEM;
3790
3791         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3792         if (!rc) {
3793                 int i;
3794                 u32 nphys;
3795
3796                 /* Copy ReportLUNdata header */
3797                 memcpy(buf, lbuf, 8);
3798                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3799                 for (i = 0; i < nphys; i++)
3800                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3801         }
3802         kfree(lbuf);
3803         return rc;
3804 }
3805
3806 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3807                 struct ReportLUNdata *buf, int bufsize)
3808 {
3809         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3810 }
3811
3812 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3813         int bus, int target, int lun)
3814 {
3815         device->bus = bus;
3816         device->target = target;
3817         device->lun = lun;
3818 }
3819
3820 /* Use VPD inquiry to get details of volume status */
3821 static int hpsa_get_volume_status(struct ctlr_info *h,
3822                                         unsigned char scsi3addr[])
3823 {
3824         int rc;
3825         int status;
3826         int size;
3827         unsigned char *buf;
3828
3829         buf = kzalloc(64, GFP_KERNEL);
3830         if (!buf)
3831                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3832
3833         /* Does controller have VPD for logical volume status? */
3834         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3835                 goto exit_failed;
3836
3837         /* Get the size of the VPD return buffer */
3838         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3839                                         buf, HPSA_VPD_HEADER_SZ);
3840         if (rc != 0)
3841                 goto exit_failed;
3842         size = buf[3];
3843
3844         /* Now get the whole VPD buffer */
3845         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3846                                         buf, size + HPSA_VPD_HEADER_SZ);
3847         if (rc != 0)
3848                 goto exit_failed;
3849         status = buf[4]; /* status byte */
3850
3851         kfree(buf);
3852         return status;
3853 exit_failed:
3854         kfree(buf);
3855         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3856 }
3857
3858 /* Determine offline status of a volume.
3859  * Return either:
3860  *  0 (not offline)
3861  *  0xff (offline for unknown reasons)
3862  *  # (integer code indicating one of several NOT READY states
3863  *     describing why a volume is to be kept offline)
3864  */
3865 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3866                                         unsigned char scsi3addr[])
3867 {
3868         struct CommandList *c;
3869         unsigned char *sense;
3870         u8 sense_key, asc, ascq;
3871         int sense_len;
3872         int rc, ldstat = 0;
3873         u16 cmd_status;
3874         u8 scsi_status;
3875 #define ASC_LUN_NOT_READY 0x04
3876 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3877 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3878
3879         c = cmd_alloc(h);
3880
3881         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3882         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3883                                         NO_TIMEOUT);
3884         if (rc) {
3885                 cmd_free(h, c);
3886                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3887         }
3888         sense = c->err_info->SenseInfo;
3889         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3890                 sense_len = sizeof(c->err_info->SenseInfo);
3891         else
3892                 sense_len = c->err_info->SenseLen;
3893         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3894         cmd_status = c->err_info->CommandStatus;
3895         scsi_status = c->err_info->ScsiStatus;
3896         cmd_free(h, c);
3897
3898         /* Determine the reason for not ready state */
3899         ldstat = hpsa_get_volume_status(h, scsi3addr);
3900
3901         /* Keep volume offline in certain cases: */
3902         switch (ldstat) {
3903         case HPSA_LV_FAILED:
3904         case HPSA_LV_UNDERGOING_ERASE:
3905         case HPSA_LV_NOT_AVAILABLE:
3906         case HPSA_LV_UNDERGOING_RPI:
3907         case HPSA_LV_PENDING_RPI:
3908         case HPSA_LV_ENCRYPTED_NO_KEY:
3909         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3910         case HPSA_LV_UNDERGOING_ENCRYPTION:
3911         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3912         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3913                 return ldstat;
3914         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3915                 /* If VPD status page isn't available,
3916                  * use ASC/ASCQ to determine state
3917                  */
3918                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3919                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3920                         return ldstat;
3921                 break;
3922         default:
3923                 break;
3924         }
3925         return HPSA_LV_OK;
3926 }
3927
3928 static int hpsa_update_device_info(struct ctlr_info *h,
3929         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3930         unsigned char *is_OBDR_device)
3931 {
3932
3933 #define OBDR_SIG_OFFSET 43
3934 #define OBDR_TAPE_SIG "$DR-10"
3935 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3936 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3937
3938         unsigned char *inq_buff;
3939         unsigned char *obdr_sig;
3940         int rc = 0;
3941
3942         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3943         if (!inq_buff) {
3944                 rc = -ENOMEM;
3945                 goto bail_out;
3946         }
3947
3948         /* Do an inquiry to the device to see what it is. */
3949         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3950                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3951                 dev_err(&h->pdev->dev,
3952                         "%s: inquiry failed, device will be skipped.\n",
3953                         __func__);
3954                 rc = HPSA_INQUIRY_FAILED;
3955                 goto bail_out;
3956         }
3957
3958         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3959         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3960
3961         this_device->devtype = (inq_buff[0] & 0x1f);
3962         memcpy(this_device->scsi3addr, scsi3addr, 8);
3963         memcpy(this_device->vendor, &inq_buff[8],
3964                 sizeof(this_device->vendor));
3965         memcpy(this_device->model, &inq_buff[16],
3966                 sizeof(this_device->model));
3967         this_device->rev = inq_buff[2];
3968         memset(this_device->device_id, 0,
3969                 sizeof(this_device->device_id));
3970         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3971                 sizeof(this_device->device_id)) < 0) {
3972                 dev_err(&h->pdev->dev,
3973                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3974                         h->ctlr, __func__,
3975                         h->scsi_host->host_no,
3976                         this_device->bus, this_device->target,
3977                         this_device->lun,
3978                         scsi_device_type(this_device->devtype),
3979                         this_device->model);
3980                 rc = HPSA_LV_FAILED;
3981                 goto bail_out;
3982         }
3983
3984         if ((this_device->devtype == TYPE_DISK ||
3985                 this_device->devtype == TYPE_ZBC) &&
3986                 is_logical_dev_addr_mode(scsi3addr)) {
3987                 unsigned char volume_offline;
3988
3989                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3990                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3991                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3992                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3993                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3994                     h->legacy_board) {
3995                         /*
3996                          * Legacy boards might not support volume status
3997                          */
3998                         dev_info(&h->pdev->dev,
3999                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
4000                                  this_device->target, this_device->lun);
4001                         volume_offline = 0;
4002                 }
4003                 this_device->volume_offline = volume_offline;
4004                 if (volume_offline == HPSA_LV_FAILED) {
4005                         rc = HPSA_LV_FAILED;
4006                         dev_err(&h->pdev->dev,
4007                                 "%s: LV failed, device will be skipped.\n",
4008                                 __func__);
4009                         goto bail_out;
4010                 }
4011         } else {
4012                 this_device->raid_level = RAID_UNKNOWN;
4013                 this_device->offload_config = 0;
4014                 hpsa_turn_off_ioaccel_for_device(this_device);
4015                 this_device->hba_ioaccel_enabled = 0;
4016                 this_device->volume_offline = 0;
4017                 this_device->queue_depth = h->nr_cmds;
4018         }
4019
4020         if (this_device->external)
4021                 this_device->queue_depth = EXTERNAL_QD;
4022
4023         if (is_OBDR_device) {
4024                 /* See if this is a One-Button-Disaster-Recovery device
4025                  * by looking for "$DR-10" at offset 43 in inquiry data.
4026                  */
4027                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4028                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4029                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4030                                                 OBDR_SIG_LEN) == 0);
4031         }
4032         kfree(inq_buff);
4033         return 0;
4034
4035 bail_out:
4036         kfree(inq_buff);
4037         return rc;
4038 }
4039
4040 /*
4041  * Helper function to assign bus, target, lun mapping of devices.
4042  * Logical drive target and lun are assigned at this time, but
4043  * physical device lun and target assignment are deferred (assigned
4044  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4045 */
4046 static void figure_bus_target_lun(struct ctlr_info *h,
4047         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4048 {
4049         u32 lunid = get_unaligned_le32(lunaddrbytes);
4050
4051         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4052                 /* physical device, target and lun filled in later */
4053                 if (is_hba_lunid(lunaddrbytes)) {
4054                         int bus = HPSA_HBA_BUS;
4055
4056                         if (!device->rev)
4057                                 bus = HPSA_LEGACY_HBA_BUS;
4058                         hpsa_set_bus_target_lun(device,
4059                                         bus, 0, lunid & 0x3fff);
4060                 } else
4061                         /* defer target, lun assignment for physical devices */
4062                         hpsa_set_bus_target_lun(device,
4063                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4064                 return;
4065         }
4066         /* It's a logical device */
4067         if (device->external) {
4068                 hpsa_set_bus_target_lun(device,
4069                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4070                         lunid & 0x00ff);
4071                 return;
4072         }
4073         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4074                                 0, lunid & 0x3fff);
4075 }
4076
4077 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4078         int i, int nphysicals, int nlocal_logicals)
4079 {
4080         /* In report logicals, local logicals are listed first,
4081         * then any externals.
4082         */
4083         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4084
4085         if (i == raid_ctlr_position)
4086                 return 0;
4087
4088         if (i < logicals_start)
4089                 return 0;
4090
4091         /* i is in logicals range, but still within local logicals */
4092         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4093                 return 0;
4094
4095         return 1; /* it's an external lun */
4096 }
4097
4098 /*
4099  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4100  * logdev.  The number of luns in physdev and logdev are returned in
4101  * *nphysicals and *nlogicals, respectively.
4102  * Returns 0 on success, -1 otherwise.
4103  */
4104 static int hpsa_gather_lun_info(struct ctlr_info *h,
4105         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4106         struct ReportLUNdata *logdev, u32 *nlogicals)
4107 {
4108         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4109                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4110                 return -1;
4111         }
4112         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4113         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4114                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4115                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4116                 *nphysicals = HPSA_MAX_PHYS_LUN;
4117         }
4118         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4119                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4120                 return -1;
4121         }
4122         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4123         /* Reject Logicals in excess of our max capability. */
4124         if (*nlogicals > HPSA_MAX_LUN) {
4125                 dev_warn(&h->pdev->dev,
4126                         "maximum logical LUNs (%d) exceeded.  "
4127                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4128                         *nlogicals - HPSA_MAX_LUN);
4129                 *nlogicals = HPSA_MAX_LUN;
4130         }
4131         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4132                 dev_warn(&h->pdev->dev,
4133                         "maximum logical + physical LUNs (%d) exceeded. "
4134                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4135                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4136                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4137         }
4138         return 0;
4139 }
4140
4141 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4142         int i, int nphysicals, int nlogicals,
4143         struct ReportExtendedLUNdata *physdev_list,
4144         struct ReportLUNdata *logdev_list)
4145 {
4146         /* Helper function, figure out where the LUN ID info is coming from
4147          * given index i, lists of physical and logical devices, where in
4148          * the list the raid controller is supposed to appear (first or last)
4149          */
4150
4151         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4152         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4153
4154         if (i == raid_ctlr_position)
4155                 return RAID_CTLR_LUNID;
4156
4157         if (i < logicals_start)
4158                 return &physdev_list->LUN[i -
4159                                 (raid_ctlr_position == 0)].lunid[0];
4160
4161         if (i < last_device)
4162                 return &logdev_list->LUN[i - nphysicals -
4163                         (raid_ctlr_position == 0)][0];
4164         BUG();
4165         return NULL;
4166 }
4167
4168 /* get physical drive ioaccel handle and queue depth */
4169 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4170                 struct hpsa_scsi_dev_t *dev,
4171                 struct ReportExtendedLUNdata *rlep, int rle_index,
4172                 struct bmic_identify_physical_device *id_phys)
4173 {
4174         int rc;
4175         struct ext_report_lun_entry *rle;
4176
4177         rle = &rlep->LUN[rle_index];
4178
4179         dev->ioaccel_handle = rle->ioaccel_handle;
4180         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4181                 dev->hba_ioaccel_enabled = 1;
4182         memset(id_phys, 0, sizeof(*id_phys));
4183         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4184                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4185                         sizeof(*id_phys));
4186         if (!rc)
4187                 /* Reserve space for FW operations */
4188 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4189 #define DRIVE_QUEUE_DEPTH 7
4190                 dev->queue_depth =
4191                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4192                                 DRIVE_CMDS_RESERVED_FOR_FW;
4193         else
4194                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4195 }
4196
4197 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4198         struct ReportExtendedLUNdata *rlep, int rle_index,
4199         struct bmic_identify_physical_device *id_phys)
4200 {
4201         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4202
4203         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4204                 this_device->hba_ioaccel_enabled = 1;
4205
4206         memcpy(&this_device->active_path_index,
4207                 &id_phys->active_path_number,
4208                 sizeof(this_device->active_path_index));
4209         memcpy(&this_device->path_map,
4210                 &id_phys->redundant_path_present_map,
4211                 sizeof(this_device->path_map));
4212         memcpy(&this_device->box,
4213                 &id_phys->alternate_paths_phys_box_on_port,
4214                 sizeof(this_device->box));
4215         memcpy(&this_device->phys_connector,
4216                 &id_phys->alternate_paths_phys_connector,
4217                 sizeof(this_device->phys_connector));
4218         memcpy(&this_device->bay,
4219                 &id_phys->phys_bay_in_box,
4220                 sizeof(this_device->bay));
4221 }
4222
4223 /* get number of local logical disks. */
4224 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4225         struct bmic_identify_controller *id_ctlr,
4226         u32 *nlocals)
4227 {
4228         int rc;
4229
4230         if (!id_ctlr) {
4231                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4232                         __func__);
4233                 return -ENOMEM;
4234         }
4235         memset(id_ctlr, 0, sizeof(*id_ctlr));
4236         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4237         if (!rc)
4238                 if (id_ctlr->configured_logical_drive_count < 255)
4239                         *nlocals = id_ctlr->configured_logical_drive_count;
4240                 else
4241                         *nlocals = le16_to_cpu(
4242                                         id_ctlr->extended_logical_unit_count);
4243         else
4244                 *nlocals = -1;
4245         return rc;
4246 }
4247
4248 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4249 {
4250         struct bmic_identify_physical_device *id_phys;
4251         bool is_spare = false;
4252         int rc;
4253
4254         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4255         if (!id_phys)
4256                 return false;
4257
4258         rc = hpsa_bmic_id_physical_device(h,
4259                                         lunaddrbytes,
4260                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4261                                         id_phys, sizeof(*id_phys));
4262         if (rc == 0)
4263                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4264
4265         kfree(id_phys);
4266         return is_spare;
4267 }
4268
4269 #define RPL_DEV_FLAG_NON_DISK                           0x1
4270 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4271 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4272
4273 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4274
4275 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4276                                 struct ext_report_lun_entry *rle)
4277 {
4278         u8 device_flags;
4279         u8 device_type;
4280
4281         if (!MASKED_DEVICE(lunaddrbytes))
4282                 return false;
4283
4284         device_flags = rle->device_flags;
4285         device_type = rle->device_type;
4286
4287         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4288                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4289                         return false;
4290                 return true;
4291         }
4292
4293         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4294                 return false;
4295
4296         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4297                 return false;
4298
4299         /*
4300          * Spares may be spun down, we do not want to
4301          * do an Inquiry to a RAID set spare drive as
4302          * that would have them spun up, that is a
4303          * performance hit because I/O to the RAID device
4304          * stops while the spin up occurs which can take
4305          * over 50 seconds.
4306          */
4307         if (hpsa_is_disk_spare(h, lunaddrbytes))
4308                 return true;
4309
4310         return false;
4311 }
4312
4313 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4314 {
4315         /* the idea here is we could get notified
4316          * that some devices have changed, so we do a report
4317          * physical luns and report logical luns cmd, and adjust
4318          * our list of devices accordingly.
4319          *
4320          * The scsi3addr's of devices won't change so long as the
4321          * adapter is not reset.  That means we can rescan and
4322          * tell which devices we already know about, vs. new
4323          * devices, vs.  disappearing devices.
4324          */
4325         struct ReportExtendedLUNdata *physdev_list = NULL;
4326         struct ReportLUNdata *logdev_list = NULL;
4327         struct bmic_identify_physical_device *id_phys = NULL;
4328         struct bmic_identify_controller *id_ctlr = NULL;
4329         u32 nphysicals = 0;
4330         u32 nlogicals = 0;
4331         u32 nlocal_logicals = 0;
4332         u32 ndev_allocated = 0;
4333         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4334         int ncurrent = 0;
4335         int i, n_ext_target_devs, ndevs_to_allocate;
4336         int raid_ctlr_position;
4337         bool physical_device;
4338         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4339
4340         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4341         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4342         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4343         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4344         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4345         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4346
4347         if (!currentsd || !physdev_list || !logdev_list ||
4348                 !tmpdevice || !id_phys || !id_ctlr) {
4349                 dev_err(&h->pdev->dev, "out of memory\n");
4350                 goto out;
4351         }
4352         memset(lunzerobits, 0, sizeof(lunzerobits));
4353
4354         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4355
4356         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4357                         logdev_list, &nlogicals)) {
4358                 h->drv_req_rescan = 1;
4359                 goto out;
4360         }
4361
4362         /* Set number of local logicals (non PTRAID) */
4363         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4364                 dev_warn(&h->pdev->dev,
4365                         "%s: Can't determine number of local logical devices.\n",
4366                         __func__);
4367         }
4368
4369         /* We might see up to the maximum number of logical and physical disks
4370          * plus external target devices, and a device for the local RAID
4371          * controller.
4372          */
4373         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4374
4375         hpsa_ext_ctrl_present(h, physdev_list);
4376
4377         /* Allocate the per device structures */
4378         for (i = 0; i < ndevs_to_allocate; i++) {
4379                 if (i >= HPSA_MAX_DEVICES) {
4380                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4381                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4382                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4383                         break;
4384                 }
4385
4386                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4387                 if (!currentsd[i]) {
4388                         h->drv_req_rescan = 1;
4389                         goto out;
4390                 }
4391                 ndev_allocated++;
4392         }
4393
4394         if (is_scsi_rev_5(h))
4395                 raid_ctlr_position = 0;
4396         else
4397                 raid_ctlr_position = nphysicals + nlogicals;
4398
4399         /* adjust our table of devices */
4400         n_ext_target_devs = 0;
4401         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4402                 u8 *lunaddrbytes, is_OBDR = 0;
4403                 int rc = 0;
4404                 int phys_dev_index = i - (raid_ctlr_position == 0);
4405                 bool skip_device = false;
4406
4407                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4408
4409                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4410
4411                 /* Figure out where the LUN ID info is coming from */
4412                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4413                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4414
4415                 /* Determine if this is a lun from an external target array */
4416                 tmpdevice->external =
4417                         figure_external_status(h, raid_ctlr_position, i,
4418                                                 nphysicals, nlocal_logicals);
4419
4420                 /*
4421                  * Skip over some devices such as a spare.
4422                  */
4423                 if (!tmpdevice->external && physical_device) {
4424                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4425                                         &physdev_list->LUN[phys_dev_index]);
4426                         if (skip_device)
4427                                 continue;
4428                 }
4429
4430                 /* Get device type, vendor, model, device id, raid_map */
4431                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4432                                                         &is_OBDR);
4433                 if (rc == -ENOMEM) {
4434                         dev_warn(&h->pdev->dev,
4435                                 "Out of memory, rescan deferred.\n");
4436                         h->drv_req_rescan = 1;
4437                         goto out;
4438                 }
4439                 if (rc) {
4440                         h->drv_req_rescan = 1;
4441                         continue;
4442                 }
4443
4444                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4445                 this_device = currentsd[ncurrent];
4446
4447                 *this_device = *tmpdevice;
4448                 this_device->physical_device = physical_device;
4449
4450                 /*
4451                  * Expose all devices except for physical devices that
4452                  * are masked.
4453                  */
4454                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4455                         this_device->expose_device = 0;
4456                 else
4457                         this_device->expose_device = 1;
4458
4459
4460                 /*
4461                  * Get the SAS address for physical devices that are exposed.
4462                  */
4463                 if (this_device->physical_device && this_device->expose_device)
4464                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4465
4466                 switch (this_device->devtype) {
4467                 case TYPE_ROM:
4468                         /* We don't *really* support actual CD-ROM devices,
4469                          * just "One Button Disaster Recovery" tape drive
4470                          * which temporarily pretends to be a CD-ROM drive.
4471                          * So we check that the device is really an OBDR tape
4472                          * device by checking for "$DR-10" in bytes 43-48 of
4473                          * the inquiry data.
4474                          */
4475                         if (is_OBDR)
4476                                 ncurrent++;
4477                         break;
4478                 case TYPE_DISK:
4479                 case TYPE_ZBC:
4480                         if (this_device->physical_device) {
4481                                 /* The disk is in HBA mode. */
4482                                 /* Never use RAID mapper in HBA mode. */
4483                                 this_device->offload_enabled = 0;
4484                                 hpsa_get_ioaccel_drive_info(h, this_device,
4485                                         physdev_list, phys_dev_index, id_phys);
4486                                 hpsa_get_path_info(this_device,
4487                                         physdev_list, phys_dev_index, id_phys);
4488                         }
4489                         ncurrent++;
4490                         break;
4491                 case TYPE_TAPE:
4492                 case TYPE_MEDIUM_CHANGER:
4493                         ncurrent++;
4494                         break;
4495                 case TYPE_ENCLOSURE:
4496                         if (!this_device->external)
4497                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4498                                                 physdev_list, phys_dev_index,
4499                                                 this_device);
4500                         ncurrent++;
4501                         break;
4502                 case TYPE_RAID:
4503                         /* Only present the Smartarray HBA as a RAID controller.
4504                          * If it's a RAID controller other than the HBA itself
4505                          * (an external RAID controller, MSA500 or similar)
4506                          * don't present it.
4507                          */
4508                         if (!is_hba_lunid(lunaddrbytes))
4509                                 break;
4510                         ncurrent++;
4511                         break;
4512                 default:
4513                         break;
4514                 }
4515                 if (ncurrent >= HPSA_MAX_DEVICES)
4516                         break;
4517         }
4518
4519         if (h->sas_host == NULL) {
4520                 int rc = 0;
4521
4522                 rc = hpsa_add_sas_host(h);
4523                 if (rc) {
4524                         dev_warn(&h->pdev->dev,
4525                                 "Could not add sas host %d\n", rc);
4526                         goto out;
4527                 }
4528         }
4529
4530         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4531 out:
4532         kfree(tmpdevice);
4533         for (i = 0; i < ndev_allocated; i++)
4534                 kfree(currentsd[i]);
4535         kfree(currentsd);
4536         kfree(physdev_list);
4537         kfree(logdev_list);
4538         kfree(id_ctlr);
4539         kfree(id_phys);
4540 }
4541
4542 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4543                                    struct scatterlist *sg)
4544 {
4545         u64 addr64 = (u64) sg_dma_address(sg);
4546         unsigned int len = sg_dma_len(sg);
4547
4548         desc->Addr = cpu_to_le64(addr64);
4549         desc->Len = cpu_to_le32(len);
4550         desc->Ext = 0;
4551 }
4552
4553 /*
4554  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4555  * dma mapping  and fills in the scatter gather entries of the
4556  * hpsa command, cp.
4557  */
4558 static int hpsa_scatter_gather(struct ctlr_info *h,
4559                 struct CommandList *cp,
4560                 struct scsi_cmnd *cmd)
4561 {
4562         struct scatterlist *sg;
4563         int use_sg, i, sg_limit, chained, last_sg;
4564         struct SGDescriptor *curr_sg;
4565
4566         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4567
4568         use_sg = scsi_dma_map(cmd);
4569         if (use_sg < 0)
4570                 return use_sg;
4571
4572         if (!use_sg)
4573                 goto sglist_finished;
4574
4575         /*
4576          * If the number of entries is greater than the max for a single list,
4577          * then we have a chained list; we will set up all but one entry in the
4578          * first list (the last entry is saved for link information);
4579          * otherwise, we don't have a chained list and we'll set up at each of
4580          * the entries in the one list.
4581          */
4582         curr_sg = cp->SG;
4583         chained = use_sg > h->max_cmd_sg_entries;
4584         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4585         last_sg = scsi_sg_count(cmd) - 1;
4586         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4587                 hpsa_set_sg_descriptor(curr_sg, sg);
4588                 curr_sg++;
4589         }
4590
4591         if (chained) {
4592                 /*
4593                  * Continue with the chained list.  Set curr_sg to the chained
4594                  * list.  Modify the limit to the total count less the entries
4595                  * we've already set up.  Resume the scan at the list entry
4596                  * where the previous loop left off.
4597                  */
4598                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4599                 sg_limit = use_sg - sg_limit;
4600                 for_each_sg(sg, sg, sg_limit, i) {
4601                         hpsa_set_sg_descriptor(curr_sg, sg);
4602                         curr_sg++;
4603                 }
4604         }
4605
4606         /* Back the pointer up to the last entry and mark it as "last". */
4607         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4608
4609         if (use_sg + chained > h->maxSG)
4610                 h->maxSG = use_sg + chained;
4611
4612         if (chained) {
4613                 cp->Header.SGList = h->max_cmd_sg_entries;
4614                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4615                 if (hpsa_map_sg_chain_block(h, cp)) {
4616                         scsi_dma_unmap(cmd);
4617                         return -1;
4618                 }
4619                 return 0;
4620         }
4621
4622 sglist_finished:
4623
4624         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4625         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4626         return 0;
4627 }
4628
4629 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4630                                                 u8 *cdb, int cdb_len,
4631                                                 const char *func)
4632 {
4633         dev_warn(&h->pdev->dev,
4634                  "%s: Blocking zero-length request: CDB:%*phN\n",
4635                  func, cdb_len, cdb);
4636 }
4637
4638 #define IO_ACCEL_INELIGIBLE 1
4639 /* zero-length transfers trigger hardware errors. */
4640 static bool is_zero_length_transfer(u8 *cdb)
4641 {
4642         u32 block_cnt;
4643
4644         /* Block zero-length transfer sizes on certain commands. */
4645         switch (cdb[0]) {
4646         case READ_10:
4647         case WRITE_10:
4648         case VERIFY:            /* 0x2F */
4649         case WRITE_VERIFY:      /* 0x2E */
4650                 block_cnt = get_unaligned_be16(&cdb[7]);
4651                 break;
4652         case READ_12:
4653         case WRITE_12:
4654         case VERIFY_12: /* 0xAF */
4655         case WRITE_VERIFY_12:   /* 0xAE */
4656                 block_cnt = get_unaligned_be32(&cdb[6]);
4657                 break;
4658         case READ_16:
4659         case WRITE_16:
4660         case VERIFY_16:         /* 0x8F */
4661                 block_cnt = get_unaligned_be32(&cdb[10]);
4662                 break;
4663         default:
4664                 return false;
4665         }
4666
4667         return block_cnt == 0;
4668 }
4669
4670 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4671 {
4672         int is_write = 0;
4673         u32 block;
4674         u32 block_cnt;
4675
4676         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4677         switch (cdb[0]) {
4678         case WRITE_6:
4679         case WRITE_12:
4680                 is_write = 1;
4681                 /* fall through */
4682         case READ_6:
4683         case READ_12:
4684                 if (*cdb_len == 6) {
4685                         block = (((cdb[1] & 0x1F) << 16) |
4686                                 (cdb[2] << 8) |
4687                                 cdb[3]);
4688                         block_cnt = cdb[4];
4689                         if (block_cnt == 0)
4690                                 block_cnt = 256;
4691                 } else {
4692                         BUG_ON(*cdb_len != 12);
4693                         block = get_unaligned_be32(&cdb[2]);
4694                         block_cnt = get_unaligned_be32(&cdb[6]);
4695                 }
4696                 if (block_cnt > 0xffff)
4697                         return IO_ACCEL_INELIGIBLE;
4698
4699                 cdb[0] = is_write ? WRITE_10 : READ_10;
4700                 cdb[1] = 0;
4701                 cdb[2] = (u8) (block >> 24);
4702                 cdb[3] = (u8) (block >> 16);
4703                 cdb[4] = (u8) (block >> 8);
4704                 cdb[5] = (u8) (block);
4705                 cdb[6] = 0;
4706                 cdb[7] = (u8) (block_cnt >> 8);
4707                 cdb[8] = (u8) (block_cnt);
4708                 cdb[9] = 0;
4709                 *cdb_len = 10;
4710                 break;
4711         }
4712         return 0;
4713 }
4714
4715 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4716         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4717         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4718 {
4719         struct scsi_cmnd *cmd = c->scsi_cmd;
4720         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4721         unsigned int len;
4722         unsigned int total_len = 0;
4723         struct scatterlist *sg;
4724         u64 addr64;
4725         int use_sg, i;
4726         struct SGDescriptor *curr_sg;
4727         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4728
4729         /* TODO: implement chaining support */
4730         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4731                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4732                 return IO_ACCEL_INELIGIBLE;
4733         }
4734
4735         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4736
4737         if (is_zero_length_transfer(cdb)) {
4738                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4739                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4740                 return IO_ACCEL_INELIGIBLE;
4741         }
4742
4743         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4744                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4745                 return IO_ACCEL_INELIGIBLE;
4746         }
4747
4748         c->cmd_type = CMD_IOACCEL1;
4749
4750         /* Adjust the DMA address to point to the accelerated command buffer */
4751         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4752                                 (c->cmdindex * sizeof(*cp));
4753         BUG_ON(c->busaddr & 0x0000007F);
4754
4755         use_sg = scsi_dma_map(cmd);
4756         if (use_sg < 0) {
4757                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4758                 return use_sg;
4759         }
4760
4761         if (use_sg) {
4762                 curr_sg = cp->SG;
4763                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4764                         addr64 = (u64) sg_dma_address(sg);
4765                         len  = sg_dma_len(sg);
4766                         total_len += len;
4767                         curr_sg->Addr = cpu_to_le64(addr64);
4768                         curr_sg->Len = cpu_to_le32(len);
4769                         curr_sg->Ext = cpu_to_le32(0);
4770                         curr_sg++;
4771                 }
4772                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4773
4774                 switch (cmd->sc_data_direction) {
4775                 case DMA_TO_DEVICE:
4776                         control |= IOACCEL1_CONTROL_DATA_OUT;
4777                         break;
4778                 case DMA_FROM_DEVICE:
4779                         control |= IOACCEL1_CONTROL_DATA_IN;
4780                         break;
4781                 case DMA_NONE:
4782                         control |= IOACCEL1_CONTROL_NODATAXFER;
4783                         break;
4784                 default:
4785                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4786                         cmd->sc_data_direction);
4787                         BUG();
4788                         break;
4789                 }
4790         } else {
4791                 control |= IOACCEL1_CONTROL_NODATAXFER;
4792         }
4793
4794         c->Header.SGList = use_sg;
4795         /* Fill out the command structure to submit */
4796         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4797         cp->transfer_len = cpu_to_le32(total_len);
4798         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4799                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4800         cp->control = cpu_to_le32(control);
4801         memcpy(cp->CDB, cdb, cdb_len);
4802         memcpy(cp->CISS_LUN, scsi3addr, 8);
4803         /* Tag was already set at init time. */
4804         enqueue_cmd_and_start_io(h, c);
4805         return 0;
4806 }
4807
4808 /*
4809  * Queue a command directly to a device behind the controller using the
4810  * I/O accelerator path.
4811  */
4812 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4813         struct CommandList *c)
4814 {
4815         struct scsi_cmnd *cmd = c->scsi_cmd;
4816         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4817
4818         if (!dev)
4819                 return -1;
4820
4821         c->phys_disk = dev;
4822
4823         if (dev->in_reset)
4824                 return -1;
4825
4826         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4827                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4828 }
4829
4830 /*
4831  * Set encryption parameters for the ioaccel2 request
4832  */
4833 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4834         struct CommandList *c, struct io_accel2_cmd *cp)
4835 {
4836         struct scsi_cmnd *cmd = c->scsi_cmd;
4837         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4838         struct raid_map_data *map = &dev->raid_map;
4839         u64 first_block;
4840
4841         /* Are we doing encryption on this device */
4842         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4843                 return;
4844         /* Set the data encryption key index. */
4845         cp->dekindex = map->dekindex;
4846
4847         /* Set the encryption enable flag, encoded into direction field. */
4848         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4849
4850         /* Set encryption tweak values based on logical block address
4851          * If block size is 512, tweak value is LBA.
4852          * For other block sizes, tweak is (LBA * block size)/ 512)
4853          */
4854         switch (cmd->cmnd[0]) {
4855         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4856         case READ_6:
4857         case WRITE_6:
4858                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4859                                 (cmd->cmnd[2] << 8) |
4860                                 cmd->cmnd[3]);
4861                 break;
4862         case WRITE_10:
4863         case READ_10:
4864         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4865         case WRITE_12:
4866         case READ_12:
4867                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4868                 break;
4869         case WRITE_16:
4870         case READ_16:
4871                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4872                 break;
4873         default:
4874                 dev_err(&h->pdev->dev,
4875                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4876                         __func__, cmd->cmnd[0]);
4877                 BUG();
4878                 break;
4879         }
4880
4881         if (le32_to_cpu(map->volume_blk_size) != 512)
4882                 first_block = first_block *
4883                                 le32_to_cpu(map->volume_blk_size)/512;
4884
4885         cp->tweak_lower = cpu_to_le32(first_block);
4886         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4887 }
4888
4889 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4890         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4891         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4892 {
4893         struct scsi_cmnd *cmd = c->scsi_cmd;
4894         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4895         struct ioaccel2_sg_element *curr_sg;
4896         int use_sg, i;
4897         struct scatterlist *sg;
4898         u64 addr64;
4899         u32 len;
4900         u32 total_len = 0;
4901
4902         if (!cmd->device)
4903                 return -1;
4904
4905         if (!cmd->device->hostdata)
4906                 return -1;
4907
4908         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4909
4910         if (is_zero_length_transfer(cdb)) {
4911                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4912                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4913                 return IO_ACCEL_INELIGIBLE;
4914         }
4915
4916         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4917                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4918                 return IO_ACCEL_INELIGIBLE;
4919         }
4920
4921         c->cmd_type = CMD_IOACCEL2;
4922         /* Adjust the DMA address to point to the accelerated command buffer */
4923         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4924                                 (c->cmdindex * sizeof(*cp));
4925         BUG_ON(c->busaddr & 0x0000007F);
4926
4927         memset(cp, 0, sizeof(*cp));
4928         cp->IU_type = IOACCEL2_IU_TYPE;
4929
4930         use_sg = scsi_dma_map(cmd);
4931         if (use_sg < 0) {
4932                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4933                 return use_sg;
4934         }
4935
4936         if (use_sg) {
4937                 curr_sg = cp->sg;
4938                 if (use_sg > h->ioaccel_maxsg) {
4939                         addr64 = le64_to_cpu(
4940                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4941                         curr_sg->address = cpu_to_le64(addr64);
4942                         curr_sg->length = 0;
4943                         curr_sg->reserved[0] = 0;
4944                         curr_sg->reserved[1] = 0;
4945                         curr_sg->reserved[2] = 0;
4946                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4947
4948                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4949                 }
4950                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4951                         addr64 = (u64) sg_dma_address(sg);
4952                         len  = sg_dma_len(sg);
4953                         total_len += len;
4954                         curr_sg->address = cpu_to_le64(addr64);
4955                         curr_sg->length = cpu_to_le32(len);
4956                         curr_sg->reserved[0] = 0;
4957                         curr_sg->reserved[1] = 0;
4958                         curr_sg->reserved[2] = 0;
4959                         curr_sg->chain_indicator = 0;
4960                         curr_sg++;
4961                 }
4962
4963                 /*
4964                  * Set the last s/g element bit
4965                  */
4966                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4967
4968                 switch (cmd->sc_data_direction) {
4969                 case DMA_TO_DEVICE:
4970                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4971                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4972                         break;
4973                 case DMA_FROM_DEVICE:
4974                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4975                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4976                         break;
4977                 case DMA_NONE:
4978                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4979                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4980                         break;
4981                 default:
4982                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4983                                 cmd->sc_data_direction);
4984                         BUG();
4985                         break;
4986                 }
4987         } else {
4988                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4989                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4990         }
4991
4992         /* Set encryption parameters, if necessary */
4993         set_encrypt_ioaccel2(h, c, cp);
4994
4995         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4996         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4997         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4998
4999         cp->data_len = cpu_to_le32(total_len);
5000         cp->err_ptr = cpu_to_le64(c->busaddr +
5001                         offsetof(struct io_accel2_cmd, error_data));
5002         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5003
5004         /* fill in sg elements */
5005         if (use_sg > h->ioaccel_maxsg) {
5006                 cp->sg_count = 1;
5007                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5008                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5009                         atomic_dec(&phys_disk->ioaccel_cmds_out);
5010                         scsi_dma_unmap(cmd);
5011                         return -1;
5012                 }
5013         } else
5014                 cp->sg_count = (u8) use_sg;
5015
5016         if (phys_disk->in_reset) {
5017                 cmd->result = DID_RESET << 16;
5018                 return -1;
5019         }
5020
5021         enqueue_cmd_and_start_io(h, c);
5022         return 0;
5023 }
5024
5025 /*
5026  * Queue a command to the correct I/O accelerator path.
5027  */
5028 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5029         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5030         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5031 {
5032         if (!c->scsi_cmd->device)
5033                 return -1;
5034
5035         if (!c->scsi_cmd->device->hostdata)
5036                 return -1;
5037
5038         if (phys_disk->in_reset)
5039                 return -1;
5040
5041         /* Try to honor the device's queue depth */
5042         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5043                                         phys_disk->queue_depth) {
5044                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5045                 return IO_ACCEL_INELIGIBLE;
5046         }
5047         if (h->transMethod & CFGTBL_Trans_io_accel1)
5048                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5049                                                 cdb, cdb_len, scsi3addr,
5050                                                 phys_disk);
5051         else
5052                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5053                                                 cdb, cdb_len, scsi3addr,
5054                                                 phys_disk);
5055 }
5056
5057 static void raid_map_helper(struct raid_map_data *map,
5058                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5059 {
5060         if (offload_to_mirror == 0)  {
5061                 /* use physical disk in the first mirrored group. */
5062                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5063                 return;
5064         }
5065         do {
5066                 /* determine mirror group that *map_index indicates */
5067                 *current_group = *map_index /
5068                         le16_to_cpu(map->data_disks_per_row);
5069                 if (offload_to_mirror == *current_group)
5070                         continue;
5071                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5072                         /* select map index from next group */
5073                         *map_index += le16_to_cpu(map->data_disks_per_row);
5074                         (*current_group)++;
5075                 } else {
5076                         /* select map index from first group */
5077                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5078                         *current_group = 0;
5079                 }
5080         } while (offload_to_mirror != *current_group);
5081 }
5082
5083 /*
5084  * Attempt to perform offload RAID mapping for a logical volume I/O.
5085  */
5086 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5087         struct CommandList *c)
5088 {
5089         struct scsi_cmnd *cmd = c->scsi_cmd;
5090         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5091         struct raid_map_data *map = &dev->raid_map;
5092         struct raid_map_disk_data *dd = &map->data[0];
5093         int is_write = 0;
5094         u32 map_index;
5095         u64 first_block, last_block;
5096         u32 block_cnt;
5097         u32 blocks_per_row;
5098         u64 first_row, last_row;
5099         u32 first_row_offset, last_row_offset;
5100         u32 first_column, last_column;
5101         u64 r0_first_row, r0_last_row;
5102         u32 r5or6_blocks_per_row;
5103         u64 r5or6_first_row, r5or6_last_row;
5104         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5105         u32 r5or6_first_column, r5or6_last_column;
5106         u32 total_disks_per_row;
5107         u32 stripesize;
5108         u32 first_group, last_group, current_group;
5109         u32 map_row;
5110         u32 disk_handle;
5111         u64 disk_block;
5112         u32 disk_block_cnt;
5113         u8 cdb[16];
5114         u8 cdb_len;
5115         u16 strip_size;
5116 #if BITS_PER_LONG == 32
5117         u64 tmpdiv;
5118 #endif
5119         int offload_to_mirror;
5120
5121         if (!dev)
5122                 return -1;
5123
5124         if (dev->in_reset)
5125                 return -1;
5126
5127         /* check for valid opcode, get LBA and block count */
5128         switch (cmd->cmnd[0]) {
5129         case WRITE_6:
5130                 is_write = 1;
5131                 /* fall through */
5132         case READ_6:
5133                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5134                                 (cmd->cmnd[2] << 8) |
5135                                 cmd->cmnd[3]);
5136                 block_cnt = cmd->cmnd[4];
5137                 if (block_cnt == 0)
5138                         block_cnt = 256;
5139                 break;
5140         case WRITE_10:
5141                 is_write = 1;
5142                 /* fall through */
5143         case READ_10:
5144                 first_block =
5145                         (((u64) cmd->cmnd[2]) << 24) |
5146                         (((u64) cmd->cmnd[3]) << 16) |
5147                         (((u64) cmd->cmnd[4]) << 8) |
5148                         cmd->cmnd[5];
5149                 block_cnt =
5150                         (((u32) cmd->cmnd[7]) << 8) |
5151                         cmd->cmnd[8];
5152                 break;
5153         case WRITE_12:
5154                 is_write = 1;
5155                 /* fall through */
5156         case READ_12:
5157                 first_block =
5158                         (((u64) cmd->cmnd[2]) << 24) |
5159                         (((u64) cmd->cmnd[3]) << 16) |
5160                         (((u64) cmd->cmnd[4]) << 8) |
5161                         cmd->cmnd[5];
5162                 block_cnt =
5163                         (((u32) cmd->cmnd[6]) << 24) |
5164                         (((u32) cmd->cmnd[7]) << 16) |
5165                         (((u32) cmd->cmnd[8]) << 8) |
5166                 cmd->cmnd[9];
5167                 break;
5168         case WRITE_16:
5169                 is_write = 1;
5170                 /* fall through */
5171         case READ_16:
5172                 first_block =
5173                         (((u64) cmd->cmnd[2]) << 56) |
5174                         (((u64) cmd->cmnd[3]) << 48) |
5175                         (((u64) cmd->cmnd[4]) << 40) |
5176                         (((u64) cmd->cmnd[5]) << 32) |
5177                         (((u64) cmd->cmnd[6]) << 24) |
5178                         (((u64) cmd->cmnd[7]) << 16) |
5179                         (((u64) cmd->cmnd[8]) << 8) |
5180                         cmd->cmnd[9];
5181                 block_cnt =
5182                         (((u32) cmd->cmnd[10]) << 24) |
5183                         (((u32) cmd->cmnd[11]) << 16) |
5184                         (((u32) cmd->cmnd[12]) << 8) |
5185                         cmd->cmnd[13];
5186                 break;
5187         default:
5188                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5189         }
5190         last_block = first_block + block_cnt - 1;
5191
5192         /* check for write to non-RAID-0 */
5193         if (is_write && dev->raid_level != 0)
5194                 return IO_ACCEL_INELIGIBLE;
5195
5196         /* check for invalid block or wraparound */
5197         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5198                 last_block < first_block)
5199                 return IO_ACCEL_INELIGIBLE;
5200
5201         /* calculate stripe information for the request */
5202         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5203                                 le16_to_cpu(map->strip_size);
5204         strip_size = le16_to_cpu(map->strip_size);
5205 #if BITS_PER_LONG == 32
5206         tmpdiv = first_block;
5207         (void) do_div(tmpdiv, blocks_per_row);
5208         first_row = tmpdiv;
5209         tmpdiv = last_block;
5210         (void) do_div(tmpdiv, blocks_per_row);
5211         last_row = tmpdiv;
5212         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5213         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5214         tmpdiv = first_row_offset;
5215         (void) do_div(tmpdiv, strip_size);
5216         first_column = tmpdiv;
5217         tmpdiv = last_row_offset;
5218         (void) do_div(tmpdiv, strip_size);
5219         last_column = tmpdiv;
5220 #else
5221         first_row = first_block / blocks_per_row;
5222         last_row = last_block / blocks_per_row;
5223         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5224         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5225         first_column = first_row_offset / strip_size;
5226         last_column = last_row_offset / strip_size;
5227 #endif
5228
5229         /* if this isn't a single row/column then give to the controller */
5230         if ((first_row != last_row) || (first_column != last_column))
5231                 return IO_ACCEL_INELIGIBLE;
5232
5233         /* proceeding with driver mapping */
5234         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5235                                 le16_to_cpu(map->metadata_disks_per_row);
5236         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5237                                 le16_to_cpu(map->row_cnt);
5238         map_index = (map_row * total_disks_per_row) + first_column;
5239
5240         switch (dev->raid_level) {
5241         case HPSA_RAID_0:
5242                 break; /* nothing special to do */
5243         case HPSA_RAID_1:
5244                 /* Handles load balance across RAID 1 members.
5245                  * (2-drive R1 and R10 with even # of drives.)
5246                  * Appropriate for SSDs, not optimal for HDDs
5247                  * Ensure we have the correct raid_map.
5248                  */
5249                 if (le16_to_cpu(map->layout_map_count) != 2) {
5250                         hpsa_turn_off_ioaccel_for_device(dev);
5251                         return IO_ACCEL_INELIGIBLE;
5252                 }
5253                 if (dev->offload_to_mirror)
5254                         map_index += le16_to_cpu(map->data_disks_per_row);
5255                 dev->offload_to_mirror = !dev->offload_to_mirror;
5256                 break;
5257         case HPSA_RAID_ADM:
5258                 /* Handles N-way mirrors  (R1-ADM)
5259                  * and R10 with # of drives divisible by 3.)
5260                  * Ensure we have the correct raid_map.
5261                  */
5262                 if (le16_to_cpu(map->layout_map_count) != 3) {
5263                         hpsa_turn_off_ioaccel_for_device(dev);
5264                         return IO_ACCEL_INELIGIBLE;
5265                 }
5266
5267                 offload_to_mirror = dev->offload_to_mirror;
5268                 raid_map_helper(map, offload_to_mirror,
5269                                 &map_index, &current_group);
5270                 /* set mirror group to use next time */
5271                 offload_to_mirror =
5272                         (offload_to_mirror >=
5273                         le16_to_cpu(map->layout_map_count) - 1)
5274                         ? 0 : offload_to_mirror + 1;
5275                 dev->offload_to_mirror = offload_to_mirror;
5276                 /* Avoid direct use of dev->offload_to_mirror within this
5277                  * function since multiple threads might simultaneously
5278                  * increment it beyond the range of dev->layout_map_count -1.
5279                  */
5280                 break;
5281         case HPSA_RAID_5:
5282         case HPSA_RAID_6:
5283                 if (le16_to_cpu(map->layout_map_count) <= 1)
5284                         break;
5285
5286                 /* Verify first and last block are in same RAID group */
5287                 r5or6_blocks_per_row =
5288                         le16_to_cpu(map->strip_size) *
5289                         le16_to_cpu(map->data_disks_per_row);
5290                 if (r5or6_blocks_per_row == 0) {
5291                         hpsa_turn_off_ioaccel_for_device(dev);
5292                         return IO_ACCEL_INELIGIBLE;
5293                 }
5294                 stripesize = r5or6_blocks_per_row *
5295                         le16_to_cpu(map->layout_map_count);
5296 #if BITS_PER_LONG == 32
5297                 tmpdiv = first_block;
5298                 first_group = do_div(tmpdiv, stripesize);
5299                 tmpdiv = first_group;
5300                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5301                 first_group = tmpdiv;
5302                 tmpdiv = last_block;
5303                 last_group = do_div(tmpdiv, stripesize);
5304                 tmpdiv = last_group;
5305                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5306                 last_group = tmpdiv;
5307 #else
5308                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5309                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5310 #endif
5311                 if (first_group != last_group)
5312                         return IO_ACCEL_INELIGIBLE;
5313
5314                 /* Verify request is in a single row of RAID 5/6 */
5315 #if BITS_PER_LONG == 32
5316                 tmpdiv = first_block;
5317                 (void) do_div(tmpdiv, stripesize);
5318                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5319                 tmpdiv = last_block;
5320                 (void) do_div(tmpdiv, stripesize);
5321                 r5or6_last_row = r0_last_row = tmpdiv;
5322 #else
5323                 first_row = r5or6_first_row = r0_first_row =
5324                                                 first_block / stripesize;
5325                 r5or6_last_row = r0_last_row = last_block / stripesize;
5326 #endif
5327                 if (r5or6_first_row != r5or6_last_row)
5328                         return IO_ACCEL_INELIGIBLE;
5329
5330
5331                 /* Verify request is in a single column */
5332 #if BITS_PER_LONG == 32
5333                 tmpdiv = first_block;
5334                 first_row_offset = do_div(tmpdiv, stripesize);
5335                 tmpdiv = first_row_offset;
5336                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5337                 r5or6_first_row_offset = first_row_offset;
5338                 tmpdiv = last_block;
5339                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5340                 tmpdiv = r5or6_last_row_offset;
5341                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5342                 tmpdiv = r5or6_first_row_offset;
5343                 (void) do_div(tmpdiv, map->strip_size);
5344                 first_column = r5or6_first_column = tmpdiv;
5345                 tmpdiv = r5or6_last_row_offset;
5346                 (void) do_div(tmpdiv, map->strip_size);
5347                 r5or6_last_column = tmpdiv;
5348 #else
5349                 first_row_offset = r5or6_first_row_offset =
5350                         (u32)((first_block % stripesize) %
5351                                                 r5or6_blocks_per_row);
5352
5353                 r5or6_last_row_offset =
5354                         (u32)((last_block % stripesize) %
5355                                                 r5or6_blocks_per_row);
5356
5357                 first_column = r5or6_first_column =
5358                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5359                 r5or6_last_column =
5360                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5361 #endif
5362                 if (r5or6_first_column != r5or6_last_column)
5363                         return IO_ACCEL_INELIGIBLE;
5364
5365                 /* Request is eligible */
5366                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5367                         le16_to_cpu(map->row_cnt);
5368
5369                 map_index = (first_group *
5370                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5371                         (map_row * total_disks_per_row) + first_column;
5372                 break;
5373         default:
5374                 return IO_ACCEL_INELIGIBLE;
5375         }
5376
5377         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5378                 return IO_ACCEL_INELIGIBLE;
5379
5380         c->phys_disk = dev->phys_disk[map_index];
5381         if (!c->phys_disk)
5382                 return IO_ACCEL_INELIGIBLE;
5383
5384         disk_handle = dd[map_index].ioaccel_handle;
5385         disk_block = le64_to_cpu(map->disk_starting_blk) +
5386                         first_row * le16_to_cpu(map->strip_size) +
5387                         (first_row_offset - first_column *
5388                         le16_to_cpu(map->strip_size));
5389         disk_block_cnt = block_cnt;
5390
5391         /* handle differing logical/physical block sizes */
5392         if (map->phys_blk_shift) {
5393                 disk_block <<= map->phys_blk_shift;
5394                 disk_block_cnt <<= map->phys_blk_shift;
5395         }
5396         BUG_ON(disk_block_cnt > 0xffff);
5397
5398         /* build the new CDB for the physical disk I/O */
5399         if (disk_block > 0xffffffff) {
5400                 cdb[0] = is_write ? WRITE_16 : READ_16;
5401                 cdb[1] = 0;
5402                 cdb[2] = (u8) (disk_block >> 56);
5403                 cdb[3] = (u8) (disk_block >> 48);
5404                 cdb[4] = (u8) (disk_block >> 40);
5405                 cdb[5] = (u8) (disk_block >> 32);
5406                 cdb[6] = (u8) (disk_block >> 24);
5407                 cdb[7] = (u8) (disk_block >> 16);
5408                 cdb[8] = (u8) (disk_block >> 8);
5409                 cdb[9] = (u8) (disk_block);
5410                 cdb[10] = (u8) (disk_block_cnt >> 24);
5411                 cdb[11] = (u8) (disk_block_cnt >> 16);
5412                 cdb[12] = (u8) (disk_block_cnt >> 8);
5413                 cdb[13] = (u8) (disk_block_cnt);
5414                 cdb[14] = 0;
5415                 cdb[15] = 0;
5416                 cdb_len = 16;
5417         } else {
5418                 cdb[0] = is_write ? WRITE_10 : READ_10;
5419                 cdb[1] = 0;
5420                 cdb[2] = (u8) (disk_block >> 24);
5421                 cdb[3] = (u8) (disk_block >> 16);
5422                 cdb[4] = (u8) (disk_block >> 8);
5423                 cdb[5] = (u8) (disk_block);
5424                 cdb[6] = 0;
5425                 cdb[7] = (u8) (disk_block_cnt >> 8);
5426                 cdb[8] = (u8) (disk_block_cnt);
5427                 cdb[9] = 0;
5428                 cdb_len = 10;
5429         }
5430         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5431                                                 dev->scsi3addr,
5432                                                 dev->phys_disk[map_index]);
5433 }
5434
5435 /*
5436  * Submit commands down the "normal" RAID stack path
5437  * All callers to hpsa_ciss_submit must check lockup_detected
5438  * beforehand, before (opt.) and after calling cmd_alloc
5439  */
5440 static int hpsa_ciss_submit(struct ctlr_info *h,
5441         struct CommandList *c, struct scsi_cmnd *cmd,
5442         struct hpsa_scsi_dev_t *dev)
5443 {
5444         cmd->host_scribble = (unsigned char *) c;
5445         c->cmd_type = CMD_SCSI;
5446         c->scsi_cmd = cmd;
5447         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5448         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5449         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5450
5451         /* Fill in the request block... */
5452
5453         c->Request.Timeout = 0;
5454         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5455         c->Request.CDBLen = cmd->cmd_len;
5456         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5457         switch (cmd->sc_data_direction) {
5458         case DMA_TO_DEVICE:
5459                 c->Request.type_attr_dir =
5460                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5461                 break;
5462         case DMA_FROM_DEVICE:
5463                 c->Request.type_attr_dir =
5464                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5465                 break;
5466         case DMA_NONE:
5467                 c->Request.type_attr_dir =
5468                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5469                 break;
5470         case DMA_BIDIRECTIONAL:
5471                 /* This can happen if a buggy application does a scsi passthru
5472                  * and sets both inlen and outlen to non-zero. ( see
5473                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5474                  */
5475
5476                 c->Request.type_attr_dir =
5477                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5478                 /* This is technically wrong, and hpsa controllers should
5479                  * reject it with CMD_INVALID, which is the most correct
5480                  * response, but non-fibre backends appear to let it
5481                  * slide by, and give the same results as if this field
5482                  * were set correctly.  Either way is acceptable for
5483                  * our purposes here.
5484                  */
5485
5486                 break;
5487
5488         default:
5489                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5490                         cmd->sc_data_direction);
5491                 BUG();
5492                 break;
5493         }
5494
5495         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5496                 hpsa_cmd_resolve_and_free(h, c);
5497                 return SCSI_MLQUEUE_HOST_BUSY;
5498         }
5499
5500         if (dev->in_reset) {
5501                 hpsa_cmd_resolve_and_free(h, c);
5502                 return SCSI_MLQUEUE_HOST_BUSY;
5503         }
5504
5505         c->device = dev;
5506
5507         enqueue_cmd_and_start_io(h, c);
5508         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5509         return 0;
5510 }
5511
5512 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5513                                 struct CommandList *c)
5514 {
5515         dma_addr_t cmd_dma_handle, err_dma_handle;
5516
5517         /* Zero out all of commandlist except the last field, refcount */
5518         memset(c, 0, offsetof(struct CommandList, refcount));
5519         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5520         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5521         c->err_info = h->errinfo_pool + index;
5522         memset(c->err_info, 0, sizeof(*c->err_info));
5523         err_dma_handle = h->errinfo_pool_dhandle
5524             + index * sizeof(*c->err_info);
5525         c->cmdindex = index;
5526         c->busaddr = (u32) cmd_dma_handle;
5527         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5528         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5529         c->h = h;
5530         c->scsi_cmd = SCSI_CMD_IDLE;
5531 }
5532
5533 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5534 {
5535         int i;
5536
5537         for (i = 0; i < h->nr_cmds; i++) {
5538                 struct CommandList *c = h->cmd_pool + i;
5539
5540                 hpsa_cmd_init(h, i, c);
5541                 atomic_set(&c->refcount, 0);
5542         }
5543 }
5544
5545 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5546                                 struct CommandList *c)
5547 {
5548         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5549
5550         BUG_ON(c->cmdindex != index);
5551
5552         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5553         memset(c->err_info, 0, sizeof(*c->err_info));
5554         c->busaddr = (u32) cmd_dma_handle;
5555 }
5556
5557 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5558                 struct CommandList *c, struct scsi_cmnd *cmd)
5559 {
5560         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5561         int rc = IO_ACCEL_INELIGIBLE;
5562
5563         if (!dev)
5564                 return SCSI_MLQUEUE_HOST_BUSY;
5565
5566         if (dev->in_reset)
5567                 return SCSI_MLQUEUE_HOST_BUSY;
5568
5569         if (hpsa_simple_mode)
5570                 return IO_ACCEL_INELIGIBLE;
5571
5572         cmd->host_scribble = (unsigned char *) c;
5573
5574         if (dev->offload_enabled) {
5575                 hpsa_cmd_init(h, c->cmdindex, c);
5576                 c->cmd_type = CMD_SCSI;
5577                 c->scsi_cmd = cmd;
5578                 c->device = dev;
5579                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5580                 if (rc < 0)     /* scsi_dma_map failed. */
5581                         rc = SCSI_MLQUEUE_HOST_BUSY;
5582         } else if (dev->hba_ioaccel_enabled) {
5583                 hpsa_cmd_init(h, c->cmdindex, c);
5584                 c->cmd_type = CMD_SCSI;
5585                 c->scsi_cmd = cmd;
5586                 c->device = dev;
5587                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5588                 if (rc < 0)     /* scsi_dma_map failed. */
5589                         rc = SCSI_MLQUEUE_HOST_BUSY;
5590         }
5591         return rc;
5592 }
5593
5594 static void hpsa_command_resubmit_worker(struct work_struct *work)
5595 {
5596         struct scsi_cmnd *cmd;
5597         struct hpsa_scsi_dev_t *dev;
5598         struct CommandList *c = container_of(work, struct CommandList, work);
5599
5600         cmd = c->scsi_cmd;
5601         dev = cmd->device->hostdata;
5602         if (!dev) {
5603                 cmd->result = DID_NO_CONNECT << 16;
5604                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5605         }
5606
5607         if (dev->in_reset) {
5608                 cmd->result = DID_RESET << 16;
5609                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5610         }
5611
5612         if (c->cmd_type == CMD_IOACCEL2) {
5613                 struct ctlr_info *h = c->h;
5614                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5615                 int rc;
5616
5617                 if (c2->error_data.serv_response ==
5618                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5619                         rc = hpsa_ioaccel_submit(h, c, cmd);
5620                         if (rc == 0)
5621                                 return;
5622                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5623                                 /*
5624                                  * If we get here, it means dma mapping failed.
5625                                  * Try again via scsi mid layer, which will
5626                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5627                                  */
5628                                 cmd->result = DID_IMM_RETRY << 16;
5629                                 return hpsa_cmd_free_and_done(h, c, cmd);
5630                         }
5631                         /* else, fall thru and resubmit down CISS path */
5632                 }
5633         }
5634         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5635         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5636                 /*
5637                  * If we get here, it means dma mapping failed. Try
5638                  * again via scsi mid layer, which will then get
5639                  * SCSI_MLQUEUE_HOST_BUSY.
5640                  *
5641                  * hpsa_ciss_submit will have already freed c
5642                  * if it encountered a dma mapping failure.
5643                  */
5644                 cmd->result = DID_IMM_RETRY << 16;
5645                 cmd->scsi_done(cmd);
5646         }
5647 }
5648
5649 /* Running in struct Scsi_Host->host_lock less mode */
5650 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5651 {
5652         struct ctlr_info *h;
5653         struct hpsa_scsi_dev_t *dev;
5654         struct CommandList *c;
5655         int rc = 0;
5656
5657         /* Get the ptr to our adapter structure out of cmd->host. */
5658         h = sdev_to_hba(cmd->device);
5659
5660         BUG_ON(cmd->request->tag < 0);
5661
5662         dev = cmd->device->hostdata;
5663         if (!dev) {
5664                 cmd->result = DID_NO_CONNECT << 16;
5665                 cmd->scsi_done(cmd);
5666                 return 0;
5667         }
5668
5669         if (dev->removed) {
5670                 cmd->result = DID_NO_CONNECT << 16;
5671                 cmd->scsi_done(cmd);
5672                 return 0;
5673         }
5674
5675         if (unlikely(lockup_detected(h))) {
5676                 cmd->result = DID_NO_CONNECT << 16;
5677                 cmd->scsi_done(cmd);
5678                 return 0;
5679         }
5680
5681         if (dev->in_reset)
5682                 return SCSI_MLQUEUE_DEVICE_BUSY;
5683
5684         c = cmd_tagged_alloc(h, cmd);
5685         if (c == NULL)
5686                 return SCSI_MLQUEUE_DEVICE_BUSY;
5687
5688         /*
5689          * This is necessary because the SML doesn't zero out this field during
5690          * error recovery.
5691          */
5692         cmd->result = 0;
5693
5694         /*
5695          * Call alternate submit routine for I/O accelerated commands.
5696          * Retries always go down the normal I/O path.
5697          */
5698         if (likely(cmd->retries == 0 &&
5699                         !blk_rq_is_passthrough(cmd->request) &&
5700                         h->acciopath_status)) {
5701                 rc = hpsa_ioaccel_submit(h, c, cmd);
5702                 if (rc == 0)
5703                         return 0;
5704                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5705                         hpsa_cmd_resolve_and_free(h, c);
5706                         return SCSI_MLQUEUE_HOST_BUSY;
5707                 }
5708         }
5709         return hpsa_ciss_submit(h, c, cmd, dev);
5710 }
5711
5712 static void hpsa_scan_complete(struct ctlr_info *h)
5713 {
5714         unsigned long flags;
5715
5716         spin_lock_irqsave(&h->scan_lock, flags);
5717         h->scan_finished = 1;
5718         wake_up(&h->scan_wait_queue);
5719         spin_unlock_irqrestore(&h->scan_lock, flags);
5720 }
5721
5722 static void hpsa_scan_start(struct Scsi_Host *sh)
5723 {
5724         struct ctlr_info *h = shost_to_hba(sh);
5725         unsigned long flags;
5726
5727         /*
5728          * Don't let rescans be initiated on a controller known to be locked
5729          * up.  If the controller locks up *during* a rescan, that thread is
5730          * probably hosed, but at least we can prevent new rescan threads from
5731          * piling up on a locked up controller.
5732          */
5733         if (unlikely(lockup_detected(h)))
5734                 return hpsa_scan_complete(h);
5735
5736         /*
5737          * If a scan is already waiting to run, no need to add another
5738          */
5739         spin_lock_irqsave(&h->scan_lock, flags);
5740         if (h->scan_waiting) {
5741                 spin_unlock_irqrestore(&h->scan_lock, flags);
5742                 return;
5743         }
5744
5745         spin_unlock_irqrestore(&h->scan_lock, flags);
5746
5747         /* wait until any scan already in progress is finished. */
5748         while (1) {
5749                 spin_lock_irqsave(&h->scan_lock, flags);
5750                 if (h->scan_finished)
5751                         break;
5752                 h->scan_waiting = 1;
5753                 spin_unlock_irqrestore(&h->scan_lock, flags);
5754                 wait_event(h->scan_wait_queue, h->scan_finished);
5755                 /* Note: We don't need to worry about a race between this
5756                  * thread and driver unload because the midlayer will
5757                  * have incremented the reference count, so unload won't
5758                  * happen if we're in here.
5759                  */
5760         }
5761         h->scan_finished = 0; /* mark scan as in progress */
5762         h->scan_waiting = 0;
5763         spin_unlock_irqrestore(&h->scan_lock, flags);
5764
5765         if (unlikely(lockup_detected(h)))
5766                 return hpsa_scan_complete(h);
5767
5768         /*
5769          * Do the scan after a reset completion
5770          */
5771         spin_lock_irqsave(&h->reset_lock, flags);
5772         if (h->reset_in_progress) {
5773                 h->drv_req_rescan = 1;
5774                 spin_unlock_irqrestore(&h->reset_lock, flags);
5775                 hpsa_scan_complete(h);
5776                 return;
5777         }
5778         spin_unlock_irqrestore(&h->reset_lock, flags);
5779
5780         hpsa_update_scsi_devices(h);
5781
5782         hpsa_scan_complete(h);
5783 }
5784
5785 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5786 {
5787         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5788
5789         if (!logical_drive)
5790                 return -ENODEV;
5791
5792         if (qdepth < 1)
5793                 qdepth = 1;
5794         else if (qdepth > logical_drive->queue_depth)
5795                 qdepth = logical_drive->queue_depth;
5796
5797         return scsi_change_queue_depth(sdev, qdepth);
5798 }
5799
5800 static int hpsa_scan_finished(struct Scsi_Host *sh,
5801         unsigned long elapsed_time)
5802 {
5803         struct ctlr_info *h = shost_to_hba(sh);
5804         unsigned long flags;
5805         int finished;
5806
5807         spin_lock_irqsave(&h->scan_lock, flags);
5808         finished = h->scan_finished;
5809         spin_unlock_irqrestore(&h->scan_lock, flags);
5810         return finished;
5811 }
5812
5813 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5814 {
5815         struct Scsi_Host *sh;
5816
5817         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5818         if (sh == NULL) {
5819                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5820                 return -ENOMEM;
5821         }
5822
5823         sh->io_port = 0;
5824         sh->n_io_port = 0;
5825         sh->this_id = -1;
5826         sh->max_channel = 3;
5827         sh->max_cmd_len = MAX_COMMAND_SIZE;
5828         sh->max_lun = HPSA_MAX_LUN;
5829         sh->max_id = HPSA_MAX_LUN;
5830         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5831         sh->cmd_per_lun = sh->can_queue;
5832         sh->sg_tablesize = h->maxsgentries;
5833         sh->transportt = hpsa_sas_transport_template;
5834         sh->hostdata[0] = (unsigned long) h;
5835         sh->irq = pci_irq_vector(h->pdev, 0);
5836         sh->unique_id = sh->irq;
5837
5838         h->scsi_host = sh;
5839         return 0;
5840 }
5841
5842 static int hpsa_scsi_add_host(struct ctlr_info *h)
5843 {
5844         int rv;
5845
5846         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5847         if (rv) {
5848                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5849                 return rv;
5850         }
5851         scsi_scan_host(h->scsi_host);
5852         return 0;
5853 }
5854
5855 /*
5856  * The block layer has already gone to the trouble of picking out a unique,
5857  * small-integer tag for this request.  We use an offset from that value as
5858  * an index to select our command block.  (The offset allows us to reserve the
5859  * low-numbered entries for our own uses.)
5860  */
5861 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5862 {
5863         int idx = scmd->request->tag;
5864
5865         if (idx < 0)
5866                 return idx;
5867
5868         /* Offset to leave space for internal cmds. */
5869         return idx += HPSA_NRESERVED_CMDS;
5870 }
5871
5872 /*
5873  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5874  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5875  */
5876 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5877                                 struct CommandList *c, unsigned char lunaddr[],
5878                                 int reply_queue)
5879 {
5880         int rc;
5881
5882         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5883         (void) fill_cmd(c, TEST_UNIT_READY, h,
5884                         NULL, 0, 0, lunaddr, TYPE_CMD);
5885         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5886         if (rc)
5887                 return rc;
5888         /* no unmap needed here because no data xfer. */
5889
5890         /* Check if the unit is already ready. */
5891         if (c->err_info->CommandStatus == CMD_SUCCESS)
5892                 return 0;
5893
5894         /*
5895          * The first command sent after reset will receive "unit attention" to
5896          * indicate that the LUN has been reset...this is actually what we're
5897          * looking for (but, success is good too).
5898          */
5899         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5900                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5901                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5902                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5903                 return 0;
5904
5905         return 1;
5906 }
5907
5908 /*
5909  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5910  * returns zero when the unit is ready, and non-zero when giving up.
5911  */
5912 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5913                                 struct CommandList *c,
5914                                 unsigned char lunaddr[], int reply_queue)
5915 {
5916         int rc;
5917         int count = 0;
5918         int waittime = 1; /* seconds */
5919
5920         /* Send test unit ready until device ready, or give up. */
5921         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5922
5923                 /*
5924                  * Wait for a bit.  do this first, because if we send
5925                  * the TUR right away, the reset will just abort it.
5926                  */
5927                 msleep(1000 * waittime);
5928
5929                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5930                 if (!rc)
5931                         break;
5932
5933                 /* Increase wait time with each try, up to a point. */
5934                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5935                         waittime *= 2;
5936
5937                 dev_warn(&h->pdev->dev,
5938                          "waiting %d secs for device to become ready.\n",
5939                          waittime);
5940         }
5941
5942         return rc;
5943 }
5944
5945 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5946                                            unsigned char lunaddr[],
5947                                            int reply_queue)
5948 {
5949         int first_queue;
5950         int last_queue;
5951         int rq;
5952         int rc = 0;
5953         struct CommandList *c;
5954
5955         c = cmd_alloc(h);
5956
5957         /*
5958          * If no specific reply queue was requested, then send the TUR
5959          * repeatedly, requesting a reply on each reply queue; otherwise execute
5960          * the loop exactly once using only the specified queue.
5961          */
5962         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5963                 first_queue = 0;
5964                 last_queue = h->nreply_queues - 1;
5965         } else {
5966                 first_queue = reply_queue;
5967                 last_queue = reply_queue;
5968         }
5969
5970         for (rq = first_queue; rq <= last_queue; rq++) {
5971                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5972                 if (rc)
5973                         break;
5974         }
5975
5976         if (rc)
5977                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5978         else
5979                 dev_warn(&h->pdev->dev, "device is ready.\n");
5980
5981         cmd_free(h, c);
5982         return rc;
5983 }
5984
5985 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5986  * complaining.  Doing a host- or bus-reset can't do anything good here.
5987  */
5988 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5989 {
5990         int rc = SUCCESS;
5991         int i;
5992         struct ctlr_info *h;
5993         struct hpsa_scsi_dev_t *dev = NULL;
5994         u8 reset_type;
5995         char msg[48];
5996         unsigned long flags;
5997
5998         /* find the controller to which the command to be aborted was sent */
5999         h = sdev_to_hba(scsicmd->device);
6000         if (h == NULL) /* paranoia */
6001                 return FAILED;
6002
6003         spin_lock_irqsave(&h->reset_lock, flags);
6004         h->reset_in_progress = 1;
6005         spin_unlock_irqrestore(&h->reset_lock, flags);
6006
6007         if (lockup_detected(h)) {
6008                 rc = FAILED;
6009                 goto return_reset_status;
6010         }
6011
6012         dev = scsicmd->device->hostdata;
6013         if (!dev) {
6014                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6015                 rc = FAILED;
6016                 goto return_reset_status;
6017         }
6018
6019         if (dev->devtype == TYPE_ENCLOSURE) {
6020                 rc = SUCCESS;
6021                 goto return_reset_status;
6022         }
6023
6024         /* if controller locked up, we can guarantee command won't complete */
6025         if (lockup_detected(h)) {
6026                 snprintf(msg, sizeof(msg),
6027                          "cmd %d RESET FAILED, lockup detected",
6028                          hpsa_get_cmd_index(scsicmd));
6029                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6030                 rc = FAILED;
6031                 goto return_reset_status;
6032         }
6033
6034         /* this reset request might be the result of a lockup; check */
6035         if (detect_controller_lockup(h)) {
6036                 snprintf(msg, sizeof(msg),
6037                          "cmd %d RESET FAILED, new lockup detected",
6038                          hpsa_get_cmd_index(scsicmd));
6039                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6040                 rc = FAILED;
6041                 goto return_reset_status;
6042         }
6043
6044         /* Do not attempt on controller */
6045         if (is_hba_lunid(dev->scsi3addr)) {
6046                 rc = SUCCESS;
6047                 goto return_reset_status;
6048         }
6049
6050         if (is_logical_dev_addr_mode(dev->scsi3addr))
6051                 reset_type = HPSA_DEVICE_RESET_MSG;
6052         else
6053                 reset_type = HPSA_PHYS_TARGET_RESET;
6054
6055         sprintf(msg, "resetting %s",
6056                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6057         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6058
6059         /*
6060          * wait to see if any commands will complete before sending reset
6061          */
6062         dev->in_reset = true; /* block any new cmds from OS for this device */
6063         for (i = 0; i < 10; i++) {
6064                 if (atomic_read(&dev->commands_outstanding) > 0)
6065                         msleep(1000);
6066                 else
6067                         break;
6068         }
6069
6070         /* send a reset to the SCSI LUN which the command was sent to */
6071         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6072         if (rc == 0)
6073                 rc = SUCCESS;
6074         else
6075                 rc = FAILED;
6076
6077         sprintf(msg, "reset %s %s",
6078                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6079                 rc == SUCCESS ? "completed successfully" : "failed");
6080         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6081
6082 return_reset_status:
6083         spin_lock_irqsave(&h->reset_lock, flags);
6084         h->reset_in_progress = 0;
6085         if (dev)
6086                 dev->in_reset = false;
6087         spin_unlock_irqrestore(&h->reset_lock, flags);
6088         return rc;
6089 }
6090
6091 /*
6092  * For operations with an associated SCSI command, a command block is allocated
6093  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6094  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6095  * the complement, although cmd_free() may be called instead.
6096  */
6097 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6098                                             struct scsi_cmnd *scmd)
6099 {
6100         int idx = hpsa_get_cmd_index(scmd);
6101         struct CommandList *c = h->cmd_pool + idx;
6102
6103         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6104                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6105                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6106                 /* The index value comes from the block layer, so if it's out of
6107                  * bounds, it's probably not our bug.
6108                  */
6109                 BUG();
6110         }
6111
6112         if (unlikely(!hpsa_is_cmd_idle(c))) {
6113                 /*
6114                  * We expect that the SCSI layer will hand us a unique tag
6115                  * value.  Thus, there should never be a collision here between
6116                  * two requests...because if the selected command isn't idle
6117                  * then someone is going to be very disappointed.
6118                  */
6119                 if (idx != h->last_collision_tag) { /* Print once per tag */
6120                         dev_warn(&h->pdev->dev,
6121                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6122                         if (scmd)
6123                                 scsi_print_command(scmd);
6124                         h->last_collision_tag = idx;
6125                 }
6126                 return NULL;
6127         }
6128
6129         atomic_inc(&c->refcount);
6130
6131         hpsa_cmd_partial_init(h, idx, c);
6132         return c;
6133 }
6134
6135 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6136 {
6137         /*
6138          * Release our reference to the block.  We don't need to do anything
6139          * else to free it, because it is accessed by index.
6140          */
6141         (void)atomic_dec(&c->refcount);
6142 }
6143
6144 /*
6145  * For operations that cannot sleep, a command block is allocated at init,
6146  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6147  * which ones are free or in use.  Lock must be held when calling this.
6148  * cmd_free() is the complement.
6149  * This function never gives up and returns NULL.  If it hangs,
6150  * another thread must call cmd_free() to free some tags.
6151  */
6152
6153 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6154 {
6155         struct CommandList *c;
6156         int refcount, i;
6157         int offset = 0;
6158
6159         /*
6160          * There is some *extremely* small but non-zero chance that that
6161          * multiple threads could get in here, and one thread could
6162          * be scanning through the list of bits looking for a free
6163          * one, but the free ones are always behind him, and other
6164          * threads sneak in behind him and eat them before he can
6165          * get to them, so that while there is always a free one, a
6166          * very unlucky thread might be starved anyway, never able to
6167          * beat the other threads.  In reality, this happens so
6168          * infrequently as to be indistinguishable from never.
6169          *
6170          * Note that we start allocating commands before the SCSI host structure
6171          * is initialized.  Since the search starts at bit zero, this
6172          * all works, since we have at least one command structure available;
6173          * however, it means that the structures with the low indexes have to be
6174          * reserved for driver-initiated requests, while requests from the block
6175          * layer will use the higher indexes.
6176          */
6177
6178         for (;;) {
6179                 i = find_next_zero_bit(h->cmd_pool_bits,
6180                                         HPSA_NRESERVED_CMDS,
6181                                         offset);
6182                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6183                         offset = 0;
6184                         continue;
6185                 }
6186                 c = h->cmd_pool + i;
6187                 refcount = atomic_inc_return(&c->refcount);
6188                 if (unlikely(refcount > 1)) {
6189                         cmd_free(h, c); /* already in use */
6190                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6191                         continue;
6192                 }
6193                 set_bit(i & (BITS_PER_LONG - 1),
6194                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6195                 break; /* it's ours now. */
6196         }
6197         hpsa_cmd_partial_init(h, i, c);
6198         c->device = NULL;
6199         return c;
6200 }
6201
6202 /*
6203  * This is the complementary operation to cmd_alloc().  Note, however, in some
6204  * corner cases it may also be used to free blocks allocated by
6205  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6206  * the clear-bit is harmless.
6207  */
6208 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6209 {
6210         if (atomic_dec_and_test(&c->refcount)) {
6211                 int i;
6212
6213                 i = c - h->cmd_pool;
6214                 clear_bit(i & (BITS_PER_LONG - 1),
6215                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6216         }
6217 }
6218
6219 #ifdef CONFIG_COMPAT
6220
6221 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6222         void __user *arg)
6223 {
6224         struct ctlr_info *h = sdev_to_hba(dev);
6225         IOCTL32_Command_struct __user *arg32 = arg;
6226         IOCTL_Command_struct arg64;
6227         int err;
6228         u32 cp;
6229
6230         if (!arg)
6231                 return -EINVAL;
6232
6233         memset(&arg64, 0, sizeof(arg64));
6234         if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6235                 return -EFAULT;
6236         if (get_user(cp, &arg32->buf))
6237                 return -EFAULT;
6238         arg64.buf = compat_ptr(cp);
6239
6240         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6241                 return -EAGAIN;
6242         err = hpsa_passthru_ioctl(h, &arg64);
6243         atomic_inc(&h->passthru_cmds_avail);
6244         if (err)
6245                 return err;
6246         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6247                          sizeof(arg32->error_info)))
6248                 return -EFAULT;
6249         return 0;
6250 }
6251
6252 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6253         unsigned int cmd, void __user *arg)
6254 {
6255         struct ctlr_info *h = sdev_to_hba(dev);
6256         BIG_IOCTL32_Command_struct __user *arg32 = arg;
6257         BIG_IOCTL_Command_struct arg64;
6258         int err;
6259         u32 cp;
6260
6261         if (!arg)
6262                 return -EINVAL;
6263         memset(&arg64, 0, sizeof(arg64));
6264         if (copy_from_user(&arg64, arg32,
6265                            offsetof(BIG_IOCTL32_Command_struct, buf)))
6266                 return -EFAULT;
6267         if (get_user(cp, &arg32->buf))
6268                 return -EFAULT;
6269         arg64.buf = compat_ptr(cp);
6270
6271         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6272                 return -EAGAIN;
6273         err = hpsa_big_passthru_ioctl(h, &arg64);
6274         atomic_inc(&h->passthru_cmds_avail);
6275         if (err)
6276                 return err;
6277         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6278                          sizeof(arg32->error_info)))
6279                 return -EFAULT;
6280         return 0;
6281 }
6282
6283 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6284                              void __user *arg)
6285 {
6286         switch (cmd) {
6287         case CCISS_GETPCIINFO:
6288         case CCISS_GETINTINFO:
6289         case CCISS_SETINTINFO:
6290         case CCISS_GETNODENAME:
6291         case CCISS_SETNODENAME:
6292         case CCISS_GETHEARTBEAT:
6293         case CCISS_GETBUSTYPES:
6294         case CCISS_GETFIRMVER:
6295         case CCISS_GETDRIVVER:
6296         case CCISS_REVALIDVOLS:
6297         case CCISS_DEREGDISK:
6298         case CCISS_REGNEWDISK:
6299         case CCISS_REGNEWD:
6300         case CCISS_RESCANDISK:
6301         case CCISS_GETLUNINFO:
6302                 return hpsa_ioctl(dev, cmd, arg);
6303
6304         case CCISS_PASSTHRU32:
6305                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6306         case CCISS_BIG_PASSTHRU32:
6307                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6308
6309         default:
6310                 return -ENOIOCTLCMD;
6311         }
6312 }
6313 #endif
6314
6315 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6316 {
6317         struct hpsa_pci_info pciinfo;
6318
6319         if (!argp)
6320                 return -EINVAL;
6321         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6322         pciinfo.bus = h->pdev->bus->number;
6323         pciinfo.dev_fn = h->pdev->devfn;
6324         pciinfo.board_id = h->board_id;
6325         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6326                 return -EFAULT;
6327         return 0;
6328 }
6329
6330 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6331 {
6332         DriverVer_type DriverVer;
6333         unsigned char vmaj, vmin, vsubmin;
6334         int rc;
6335
6336         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6337                 &vmaj, &vmin, &vsubmin);
6338         if (rc != 3) {
6339                 dev_info(&h->pdev->dev, "driver version string '%s' "
6340                         "unrecognized.", HPSA_DRIVER_VERSION);
6341                 vmaj = 0;
6342                 vmin = 0;
6343                 vsubmin = 0;
6344         }
6345         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6346         if (!argp)
6347                 return -EINVAL;
6348         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6349                 return -EFAULT;
6350         return 0;
6351 }
6352
6353 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6354                                IOCTL_Command_struct *iocommand)
6355 {
6356         struct CommandList *c;
6357         char *buff = NULL;
6358         u64 temp64;
6359         int rc = 0;
6360
6361         if (!capable(CAP_SYS_RAWIO))
6362                 return -EPERM;
6363         if ((iocommand->buf_size < 1) &&
6364             (iocommand->Request.Type.Direction != XFER_NONE)) {
6365                 return -EINVAL;
6366         }
6367         if (iocommand->buf_size > 0) {
6368                 buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6369                 if (buff == NULL)
6370                         return -ENOMEM;
6371                 if (iocommand->Request.Type.Direction & XFER_WRITE) {
6372                         /* Copy the data into the buffer we created */
6373                         if (copy_from_user(buff, iocommand->buf,
6374                                 iocommand->buf_size)) {
6375                                 rc = -EFAULT;
6376                                 goto out_kfree;
6377                         }
6378                 } else {
6379                         memset(buff, 0, iocommand->buf_size);
6380                 }
6381         }
6382         c = cmd_alloc(h);
6383
6384         /* Fill in the command type */
6385         c->cmd_type = CMD_IOCTL_PEND;
6386         c->scsi_cmd = SCSI_CMD_BUSY;
6387         /* Fill in Command Header */
6388         c->Header.ReplyQueue = 0; /* unused in simple mode */
6389         if (iocommand->buf_size > 0) {  /* buffer to fill */
6390                 c->Header.SGList = 1;
6391                 c->Header.SGTotal = cpu_to_le16(1);
6392         } else  { /* no buffers to fill */
6393                 c->Header.SGList = 0;
6394                 c->Header.SGTotal = cpu_to_le16(0);
6395         }
6396         memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6397
6398         /* Fill in Request block */
6399         memcpy(&c->Request, &iocommand->Request,
6400                 sizeof(c->Request));
6401
6402         /* Fill in the scatter gather information */
6403         if (iocommand->buf_size > 0) {
6404                 temp64 = dma_map_single(&h->pdev->dev, buff,
6405                         iocommand->buf_size, DMA_BIDIRECTIONAL);
6406                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6407                         c->SG[0].Addr = cpu_to_le64(0);
6408                         c->SG[0].Len = cpu_to_le32(0);
6409                         rc = -ENOMEM;
6410                         goto out;
6411                 }
6412                 c->SG[0].Addr = cpu_to_le64(temp64);
6413                 c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6414                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6415         }
6416         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6417                                         NO_TIMEOUT);
6418         if (iocommand->buf_size > 0)
6419                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6420         check_ioctl_unit_attention(h, c);
6421         if (rc) {
6422                 rc = -EIO;
6423                 goto out;
6424         }
6425
6426         /* Copy the error information out */
6427         memcpy(&iocommand->error_info, c->err_info,
6428                 sizeof(iocommand->error_info));
6429         if ((iocommand->Request.Type.Direction & XFER_READ) &&
6430                 iocommand->buf_size > 0) {
6431                 /* Copy the data out of the buffer we created */
6432                 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6433                         rc = -EFAULT;
6434                         goto out;
6435                 }
6436         }
6437 out:
6438         cmd_free(h, c);
6439 out_kfree:
6440         kfree(buff);
6441         return rc;
6442 }
6443
6444 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6445                                    BIG_IOCTL_Command_struct *ioc)
6446 {
6447         struct CommandList *c;
6448         unsigned char **buff = NULL;
6449         int *buff_size = NULL;
6450         u64 temp64;
6451         BYTE sg_used = 0;
6452         int status = 0;
6453         u32 left;
6454         u32 sz;
6455         BYTE __user *data_ptr;
6456
6457         if (!capable(CAP_SYS_RAWIO))
6458                 return -EPERM;
6459
6460         if ((ioc->buf_size < 1) &&
6461             (ioc->Request.Type.Direction != XFER_NONE))
6462                 return -EINVAL;
6463         /* Check kmalloc limits  using all SGs */
6464         if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6465                 return -EINVAL;
6466         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6467                 return -EINVAL;
6468         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6469         if (!buff) {
6470                 status = -ENOMEM;
6471                 goto cleanup1;
6472         }
6473         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6474         if (!buff_size) {
6475                 status = -ENOMEM;
6476                 goto cleanup1;
6477         }
6478         left = ioc->buf_size;
6479         data_ptr = ioc->buf;
6480         while (left) {
6481                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6482                 buff_size[sg_used] = sz;
6483                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6484                 if (buff[sg_used] == NULL) {
6485                         status = -ENOMEM;
6486                         goto cleanup1;
6487                 }
6488                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6489                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6490                                 status = -EFAULT;
6491                                 goto cleanup1;
6492                         }
6493                 } else
6494                         memset(buff[sg_used], 0, sz);
6495                 left -= sz;
6496                 data_ptr += sz;
6497                 sg_used++;
6498         }
6499         c = cmd_alloc(h);
6500
6501         c->cmd_type = CMD_IOCTL_PEND;
6502         c->scsi_cmd = SCSI_CMD_BUSY;
6503         c->Header.ReplyQueue = 0;
6504         c->Header.SGList = (u8) sg_used;
6505         c->Header.SGTotal = cpu_to_le16(sg_used);
6506         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6507         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6508         if (ioc->buf_size > 0) {
6509                 int i;
6510                 for (i = 0; i < sg_used; i++) {
6511                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6512                                     buff_size[i], DMA_BIDIRECTIONAL);
6513                         if (dma_mapping_error(&h->pdev->dev,
6514                                                         (dma_addr_t) temp64)) {
6515                                 c->SG[i].Addr = cpu_to_le64(0);
6516                                 c->SG[i].Len = cpu_to_le32(0);
6517                                 hpsa_pci_unmap(h->pdev, c, i,
6518                                         DMA_BIDIRECTIONAL);
6519                                 status = -ENOMEM;
6520                                 goto cleanup0;
6521                         }
6522                         c->SG[i].Addr = cpu_to_le64(temp64);
6523                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6524                         c->SG[i].Ext = cpu_to_le32(0);
6525                 }
6526                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6527         }
6528         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6529                                                 NO_TIMEOUT);
6530         if (sg_used)
6531                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6532         check_ioctl_unit_attention(h, c);
6533         if (status) {
6534                 status = -EIO;
6535                 goto cleanup0;
6536         }
6537
6538         /* Copy the error information out */
6539         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6540         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6541                 int i;
6542
6543                 /* Copy the data out of the buffer we created */
6544                 BYTE __user *ptr = ioc->buf;
6545                 for (i = 0; i < sg_used; i++) {
6546                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6547                                 status = -EFAULT;
6548                                 goto cleanup0;
6549                         }
6550                         ptr += buff_size[i];
6551                 }
6552         }
6553         status = 0;
6554 cleanup0:
6555         cmd_free(h, c);
6556 cleanup1:
6557         if (buff) {
6558                 int i;
6559
6560                 for (i = 0; i < sg_used; i++)
6561                         kfree(buff[i]);
6562                 kfree(buff);
6563         }
6564         kfree(buff_size);
6565         return status;
6566 }
6567
6568 static void check_ioctl_unit_attention(struct ctlr_info *h,
6569         struct CommandList *c)
6570 {
6571         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6572                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6573                 (void) check_for_unit_attention(h, c);
6574 }
6575
6576 /*
6577  * ioctl
6578  */
6579 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6580                       void __user *argp)
6581 {
6582         struct ctlr_info *h = sdev_to_hba(dev);
6583         int rc;
6584
6585         switch (cmd) {
6586         case CCISS_DEREGDISK:
6587         case CCISS_REGNEWDISK:
6588         case CCISS_REGNEWD:
6589                 hpsa_scan_start(h->scsi_host);
6590                 return 0;
6591         case CCISS_GETPCIINFO:
6592                 return hpsa_getpciinfo_ioctl(h, argp);
6593         case CCISS_GETDRIVVER:
6594                 return hpsa_getdrivver_ioctl(h, argp);
6595         case CCISS_PASSTHRU: {
6596                 IOCTL_Command_struct iocommand;
6597
6598                 if (!argp)
6599                         return -EINVAL;
6600                 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6601                         return -EFAULT;
6602                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6603                         return -EAGAIN;
6604                 rc = hpsa_passthru_ioctl(h, &iocommand);
6605                 atomic_inc(&h->passthru_cmds_avail);
6606                 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6607                         rc = -EFAULT;
6608                 return rc;
6609         }
6610         case CCISS_BIG_PASSTHRU: {
6611                 BIG_IOCTL_Command_struct ioc;
6612                 if (!argp)
6613                         return -EINVAL;
6614                 if (copy_from_user(&ioc, argp, sizeof(ioc)))
6615                         return -EFAULT;
6616                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6617                         return -EAGAIN;
6618                 rc = hpsa_big_passthru_ioctl(h, &ioc);
6619                 atomic_inc(&h->passthru_cmds_avail);
6620                 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6621                         rc = -EFAULT;
6622                 return rc;
6623         }
6624         default:
6625                 return -ENOTTY;
6626         }
6627 }
6628
6629 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6630 {
6631         struct CommandList *c;
6632
6633         c = cmd_alloc(h);
6634
6635         /* fill_cmd can't fail here, no data buffer to map */
6636         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6637                 RAID_CTLR_LUNID, TYPE_MSG);
6638         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6639         c->waiting = NULL;
6640         enqueue_cmd_and_start_io(h, c);
6641         /* Don't wait for completion, the reset won't complete.  Don't free
6642          * the command either.  This is the last command we will send before
6643          * re-initializing everything, so it doesn't matter and won't leak.
6644          */
6645         return;
6646 }
6647
6648 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6649         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6650         int cmd_type)
6651 {
6652         enum dma_data_direction dir = DMA_NONE;
6653
6654         c->cmd_type = CMD_IOCTL_PEND;
6655         c->scsi_cmd = SCSI_CMD_BUSY;
6656         c->Header.ReplyQueue = 0;
6657         if (buff != NULL && size > 0) {
6658                 c->Header.SGList = 1;
6659                 c->Header.SGTotal = cpu_to_le16(1);
6660         } else {
6661                 c->Header.SGList = 0;
6662                 c->Header.SGTotal = cpu_to_le16(0);
6663         }
6664         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6665
6666         if (cmd_type == TYPE_CMD) {
6667                 switch (cmd) {
6668                 case HPSA_INQUIRY:
6669                         /* are we trying to read a vital product page */
6670                         if (page_code & VPD_PAGE) {
6671                                 c->Request.CDB[1] = 0x01;
6672                                 c->Request.CDB[2] = (page_code & 0xff);
6673                         }
6674                         c->Request.CDBLen = 6;
6675                         c->Request.type_attr_dir =
6676                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6677                         c->Request.Timeout = 0;
6678                         c->Request.CDB[0] = HPSA_INQUIRY;
6679                         c->Request.CDB[4] = size & 0xFF;
6680                         break;
6681                 case RECEIVE_DIAGNOSTIC:
6682                         c->Request.CDBLen = 6;
6683                         c->Request.type_attr_dir =
6684                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6685                         c->Request.Timeout = 0;
6686                         c->Request.CDB[0] = cmd;
6687                         c->Request.CDB[1] = 1;
6688                         c->Request.CDB[2] = 1;
6689                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6690                         c->Request.CDB[4] = size & 0xFF;
6691                         break;
6692                 case HPSA_REPORT_LOG:
6693                 case HPSA_REPORT_PHYS:
6694                         /* Talking to controller so It's a physical command
6695                            mode = 00 target = 0.  Nothing to write.
6696                          */
6697                         c->Request.CDBLen = 12;
6698                         c->Request.type_attr_dir =
6699                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6700                         c->Request.Timeout = 0;
6701                         c->Request.CDB[0] = cmd;
6702                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6703                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6704                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6705                         c->Request.CDB[9] = size & 0xFF;
6706                         break;
6707                 case BMIC_SENSE_DIAG_OPTIONS:
6708                         c->Request.CDBLen = 16;
6709                         c->Request.type_attr_dir =
6710                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6711                         c->Request.Timeout = 0;
6712                         /* Spec says this should be BMIC_WRITE */
6713                         c->Request.CDB[0] = BMIC_READ;
6714                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6715                         break;
6716                 case BMIC_SET_DIAG_OPTIONS:
6717                         c->Request.CDBLen = 16;
6718                         c->Request.type_attr_dir =
6719                                         TYPE_ATTR_DIR(cmd_type,
6720                                                 ATTR_SIMPLE, XFER_WRITE);
6721                         c->Request.Timeout = 0;
6722                         c->Request.CDB[0] = BMIC_WRITE;
6723                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6724                         break;
6725                 case HPSA_CACHE_FLUSH:
6726                         c->Request.CDBLen = 12;
6727                         c->Request.type_attr_dir =
6728                                         TYPE_ATTR_DIR(cmd_type,
6729                                                 ATTR_SIMPLE, XFER_WRITE);
6730                         c->Request.Timeout = 0;
6731                         c->Request.CDB[0] = BMIC_WRITE;
6732                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6733                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6734                         c->Request.CDB[8] = size & 0xFF;
6735                         break;
6736                 case TEST_UNIT_READY:
6737                         c->Request.CDBLen = 6;
6738                         c->Request.type_attr_dir =
6739                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6740                         c->Request.Timeout = 0;
6741                         break;
6742                 case HPSA_GET_RAID_MAP:
6743                         c->Request.CDBLen = 12;
6744                         c->Request.type_attr_dir =
6745                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6746                         c->Request.Timeout = 0;
6747                         c->Request.CDB[0] = HPSA_CISS_READ;
6748                         c->Request.CDB[1] = cmd;
6749                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6750                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6751                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6752                         c->Request.CDB[9] = size & 0xFF;
6753                         break;
6754                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6755                         c->Request.CDBLen = 10;
6756                         c->Request.type_attr_dir =
6757                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6758                         c->Request.Timeout = 0;
6759                         c->Request.CDB[0] = BMIC_READ;
6760                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6761                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6762                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6763                         break;
6764                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6765                         c->Request.CDBLen = 10;
6766                         c->Request.type_attr_dir =
6767                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6768                         c->Request.Timeout = 0;
6769                         c->Request.CDB[0] = BMIC_READ;
6770                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6771                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6772                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6773                         break;
6774                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6775                         c->Request.CDBLen = 10;
6776                         c->Request.type_attr_dir =
6777                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6778                         c->Request.Timeout = 0;
6779                         c->Request.CDB[0] = BMIC_READ;
6780                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6781                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6782                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6783                         break;
6784                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6785                         c->Request.CDBLen = 10;
6786                         c->Request.type_attr_dir =
6787                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6788                         c->Request.Timeout = 0;
6789                         c->Request.CDB[0] = BMIC_READ;
6790                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6791                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6792                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6793                         break;
6794                 case BMIC_IDENTIFY_CONTROLLER:
6795                         c->Request.CDBLen = 10;
6796                         c->Request.type_attr_dir =
6797                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6798                         c->Request.Timeout = 0;
6799                         c->Request.CDB[0] = BMIC_READ;
6800                         c->Request.CDB[1] = 0;
6801                         c->Request.CDB[2] = 0;
6802                         c->Request.CDB[3] = 0;
6803                         c->Request.CDB[4] = 0;
6804                         c->Request.CDB[5] = 0;
6805                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6806                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6807                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6808                         c->Request.CDB[9] = 0;
6809                         break;
6810                 default:
6811                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6812                         BUG();
6813                 }
6814         } else if (cmd_type == TYPE_MSG) {
6815                 switch (cmd) {
6816
6817                 case  HPSA_PHYS_TARGET_RESET:
6818                         c->Request.CDBLen = 16;
6819                         c->Request.type_attr_dir =
6820                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6821                         c->Request.Timeout = 0; /* Don't time out */
6822                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6823                         c->Request.CDB[0] = HPSA_RESET;
6824                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6825                         /* Physical target reset needs no control bytes 4-7*/
6826                         c->Request.CDB[4] = 0x00;
6827                         c->Request.CDB[5] = 0x00;
6828                         c->Request.CDB[6] = 0x00;
6829                         c->Request.CDB[7] = 0x00;
6830                         break;
6831                 case  HPSA_DEVICE_RESET_MSG:
6832                         c->Request.CDBLen = 16;
6833                         c->Request.type_attr_dir =
6834                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6835                         c->Request.Timeout = 0; /* Don't time out */
6836                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6837                         c->Request.CDB[0] =  cmd;
6838                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6839                         /* If bytes 4-7 are zero, it means reset the */
6840                         /* LunID device */
6841                         c->Request.CDB[4] = 0x00;
6842                         c->Request.CDB[5] = 0x00;
6843                         c->Request.CDB[6] = 0x00;
6844                         c->Request.CDB[7] = 0x00;
6845                         break;
6846                 default:
6847                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6848                                 cmd);
6849                         BUG();
6850                 }
6851         } else {
6852                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6853                 BUG();
6854         }
6855
6856         switch (GET_DIR(c->Request.type_attr_dir)) {
6857         case XFER_READ:
6858                 dir = DMA_FROM_DEVICE;
6859                 break;
6860         case XFER_WRITE:
6861                 dir = DMA_TO_DEVICE;
6862                 break;
6863         case XFER_NONE:
6864                 dir = DMA_NONE;
6865                 break;
6866         default:
6867                 dir = DMA_BIDIRECTIONAL;
6868         }
6869         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6870                 return -1;
6871         return 0;
6872 }
6873
6874 /*
6875  * Map (physical) PCI mem into (virtual) kernel space
6876  */
6877 static void __iomem *remap_pci_mem(ulong base, ulong size)
6878 {
6879         ulong page_base = ((ulong) base) & PAGE_MASK;
6880         ulong page_offs = ((ulong) base) - page_base;
6881         void __iomem *page_remapped = ioremap(page_base,
6882                 page_offs + size);
6883
6884         return page_remapped ? (page_remapped + page_offs) : NULL;
6885 }
6886
6887 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6888 {
6889         return h->access.command_completed(h, q);
6890 }
6891
6892 static inline bool interrupt_pending(struct ctlr_info *h)
6893 {
6894         return h->access.intr_pending(h);
6895 }
6896
6897 static inline long interrupt_not_for_us(struct ctlr_info *h)
6898 {
6899         return (h->access.intr_pending(h) == 0) ||
6900                 (h->interrupts_enabled == 0);
6901 }
6902
6903 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6904         u32 raw_tag)
6905 {
6906         if (unlikely(tag_index >= h->nr_cmds)) {
6907                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6908                 return 1;
6909         }
6910         return 0;
6911 }
6912
6913 static inline void finish_cmd(struct CommandList *c)
6914 {
6915         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6916         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6917                         || c->cmd_type == CMD_IOACCEL2))
6918                 complete_scsi_command(c);
6919         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6920                 complete(c->waiting);
6921 }
6922
6923 /* process completion of an indexed ("direct lookup") command */
6924 static inline void process_indexed_cmd(struct ctlr_info *h,
6925         u32 raw_tag)
6926 {
6927         u32 tag_index;
6928         struct CommandList *c;
6929
6930         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6931         if (!bad_tag(h, tag_index, raw_tag)) {
6932                 c = h->cmd_pool + tag_index;
6933                 finish_cmd(c);
6934         }
6935 }
6936
6937 /* Some controllers, like p400, will give us one interrupt
6938  * after a soft reset, even if we turned interrupts off.
6939  * Only need to check for this in the hpsa_xxx_discard_completions
6940  * functions.
6941  */
6942 static int ignore_bogus_interrupt(struct ctlr_info *h)
6943 {
6944         if (likely(!reset_devices))
6945                 return 0;
6946
6947         if (likely(h->interrupts_enabled))
6948                 return 0;
6949
6950         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6951                 "(known firmware bug.)  Ignoring.\n");
6952
6953         return 1;
6954 }
6955
6956 /*
6957  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6958  * Relies on (h-q[x] == x) being true for x such that
6959  * 0 <= x < MAX_REPLY_QUEUES.
6960  */
6961 static struct ctlr_info *queue_to_hba(u8 *queue)
6962 {
6963         return container_of((queue - *queue), struct ctlr_info, q[0]);
6964 }
6965
6966 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6967 {
6968         struct ctlr_info *h = queue_to_hba(queue);
6969         u8 q = *(u8 *) queue;
6970         u32 raw_tag;
6971
6972         if (ignore_bogus_interrupt(h))
6973                 return IRQ_NONE;
6974
6975         if (interrupt_not_for_us(h))
6976                 return IRQ_NONE;
6977         h->last_intr_timestamp = get_jiffies_64();
6978         while (interrupt_pending(h)) {
6979                 raw_tag = get_next_completion(h, q);
6980                 while (raw_tag != FIFO_EMPTY)
6981                         raw_tag = next_command(h, q);
6982         }
6983         return IRQ_HANDLED;
6984 }
6985
6986 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6987 {
6988         struct ctlr_info *h = queue_to_hba(queue);
6989         u32 raw_tag;
6990         u8 q = *(u8 *) queue;
6991
6992         if (ignore_bogus_interrupt(h))
6993                 return IRQ_NONE;
6994
6995         h->last_intr_timestamp = get_jiffies_64();
6996         raw_tag = get_next_completion(h, q);
6997         while (raw_tag != FIFO_EMPTY)
6998                 raw_tag = next_command(h, q);
6999         return IRQ_HANDLED;
7000 }
7001
7002 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7003 {
7004         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7005         u32 raw_tag;
7006         u8 q = *(u8 *) queue;
7007
7008         if (interrupt_not_for_us(h))
7009                 return IRQ_NONE;
7010         h->last_intr_timestamp = get_jiffies_64();
7011         while (interrupt_pending(h)) {
7012                 raw_tag = get_next_completion(h, q);
7013                 while (raw_tag != FIFO_EMPTY) {
7014                         process_indexed_cmd(h, raw_tag);
7015                         raw_tag = next_command(h, q);
7016                 }
7017         }
7018         return IRQ_HANDLED;
7019 }
7020
7021 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7022 {
7023         struct ctlr_info *h = queue_to_hba(queue);
7024         u32 raw_tag;
7025         u8 q = *(u8 *) queue;
7026
7027         h->last_intr_timestamp = get_jiffies_64();
7028         raw_tag = get_next_completion(h, q);
7029         while (raw_tag != FIFO_EMPTY) {
7030                 process_indexed_cmd(h, raw_tag);
7031                 raw_tag = next_command(h, q);
7032         }
7033         return IRQ_HANDLED;
7034 }
7035
7036 /* Send a message CDB to the firmware. Careful, this only works
7037  * in simple mode, not performant mode due to the tag lookup.
7038  * We only ever use this immediately after a controller reset.
7039  */
7040 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7041                         unsigned char type)
7042 {
7043         struct Command {
7044                 struct CommandListHeader CommandHeader;
7045                 struct RequestBlock Request;
7046                 struct ErrDescriptor ErrorDescriptor;
7047         };
7048         struct Command *cmd;
7049         static const size_t cmd_sz = sizeof(*cmd) +
7050                                         sizeof(cmd->ErrorDescriptor);
7051         dma_addr_t paddr64;
7052         __le32 paddr32;
7053         u32 tag;
7054         void __iomem *vaddr;
7055         int i, err;
7056
7057         vaddr = pci_ioremap_bar(pdev, 0);
7058         if (vaddr == NULL)
7059                 return -ENOMEM;
7060
7061         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7062          * CCISS commands, so they must be allocated from the lower 4GiB of
7063          * memory.
7064          */
7065         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7066         if (err) {
7067                 iounmap(vaddr);
7068                 return err;
7069         }
7070
7071         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7072         if (cmd == NULL) {
7073                 iounmap(vaddr);
7074                 return -ENOMEM;
7075         }
7076
7077         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7078          * although there's no guarantee, we assume that the address is at
7079          * least 4-byte aligned (most likely, it's page-aligned).
7080          */
7081         paddr32 = cpu_to_le32(paddr64);
7082
7083         cmd->CommandHeader.ReplyQueue = 0;
7084         cmd->CommandHeader.SGList = 0;
7085         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7086         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7087         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7088
7089         cmd->Request.CDBLen = 16;
7090         cmd->Request.type_attr_dir =
7091                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7092         cmd->Request.Timeout = 0; /* Don't time out */
7093         cmd->Request.CDB[0] = opcode;
7094         cmd->Request.CDB[1] = type;
7095         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7096         cmd->ErrorDescriptor.Addr =
7097                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7098         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7099
7100         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7101
7102         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7103                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7104                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7105                         break;
7106                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7107         }
7108
7109         iounmap(vaddr);
7110
7111         /* we leak the DMA buffer here ... no choice since the controller could
7112          *  still complete the command.
7113          */
7114         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7115                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7116                         opcode, type);
7117                 return -ETIMEDOUT;
7118         }
7119
7120         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7121
7122         if (tag & HPSA_ERROR_BIT) {
7123                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7124                         opcode, type);
7125                 return -EIO;
7126         }
7127
7128         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7129                 opcode, type);
7130         return 0;
7131 }
7132
7133 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7134
7135 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7136         void __iomem *vaddr, u32 use_doorbell)
7137 {
7138
7139         if (use_doorbell) {
7140                 /* For everything after the P600, the PCI power state method
7141                  * of resetting the controller doesn't work, so we have this
7142                  * other way using the doorbell register.
7143                  */
7144                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7145                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7146
7147                 /* PMC hardware guys tell us we need a 10 second delay after
7148                  * doorbell reset and before any attempt to talk to the board
7149                  * at all to ensure that this actually works and doesn't fall
7150                  * over in some weird corner cases.
7151                  */
7152                 msleep(10000);
7153         } else { /* Try to do it the PCI power state way */
7154
7155                 /* Quoting from the Open CISS Specification: "The Power
7156                  * Management Control/Status Register (CSR) controls the power
7157                  * state of the device.  The normal operating state is D0,
7158                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7159                  * the controller, place the interface device in D3 then to D0,
7160                  * this causes a secondary PCI reset which will reset the
7161                  * controller." */
7162
7163                 int rc = 0;
7164
7165                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7166
7167                 /* enter the D3hot power management state */
7168                 rc = pci_set_power_state(pdev, PCI_D3hot);
7169                 if (rc)
7170                         return rc;
7171
7172                 msleep(500);
7173
7174                 /* enter the D0 power management state */
7175                 rc = pci_set_power_state(pdev, PCI_D0);
7176                 if (rc)
7177                         return rc;
7178
7179                 /*
7180                  * The P600 requires a small delay when changing states.
7181                  * Otherwise we may think the board did not reset and we bail.
7182                  * This for kdump only and is particular to the P600.
7183                  */
7184                 msleep(500);
7185         }
7186         return 0;
7187 }
7188
7189 static void init_driver_version(char *driver_version, int len)
7190 {
7191         memset(driver_version, 0, len);
7192         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7193 }
7194
7195 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7196 {
7197         char *driver_version;
7198         int i, size = sizeof(cfgtable->driver_version);
7199
7200         driver_version = kmalloc(size, GFP_KERNEL);
7201         if (!driver_version)
7202                 return -ENOMEM;
7203
7204         init_driver_version(driver_version, size);
7205         for (i = 0; i < size; i++)
7206                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7207         kfree(driver_version);
7208         return 0;
7209 }
7210
7211 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7212                                           unsigned char *driver_ver)
7213 {
7214         int i;
7215
7216         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7217                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7218 }
7219
7220 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7221 {
7222
7223         char *driver_ver, *old_driver_ver;
7224         int rc, size = sizeof(cfgtable->driver_version);
7225
7226         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7227         if (!old_driver_ver)
7228                 return -ENOMEM;
7229         driver_ver = old_driver_ver + size;
7230
7231         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7232          * should have been changed, otherwise we know the reset failed.
7233          */
7234         init_driver_version(old_driver_ver, size);
7235         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7236         rc = !memcmp(driver_ver, old_driver_ver, size);
7237         kfree(old_driver_ver);
7238         return rc;
7239 }
7240 /* This does a hard reset of the controller using PCI power management
7241  * states or the using the doorbell register.
7242  */
7243 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7244 {
7245         u64 cfg_offset;
7246         u32 cfg_base_addr;
7247         u64 cfg_base_addr_index;
7248         void __iomem *vaddr;
7249         unsigned long paddr;
7250         u32 misc_fw_support;
7251         int rc;
7252         struct CfgTable __iomem *cfgtable;
7253         u32 use_doorbell;
7254         u16 command_register;
7255
7256         /* For controllers as old as the P600, this is very nearly
7257          * the same thing as
7258          *
7259          * pci_save_state(pci_dev);
7260          * pci_set_power_state(pci_dev, PCI_D3hot);
7261          * pci_set_power_state(pci_dev, PCI_D0);
7262          * pci_restore_state(pci_dev);
7263          *
7264          * For controllers newer than the P600, the pci power state
7265          * method of resetting doesn't work so we have another way
7266          * using the doorbell register.
7267          */
7268
7269         if (!ctlr_is_resettable(board_id)) {
7270                 dev_warn(&pdev->dev, "Controller not resettable\n");
7271                 return -ENODEV;
7272         }
7273
7274         /* if controller is soft- but not hard resettable... */
7275         if (!ctlr_is_hard_resettable(board_id))
7276                 return -ENOTSUPP; /* try soft reset later. */
7277
7278         /* Save the PCI command register */
7279         pci_read_config_word(pdev, 4, &command_register);
7280         pci_save_state(pdev);
7281
7282         /* find the first memory BAR, so we can find the cfg table */
7283         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7284         if (rc)
7285                 return rc;
7286         vaddr = remap_pci_mem(paddr, 0x250);
7287         if (!vaddr)
7288                 return -ENOMEM;
7289
7290         /* find cfgtable in order to check if reset via doorbell is supported */
7291         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7292                                         &cfg_base_addr_index, &cfg_offset);
7293         if (rc)
7294                 goto unmap_vaddr;
7295         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7296                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7297         if (!cfgtable) {
7298                 rc = -ENOMEM;
7299                 goto unmap_vaddr;
7300         }
7301         rc = write_driver_ver_to_cfgtable(cfgtable);
7302         if (rc)
7303                 goto unmap_cfgtable;
7304
7305         /* If reset via doorbell register is supported, use that.
7306          * There are two such methods.  Favor the newest method.
7307          */
7308         misc_fw_support = readl(&cfgtable->misc_fw_support);
7309         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7310         if (use_doorbell) {
7311                 use_doorbell = DOORBELL_CTLR_RESET2;
7312         } else {
7313                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7314                 if (use_doorbell) {
7315                         dev_warn(&pdev->dev,
7316                                 "Soft reset not supported. Firmware update is required.\n");
7317                         rc = -ENOTSUPP; /* try soft reset */
7318                         goto unmap_cfgtable;
7319                 }
7320         }
7321
7322         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7323         if (rc)
7324                 goto unmap_cfgtable;
7325
7326         pci_restore_state(pdev);
7327         pci_write_config_word(pdev, 4, command_register);
7328
7329         /* Some devices (notably the HP Smart Array 5i Controller)
7330            need a little pause here */
7331         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7332
7333         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7334         if (rc) {
7335                 dev_warn(&pdev->dev,
7336                         "Failed waiting for board to become ready after hard reset\n");
7337                 goto unmap_cfgtable;
7338         }
7339
7340         rc = controller_reset_failed(vaddr);
7341         if (rc < 0)
7342                 goto unmap_cfgtable;
7343         if (rc) {
7344                 dev_warn(&pdev->dev, "Unable to successfully reset "
7345                         "controller. Will try soft reset.\n");
7346                 rc = -ENOTSUPP;
7347         } else {
7348                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7349         }
7350
7351 unmap_cfgtable:
7352         iounmap(cfgtable);
7353
7354 unmap_vaddr:
7355         iounmap(vaddr);
7356         return rc;
7357 }
7358
7359 /*
7360  *  We cannot read the structure directly, for portability we must use
7361  *   the io functions.
7362  *   This is for debug only.
7363  */
7364 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7365 {
7366 #ifdef HPSA_DEBUG
7367         int i;
7368         char temp_name[17];
7369
7370         dev_info(dev, "Controller Configuration information\n");
7371         dev_info(dev, "------------------------------------\n");
7372         for (i = 0; i < 4; i++)
7373                 temp_name[i] = readb(&(tb->Signature[i]));
7374         temp_name[4] = '\0';
7375         dev_info(dev, "   Signature = %s\n", temp_name);
7376         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7377         dev_info(dev, "   Transport methods supported = 0x%x\n",
7378                readl(&(tb->TransportSupport)));
7379         dev_info(dev, "   Transport methods active = 0x%x\n",
7380                readl(&(tb->TransportActive)));
7381         dev_info(dev, "   Requested transport Method = 0x%x\n",
7382                readl(&(tb->HostWrite.TransportRequest)));
7383         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7384                readl(&(tb->HostWrite.CoalIntDelay)));
7385         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7386                readl(&(tb->HostWrite.CoalIntCount)));
7387         dev_info(dev, "   Max outstanding commands = %d\n",
7388                readl(&(tb->CmdsOutMax)));
7389         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7390         for (i = 0; i < 16; i++)
7391                 temp_name[i] = readb(&(tb->ServerName[i]));
7392         temp_name[16] = '\0';
7393         dev_info(dev, "   Server Name = %s\n", temp_name);
7394         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7395                 readl(&(tb->HeartBeat)));
7396 #endif                          /* HPSA_DEBUG */
7397 }
7398
7399 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7400 {
7401         int i, offset, mem_type, bar_type;
7402
7403         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7404                 return 0;
7405         offset = 0;
7406         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7407                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7408                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7409                         offset += 4;
7410                 else {
7411                         mem_type = pci_resource_flags(pdev, i) &
7412                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7413                         switch (mem_type) {
7414                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7415                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7416                                 offset += 4;    /* 32 bit */
7417                                 break;
7418                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7419                                 offset += 8;
7420                                 break;
7421                         default:        /* reserved in PCI 2.2 */
7422                                 dev_warn(&pdev->dev,
7423                                        "base address is invalid\n");
7424                                 return -1;
7425                                 break;
7426                         }
7427                 }
7428                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7429                         return i + 1;
7430         }
7431         return -1;
7432 }
7433
7434 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7435 {
7436         pci_free_irq_vectors(h->pdev);
7437         h->msix_vectors = 0;
7438 }
7439
7440 static void hpsa_setup_reply_map(struct ctlr_info *h)
7441 {
7442         const struct cpumask *mask;
7443         unsigned int queue, cpu;
7444
7445         for (queue = 0; queue < h->msix_vectors; queue++) {
7446                 mask = pci_irq_get_affinity(h->pdev, queue);
7447                 if (!mask)
7448                         goto fallback;
7449
7450                 for_each_cpu(cpu, mask)
7451                         h->reply_map[cpu] = queue;
7452         }
7453         return;
7454
7455 fallback:
7456         for_each_possible_cpu(cpu)
7457                 h->reply_map[cpu] = 0;
7458 }
7459
7460 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7461  * controllers that are capable. If not, we use legacy INTx mode.
7462  */
7463 static int hpsa_interrupt_mode(struct ctlr_info *h)
7464 {
7465         unsigned int flags = PCI_IRQ_LEGACY;
7466         int ret;
7467
7468         /* Some boards advertise MSI but don't really support it */
7469         switch (h->board_id) {
7470         case 0x40700E11:
7471         case 0x40800E11:
7472         case 0x40820E11:
7473         case 0x40830E11:
7474                 break;
7475         default:
7476                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7477                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7478                 if (ret > 0) {
7479                         h->msix_vectors = ret;
7480                         return 0;
7481                 }
7482
7483                 flags |= PCI_IRQ_MSI;
7484                 break;
7485         }
7486
7487         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7488         if (ret < 0)
7489                 return ret;
7490         return 0;
7491 }
7492
7493 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7494                                 bool *legacy_board)
7495 {
7496         int i;
7497         u32 subsystem_vendor_id, subsystem_device_id;
7498
7499         subsystem_vendor_id = pdev->subsystem_vendor;
7500         subsystem_device_id = pdev->subsystem_device;
7501         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7502                     subsystem_vendor_id;
7503
7504         if (legacy_board)
7505                 *legacy_board = false;
7506         for (i = 0; i < ARRAY_SIZE(products); i++)
7507                 if (*board_id == products[i].board_id) {
7508                         if (products[i].access != &SA5A_access &&
7509                             products[i].access != &SA5B_access)
7510                                 return i;
7511                         dev_warn(&pdev->dev,
7512                                  "legacy board ID: 0x%08x\n",
7513                                  *board_id);
7514                         if (legacy_board)
7515                             *legacy_board = true;
7516                         return i;
7517                 }
7518
7519         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7520         if (legacy_board)
7521                 *legacy_board = true;
7522         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7523 }
7524
7525 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7526                                     unsigned long *memory_bar)
7527 {
7528         int i;
7529
7530         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7531                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7532                         /* addressing mode bits already removed */
7533                         *memory_bar = pci_resource_start(pdev, i);
7534                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7535                                 *memory_bar);
7536                         return 0;
7537                 }
7538         dev_warn(&pdev->dev, "no memory BAR found\n");
7539         return -ENODEV;
7540 }
7541
7542 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7543                                      int wait_for_ready)
7544 {
7545         int i, iterations;
7546         u32 scratchpad;
7547         if (wait_for_ready)
7548                 iterations = HPSA_BOARD_READY_ITERATIONS;
7549         else
7550                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7551
7552         for (i = 0; i < iterations; i++) {
7553                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7554                 if (wait_for_ready) {
7555                         if (scratchpad == HPSA_FIRMWARE_READY)
7556                                 return 0;
7557                 } else {
7558                         if (scratchpad != HPSA_FIRMWARE_READY)
7559                                 return 0;
7560                 }
7561                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7562         }
7563         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7564         return -ENODEV;
7565 }
7566
7567 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7568                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7569                                u64 *cfg_offset)
7570 {
7571         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7572         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7573         *cfg_base_addr &= (u32) 0x0000ffff;
7574         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7575         if (*cfg_base_addr_index == -1) {
7576                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7577                 return -ENODEV;
7578         }
7579         return 0;
7580 }
7581
7582 static void hpsa_free_cfgtables(struct ctlr_info *h)
7583 {
7584         if (h->transtable) {
7585                 iounmap(h->transtable);
7586                 h->transtable = NULL;
7587         }
7588         if (h->cfgtable) {
7589                 iounmap(h->cfgtable);
7590                 h->cfgtable = NULL;
7591         }
7592 }
7593
7594 /* Find and map CISS config table and transfer table
7595 + * several items must be unmapped (freed) later
7596 + * */
7597 static int hpsa_find_cfgtables(struct ctlr_info *h)
7598 {
7599         u64 cfg_offset;
7600         u32 cfg_base_addr;
7601         u64 cfg_base_addr_index;
7602         u32 trans_offset;
7603         int rc;
7604
7605         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7606                 &cfg_base_addr_index, &cfg_offset);
7607         if (rc)
7608                 return rc;
7609         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7610                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7611         if (!h->cfgtable) {
7612                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7613                 return -ENOMEM;
7614         }
7615         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7616         if (rc)
7617                 return rc;
7618         /* Find performant mode table. */
7619         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7620         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7621                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7622                                 sizeof(*h->transtable));
7623         if (!h->transtable) {
7624                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7625                 hpsa_free_cfgtables(h);
7626                 return -ENOMEM;
7627         }
7628         return 0;
7629 }
7630
7631 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7632 {
7633 #define MIN_MAX_COMMANDS 16
7634         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7635
7636         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7637
7638         /* Limit commands in memory limited kdump scenario. */
7639         if (reset_devices && h->max_commands > 32)
7640                 h->max_commands = 32;
7641
7642         if (h->max_commands < MIN_MAX_COMMANDS) {
7643                 dev_warn(&h->pdev->dev,
7644                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7645                         h->max_commands,
7646                         MIN_MAX_COMMANDS);
7647                 h->max_commands = MIN_MAX_COMMANDS;
7648         }
7649 }
7650
7651 /* If the controller reports that the total max sg entries is greater than 512,
7652  * then we know that chained SG blocks work.  (Original smart arrays did not
7653  * support chained SG blocks and would return zero for max sg entries.)
7654  */
7655 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7656 {
7657         return h->maxsgentries > 512;
7658 }
7659
7660 /* Interrogate the hardware for some limits:
7661  * max commands, max SG elements without chaining, and with chaining,
7662  * SG chain block size, etc.
7663  */
7664 static void hpsa_find_board_params(struct ctlr_info *h)
7665 {
7666         hpsa_get_max_perf_mode_cmds(h);
7667         h->nr_cmds = h->max_commands;
7668         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7669         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7670         if (hpsa_supports_chained_sg_blocks(h)) {
7671                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7672                 h->max_cmd_sg_entries = 32;
7673                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7674                 h->maxsgentries--; /* save one for chain pointer */
7675         } else {
7676                 /*
7677                  * Original smart arrays supported at most 31 s/g entries
7678                  * embedded inline in the command (trying to use more
7679                  * would lock up the controller)
7680                  */
7681                 h->max_cmd_sg_entries = 31;
7682                 h->maxsgentries = 31; /* default to traditional values */
7683                 h->chainsize = 0;
7684         }
7685
7686         /* Find out what task management functions are supported and cache */
7687         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7688         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7689                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7690         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7691                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7692         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7693                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7694 }
7695
7696 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7697 {
7698         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7699                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7700                 return false;
7701         }
7702         return true;
7703 }
7704
7705 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7706 {
7707         u32 driver_support;
7708
7709         driver_support = readl(&(h->cfgtable->driver_support));
7710         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7711 #ifdef CONFIG_X86
7712         driver_support |= ENABLE_SCSI_PREFETCH;
7713 #endif
7714         driver_support |= ENABLE_UNIT_ATTN;
7715         writel(driver_support, &(h->cfgtable->driver_support));
7716 }
7717
7718 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7719  * in a prefetch beyond physical memory.
7720  */
7721 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7722 {
7723         u32 dma_prefetch;
7724
7725         if (h->board_id != 0x3225103C)
7726                 return;
7727         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7728         dma_prefetch |= 0x8000;
7729         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7730 }
7731
7732 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7733 {
7734         int i;
7735         u32 doorbell_value;
7736         unsigned long flags;
7737         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7738         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7739                 spin_lock_irqsave(&h->lock, flags);
7740                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7741                 spin_unlock_irqrestore(&h->lock, flags);
7742                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7743                         goto done;
7744                 /* delay and try again */
7745                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7746         }
7747         return -ENODEV;
7748 done:
7749         return 0;
7750 }
7751
7752 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7753 {
7754         int i;
7755         u32 doorbell_value;
7756         unsigned long flags;
7757
7758         /* under certain very rare conditions, this can take awhile.
7759          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7760          * as we enter this code.)
7761          */
7762         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7763                 if (h->remove_in_progress)
7764                         goto done;
7765                 spin_lock_irqsave(&h->lock, flags);
7766                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7767                 spin_unlock_irqrestore(&h->lock, flags);
7768                 if (!(doorbell_value & CFGTBL_ChangeReq))
7769                         goto done;
7770                 /* delay and try again */
7771                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7772         }
7773         return -ENODEV;
7774 done:
7775         return 0;
7776 }
7777
7778 /* return -ENODEV or other reason on error, 0 on success */
7779 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7780 {
7781         u32 trans_support;
7782
7783         trans_support = readl(&(h->cfgtable->TransportSupport));
7784         if (!(trans_support & SIMPLE_MODE))
7785                 return -ENOTSUPP;
7786
7787         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7788
7789         /* Update the field, and then ring the doorbell */
7790         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7791         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7792         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7793         if (hpsa_wait_for_mode_change_ack(h))
7794                 goto error;
7795         print_cfg_table(&h->pdev->dev, h->cfgtable);
7796         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7797                 goto error;
7798         h->transMethod = CFGTBL_Trans_Simple;
7799         return 0;
7800 error:
7801         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7802         return -ENODEV;
7803 }
7804
7805 /* free items allocated or mapped by hpsa_pci_init */
7806 static void hpsa_free_pci_init(struct ctlr_info *h)
7807 {
7808         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7809         iounmap(h->vaddr);                      /* pci_init 3 */
7810         h->vaddr = NULL;
7811         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7812         /*
7813          * call pci_disable_device before pci_release_regions per
7814          * Documentation/driver-api/pci/pci.rst
7815          */
7816         pci_disable_device(h->pdev);            /* pci_init 1 */
7817         pci_release_regions(h->pdev);           /* pci_init 2 */
7818 }
7819
7820 /* several items must be freed later */
7821 static int hpsa_pci_init(struct ctlr_info *h)
7822 {
7823         int prod_index, err;
7824         bool legacy_board;
7825
7826         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7827         if (prod_index < 0)
7828                 return prod_index;
7829         h->product_name = products[prod_index].product_name;
7830         h->access = *(products[prod_index].access);
7831         h->legacy_board = legacy_board;
7832         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7833                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7834
7835         err = pci_enable_device(h->pdev);
7836         if (err) {
7837                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7838                 pci_disable_device(h->pdev);
7839                 return err;
7840         }
7841
7842         err = pci_request_regions(h->pdev, HPSA);
7843         if (err) {
7844                 dev_err(&h->pdev->dev,
7845                         "failed to obtain PCI resources\n");
7846                 pci_disable_device(h->pdev);
7847                 return err;
7848         }
7849
7850         pci_set_master(h->pdev);
7851
7852         err = hpsa_interrupt_mode(h);
7853         if (err)
7854                 goto clean1;
7855
7856         /* setup mapping between CPU and reply queue */
7857         hpsa_setup_reply_map(h);
7858
7859         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7860         if (err)
7861                 goto clean2;    /* intmode+region, pci */
7862         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7863         if (!h->vaddr) {
7864                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7865                 err = -ENOMEM;
7866                 goto clean2;    /* intmode+region, pci */
7867         }
7868         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7869         if (err)
7870                 goto clean3;    /* vaddr, intmode+region, pci */
7871         err = hpsa_find_cfgtables(h);
7872         if (err)
7873                 goto clean3;    /* vaddr, intmode+region, pci */
7874         hpsa_find_board_params(h);
7875
7876         if (!hpsa_CISS_signature_present(h)) {
7877                 err = -ENODEV;
7878                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7879         }
7880         hpsa_set_driver_support_bits(h);
7881         hpsa_p600_dma_prefetch_quirk(h);
7882         err = hpsa_enter_simple_mode(h);
7883         if (err)
7884                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7885         return 0;
7886
7887 clean4: /* cfgtables, vaddr, intmode+region, pci */
7888         hpsa_free_cfgtables(h);
7889 clean3: /* vaddr, intmode+region, pci */
7890         iounmap(h->vaddr);
7891         h->vaddr = NULL;
7892 clean2: /* intmode+region, pci */
7893         hpsa_disable_interrupt_mode(h);
7894 clean1:
7895         /*
7896          * call pci_disable_device before pci_release_regions per
7897          * Documentation/driver-api/pci/pci.rst
7898          */
7899         pci_disable_device(h->pdev);
7900         pci_release_regions(h->pdev);
7901         return err;
7902 }
7903
7904 static void hpsa_hba_inquiry(struct ctlr_info *h)
7905 {
7906         int rc;
7907
7908 #define HBA_INQUIRY_BYTE_COUNT 64
7909         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7910         if (!h->hba_inquiry_data)
7911                 return;
7912         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7913                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7914         if (rc != 0) {
7915                 kfree(h->hba_inquiry_data);
7916                 h->hba_inquiry_data = NULL;
7917         }
7918 }
7919
7920 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7921 {
7922         int rc, i;
7923         void __iomem *vaddr;
7924
7925         if (!reset_devices)
7926                 return 0;
7927
7928         /* kdump kernel is loading, we don't know in which state is
7929          * the pci interface. The dev->enable_cnt is equal zero
7930          * so we call enable+disable, wait a while and switch it on.
7931          */
7932         rc = pci_enable_device(pdev);
7933         if (rc) {
7934                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7935                 return -ENODEV;
7936         }
7937         pci_disable_device(pdev);
7938         msleep(260);                    /* a randomly chosen number */
7939         rc = pci_enable_device(pdev);
7940         if (rc) {
7941                 dev_warn(&pdev->dev, "failed to enable device.\n");
7942                 return -ENODEV;
7943         }
7944
7945         pci_set_master(pdev);
7946
7947         vaddr = pci_ioremap_bar(pdev, 0);
7948         if (vaddr == NULL) {
7949                 rc = -ENOMEM;
7950                 goto out_disable;
7951         }
7952         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7953         iounmap(vaddr);
7954
7955         /* Reset the controller with a PCI power-cycle or via doorbell */
7956         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7957
7958         /* -ENOTSUPP here means we cannot reset the controller
7959          * but it's already (and still) up and running in
7960          * "performant mode".  Or, it might be 640x, which can't reset
7961          * due to concerns about shared bbwc between 6402/6404 pair.
7962          */
7963         if (rc)
7964                 goto out_disable;
7965
7966         /* Now try to get the controller to respond to a no-op */
7967         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7968         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7969                 if (hpsa_noop(pdev) == 0)
7970                         break;
7971                 else
7972                         dev_warn(&pdev->dev, "no-op failed%s\n",
7973                                         (i < 11 ? "; re-trying" : ""));
7974         }
7975
7976 out_disable:
7977
7978         pci_disable_device(pdev);
7979         return rc;
7980 }
7981
7982 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7983 {
7984         kfree(h->cmd_pool_bits);
7985         h->cmd_pool_bits = NULL;
7986         if (h->cmd_pool) {
7987                 dma_free_coherent(&h->pdev->dev,
7988                                 h->nr_cmds * sizeof(struct CommandList),
7989                                 h->cmd_pool,
7990                                 h->cmd_pool_dhandle);
7991                 h->cmd_pool = NULL;
7992                 h->cmd_pool_dhandle = 0;
7993         }
7994         if (h->errinfo_pool) {
7995                 dma_free_coherent(&h->pdev->dev,
7996                                 h->nr_cmds * sizeof(struct ErrorInfo),
7997                                 h->errinfo_pool,
7998                                 h->errinfo_pool_dhandle);
7999                 h->errinfo_pool = NULL;
8000                 h->errinfo_pool_dhandle = 0;
8001         }
8002 }
8003
8004 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8005 {
8006         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8007                                    sizeof(unsigned long),
8008                                    GFP_KERNEL);
8009         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8010                     h->nr_cmds * sizeof(*h->cmd_pool),
8011                     &h->cmd_pool_dhandle, GFP_KERNEL);
8012         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8013                     h->nr_cmds * sizeof(*h->errinfo_pool),
8014                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8015         if ((h->cmd_pool_bits == NULL)
8016             || (h->cmd_pool == NULL)
8017             || (h->errinfo_pool == NULL)) {
8018                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8019                 goto clean_up;
8020         }
8021         hpsa_preinitialize_commands(h);
8022         return 0;
8023 clean_up:
8024         hpsa_free_cmd_pool(h);
8025         return -ENOMEM;
8026 }
8027
8028 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8029 static void hpsa_free_irqs(struct ctlr_info *h)
8030 {
8031         int i;
8032         int irq_vector = 0;
8033
8034         if (hpsa_simple_mode)
8035                 irq_vector = h->intr_mode;
8036
8037         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8038                 /* Single reply queue, only one irq to free */
8039                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8040                                 &h->q[h->intr_mode]);
8041                 h->q[h->intr_mode] = 0;
8042                 return;
8043         }
8044
8045         for (i = 0; i < h->msix_vectors; i++) {
8046                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8047                 h->q[i] = 0;
8048         }
8049         for (; i < MAX_REPLY_QUEUES; i++)
8050                 h->q[i] = 0;
8051 }
8052
8053 /* returns 0 on success; cleans up and returns -Enn on error */
8054 static int hpsa_request_irqs(struct ctlr_info *h,
8055         irqreturn_t (*msixhandler)(int, void *),
8056         irqreturn_t (*intxhandler)(int, void *))
8057 {
8058         int rc, i;
8059         int irq_vector = 0;
8060
8061         if (hpsa_simple_mode)
8062                 irq_vector = h->intr_mode;
8063
8064         /*
8065          * initialize h->q[x] = x so that interrupt handlers know which
8066          * queue to process.
8067          */
8068         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8069                 h->q[i] = (u8) i;
8070
8071         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8072                 /* If performant mode and MSI-X, use multiple reply queues */
8073                 for (i = 0; i < h->msix_vectors; i++) {
8074                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8075                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8076                                         0, h->intrname[i],
8077                                         &h->q[i]);
8078                         if (rc) {
8079                                 int j;
8080
8081                                 dev_err(&h->pdev->dev,
8082                                         "failed to get irq %d for %s\n",
8083                                        pci_irq_vector(h->pdev, i), h->devname);
8084                                 for (j = 0; j < i; j++) {
8085                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8086                                         h->q[j] = 0;
8087                                 }
8088                                 for (; j < MAX_REPLY_QUEUES; j++)
8089                                         h->q[j] = 0;
8090                                 return rc;
8091                         }
8092                 }
8093         } else {
8094                 /* Use single reply pool */
8095                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8096                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8097                                 h->msix_vectors ? "x" : "");
8098                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8099                                 msixhandler, 0,
8100                                 h->intrname[0],
8101                                 &h->q[h->intr_mode]);
8102                 } else {
8103                         sprintf(h->intrname[h->intr_mode],
8104                                 "%s-intx", h->devname);
8105                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8106                                 intxhandler, IRQF_SHARED,
8107                                 h->intrname[0],
8108                                 &h->q[h->intr_mode]);
8109                 }
8110         }
8111         if (rc) {
8112                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8113                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8114                 hpsa_free_irqs(h);
8115                 return -ENODEV;
8116         }
8117         return 0;
8118 }
8119
8120 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8121 {
8122         int rc;
8123         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8124
8125         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8126         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8127         if (rc) {
8128                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8129                 return rc;
8130         }
8131
8132         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8133         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8134         if (rc) {
8135                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8136                         "after soft reset.\n");
8137                 return rc;
8138         }
8139
8140         return 0;
8141 }
8142
8143 static void hpsa_free_reply_queues(struct ctlr_info *h)
8144 {
8145         int i;
8146
8147         for (i = 0; i < h->nreply_queues; i++) {
8148                 if (!h->reply_queue[i].head)
8149                         continue;
8150                 dma_free_coherent(&h->pdev->dev,
8151                                         h->reply_queue_size,
8152                                         h->reply_queue[i].head,
8153                                         h->reply_queue[i].busaddr);
8154                 h->reply_queue[i].head = NULL;
8155                 h->reply_queue[i].busaddr = 0;
8156         }
8157         h->reply_queue_size = 0;
8158 }
8159
8160 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8161 {
8162         hpsa_free_performant_mode(h);           /* init_one 7 */
8163         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8164         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8165         hpsa_free_irqs(h);                      /* init_one 4 */
8166         scsi_host_put(h->scsi_host);            /* init_one 3 */
8167         h->scsi_host = NULL;                    /* init_one 3 */
8168         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8169         free_percpu(h->lockup_detected);        /* init_one 2 */
8170         h->lockup_detected = NULL;              /* init_one 2 */
8171         if (h->resubmit_wq) {
8172                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8173                 h->resubmit_wq = NULL;
8174         }
8175         if (h->rescan_ctlr_wq) {
8176                 destroy_workqueue(h->rescan_ctlr_wq);
8177                 h->rescan_ctlr_wq = NULL;
8178         }
8179         if (h->monitor_ctlr_wq) {
8180                 destroy_workqueue(h->monitor_ctlr_wq);
8181                 h->monitor_ctlr_wq = NULL;
8182         }
8183
8184         kfree(h);                               /* init_one 1 */
8185 }
8186
8187 /* Called when controller lockup detected. */
8188 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8189 {
8190         int i, refcount;
8191         struct CommandList *c;
8192         int failcount = 0;
8193
8194         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8195         for (i = 0; i < h->nr_cmds; i++) {
8196                 c = h->cmd_pool + i;
8197                 refcount = atomic_inc_return(&c->refcount);
8198                 if (refcount > 1) {
8199                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8200                         finish_cmd(c);
8201                         atomic_dec(&h->commands_outstanding);
8202                         failcount++;
8203                 }
8204                 cmd_free(h, c);
8205         }
8206         dev_warn(&h->pdev->dev,
8207                 "failed %d commands in fail_all\n", failcount);
8208 }
8209
8210 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8211 {
8212         int cpu;
8213
8214         for_each_online_cpu(cpu) {
8215                 u32 *lockup_detected;
8216                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8217                 *lockup_detected = value;
8218         }
8219         wmb(); /* be sure the per-cpu variables are out to memory */
8220 }
8221
8222 static void controller_lockup_detected(struct ctlr_info *h)
8223 {
8224         unsigned long flags;
8225         u32 lockup_detected;
8226
8227         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8228         spin_lock_irqsave(&h->lock, flags);
8229         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8230         if (!lockup_detected) {
8231                 /* no heartbeat, but controller gave us a zero. */
8232                 dev_warn(&h->pdev->dev,
8233                         "lockup detected after %d but scratchpad register is zero\n",
8234                         h->heartbeat_sample_interval / HZ);
8235                 lockup_detected = 0xffffffff;
8236         }
8237         set_lockup_detected_for_all_cpus(h, lockup_detected);
8238         spin_unlock_irqrestore(&h->lock, flags);
8239         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8240                         lockup_detected, h->heartbeat_sample_interval / HZ);
8241         if (lockup_detected == 0xffff0000) {
8242                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8243                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8244         }
8245         pci_disable_device(h->pdev);
8246         fail_all_outstanding_cmds(h);
8247 }
8248
8249 static int detect_controller_lockup(struct ctlr_info *h)
8250 {
8251         u64 now;
8252         u32 heartbeat;
8253         unsigned long flags;
8254
8255         now = get_jiffies_64();
8256         /* If we've received an interrupt recently, we're ok. */
8257         if (time_after64(h->last_intr_timestamp +
8258                                 (h->heartbeat_sample_interval), now))
8259                 return false;
8260
8261         /*
8262          * If we've already checked the heartbeat recently, we're ok.
8263          * This could happen if someone sends us a signal. We
8264          * otherwise don't care about signals in this thread.
8265          */
8266         if (time_after64(h->last_heartbeat_timestamp +
8267                                 (h->heartbeat_sample_interval), now))
8268                 return false;
8269
8270         /* If heartbeat has not changed since we last looked, we're not ok. */
8271         spin_lock_irqsave(&h->lock, flags);
8272         heartbeat = readl(&h->cfgtable->HeartBeat);
8273         spin_unlock_irqrestore(&h->lock, flags);
8274         if (h->last_heartbeat == heartbeat) {
8275                 controller_lockup_detected(h);
8276                 return true;
8277         }
8278
8279         /* We're ok. */
8280         h->last_heartbeat = heartbeat;
8281         h->last_heartbeat_timestamp = now;
8282         return false;
8283 }
8284
8285 /*
8286  * Set ioaccel status for all ioaccel volumes.
8287  *
8288  * Called from monitor controller worker (hpsa_event_monitor_worker)
8289  *
8290  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8291  * transformation, so we will be turning off ioaccel for all volumes that
8292  * make up the Array.
8293  */
8294 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8295 {
8296         int rc;
8297         int i;
8298         u8 ioaccel_status;
8299         unsigned char *buf;
8300         struct hpsa_scsi_dev_t *device;
8301
8302         if (!h)
8303                 return;
8304
8305         buf = kmalloc(64, GFP_KERNEL);
8306         if (!buf)
8307                 return;
8308
8309         /*
8310          * Run through current device list used during I/O requests.
8311          */
8312         for (i = 0; i < h->ndevices; i++) {
8313                 int offload_to_be_enabled = 0;
8314                 int offload_config = 0;
8315
8316                 device = h->dev[i];
8317
8318                 if (!device)
8319                         continue;
8320                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8321                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8322                         continue;
8323
8324                 memset(buf, 0, 64);
8325
8326                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8327                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8328                                         buf, 64);
8329                 if (rc != 0)
8330                         continue;
8331
8332                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8333
8334                 /*
8335                  * Check if offload is still configured on
8336                  */
8337                 offload_config =
8338                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8339                 /*
8340                  * If offload is configured on, check to see if ioaccel
8341                  * needs to be enabled.
8342                  */
8343                 if (offload_config)
8344                         offload_to_be_enabled =
8345                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8346
8347                 /*
8348                  * If ioaccel is to be re-enabled, re-enable later during the
8349                  * scan operation so the driver can get a fresh raidmap
8350                  * before turning ioaccel back on.
8351                  */
8352                 if (offload_to_be_enabled)
8353                         continue;
8354
8355                 /*
8356                  * Immediately turn off ioaccel for any volume the
8357                  * controller tells us to. Some of the reasons could be:
8358                  *    transformation - change to the LVs of an Array.
8359                  *    degraded volume - component failure
8360                  */
8361                 hpsa_turn_off_ioaccel_for_device(device);
8362         }
8363
8364         kfree(buf);
8365 }
8366
8367 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8368 {
8369         char *event_type;
8370
8371         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8372                 return;
8373
8374         /* Ask the controller to clear the events we're handling. */
8375         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8376                         | CFGTBL_Trans_io_accel2)) &&
8377                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8378                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8379
8380                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8381                         event_type = "state change";
8382                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8383                         event_type = "configuration change";
8384                 /* Stop sending new RAID offload reqs via the IO accelerator */
8385                 scsi_block_requests(h->scsi_host);
8386                 hpsa_set_ioaccel_status(h);
8387                 hpsa_drain_accel_commands(h);
8388                 /* Set 'accelerator path config change' bit */
8389                 dev_warn(&h->pdev->dev,
8390                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8391                         h->events, event_type);
8392                 writel(h->events, &(h->cfgtable->clear_event_notify));
8393                 /* Set the "clear event notify field update" bit 6 */
8394                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8395                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8396                 hpsa_wait_for_clear_event_notify_ack(h);
8397                 scsi_unblock_requests(h->scsi_host);
8398         } else {
8399                 /* Acknowledge controller notification events. */
8400                 writel(h->events, &(h->cfgtable->clear_event_notify));
8401                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8402                 hpsa_wait_for_clear_event_notify_ack(h);
8403         }
8404         return;
8405 }
8406
8407 /* Check a register on the controller to see if there are configuration
8408  * changes (added/changed/removed logical drives, etc.) which mean that
8409  * we should rescan the controller for devices.
8410  * Also check flag for driver-initiated rescan.
8411  */
8412 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8413 {
8414         if (h->drv_req_rescan) {
8415                 h->drv_req_rescan = 0;
8416                 return 1;
8417         }
8418
8419         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8420                 return 0;
8421
8422         h->events = readl(&(h->cfgtable->event_notify));
8423         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8424 }
8425
8426 /*
8427  * Check if any of the offline devices have become ready
8428  */
8429 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8430 {
8431         unsigned long flags;
8432         struct offline_device_entry *d;
8433         struct list_head *this, *tmp;
8434
8435         spin_lock_irqsave(&h->offline_device_lock, flags);
8436         list_for_each_safe(this, tmp, &h->offline_device_list) {
8437                 d = list_entry(this, struct offline_device_entry,
8438                                 offline_list);
8439                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8440                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8441                         spin_lock_irqsave(&h->offline_device_lock, flags);
8442                         list_del(&d->offline_list);
8443                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8444                         return 1;
8445                 }
8446                 spin_lock_irqsave(&h->offline_device_lock, flags);
8447         }
8448         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8449         return 0;
8450 }
8451
8452 static int hpsa_luns_changed(struct ctlr_info *h)
8453 {
8454         int rc = 1; /* assume there are changes */
8455         struct ReportLUNdata *logdev = NULL;
8456
8457         /* if we can't find out if lun data has changed,
8458          * assume that it has.
8459          */
8460
8461         if (!h->lastlogicals)
8462                 return rc;
8463
8464         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8465         if (!logdev)
8466                 return rc;
8467
8468         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8469                 dev_warn(&h->pdev->dev,
8470                         "report luns failed, can't track lun changes.\n");
8471                 goto out;
8472         }
8473         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8474                 dev_info(&h->pdev->dev,
8475                         "Lun changes detected.\n");
8476                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8477                 goto out;
8478         } else
8479                 rc = 0; /* no changes detected. */
8480 out:
8481         kfree(logdev);
8482         return rc;
8483 }
8484
8485 static void hpsa_perform_rescan(struct ctlr_info *h)
8486 {
8487         struct Scsi_Host *sh = NULL;
8488         unsigned long flags;
8489
8490         /*
8491          * Do the scan after the reset
8492          */
8493         spin_lock_irqsave(&h->reset_lock, flags);
8494         if (h->reset_in_progress) {
8495                 h->drv_req_rescan = 1;
8496                 spin_unlock_irqrestore(&h->reset_lock, flags);
8497                 return;
8498         }
8499         spin_unlock_irqrestore(&h->reset_lock, flags);
8500
8501         sh = scsi_host_get(h->scsi_host);
8502         if (sh != NULL) {
8503                 hpsa_scan_start(sh);
8504                 scsi_host_put(sh);
8505                 h->drv_req_rescan = 0;
8506         }
8507 }
8508
8509 /*
8510  * watch for controller events
8511  */
8512 static void hpsa_event_monitor_worker(struct work_struct *work)
8513 {
8514         struct ctlr_info *h = container_of(to_delayed_work(work),
8515                                         struct ctlr_info, event_monitor_work);
8516         unsigned long flags;
8517
8518         spin_lock_irqsave(&h->lock, flags);
8519         if (h->remove_in_progress) {
8520                 spin_unlock_irqrestore(&h->lock, flags);
8521                 return;
8522         }
8523         spin_unlock_irqrestore(&h->lock, flags);
8524
8525         if (hpsa_ctlr_needs_rescan(h)) {
8526                 hpsa_ack_ctlr_events(h);
8527                 hpsa_perform_rescan(h);
8528         }
8529
8530         spin_lock_irqsave(&h->lock, flags);
8531         if (!h->remove_in_progress)
8532                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8533                                 HPSA_EVENT_MONITOR_INTERVAL);
8534         spin_unlock_irqrestore(&h->lock, flags);
8535 }
8536
8537 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8538 {
8539         unsigned long flags;
8540         struct ctlr_info *h = container_of(to_delayed_work(work),
8541                                         struct ctlr_info, rescan_ctlr_work);
8542
8543         spin_lock_irqsave(&h->lock, flags);
8544         if (h->remove_in_progress) {
8545                 spin_unlock_irqrestore(&h->lock, flags);
8546                 return;
8547         }
8548         spin_unlock_irqrestore(&h->lock, flags);
8549
8550         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8551                 hpsa_perform_rescan(h);
8552         } else if (h->discovery_polling) {
8553                 if (hpsa_luns_changed(h)) {
8554                         dev_info(&h->pdev->dev,
8555                                 "driver discovery polling rescan.\n");
8556                         hpsa_perform_rescan(h);
8557                 }
8558         }
8559         spin_lock_irqsave(&h->lock, flags);
8560         if (!h->remove_in_progress)
8561                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8562                                 h->heartbeat_sample_interval);
8563         spin_unlock_irqrestore(&h->lock, flags);
8564 }
8565
8566 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8567 {
8568         unsigned long flags;
8569         struct ctlr_info *h = container_of(to_delayed_work(work),
8570                                         struct ctlr_info, monitor_ctlr_work);
8571
8572         detect_controller_lockup(h);
8573         if (lockup_detected(h))
8574                 return;
8575
8576         spin_lock_irqsave(&h->lock, flags);
8577         if (!h->remove_in_progress)
8578                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8579                                 h->heartbeat_sample_interval);
8580         spin_unlock_irqrestore(&h->lock, flags);
8581 }
8582
8583 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8584                                                 char *name)
8585 {
8586         struct workqueue_struct *wq = NULL;
8587
8588         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8589         if (!wq)
8590                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8591
8592         return wq;
8593 }
8594
8595 static void hpda_free_ctlr_info(struct ctlr_info *h)
8596 {
8597         kfree(h->reply_map);
8598         kfree(h);
8599 }
8600
8601 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8602 {
8603         struct ctlr_info *h;
8604
8605         h = kzalloc(sizeof(*h), GFP_KERNEL);
8606         if (!h)
8607                 return NULL;
8608
8609         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8610         if (!h->reply_map) {
8611                 kfree(h);
8612                 return NULL;
8613         }
8614         return h;
8615 }
8616
8617 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8618 {
8619         int dac, rc;
8620         struct ctlr_info *h;
8621         int try_soft_reset = 0;
8622         unsigned long flags;
8623         u32 board_id;
8624
8625         if (number_of_controllers == 0)
8626                 printk(KERN_INFO DRIVER_NAME "\n");
8627
8628         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8629         if (rc < 0) {
8630                 dev_warn(&pdev->dev, "Board ID not found\n");
8631                 return rc;
8632         }
8633
8634         rc = hpsa_init_reset_devices(pdev, board_id);
8635         if (rc) {
8636                 if (rc != -ENOTSUPP)
8637                         return rc;
8638                 /* If the reset fails in a particular way (it has no way to do
8639                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8640                  * a soft reset once we get the controller configured up to the
8641                  * point that it can accept a command.
8642                  */
8643                 try_soft_reset = 1;
8644                 rc = 0;
8645         }
8646
8647 reinit_after_soft_reset:
8648
8649         /* Command structures must be aligned on a 32-byte boundary because
8650          * the 5 lower bits of the address are used by the hardware. and by
8651          * the driver.  See comments in hpsa.h for more info.
8652          */
8653         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8654         h = hpda_alloc_ctlr_info();
8655         if (!h) {
8656                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8657                 return -ENOMEM;
8658         }
8659
8660         h->pdev = pdev;
8661
8662         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8663         INIT_LIST_HEAD(&h->offline_device_list);
8664         spin_lock_init(&h->lock);
8665         spin_lock_init(&h->offline_device_lock);
8666         spin_lock_init(&h->scan_lock);
8667         spin_lock_init(&h->reset_lock);
8668         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8669
8670         /* Allocate and clear per-cpu variable lockup_detected */
8671         h->lockup_detected = alloc_percpu(u32);
8672         if (!h->lockup_detected) {
8673                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8674                 rc = -ENOMEM;
8675                 goto clean1;    /* aer/h */
8676         }
8677         set_lockup_detected_for_all_cpus(h, 0);
8678
8679         rc = hpsa_pci_init(h);
8680         if (rc)
8681                 goto clean2;    /* lu, aer/h */
8682
8683         /* relies on h-> settings made by hpsa_pci_init, including
8684          * interrupt_mode h->intr */
8685         rc = hpsa_scsi_host_alloc(h);
8686         if (rc)
8687                 goto clean2_5;  /* pci, lu, aer/h */
8688
8689         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8690         h->ctlr = number_of_controllers;
8691         number_of_controllers++;
8692
8693         /* configure PCI DMA stuff */
8694         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8695         if (rc == 0) {
8696                 dac = 1;
8697         } else {
8698                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8699                 if (rc == 0) {
8700                         dac = 0;
8701                 } else {
8702                         dev_err(&pdev->dev, "no suitable DMA available\n");
8703                         goto clean3;    /* shost, pci, lu, aer/h */
8704                 }
8705         }
8706
8707         /* make sure the board interrupts are off */
8708         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8709
8710         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8711         if (rc)
8712                 goto clean3;    /* shost, pci, lu, aer/h */
8713         rc = hpsa_alloc_cmd_pool(h);
8714         if (rc)
8715                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8716         rc = hpsa_alloc_sg_chain_blocks(h);
8717         if (rc)
8718                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8719         init_waitqueue_head(&h->scan_wait_queue);
8720         init_waitqueue_head(&h->event_sync_wait_queue);
8721         mutex_init(&h->reset_mutex);
8722         h->scan_finished = 1; /* no scan currently in progress */
8723         h->scan_waiting = 0;
8724
8725         pci_set_drvdata(pdev, h);
8726         h->ndevices = 0;
8727
8728         spin_lock_init(&h->devlock);
8729         rc = hpsa_put_ctlr_into_performant_mode(h);
8730         if (rc)
8731                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8732
8733         /* create the resubmit workqueue */
8734         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8735         if (!h->rescan_ctlr_wq) {
8736                 rc = -ENOMEM;
8737                 goto clean7;
8738         }
8739
8740         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8741         if (!h->resubmit_wq) {
8742                 rc = -ENOMEM;
8743                 goto clean7;    /* aer/h */
8744         }
8745
8746         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8747         if (!h->monitor_ctlr_wq) {
8748                 rc = -ENOMEM;
8749                 goto clean7;
8750         }
8751
8752         /*
8753          * At this point, the controller is ready to take commands.
8754          * Now, if reset_devices and the hard reset didn't work, try
8755          * the soft reset and see if that works.
8756          */
8757         if (try_soft_reset) {
8758
8759                 /* This is kind of gross.  We may or may not get a completion
8760                  * from the soft reset command, and if we do, then the value
8761                  * from the fifo may or may not be valid.  So, we wait 10 secs
8762                  * after the reset throwing away any completions we get during
8763                  * that time.  Unregister the interrupt handler and register
8764                  * fake ones to scoop up any residual completions.
8765                  */
8766                 spin_lock_irqsave(&h->lock, flags);
8767                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8768                 spin_unlock_irqrestore(&h->lock, flags);
8769                 hpsa_free_irqs(h);
8770                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8771                                         hpsa_intx_discard_completions);
8772                 if (rc) {
8773                         dev_warn(&h->pdev->dev,
8774                                 "Failed to request_irq after soft reset.\n");
8775                         /*
8776                          * cannot goto clean7 or free_irqs will be called
8777                          * again. Instead, do its work
8778                          */
8779                         hpsa_free_performant_mode(h);   /* clean7 */
8780                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8781                         hpsa_free_cmd_pool(h);          /* clean5 */
8782                         /*
8783                          * skip hpsa_free_irqs(h) clean4 since that
8784                          * was just called before request_irqs failed
8785                          */
8786                         goto clean3;
8787                 }
8788
8789                 rc = hpsa_kdump_soft_reset(h);
8790                 if (rc)
8791                         /* Neither hard nor soft reset worked, we're hosed. */
8792                         goto clean7;
8793
8794                 dev_info(&h->pdev->dev, "Board READY.\n");
8795                 dev_info(&h->pdev->dev,
8796                         "Waiting for stale completions to drain.\n");
8797                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8798                 msleep(10000);
8799                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8800
8801                 rc = controller_reset_failed(h->cfgtable);
8802                 if (rc)
8803                         dev_info(&h->pdev->dev,
8804                                 "Soft reset appears to have failed.\n");
8805
8806                 /* since the controller's reset, we have to go back and re-init
8807                  * everything.  Easiest to just forget what we've done and do it
8808                  * all over again.
8809                  */
8810                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8811                 try_soft_reset = 0;
8812                 if (rc)
8813                         /* don't goto clean, we already unallocated */
8814                         return -ENODEV;
8815
8816                 goto reinit_after_soft_reset;
8817         }
8818
8819         /* Enable Accelerated IO path at driver layer */
8820         h->acciopath_status = 1;
8821         /* Disable discovery polling.*/
8822         h->discovery_polling = 0;
8823
8824
8825         /* Turn the interrupts on so we can service requests */
8826         h->access.set_intr_mask(h, HPSA_INTR_ON);
8827
8828         hpsa_hba_inquiry(h);
8829
8830         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8831         if (!h->lastlogicals)
8832                 dev_info(&h->pdev->dev,
8833                         "Can't track change to report lun data\n");
8834
8835         /* hook into SCSI subsystem */
8836         rc = hpsa_scsi_add_host(h);
8837         if (rc)
8838                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8839
8840         /* Monitor the controller for firmware lockups */
8841         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8842         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8843         schedule_delayed_work(&h->monitor_ctlr_work,
8844                                 h->heartbeat_sample_interval);
8845         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8846         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8847                                 h->heartbeat_sample_interval);
8848         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8849         schedule_delayed_work(&h->event_monitor_work,
8850                                 HPSA_EVENT_MONITOR_INTERVAL);
8851         return 0;
8852
8853 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8854         hpsa_free_performant_mode(h);
8855         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8856 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8857         hpsa_free_sg_chain_blocks(h);
8858 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8859         hpsa_free_cmd_pool(h);
8860 clean4: /* irq, shost, pci, lu, aer/h */
8861         hpsa_free_irqs(h);
8862 clean3: /* shost, pci, lu, aer/h */
8863         scsi_host_put(h->scsi_host);
8864         h->scsi_host = NULL;
8865 clean2_5: /* pci, lu, aer/h */
8866         hpsa_free_pci_init(h);
8867 clean2: /* lu, aer/h */
8868         if (h->lockup_detected) {
8869                 free_percpu(h->lockup_detected);
8870                 h->lockup_detected = NULL;
8871         }
8872 clean1: /* wq/aer/h */
8873         if (h->resubmit_wq) {
8874                 destroy_workqueue(h->resubmit_wq);
8875                 h->resubmit_wq = NULL;
8876         }
8877         if (h->rescan_ctlr_wq) {
8878                 destroy_workqueue(h->rescan_ctlr_wq);
8879                 h->rescan_ctlr_wq = NULL;
8880         }
8881         if (h->monitor_ctlr_wq) {
8882                 destroy_workqueue(h->monitor_ctlr_wq);
8883                 h->monitor_ctlr_wq = NULL;
8884         }
8885         kfree(h);
8886         return rc;
8887 }
8888
8889 static void hpsa_flush_cache(struct ctlr_info *h)
8890 {
8891         char *flush_buf;
8892         struct CommandList *c;
8893         int rc;
8894
8895         if (unlikely(lockup_detected(h)))
8896                 return;
8897         flush_buf = kzalloc(4, GFP_KERNEL);
8898         if (!flush_buf)
8899                 return;
8900
8901         c = cmd_alloc(h);
8902
8903         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8904                 RAID_CTLR_LUNID, TYPE_CMD)) {
8905                 goto out;
8906         }
8907         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8908                         DEFAULT_TIMEOUT);
8909         if (rc)
8910                 goto out;
8911         if (c->err_info->CommandStatus != 0)
8912 out:
8913                 dev_warn(&h->pdev->dev,
8914                         "error flushing cache on controller\n");
8915         cmd_free(h, c);
8916         kfree(flush_buf);
8917 }
8918
8919 /* Make controller gather fresh report lun data each time we
8920  * send down a report luns request
8921  */
8922 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8923 {
8924         u32 *options;
8925         struct CommandList *c;
8926         int rc;
8927
8928         /* Don't bother trying to set diag options if locked up */
8929         if (unlikely(h->lockup_detected))
8930                 return;
8931
8932         options = kzalloc(sizeof(*options), GFP_KERNEL);
8933         if (!options)
8934                 return;
8935
8936         c = cmd_alloc(h);
8937
8938         /* first, get the current diag options settings */
8939         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8940                 RAID_CTLR_LUNID, TYPE_CMD))
8941                 goto errout;
8942
8943         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8944                         NO_TIMEOUT);
8945         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8946                 goto errout;
8947
8948         /* Now, set the bit for disabling the RLD caching */
8949         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8950
8951         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8952                 RAID_CTLR_LUNID, TYPE_CMD))
8953                 goto errout;
8954
8955         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8956                         NO_TIMEOUT);
8957         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8958                 goto errout;
8959
8960         /* Now verify that it got set: */
8961         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8962                 RAID_CTLR_LUNID, TYPE_CMD))
8963                 goto errout;
8964
8965         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8966                         NO_TIMEOUT);
8967         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8968                 goto errout;
8969
8970         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8971                 goto out;
8972
8973 errout:
8974         dev_err(&h->pdev->dev,
8975                         "Error: failed to disable report lun data caching.\n");
8976 out:
8977         cmd_free(h, c);
8978         kfree(options);
8979 }
8980
8981 static void __hpsa_shutdown(struct pci_dev *pdev)
8982 {
8983         struct ctlr_info *h;
8984
8985         h = pci_get_drvdata(pdev);
8986         /* Turn board interrupts off  and send the flush cache command
8987          * sendcmd will turn off interrupt, and send the flush...
8988          * To write all data in the battery backed cache to disks
8989          */
8990         hpsa_flush_cache(h);
8991         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8992         hpsa_free_irqs(h);                      /* init_one 4 */
8993         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8994 }
8995
8996 static void hpsa_shutdown(struct pci_dev *pdev)
8997 {
8998         __hpsa_shutdown(pdev);
8999         pci_disable_device(pdev);
9000 }
9001
9002 static void hpsa_free_device_info(struct ctlr_info *h)
9003 {
9004         int i;
9005
9006         for (i = 0; i < h->ndevices; i++) {
9007                 kfree(h->dev[i]);
9008                 h->dev[i] = NULL;
9009         }
9010 }
9011
9012 static void hpsa_remove_one(struct pci_dev *pdev)
9013 {
9014         struct ctlr_info *h;
9015         unsigned long flags;
9016
9017         if (pci_get_drvdata(pdev) == NULL) {
9018                 dev_err(&pdev->dev, "unable to remove device\n");
9019                 return;
9020         }
9021         h = pci_get_drvdata(pdev);
9022
9023         /* Get rid of any controller monitoring work items */
9024         spin_lock_irqsave(&h->lock, flags);
9025         h->remove_in_progress = 1;
9026         spin_unlock_irqrestore(&h->lock, flags);
9027         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9028         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9029         cancel_delayed_work_sync(&h->event_monitor_work);
9030         destroy_workqueue(h->rescan_ctlr_wq);
9031         destroy_workqueue(h->resubmit_wq);
9032         destroy_workqueue(h->monitor_ctlr_wq);
9033
9034         hpsa_delete_sas_host(h);
9035
9036         /*
9037          * Call before disabling interrupts.
9038          * scsi_remove_host can trigger I/O operations especially
9039          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9040          * operations which cannot complete and will hang the system.
9041          */
9042         if (h->scsi_host)
9043                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9044         /* includes hpsa_free_irqs - init_one 4 */
9045         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9046         __hpsa_shutdown(pdev);
9047
9048         hpsa_free_device_info(h);               /* scan */
9049
9050         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9051         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9052         hpsa_free_ioaccel2_sg_chain_blocks(h);
9053         hpsa_free_performant_mode(h);                   /* init_one 7 */
9054         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9055         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9056         kfree(h->lastlogicals);
9057
9058         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9059
9060         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9061         h->scsi_host = NULL;                            /* init_one 3 */
9062
9063         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9064         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9065
9066         free_percpu(h->lockup_detected);                /* init_one 2 */
9067         h->lockup_detected = NULL;                      /* init_one 2 */
9068         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9069
9070         hpda_free_ctlr_info(h);                         /* init_one 1 */
9071 }
9072
9073 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9074         __attribute__((unused)) pm_message_t state)
9075 {
9076         return -ENOSYS;
9077 }
9078
9079 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9080 {
9081         return -ENOSYS;
9082 }
9083
9084 static struct pci_driver hpsa_pci_driver = {
9085         .name = HPSA,
9086         .probe = hpsa_init_one,
9087         .remove = hpsa_remove_one,
9088         .id_table = hpsa_pci_device_id, /* id_table */
9089         .shutdown = hpsa_shutdown,
9090         .suspend = hpsa_suspend,
9091         .resume = hpsa_resume,
9092 };
9093
9094 /* Fill in bucket_map[], given nsgs (the max number of
9095  * scatter gather elements supported) and bucket[],
9096  * which is an array of 8 integers.  The bucket[] array
9097  * contains 8 different DMA transfer sizes (in 16
9098  * byte increments) which the controller uses to fetch
9099  * commands.  This function fills in bucket_map[], which
9100  * maps a given number of scatter gather elements to one of
9101  * the 8 DMA transfer sizes.  The point of it is to allow the
9102  * controller to only do as much DMA as needed to fetch the
9103  * command, with the DMA transfer size encoded in the lower
9104  * bits of the command address.
9105  */
9106 static void  calc_bucket_map(int bucket[], int num_buckets,
9107         int nsgs, int min_blocks, u32 *bucket_map)
9108 {
9109         int i, j, b, size;
9110
9111         /* Note, bucket_map must have nsgs+1 entries. */
9112         for (i = 0; i <= nsgs; i++) {
9113                 /* Compute size of a command with i SG entries */
9114                 size = i + min_blocks;
9115                 b = num_buckets; /* Assume the biggest bucket */
9116                 /* Find the bucket that is just big enough */
9117                 for (j = 0; j < num_buckets; j++) {
9118                         if (bucket[j] >= size) {
9119                                 b = j;
9120                                 break;
9121                         }
9122                 }
9123                 /* for a command with i SG entries, use bucket b. */
9124                 bucket_map[i] = b;
9125         }
9126 }
9127
9128 /*
9129  * return -ENODEV on err, 0 on success (or no action)
9130  * allocates numerous items that must be freed later
9131  */
9132 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9133 {
9134         int i;
9135         unsigned long register_value;
9136         unsigned long transMethod = CFGTBL_Trans_Performant |
9137                         (trans_support & CFGTBL_Trans_use_short_tags) |
9138                                 CFGTBL_Trans_enable_directed_msix |
9139                         (trans_support & (CFGTBL_Trans_io_accel1 |
9140                                 CFGTBL_Trans_io_accel2));
9141         struct access_method access = SA5_performant_access;
9142
9143         /* This is a bit complicated.  There are 8 registers on
9144          * the controller which we write to to tell it 8 different
9145          * sizes of commands which there may be.  It's a way of
9146          * reducing the DMA done to fetch each command.  Encoded into
9147          * each command's tag are 3 bits which communicate to the controller
9148          * which of the eight sizes that command fits within.  The size of
9149          * each command depends on how many scatter gather entries there are.
9150          * Each SG entry requires 16 bytes.  The eight registers are programmed
9151          * with the number of 16-byte blocks a command of that size requires.
9152          * The smallest command possible requires 5 such 16 byte blocks.
9153          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9154          * blocks.  Note, this only extends to the SG entries contained
9155          * within the command block, and does not extend to chained blocks
9156          * of SG elements.   bft[] contains the eight values we write to
9157          * the registers.  They are not evenly distributed, but have more
9158          * sizes for small commands, and fewer sizes for larger commands.
9159          */
9160         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9161 #define MIN_IOACCEL2_BFT_ENTRY 5
9162 #define HPSA_IOACCEL2_HEADER_SZ 4
9163         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9164                         13, 14, 15, 16, 17, 18, 19,
9165                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9166         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9167         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9168         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9169                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9170         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9171         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9172         /*  5 = 1 s/g entry or 4k
9173          *  6 = 2 s/g entry or 8k
9174          *  8 = 4 s/g entry or 16k
9175          * 10 = 6 s/g entry or 24k
9176          */
9177
9178         /* If the controller supports either ioaccel method then
9179          * we can also use the RAID stack submit path that does not
9180          * perform the superfluous readl() after each command submission.
9181          */
9182         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9183                 access = SA5_performant_access_no_read;
9184
9185         /* Controller spec: zero out this buffer. */
9186         for (i = 0; i < h->nreply_queues; i++)
9187                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9188
9189         bft[7] = SG_ENTRIES_IN_CMD + 4;
9190         calc_bucket_map(bft, ARRAY_SIZE(bft),
9191                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9192         for (i = 0; i < 8; i++)
9193                 writel(bft[i], &h->transtable->BlockFetch[i]);
9194
9195         /* size of controller ring buffer */
9196         writel(h->max_commands, &h->transtable->RepQSize);
9197         writel(h->nreply_queues, &h->transtable->RepQCount);
9198         writel(0, &h->transtable->RepQCtrAddrLow32);
9199         writel(0, &h->transtable->RepQCtrAddrHigh32);
9200
9201         for (i = 0; i < h->nreply_queues; i++) {
9202                 writel(0, &h->transtable->RepQAddr[i].upper);
9203                 writel(h->reply_queue[i].busaddr,
9204                         &h->transtable->RepQAddr[i].lower);
9205         }
9206
9207         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9208         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9209         /*
9210          * enable outbound interrupt coalescing in accelerator mode;
9211          */
9212         if (trans_support & CFGTBL_Trans_io_accel1) {
9213                 access = SA5_ioaccel_mode1_access;
9214                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9215                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9216         } else
9217                 if (trans_support & CFGTBL_Trans_io_accel2)
9218                         access = SA5_ioaccel_mode2_access;
9219         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9220         if (hpsa_wait_for_mode_change_ack(h)) {
9221                 dev_err(&h->pdev->dev,
9222                         "performant mode problem - doorbell timeout\n");
9223                 return -ENODEV;
9224         }
9225         register_value = readl(&(h->cfgtable->TransportActive));
9226         if (!(register_value & CFGTBL_Trans_Performant)) {
9227                 dev_err(&h->pdev->dev,
9228                         "performant mode problem - transport not active\n");
9229                 return -ENODEV;
9230         }
9231         /* Change the access methods to the performant access methods */
9232         h->access = access;
9233         h->transMethod = transMethod;
9234
9235         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9236                 (trans_support & CFGTBL_Trans_io_accel2)))
9237                 return 0;
9238
9239         if (trans_support & CFGTBL_Trans_io_accel1) {
9240                 /* Set up I/O accelerator mode */
9241                 for (i = 0; i < h->nreply_queues; i++) {
9242                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9243                         h->reply_queue[i].current_entry =
9244                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9245                 }
9246                 bft[7] = h->ioaccel_maxsg + 8;
9247                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9248                                 h->ioaccel1_blockFetchTable);
9249
9250                 /* initialize all reply queue entries to unused */
9251                 for (i = 0; i < h->nreply_queues; i++)
9252                         memset(h->reply_queue[i].head,
9253                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9254                                 h->reply_queue_size);
9255
9256                 /* set all the constant fields in the accelerator command
9257                  * frames once at init time to save CPU cycles later.
9258                  */
9259                 for (i = 0; i < h->nr_cmds; i++) {
9260                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9261
9262                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9263                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9264                                         (i * sizeof(struct ErrorInfo)));
9265                         cp->err_info_len = sizeof(struct ErrorInfo);
9266                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9267                         cp->host_context_flags =
9268                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9269                         cp->timeout_sec = 0;
9270                         cp->ReplyQueue = 0;
9271                         cp->tag =
9272                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9273                         cp->host_addr =
9274                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9275                                         (i * sizeof(struct io_accel1_cmd)));
9276                 }
9277         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9278                 u64 cfg_offset, cfg_base_addr_index;
9279                 u32 bft2_offset, cfg_base_addr;
9280                 int rc;
9281
9282                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9283                         &cfg_base_addr_index, &cfg_offset);
9284                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9285                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9286                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9287                                 4, h->ioaccel2_blockFetchTable);
9288                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9289                 BUILD_BUG_ON(offsetof(struct CfgTable,
9290                                 io_accel_request_size_offset) != 0xb8);
9291                 h->ioaccel2_bft2_regs =
9292                         remap_pci_mem(pci_resource_start(h->pdev,
9293                                         cfg_base_addr_index) +
9294                                         cfg_offset + bft2_offset,
9295                                         ARRAY_SIZE(bft2) *
9296                                         sizeof(*h->ioaccel2_bft2_regs));
9297                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9298                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9299         }
9300         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9301         if (hpsa_wait_for_mode_change_ack(h)) {
9302                 dev_err(&h->pdev->dev,
9303                         "performant mode problem - enabling ioaccel mode\n");
9304                 return -ENODEV;
9305         }
9306         return 0;
9307 }
9308
9309 /* Free ioaccel1 mode command blocks and block fetch table */
9310 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9311 {
9312         if (h->ioaccel_cmd_pool) {
9313                 pci_free_consistent(h->pdev,
9314                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9315                         h->ioaccel_cmd_pool,
9316                         h->ioaccel_cmd_pool_dhandle);
9317                 h->ioaccel_cmd_pool = NULL;
9318                 h->ioaccel_cmd_pool_dhandle = 0;
9319         }
9320         kfree(h->ioaccel1_blockFetchTable);
9321         h->ioaccel1_blockFetchTable = NULL;
9322 }
9323
9324 /* Allocate ioaccel1 mode command blocks and block fetch table */
9325 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9326 {
9327         h->ioaccel_maxsg =
9328                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9329         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9330                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9331
9332         /* Command structures must be aligned on a 128-byte boundary
9333          * because the 7 lower bits of the address are used by the
9334          * hardware.
9335          */
9336         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9337                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9338         h->ioaccel_cmd_pool =
9339                 dma_alloc_coherent(&h->pdev->dev,
9340                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9341                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9342
9343         h->ioaccel1_blockFetchTable =
9344                 kmalloc(((h->ioaccel_maxsg + 1) *
9345                                 sizeof(u32)), GFP_KERNEL);
9346
9347         if ((h->ioaccel_cmd_pool == NULL) ||
9348                 (h->ioaccel1_blockFetchTable == NULL))
9349                 goto clean_up;
9350
9351         memset(h->ioaccel_cmd_pool, 0,
9352                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9353         return 0;
9354
9355 clean_up:
9356         hpsa_free_ioaccel1_cmd_and_bft(h);
9357         return -ENOMEM;
9358 }
9359
9360 /* Free ioaccel2 mode command blocks and block fetch table */
9361 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9362 {
9363         hpsa_free_ioaccel2_sg_chain_blocks(h);
9364
9365         if (h->ioaccel2_cmd_pool) {
9366                 pci_free_consistent(h->pdev,
9367                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9368                         h->ioaccel2_cmd_pool,
9369                         h->ioaccel2_cmd_pool_dhandle);
9370                 h->ioaccel2_cmd_pool = NULL;
9371                 h->ioaccel2_cmd_pool_dhandle = 0;
9372         }
9373         kfree(h->ioaccel2_blockFetchTable);
9374         h->ioaccel2_blockFetchTable = NULL;
9375 }
9376
9377 /* Allocate ioaccel2 mode command blocks and block fetch table */
9378 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9379 {
9380         int rc;
9381
9382         /* Allocate ioaccel2 mode command blocks and block fetch table */
9383
9384         h->ioaccel_maxsg =
9385                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9386         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9387                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9388
9389         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9390                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9391         h->ioaccel2_cmd_pool =
9392                 dma_alloc_coherent(&h->pdev->dev,
9393                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9394                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9395
9396         h->ioaccel2_blockFetchTable =
9397                 kmalloc(((h->ioaccel_maxsg + 1) *
9398                                 sizeof(u32)), GFP_KERNEL);
9399
9400         if ((h->ioaccel2_cmd_pool == NULL) ||
9401                 (h->ioaccel2_blockFetchTable == NULL)) {
9402                 rc = -ENOMEM;
9403                 goto clean_up;
9404         }
9405
9406         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9407         if (rc)
9408                 goto clean_up;
9409
9410         memset(h->ioaccel2_cmd_pool, 0,
9411                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9412         return 0;
9413
9414 clean_up:
9415         hpsa_free_ioaccel2_cmd_and_bft(h);
9416         return rc;
9417 }
9418
9419 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9420 static void hpsa_free_performant_mode(struct ctlr_info *h)
9421 {
9422         kfree(h->blockFetchTable);
9423         h->blockFetchTable = NULL;
9424         hpsa_free_reply_queues(h);
9425         hpsa_free_ioaccel1_cmd_and_bft(h);
9426         hpsa_free_ioaccel2_cmd_and_bft(h);
9427 }
9428
9429 /* return -ENODEV on error, 0 on success (or no action)
9430  * allocates numerous items that must be freed later
9431  */
9432 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9433 {
9434         u32 trans_support;
9435         unsigned long transMethod = CFGTBL_Trans_Performant |
9436                                         CFGTBL_Trans_use_short_tags;
9437         int i, rc;
9438
9439         if (hpsa_simple_mode)
9440                 return 0;
9441
9442         trans_support = readl(&(h->cfgtable->TransportSupport));
9443         if (!(trans_support & PERFORMANT_MODE))
9444                 return 0;
9445
9446         /* Check for I/O accelerator mode support */
9447         if (trans_support & CFGTBL_Trans_io_accel1) {
9448                 transMethod |= CFGTBL_Trans_io_accel1 |
9449                                 CFGTBL_Trans_enable_directed_msix;
9450                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9451                 if (rc)
9452                         return rc;
9453         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9454                 transMethod |= CFGTBL_Trans_io_accel2 |
9455                                 CFGTBL_Trans_enable_directed_msix;
9456                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9457                 if (rc)
9458                         return rc;
9459         }
9460
9461         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9462         hpsa_get_max_perf_mode_cmds(h);
9463         /* Performant mode ring buffer and supporting data structures */
9464         h->reply_queue_size = h->max_commands * sizeof(u64);
9465
9466         for (i = 0; i < h->nreply_queues; i++) {
9467                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9468                                                 h->reply_queue_size,
9469                                                 &h->reply_queue[i].busaddr,
9470                                                 GFP_KERNEL);
9471                 if (!h->reply_queue[i].head) {
9472                         rc = -ENOMEM;
9473                         goto clean1;    /* rq, ioaccel */
9474                 }
9475                 h->reply_queue[i].size = h->max_commands;
9476                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9477                 h->reply_queue[i].current_entry = 0;
9478         }
9479
9480         /* Need a block fetch table for performant mode */
9481         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9482                                 sizeof(u32)), GFP_KERNEL);
9483         if (!h->blockFetchTable) {
9484                 rc = -ENOMEM;
9485                 goto clean1;    /* rq, ioaccel */
9486         }
9487
9488         rc = hpsa_enter_performant_mode(h, trans_support);
9489         if (rc)
9490                 goto clean2;    /* bft, rq, ioaccel */
9491         return 0;
9492
9493 clean2: /* bft, rq, ioaccel */
9494         kfree(h->blockFetchTable);
9495         h->blockFetchTable = NULL;
9496 clean1: /* rq, ioaccel */
9497         hpsa_free_reply_queues(h);
9498         hpsa_free_ioaccel1_cmd_and_bft(h);
9499         hpsa_free_ioaccel2_cmd_and_bft(h);
9500         return rc;
9501 }
9502
9503 static int is_accelerated_cmd(struct CommandList *c)
9504 {
9505         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9506 }
9507
9508 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9509 {
9510         struct CommandList *c = NULL;
9511         int i, accel_cmds_out;
9512         int refcount;
9513
9514         do { /* wait for all outstanding ioaccel commands to drain out */
9515                 accel_cmds_out = 0;
9516                 for (i = 0; i < h->nr_cmds; i++) {
9517                         c = h->cmd_pool + i;
9518                         refcount = atomic_inc_return(&c->refcount);
9519                         if (refcount > 1) /* Command is allocated */
9520                                 accel_cmds_out += is_accelerated_cmd(c);
9521                         cmd_free(h, c);
9522                 }
9523                 if (accel_cmds_out <= 0)
9524                         break;
9525                 msleep(100);
9526         } while (1);
9527 }
9528
9529 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9530                                 struct hpsa_sas_port *hpsa_sas_port)
9531 {
9532         struct hpsa_sas_phy *hpsa_sas_phy;
9533         struct sas_phy *phy;
9534
9535         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9536         if (!hpsa_sas_phy)
9537                 return NULL;
9538
9539         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9540                 hpsa_sas_port->next_phy_index);
9541         if (!phy) {
9542                 kfree(hpsa_sas_phy);
9543                 return NULL;
9544         }
9545
9546         hpsa_sas_port->next_phy_index++;
9547         hpsa_sas_phy->phy = phy;
9548         hpsa_sas_phy->parent_port = hpsa_sas_port;
9549
9550         return hpsa_sas_phy;
9551 }
9552
9553 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9554 {
9555         struct sas_phy *phy = hpsa_sas_phy->phy;
9556
9557         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9558         if (hpsa_sas_phy->added_to_port)
9559                 list_del(&hpsa_sas_phy->phy_list_entry);
9560         sas_phy_delete(phy);
9561         kfree(hpsa_sas_phy);
9562 }
9563
9564 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9565 {
9566         int rc;
9567         struct hpsa_sas_port *hpsa_sas_port;
9568         struct sas_phy *phy;
9569         struct sas_identify *identify;
9570
9571         hpsa_sas_port = hpsa_sas_phy->parent_port;
9572         phy = hpsa_sas_phy->phy;
9573
9574         identify = &phy->identify;
9575         memset(identify, 0, sizeof(*identify));
9576         identify->sas_address = hpsa_sas_port->sas_address;
9577         identify->device_type = SAS_END_DEVICE;
9578         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9579         identify->target_port_protocols = SAS_PROTOCOL_STP;
9580         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9581         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9582         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9583         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9584         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9585
9586         rc = sas_phy_add(hpsa_sas_phy->phy);
9587         if (rc)
9588                 return rc;
9589
9590         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9591         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9592                         &hpsa_sas_port->phy_list_head);
9593         hpsa_sas_phy->added_to_port = true;
9594
9595         return 0;
9596 }
9597
9598 static int
9599         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9600                                 struct sas_rphy *rphy)
9601 {
9602         struct sas_identify *identify;
9603
9604         identify = &rphy->identify;
9605         identify->sas_address = hpsa_sas_port->sas_address;
9606         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9607         identify->target_port_protocols = SAS_PROTOCOL_STP;
9608
9609         return sas_rphy_add(rphy);
9610 }
9611
9612 static struct hpsa_sas_port
9613         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9614                                 u64 sas_address)
9615 {
9616         int rc;
9617         struct hpsa_sas_port *hpsa_sas_port;
9618         struct sas_port *port;
9619
9620         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9621         if (!hpsa_sas_port)
9622                 return NULL;
9623
9624         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9625         hpsa_sas_port->parent_node = hpsa_sas_node;
9626
9627         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9628         if (!port)
9629                 goto free_hpsa_port;
9630
9631         rc = sas_port_add(port);
9632         if (rc)
9633                 goto free_sas_port;
9634
9635         hpsa_sas_port->port = port;
9636         hpsa_sas_port->sas_address = sas_address;
9637         list_add_tail(&hpsa_sas_port->port_list_entry,
9638                         &hpsa_sas_node->port_list_head);
9639
9640         return hpsa_sas_port;
9641
9642 free_sas_port:
9643         sas_port_free(port);
9644 free_hpsa_port:
9645         kfree(hpsa_sas_port);
9646
9647         return NULL;
9648 }
9649
9650 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9651 {
9652         struct hpsa_sas_phy *hpsa_sas_phy;
9653         struct hpsa_sas_phy *next;
9654
9655         list_for_each_entry_safe(hpsa_sas_phy, next,
9656                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9657                 hpsa_free_sas_phy(hpsa_sas_phy);
9658
9659         sas_port_delete(hpsa_sas_port->port);
9660         list_del(&hpsa_sas_port->port_list_entry);
9661         kfree(hpsa_sas_port);
9662 }
9663
9664 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9665 {
9666         struct hpsa_sas_node *hpsa_sas_node;
9667
9668         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9669         if (hpsa_sas_node) {
9670                 hpsa_sas_node->parent_dev = parent_dev;
9671                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9672         }
9673
9674         return hpsa_sas_node;
9675 }
9676
9677 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9678 {
9679         struct hpsa_sas_port *hpsa_sas_port;
9680         struct hpsa_sas_port *next;
9681
9682         if (!hpsa_sas_node)
9683                 return;
9684
9685         list_for_each_entry_safe(hpsa_sas_port, next,
9686                         &hpsa_sas_node->port_list_head, port_list_entry)
9687                 hpsa_free_sas_port(hpsa_sas_port);
9688
9689         kfree(hpsa_sas_node);
9690 }
9691
9692 static struct hpsa_scsi_dev_t
9693         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9694                                         struct sas_rphy *rphy)
9695 {
9696         int i;
9697         struct hpsa_scsi_dev_t *device;
9698
9699         for (i = 0; i < h->ndevices; i++) {
9700                 device = h->dev[i];
9701                 if (!device->sas_port)
9702                         continue;
9703                 if (device->sas_port->rphy == rphy)
9704                         return device;
9705         }
9706
9707         return NULL;
9708 }
9709
9710 static int hpsa_add_sas_host(struct ctlr_info *h)
9711 {
9712         int rc;
9713         struct device *parent_dev;
9714         struct hpsa_sas_node *hpsa_sas_node;
9715         struct hpsa_sas_port *hpsa_sas_port;
9716         struct hpsa_sas_phy *hpsa_sas_phy;
9717
9718         parent_dev = &h->scsi_host->shost_dev;
9719
9720         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9721         if (!hpsa_sas_node)
9722                 return -ENOMEM;
9723
9724         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9725         if (!hpsa_sas_port) {
9726                 rc = -ENODEV;
9727                 goto free_sas_node;
9728         }
9729
9730         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9731         if (!hpsa_sas_phy) {
9732                 rc = -ENODEV;
9733                 goto free_sas_port;
9734         }
9735
9736         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9737         if (rc)
9738                 goto free_sas_phy;
9739
9740         h->sas_host = hpsa_sas_node;
9741
9742         return 0;
9743
9744 free_sas_phy:
9745         hpsa_free_sas_phy(hpsa_sas_phy);
9746 free_sas_port:
9747         hpsa_free_sas_port(hpsa_sas_port);
9748 free_sas_node:
9749         hpsa_free_sas_node(hpsa_sas_node);
9750
9751         return rc;
9752 }
9753
9754 static void hpsa_delete_sas_host(struct ctlr_info *h)
9755 {
9756         hpsa_free_sas_node(h->sas_host);
9757 }
9758
9759 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9760                                 struct hpsa_scsi_dev_t *device)
9761 {
9762         int rc;
9763         struct hpsa_sas_port *hpsa_sas_port;
9764         struct sas_rphy *rphy;
9765
9766         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9767         if (!hpsa_sas_port)
9768                 return -ENOMEM;
9769
9770         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9771         if (!rphy) {
9772                 rc = -ENODEV;
9773                 goto free_sas_port;
9774         }
9775
9776         hpsa_sas_port->rphy = rphy;
9777         device->sas_port = hpsa_sas_port;
9778
9779         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9780         if (rc)
9781                 goto free_sas_port;
9782
9783         return 0;
9784
9785 free_sas_port:
9786         hpsa_free_sas_port(hpsa_sas_port);
9787         device->sas_port = NULL;
9788
9789         return rc;
9790 }
9791
9792 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9793 {
9794         if (device->sas_port) {
9795                 hpsa_free_sas_port(device->sas_port);
9796                 device->sas_port = NULL;
9797         }
9798 }
9799
9800 static int
9801 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9802 {
9803         return 0;
9804 }
9805
9806 static int
9807 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9808 {
9809         struct Scsi_Host *shost = phy_to_shost(rphy);
9810         struct ctlr_info *h;
9811         struct hpsa_scsi_dev_t *sd;
9812
9813         if (!shost)
9814                 return -ENXIO;
9815
9816         h = shost_to_hba(shost);
9817
9818         if (!h)
9819                 return -ENXIO;
9820
9821         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9822         if (!sd)
9823                 return -ENXIO;
9824
9825         *identifier = sd->eli;
9826
9827         return 0;
9828 }
9829
9830 static int
9831 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9832 {
9833         return -ENXIO;
9834 }
9835
9836 static int
9837 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9838 {
9839         return 0;
9840 }
9841
9842 static int
9843 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9844 {
9845         return 0;
9846 }
9847
9848 static int
9849 hpsa_sas_phy_setup(struct sas_phy *phy)
9850 {
9851         return 0;
9852 }
9853
9854 static void
9855 hpsa_sas_phy_release(struct sas_phy *phy)
9856 {
9857 }
9858
9859 static int
9860 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9861 {
9862         return -EINVAL;
9863 }
9864
9865 static struct sas_function_template hpsa_sas_transport_functions = {
9866         .get_linkerrors = hpsa_sas_get_linkerrors,
9867         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9868         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9869         .phy_reset = hpsa_sas_phy_reset,
9870         .phy_enable = hpsa_sas_phy_enable,
9871         .phy_setup = hpsa_sas_phy_setup,
9872         .phy_release = hpsa_sas_phy_release,
9873         .set_phy_speed = hpsa_sas_phy_speed,
9874 };
9875
9876 /*
9877  *  This is it.  Register the PCI driver information for the cards we control
9878  *  the OS will call our registered routines when it finds one of our cards.
9879  */
9880 static int __init hpsa_init(void)
9881 {
9882         int rc;
9883
9884         hpsa_sas_transport_template =
9885                 sas_attach_transport(&hpsa_sas_transport_functions);
9886         if (!hpsa_sas_transport_template)
9887                 return -ENODEV;
9888
9889         rc = pci_register_driver(&hpsa_pci_driver);
9890
9891         if (rc)
9892                 sas_release_transport(hpsa_sas_transport_template);
9893
9894         return rc;
9895 }
9896
9897 static void __exit hpsa_cleanup(void)
9898 {
9899         pci_unregister_driver(&hpsa_pci_driver);
9900         sas_release_transport(hpsa_sas_transport_template);
9901 }
9902
9903 static void __attribute__((unused)) verify_offsets(void)
9904 {
9905 #define VERIFY_OFFSET(member, offset) \
9906         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9907
9908         VERIFY_OFFSET(structure_size, 0);
9909         VERIFY_OFFSET(volume_blk_size, 4);
9910         VERIFY_OFFSET(volume_blk_cnt, 8);
9911         VERIFY_OFFSET(phys_blk_shift, 16);
9912         VERIFY_OFFSET(parity_rotation_shift, 17);
9913         VERIFY_OFFSET(strip_size, 18);
9914         VERIFY_OFFSET(disk_starting_blk, 20);
9915         VERIFY_OFFSET(disk_blk_cnt, 28);
9916         VERIFY_OFFSET(data_disks_per_row, 36);
9917         VERIFY_OFFSET(metadata_disks_per_row, 38);
9918         VERIFY_OFFSET(row_cnt, 40);
9919         VERIFY_OFFSET(layout_map_count, 42);
9920         VERIFY_OFFSET(flags, 44);
9921         VERIFY_OFFSET(dekindex, 46);
9922         /* VERIFY_OFFSET(reserved, 48 */
9923         VERIFY_OFFSET(data, 64);
9924
9925 #undef VERIFY_OFFSET
9926
9927 #define VERIFY_OFFSET(member, offset) \
9928         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9929
9930         VERIFY_OFFSET(IU_type, 0);
9931         VERIFY_OFFSET(direction, 1);
9932         VERIFY_OFFSET(reply_queue, 2);
9933         /* VERIFY_OFFSET(reserved1, 3);  */
9934         VERIFY_OFFSET(scsi_nexus, 4);
9935         VERIFY_OFFSET(Tag, 8);
9936         VERIFY_OFFSET(cdb, 16);
9937         VERIFY_OFFSET(cciss_lun, 32);
9938         VERIFY_OFFSET(data_len, 40);
9939         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9940         VERIFY_OFFSET(sg_count, 45);
9941         /* VERIFY_OFFSET(reserved3 */
9942         VERIFY_OFFSET(err_ptr, 48);
9943         VERIFY_OFFSET(err_len, 56);
9944         /* VERIFY_OFFSET(reserved4  */
9945         VERIFY_OFFSET(sg, 64);
9946
9947 #undef VERIFY_OFFSET
9948
9949 #define VERIFY_OFFSET(member, offset) \
9950         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9951
9952         VERIFY_OFFSET(dev_handle, 0x00);
9953         VERIFY_OFFSET(reserved1, 0x02);
9954         VERIFY_OFFSET(function, 0x03);
9955         VERIFY_OFFSET(reserved2, 0x04);
9956         VERIFY_OFFSET(err_info, 0x0C);
9957         VERIFY_OFFSET(reserved3, 0x10);
9958         VERIFY_OFFSET(err_info_len, 0x12);
9959         VERIFY_OFFSET(reserved4, 0x13);
9960         VERIFY_OFFSET(sgl_offset, 0x14);
9961         VERIFY_OFFSET(reserved5, 0x15);
9962         VERIFY_OFFSET(transfer_len, 0x1C);
9963         VERIFY_OFFSET(reserved6, 0x20);
9964         VERIFY_OFFSET(io_flags, 0x24);
9965         VERIFY_OFFSET(reserved7, 0x26);
9966         VERIFY_OFFSET(LUN, 0x34);
9967         VERIFY_OFFSET(control, 0x3C);
9968         VERIFY_OFFSET(CDB, 0x40);
9969         VERIFY_OFFSET(reserved8, 0x50);
9970         VERIFY_OFFSET(host_context_flags, 0x60);
9971         VERIFY_OFFSET(timeout_sec, 0x62);
9972         VERIFY_OFFSET(ReplyQueue, 0x64);
9973         VERIFY_OFFSET(reserved9, 0x65);
9974         VERIFY_OFFSET(tag, 0x68);
9975         VERIFY_OFFSET(host_addr, 0x70);
9976         VERIFY_OFFSET(CISS_LUN, 0x78);
9977         VERIFY_OFFSET(SG, 0x78 + 8);
9978 #undef VERIFY_OFFSET
9979 }
9980
9981 module_init(hpsa_init);
9982 module_exit(hpsa_cleanup);