Merge tag 'fsnotify_for_v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82         HPSA_DRIVER_VERSION);
83 MODULE_VERSION(HPSA_DRIVER_VERSION);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
86
87 static int hpsa_simple_mode;
88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89 MODULE_PARM_DESC(hpsa_simple_mode,
90         "Use 'simple mode' rather than 'performant mode'");
91
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id[] = {
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
150                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151         {0,}
152 };
153
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161         {0x40700E11, "Smart Array 5300", &SA5A_access},
162         {0x40800E11, "Smart Array 5i", &SA5B_access},
163         {0x40820E11, "Smart Array 532", &SA5B_access},
164         {0x40830E11, "Smart Array 5312", &SA5B_access},
165         {0x409A0E11, "Smart Array 641", &SA5A_access},
166         {0x409B0E11, "Smart Array 642", &SA5A_access},
167         {0x409C0E11, "Smart Array 6400", &SA5A_access},
168         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169         {0x40910E11, "Smart Array 6i", &SA5A_access},
170         {0x3225103C, "Smart Array P600", &SA5A_access},
171         {0x3223103C, "Smart Array P800", &SA5A_access},
172         {0x3234103C, "Smart Array P400", &SA5A_access},
173         {0x3235103C, "Smart Array P400i", &SA5A_access},
174         {0x3211103C, "Smart Array E200i", &SA5A_access},
175         {0x3212103C, "Smart Array E200", &SA5A_access},
176         {0x3213103C, "Smart Array E200i", &SA5A_access},
177         {0x3214103C, "Smart Array E200i", &SA5A_access},
178         {0x3215103C, "Smart Array E200i", &SA5A_access},
179         {0x3237103C, "Smart Array E500", &SA5A_access},
180         {0x323D103C, "Smart Array P700m", &SA5A_access},
181         {0x3241103C, "Smart Array P212", &SA5_access},
182         {0x3243103C, "Smart Array P410", &SA5_access},
183         {0x3245103C, "Smart Array P410i", &SA5_access},
184         {0x3247103C, "Smart Array P411", &SA5_access},
185         {0x3249103C, "Smart Array P812", &SA5_access},
186         {0x324A103C, "Smart Array P712m", &SA5_access},
187         {0x324B103C, "Smart Array P711m", &SA5_access},
188         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189         {0x3350103C, "Smart Array P222", &SA5_access},
190         {0x3351103C, "Smart Array P420", &SA5_access},
191         {0x3352103C, "Smart Array P421", &SA5_access},
192         {0x3353103C, "Smart Array P822", &SA5_access},
193         {0x3354103C, "Smart Array P420i", &SA5_access},
194         {0x3355103C, "Smart Array P220i", &SA5_access},
195         {0x3356103C, "Smart Array P721m", &SA5_access},
196         {0x1920103C, "Smart Array P430i", &SA5_access},
197         {0x1921103C, "Smart Array P830i", &SA5_access},
198         {0x1922103C, "Smart Array P430", &SA5_access},
199         {0x1923103C, "Smart Array P431", &SA5_access},
200         {0x1924103C, "Smart Array P830", &SA5_access},
201         {0x1925103C, "Smart Array P831", &SA5_access},
202         {0x1926103C, "Smart Array P731m", &SA5_access},
203         {0x1928103C, "Smart Array P230i", &SA5_access},
204         {0x1929103C, "Smart Array P530", &SA5_access},
205         {0x21BD103C, "Smart Array P244br", &SA5_access},
206         {0x21BE103C, "Smart Array P741m", &SA5_access},
207         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
208         {0x21C0103C, "Smart Array P440ar", &SA5_access},
209         {0x21C1103C, "Smart Array P840ar", &SA5_access},
210         {0x21C2103C, "Smart Array P440", &SA5_access},
211         {0x21C3103C, "Smart Array P441", &SA5_access},
212         {0x21C4103C, "Smart Array", &SA5_access},
213         {0x21C5103C, "Smart Array P841", &SA5_access},
214         {0x21C6103C, "Smart HBA H244br", &SA5_access},
215         {0x21C7103C, "Smart HBA H240", &SA5_access},
216         {0x21C8103C, "Smart HBA H241", &SA5_access},
217         {0x21C9103C, "Smart Array", &SA5_access},
218         {0x21CA103C, "Smart Array P246br", &SA5_access},
219         {0x21CB103C, "Smart Array P840", &SA5_access},
220         {0x21CC103C, "Smart Array", &SA5_access},
221         {0x21CD103C, "Smart Array", &SA5_access},
222         {0x21CE103C, "Smart HBA", &SA5_access},
223         {0x05809005, "SmartHBA-SA", &SA5_access},
224         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
225         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
227         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
228         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
235 };
236
237 static struct scsi_transport_template *hpsa_sas_transport_template;
238 static int hpsa_add_sas_host(struct ctlr_info *h);
239 static void hpsa_delete_sas_host(struct ctlr_info *h);
240 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241                         struct hpsa_scsi_dev_t *device);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243 static struct hpsa_scsi_dev_t
244         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245                 struct sas_rphy *rphy);
246
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle;
251 static int number_of_controllers;
252
253 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256                       void __user *arg);
257 static int hpsa_passthru_ioctl(struct ctlr_info *h,
258                                IOCTL_Command_struct *iocommand);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260                                    BIG_IOCTL_Command_struct *ioc);
261
262 #ifdef CONFIG_COMPAT
263 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264         void __user *arg);
265 #endif
266
267 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268 static struct CommandList *cmd_alloc(struct ctlr_info *h);
269 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271                                             struct scsi_cmnd *scmd);
272 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274         int cmd_type);
275 static void hpsa_free_cmd_pool(struct ctlr_info *h);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
278
279 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280 static void hpsa_scan_start(struct Scsi_Host *);
281 static int hpsa_scan_finished(struct Scsi_Host *sh,
282         unsigned long elapsed_time);
283 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286 static int hpsa_slave_alloc(struct scsi_device *sdev);
287 static int hpsa_slave_configure(struct scsi_device *sdev);
288 static void hpsa_slave_destroy(struct scsi_device *sdev);
289
290 static void hpsa_update_scsi_devices(struct ctlr_info *h);
291 static int check_for_unit_attention(struct ctlr_info *h,
292         struct CommandList *c);
293 static void check_ioctl_unit_attention(struct ctlr_info *h,
294         struct CommandList *c);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket, int num_buckets,
297         int nsgs, int min_blocks, u32 *bucket_map);
298 static void hpsa_free_performant_mode(struct ctlr_info *h);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300 static inline u32 next_command(struct ctlr_info *h, u8 q);
301 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
303                                u64 *cfg_offset);
304 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305                                     unsigned long *memory_bar);
306 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
307                                 bool *legacy_board);
308 static int wait_for_device_to_become_ready(struct ctlr_info *h,
309                                            unsigned char lunaddr[],
310                                            int reply_queue);
311 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
312                                      int wait_for_ready);
313 static inline void finish_cmd(struct CommandList *c);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info *h);
318 static void hpsa_flush_cache(struct ctlr_info *h);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322 static void hpsa_command_resubmit_worker(struct work_struct *work);
323 static u32 lockup_detected(struct ctlr_info *h);
324 static int detect_controller_lockup(struct ctlr_info *h);
325 static void hpsa_disable_rld_caching(struct ctlr_info *h);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327         struct ReportExtendedLUNdata *buf, int bufsize);
328 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329         unsigned char scsi3addr[], u8 page);
330 static int hpsa_luns_changed(struct ctlr_info *h);
331 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332                                struct hpsa_scsi_dev_t *dev,
333                                unsigned char *scsi3addr);
334
335 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
336 {
337         unsigned long *priv = shost_priv(sdev->host);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
342 {
343         unsigned long *priv = shost_priv(sh);
344         return (struct ctlr_info *) *priv;
345 }
346
347 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
348 {
349         return c->scsi_cmd == SCSI_CMD_IDLE;
350 }
351
352 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354                         u8 *sense_key, u8 *asc, u8 *ascq)
355 {
356         struct scsi_sense_hdr sshdr;
357         bool rc;
358
359         *sense_key = -1;
360         *asc = -1;
361         *ascq = -1;
362
363         if (sense_data_len < 1)
364                 return;
365
366         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367         if (rc) {
368                 *sense_key = sshdr.sense_key;
369                 *asc = sshdr.asc;
370                 *ascq = sshdr.ascq;
371         }
372 }
373
374 static int check_for_unit_attention(struct ctlr_info *h,
375         struct CommandList *c)
376 {
377         u8 sense_key, asc, ascq;
378         int sense_len;
379
380         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381                 sense_len = sizeof(c->err_info->SenseInfo);
382         else
383                 sense_len = c->err_info->SenseLen;
384
385         decode_sense_data(c->err_info->SenseInfo, sense_len,
386                                 &sense_key, &asc, &ascq);
387         if (sense_key != UNIT_ATTENTION || asc == 0xff)
388                 return 0;
389
390         switch (asc) {
391         case STATE_CHANGED:
392                 dev_warn(&h->pdev->dev,
393                         "%s: a state change detected, command retried\n",
394                         h->devname);
395                 break;
396         case LUN_FAILED:
397                 dev_warn(&h->pdev->dev,
398                         "%s: LUN failure detected\n", h->devname);
399                 break;
400         case REPORT_LUNS_CHANGED:
401                 dev_warn(&h->pdev->dev,
402                         "%s: report LUN data changed\n", h->devname);
403         /*
404          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405          * target (array) devices.
406          */
407                 break;
408         case POWER_OR_RESET:
409                 dev_warn(&h->pdev->dev,
410                         "%s: a power on or device reset detected\n",
411                         h->devname);
412                 break;
413         case UNIT_ATTENTION_CLEARED:
414                 dev_warn(&h->pdev->dev,
415                         "%s: unit attention cleared by another initiator\n",
416                         h->devname);
417                 break;
418         default:
419                 dev_warn(&h->pdev->dev,
420                         "%s: unknown unit attention detected\n",
421                         h->devname);
422                 break;
423         }
424         return 1;
425 }
426
427 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428 {
429         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432                 return 0;
433         dev_warn(&h->pdev->dev, HPSA "device busy");
434         return 1;
435 }
436
437 static u32 lockup_detected(struct ctlr_info *h);
438 static ssize_t host_show_lockup_detected(struct device *dev,
439                 struct device_attribute *attr, char *buf)
440 {
441         int ld;
442         struct ctlr_info *h;
443         struct Scsi_Host *shost = class_to_shost(dev);
444
445         h = shost_to_hba(shost);
446         ld = lockup_detected(h);
447
448         return sprintf(buf, "ld=%d\n", ld);
449 }
450
451 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452                                          struct device_attribute *attr,
453                                          const char *buf, size_t count)
454 {
455         int status, len;
456         struct ctlr_info *h;
457         struct Scsi_Host *shost = class_to_shost(dev);
458         char tmpbuf[10];
459
460         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461                 return -EACCES;
462         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463         strncpy(tmpbuf, buf, len);
464         tmpbuf[len] = '\0';
465         if (sscanf(tmpbuf, "%d", &status) != 1)
466                 return -EINVAL;
467         h = shost_to_hba(shost);
468         h->acciopath_status = !!status;
469         dev_warn(&h->pdev->dev,
470                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471                 h->acciopath_status ? "enabled" : "disabled");
472         return count;
473 }
474
475 static ssize_t host_store_raid_offload_debug(struct device *dev,
476                                          struct device_attribute *attr,
477                                          const char *buf, size_t count)
478 {
479         int debug_level, len;
480         struct ctlr_info *h;
481         struct Scsi_Host *shost = class_to_shost(dev);
482         char tmpbuf[10];
483
484         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485                 return -EACCES;
486         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487         strncpy(tmpbuf, buf, len);
488         tmpbuf[len] = '\0';
489         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490                 return -EINVAL;
491         if (debug_level < 0)
492                 debug_level = 0;
493         h = shost_to_hba(shost);
494         h->raid_offload_debug = debug_level;
495         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496                 h->raid_offload_debug);
497         return count;
498 }
499
500 static ssize_t host_store_rescan(struct device *dev,
501                                  struct device_attribute *attr,
502                                  const char *buf, size_t count)
503 {
504         struct ctlr_info *h;
505         struct Scsi_Host *shost = class_to_shost(dev);
506         h = shost_to_hba(shost);
507         hpsa_scan_start(h->scsi_host);
508         return count;
509 }
510
511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
512 {
513         device->offload_enabled = 0;
514         device->offload_to_be_enabled = 0;
515 }
516
517 static ssize_t host_show_firmware_revision(struct device *dev,
518              struct device_attribute *attr, char *buf)
519 {
520         struct ctlr_info *h;
521         struct Scsi_Host *shost = class_to_shost(dev);
522         unsigned char *fwrev;
523
524         h = shost_to_hba(shost);
525         if (!h->hba_inquiry_data)
526                 return 0;
527         fwrev = &h->hba_inquiry_data[32];
528         return snprintf(buf, 20, "%c%c%c%c\n",
529                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
530 }
531
532 static ssize_t host_show_commands_outstanding(struct device *dev,
533              struct device_attribute *attr, char *buf)
534 {
535         struct Scsi_Host *shost = class_to_shost(dev);
536         struct ctlr_info *h = shost_to_hba(shost);
537
538         return snprintf(buf, 20, "%d\n",
539                         atomic_read(&h->commands_outstanding));
540 }
541
542 static ssize_t host_show_transport_mode(struct device *dev,
543         struct device_attribute *attr, char *buf)
544 {
545         struct ctlr_info *h;
546         struct Scsi_Host *shost = class_to_shost(dev);
547
548         h = shost_to_hba(shost);
549         return snprintf(buf, 20, "%s\n",
550                 h->transMethod & CFGTBL_Trans_Performant ?
551                         "performant" : "simple");
552 }
553
554 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555         struct device_attribute *attr, char *buf)
556 {
557         struct ctlr_info *h;
558         struct Scsi_Host *shost = class_to_shost(dev);
559
560         h = shost_to_hba(shost);
561         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
563 }
564
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller[] = {
567         0x324a103C, /* Smart Array P712m */
568         0x324b103C, /* Smart Array P711m */
569         0x3223103C, /* Smart Array P800 */
570         0x3234103C, /* Smart Array P400 */
571         0x3235103C, /* Smart Array P400i */
572         0x3211103C, /* Smart Array E200i */
573         0x3212103C, /* Smart Array E200 */
574         0x3213103C, /* Smart Array E200i */
575         0x3214103C, /* Smart Array E200i */
576         0x3215103C, /* Smart Array E200i */
577         0x3237103C, /* Smart Array E500 */
578         0x323D103C, /* Smart Array P700m */
579         0x40800E11, /* Smart Array 5i */
580         0x409C0E11, /* Smart Array 6400 */
581         0x409D0E11, /* Smart Array 6400 EM */
582         0x40700E11, /* Smart Array 5300 */
583         0x40820E11, /* Smart Array 532 */
584         0x40830E11, /* Smart Array 5312 */
585         0x409A0E11, /* Smart Array 641 */
586         0x409B0E11, /* Smart Array 642 */
587         0x40910E11, /* Smart Array 6i */
588 };
589
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller[] = {
592         0x40800E11, /* Smart Array 5i */
593         0x40700E11, /* Smart Array 5300 */
594         0x40820E11, /* Smart Array 532 */
595         0x40830E11, /* Smart Array 5312 */
596         0x409A0E11, /* Smart Array 641 */
597         0x409B0E11, /* Smart Array 642 */
598         0x40910E11, /* Smart Array 6i */
599         /* Exclude 640x boards.  These are two pci devices in one slot
600          * which share a battery backed cache module.  One controls the
601          * cache, the other accesses the cache through the one that controls
602          * it.  If we reset the one controlling the cache, the other will
603          * likely not be happy.  Just forbid resetting this conjoined mess.
604          * The 640x isn't really supported by hpsa anyway.
605          */
606         0x409C0E11, /* Smart Array 6400 */
607         0x409D0E11, /* Smart Array 6400 EM */
608 };
609
610 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
611 {
612         int i;
613
614         for (i = 0; i < nelems; i++)
615                 if (a[i] == board_id)
616                         return 1;
617         return 0;
618 }
619
620 static int ctlr_is_hard_resettable(u32 board_id)
621 {
622         return !board_id_in_array(unresettable_controller,
623                         ARRAY_SIZE(unresettable_controller), board_id);
624 }
625
626 static int ctlr_is_soft_resettable(u32 board_id)
627 {
628         return !board_id_in_array(soft_unresettable_controller,
629                         ARRAY_SIZE(soft_unresettable_controller), board_id);
630 }
631
632 static int ctlr_is_resettable(u32 board_id)
633 {
634         return ctlr_is_hard_resettable(board_id) ||
635                 ctlr_is_soft_resettable(board_id);
636 }
637
638 static ssize_t host_show_resettable(struct device *dev,
639         struct device_attribute *attr, char *buf)
640 {
641         struct ctlr_info *h;
642         struct Scsi_Host *shost = class_to_shost(dev);
643
644         h = shost_to_hba(shost);
645         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
646 }
647
648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
649 {
650         return (scsi3addr[3] & 0xC0) == 0x40;
651 }
652
653 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
655 };
656 #define HPSA_RAID_0     0
657 #define HPSA_RAID_4     1
658 #define HPSA_RAID_1     2       /* also used for RAID 10 */
659 #define HPSA_RAID_5     3       /* also used for RAID 50 */
660 #define HPSA_RAID_51    4
661 #define HPSA_RAID_6     5       /* also used for RAID 60 */
662 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
665
666 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
667 {
668         return !device->physical_device;
669 }
670
671 static ssize_t raid_level_show(struct device *dev,
672              struct device_attribute *attr, char *buf)
673 {
674         ssize_t l = 0;
675         unsigned char rlevel;
676         struct ctlr_info *h;
677         struct scsi_device *sdev;
678         struct hpsa_scsi_dev_t *hdev;
679         unsigned long flags;
680
681         sdev = to_scsi_device(dev);
682         h = sdev_to_hba(sdev);
683         spin_lock_irqsave(&h->lock, flags);
684         hdev = sdev->hostdata;
685         if (!hdev) {
686                 spin_unlock_irqrestore(&h->lock, flags);
687                 return -ENODEV;
688         }
689
690         /* Is this even a logical drive? */
691         if (!is_logical_device(hdev)) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
694                 return l;
695         }
696
697         rlevel = hdev->raid_level;
698         spin_unlock_irqrestore(&h->lock, flags);
699         if (rlevel > RAID_UNKNOWN)
700                 rlevel = RAID_UNKNOWN;
701         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
702         return l;
703 }
704
705 static ssize_t lunid_show(struct device *dev,
706              struct device_attribute *attr, char *buf)
707 {
708         struct ctlr_info *h;
709         struct scsi_device *sdev;
710         struct hpsa_scsi_dev_t *hdev;
711         unsigned long flags;
712         unsigned char lunid[8];
713
714         sdev = to_scsi_device(dev);
715         h = sdev_to_hba(sdev);
716         spin_lock_irqsave(&h->lock, flags);
717         hdev = sdev->hostdata;
718         if (!hdev) {
719                 spin_unlock_irqrestore(&h->lock, flags);
720                 return -ENODEV;
721         }
722         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723         spin_unlock_irqrestore(&h->lock, flags);
724         return snprintf(buf, 20, "0x%8phN\n", lunid);
725 }
726
727 static ssize_t unique_id_show(struct device *dev,
728              struct device_attribute *attr, char *buf)
729 {
730         struct ctlr_info *h;
731         struct scsi_device *sdev;
732         struct hpsa_scsi_dev_t *hdev;
733         unsigned long flags;
734         unsigned char sn[16];
735
736         sdev = to_scsi_device(dev);
737         h = sdev_to_hba(sdev);
738         spin_lock_irqsave(&h->lock, flags);
739         hdev = sdev->hostdata;
740         if (!hdev) {
741                 spin_unlock_irqrestore(&h->lock, flags);
742                 return -ENODEV;
743         }
744         memcpy(sn, hdev->device_id, sizeof(sn));
745         spin_unlock_irqrestore(&h->lock, flags);
746         return snprintf(buf, 16 * 2 + 2,
747                         "%02X%02X%02X%02X%02X%02X%02X%02X"
748                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
749                         sn[0], sn[1], sn[2], sn[3],
750                         sn[4], sn[5], sn[6], sn[7],
751                         sn[8], sn[9], sn[10], sn[11],
752                         sn[12], sn[13], sn[14], sn[15]);
753 }
754
755 static ssize_t sas_address_show(struct device *dev,
756               struct device_attribute *attr, char *buf)
757 {
758         struct ctlr_info *h;
759         struct scsi_device *sdev;
760         struct hpsa_scsi_dev_t *hdev;
761         unsigned long flags;
762         u64 sas_address;
763
764         sdev = to_scsi_device(dev);
765         h = sdev_to_hba(sdev);
766         spin_lock_irqsave(&h->lock, flags);
767         hdev = sdev->hostdata;
768         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769                 spin_unlock_irqrestore(&h->lock, flags);
770                 return -ENODEV;
771         }
772         sas_address = hdev->sas_address;
773         spin_unlock_irqrestore(&h->lock, flags);
774
775         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
776 }
777
778 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779              struct device_attribute *attr, char *buf)
780 {
781         struct ctlr_info *h;
782         struct scsi_device *sdev;
783         struct hpsa_scsi_dev_t *hdev;
784         unsigned long flags;
785         int offload_enabled;
786
787         sdev = to_scsi_device(dev);
788         h = sdev_to_hba(sdev);
789         spin_lock_irqsave(&h->lock, flags);
790         hdev = sdev->hostdata;
791         if (!hdev) {
792                 spin_unlock_irqrestore(&h->lock, flags);
793                 return -ENODEV;
794         }
795         offload_enabled = hdev->offload_enabled;
796         spin_unlock_irqrestore(&h->lock, flags);
797
798         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799                 return snprintf(buf, 20, "%d\n", offload_enabled);
800         else
801                 return snprintf(buf, 40, "%s\n",
802                                 "Not applicable for a controller");
803 }
804
805 #define MAX_PATHS 8
806 static ssize_t path_info_show(struct device *dev,
807              struct device_attribute *attr, char *buf)
808 {
809         struct ctlr_info *h;
810         struct scsi_device *sdev;
811         struct hpsa_scsi_dev_t *hdev;
812         unsigned long flags;
813         int i;
814         int output_len = 0;
815         u8 box;
816         u8 bay;
817         u8 path_map_index = 0;
818         char *active;
819         unsigned char phys_connector[2];
820
821         sdev = to_scsi_device(dev);
822         h = sdev_to_hba(sdev);
823         spin_lock_irqsave(&h->devlock, flags);
824         hdev = sdev->hostdata;
825         if (!hdev) {
826                 spin_unlock_irqrestore(&h->devlock, flags);
827                 return -ENODEV;
828         }
829
830         bay = hdev->bay;
831         for (i = 0; i < MAX_PATHS; i++) {
832                 path_map_index = 1<<i;
833                 if (i == hdev->active_path_index)
834                         active = "Active";
835                 else if (hdev->path_map & path_map_index)
836                         active = "Inactive";
837                 else
838                         continue;
839
840                 output_len += scnprintf(buf + output_len,
841                                 PAGE_SIZE - output_len,
842                                 "[%d:%d:%d:%d] %20.20s ",
843                                 h->scsi_host->host_no,
844                                 hdev->bus, hdev->target, hdev->lun,
845                                 scsi_device_type(hdev->devtype));
846
847                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848                         output_len += scnprintf(buf + output_len,
849                                                 PAGE_SIZE - output_len,
850                                                 "%s\n", active);
851                         continue;
852                 }
853
854                 box = hdev->box[i];
855                 memcpy(&phys_connector, &hdev->phys_connector[i],
856                         sizeof(phys_connector));
857                 if (phys_connector[0] < '0')
858                         phys_connector[0] = '0';
859                 if (phys_connector[1] < '0')
860                         phys_connector[1] = '0';
861                 output_len += scnprintf(buf + output_len,
862                                 PAGE_SIZE - output_len,
863                                 "PORT: %.2s ",
864                                 phys_connector);
865                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866                         hdev->expose_device) {
867                         if (box == 0 || box == 0xFF) {
868                                 output_len += scnprintf(buf + output_len,
869                                         PAGE_SIZE - output_len,
870                                         "BAY: %hhu %s\n",
871                                         bay, active);
872                         } else {
873                                 output_len += scnprintf(buf + output_len,
874                                         PAGE_SIZE - output_len,
875                                         "BOX: %hhu BAY: %hhu %s\n",
876                                         box, bay, active);
877                         }
878                 } else if (box != 0 && box != 0xFF) {
879                         output_len += scnprintf(buf + output_len,
880                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
881                                 box, active);
882                 } else
883                         output_len += scnprintf(buf + output_len,
884                                 PAGE_SIZE - output_len, "%s\n", active);
885         }
886
887         spin_unlock_irqrestore(&h->devlock, flags);
888         return output_len;
889 }
890
891 static ssize_t host_show_ctlr_num(struct device *dev,
892         struct device_attribute *attr, char *buf)
893 {
894         struct ctlr_info *h;
895         struct Scsi_Host *shost = class_to_shost(dev);
896
897         h = shost_to_hba(shost);
898         return snprintf(buf, 20, "%d\n", h->ctlr);
899 }
900
901 static ssize_t host_show_legacy_board(struct device *dev,
902         struct device_attribute *attr, char *buf)
903 {
904         struct ctlr_info *h;
905         struct Scsi_Host *shost = class_to_shost(dev);
906
907         h = shost_to_hba(shost);
908         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
909 }
910
911 static DEVICE_ATTR_RO(raid_level);
912 static DEVICE_ATTR_RO(lunid);
913 static DEVICE_ATTR_RO(unique_id);
914 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915 static DEVICE_ATTR_RO(sas_address);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917                         host_show_hp_ssd_smart_path_enabled, NULL);
918 static DEVICE_ATTR_RO(path_info);
919 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920                 host_show_hp_ssd_smart_path_status,
921                 host_store_hp_ssd_smart_path_status);
922 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923                         host_store_raid_offload_debug);
924 static DEVICE_ATTR(firmware_revision, S_IRUGO,
925         host_show_firmware_revision, NULL);
926 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927         host_show_commands_outstanding, NULL);
928 static DEVICE_ATTR(transport_mode, S_IRUGO,
929         host_show_transport_mode, NULL);
930 static DEVICE_ATTR(resettable, S_IRUGO,
931         host_show_resettable, NULL);
932 static DEVICE_ATTR(lockup_detected, S_IRUGO,
933         host_show_lockup_detected, NULL);
934 static DEVICE_ATTR(ctlr_num, S_IRUGO,
935         host_show_ctlr_num, NULL);
936 static DEVICE_ATTR(legacy_board, S_IRUGO,
937         host_show_legacy_board, NULL);
938
939 static struct device_attribute *hpsa_sdev_attrs[] = {
940         &dev_attr_raid_level,
941         &dev_attr_lunid,
942         &dev_attr_unique_id,
943         &dev_attr_hp_ssd_smart_path_enabled,
944         &dev_attr_path_info,
945         &dev_attr_sas_address,
946         NULL,
947 };
948
949 static struct device_attribute *hpsa_shost_attrs[] = {
950         &dev_attr_rescan,
951         &dev_attr_firmware_revision,
952         &dev_attr_commands_outstanding,
953         &dev_attr_transport_mode,
954         &dev_attr_resettable,
955         &dev_attr_hp_ssd_smart_path_status,
956         &dev_attr_raid_offload_debug,
957         &dev_attr_lockup_detected,
958         &dev_attr_ctlr_num,
959         &dev_attr_legacy_board,
960         NULL,
961 };
962
963 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
964                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
965
966 static struct scsi_host_template hpsa_driver_template = {
967         .module                 = THIS_MODULE,
968         .name                   = HPSA,
969         .proc_name              = HPSA,
970         .queuecommand           = hpsa_scsi_queue_command,
971         .scan_start             = hpsa_scan_start,
972         .scan_finished          = hpsa_scan_finished,
973         .change_queue_depth     = hpsa_change_queue_depth,
974         .this_id                = -1,
975         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
976         .ioctl                  = hpsa_ioctl,
977         .slave_alloc            = hpsa_slave_alloc,
978         .slave_configure        = hpsa_slave_configure,
979         .slave_destroy          = hpsa_slave_destroy,
980 #ifdef CONFIG_COMPAT
981         .compat_ioctl           = hpsa_compat_ioctl,
982 #endif
983         .sdev_attrs = hpsa_sdev_attrs,
984         .shost_attrs = hpsa_shost_attrs,
985         .max_sectors = 2048,
986         .no_write_same = 1,
987 };
988
989 static inline u32 next_command(struct ctlr_info *h, u8 q)
990 {
991         u32 a;
992         struct reply_queue_buffer *rq = &h->reply_queue[q];
993
994         if (h->transMethod & CFGTBL_Trans_io_accel1)
995                 return h->access.command_completed(h, q);
996
997         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
998                 return h->access.command_completed(h, q);
999
1000         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1001                 a = rq->head[rq->current_entry];
1002                 rq->current_entry++;
1003                 atomic_dec(&h->commands_outstanding);
1004         } else {
1005                 a = FIFO_EMPTY;
1006         }
1007         /* Check for wraparound */
1008         if (rq->current_entry == h->max_commands) {
1009                 rq->current_entry = 0;
1010                 rq->wraparound ^= 1;
1011         }
1012         return a;
1013 }
1014
1015 /*
1016  * There are some special bits in the bus address of the
1017  * command that we have to set for the controller to know
1018  * how to process the command:
1019  *
1020  * Normal performant mode:
1021  * bit 0: 1 means performant mode, 0 means simple mode.
1022  * bits 1-3 = block fetch table entry
1023  * bits 4-6 = command type (== 0)
1024  *
1025  * ioaccel1 mode:
1026  * bit 0 = "performant mode" bit.
1027  * bits 1-3 = block fetch table entry
1028  * bits 4-6 = command type (== 110)
1029  * (command type is needed because ioaccel1 mode
1030  * commands are submitted through the same register as normal
1031  * mode commands, so this is how the controller knows whether
1032  * the command is normal mode or ioaccel1 mode.)
1033  *
1034  * ioaccel2 mode:
1035  * bit 0 = "performant mode" bit.
1036  * bits 1-4 = block fetch table entry (note extra bit)
1037  * bits 4-6 = not needed, because ioaccel2 mode has
1038  * a separate special register for submitting commands.
1039  */
1040
1041 /*
1042  * set_performant_mode: Modify the tag for cciss performant
1043  * set bit 0 for pull model, bits 3-1 for block fetch
1044  * register number
1045  */
1046 #define DEFAULT_REPLY_QUEUE (-1)
1047 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1048                                         int reply_queue)
1049 {
1050         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1051                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1052                 if (unlikely(!h->msix_vectors))
1053                         return;
1054                 c->Header.ReplyQueue = reply_queue;
1055         }
1056 }
1057
1058 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1059                                                 struct CommandList *c,
1060                                                 int reply_queue)
1061 {
1062         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1063
1064         /*
1065          * Tell the controller to post the reply to the queue for this
1066          * processor.  This seems to give the best I/O throughput.
1067          */
1068         cp->ReplyQueue = reply_queue;
1069         /*
1070          * Set the bits in the address sent down to include:
1071          *  - performant mode bit (bit 0)
1072          *  - pull count (bits 1-3)
1073          *  - command type (bits 4-6)
1074          */
1075         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1076                                         IOACCEL1_BUSADDR_CMDTYPE;
1077 }
1078
1079 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1080                                                 struct CommandList *c,
1081                                                 int reply_queue)
1082 {
1083         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1084                 &h->ioaccel2_cmd_pool[c->cmdindex];
1085
1086         /* Tell the controller to post the reply to the queue for this
1087          * processor.  This seems to give the best I/O throughput.
1088          */
1089         cp->reply_queue = reply_queue;
1090         /* Set the bits in the address sent down to include:
1091          *  - performant mode bit not used in ioaccel mode 2
1092          *  - pull count (bits 0-3)
1093          *  - command type isn't needed for ioaccel2
1094          */
1095         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1096 }
1097
1098 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1099                                                 struct CommandList *c,
1100                                                 int reply_queue)
1101 {
1102         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1103
1104         /*
1105          * Tell the controller to post the reply to the queue for this
1106          * processor.  This seems to give the best I/O throughput.
1107          */
1108         cp->reply_queue = reply_queue;
1109         /*
1110          * Set the bits in the address sent down to include:
1111          *  - performant mode bit not used in ioaccel mode 2
1112          *  - pull count (bits 0-3)
1113          *  - command type isn't needed for ioaccel2
1114          */
1115         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1116 }
1117
1118 static int is_firmware_flash_cmd(u8 *cdb)
1119 {
1120         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1121 }
1122
1123 /*
1124  * During firmware flash, the heartbeat register may not update as frequently
1125  * as it should.  So we dial down lockup detection during firmware flash. and
1126  * dial it back up when firmware flash completes.
1127  */
1128 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1129 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1130 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1131 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1132                 struct CommandList *c)
1133 {
1134         if (!is_firmware_flash_cmd(c->Request.CDB))
1135                 return;
1136         atomic_inc(&h->firmware_flash_in_progress);
1137         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1138 }
1139
1140 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1141                 struct CommandList *c)
1142 {
1143         if (is_firmware_flash_cmd(c->Request.CDB) &&
1144                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1145                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1146 }
1147
1148 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1149         struct CommandList *c, int reply_queue)
1150 {
1151         dial_down_lockup_detection_during_fw_flash(h, c);
1152         atomic_inc(&h->commands_outstanding);
1153         /*
1154          * Check to see if the command is being retried.
1155          */
1156         if (c->device && !c->retry_pending)
1157                 atomic_inc(&c->device->commands_outstanding);
1158
1159         reply_queue = h->reply_map[raw_smp_processor_id()];
1160         switch (c->cmd_type) {
1161         case CMD_IOACCEL1:
1162                 set_ioaccel1_performant_mode(h, c, reply_queue);
1163                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1164                 break;
1165         case CMD_IOACCEL2:
1166                 set_ioaccel2_performant_mode(h, c, reply_queue);
1167                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1168                 break;
1169         case IOACCEL2_TMF:
1170                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1171                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172                 break;
1173         default:
1174                 set_performant_mode(h, c, reply_queue);
1175                 h->access.submit_command(h, c);
1176         }
1177 }
1178
1179 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1180 {
1181         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1182 }
1183
1184 static inline int is_hba_lunid(unsigned char scsi3addr[])
1185 {
1186         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1187 }
1188
1189 static inline int is_scsi_rev_5(struct ctlr_info *h)
1190 {
1191         if (!h->hba_inquiry_data)
1192                 return 0;
1193         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1194                 return 1;
1195         return 0;
1196 }
1197
1198 static int hpsa_find_target_lun(struct ctlr_info *h,
1199         unsigned char scsi3addr[], int bus, int *target, int *lun)
1200 {
1201         /* finds an unused bus, target, lun for a new physical device
1202          * assumes h->devlock is held
1203          */
1204         int i, found = 0;
1205         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1206
1207         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1208
1209         for (i = 0; i < h->ndevices; i++) {
1210                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1211                         __set_bit(h->dev[i]->target, lun_taken);
1212         }
1213
1214         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1215         if (i < HPSA_MAX_DEVICES) {
1216                 /* *bus = 1; */
1217                 *target = i;
1218                 *lun = 0;
1219                 found = 1;
1220         }
1221         return !found;
1222 }
1223
1224 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1225         struct hpsa_scsi_dev_t *dev, char *description)
1226 {
1227 #define LABEL_SIZE 25
1228         char label[LABEL_SIZE];
1229
1230         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1231                 return;
1232
1233         switch (dev->devtype) {
1234         case TYPE_RAID:
1235                 snprintf(label, LABEL_SIZE, "controller");
1236                 break;
1237         case TYPE_ENCLOSURE:
1238                 snprintf(label, LABEL_SIZE, "enclosure");
1239                 break;
1240         case TYPE_DISK:
1241         case TYPE_ZBC:
1242                 if (dev->external)
1243                         snprintf(label, LABEL_SIZE, "external");
1244                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1245                         snprintf(label, LABEL_SIZE, "%s",
1246                                 raid_label[PHYSICAL_DRIVE]);
1247                 else
1248                         snprintf(label, LABEL_SIZE, "RAID-%s",
1249                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1250                                 raid_label[dev->raid_level]);
1251                 break;
1252         case TYPE_ROM:
1253                 snprintf(label, LABEL_SIZE, "rom");
1254                 break;
1255         case TYPE_TAPE:
1256                 snprintf(label, LABEL_SIZE, "tape");
1257                 break;
1258         case TYPE_MEDIUM_CHANGER:
1259                 snprintf(label, LABEL_SIZE, "changer");
1260                 break;
1261         default:
1262                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1263                 break;
1264         }
1265
1266         dev_printk(level, &h->pdev->dev,
1267                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1268                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1269                         description,
1270                         scsi_device_type(dev->devtype),
1271                         dev->vendor,
1272                         dev->model,
1273                         label,
1274                         dev->offload_config ? '+' : '-',
1275                         dev->offload_to_be_enabled ? '+' : '-',
1276                         dev->expose_device);
1277 }
1278
1279 /* Add an entry into h->dev[] array. */
1280 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1281                 struct hpsa_scsi_dev_t *device,
1282                 struct hpsa_scsi_dev_t *added[], int *nadded)
1283 {
1284         /* assumes h->devlock is held */
1285         int n = h->ndevices;
1286         int i;
1287         unsigned char addr1[8], addr2[8];
1288         struct hpsa_scsi_dev_t *sd;
1289
1290         if (n >= HPSA_MAX_DEVICES) {
1291                 dev_err(&h->pdev->dev, "too many devices, some will be "
1292                         "inaccessible.\n");
1293                 return -1;
1294         }
1295
1296         /* physical devices do not have lun or target assigned until now. */
1297         if (device->lun != -1)
1298                 /* Logical device, lun is already assigned. */
1299                 goto lun_assigned;
1300
1301         /* If this device a non-zero lun of a multi-lun device
1302          * byte 4 of the 8-byte LUN addr will contain the logical
1303          * unit no, zero otherwise.
1304          */
1305         if (device->scsi3addr[4] == 0) {
1306                 /* This is not a non-zero lun of a multi-lun device */
1307                 if (hpsa_find_target_lun(h, device->scsi3addr,
1308                         device->bus, &device->target, &device->lun) != 0)
1309                         return -1;
1310                 goto lun_assigned;
1311         }
1312
1313         /* This is a non-zero lun of a multi-lun device.
1314          * Search through our list and find the device which
1315          * has the same 8 byte LUN address, excepting byte 4 and 5.
1316          * Assign the same bus and target for this new LUN.
1317          * Use the logical unit number from the firmware.
1318          */
1319         memcpy(addr1, device->scsi3addr, 8);
1320         addr1[4] = 0;
1321         addr1[5] = 0;
1322         for (i = 0; i < n; i++) {
1323                 sd = h->dev[i];
1324                 memcpy(addr2, sd->scsi3addr, 8);
1325                 addr2[4] = 0;
1326                 addr2[5] = 0;
1327                 /* differ only in byte 4 and 5? */
1328                 if (memcmp(addr1, addr2, 8) == 0) {
1329                         device->bus = sd->bus;
1330                         device->target = sd->target;
1331                         device->lun = device->scsi3addr[4];
1332                         break;
1333                 }
1334         }
1335         if (device->lun == -1) {
1336                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1337                         " suspect firmware bug or unsupported hardware "
1338                         "configuration.\n");
1339                 return -1;
1340         }
1341
1342 lun_assigned:
1343
1344         h->dev[n] = device;
1345         h->ndevices++;
1346         added[*nadded] = device;
1347         (*nadded)++;
1348         hpsa_show_dev_msg(KERN_INFO, h, device,
1349                 device->expose_device ? "added" : "masked");
1350         return 0;
1351 }
1352
1353 /*
1354  * Called during a scan operation.
1355  *
1356  * Update an entry in h->dev[] array.
1357  */
1358 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1359         int entry, struct hpsa_scsi_dev_t *new_entry)
1360 {
1361         /* assumes h->devlock is held */
1362         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1363
1364         /* Raid level changed. */
1365         h->dev[entry]->raid_level = new_entry->raid_level;
1366
1367         /*
1368          * ioacccel_handle may have changed for a dual domain disk
1369          */
1370         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1371
1372         /* Raid offload parameters changed.  Careful about the ordering. */
1373         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1374                 /*
1375                  * if drive is newly offload_enabled, we want to copy the
1376                  * raid map data first.  If previously offload_enabled and
1377                  * offload_config were set, raid map data had better be
1378                  * the same as it was before. If raid map data has changed
1379                  * then it had better be the case that
1380                  * h->dev[entry]->offload_enabled is currently 0.
1381                  */
1382                 h->dev[entry]->raid_map = new_entry->raid_map;
1383                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1384         }
1385         if (new_entry->offload_to_be_enabled) {
1386                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1387                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1388         }
1389         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1390         h->dev[entry]->offload_config = new_entry->offload_config;
1391         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1392         h->dev[entry]->queue_depth = new_entry->queue_depth;
1393
1394         /*
1395          * We can turn off ioaccel offload now, but need to delay turning
1396          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1397          * can't do that until all the devices are updated.
1398          */
1399         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1400
1401         /*
1402          * turn ioaccel off immediately if told to do so.
1403          */
1404         if (!new_entry->offload_to_be_enabled)
1405                 h->dev[entry]->offload_enabled = 0;
1406
1407         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1408 }
1409
1410 /* Replace an entry from h->dev[] array. */
1411 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1412         int entry, struct hpsa_scsi_dev_t *new_entry,
1413         struct hpsa_scsi_dev_t *added[], int *nadded,
1414         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1415 {
1416         /* assumes h->devlock is held */
1417         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1418         removed[*nremoved] = h->dev[entry];
1419         (*nremoved)++;
1420
1421         /*
1422          * New physical devices won't have target/lun assigned yet
1423          * so we need to preserve the values in the slot we are replacing.
1424          */
1425         if (new_entry->target == -1) {
1426                 new_entry->target = h->dev[entry]->target;
1427                 new_entry->lun = h->dev[entry]->lun;
1428         }
1429
1430         h->dev[entry] = new_entry;
1431         added[*nadded] = new_entry;
1432         (*nadded)++;
1433
1434         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1435 }
1436
1437 /* Remove an entry from h->dev[] array. */
1438 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1439         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1440 {
1441         /* assumes h->devlock is held */
1442         int i;
1443         struct hpsa_scsi_dev_t *sd;
1444
1445         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1446
1447         sd = h->dev[entry];
1448         removed[*nremoved] = h->dev[entry];
1449         (*nremoved)++;
1450
1451         for (i = entry; i < h->ndevices-1; i++)
1452                 h->dev[i] = h->dev[i+1];
1453         h->ndevices--;
1454         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1455 }
1456
1457 #define SCSI3ADDR_EQ(a, b) ( \
1458         (a)[7] == (b)[7] && \
1459         (a)[6] == (b)[6] && \
1460         (a)[5] == (b)[5] && \
1461         (a)[4] == (b)[4] && \
1462         (a)[3] == (b)[3] && \
1463         (a)[2] == (b)[2] && \
1464         (a)[1] == (b)[1] && \
1465         (a)[0] == (b)[0])
1466
1467 static void fixup_botched_add(struct ctlr_info *h,
1468         struct hpsa_scsi_dev_t *added)
1469 {
1470         /* called when scsi_add_device fails in order to re-adjust
1471          * h->dev[] to match the mid layer's view.
1472          */
1473         unsigned long flags;
1474         int i, j;
1475
1476         spin_lock_irqsave(&h->lock, flags);
1477         for (i = 0; i < h->ndevices; i++) {
1478                 if (h->dev[i] == added) {
1479                         for (j = i; j < h->ndevices-1; j++)
1480                                 h->dev[j] = h->dev[j+1];
1481                         h->ndevices--;
1482                         break;
1483                 }
1484         }
1485         spin_unlock_irqrestore(&h->lock, flags);
1486         kfree(added);
1487 }
1488
1489 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1490         struct hpsa_scsi_dev_t *dev2)
1491 {
1492         /* we compare everything except lun and target as these
1493          * are not yet assigned.  Compare parts likely
1494          * to differ first
1495          */
1496         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1497                 sizeof(dev1->scsi3addr)) != 0)
1498                 return 0;
1499         if (memcmp(dev1->device_id, dev2->device_id,
1500                 sizeof(dev1->device_id)) != 0)
1501                 return 0;
1502         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1503                 return 0;
1504         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1505                 return 0;
1506         if (dev1->devtype != dev2->devtype)
1507                 return 0;
1508         if (dev1->bus != dev2->bus)
1509                 return 0;
1510         return 1;
1511 }
1512
1513 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1514         struct hpsa_scsi_dev_t *dev2)
1515 {
1516         /* Device attributes that can change, but don't mean
1517          * that the device is a different device, nor that the OS
1518          * needs to be told anything about the change.
1519          */
1520         if (dev1->raid_level != dev2->raid_level)
1521                 return 1;
1522         if (dev1->offload_config != dev2->offload_config)
1523                 return 1;
1524         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1525                 return 1;
1526         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1527                 if (dev1->queue_depth != dev2->queue_depth)
1528                         return 1;
1529         /*
1530          * This can happen for dual domain devices. An active
1531          * path change causes the ioaccel handle to change
1532          *
1533          * for example note the handle differences between p0 and p1
1534          * Device                    WWN               ,WWN hash,Handle
1535          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1536          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1537          */
1538         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1539                 return 1;
1540         return 0;
1541 }
1542
1543 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1544  * and return needle location in *index.  If scsi3addr matches, but not
1545  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1546  * location in *index.
1547  * In the case of a minor device attribute change, such as RAID level, just
1548  * return DEVICE_UPDATED, along with the updated device's location in index.
1549  * If needle not found, return DEVICE_NOT_FOUND.
1550  */
1551 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1552         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1553         int *index)
1554 {
1555         int i;
1556 #define DEVICE_NOT_FOUND 0
1557 #define DEVICE_CHANGED 1
1558 #define DEVICE_SAME 2
1559 #define DEVICE_UPDATED 3
1560         if (needle == NULL)
1561                 return DEVICE_NOT_FOUND;
1562
1563         for (i = 0; i < haystack_size; i++) {
1564                 if (haystack[i] == NULL) /* previously removed. */
1565                         continue;
1566                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1567                         *index = i;
1568                         if (device_is_the_same(needle, haystack[i])) {
1569                                 if (device_updated(needle, haystack[i]))
1570                                         return DEVICE_UPDATED;
1571                                 return DEVICE_SAME;
1572                         } else {
1573                                 /* Keep offline devices offline */
1574                                 if (needle->volume_offline)
1575                                         return DEVICE_NOT_FOUND;
1576                                 return DEVICE_CHANGED;
1577                         }
1578                 }
1579         }
1580         *index = -1;
1581         return DEVICE_NOT_FOUND;
1582 }
1583
1584 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1585                                         unsigned char scsi3addr[])
1586 {
1587         struct offline_device_entry *device;
1588         unsigned long flags;
1589
1590         /* Check to see if device is already on the list */
1591         spin_lock_irqsave(&h->offline_device_lock, flags);
1592         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1593                 if (memcmp(device->scsi3addr, scsi3addr,
1594                         sizeof(device->scsi3addr)) == 0) {
1595                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1596                         return;
1597                 }
1598         }
1599         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1600
1601         /* Device is not on the list, add it. */
1602         device = kmalloc(sizeof(*device), GFP_KERNEL);
1603         if (!device)
1604                 return;
1605
1606         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1607         spin_lock_irqsave(&h->offline_device_lock, flags);
1608         list_add_tail(&device->offline_list, &h->offline_device_list);
1609         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1610 }
1611
1612 /* Print a message explaining various offline volume states */
1613 static void hpsa_show_volume_status(struct ctlr_info *h,
1614         struct hpsa_scsi_dev_t *sd)
1615 {
1616         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1617                 dev_info(&h->pdev->dev,
1618                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1619                         h->scsi_host->host_no,
1620                         sd->bus, sd->target, sd->lun);
1621         switch (sd->volume_offline) {
1622         case HPSA_LV_OK:
1623                 break;
1624         case HPSA_LV_UNDERGOING_ERASE:
1625                 dev_info(&h->pdev->dev,
1626                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1627                         h->scsi_host->host_no,
1628                         sd->bus, sd->target, sd->lun);
1629                 break;
1630         case HPSA_LV_NOT_AVAILABLE:
1631                 dev_info(&h->pdev->dev,
1632                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1633                         h->scsi_host->host_no,
1634                         sd->bus, sd->target, sd->lun);
1635                 break;
1636         case HPSA_LV_UNDERGOING_RPI:
1637                 dev_info(&h->pdev->dev,
1638                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1639                         h->scsi_host->host_no,
1640                         sd->bus, sd->target, sd->lun);
1641                 break;
1642         case HPSA_LV_PENDING_RPI:
1643                 dev_info(&h->pdev->dev,
1644                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1645                         h->scsi_host->host_no,
1646                         sd->bus, sd->target, sd->lun);
1647                 break;
1648         case HPSA_LV_ENCRYPTED_NO_KEY:
1649                 dev_info(&h->pdev->dev,
1650                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1651                         h->scsi_host->host_no,
1652                         sd->bus, sd->target, sd->lun);
1653                 break;
1654         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1655                 dev_info(&h->pdev->dev,
1656                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1657                         h->scsi_host->host_no,
1658                         sd->bus, sd->target, sd->lun);
1659                 break;
1660         case HPSA_LV_UNDERGOING_ENCRYPTION:
1661                 dev_info(&h->pdev->dev,
1662                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1663                         h->scsi_host->host_no,
1664                         sd->bus, sd->target, sd->lun);
1665                 break;
1666         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1667                 dev_info(&h->pdev->dev,
1668                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1669                         h->scsi_host->host_no,
1670                         sd->bus, sd->target, sd->lun);
1671                 break;
1672         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1673                 dev_info(&h->pdev->dev,
1674                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1675                         h->scsi_host->host_no,
1676                         sd->bus, sd->target, sd->lun);
1677                 break;
1678         case HPSA_LV_PENDING_ENCRYPTION:
1679                 dev_info(&h->pdev->dev,
1680                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1681                         h->scsi_host->host_no,
1682                         sd->bus, sd->target, sd->lun);
1683                 break;
1684         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1685                 dev_info(&h->pdev->dev,
1686                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1687                         h->scsi_host->host_no,
1688                         sd->bus, sd->target, sd->lun);
1689                 break;
1690         }
1691 }
1692
1693 /*
1694  * Figure the list of physical drive pointers for a logical drive with
1695  * raid offload configured.
1696  */
1697 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1698                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1699                                 struct hpsa_scsi_dev_t *logical_drive)
1700 {
1701         struct raid_map_data *map = &logical_drive->raid_map;
1702         struct raid_map_disk_data *dd = &map->data[0];
1703         int i, j;
1704         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1705                                 le16_to_cpu(map->metadata_disks_per_row);
1706         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1707                                 le16_to_cpu(map->layout_map_count) *
1708                                 total_disks_per_row;
1709         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1710                                 total_disks_per_row;
1711         int qdepth;
1712
1713         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1714                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1715
1716         logical_drive->nphysical_disks = nraid_map_entries;
1717
1718         qdepth = 0;
1719         for (i = 0; i < nraid_map_entries; i++) {
1720                 logical_drive->phys_disk[i] = NULL;
1721                 if (!logical_drive->offload_config)
1722                         continue;
1723                 for (j = 0; j < ndevices; j++) {
1724                         if (dev[j] == NULL)
1725                                 continue;
1726                         if (dev[j]->devtype != TYPE_DISK &&
1727                             dev[j]->devtype != TYPE_ZBC)
1728                                 continue;
1729                         if (is_logical_device(dev[j]))
1730                                 continue;
1731                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1732                                 continue;
1733
1734                         logical_drive->phys_disk[i] = dev[j];
1735                         if (i < nphys_disk)
1736                                 qdepth = min(h->nr_cmds, qdepth +
1737                                     logical_drive->phys_disk[i]->queue_depth);
1738                         break;
1739                 }
1740
1741                 /*
1742                  * This can happen if a physical drive is removed and
1743                  * the logical drive is degraded.  In that case, the RAID
1744                  * map data will refer to a physical disk which isn't actually
1745                  * present.  And in that case offload_enabled should already
1746                  * be 0, but we'll turn it off here just in case
1747                  */
1748                 if (!logical_drive->phys_disk[i]) {
1749                         dev_warn(&h->pdev->dev,
1750                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1751                                 __func__,
1752                                 h->scsi_host->host_no, logical_drive->bus,
1753                                 logical_drive->target, logical_drive->lun);
1754                         hpsa_turn_off_ioaccel_for_device(logical_drive);
1755                         logical_drive->queue_depth = 8;
1756                 }
1757         }
1758         if (nraid_map_entries)
1759                 /*
1760                  * This is correct for reads, too high for full stripe writes,
1761                  * way too high for partial stripe writes
1762                  */
1763                 logical_drive->queue_depth = qdepth;
1764         else {
1765                 if (logical_drive->external)
1766                         logical_drive->queue_depth = EXTERNAL_QD;
1767                 else
1768                         logical_drive->queue_depth = h->nr_cmds;
1769         }
1770 }
1771
1772 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1773                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1774 {
1775         int i;
1776
1777         for (i = 0; i < ndevices; i++) {
1778                 if (dev[i] == NULL)
1779                         continue;
1780                 if (dev[i]->devtype != TYPE_DISK &&
1781                     dev[i]->devtype != TYPE_ZBC)
1782                         continue;
1783                 if (!is_logical_device(dev[i]))
1784                         continue;
1785
1786                 /*
1787                  * If offload is currently enabled, the RAID map and
1788                  * phys_disk[] assignment *better* not be changing
1789                  * because we would be changing ioaccel phsy_disk[] pointers
1790                  * on a ioaccel volume processing I/O requests.
1791                  *
1792                  * If an ioaccel volume status changed, initially because it was
1793                  * re-configured and thus underwent a transformation, or
1794                  * a drive failed, we would have received a state change
1795                  * request and ioaccel should have been turned off. When the
1796                  * transformation completes, we get another state change
1797                  * request to turn ioaccel back on. In this case, we need
1798                  * to update the ioaccel information.
1799                  *
1800                  * Thus: If it is not currently enabled, but will be after
1801                  * the scan completes, make sure the ioaccel pointers
1802                  * are up to date.
1803                  */
1804
1805                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1806                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1807         }
1808 }
1809
1810 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1811 {
1812         int rc = 0;
1813
1814         if (!h->scsi_host)
1815                 return 1;
1816
1817         if (is_logical_device(device)) /* RAID */
1818                 rc = scsi_add_device(h->scsi_host, device->bus,
1819                                         device->target, device->lun);
1820         else /* HBA */
1821                 rc = hpsa_add_sas_device(h->sas_host, device);
1822
1823         return rc;
1824 }
1825
1826 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1827                                                 struct hpsa_scsi_dev_t *dev)
1828 {
1829         int i;
1830         int count = 0;
1831
1832         for (i = 0; i < h->nr_cmds; i++) {
1833                 struct CommandList *c = h->cmd_pool + i;
1834                 int refcount = atomic_inc_return(&c->refcount);
1835
1836                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1837                                 dev->scsi3addr)) {
1838                         unsigned long flags;
1839
1840                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1841                         if (!hpsa_is_cmd_idle(c))
1842                                 ++count;
1843                         spin_unlock_irqrestore(&h->lock, flags);
1844                 }
1845
1846                 cmd_free(h, c);
1847         }
1848
1849         return count;
1850 }
1851
1852 #define NUM_WAIT 20
1853 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1854                                                 struct hpsa_scsi_dev_t *device)
1855 {
1856         int cmds = 0;
1857         int waits = 0;
1858         int num_wait = NUM_WAIT;
1859
1860         if (device->external)
1861                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1862
1863         while (1) {
1864                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1865                 if (cmds == 0)
1866                         break;
1867                 if (++waits > num_wait)
1868                         break;
1869                 msleep(1000);
1870         }
1871
1872         if (waits > num_wait) {
1873                 dev_warn(&h->pdev->dev,
1874                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1875                         __func__,
1876                         h->scsi_host->host_no,
1877                         device->bus, device->target, device->lun, cmds);
1878         }
1879 }
1880
1881 static void hpsa_remove_device(struct ctlr_info *h,
1882                         struct hpsa_scsi_dev_t *device)
1883 {
1884         struct scsi_device *sdev = NULL;
1885
1886         if (!h->scsi_host)
1887                 return;
1888
1889         /*
1890          * Allow for commands to drain
1891          */
1892         device->removed = 1;
1893         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1894
1895         if (is_logical_device(device)) { /* RAID */
1896                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1897                                                 device->target, device->lun);
1898                 if (sdev) {
1899                         scsi_remove_device(sdev);
1900                         scsi_device_put(sdev);
1901                 } else {
1902                         /*
1903                          * We don't expect to get here.  Future commands
1904                          * to this device will get a selection timeout as
1905                          * if the device were gone.
1906                          */
1907                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1908                                         "didn't find device for removal.");
1909                 }
1910         } else { /* HBA */
1911
1912                 hpsa_remove_sas_device(device);
1913         }
1914 }
1915
1916 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1917         struct hpsa_scsi_dev_t *sd[], int nsds)
1918 {
1919         /* sd contains scsi3 addresses and devtypes, and inquiry
1920          * data.  This function takes what's in sd to be the current
1921          * reality and updates h->dev[] to reflect that reality.
1922          */
1923         int i, entry, device_change, changes = 0;
1924         struct hpsa_scsi_dev_t *csd;
1925         unsigned long flags;
1926         struct hpsa_scsi_dev_t **added, **removed;
1927         int nadded, nremoved;
1928
1929         /*
1930          * A reset can cause a device status to change
1931          * re-schedule the scan to see what happened.
1932          */
1933         spin_lock_irqsave(&h->reset_lock, flags);
1934         if (h->reset_in_progress) {
1935                 h->drv_req_rescan = 1;
1936                 spin_unlock_irqrestore(&h->reset_lock, flags);
1937                 return;
1938         }
1939         spin_unlock_irqrestore(&h->reset_lock, flags);
1940
1941         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1942         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1943
1944         if (!added || !removed) {
1945                 dev_warn(&h->pdev->dev, "out of memory in "
1946                         "adjust_hpsa_scsi_table\n");
1947                 goto free_and_out;
1948         }
1949
1950         spin_lock_irqsave(&h->devlock, flags);
1951
1952         /* find any devices in h->dev[] that are not in
1953          * sd[] and remove them from h->dev[], and for any
1954          * devices which have changed, remove the old device
1955          * info and add the new device info.
1956          * If minor device attributes change, just update
1957          * the existing device structure.
1958          */
1959         i = 0;
1960         nremoved = 0;
1961         nadded = 0;
1962         while (i < h->ndevices) {
1963                 csd = h->dev[i];
1964                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1965                 if (device_change == DEVICE_NOT_FOUND) {
1966                         changes++;
1967                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1968                         continue; /* remove ^^^, hence i not incremented */
1969                 } else if (device_change == DEVICE_CHANGED) {
1970                         changes++;
1971                         hpsa_scsi_replace_entry(h, i, sd[entry],
1972                                 added, &nadded, removed, &nremoved);
1973                         /* Set it to NULL to prevent it from being freed
1974                          * at the bottom of hpsa_update_scsi_devices()
1975                          */
1976                         sd[entry] = NULL;
1977                 } else if (device_change == DEVICE_UPDATED) {
1978                         hpsa_scsi_update_entry(h, i, sd[entry]);
1979                 }
1980                 i++;
1981         }
1982
1983         /* Now, make sure every device listed in sd[] is also
1984          * listed in h->dev[], adding them if they aren't found
1985          */
1986
1987         for (i = 0; i < nsds; i++) {
1988                 if (!sd[i]) /* if already added above. */
1989                         continue;
1990
1991                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1992                  * as the SCSI mid-layer does not handle such devices well.
1993                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1994                  * at 160Hz, and prevents the system from coming up.
1995                  */
1996                 if (sd[i]->volume_offline) {
1997                         hpsa_show_volume_status(h, sd[i]);
1998                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1999                         continue;
2000                 }
2001
2002                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2003                                         h->ndevices, &entry);
2004                 if (device_change == DEVICE_NOT_FOUND) {
2005                         changes++;
2006                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2007                                 break;
2008                         sd[i] = NULL; /* prevent from being freed later. */
2009                 } else if (device_change == DEVICE_CHANGED) {
2010                         /* should never happen... */
2011                         changes++;
2012                         dev_warn(&h->pdev->dev,
2013                                 "device unexpectedly changed.\n");
2014                         /* but if it does happen, we just ignore that device */
2015                 }
2016         }
2017         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2018
2019         /*
2020          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2021          * any logical drives that need it enabled.
2022          *
2023          * The raid map should be current by now.
2024          *
2025          * We are updating the device list used for I/O requests.
2026          */
2027         for (i = 0; i < h->ndevices; i++) {
2028                 if (h->dev[i] == NULL)
2029                         continue;
2030                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2031         }
2032
2033         spin_unlock_irqrestore(&h->devlock, flags);
2034
2035         /* Monitor devices which are in one of several NOT READY states to be
2036          * brought online later. This must be done without holding h->devlock,
2037          * so don't touch h->dev[]
2038          */
2039         for (i = 0; i < nsds; i++) {
2040                 if (!sd[i]) /* if already added above. */
2041                         continue;
2042                 if (sd[i]->volume_offline)
2043                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2044         }
2045
2046         /* Don't notify scsi mid layer of any changes the first time through
2047          * (or if there are no changes) scsi_scan_host will do it later the
2048          * first time through.
2049          */
2050         if (!changes)
2051                 goto free_and_out;
2052
2053         /* Notify scsi mid layer of any removed devices */
2054         for (i = 0; i < nremoved; i++) {
2055                 if (removed[i] == NULL)
2056                         continue;
2057                 if (removed[i]->expose_device)
2058                         hpsa_remove_device(h, removed[i]);
2059                 kfree(removed[i]);
2060                 removed[i] = NULL;
2061         }
2062
2063         /* Notify scsi mid layer of any added devices */
2064         for (i = 0; i < nadded; i++) {
2065                 int rc = 0;
2066
2067                 if (added[i] == NULL)
2068                         continue;
2069                 if (!(added[i]->expose_device))
2070                         continue;
2071                 rc = hpsa_add_device(h, added[i]);
2072                 if (!rc)
2073                         continue;
2074                 dev_warn(&h->pdev->dev,
2075                         "addition failed %d, device not added.", rc);
2076                 /* now we have to remove it from h->dev,
2077                  * since it didn't get added to scsi mid layer
2078                  */
2079                 fixup_botched_add(h, added[i]);
2080                 h->drv_req_rescan = 1;
2081         }
2082
2083 free_and_out:
2084         kfree(added);
2085         kfree(removed);
2086 }
2087
2088 /*
2089  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2090  * Assume's h->devlock is held.
2091  */
2092 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2093         int bus, int target, int lun)
2094 {
2095         int i;
2096         struct hpsa_scsi_dev_t *sd;
2097
2098         for (i = 0; i < h->ndevices; i++) {
2099                 sd = h->dev[i];
2100                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2101                         return sd;
2102         }
2103         return NULL;
2104 }
2105
2106 static int hpsa_slave_alloc(struct scsi_device *sdev)
2107 {
2108         struct hpsa_scsi_dev_t *sd = NULL;
2109         unsigned long flags;
2110         struct ctlr_info *h;
2111
2112         h = sdev_to_hba(sdev);
2113         spin_lock_irqsave(&h->devlock, flags);
2114         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2115                 struct scsi_target *starget;
2116                 struct sas_rphy *rphy;
2117
2118                 starget = scsi_target(sdev);
2119                 rphy = target_to_rphy(starget);
2120                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2121                 if (sd) {
2122                         sd->target = sdev_id(sdev);
2123                         sd->lun = sdev->lun;
2124                 }
2125         }
2126         if (!sd)
2127                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2128                                         sdev_id(sdev), sdev->lun);
2129
2130         if (sd && sd->expose_device) {
2131                 atomic_set(&sd->ioaccel_cmds_out, 0);
2132                 sdev->hostdata = sd;
2133         } else
2134                 sdev->hostdata = NULL;
2135         spin_unlock_irqrestore(&h->devlock, flags);
2136         return 0;
2137 }
2138
2139 /* configure scsi device based on internal per-device structure */
2140 #define CTLR_TIMEOUT (120 * HZ)
2141 static int hpsa_slave_configure(struct scsi_device *sdev)
2142 {
2143         struct hpsa_scsi_dev_t *sd;
2144         int queue_depth;
2145
2146         sd = sdev->hostdata;
2147         sdev->no_uld_attach = !sd || !sd->expose_device;
2148
2149         if (sd) {
2150                 sd->was_removed = 0;
2151                 queue_depth = sd->queue_depth != 0 ?
2152                                 sd->queue_depth : sdev->host->can_queue;
2153                 if (sd->external) {
2154                         queue_depth = EXTERNAL_QD;
2155                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2156                         blk_queue_rq_timeout(sdev->request_queue,
2157                                                 HPSA_EH_PTRAID_TIMEOUT);
2158                 }
2159                 if (is_hba_lunid(sd->scsi3addr)) {
2160                         sdev->eh_timeout = CTLR_TIMEOUT;
2161                         blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2162                 }
2163         } else {
2164                 queue_depth = sdev->host->can_queue;
2165         }
2166
2167         scsi_change_queue_depth(sdev, queue_depth);
2168
2169         return 0;
2170 }
2171
2172 static void hpsa_slave_destroy(struct scsi_device *sdev)
2173 {
2174         struct hpsa_scsi_dev_t *hdev = NULL;
2175
2176         hdev = sdev->hostdata;
2177
2178         if (hdev)
2179                 hdev->was_removed = 1;
2180 }
2181
2182 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2183 {
2184         int i;
2185
2186         if (!h->ioaccel2_cmd_sg_list)
2187                 return;
2188         for (i = 0; i < h->nr_cmds; i++) {
2189                 kfree(h->ioaccel2_cmd_sg_list[i]);
2190                 h->ioaccel2_cmd_sg_list[i] = NULL;
2191         }
2192         kfree(h->ioaccel2_cmd_sg_list);
2193         h->ioaccel2_cmd_sg_list = NULL;
2194 }
2195
2196 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2197 {
2198         int i;
2199
2200         if (h->chainsize <= 0)
2201                 return 0;
2202
2203         h->ioaccel2_cmd_sg_list =
2204                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2205                                         GFP_KERNEL);
2206         if (!h->ioaccel2_cmd_sg_list)
2207                 return -ENOMEM;
2208         for (i = 0; i < h->nr_cmds; i++) {
2209                 h->ioaccel2_cmd_sg_list[i] =
2210                         kmalloc_array(h->maxsgentries,
2211                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2212                                       GFP_KERNEL);
2213                 if (!h->ioaccel2_cmd_sg_list[i])
2214                         goto clean;
2215         }
2216         return 0;
2217
2218 clean:
2219         hpsa_free_ioaccel2_sg_chain_blocks(h);
2220         return -ENOMEM;
2221 }
2222
2223 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2224 {
2225         int i;
2226
2227         if (!h->cmd_sg_list)
2228                 return;
2229         for (i = 0; i < h->nr_cmds; i++) {
2230                 kfree(h->cmd_sg_list[i]);
2231                 h->cmd_sg_list[i] = NULL;
2232         }
2233         kfree(h->cmd_sg_list);
2234         h->cmd_sg_list = NULL;
2235 }
2236
2237 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2238 {
2239         int i;
2240
2241         if (h->chainsize <= 0)
2242                 return 0;
2243
2244         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2245                                  GFP_KERNEL);
2246         if (!h->cmd_sg_list)
2247                 return -ENOMEM;
2248
2249         for (i = 0; i < h->nr_cmds; i++) {
2250                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2251                                                   sizeof(*h->cmd_sg_list[i]),
2252                                                   GFP_KERNEL);
2253                 if (!h->cmd_sg_list[i])
2254                         goto clean;
2255
2256         }
2257         return 0;
2258
2259 clean:
2260         hpsa_free_sg_chain_blocks(h);
2261         return -ENOMEM;
2262 }
2263
2264 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2265         struct io_accel2_cmd *cp, struct CommandList *c)
2266 {
2267         struct ioaccel2_sg_element *chain_block;
2268         u64 temp64;
2269         u32 chain_size;
2270
2271         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2272         chain_size = le32_to_cpu(cp->sg[0].length);
2273         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2274                                 DMA_TO_DEVICE);
2275         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2276                 /* prevent subsequent unmapping */
2277                 cp->sg->address = 0;
2278                 return -1;
2279         }
2280         cp->sg->address = cpu_to_le64(temp64);
2281         return 0;
2282 }
2283
2284 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2285         struct io_accel2_cmd *cp)
2286 {
2287         struct ioaccel2_sg_element *chain_sg;
2288         u64 temp64;
2289         u32 chain_size;
2290
2291         chain_sg = cp->sg;
2292         temp64 = le64_to_cpu(chain_sg->address);
2293         chain_size = le32_to_cpu(cp->sg[0].length);
2294         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2295 }
2296
2297 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2298         struct CommandList *c)
2299 {
2300         struct SGDescriptor *chain_sg, *chain_block;
2301         u64 temp64;
2302         u32 chain_len;
2303
2304         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2305         chain_block = h->cmd_sg_list[c->cmdindex];
2306         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2307         chain_len = sizeof(*chain_sg) *
2308                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2309         chain_sg->Len = cpu_to_le32(chain_len);
2310         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2311                                 DMA_TO_DEVICE);
2312         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2313                 /* prevent subsequent unmapping */
2314                 chain_sg->Addr = cpu_to_le64(0);
2315                 return -1;
2316         }
2317         chain_sg->Addr = cpu_to_le64(temp64);
2318         return 0;
2319 }
2320
2321 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2322         struct CommandList *c)
2323 {
2324         struct SGDescriptor *chain_sg;
2325
2326         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2327                 return;
2328
2329         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2330         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2331                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2332 }
2333
2334
2335 /* Decode the various types of errors on ioaccel2 path.
2336  * Return 1 for any error that should generate a RAID path retry.
2337  * Return 0 for errors that don't require a RAID path retry.
2338  */
2339 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2340                                         struct CommandList *c,
2341                                         struct scsi_cmnd *cmd,
2342                                         struct io_accel2_cmd *c2,
2343                                         struct hpsa_scsi_dev_t *dev)
2344 {
2345         int data_len;
2346         int retry = 0;
2347         u32 ioaccel2_resid = 0;
2348
2349         switch (c2->error_data.serv_response) {
2350         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2351                 switch (c2->error_data.status) {
2352                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2353                         if (cmd)
2354                                 cmd->result = 0;
2355                         break;
2356                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2357                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2358                         if (c2->error_data.data_present !=
2359                                         IOACCEL2_SENSE_DATA_PRESENT) {
2360                                 memset(cmd->sense_buffer, 0,
2361                                         SCSI_SENSE_BUFFERSIZE);
2362                                 break;
2363                         }
2364                         /* copy the sense data */
2365                         data_len = c2->error_data.sense_data_len;
2366                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2367                                 data_len = SCSI_SENSE_BUFFERSIZE;
2368                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2369                                 data_len =
2370                                         sizeof(c2->error_data.sense_data_buff);
2371                         memcpy(cmd->sense_buffer,
2372                                 c2->error_data.sense_data_buff, data_len);
2373                         retry = 1;
2374                         break;
2375                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2376                         retry = 1;
2377                         break;
2378                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2379                         retry = 1;
2380                         break;
2381                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2382                         retry = 1;
2383                         break;
2384                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2385                         retry = 1;
2386                         break;
2387                 default:
2388                         retry = 1;
2389                         break;
2390                 }
2391                 break;
2392         case IOACCEL2_SERV_RESPONSE_FAILURE:
2393                 switch (c2->error_data.status) {
2394                 case IOACCEL2_STATUS_SR_IO_ERROR:
2395                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2396                 case IOACCEL2_STATUS_SR_OVERRUN:
2397                         retry = 1;
2398                         break;
2399                 case IOACCEL2_STATUS_SR_UNDERRUN:
2400                         cmd->result = (DID_OK << 16);           /* host byte */
2401                         ioaccel2_resid = get_unaligned_le32(
2402                                                 &c2->error_data.resid_cnt[0]);
2403                         scsi_set_resid(cmd, ioaccel2_resid);
2404                         break;
2405                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2406                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2407                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2408                         /*
2409                          * Did an HBA disk disappear? We will eventually
2410                          * get a state change event from the controller but
2411                          * in the meantime, we need to tell the OS that the
2412                          * HBA disk is no longer there and stop I/O
2413                          * from going down. This allows the potential re-insert
2414                          * of the disk to get the same device node.
2415                          */
2416                         if (dev->physical_device && dev->expose_device) {
2417                                 cmd->result = DID_NO_CONNECT << 16;
2418                                 dev->removed = 1;
2419                                 h->drv_req_rescan = 1;
2420                                 dev_warn(&h->pdev->dev,
2421                                         "%s: device is gone!\n", __func__);
2422                         } else
2423                                 /*
2424                                  * Retry by sending down the RAID path.
2425                                  * We will get an event from ctlr to
2426                                  * trigger rescan regardless.
2427                                  */
2428                                 retry = 1;
2429                         break;
2430                 default:
2431                         retry = 1;
2432                 }
2433                 break;
2434         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2435                 break;
2436         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2437                 break;
2438         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2439                 retry = 1;
2440                 break;
2441         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2442                 break;
2443         default:
2444                 retry = 1;
2445                 break;
2446         }
2447
2448         if (dev->in_reset)
2449                 retry = 0;
2450
2451         return retry;   /* retry on raid path? */
2452 }
2453
2454 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2455                 struct CommandList *c)
2456 {
2457         struct hpsa_scsi_dev_t *dev = c->device;
2458
2459         /*
2460          * Reset c->scsi_cmd here so that the reset handler will know
2461          * this command has completed.  Then, check to see if the handler is
2462          * waiting for this command, and, if so, wake it.
2463          */
2464         c->scsi_cmd = SCSI_CMD_IDLE;
2465         mb();   /* Declare command idle before checking for pending events. */
2466         if (dev) {
2467                 atomic_dec(&dev->commands_outstanding);
2468                 if (dev->in_reset &&
2469                         atomic_read(&dev->commands_outstanding) <= 0)
2470                         wake_up_all(&h->event_sync_wait_queue);
2471         }
2472 }
2473
2474 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2475                                       struct CommandList *c)
2476 {
2477         hpsa_cmd_resolve_events(h, c);
2478         cmd_tagged_free(h, c);
2479 }
2480
2481 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2482                 struct CommandList *c, struct scsi_cmnd *cmd)
2483 {
2484         hpsa_cmd_resolve_and_free(h, c);
2485         if (cmd && cmd->scsi_done)
2486                 cmd->scsi_done(cmd);
2487 }
2488
2489 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2490 {
2491         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2492         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2493 }
2494
2495 static void process_ioaccel2_completion(struct ctlr_info *h,
2496                 struct CommandList *c, struct scsi_cmnd *cmd,
2497                 struct hpsa_scsi_dev_t *dev)
2498 {
2499         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2500
2501         /* check for good status */
2502         if (likely(c2->error_data.serv_response == 0 &&
2503                         c2->error_data.status == 0)) {
2504                 cmd->result = 0;
2505                 return hpsa_cmd_free_and_done(h, c, cmd);
2506         }
2507
2508         /*
2509          * Any RAID offload error results in retry which will use
2510          * the normal I/O path so the controller can handle whatever is
2511          * wrong.
2512          */
2513         if (is_logical_device(dev) &&
2514                 c2->error_data.serv_response ==
2515                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2516                 if (c2->error_data.status ==
2517                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2518                         hpsa_turn_off_ioaccel_for_device(dev);
2519                 }
2520
2521                 if (dev->in_reset) {
2522                         cmd->result = DID_RESET << 16;
2523                         return hpsa_cmd_free_and_done(h, c, cmd);
2524                 }
2525
2526                 return hpsa_retry_cmd(h, c);
2527         }
2528
2529         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2530                 return hpsa_retry_cmd(h, c);
2531
2532         return hpsa_cmd_free_and_done(h, c, cmd);
2533 }
2534
2535 /* Returns 0 on success, < 0 otherwise. */
2536 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2537                                         struct CommandList *cp)
2538 {
2539         u8 tmf_status = cp->err_info->ScsiStatus;
2540
2541         switch (tmf_status) {
2542         case CISS_TMF_COMPLETE:
2543                 /*
2544                  * CISS_TMF_COMPLETE never happens, instead,
2545                  * ei->CommandStatus == 0 for this case.
2546                  */
2547         case CISS_TMF_SUCCESS:
2548                 return 0;
2549         case CISS_TMF_INVALID_FRAME:
2550         case CISS_TMF_NOT_SUPPORTED:
2551         case CISS_TMF_FAILED:
2552         case CISS_TMF_WRONG_LUN:
2553         case CISS_TMF_OVERLAPPED_TAG:
2554                 break;
2555         default:
2556                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2557                                 tmf_status);
2558                 break;
2559         }
2560         return -tmf_status;
2561 }
2562
2563 static void complete_scsi_command(struct CommandList *cp)
2564 {
2565         struct scsi_cmnd *cmd;
2566         struct ctlr_info *h;
2567         struct ErrorInfo *ei;
2568         struct hpsa_scsi_dev_t *dev;
2569         struct io_accel2_cmd *c2;
2570
2571         u8 sense_key;
2572         u8 asc;      /* additional sense code */
2573         u8 ascq;     /* additional sense code qualifier */
2574         unsigned long sense_data_size;
2575
2576         ei = cp->err_info;
2577         cmd = cp->scsi_cmd;
2578         h = cp->h;
2579
2580         if (!cmd->device) {
2581                 cmd->result = DID_NO_CONNECT << 16;
2582                 return hpsa_cmd_free_and_done(h, cp, cmd);
2583         }
2584
2585         dev = cmd->device->hostdata;
2586         if (!dev) {
2587                 cmd->result = DID_NO_CONNECT << 16;
2588                 return hpsa_cmd_free_and_done(h, cp, cmd);
2589         }
2590         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2591
2592         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2593         if ((cp->cmd_type == CMD_SCSI) &&
2594                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2595                 hpsa_unmap_sg_chain_block(h, cp);
2596
2597         if ((cp->cmd_type == CMD_IOACCEL2) &&
2598                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2599                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2600
2601         cmd->result = (DID_OK << 16);           /* host byte */
2602
2603         /* SCSI command has already been cleaned up in SML */
2604         if (dev->was_removed) {
2605                 hpsa_cmd_resolve_and_free(h, cp);
2606                 return;
2607         }
2608
2609         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2610                 if (dev->physical_device && dev->expose_device &&
2611                         dev->removed) {
2612                         cmd->result = DID_NO_CONNECT << 16;
2613                         return hpsa_cmd_free_and_done(h, cp, cmd);
2614                 }
2615                 if (likely(cp->phys_disk != NULL))
2616                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2617         }
2618
2619         /*
2620          * We check for lockup status here as it may be set for
2621          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2622          * fail_all_oustanding_cmds()
2623          */
2624         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2625                 /* DID_NO_CONNECT will prevent a retry */
2626                 cmd->result = DID_NO_CONNECT << 16;
2627                 return hpsa_cmd_free_and_done(h, cp, cmd);
2628         }
2629
2630         if (cp->cmd_type == CMD_IOACCEL2)
2631                 return process_ioaccel2_completion(h, cp, cmd, dev);
2632
2633         scsi_set_resid(cmd, ei->ResidualCnt);
2634         if (ei->CommandStatus == 0)
2635                 return hpsa_cmd_free_and_done(h, cp, cmd);
2636
2637         /* For I/O accelerator commands, copy over some fields to the normal
2638          * CISS header used below for error handling.
2639          */
2640         if (cp->cmd_type == CMD_IOACCEL1) {
2641                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2642                 cp->Header.SGList = scsi_sg_count(cmd);
2643                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2644                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2645                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2646                 cp->Header.tag = c->tag;
2647                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2648                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2649
2650                 /* Any RAID offload error results in retry which will use
2651                  * the normal I/O path so the controller can handle whatever's
2652                  * wrong.
2653                  */
2654                 if (is_logical_device(dev)) {
2655                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2656                                 dev->offload_enabled = 0;
2657                         return hpsa_retry_cmd(h, cp);
2658                 }
2659         }
2660
2661         /* an error has occurred */
2662         switch (ei->CommandStatus) {
2663
2664         case CMD_TARGET_STATUS:
2665                 cmd->result |= ei->ScsiStatus;
2666                 /* copy the sense data */
2667                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2668                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2669                 else
2670                         sense_data_size = sizeof(ei->SenseInfo);
2671                 if (ei->SenseLen < sense_data_size)
2672                         sense_data_size = ei->SenseLen;
2673                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2674                 if (ei->ScsiStatus)
2675                         decode_sense_data(ei->SenseInfo, sense_data_size,
2676                                 &sense_key, &asc, &ascq);
2677                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2678                         switch (sense_key) {
2679                         case ABORTED_COMMAND:
2680                                 cmd->result |= DID_SOFT_ERROR << 16;
2681                                 break;
2682                         case UNIT_ATTENTION:
2683                                 if (asc == 0x3F && ascq == 0x0E)
2684                                         h->drv_req_rescan = 1;
2685                                 break;
2686                         case ILLEGAL_REQUEST:
2687                                 if (asc == 0x25 && ascq == 0x00) {
2688                                         dev->removed = 1;
2689                                         cmd->result = DID_NO_CONNECT << 16;
2690                                 }
2691                                 break;
2692                         }
2693                         break;
2694                 }
2695                 /* Problem was not a check condition
2696                  * Pass it up to the upper layers...
2697                  */
2698                 if (ei->ScsiStatus) {
2699                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2700                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2701                                 "Returning result: 0x%x\n",
2702                                 cp, ei->ScsiStatus,
2703                                 sense_key, asc, ascq,
2704                                 cmd->result);
2705                 } else {  /* scsi status is zero??? How??? */
2706                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2707                                 "Returning no connection.\n", cp),
2708
2709                         /* Ordinarily, this case should never happen,
2710                          * but there is a bug in some released firmware
2711                          * revisions that allows it to happen if, for
2712                          * example, a 4100 backplane loses power and
2713                          * the tape drive is in it.  We assume that
2714                          * it's a fatal error of some kind because we
2715                          * can't show that it wasn't. We will make it
2716                          * look like selection timeout since that is
2717                          * the most common reason for this to occur,
2718                          * and it's severe enough.
2719                          */
2720
2721                         cmd->result = DID_NO_CONNECT << 16;
2722                 }
2723                 break;
2724
2725         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2726                 break;
2727         case CMD_DATA_OVERRUN:
2728                 dev_warn(&h->pdev->dev,
2729                         "CDB %16phN data overrun\n", cp->Request.CDB);
2730                 break;
2731         case CMD_INVALID: {
2732                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2733                 print_cmd(cp); */
2734                 /* We get CMD_INVALID if you address a non-existent device
2735                  * instead of a selection timeout (no response).  You will
2736                  * see this if you yank out a drive, then try to access it.
2737                  * This is kind of a shame because it means that any other
2738                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2739                  * missing target. */
2740                 cmd->result = DID_NO_CONNECT << 16;
2741         }
2742                 break;
2743         case CMD_PROTOCOL_ERR:
2744                 cmd->result = DID_ERROR << 16;
2745                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2746                                 cp->Request.CDB);
2747                 break;
2748         case CMD_HARDWARE_ERR:
2749                 cmd->result = DID_ERROR << 16;
2750                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2751                         cp->Request.CDB);
2752                 break;
2753         case CMD_CONNECTION_LOST:
2754                 cmd->result = DID_ERROR << 16;
2755                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2756                         cp->Request.CDB);
2757                 break;
2758         case CMD_ABORTED:
2759                 cmd->result = DID_ABORT << 16;
2760                 break;
2761         case CMD_ABORT_FAILED:
2762                 cmd->result = DID_ERROR << 16;
2763                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2764                         cp->Request.CDB);
2765                 break;
2766         case CMD_UNSOLICITED_ABORT:
2767                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2768                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2769                         cp->Request.CDB);
2770                 break;
2771         case CMD_TIMEOUT:
2772                 cmd->result = DID_TIME_OUT << 16;
2773                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2774                         cp->Request.CDB);
2775                 break;
2776         case CMD_UNABORTABLE:
2777                 cmd->result = DID_ERROR << 16;
2778                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2779                 break;
2780         case CMD_TMF_STATUS:
2781                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2782                         cmd->result = DID_ERROR << 16;
2783                 break;
2784         case CMD_IOACCEL_DISABLED:
2785                 /* This only handles the direct pass-through case since RAID
2786                  * offload is handled above.  Just attempt a retry.
2787                  */
2788                 cmd->result = DID_SOFT_ERROR << 16;
2789                 dev_warn(&h->pdev->dev,
2790                                 "cp %p had HP SSD Smart Path error\n", cp);
2791                 break;
2792         default:
2793                 cmd->result = DID_ERROR << 16;
2794                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2795                                 cp, ei->CommandStatus);
2796         }
2797
2798         return hpsa_cmd_free_and_done(h, cp, cmd);
2799 }
2800
2801 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2802                 int sg_used, enum dma_data_direction data_direction)
2803 {
2804         int i;
2805
2806         for (i = 0; i < sg_used; i++)
2807                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2808                                 le32_to_cpu(c->SG[i].Len),
2809                                 data_direction);
2810 }
2811
2812 static int hpsa_map_one(struct pci_dev *pdev,
2813                 struct CommandList *cp,
2814                 unsigned char *buf,
2815                 size_t buflen,
2816                 enum dma_data_direction data_direction)
2817 {
2818         u64 addr64;
2819
2820         if (buflen == 0 || data_direction == DMA_NONE) {
2821                 cp->Header.SGList = 0;
2822                 cp->Header.SGTotal = cpu_to_le16(0);
2823                 return 0;
2824         }
2825
2826         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2827         if (dma_mapping_error(&pdev->dev, addr64)) {
2828                 /* Prevent subsequent unmap of something never mapped */
2829                 cp->Header.SGList = 0;
2830                 cp->Header.SGTotal = cpu_to_le16(0);
2831                 return -1;
2832         }
2833         cp->SG[0].Addr = cpu_to_le64(addr64);
2834         cp->SG[0].Len = cpu_to_le32(buflen);
2835         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2836         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2837         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2838         return 0;
2839 }
2840
2841 #define NO_TIMEOUT ((unsigned long) -1)
2842 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2843 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2844         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2845 {
2846         DECLARE_COMPLETION_ONSTACK(wait);
2847
2848         c->waiting = &wait;
2849         __enqueue_cmd_and_start_io(h, c, reply_queue);
2850         if (timeout_msecs == NO_TIMEOUT) {
2851                 /* TODO: get rid of this no-timeout thing */
2852                 wait_for_completion_io(&wait);
2853                 return IO_OK;
2854         }
2855         if (!wait_for_completion_io_timeout(&wait,
2856                                         msecs_to_jiffies(timeout_msecs))) {
2857                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2858                 return -ETIMEDOUT;
2859         }
2860         return IO_OK;
2861 }
2862
2863 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2864                                    int reply_queue, unsigned long timeout_msecs)
2865 {
2866         if (unlikely(lockup_detected(h))) {
2867                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2868                 return IO_OK;
2869         }
2870         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2871 }
2872
2873 static u32 lockup_detected(struct ctlr_info *h)
2874 {
2875         int cpu;
2876         u32 rc, *lockup_detected;
2877
2878         cpu = get_cpu();
2879         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2880         rc = *lockup_detected;
2881         put_cpu();
2882         return rc;
2883 }
2884
2885 #define MAX_DRIVER_CMD_RETRIES 25
2886 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2887                 struct CommandList *c, enum dma_data_direction data_direction,
2888                 unsigned long timeout_msecs)
2889 {
2890         int backoff_time = 10, retry_count = 0;
2891         int rc;
2892
2893         do {
2894                 memset(c->err_info, 0, sizeof(*c->err_info));
2895                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2896                                                   timeout_msecs);
2897                 if (rc)
2898                         break;
2899                 retry_count++;
2900                 if (retry_count > 3) {
2901                         msleep(backoff_time);
2902                         if (backoff_time < 1000)
2903                                 backoff_time *= 2;
2904                 }
2905         } while ((check_for_unit_attention(h, c) ||
2906                         check_for_busy(h, c)) &&
2907                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2908         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2909         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2910                 rc = -EIO;
2911         return rc;
2912 }
2913
2914 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2915                                 struct CommandList *c)
2916 {
2917         const u8 *cdb = c->Request.CDB;
2918         const u8 *lun = c->Header.LUN.LunAddrBytes;
2919
2920         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2921                  txt, lun, cdb);
2922 }
2923
2924 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2925                         struct CommandList *cp)
2926 {
2927         const struct ErrorInfo *ei = cp->err_info;
2928         struct device *d = &cp->h->pdev->dev;
2929         u8 sense_key, asc, ascq;
2930         int sense_len;
2931
2932         switch (ei->CommandStatus) {
2933         case CMD_TARGET_STATUS:
2934                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2935                         sense_len = sizeof(ei->SenseInfo);
2936                 else
2937                         sense_len = ei->SenseLen;
2938                 decode_sense_data(ei->SenseInfo, sense_len,
2939                                         &sense_key, &asc, &ascq);
2940                 hpsa_print_cmd(h, "SCSI status", cp);
2941                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2942                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2943                                 sense_key, asc, ascq);
2944                 else
2945                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2946                 if (ei->ScsiStatus == 0)
2947                         dev_warn(d, "SCSI status is abnormally zero.  "
2948                         "(probably indicates selection timeout "
2949                         "reported incorrectly due to a known "
2950                         "firmware bug, circa July, 2001.)\n");
2951                 break;
2952         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2953                 break;
2954         case CMD_DATA_OVERRUN:
2955                 hpsa_print_cmd(h, "overrun condition", cp);
2956                 break;
2957         case CMD_INVALID: {
2958                 /* controller unfortunately reports SCSI passthru's
2959                  * to non-existent targets as invalid commands.
2960                  */
2961                 hpsa_print_cmd(h, "invalid command", cp);
2962                 dev_warn(d, "probably means device no longer present\n");
2963                 }
2964                 break;
2965         case CMD_PROTOCOL_ERR:
2966                 hpsa_print_cmd(h, "protocol error", cp);
2967                 break;
2968         case CMD_HARDWARE_ERR:
2969                 hpsa_print_cmd(h, "hardware error", cp);
2970                 break;
2971         case CMD_CONNECTION_LOST:
2972                 hpsa_print_cmd(h, "connection lost", cp);
2973                 break;
2974         case CMD_ABORTED:
2975                 hpsa_print_cmd(h, "aborted", cp);
2976                 break;
2977         case CMD_ABORT_FAILED:
2978                 hpsa_print_cmd(h, "abort failed", cp);
2979                 break;
2980         case CMD_UNSOLICITED_ABORT:
2981                 hpsa_print_cmd(h, "unsolicited abort", cp);
2982                 break;
2983         case CMD_TIMEOUT:
2984                 hpsa_print_cmd(h, "timed out", cp);
2985                 break;
2986         case CMD_UNABORTABLE:
2987                 hpsa_print_cmd(h, "unabortable", cp);
2988                 break;
2989         case CMD_CTLR_LOCKUP:
2990                 hpsa_print_cmd(h, "controller lockup detected", cp);
2991                 break;
2992         default:
2993                 hpsa_print_cmd(h, "unknown status", cp);
2994                 dev_warn(d, "Unknown command status %x\n",
2995                                 ei->CommandStatus);
2996         }
2997 }
2998
2999 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3000                                         u8 page, u8 *buf, size_t bufsize)
3001 {
3002         int rc = IO_OK;
3003         struct CommandList *c;
3004         struct ErrorInfo *ei;
3005
3006         c = cmd_alloc(h);
3007         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3008                         page, scsi3addr, TYPE_CMD)) {
3009                 rc = -1;
3010                 goto out;
3011         }
3012         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3013                         NO_TIMEOUT);
3014         if (rc)
3015                 goto out;
3016         ei = c->err_info;
3017         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3018                 hpsa_scsi_interpret_error(h, c);
3019                 rc = -1;
3020         }
3021 out:
3022         cmd_free(h, c);
3023         return rc;
3024 }
3025
3026 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3027                                                 u8 *scsi3addr)
3028 {
3029         u8 *buf;
3030         u64 sa = 0;
3031         int rc = 0;
3032
3033         buf = kzalloc(1024, GFP_KERNEL);
3034         if (!buf)
3035                 return 0;
3036
3037         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3038                                         buf, 1024);
3039
3040         if (rc)
3041                 goto out;
3042
3043         sa = get_unaligned_be64(buf+12);
3044
3045 out:
3046         kfree(buf);
3047         return sa;
3048 }
3049
3050 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3051                         u16 page, unsigned char *buf,
3052                         unsigned char bufsize)
3053 {
3054         int rc = IO_OK;
3055         struct CommandList *c;
3056         struct ErrorInfo *ei;
3057
3058         c = cmd_alloc(h);
3059
3060         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3061                         page, scsi3addr, TYPE_CMD)) {
3062                 rc = -1;
3063                 goto out;
3064         }
3065         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3066                         NO_TIMEOUT);
3067         if (rc)
3068                 goto out;
3069         ei = c->err_info;
3070         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3071                 hpsa_scsi_interpret_error(h, c);
3072                 rc = -1;
3073         }
3074 out:
3075         cmd_free(h, c);
3076         return rc;
3077 }
3078
3079 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3080         u8 reset_type, int reply_queue)
3081 {
3082         int rc = IO_OK;
3083         struct CommandList *c;
3084         struct ErrorInfo *ei;
3085
3086         c = cmd_alloc(h);
3087         c->device = dev;
3088
3089         /* fill_cmd can't fail here, no data buffer to map. */
3090         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3091         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3092         if (rc) {
3093                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3094                 goto out;
3095         }
3096         /* no unmap needed here because no data xfer. */
3097
3098         ei = c->err_info;
3099         if (ei->CommandStatus != 0) {
3100                 hpsa_scsi_interpret_error(h, c);
3101                 rc = -1;
3102         }
3103 out:
3104         cmd_free(h, c);
3105         return rc;
3106 }
3107
3108 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3109                                struct hpsa_scsi_dev_t *dev,
3110                                unsigned char *scsi3addr)
3111 {
3112         int i;
3113         bool match = false;
3114         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3115         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3116
3117         if (hpsa_is_cmd_idle(c))
3118                 return false;
3119
3120         switch (c->cmd_type) {
3121         case CMD_SCSI:
3122         case CMD_IOCTL_PEND:
3123                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3124                                 sizeof(c->Header.LUN.LunAddrBytes));
3125                 break;
3126
3127         case CMD_IOACCEL1:
3128         case CMD_IOACCEL2:
3129                 if (c->phys_disk == dev) {
3130                         /* HBA mode match */
3131                         match = true;
3132                 } else {
3133                         /* Possible RAID mode -- check each phys dev. */
3134                         /* FIXME:  Do we need to take out a lock here?  If
3135                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3136                          * instead. */
3137                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3138                                 /* FIXME: an alternate test might be
3139                                  *
3140                                  * match = dev->phys_disk[i]->ioaccel_handle
3141                                  *              == c2->scsi_nexus;      */
3142                                 match = dev->phys_disk[i] == c->phys_disk;
3143                         }
3144                 }
3145                 break;
3146
3147         case IOACCEL2_TMF:
3148                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3149                         match = dev->phys_disk[i]->ioaccel_handle ==
3150                                         le32_to_cpu(ac->it_nexus);
3151                 }
3152                 break;
3153
3154         case 0:         /* The command is in the middle of being initialized. */
3155                 match = false;
3156                 break;
3157
3158         default:
3159                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3160                         c->cmd_type);
3161                 BUG();
3162         }
3163
3164         return match;
3165 }
3166
3167 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3168         u8 reset_type, int reply_queue)
3169 {
3170         int rc = 0;
3171
3172         /* We can really only handle one reset at a time */
3173         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3174                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3175                 return -EINTR;
3176         }
3177
3178         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3179         if (!rc) {
3180                 /* incremented by sending the reset request */
3181                 atomic_dec(&dev->commands_outstanding);
3182                 wait_event(h->event_sync_wait_queue,
3183                         atomic_read(&dev->commands_outstanding) <= 0 ||
3184                         lockup_detected(h));
3185         }
3186
3187         if (unlikely(lockup_detected(h))) {
3188                 dev_warn(&h->pdev->dev,
3189                          "Controller lockup detected during reset wait\n");
3190                 rc = -ENODEV;
3191         }
3192
3193         if (!rc)
3194                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3195
3196         mutex_unlock(&h->reset_mutex);
3197         return rc;
3198 }
3199
3200 static void hpsa_get_raid_level(struct ctlr_info *h,
3201         unsigned char *scsi3addr, unsigned char *raid_level)
3202 {
3203         int rc;
3204         unsigned char *buf;
3205
3206         *raid_level = RAID_UNKNOWN;
3207         buf = kzalloc(64, GFP_KERNEL);
3208         if (!buf)
3209                 return;
3210
3211         if (!hpsa_vpd_page_supported(h, scsi3addr,
3212                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3213                 goto exit;
3214
3215         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217
3218         if (rc == 0)
3219                 *raid_level = buf[8];
3220         if (*raid_level > RAID_UNKNOWN)
3221                 *raid_level = RAID_UNKNOWN;
3222 exit:
3223         kfree(buf);
3224         return;
3225 }
3226
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230                                 struct raid_map_data *map_buff)
3231 {
3232         struct raid_map_disk_data *dd = &map_buff->data[0];
3233         int map, row, col;
3234         u16 map_cnt, row_cnt, disks_per_row;
3235
3236         if (rc != 0)
3237                 return;
3238
3239         /* Show details only if debugging has been activated. */
3240         if (h->raid_offload_debug < 2)
3241                 return;
3242
3243         dev_info(&h->pdev->dev, "structure_size = %u\n",
3244                                 le32_to_cpu(map_buff->structure_size));
3245         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246                         le32_to_cpu(map_buff->volume_blk_size));
3247         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248                         le64_to_cpu(map_buff->volume_blk_cnt));
3249         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250                         map_buff->phys_blk_shift);
3251         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252                         map_buff->parity_rotation_shift);
3253         dev_info(&h->pdev->dev, "strip_size = %u\n",
3254                         le16_to_cpu(map_buff->strip_size));
3255         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256                         le64_to_cpu(map_buff->disk_starting_blk));
3257         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258                         le64_to_cpu(map_buff->disk_blk_cnt));
3259         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260                         le16_to_cpu(map_buff->data_disks_per_row));
3261         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262                         le16_to_cpu(map_buff->metadata_disks_per_row));
3263         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264                         le16_to_cpu(map_buff->row_cnt));
3265         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266                         le16_to_cpu(map_buff->layout_map_count));
3267         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268                         le16_to_cpu(map_buff->flags));
3269         dev_info(&h->pdev->dev, "encryption = %s\n",
3270                         le16_to_cpu(map_buff->flags) &
3271                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272         dev_info(&h->pdev->dev, "dekindex = %u\n",
3273                         le16_to_cpu(map_buff->dekindex));
3274         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275         for (map = 0; map < map_cnt; map++) {
3276                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3277                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3278                 for (row = 0; row < row_cnt; row++) {
3279                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280                         disks_per_row =
3281                                 le16_to_cpu(map_buff->data_disks_per_row);
3282                         for (col = 0; col < disks_per_row; col++, dd++)
3283                                 dev_info(&h->pdev->dev,
3284                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3285                                         col, dd->ioaccel_handle,
3286                                         dd->xor_mult[0], dd->xor_mult[1]);
3287                         disks_per_row =
3288                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3289                         for (col = 0; col < disks_per_row; col++, dd++)
3290                                 dev_info(&h->pdev->dev,
3291                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3292                                         col, dd->ioaccel_handle,
3293                                         dd->xor_mult[0], dd->xor_mult[1]);
3294                 }
3295         }
3296 }
3297 #else
3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299                         __attribute__((unused)) int rc,
3300                         __attribute__((unused)) struct raid_map_data *map_buff)
3301 {
3302 }
3303 #endif
3304
3305 static int hpsa_get_raid_map(struct ctlr_info *h,
3306         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307 {
3308         int rc = 0;
3309         struct CommandList *c;
3310         struct ErrorInfo *ei;
3311
3312         c = cmd_alloc(h);
3313
3314         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315                         sizeof(this_device->raid_map), 0,
3316                         scsi3addr, TYPE_CMD)) {
3317                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318                 cmd_free(h, c);
3319                 return -1;
3320         }
3321         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322                         NO_TIMEOUT);
3323         if (rc)
3324                 goto out;
3325         ei = c->err_info;
3326         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327                 hpsa_scsi_interpret_error(h, c);
3328                 rc = -1;
3329                 goto out;
3330         }
3331         cmd_free(h, c);
3332
3333         /* @todo in the future, dynamically allocate RAID map memory */
3334         if (le32_to_cpu(this_device->raid_map.structure_size) >
3335                                 sizeof(this_device->raid_map)) {
3336                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337                 rc = -1;
3338         }
3339         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340         return rc;
3341 out:
3342         cmd_free(h, c);
3343         return rc;
3344 }
3345
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347                 unsigned char scsi3addr[], u16 bmic_device_index,
3348                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349 {
3350         int rc = IO_OK;
3351         struct CommandList *c;
3352         struct ErrorInfo *ei;
3353
3354         c = cmd_alloc(h);
3355
3356         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357                 0, RAID_CTLR_LUNID, TYPE_CMD);
3358         if (rc)
3359                 goto out;
3360
3361         c->Request.CDB[2] = bmic_device_index & 0xff;
3362         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363
3364         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365                         NO_TIMEOUT);
3366         if (rc)
3367                 goto out;
3368         ei = c->err_info;
3369         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370                 hpsa_scsi_interpret_error(h, c);
3371                 rc = -1;
3372         }
3373 out:
3374         cmd_free(h, c);
3375         return rc;
3376 }
3377
3378 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379         struct bmic_identify_controller *buf, size_t bufsize)
3380 {
3381         int rc = IO_OK;
3382         struct CommandList *c;
3383         struct ErrorInfo *ei;
3384
3385         c = cmd_alloc(h);
3386
3387         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388                 0, RAID_CTLR_LUNID, TYPE_CMD);
3389         if (rc)
3390                 goto out;
3391
3392         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393                         NO_TIMEOUT);
3394         if (rc)
3395                 goto out;
3396         ei = c->err_info;
3397         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398                 hpsa_scsi_interpret_error(h, c);
3399                 rc = -1;
3400         }
3401 out:
3402         cmd_free(h, c);
3403         return rc;
3404 }
3405
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407                 unsigned char scsi3addr[], u16 bmic_device_index,
3408                 struct bmic_identify_physical_device *buf, size_t bufsize)
3409 {
3410         int rc = IO_OK;
3411         struct CommandList *c;
3412         struct ErrorInfo *ei;
3413
3414         c = cmd_alloc(h);
3415         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416                 0, RAID_CTLR_LUNID, TYPE_CMD);
3417         if (rc)
3418                 goto out;
3419
3420         c->Request.CDB[2] = bmic_device_index & 0xff;
3421         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422
3423         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424                                                 NO_TIMEOUT);
3425         ei = c->err_info;
3426         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427                 hpsa_scsi_interpret_error(h, c);
3428                 rc = -1;
3429         }
3430 out:
3431         cmd_free(h, c);
3432
3433         return rc;
3434 }
3435
3436 /*
3437  * get enclosure information
3438  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440  * Uses id_physical_device to determine the box_index.
3441  */
3442 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443                         unsigned char *scsi3addr,
3444                         struct ReportExtendedLUNdata *rlep, int rle_index,
3445                         struct hpsa_scsi_dev_t *encl_dev)
3446 {
3447         int rc = -1;
3448         struct CommandList *c = NULL;
3449         struct ErrorInfo *ei = NULL;
3450         struct bmic_sense_storage_box_params *bssbp = NULL;
3451         struct bmic_identify_physical_device *id_phys = NULL;
3452         struct ext_report_lun_entry *rle;
3453         u16 bmic_device_index = 0;
3454
3455         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3456                 return;
3457
3458         rle = &rlep->LUN[rle_index];
3459
3460         encl_dev->eli =
3461                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3462
3463         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3464
3465         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3466                 rc = IO_OK;
3467                 goto out;
3468         }
3469
3470         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3471                 rc = IO_OK;
3472                 goto out;
3473         }
3474
3475         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3476         if (!bssbp)
3477                 goto out;
3478
3479         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3480         if (!id_phys)
3481                 goto out;
3482
3483         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3484                                                 id_phys, sizeof(*id_phys));
3485         if (rc) {
3486                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3487                         __func__, encl_dev->external, bmic_device_index);
3488                 goto out;
3489         }
3490
3491         c = cmd_alloc(h);
3492
3493         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3494                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3495
3496         if (rc)
3497                 goto out;
3498
3499         if (id_phys->phys_connector[1] == 'E')
3500                 c->Request.CDB[5] = id_phys->box_index;
3501         else
3502                 c->Request.CDB[5] = 0;
3503
3504         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3505                                                 NO_TIMEOUT);
3506         if (rc)
3507                 goto out;
3508
3509         ei = c->err_info;
3510         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3511                 rc = -1;
3512                 goto out;
3513         }
3514
3515         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3516         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3517                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3518
3519         rc = IO_OK;
3520 out:
3521         kfree(bssbp);
3522         kfree(id_phys);
3523
3524         if (c)
3525                 cmd_free(h, c);
3526
3527         if (rc != IO_OK)
3528                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3529                         "Error, could not get enclosure information");
3530 }
3531
3532 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3533                                                 unsigned char *scsi3addr)
3534 {
3535         struct ReportExtendedLUNdata *physdev;
3536         u32 nphysicals;
3537         u64 sa = 0;
3538         int i;
3539
3540         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3541         if (!physdev)
3542                 return 0;
3543
3544         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3545                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3546                 kfree(physdev);
3547                 return 0;
3548         }
3549         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3550
3551         for (i = 0; i < nphysicals; i++)
3552                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3553                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3554                         break;
3555                 }
3556
3557         kfree(physdev);
3558
3559         return sa;
3560 }
3561
3562 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3563                                         struct hpsa_scsi_dev_t *dev)
3564 {
3565         int rc;
3566         u64 sa = 0;
3567
3568         if (is_hba_lunid(scsi3addr)) {
3569                 struct bmic_sense_subsystem_info *ssi;
3570
3571                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3572                 if (!ssi)
3573                         return;
3574
3575                 rc = hpsa_bmic_sense_subsystem_information(h,
3576                                         scsi3addr, 0, ssi, sizeof(*ssi));
3577                 if (rc == 0) {
3578                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3579                         h->sas_address = sa;
3580                 }
3581
3582                 kfree(ssi);
3583         } else
3584                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3585
3586         dev->sas_address = sa;
3587 }
3588
3589 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3590         struct ReportExtendedLUNdata *physdev)
3591 {
3592         u32 nphysicals;
3593         int i;
3594
3595         if (h->discovery_polling)
3596                 return;
3597
3598         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3599
3600         for (i = 0; i < nphysicals; i++) {
3601                 if (physdev->LUN[i].device_type ==
3602                         BMIC_DEVICE_TYPE_CONTROLLER
3603                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3604                         dev_info(&h->pdev->dev,
3605                                 "External controller present, activate discovery polling and disable rld caching\n");
3606                         hpsa_disable_rld_caching(h);
3607                         h->discovery_polling = 1;
3608                         break;
3609                 }
3610         }
3611 }
3612
3613 /* Get a device id from inquiry page 0x83 */
3614 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3615         unsigned char scsi3addr[], u8 page)
3616 {
3617         int rc;
3618         int i;
3619         int pages;
3620         unsigned char *buf, bufsize;
3621
3622         buf = kzalloc(256, GFP_KERNEL);
3623         if (!buf)
3624                 return false;
3625
3626         /* Get the size of the page list first */
3627         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3628                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3629                                 buf, HPSA_VPD_HEADER_SZ);
3630         if (rc != 0)
3631                 goto exit_unsupported;
3632         pages = buf[3];
3633         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3634                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3635         else
3636                 bufsize = 255;
3637
3638         /* Get the whole VPD page list */
3639         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3640                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3641                                 buf, bufsize);
3642         if (rc != 0)
3643                 goto exit_unsupported;
3644
3645         pages = buf[3];
3646         for (i = 1; i <= pages; i++)
3647                 if (buf[3 + i] == page)
3648                         goto exit_supported;
3649 exit_unsupported:
3650         kfree(buf);
3651         return false;
3652 exit_supported:
3653         kfree(buf);
3654         return true;
3655 }
3656
3657 /*
3658  * Called during a scan operation.
3659  * Sets ioaccel status on the new device list, not the existing device list
3660  *
3661  * The device list used during I/O will be updated later in
3662  * adjust_hpsa_scsi_table.
3663  */
3664 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3665         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3666 {
3667         int rc;
3668         unsigned char *buf;
3669         u8 ioaccel_status;
3670
3671         this_device->offload_config = 0;
3672         this_device->offload_enabled = 0;
3673         this_device->offload_to_be_enabled = 0;
3674
3675         buf = kzalloc(64, GFP_KERNEL);
3676         if (!buf)
3677                 return;
3678         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3679                 goto out;
3680         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3681                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3682         if (rc != 0)
3683                 goto out;
3684
3685 #define IOACCEL_STATUS_BYTE 4
3686 #define OFFLOAD_CONFIGURED_BIT 0x01
3687 #define OFFLOAD_ENABLED_BIT 0x02
3688         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3689         this_device->offload_config =
3690                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3691         if (this_device->offload_config) {
3692                 bool offload_enabled =
3693                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3694                 /*
3695                  * Check to see if offload can be enabled.
3696                  */
3697                 if (offload_enabled) {
3698                         rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3699                         if (rc) /* could not load raid_map */
3700                                 goto out;
3701                         this_device->offload_to_be_enabled = 1;
3702                 }
3703         }
3704
3705 out:
3706         kfree(buf);
3707         return;
3708 }
3709
3710 /* Get the device id from inquiry page 0x83 */
3711 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3712         unsigned char *device_id, int index, int buflen)
3713 {
3714         int rc;
3715         unsigned char *buf;
3716
3717         /* Does controller have VPD for device id? */
3718         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3719                 return 1; /* not supported */
3720
3721         buf = kzalloc(64, GFP_KERNEL);
3722         if (!buf)
3723                 return -ENOMEM;
3724
3725         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3726                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3727         if (rc == 0) {
3728                 if (buflen > 16)
3729                         buflen = 16;
3730                 memcpy(device_id, &buf[8], buflen);
3731         }
3732
3733         kfree(buf);
3734
3735         return rc; /*0 - got id,  otherwise, didn't */
3736 }
3737
3738 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3739                 void *buf, int bufsize,
3740                 int extended_response)
3741 {
3742         int rc = IO_OK;
3743         struct CommandList *c;
3744         unsigned char scsi3addr[8];
3745         struct ErrorInfo *ei;
3746
3747         c = cmd_alloc(h);
3748
3749         /* address the controller */
3750         memset(scsi3addr, 0, sizeof(scsi3addr));
3751         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3752                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3753                 rc = -EAGAIN;
3754                 goto out;
3755         }
3756         if (extended_response)
3757                 c->Request.CDB[1] = extended_response;
3758         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3759                         NO_TIMEOUT);
3760         if (rc)
3761                 goto out;
3762         ei = c->err_info;
3763         if (ei->CommandStatus != 0 &&
3764             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3765                 hpsa_scsi_interpret_error(h, c);
3766                 rc = -EIO;
3767         } else {
3768                 struct ReportLUNdata *rld = buf;
3769
3770                 if (rld->extended_response_flag != extended_response) {
3771                         if (!h->legacy_board) {
3772                                 dev_err(&h->pdev->dev,
3773                                         "report luns requested format %u, got %u\n",
3774                                         extended_response,
3775                                         rld->extended_response_flag);
3776                                 rc = -EINVAL;
3777                         } else
3778                                 rc = -EOPNOTSUPP;
3779                 }
3780         }
3781 out:
3782         cmd_free(h, c);
3783         return rc;
3784 }
3785
3786 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3787                 struct ReportExtendedLUNdata *buf, int bufsize)
3788 {
3789         int rc;
3790         struct ReportLUNdata *lbuf;
3791
3792         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3793                                       HPSA_REPORT_PHYS_EXTENDED);
3794         if (!rc || rc != -EOPNOTSUPP)
3795                 return rc;
3796
3797         /* REPORT PHYS EXTENDED is not supported */
3798         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3799         if (!lbuf)
3800                 return -ENOMEM;
3801
3802         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3803         if (!rc) {
3804                 int i;
3805                 u32 nphys;
3806
3807                 /* Copy ReportLUNdata header */
3808                 memcpy(buf, lbuf, 8);
3809                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3810                 for (i = 0; i < nphys; i++)
3811                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3812         }
3813         kfree(lbuf);
3814         return rc;
3815 }
3816
3817 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3818                 struct ReportLUNdata *buf, int bufsize)
3819 {
3820         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3821 }
3822
3823 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3824         int bus, int target, int lun)
3825 {
3826         device->bus = bus;
3827         device->target = target;
3828         device->lun = lun;
3829 }
3830
3831 /* Use VPD inquiry to get details of volume status */
3832 static int hpsa_get_volume_status(struct ctlr_info *h,
3833                                         unsigned char scsi3addr[])
3834 {
3835         int rc;
3836         int status;
3837         int size;
3838         unsigned char *buf;
3839
3840         buf = kzalloc(64, GFP_KERNEL);
3841         if (!buf)
3842                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843
3844         /* Does controller have VPD for logical volume status? */
3845         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3846                 goto exit_failed;
3847
3848         /* Get the size of the VPD return buffer */
3849         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3850                                         buf, HPSA_VPD_HEADER_SZ);
3851         if (rc != 0)
3852                 goto exit_failed;
3853         size = buf[3];
3854
3855         /* Now get the whole VPD buffer */
3856         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3857                                         buf, size + HPSA_VPD_HEADER_SZ);
3858         if (rc != 0)
3859                 goto exit_failed;
3860         status = buf[4]; /* status byte */
3861
3862         kfree(buf);
3863         return status;
3864 exit_failed:
3865         kfree(buf);
3866         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3867 }
3868
3869 /* Determine offline status of a volume.
3870  * Return either:
3871  *  0 (not offline)
3872  *  0xff (offline for unknown reasons)
3873  *  # (integer code indicating one of several NOT READY states
3874  *     describing why a volume is to be kept offline)
3875  */
3876 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3877                                         unsigned char scsi3addr[])
3878 {
3879         struct CommandList *c;
3880         unsigned char *sense;
3881         u8 sense_key, asc, ascq;
3882         int sense_len;
3883         int rc, ldstat = 0;
3884 #define ASC_LUN_NOT_READY 0x04
3885 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3886 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3887
3888         c = cmd_alloc(h);
3889
3890         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3891         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3892                                         NO_TIMEOUT);
3893         if (rc) {
3894                 cmd_free(h, c);
3895                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3896         }
3897         sense = c->err_info->SenseInfo;
3898         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3899                 sense_len = sizeof(c->err_info->SenseInfo);
3900         else
3901                 sense_len = c->err_info->SenseLen;
3902         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3903         cmd_free(h, c);
3904
3905         /* Determine the reason for not ready state */
3906         ldstat = hpsa_get_volume_status(h, scsi3addr);
3907
3908         /* Keep volume offline in certain cases: */
3909         switch (ldstat) {
3910         case HPSA_LV_FAILED:
3911         case HPSA_LV_UNDERGOING_ERASE:
3912         case HPSA_LV_NOT_AVAILABLE:
3913         case HPSA_LV_UNDERGOING_RPI:
3914         case HPSA_LV_PENDING_RPI:
3915         case HPSA_LV_ENCRYPTED_NO_KEY:
3916         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3917         case HPSA_LV_UNDERGOING_ENCRYPTION:
3918         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3919         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3920                 return ldstat;
3921         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3922                 /* If VPD status page isn't available,
3923                  * use ASC/ASCQ to determine state
3924                  */
3925                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3926                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3927                         return ldstat;
3928                 break;
3929         default:
3930                 break;
3931         }
3932         return HPSA_LV_OK;
3933 }
3934
3935 static int hpsa_update_device_info(struct ctlr_info *h,
3936         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3937         unsigned char *is_OBDR_device)
3938 {
3939
3940 #define OBDR_SIG_OFFSET 43
3941 #define OBDR_TAPE_SIG "$DR-10"
3942 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3943 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3944
3945         unsigned char *inq_buff;
3946         unsigned char *obdr_sig;
3947         int rc = 0;
3948
3949         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3950         if (!inq_buff) {
3951                 rc = -ENOMEM;
3952                 goto bail_out;
3953         }
3954
3955         /* Do an inquiry to the device to see what it is. */
3956         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3957                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3958                 dev_err(&h->pdev->dev,
3959                         "%s: inquiry failed, device will be skipped.\n",
3960                         __func__);
3961                 rc = HPSA_INQUIRY_FAILED;
3962                 goto bail_out;
3963         }
3964
3965         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3966         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3967
3968         this_device->devtype = (inq_buff[0] & 0x1f);
3969         memcpy(this_device->scsi3addr, scsi3addr, 8);
3970         memcpy(this_device->vendor, &inq_buff[8],
3971                 sizeof(this_device->vendor));
3972         memcpy(this_device->model, &inq_buff[16],
3973                 sizeof(this_device->model));
3974         this_device->rev = inq_buff[2];
3975         memset(this_device->device_id, 0,
3976                 sizeof(this_device->device_id));
3977         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3978                 sizeof(this_device->device_id)) < 0) {
3979                 dev_err(&h->pdev->dev,
3980                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3981                         h->ctlr, __func__,
3982                         h->scsi_host->host_no,
3983                         this_device->bus, this_device->target,
3984                         this_device->lun,
3985                         scsi_device_type(this_device->devtype),
3986                         this_device->model);
3987                 rc = HPSA_LV_FAILED;
3988                 goto bail_out;
3989         }
3990
3991         if ((this_device->devtype == TYPE_DISK ||
3992                 this_device->devtype == TYPE_ZBC) &&
3993                 is_logical_dev_addr_mode(scsi3addr)) {
3994                 unsigned char volume_offline;
3995
3996                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3997                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3998                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3999                 volume_offline = hpsa_volume_offline(h, scsi3addr);
4000                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4001                     h->legacy_board) {
4002                         /*
4003                          * Legacy boards might not support volume status
4004                          */
4005                         dev_info(&h->pdev->dev,
4006                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
4007                                  this_device->target, this_device->lun);
4008                         volume_offline = 0;
4009                 }
4010                 this_device->volume_offline = volume_offline;
4011                 if (volume_offline == HPSA_LV_FAILED) {
4012                         rc = HPSA_LV_FAILED;
4013                         dev_err(&h->pdev->dev,
4014                                 "%s: LV failed, device will be skipped.\n",
4015                                 __func__);
4016                         goto bail_out;
4017                 }
4018         } else {
4019                 this_device->raid_level = RAID_UNKNOWN;
4020                 this_device->offload_config = 0;
4021                 hpsa_turn_off_ioaccel_for_device(this_device);
4022                 this_device->hba_ioaccel_enabled = 0;
4023                 this_device->volume_offline = 0;
4024                 this_device->queue_depth = h->nr_cmds;
4025         }
4026
4027         if (this_device->external)
4028                 this_device->queue_depth = EXTERNAL_QD;
4029
4030         if (is_OBDR_device) {
4031                 /* See if this is a One-Button-Disaster-Recovery device
4032                  * by looking for "$DR-10" at offset 43 in inquiry data.
4033                  */
4034                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4035                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4036                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4037                                                 OBDR_SIG_LEN) == 0);
4038         }
4039         kfree(inq_buff);
4040         return 0;
4041
4042 bail_out:
4043         kfree(inq_buff);
4044         return rc;
4045 }
4046
4047 /*
4048  * Helper function to assign bus, target, lun mapping of devices.
4049  * Logical drive target and lun are assigned at this time, but
4050  * physical device lun and target assignment are deferred (assigned
4051  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4052 */
4053 static void figure_bus_target_lun(struct ctlr_info *h,
4054         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4055 {
4056         u32 lunid = get_unaligned_le32(lunaddrbytes);
4057
4058         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4059                 /* physical device, target and lun filled in later */
4060                 if (is_hba_lunid(lunaddrbytes)) {
4061                         int bus = HPSA_HBA_BUS;
4062
4063                         if (!device->rev)
4064                                 bus = HPSA_LEGACY_HBA_BUS;
4065                         hpsa_set_bus_target_lun(device,
4066                                         bus, 0, lunid & 0x3fff);
4067                 } else
4068                         /* defer target, lun assignment for physical devices */
4069                         hpsa_set_bus_target_lun(device,
4070                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4071                 return;
4072         }
4073         /* It's a logical device */
4074         if (device->external) {
4075                 hpsa_set_bus_target_lun(device,
4076                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4077                         lunid & 0x00ff);
4078                 return;
4079         }
4080         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4081                                 0, lunid & 0x3fff);
4082 }
4083
4084 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4085         int i, int nphysicals, int nlocal_logicals)
4086 {
4087         /* In report logicals, local logicals are listed first,
4088         * then any externals.
4089         */
4090         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4091
4092         if (i == raid_ctlr_position)
4093                 return 0;
4094
4095         if (i < logicals_start)
4096                 return 0;
4097
4098         /* i is in logicals range, but still within local logicals */
4099         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4100                 return 0;
4101
4102         return 1; /* it's an external lun */
4103 }
4104
4105 /*
4106  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4107  * logdev.  The number of luns in physdev and logdev are returned in
4108  * *nphysicals and *nlogicals, respectively.
4109  * Returns 0 on success, -1 otherwise.
4110  */
4111 static int hpsa_gather_lun_info(struct ctlr_info *h,
4112         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4113         struct ReportLUNdata *logdev, u32 *nlogicals)
4114 {
4115         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4116                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4117                 return -1;
4118         }
4119         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4120         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4121                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4122                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4123                 *nphysicals = HPSA_MAX_PHYS_LUN;
4124         }
4125         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4126                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4127                 return -1;
4128         }
4129         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4130         /* Reject Logicals in excess of our max capability. */
4131         if (*nlogicals > HPSA_MAX_LUN) {
4132                 dev_warn(&h->pdev->dev,
4133                         "maximum logical LUNs (%d) exceeded.  "
4134                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4135                         *nlogicals - HPSA_MAX_LUN);
4136                 *nlogicals = HPSA_MAX_LUN;
4137         }
4138         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4139                 dev_warn(&h->pdev->dev,
4140                         "maximum logical + physical LUNs (%d) exceeded. "
4141                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4142                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4143                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4144         }
4145         return 0;
4146 }
4147
4148 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4149         int i, int nphysicals, int nlogicals,
4150         struct ReportExtendedLUNdata *physdev_list,
4151         struct ReportLUNdata *logdev_list)
4152 {
4153         /* Helper function, figure out where the LUN ID info is coming from
4154          * given index i, lists of physical and logical devices, where in
4155          * the list the raid controller is supposed to appear (first or last)
4156          */
4157
4158         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4159         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4160
4161         if (i == raid_ctlr_position)
4162                 return RAID_CTLR_LUNID;
4163
4164         if (i < logicals_start)
4165                 return &physdev_list->LUN[i -
4166                                 (raid_ctlr_position == 0)].lunid[0];
4167
4168         if (i < last_device)
4169                 return &logdev_list->LUN[i - nphysicals -
4170                         (raid_ctlr_position == 0)][0];
4171         BUG();
4172         return NULL;
4173 }
4174
4175 /* get physical drive ioaccel handle and queue depth */
4176 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4177                 struct hpsa_scsi_dev_t *dev,
4178                 struct ReportExtendedLUNdata *rlep, int rle_index,
4179                 struct bmic_identify_physical_device *id_phys)
4180 {
4181         int rc;
4182         struct ext_report_lun_entry *rle;
4183
4184         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4185                 return;
4186
4187         rle = &rlep->LUN[rle_index];
4188
4189         dev->ioaccel_handle = rle->ioaccel_handle;
4190         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4191                 dev->hba_ioaccel_enabled = 1;
4192         memset(id_phys, 0, sizeof(*id_phys));
4193         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4194                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4195                         sizeof(*id_phys));
4196         if (!rc)
4197                 /* Reserve space for FW operations */
4198 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4199 #define DRIVE_QUEUE_DEPTH 7
4200                 dev->queue_depth =
4201                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4202                                 DRIVE_CMDS_RESERVED_FOR_FW;
4203         else
4204                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4205 }
4206
4207 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4208         struct ReportExtendedLUNdata *rlep, int rle_index,
4209         struct bmic_identify_physical_device *id_phys)
4210 {
4211         struct ext_report_lun_entry *rle;
4212
4213         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4214                 return;
4215
4216         rle = &rlep->LUN[rle_index];
4217
4218         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4219                 this_device->hba_ioaccel_enabled = 1;
4220
4221         memcpy(&this_device->active_path_index,
4222                 &id_phys->active_path_number,
4223                 sizeof(this_device->active_path_index));
4224         memcpy(&this_device->path_map,
4225                 &id_phys->redundant_path_present_map,
4226                 sizeof(this_device->path_map));
4227         memcpy(&this_device->box,
4228                 &id_phys->alternate_paths_phys_box_on_port,
4229                 sizeof(this_device->box));
4230         memcpy(&this_device->phys_connector,
4231                 &id_phys->alternate_paths_phys_connector,
4232                 sizeof(this_device->phys_connector));
4233         memcpy(&this_device->bay,
4234                 &id_phys->phys_bay_in_box,
4235                 sizeof(this_device->bay));
4236 }
4237
4238 /* get number of local logical disks. */
4239 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4240         struct bmic_identify_controller *id_ctlr,
4241         u32 *nlocals)
4242 {
4243         int rc;
4244
4245         if (!id_ctlr) {
4246                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4247                         __func__);
4248                 return -ENOMEM;
4249         }
4250         memset(id_ctlr, 0, sizeof(*id_ctlr));
4251         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4252         if (!rc)
4253                 if (id_ctlr->configured_logical_drive_count < 255)
4254                         *nlocals = id_ctlr->configured_logical_drive_count;
4255                 else
4256                         *nlocals = le16_to_cpu(
4257                                         id_ctlr->extended_logical_unit_count);
4258         else
4259                 *nlocals = -1;
4260         return rc;
4261 }
4262
4263 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4264 {
4265         struct bmic_identify_physical_device *id_phys;
4266         bool is_spare = false;
4267         int rc;
4268
4269         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4270         if (!id_phys)
4271                 return false;
4272
4273         rc = hpsa_bmic_id_physical_device(h,
4274                                         lunaddrbytes,
4275                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4276                                         id_phys, sizeof(*id_phys));
4277         if (rc == 0)
4278                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4279
4280         kfree(id_phys);
4281         return is_spare;
4282 }
4283
4284 #define RPL_DEV_FLAG_NON_DISK                           0x1
4285 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4286 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4287
4288 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4289
4290 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4291                                 struct ext_report_lun_entry *rle)
4292 {
4293         u8 device_flags;
4294         u8 device_type;
4295
4296         if (!MASKED_DEVICE(lunaddrbytes))
4297                 return false;
4298
4299         device_flags = rle->device_flags;
4300         device_type = rle->device_type;
4301
4302         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4303                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4304                         return false;
4305                 return true;
4306         }
4307
4308         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4309                 return false;
4310
4311         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4312                 return false;
4313
4314         /*
4315          * Spares may be spun down, we do not want to
4316          * do an Inquiry to a RAID set spare drive as
4317          * that would have them spun up, that is a
4318          * performance hit because I/O to the RAID device
4319          * stops while the spin up occurs which can take
4320          * over 50 seconds.
4321          */
4322         if (hpsa_is_disk_spare(h, lunaddrbytes))
4323                 return true;
4324
4325         return false;
4326 }
4327
4328 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4329 {
4330         /* the idea here is we could get notified
4331          * that some devices have changed, so we do a report
4332          * physical luns and report logical luns cmd, and adjust
4333          * our list of devices accordingly.
4334          *
4335          * The scsi3addr's of devices won't change so long as the
4336          * adapter is not reset.  That means we can rescan and
4337          * tell which devices we already know about, vs. new
4338          * devices, vs.  disappearing devices.
4339          */
4340         struct ReportExtendedLUNdata *physdev_list = NULL;
4341         struct ReportLUNdata *logdev_list = NULL;
4342         struct bmic_identify_physical_device *id_phys = NULL;
4343         struct bmic_identify_controller *id_ctlr = NULL;
4344         u32 nphysicals = 0;
4345         u32 nlogicals = 0;
4346         u32 nlocal_logicals = 0;
4347         u32 ndev_allocated = 0;
4348         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4349         int ncurrent = 0;
4350         int i, ndevs_to_allocate;
4351         int raid_ctlr_position;
4352         bool physical_device;
4353         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4354
4355         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4356         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4357         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4358         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4359         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4360         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4361
4362         if (!currentsd || !physdev_list || !logdev_list ||
4363                 !tmpdevice || !id_phys || !id_ctlr) {
4364                 dev_err(&h->pdev->dev, "out of memory\n");
4365                 goto out;
4366         }
4367         memset(lunzerobits, 0, sizeof(lunzerobits));
4368
4369         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4370
4371         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4372                         logdev_list, &nlogicals)) {
4373                 h->drv_req_rescan = 1;
4374                 goto out;
4375         }
4376
4377         /* Set number of local logicals (non PTRAID) */
4378         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4379                 dev_warn(&h->pdev->dev,
4380                         "%s: Can't determine number of local logical devices.\n",
4381                         __func__);
4382         }
4383
4384         /* We might see up to the maximum number of logical and physical disks
4385          * plus external target devices, and a device for the local RAID
4386          * controller.
4387          */
4388         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4389
4390         hpsa_ext_ctrl_present(h, physdev_list);
4391
4392         /* Allocate the per device structures */
4393         for (i = 0; i < ndevs_to_allocate; i++) {
4394                 if (i >= HPSA_MAX_DEVICES) {
4395                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4396                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4397                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4398                         break;
4399                 }
4400
4401                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4402                 if (!currentsd[i]) {
4403                         h->drv_req_rescan = 1;
4404                         goto out;
4405                 }
4406                 ndev_allocated++;
4407         }
4408
4409         if (is_scsi_rev_5(h))
4410                 raid_ctlr_position = 0;
4411         else
4412                 raid_ctlr_position = nphysicals + nlogicals;
4413
4414         /* adjust our table of devices */
4415         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4416                 u8 *lunaddrbytes, is_OBDR = 0;
4417                 int rc = 0;
4418                 int phys_dev_index = i - (raid_ctlr_position == 0);
4419                 bool skip_device = false;
4420
4421                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4422
4423                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4424
4425                 /* Figure out where the LUN ID info is coming from */
4426                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4427                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4428
4429                 /* Determine if this is a lun from an external target array */
4430                 tmpdevice->external =
4431                         figure_external_status(h, raid_ctlr_position, i,
4432                                                 nphysicals, nlocal_logicals);
4433
4434                 /*
4435                  * Skip over some devices such as a spare.
4436                  */
4437                 if (phys_dev_index >= 0 && !tmpdevice->external &&
4438                         physical_device) {
4439                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4440                                         &physdev_list->LUN[phys_dev_index]);
4441                         if (skip_device)
4442                                 continue;
4443                 }
4444
4445                 /* Get device type, vendor, model, device id, raid_map */
4446                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4447                                                         &is_OBDR);
4448                 if (rc == -ENOMEM) {
4449                         dev_warn(&h->pdev->dev,
4450                                 "Out of memory, rescan deferred.\n");
4451                         h->drv_req_rescan = 1;
4452                         goto out;
4453                 }
4454                 if (rc) {
4455                         h->drv_req_rescan = 1;
4456                         continue;
4457                 }
4458
4459                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4460                 this_device = currentsd[ncurrent];
4461
4462                 *this_device = *tmpdevice;
4463                 this_device->physical_device = physical_device;
4464
4465                 /*
4466                  * Expose all devices except for physical devices that
4467                  * are masked.
4468                  */
4469                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4470                         this_device->expose_device = 0;
4471                 else
4472                         this_device->expose_device = 1;
4473
4474
4475                 /*
4476                  * Get the SAS address for physical devices that are exposed.
4477                  */
4478                 if (this_device->physical_device && this_device->expose_device)
4479                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4480
4481                 switch (this_device->devtype) {
4482                 case TYPE_ROM:
4483                         /* We don't *really* support actual CD-ROM devices,
4484                          * just "One Button Disaster Recovery" tape drive
4485                          * which temporarily pretends to be a CD-ROM drive.
4486                          * So we check that the device is really an OBDR tape
4487                          * device by checking for "$DR-10" in bytes 43-48 of
4488                          * the inquiry data.
4489                          */
4490                         if (is_OBDR)
4491                                 ncurrent++;
4492                         break;
4493                 case TYPE_DISK:
4494                 case TYPE_ZBC:
4495                         if (this_device->physical_device) {
4496                                 /* The disk is in HBA mode. */
4497                                 /* Never use RAID mapper in HBA mode. */
4498                                 this_device->offload_enabled = 0;
4499                                 hpsa_get_ioaccel_drive_info(h, this_device,
4500                                         physdev_list, phys_dev_index, id_phys);
4501                                 hpsa_get_path_info(this_device,
4502                                         physdev_list, phys_dev_index, id_phys);
4503                         }
4504                         ncurrent++;
4505                         break;
4506                 case TYPE_TAPE:
4507                 case TYPE_MEDIUM_CHANGER:
4508                         ncurrent++;
4509                         break;
4510                 case TYPE_ENCLOSURE:
4511                         if (!this_device->external)
4512                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4513                                                 physdev_list, phys_dev_index,
4514                                                 this_device);
4515                         ncurrent++;
4516                         break;
4517                 case TYPE_RAID:
4518                         /* Only present the Smartarray HBA as a RAID controller.
4519                          * If it's a RAID controller other than the HBA itself
4520                          * (an external RAID controller, MSA500 or similar)
4521                          * don't present it.
4522                          */
4523                         if (!is_hba_lunid(lunaddrbytes))
4524                                 break;
4525                         ncurrent++;
4526                         break;
4527                 default:
4528                         break;
4529                 }
4530                 if (ncurrent >= HPSA_MAX_DEVICES)
4531                         break;
4532         }
4533
4534         if (h->sas_host == NULL) {
4535                 int rc = 0;
4536
4537                 rc = hpsa_add_sas_host(h);
4538                 if (rc) {
4539                         dev_warn(&h->pdev->dev,
4540                                 "Could not add sas host %d\n", rc);
4541                         goto out;
4542                 }
4543         }
4544
4545         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4546 out:
4547         kfree(tmpdevice);
4548         for (i = 0; i < ndev_allocated; i++)
4549                 kfree(currentsd[i]);
4550         kfree(currentsd);
4551         kfree(physdev_list);
4552         kfree(logdev_list);
4553         kfree(id_ctlr);
4554         kfree(id_phys);
4555 }
4556
4557 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4558                                    struct scatterlist *sg)
4559 {
4560         u64 addr64 = (u64) sg_dma_address(sg);
4561         unsigned int len = sg_dma_len(sg);
4562
4563         desc->Addr = cpu_to_le64(addr64);
4564         desc->Len = cpu_to_le32(len);
4565         desc->Ext = 0;
4566 }
4567
4568 /*
4569  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4570  * dma mapping  and fills in the scatter gather entries of the
4571  * hpsa command, cp.
4572  */
4573 static int hpsa_scatter_gather(struct ctlr_info *h,
4574                 struct CommandList *cp,
4575                 struct scsi_cmnd *cmd)
4576 {
4577         struct scatterlist *sg;
4578         int use_sg, i, sg_limit, chained;
4579         struct SGDescriptor *curr_sg;
4580
4581         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4582
4583         use_sg = scsi_dma_map(cmd);
4584         if (use_sg < 0)
4585                 return use_sg;
4586
4587         if (!use_sg)
4588                 goto sglist_finished;
4589
4590         /*
4591          * If the number of entries is greater than the max for a single list,
4592          * then we have a chained list; we will set up all but one entry in the
4593          * first list (the last entry is saved for link information);
4594          * otherwise, we don't have a chained list and we'll set up at each of
4595          * the entries in the one list.
4596          */
4597         curr_sg = cp->SG;
4598         chained = use_sg > h->max_cmd_sg_entries;
4599         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4600         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4601                 hpsa_set_sg_descriptor(curr_sg, sg);
4602                 curr_sg++;
4603         }
4604
4605         if (chained) {
4606                 /*
4607                  * Continue with the chained list.  Set curr_sg to the chained
4608                  * list.  Modify the limit to the total count less the entries
4609                  * we've already set up.  Resume the scan at the list entry
4610                  * where the previous loop left off.
4611                  */
4612                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4613                 sg_limit = use_sg - sg_limit;
4614                 for_each_sg(sg, sg, sg_limit, i) {
4615                         hpsa_set_sg_descriptor(curr_sg, sg);
4616                         curr_sg++;
4617                 }
4618         }
4619
4620         /* Back the pointer up to the last entry and mark it as "last". */
4621         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4622
4623         if (use_sg + chained > h->maxSG)
4624                 h->maxSG = use_sg + chained;
4625
4626         if (chained) {
4627                 cp->Header.SGList = h->max_cmd_sg_entries;
4628                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4629                 if (hpsa_map_sg_chain_block(h, cp)) {
4630                         scsi_dma_unmap(cmd);
4631                         return -1;
4632                 }
4633                 return 0;
4634         }
4635
4636 sglist_finished:
4637
4638         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4639         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4640         return 0;
4641 }
4642
4643 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4644                                                 u8 *cdb, int cdb_len,
4645                                                 const char *func)
4646 {
4647         dev_warn(&h->pdev->dev,
4648                  "%s: Blocking zero-length request: CDB:%*phN\n",
4649                  func, cdb_len, cdb);
4650 }
4651
4652 #define IO_ACCEL_INELIGIBLE 1
4653 /* zero-length transfers trigger hardware errors. */
4654 static bool is_zero_length_transfer(u8 *cdb)
4655 {
4656         u32 block_cnt;
4657
4658         /* Block zero-length transfer sizes on certain commands. */
4659         switch (cdb[0]) {
4660         case READ_10:
4661         case WRITE_10:
4662         case VERIFY:            /* 0x2F */
4663         case WRITE_VERIFY:      /* 0x2E */
4664                 block_cnt = get_unaligned_be16(&cdb[7]);
4665                 break;
4666         case READ_12:
4667         case WRITE_12:
4668         case VERIFY_12: /* 0xAF */
4669         case WRITE_VERIFY_12:   /* 0xAE */
4670                 block_cnt = get_unaligned_be32(&cdb[6]);
4671                 break;
4672         case READ_16:
4673         case WRITE_16:
4674         case VERIFY_16:         /* 0x8F */
4675                 block_cnt = get_unaligned_be32(&cdb[10]);
4676                 break;
4677         default:
4678                 return false;
4679         }
4680
4681         return block_cnt == 0;
4682 }
4683
4684 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4685 {
4686         int is_write = 0;
4687         u32 block;
4688         u32 block_cnt;
4689
4690         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4691         switch (cdb[0]) {
4692         case WRITE_6:
4693         case WRITE_12:
4694                 is_write = 1;
4695                 fallthrough;
4696         case READ_6:
4697         case READ_12:
4698                 if (*cdb_len == 6) {
4699                         block = (((cdb[1] & 0x1F) << 16) |
4700                                 (cdb[2] << 8) |
4701                                 cdb[3]);
4702                         block_cnt = cdb[4];
4703                         if (block_cnt == 0)
4704                                 block_cnt = 256;
4705                 } else {
4706                         BUG_ON(*cdb_len != 12);
4707                         block = get_unaligned_be32(&cdb[2]);
4708                         block_cnt = get_unaligned_be32(&cdb[6]);
4709                 }
4710                 if (block_cnt > 0xffff)
4711                         return IO_ACCEL_INELIGIBLE;
4712
4713                 cdb[0] = is_write ? WRITE_10 : READ_10;
4714                 cdb[1] = 0;
4715                 cdb[2] = (u8) (block >> 24);
4716                 cdb[3] = (u8) (block >> 16);
4717                 cdb[4] = (u8) (block >> 8);
4718                 cdb[5] = (u8) (block);
4719                 cdb[6] = 0;
4720                 cdb[7] = (u8) (block_cnt >> 8);
4721                 cdb[8] = (u8) (block_cnt);
4722                 cdb[9] = 0;
4723                 *cdb_len = 10;
4724                 break;
4725         }
4726         return 0;
4727 }
4728
4729 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4730         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4731         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4732 {
4733         struct scsi_cmnd *cmd = c->scsi_cmd;
4734         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4735         unsigned int len;
4736         unsigned int total_len = 0;
4737         struct scatterlist *sg;
4738         u64 addr64;
4739         int use_sg, i;
4740         struct SGDescriptor *curr_sg;
4741         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4742
4743         /* TODO: implement chaining support */
4744         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4745                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4746                 return IO_ACCEL_INELIGIBLE;
4747         }
4748
4749         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4750
4751         if (is_zero_length_transfer(cdb)) {
4752                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4753                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4754                 return IO_ACCEL_INELIGIBLE;
4755         }
4756
4757         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4758                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4759                 return IO_ACCEL_INELIGIBLE;
4760         }
4761
4762         c->cmd_type = CMD_IOACCEL1;
4763
4764         /* Adjust the DMA address to point to the accelerated command buffer */
4765         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4766                                 (c->cmdindex * sizeof(*cp));
4767         BUG_ON(c->busaddr & 0x0000007F);
4768
4769         use_sg = scsi_dma_map(cmd);
4770         if (use_sg < 0) {
4771                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4772                 return use_sg;
4773         }
4774
4775         if (use_sg) {
4776                 curr_sg = cp->SG;
4777                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4778                         addr64 = (u64) sg_dma_address(sg);
4779                         len  = sg_dma_len(sg);
4780                         total_len += len;
4781                         curr_sg->Addr = cpu_to_le64(addr64);
4782                         curr_sg->Len = cpu_to_le32(len);
4783                         curr_sg->Ext = cpu_to_le32(0);
4784                         curr_sg++;
4785                 }
4786                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4787
4788                 switch (cmd->sc_data_direction) {
4789                 case DMA_TO_DEVICE:
4790                         control |= IOACCEL1_CONTROL_DATA_OUT;
4791                         break;
4792                 case DMA_FROM_DEVICE:
4793                         control |= IOACCEL1_CONTROL_DATA_IN;
4794                         break;
4795                 case DMA_NONE:
4796                         control |= IOACCEL1_CONTROL_NODATAXFER;
4797                         break;
4798                 default:
4799                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4800                         cmd->sc_data_direction);
4801                         BUG();
4802                         break;
4803                 }
4804         } else {
4805                 control |= IOACCEL1_CONTROL_NODATAXFER;
4806         }
4807
4808         c->Header.SGList = use_sg;
4809         /* Fill out the command structure to submit */
4810         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4811         cp->transfer_len = cpu_to_le32(total_len);
4812         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4813                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4814         cp->control = cpu_to_le32(control);
4815         memcpy(cp->CDB, cdb, cdb_len);
4816         memcpy(cp->CISS_LUN, scsi3addr, 8);
4817         /* Tag was already set at init time. */
4818         enqueue_cmd_and_start_io(h, c);
4819         return 0;
4820 }
4821
4822 /*
4823  * Queue a command directly to a device behind the controller using the
4824  * I/O accelerator path.
4825  */
4826 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4827         struct CommandList *c)
4828 {
4829         struct scsi_cmnd *cmd = c->scsi_cmd;
4830         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4831
4832         if (!dev)
4833                 return -1;
4834
4835         c->phys_disk = dev;
4836
4837         if (dev->in_reset)
4838                 return -1;
4839
4840         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4841                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4842 }
4843
4844 /*
4845  * Set encryption parameters for the ioaccel2 request
4846  */
4847 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4848         struct CommandList *c, struct io_accel2_cmd *cp)
4849 {
4850         struct scsi_cmnd *cmd = c->scsi_cmd;
4851         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4852         struct raid_map_data *map = &dev->raid_map;
4853         u64 first_block;
4854
4855         /* Are we doing encryption on this device */
4856         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4857                 return;
4858         /* Set the data encryption key index. */
4859         cp->dekindex = map->dekindex;
4860
4861         /* Set the encryption enable flag, encoded into direction field. */
4862         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4863
4864         /* Set encryption tweak values based on logical block address
4865          * If block size is 512, tweak value is LBA.
4866          * For other block sizes, tweak is (LBA * block size)/ 512)
4867          */
4868         switch (cmd->cmnd[0]) {
4869         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4870         case READ_6:
4871         case WRITE_6:
4872                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4873                                 (cmd->cmnd[2] << 8) |
4874                                 cmd->cmnd[3]);
4875                 break;
4876         case WRITE_10:
4877         case READ_10:
4878         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4879         case WRITE_12:
4880         case READ_12:
4881                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4882                 break;
4883         case WRITE_16:
4884         case READ_16:
4885                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4886                 break;
4887         default:
4888                 dev_err(&h->pdev->dev,
4889                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4890                         __func__, cmd->cmnd[0]);
4891                 BUG();
4892                 break;
4893         }
4894
4895         if (le32_to_cpu(map->volume_blk_size) != 512)
4896                 first_block = first_block *
4897                                 le32_to_cpu(map->volume_blk_size)/512;
4898
4899         cp->tweak_lower = cpu_to_le32(first_block);
4900         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4901 }
4902
4903 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4904         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4905         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4906 {
4907         struct scsi_cmnd *cmd = c->scsi_cmd;
4908         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4909         struct ioaccel2_sg_element *curr_sg;
4910         int use_sg, i;
4911         struct scatterlist *sg;
4912         u64 addr64;
4913         u32 len;
4914         u32 total_len = 0;
4915
4916         if (!cmd->device)
4917                 return -1;
4918
4919         if (!cmd->device->hostdata)
4920                 return -1;
4921
4922         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4923
4924         if (is_zero_length_transfer(cdb)) {
4925                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4926                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4927                 return IO_ACCEL_INELIGIBLE;
4928         }
4929
4930         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4931                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4932                 return IO_ACCEL_INELIGIBLE;
4933         }
4934
4935         c->cmd_type = CMD_IOACCEL2;
4936         /* Adjust the DMA address to point to the accelerated command buffer */
4937         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4938                                 (c->cmdindex * sizeof(*cp));
4939         BUG_ON(c->busaddr & 0x0000007F);
4940
4941         memset(cp, 0, sizeof(*cp));
4942         cp->IU_type = IOACCEL2_IU_TYPE;
4943
4944         use_sg = scsi_dma_map(cmd);
4945         if (use_sg < 0) {
4946                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4947                 return use_sg;
4948         }
4949
4950         if (use_sg) {
4951                 curr_sg = cp->sg;
4952                 if (use_sg > h->ioaccel_maxsg) {
4953                         addr64 = le64_to_cpu(
4954                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4955                         curr_sg->address = cpu_to_le64(addr64);
4956                         curr_sg->length = 0;
4957                         curr_sg->reserved[0] = 0;
4958                         curr_sg->reserved[1] = 0;
4959                         curr_sg->reserved[2] = 0;
4960                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4961
4962                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4963                 }
4964                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4965                         addr64 = (u64) sg_dma_address(sg);
4966                         len  = sg_dma_len(sg);
4967                         total_len += len;
4968                         curr_sg->address = cpu_to_le64(addr64);
4969                         curr_sg->length = cpu_to_le32(len);
4970                         curr_sg->reserved[0] = 0;
4971                         curr_sg->reserved[1] = 0;
4972                         curr_sg->reserved[2] = 0;
4973                         curr_sg->chain_indicator = 0;
4974                         curr_sg++;
4975                 }
4976
4977                 /*
4978                  * Set the last s/g element bit
4979                  */
4980                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4981
4982                 switch (cmd->sc_data_direction) {
4983                 case DMA_TO_DEVICE:
4984                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4985                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4986                         break;
4987                 case DMA_FROM_DEVICE:
4988                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4989                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4990                         break;
4991                 case DMA_NONE:
4992                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4993                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4994                         break;
4995                 default:
4996                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4997                                 cmd->sc_data_direction);
4998                         BUG();
4999                         break;
5000                 }
5001         } else {
5002                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5003                 cp->direction |= IOACCEL2_DIR_NO_DATA;
5004         }
5005
5006         /* Set encryption parameters, if necessary */
5007         set_encrypt_ioaccel2(h, c, cp);
5008
5009         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5010         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5011         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5012
5013         cp->data_len = cpu_to_le32(total_len);
5014         cp->err_ptr = cpu_to_le64(c->busaddr +
5015                         offsetof(struct io_accel2_cmd, error_data));
5016         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5017
5018         /* fill in sg elements */
5019         if (use_sg > h->ioaccel_maxsg) {
5020                 cp->sg_count = 1;
5021                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5022                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5023                         atomic_dec(&phys_disk->ioaccel_cmds_out);
5024                         scsi_dma_unmap(cmd);
5025                         return -1;
5026                 }
5027         } else
5028                 cp->sg_count = (u8) use_sg;
5029
5030         if (phys_disk->in_reset) {
5031                 cmd->result = DID_RESET << 16;
5032                 return -1;
5033         }
5034
5035         enqueue_cmd_and_start_io(h, c);
5036         return 0;
5037 }
5038
5039 /*
5040  * Queue a command to the correct I/O accelerator path.
5041  */
5042 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5043         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5044         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5045 {
5046         if (!c->scsi_cmd->device)
5047                 return -1;
5048
5049         if (!c->scsi_cmd->device->hostdata)
5050                 return -1;
5051
5052         if (phys_disk->in_reset)
5053                 return -1;
5054
5055         /* Try to honor the device's queue depth */
5056         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5057                                         phys_disk->queue_depth) {
5058                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5059                 return IO_ACCEL_INELIGIBLE;
5060         }
5061         if (h->transMethod & CFGTBL_Trans_io_accel1)
5062                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5063                                                 cdb, cdb_len, scsi3addr,
5064                                                 phys_disk);
5065         else
5066                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5067                                                 cdb, cdb_len, scsi3addr,
5068                                                 phys_disk);
5069 }
5070
5071 static void raid_map_helper(struct raid_map_data *map,
5072                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5073 {
5074         if (offload_to_mirror == 0)  {
5075                 /* use physical disk in the first mirrored group. */
5076                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5077                 return;
5078         }
5079         do {
5080                 /* determine mirror group that *map_index indicates */
5081                 *current_group = *map_index /
5082                         le16_to_cpu(map->data_disks_per_row);
5083                 if (offload_to_mirror == *current_group)
5084                         continue;
5085                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5086                         /* select map index from next group */
5087                         *map_index += le16_to_cpu(map->data_disks_per_row);
5088                         (*current_group)++;
5089                 } else {
5090                         /* select map index from first group */
5091                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5092                         *current_group = 0;
5093                 }
5094         } while (offload_to_mirror != *current_group);
5095 }
5096
5097 /*
5098  * Attempt to perform offload RAID mapping for a logical volume I/O.
5099  */
5100 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5101         struct CommandList *c)
5102 {
5103         struct scsi_cmnd *cmd = c->scsi_cmd;
5104         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5105         struct raid_map_data *map = &dev->raid_map;
5106         struct raid_map_disk_data *dd = &map->data[0];
5107         int is_write = 0;
5108         u32 map_index;
5109         u64 first_block, last_block;
5110         u32 block_cnt;
5111         u32 blocks_per_row;
5112         u64 first_row, last_row;
5113         u32 first_row_offset, last_row_offset;
5114         u32 first_column, last_column;
5115         u64 r0_first_row, r0_last_row;
5116         u32 r5or6_blocks_per_row;
5117         u64 r5or6_first_row, r5or6_last_row;
5118         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5119         u32 r5or6_first_column, r5or6_last_column;
5120         u32 total_disks_per_row;
5121         u32 stripesize;
5122         u32 first_group, last_group, current_group;
5123         u32 map_row;
5124         u32 disk_handle;
5125         u64 disk_block;
5126         u32 disk_block_cnt;
5127         u8 cdb[16];
5128         u8 cdb_len;
5129         u16 strip_size;
5130 #if BITS_PER_LONG == 32
5131         u64 tmpdiv;
5132 #endif
5133         int offload_to_mirror;
5134
5135         if (!dev)
5136                 return -1;
5137
5138         if (dev->in_reset)
5139                 return -1;
5140
5141         /* check for valid opcode, get LBA and block count */
5142         switch (cmd->cmnd[0]) {
5143         case WRITE_6:
5144                 is_write = 1;
5145                 fallthrough;
5146         case READ_6:
5147                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5148                                 (cmd->cmnd[2] << 8) |
5149                                 cmd->cmnd[3]);
5150                 block_cnt = cmd->cmnd[4];
5151                 if (block_cnt == 0)
5152                         block_cnt = 256;
5153                 break;
5154         case WRITE_10:
5155                 is_write = 1;
5156                 fallthrough;
5157         case READ_10:
5158                 first_block =
5159                         (((u64) cmd->cmnd[2]) << 24) |
5160                         (((u64) cmd->cmnd[3]) << 16) |
5161                         (((u64) cmd->cmnd[4]) << 8) |
5162                         cmd->cmnd[5];
5163                 block_cnt =
5164                         (((u32) cmd->cmnd[7]) << 8) |
5165                         cmd->cmnd[8];
5166                 break;
5167         case WRITE_12:
5168                 is_write = 1;
5169                 fallthrough;
5170         case READ_12:
5171                 first_block =
5172                         (((u64) cmd->cmnd[2]) << 24) |
5173                         (((u64) cmd->cmnd[3]) << 16) |
5174                         (((u64) cmd->cmnd[4]) << 8) |
5175                         cmd->cmnd[5];
5176                 block_cnt =
5177                         (((u32) cmd->cmnd[6]) << 24) |
5178                         (((u32) cmd->cmnd[7]) << 16) |
5179                         (((u32) cmd->cmnd[8]) << 8) |
5180                 cmd->cmnd[9];
5181                 break;
5182         case WRITE_16:
5183                 is_write = 1;
5184                 fallthrough;
5185         case READ_16:
5186                 first_block =
5187                         (((u64) cmd->cmnd[2]) << 56) |
5188                         (((u64) cmd->cmnd[3]) << 48) |
5189                         (((u64) cmd->cmnd[4]) << 40) |
5190                         (((u64) cmd->cmnd[5]) << 32) |
5191                         (((u64) cmd->cmnd[6]) << 24) |
5192                         (((u64) cmd->cmnd[7]) << 16) |
5193                         (((u64) cmd->cmnd[8]) << 8) |
5194                         cmd->cmnd[9];
5195                 block_cnt =
5196                         (((u32) cmd->cmnd[10]) << 24) |
5197                         (((u32) cmd->cmnd[11]) << 16) |
5198                         (((u32) cmd->cmnd[12]) << 8) |
5199                         cmd->cmnd[13];
5200                 break;
5201         default:
5202                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5203         }
5204         last_block = first_block + block_cnt - 1;
5205
5206         /* check for write to non-RAID-0 */
5207         if (is_write && dev->raid_level != 0)
5208                 return IO_ACCEL_INELIGIBLE;
5209
5210         /* check for invalid block or wraparound */
5211         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5212                 last_block < first_block)
5213                 return IO_ACCEL_INELIGIBLE;
5214
5215         /* calculate stripe information for the request */
5216         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5217                                 le16_to_cpu(map->strip_size);
5218         strip_size = le16_to_cpu(map->strip_size);
5219 #if BITS_PER_LONG == 32
5220         tmpdiv = first_block;
5221         (void) do_div(tmpdiv, blocks_per_row);
5222         first_row = tmpdiv;
5223         tmpdiv = last_block;
5224         (void) do_div(tmpdiv, blocks_per_row);
5225         last_row = tmpdiv;
5226         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5227         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5228         tmpdiv = first_row_offset;
5229         (void) do_div(tmpdiv, strip_size);
5230         first_column = tmpdiv;
5231         tmpdiv = last_row_offset;
5232         (void) do_div(tmpdiv, strip_size);
5233         last_column = tmpdiv;
5234 #else
5235         first_row = first_block / blocks_per_row;
5236         last_row = last_block / blocks_per_row;
5237         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5238         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5239         first_column = first_row_offset / strip_size;
5240         last_column = last_row_offset / strip_size;
5241 #endif
5242
5243         /* if this isn't a single row/column then give to the controller */
5244         if ((first_row != last_row) || (first_column != last_column))
5245                 return IO_ACCEL_INELIGIBLE;
5246
5247         /* proceeding with driver mapping */
5248         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5249                                 le16_to_cpu(map->metadata_disks_per_row);
5250         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5251                                 le16_to_cpu(map->row_cnt);
5252         map_index = (map_row * total_disks_per_row) + first_column;
5253
5254         switch (dev->raid_level) {
5255         case HPSA_RAID_0:
5256                 break; /* nothing special to do */
5257         case HPSA_RAID_1:
5258                 /* Handles load balance across RAID 1 members.
5259                  * (2-drive R1 and R10 with even # of drives.)
5260                  * Appropriate for SSDs, not optimal for HDDs
5261                  * Ensure we have the correct raid_map.
5262                  */
5263                 if (le16_to_cpu(map->layout_map_count) != 2) {
5264                         hpsa_turn_off_ioaccel_for_device(dev);
5265                         return IO_ACCEL_INELIGIBLE;
5266                 }
5267                 if (dev->offload_to_mirror)
5268                         map_index += le16_to_cpu(map->data_disks_per_row);
5269                 dev->offload_to_mirror = !dev->offload_to_mirror;
5270                 break;
5271         case HPSA_RAID_ADM:
5272                 /* Handles N-way mirrors  (R1-ADM)
5273                  * and R10 with # of drives divisible by 3.)
5274                  * Ensure we have the correct raid_map.
5275                  */
5276                 if (le16_to_cpu(map->layout_map_count) != 3) {
5277                         hpsa_turn_off_ioaccel_for_device(dev);
5278                         return IO_ACCEL_INELIGIBLE;
5279                 }
5280
5281                 offload_to_mirror = dev->offload_to_mirror;
5282                 raid_map_helper(map, offload_to_mirror,
5283                                 &map_index, &current_group);
5284                 /* set mirror group to use next time */
5285                 offload_to_mirror =
5286                         (offload_to_mirror >=
5287                         le16_to_cpu(map->layout_map_count) - 1)
5288                         ? 0 : offload_to_mirror + 1;
5289                 dev->offload_to_mirror = offload_to_mirror;
5290                 /* Avoid direct use of dev->offload_to_mirror within this
5291                  * function since multiple threads might simultaneously
5292                  * increment it beyond the range of dev->layout_map_count -1.
5293                  */
5294                 break;
5295         case HPSA_RAID_5:
5296         case HPSA_RAID_6:
5297                 if (le16_to_cpu(map->layout_map_count) <= 1)
5298                         break;
5299
5300                 /* Verify first and last block are in same RAID group */
5301                 r5or6_blocks_per_row =
5302                         le16_to_cpu(map->strip_size) *
5303                         le16_to_cpu(map->data_disks_per_row);
5304                 if (r5or6_blocks_per_row == 0) {
5305                         hpsa_turn_off_ioaccel_for_device(dev);
5306                         return IO_ACCEL_INELIGIBLE;
5307                 }
5308                 stripesize = r5or6_blocks_per_row *
5309                         le16_to_cpu(map->layout_map_count);
5310 #if BITS_PER_LONG == 32
5311                 tmpdiv = first_block;
5312                 first_group = do_div(tmpdiv, stripesize);
5313                 tmpdiv = first_group;
5314                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5315                 first_group = tmpdiv;
5316                 tmpdiv = last_block;
5317                 last_group = do_div(tmpdiv, stripesize);
5318                 tmpdiv = last_group;
5319                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5320                 last_group = tmpdiv;
5321 #else
5322                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5323                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5324 #endif
5325                 if (first_group != last_group)
5326                         return IO_ACCEL_INELIGIBLE;
5327
5328                 /* Verify request is in a single row of RAID 5/6 */
5329 #if BITS_PER_LONG == 32
5330                 tmpdiv = first_block;
5331                 (void) do_div(tmpdiv, stripesize);
5332                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5333                 tmpdiv = last_block;
5334                 (void) do_div(tmpdiv, stripesize);
5335                 r5or6_last_row = r0_last_row = tmpdiv;
5336 #else
5337                 first_row = r5or6_first_row = r0_first_row =
5338                                                 first_block / stripesize;
5339                 r5or6_last_row = r0_last_row = last_block / stripesize;
5340 #endif
5341                 if (r5or6_first_row != r5or6_last_row)
5342                         return IO_ACCEL_INELIGIBLE;
5343
5344
5345                 /* Verify request is in a single column */
5346 #if BITS_PER_LONG == 32
5347                 tmpdiv = first_block;
5348                 first_row_offset = do_div(tmpdiv, stripesize);
5349                 tmpdiv = first_row_offset;
5350                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5351                 r5or6_first_row_offset = first_row_offset;
5352                 tmpdiv = last_block;
5353                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5354                 tmpdiv = r5or6_last_row_offset;
5355                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5356                 tmpdiv = r5or6_first_row_offset;
5357                 (void) do_div(tmpdiv, map->strip_size);
5358                 first_column = r5or6_first_column = tmpdiv;
5359                 tmpdiv = r5or6_last_row_offset;
5360                 (void) do_div(tmpdiv, map->strip_size);
5361                 r5or6_last_column = tmpdiv;
5362 #else
5363                 first_row_offset = r5or6_first_row_offset =
5364                         (u32)((first_block % stripesize) %
5365                                                 r5or6_blocks_per_row);
5366
5367                 r5or6_last_row_offset =
5368                         (u32)((last_block % stripesize) %
5369                                                 r5or6_blocks_per_row);
5370
5371                 first_column = r5or6_first_column =
5372                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5373                 r5or6_last_column =
5374                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5375 #endif
5376                 if (r5or6_first_column != r5or6_last_column)
5377                         return IO_ACCEL_INELIGIBLE;
5378
5379                 /* Request is eligible */
5380                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5381                         le16_to_cpu(map->row_cnt);
5382
5383                 map_index = (first_group *
5384                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5385                         (map_row * total_disks_per_row) + first_column;
5386                 break;
5387         default:
5388                 return IO_ACCEL_INELIGIBLE;
5389         }
5390
5391         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5392                 return IO_ACCEL_INELIGIBLE;
5393
5394         c->phys_disk = dev->phys_disk[map_index];
5395         if (!c->phys_disk)
5396                 return IO_ACCEL_INELIGIBLE;
5397
5398         disk_handle = dd[map_index].ioaccel_handle;
5399         disk_block = le64_to_cpu(map->disk_starting_blk) +
5400                         first_row * le16_to_cpu(map->strip_size) +
5401                         (first_row_offset - first_column *
5402                         le16_to_cpu(map->strip_size));
5403         disk_block_cnt = block_cnt;
5404
5405         /* handle differing logical/physical block sizes */
5406         if (map->phys_blk_shift) {
5407                 disk_block <<= map->phys_blk_shift;
5408                 disk_block_cnt <<= map->phys_blk_shift;
5409         }
5410         BUG_ON(disk_block_cnt > 0xffff);
5411
5412         /* build the new CDB for the physical disk I/O */
5413         if (disk_block > 0xffffffff) {
5414                 cdb[0] = is_write ? WRITE_16 : READ_16;
5415                 cdb[1] = 0;
5416                 cdb[2] = (u8) (disk_block >> 56);
5417                 cdb[3] = (u8) (disk_block >> 48);
5418                 cdb[4] = (u8) (disk_block >> 40);
5419                 cdb[5] = (u8) (disk_block >> 32);
5420                 cdb[6] = (u8) (disk_block >> 24);
5421                 cdb[7] = (u8) (disk_block >> 16);
5422                 cdb[8] = (u8) (disk_block >> 8);
5423                 cdb[9] = (u8) (disk_block);
5424                 cdb[10] = (u8) (disk_block_cnt >> 24);
5425                 cdb[11] = (u8) (disk_block_cnt >> 16);
5426                 cdb[12] = (u8) (disk_block_cnt >> 8);
5427                 cdb[13] = (u8) (disk_block_cnt);
5428                 cdb[14] = 0;
5429                 cdb[15] = 0;
5430                 cdb_len = 16;
5431         } else {
5432                 cdb[0] = is_write ? WRITE_10 : READ_10;
5433                 cdb[1] = 0;
5434                 cdb[2] = (u8) (disk_block >> 24);
5435                 cdb[3] = (u8) (disk_block >> 16);
5436                 cdb[4] = (u8) (disk_block >> 8);
5437                 cdb[5] = (u8) (disk_block);
5438                 cdb[6] = 0;
5439                 cdb[7] = (u8) (disk_block_cnt >> 8);
5440                 cdb[8] = (u8) (disk_block_cnt);
5441                 cdb[9] = 0;
5442                 cdb_len = 10;
5443         }
5444         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5445                                                 dev->scsi3addr,
5446                                                 dev->phys_disk[map_index]);
5447 }
5448
5449 /*
5450  * Submit commands down the "normal" RAID stack path
5451  * All callers to hpsa_ciss_submit must check lockup_detected
5452  * beforehand, before (opt.) and after calling cmd_alloc
5453  */
5454 static int hpsa_ciss_submit(struct ctlr_info *h,
5455         struct CommandList *c, struct scsi_cmnd *cmd,
5456         struct hpsa_scsi_dev_t *dev)
5457 {
5458         cmd->host_scribble = (unsigned char *) c;
5459         c->cmd_type = CMD_SCSI;
5460         c->scsi_cmd = cmd;
5461         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5462         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5463         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5464
5465         /* Fill in the request block... */
5466
5467         c->Request.Timeout = 0;
5468         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5469         c->Request.CDBLen = cmd->cmd_len;
5470         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5471         switch (cmd->sc_data_direction) {
5472         case DMA_TO_DEVICE:
5473                 c->Request.type_attr_dir =
5474                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5475                 break;
5476         case DMA_FROM_DEVICE:
5477                 c->Request.type_attr_dir =
5478                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5479                 break;
5480         case DMA_NONE:
5481                 c->Request.type_attr_dir =
5482                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5483                 break;
5484         case DMA_BIDIRECTIONAL:
5485                 /* This can happen if a buggy application does a scsi passthru
5486                  * and sets both inlen and outlen to non-zero. ( see
5487                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5488                  */
5489
5490                 c->Request.type_attr_dir =
5491                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5492                 /* This is technically wrong, and hpsa controllers should
5493                  * reject it with CMD_INVALID, which is the most correct
5494                  * response, but non-fibre backends appear to let it
5495                  * slide by, and give the same results as if this field
5496                  * were set correctly.  Either way is acceptable for
5497                  * our purposes here.
5498                  */
5499
5500                 break;
5501
5502         default:
5503                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5504                         cmd->sc_data_direction);
5505                 BUG();
5506                 break;
5507         }
5508
5509         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5510                 hpsa_cmd_resolve_and_free(h, c);
5511                 return SCSI_MLQUEUE_HOST_BUSY;
5512         }
5513
5514         if (dev->in_reset) {
5515                 hpsa_cmd_resolve_and_free(h, c);
5516                 return SCSI_MLQUEUE_HOST_BUSY;
5517         }
5518
5519         c->device = dev;
5520
5521         enqueue_cmd_and_start_io(h, c);
5522         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5523         return 0;
5524 }
5525
5526 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5527                                 struct CommandList *c)
5528 {
5529         dma_addr_t cmd_dma_handle, err_dma_handle;
5530
5531         /* Zero out all of commandlist except the last field, refcount */
5532         memset(c, 0, offsetof(struct CommandList, refcount));
5533         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5534         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5535         c->err_info = h->errinfo_pool + index;
5536         memset(c->err_info, 0, sizeof(*c->err_info));
5537         err_dma_handle = h->errinfo_pool_dhandle
5538             + index * sizeof(*c->err_info);
5539         c->cmdindex = index;
5540         c->busaddr = (u32) cmd_dma_handle;
5541         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5542         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5543         c->h = h;
5544         c->scsi_cmd = SCSI_CMD_IDLE;
5545 }
5546
5547 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5548 {
5549         int i;
5550
5551         for (i = 0; i < h->nr_cmds; i++) {
5552                 struct CommandList *c = h->cmd_pool + i;
5553
5554                 hpsa_cmd_init(h, i, c);
5555                 atomic_set(&c->refcount, 0);
5556         }
5557 }
5558
5559 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5560                                 struct CommandList *c)
5561 {
5562         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5563
5564         BUG_ON(c->cmdindex != index);
5565
5566         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5567         memset(c->err_info, 0, sizeof(*c->err_info));
5568         c->busaddr = (u32) cmd_dma_handle;
5569 }
5570
5571 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5572                 struct CommandList *c, struct scsi_cmnd *cmd,
5573                 bool retry)
5574 {
5575         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5576         int rc = IO_ACCEL_INELIGIBLE;
5577
5578         if (!dev)
5579                 return SCSI_MLQUEUE_HOST_BUSY;
5580
5581         if (dev->in_reset)
5582                 return SCSI_MLQUEUE_HOST_BUSY;
5583
5584         if (hpsa_simple_mode)
5585                 return IO_ACCEL_INELIGIBLE;
5586
5587         cmd->host_scribble = (unsigned char *) c;
5588
5589         if (dev->offload_enabled) {
5590                 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5591                 c->cmd_type = CMD_SCSI;
5592                 c->scsi_cmd = cmd;
5593                 c->device = dev;
5594                 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5595                         c->retry_pending = true;
5596                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5597                 if (rc < 0)     /* scsi_dma_map failed. */
5598                         rc = SCSI_MLQUEUE_HOST_BUSY;
5599         } else if (dev->hba_ioaccel_enabled) {
5600                 hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5601                 c->cmd_type = CMD_SCSI;
5602                 c->scsi_cmd = cmd;
5603                 c->device = dev;
5604                 if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5605                         c->retry_pending = true;
5606                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5607                 if (rc < 0)     /* scsi_dma_map failed. */
5608                         rc = SCSI_MLQUEUE_HOST_BUSY;
5609         }
5610         return rc;
5611 }
5612
5613 static void hpsa_command_resubmit_worker(struct work_struct *work)
5614 {
5615         struct scsi_cmnd *cmd;
5616         struct hpsa_scsi_dev_t *dev;
5617         struct CommandList *c = container_of(work, struct CommandList, work);
5618
5619         cmd = c->scsi_cmd;
5620         dev = cmd->device->hostdata;
5621         if (!dev) {
5622                 cmd->result = DID_NO_CONNECT << 16;
5623                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5624         }
5625
5626         if (dev->in_reset) {
5627                 cmd->result = DID_RESET << 16;
5628                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5629         }
5630
5631         if (c->cmd_type == CMD_IOACCEL2) {
5632                 struct ctlr_info *h = c->h;
5633                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5634                 int rc;
5635
5636                 if (c2->error_data.serv_response ==
5637                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5638                         /* Resubmit with the retry_pending flag set. */
5639                         rc = hpsa_ioaccel_submit(h, c, cmd, true);
5640                         if (rc == 0)
5641                                 return;
5642                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5643                                 /*
5644                                  * If we get here, it means dma mapping failed.
5645                                  * Try again via scsi mid layer, which will
5646                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5647                                  */
5648                                 cmd->result = DID_IMM_RETRY << 16;
5649                                 return hpsa_cmd_free_and_done(h, c, cmd);
5650                         }
5651                         /* else, fall thru and resubmit down CISS path */
5652                 }
5653         }
5654         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5655         /*
5656          * Here we have not come in though queue_command, so we
5657          * can set the retry_pending flag to true for a driver initiated
5658          * retry attempt (I.E. not a SML retry).
5659          * I.E. We are submitting a driver initiated retry.
5660          * Note: hpsa_ciss_submit does not zero out the command fields like
5661          *       ioaccel submit does.
5662          */
5663         c->retry_pending = true;
5664         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5665                 /*
5666                  * If we get here, it means dma mapping failed. Try
5667                  * again via scsi mid layer, which will then get
5668                  * SCSI_MLQUEUE_HOST_BUSY.
5669                  *
5670                  * hpsa_ciss_submit will have already freed c
5671                  * if it encountered a dma mapping failure.
5672                  */
5673                 cmd->result = DID_IMM_RETRY << 16;
5674                 cmd->scsi_done(cmd);
5675         }
5676 }
5677
5678 /* Running in struct Scsi_Host->host_lock less mode */
5679 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5680 {
5681         struct ctlr_info *h;
5682         struct hpsa_scsi_dev_t *dev;
5683         struct CommandList *c;
5684         int rc = 0;
5685
5686         /* Get the ptr to our adapter structure out of cmd->host. */
5687         h = sdev_to_hba(cmd->device);
5688
5689         BUG_ON(cmd->request->tag < 0);
5690
5691         dev = cmd->device->hostdata;
5692         if (!dev) {
5693                 cmd->result = DID_NO_CONNECT << 16;
5694                 cmd->scsi_done(cmd);
5695                 return 0;
5696         }
5697
5698         if (dev->removed) {
5699                 cmd->result = DID_NO_CONNECT << 16;
5700                 cmd->scsi_done(cmd);
5701                 return 0;
5702         }
5703
5704         if (unlikely(lockup_detected(h))) {
5705                 cmd->result = DID_NO_CONNECT << 16;
5706                 cmd->scsi_done(cmd);
5707                 return 0;
5708         }
5709
5710         if (dev->in_reset)
5711                 return SCSI_MLQUEUE_DEVICE_BUSY;
5712
5713         c = cmd_tagged_alloc(h, cmd);
5714         if (c == NULL)
5715                 return SCSI_MLQUEUE_DEVICE_BUSY;
5716
5717         /*
5718          * This is necessary because the SML doesn't zero out this field during
5719          * error recovery.
5720          */
5721         cmd->result = 0;
5722
5723         /*
5724          * Call alternate submit routine for I/O accelerated commands.
5725          * Retries always go down the normal I/O path.
5726          * Note: If cmd->retries is non-zero, then this is a SML
5727          *       initiated retry and not a driver initiated retry.
5728          *       This command has been obtained from cmd_tagged_alloc
5729          *       and is therefore a brand-new command.
5730          */
5731         if (likely(cmd->retries == 0 &&
5732                         !blk_rq_is_passthrough(cmd->request) &&
5733                         h->acciopath_status)) {
5734                 /* Submit with the retry_pending flag unset. */
5735                 rc = hpsa_ioaccel_submit(h, c, cmd, false);
5736                 if (rc == 0)
5737                         return 0;
5738                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5739                         hpsa_cmd_resolve_and_free(h, c);
5740                         return SCSI_MLQUEUE_HOST_BUSY;
5741                 }
5742         }
5743         return hpsa_ciss_submit(h, c, cmd, dev);
5744 }
5745
5746 static void hpsa_scan_complete(struct ctlr_info *h)
5747 {
5748         unsigned long flags;
5749
5750         spin_lock_irqsave(&h->scan_lock, flags);
5751         h->scan_finished = 1;
5752         wake_up(&h->scan_wait_queue);
5753         spin_unlock_irqrestore(&h->scan_lock, flags);
5754 }
5755
5756 static void hpsa_scan_start(struct Scsi_Host *sh)
5757 {
5758         struct ctlr_info *h = shost_to_hba(sh);
5759         unsigned long flags;
5760
5761         /*
5762          * Don't let rescans be initiated on a controller known to be locked
5763          * up.  If the controller locks up *during* a rescan, that thread is
5764          * probably hosed, but at least we can prevent new rescan threads from
5765          * piling up on a locked up controller.
5766          */
5767         if (unlikely(lockup_detected(h)))
5768                 return hpsa_scan_complete(h);
5769
5770         /*
5771          * If a scan is already waiting to run, no need to add another
5772          */
5773         spin_lock_irqsave(&h->scan_lock, flags);
5774         if (h->scan_waiting) {
5775                 spin_unlock_irqrestore(&h->scan_lock, flags);
5776                 return;
5777         }
5778
5779         spin_unlock_irqrestore(&h->scan_lock, flags);
5780
5781         /* wait until any scan already in progress is finished. */
5782         while (1) {
5783                 spin_lock_irqsave(&h->scan_lock, flags);
5784                 if (h->scan_finished)
5785                         break;
5786                 h->scan_waiting = 1;
5787                 spin_unlock_irqrestore(&h->scan_lock, flags);
5788                 wait_event(h->scan_wait_queue, h->scan_finished);
5789                 /* Note: We don't need to worry about a race between this
5790                  * thread and driver unload because the midlayer will
5791                  * have incremented the reference count, so unload won't
5792                  * happen if we're in here.
5793                  */
5794         }
5795         h->scan_finished = 0; /* mark scan as in progress */
5796         h->scan_waiting = 0;
5797         spin_unlock_irqrestore(&h->scan_lock, flags);
5798
5799         if (unlikely(lockup_detected(h)))
5800                 return hpsa_scan_complete(h);
5801
5802         /*
5803          * Do the scan after a reset completion
5804          */
5805         spin_lock_irqsave(&h->reset_lock, flags);
5806         if (h->reset_in_progress) {
5807                 h->drv_req_rescan = 1;
5808                 spin_unlock_irqrestore(&h->reset_lock, flags);
5809                 hpsa_scan_complete(h);
5810                 return;
5811         }
5812         spin_unlock_irqrestore(&h->reset_lock, flags);
5813
5814         hpsa_update_scsi_devices(h);
5815
5816         hpsa_scan_complete(h);
5817 }
5818
5819 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5820 {
5821         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5822
5823         if (!logical_drive)
5824                 return -ENODEV;
5825
5826         if (qdepth < 1)
5827                 qdepth = 1;
5828         else if (qdepth > logical_drive->queue_depth)
5829                 qdepth = logical_drive->queue_depth;
5830
5831         return scsi_change_queue_depth(sdev, qdepth);
5832 }
5833
5834 static int hpsa_scan_finished(struct Scsi_Host *sh,
5835         unsigned long elapsed_time)
5836 {
5837         struct ctlr_info *h = shost_to_hba(sh);
5838         unsigned long flags;
5839         int finished;
5840
5841         spin_lock_irqsave(&h->scan_lock, flags);
5842         finished = h->scan_finished;
5843         spin_unlock_irqrestore(&h->scan_lock, flags);
5844         return finished;
5845 }
5846
5847 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5848 {
5849         struct Scsi_Host *sh;
5850
5851         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5852         if (sh == NULL) {
5853                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5854                 return -ENOMEM;
5855         }
5856
5857         sh->io_port = 0;
5858         sh->n_io_port = 0;
5859         sh->this_id = -1;
5860         sh->max_channel = 3;
5861         sh->max_cmd_len = MAX_COMMAND_SIZE;
5862         sh->max_lun = HPSA_MAX_LUN;
5863         sh->max_id = HPSA_MAX_LUN;
5864         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5865         sh->cmd_per_lun = sh->can_queue;
5866         sh->sg_tablesize = h->maxsgentries;
5867         sh->transportt = hpsa_sas_transport_template;
5868         sh->hostdata[0] = (unsigned long) h;
5869         sh->irq = pci_irq_vector(h->pdev, 0);
5870         sh->unique_id = sh->irq;
5871
5872         h->scsi_host = sh;
5873         return 0;
5874 }
5875
5876 static int hpsa_scsi_add_host(struct ctlr_info *h)
5877 {
5878         int rv;
5879
5880         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5881         if (rv) {
5882                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5883                 return rv;
5884         }
5885         scsi_scan_host(h->scsi_host);
5886         return 0;
5887 }
5888
5889 /*
5890  * The block layer has already gone to the trouble of picking out a unique,
5891  * small-integer tag for this request.  We use an offset from that value as
5892  * an index to select our command block.  (The offset allows us to reserve the
5893  * low-numbered entries for our own uses.)
5894  */
5895 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5896 {
5897         int idx = scmd->request->tag;
5898
5899         if (idx < 0)
5900                 return idx;
5901
5902         /* Offset to leave space for internal cmds. */
5903         return idx += HPSA_NRESERVED_CMDS;
5904 }
5905
5906 /*
5907  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5908  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5909  */
5910 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5911                                 struct CommandList *c, unsigned char lunaddr[],
5912                                 int reply_queue)
5913 {
5914         int rc;
5915
5916         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5917         (void) fill_cmd(c, TEST_UNIT_READY, h,
5918                         NULL, 0, 0, lunaddr, TYPE_CMD);
5919         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5920         if (rc)
5921                 return rc;
5922         /* no unmap needed here because no data xfer. */
5923
5924         /* Check if the unit is already ready. */
5925         if (c->err_info->CommandStatus == CMD_SUCCESS)
5926                 return 0;
5927
5928         /*
5929          * The first command sent after reset will receive "unit attention" to
5930          * indicate that the LUN has been reset...this is actually what we're
5931          * looking for (but, success is good too).
5932          */
5933         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5934                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5935                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5936                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5937                 return 0;
5938
5939         return 1;
5940 }
5941
5942 /*
5943  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5944  * returns zero when the unit is ready, and non-zero when giving up.
5945  */
5946 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5947                                 struct CommandList *c,
5948                                 unsigned char lunaddr[], int reply_queue)
5949 {
5950         int rc;
5951         int count = 0;
5952         int waittime = 1; /* seconds */
5953
5954         /* Send test unit ready until device ready, or give up. */
5955         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5956
5957                 /*
5958                  * Wait for a bit.  do this first, because if we send
5959                  * the TUR right away, the reset will just abort it.
5960                  */
5961                 msleep(1000 * waittime);
5962
5963                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5964                 if (!rc)
5965                         break;
5966
5967                 /* Increase wait time with each try, up to a point. */
5968                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5969                         waittime *= 2;
5970
5971                 dev_warn(&h->pdev->dev,
5972                          "waiting %d secs for device to become ready.\n",
5973                          waittime);
5974         }
5975
5976         return rc;
5977 }
5978
5979 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5980                                            unsigned char lunaddr[],
5981                                            int reply_queue)
5982 {
5983         int first_queue;
5984         int last_queue;
5985         int rq;
5986         int rc = 0;
5987         struct CommandList *c;
5988
5989         c = cmd_alloc(h);
5990
5991         /*
5992          * If no specific reply queue was requested, then send the TUR
5993          * repeatedly, requesting a reply on each reply queue; otherwise execute
5994          * the loop exactly once using only the specified queue.
5995          */
5996         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5997                 first_queue = 0;
5998                 last_queue = h->nreply_queues - 1;
5999         } else {
6000                 first_queue = reply_queue;
6001                 last_queue = reply_queue;
6002         }
6003
6004         for (rq = first_queue; rq <= last_queue; rq++) {
6005                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6006                 if (rc)
6007                         break;
6008         }
6009
6010         if (rc)
6011                 dev_warn(&h->pdev->dev, "giving up on device.\n");
6012         else
6013                 dev_warn(&h->pdev->dev, "device is ready.\n");
6014
6015         cmd_free(h, c);
6016         return rc;
6017 }
6018
6019 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6020  * complaining.  Doing a host- or bus-reset can't do anything good here.
6021  */
6022 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6023 {
6024         int rc = SUCCESS;
6025         int i;
6026         struct ctlr_info *h;
6027         struct hpsa_scsi_dev_t *dev = NULL;
6028         u8 reset_type;
6029         char msg[48];
6030         unsigned long flags;
6031
6032         /* find the controller to which the command to be aborted was sent */
6033         h = sdev_to_hba(scsicmd->device);
6034         if (h == NULL) /* paranoia */
6035                 return FAILED;
6036
6037         spin_lock_irqsave(&h->reset_lock, flags);
6038         h->reset_in_progress = 1;
6039         spin_unlock_irqrestore(&h->reset_lock, flags);
6040
6041         if (lockup_detected(h)) {
6042                 rc = FAILED;
6043                 goto return_reset_status;
6044         }
6045
6046         dev = scsicmd->device->hostdata;
6047         if (!dev) {
6048                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6049                 rc = FAILED;
6050                 goto return_reset_status;
6051         }
6052
6053         if (dev->devtype == TYPE_ENCLOSURE) {
6054                 rc = SUCCESS;
6055                 goto return_reset_status;
6056         }
6057
6058         /* if controller locked up, we can guarantee command won't complete */
6059         if (lockup_detected(h)) {
6060                 snprintf(msg, sizeof(msg),
6061                          "cmd %d RESET FAILED, lockup detected",
6062                          hpsa_get_cmd_index(scsicmd));
6063                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6064                 rc = FAILED;
6065                 goto return_reset_status;
6066         }
6067
6068         /* this reset request might be the result of a lockup; check */
6069         if (detect_controller_lockup(h)) {
6070                 snprintf(msg, sizeof(msg),
6071                          "cmd %d RESET FAILED, new lockup detected",
6072                          hpsa_get_cmd_index(scsicmd));
6073                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6074                 rc = FAILED;
6075                 goto return_reset_status;
6076         }
6077
6078         /* Do not attempt on controller */
6079         if (is_hba_lunid(dev->scsi3addr)) {
6080                 rc = SUCCESS;
6081                 goto return_reset_status;
6082         }
6083
6084         if (is_logical_dev_addr_mode(dev->scsi3addr))
6085                 reset_type = HPSA_DEVICE_RESET_MSG;
6086         else
6087                 reset_type = HPSA_PHYS_TARGET_RESET;
6088
6089         sprintf(msg, "resetting %s",
6090                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6091         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6092
6093         /*
6094          * wait to see if any commands will complete before sending reset
6095          */
6096         dev->in_reset = true; /* block any new cmds from OS for this device */
6097         for (i = 0; i < 10; i++) {
6098                 if (atomic_read(&dev->commands_outstanding) > 0)
6099                         msleep(1000);
6100                 else
6101                         break;
6102         }
6103
6104         /* send a reset to the SCSI LUN which the command was sent to */
6105         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6106         if (rc == 0)
6107                 rc = SUCCESS;
6108         else
6109                 rc = FAILED;
6110
6111         sprintf(msg, "reset %s %s",
6112                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6113                 rc == SUCCESS ? "completed successfully" : "failed");
6114         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6115
6116 return_reset_status:
6117         spin_lock_irqsave(&h->reset_lock, flags);
6118         h->reset_in_progress = 0;
6119         if (dev)
6120                 dev->in_reset = false;
6121         spin_unlock_irqrestore(&h->reset_lock, flags);
6122         return rc;
6123 }
6124
6125 /*
6126  * For operations with an associated SCSI command, a command block is allocated
6127  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6128  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6129  * the complement, although cmd_free() may be called instead.
6130  * This function is only called for new requests from queue_command.
6131  */
6132 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6133                                             struct scsi_cmnd *scmd)
6134 {
6135         int idx = hpsa_get_cmd_index(scmd);
6136         struct CommandList *c = h->cmd_pool + idx;
6137
6138         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6139                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6140                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6141                 /* The index value comes from the block layer, so if it's out of
6142                  * bounds, it's probably not our bug.
6143                  */
6144                 BUG();
6145         }
6146
6147         if (unlikely(!hpsa_is_cmd_idle(c))) {
6148                 /*
6149                  * We expect that the SCSI layer will hand us a unique tag
6150                  * value.  Thus, there should never be a collision here between
6151                  * two requests...because if the selected command isn't idle
6152                  * then someone is going to be very disappointed.
6153                  */
6154                 if (idx != h->last_collision_tag) { /* Print once per tag */
6155                         dev_warn(&h->pdev->dev,
6156                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6157                         if (scmd)
6158                                 scsi_print_command(scmd);
6159                         h->last_collision_tag = idx;
6160                 }
6161                 return NULL;
6162         }
6163
6164         atomic_inc(&c->refcount);
6165         hpsa_cmd_partial_init(h, idx, c);
6166
6167         /*
6168          * This is a new command obtained from queue_command so
6169          * there have not been any driver initiated retry attempts.
6170          */
6171         c->retry_pending = false;
6172
6173         return c;
6174 }
6175
6176 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6177 {
6178         /*
6179          * Release our reference to the block.  We don't need to do anything
6180          * else to free it, because it is accessed by index.
6181          */
6182         (void)atomic_dec(&c->refcount);
6183 }
6184
6185 /*
6186  * For operations that cannot sleep, a command block is allocated at init,
6187  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6188  * which ones are free or in use.  Lock must be held when calling this.
6189  * cmd_free() is the complement.
6190  * This function never gives up and returns NULL.  If it hangs,
6191  * another thread must call cmd_free() to free some tags.
6192  */
6193
6194 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6195 {
6196         struct CommandList *c;
6197         int refcount, i;
6198         int offset = 0;
6199
6200         /*
6201          * There is some *extremely* small but non-zero chance that that
6202          * multiple threads could get in here, and one thread could
6203          * be scanning through the list of bits looking for a free
6204          * one, but the free ones are always behind him, and other
6205          * threads sneak in behind him and eat them before he can
6206          * get to them, so that while there is always a free one, a
6207          * very unlucky thread might be starved anyway, never able to
6208          * beat the other threads.  In reality, this happens so
6209          * infrequently as to be indistinguishable from never.
6210          *
6211          * Note that we start allocating commands before the SCSI host structure
6212          * is initialized.  Since the search starts at bit zero, this
6213          * all works, since we have at least one command structure available;
6214          * however, it means that the structures with the low indexes have to be
6215          * reserved for driver-initiated requests, while requests from the block
6216          * layer will use the higher indexes.
6217          */
6218
6219         for (;;) {
6220                 i = find_next_zero_bit(h->cmd_pool_bits,
6221                                         HPSA_NRESERVED_CMDS,
6222                                         offset);
6223                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6224                         offset = 0;
6225                         continue;
6226                 }
6227                 c = h->cmd_pool + i;
6228                 refcount = atomic_inc_return(&c->refcount);
6229                 if (unlikely(refcount > 1)) {
6230                         cmd_free(h, c); /* already in use */
6231                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6232                         continue;
6233                 }
6234                 set_bit(i & (BITS_PER_LONG - 1),
6235                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6236                 break; /* it's ours now. */
6237         }
6238         hpsa_cmd_partial_init(h, i, c);
6239         c->device = NULL;
6240
6241         /*
6242          * cmd_alloc is for "internal" commands and they are never
6243          * retried.
6244          */
6245         c->retry_pending = false;
6246
6247         return c;
6248 }
6249
6250 /*
6251  * This is the complementary operation to cmd_alloc().  Note, however, in some
6252  * corner cases it may also be used to free blocks allocated by
6253  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6254  * the clear-bit is harmless.
6255  */
6256 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6257 {
6258         if (atomic_dec_and_test(&c->refcount)) {
6259                 int i;
6260
6261                 i = c - h->cmd_pool;
6262                 clear_bit(i & (BITS_PER_LONG - 1),
6263                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6264         }
6265 }
6266
6267 #ifdef CONFIG_COMPAT
6268
6269 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6270         void __user *arg)
6271 {
6272         struct ctlr_info *h = sdev_to_hba(dev);
6273         IOCTL32_Command_struct __user *arg32 = arg;
6274         IOCTL_Command_struct arg64;
6275         int err;
6276         u32 cp;
6277
6278         if (!arg)
6279                 return -EINVAL;
6280
6281         memset(&arg64, 0, sizeof(arg64));
6282         if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6283                 return -EFAULT;
6284         if (get_user(cp, &arg32->buf))
6285                 return -EFAULT;
6286         arg64.buf = compat_ptr(cp);
6287
6288         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6289                 return -EAGAIN;
6290         err = hpsa_passthru_ioctl(h, &arg64);
6291         atomic_inc(&h->passthru_cmds_avail);
6292         if (err)
6293                 return err;
6294         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6295                          sizeof(arg32->error_info)))
6296                 return -EFAULT;
6297         return 0;
6298 }
6299
6300 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6301         unsigned int cmd, void __user *arg)
6302 {
6303         struct ctlr_info *h = sdev_to_hba(dev);
6304         BIG_IOCTL32_Command_struct __user *arg32 = arg;
6305         BIG_IOCTL_Command_struct arg64;
6306         int err;
6307         u32 cp;
6308
6309         if (!arg)
6310                 return -EINVAL;
6311         memset(&arg64, 0, sizeof(arg64));
6312         if (copy_from_user(&arg64, arg32,
6313                            offsetof(BIG_IOCTL32_Command_struct, buf)))
6314                 return -EFAULT;
6315         if (get_user(cp, &arg32->buf))
6316                 return -EFAULT;
6317         arg64.buf = compat_ptr(cp);
6318
6319         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6320                 return -EAGAIN;
6321         err = hpsa_big_passthru_ioctl(h, &arg64);
6322         atomic_inc(&h->passthru_cmds_avail);
6323         if (err)
6324                 return err;
6325         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6326                          sizeof(arg32->error_info)))
6327                 return -EFAULT;
6328         return 0;
6329 }
6330
6331 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6332                              void __user *arg)
6333 {
6334         switch (cmd) {
6335         case CCISS_GETPCIINFO:
6336         case CCISS_GETINTINFO:
6337         case CCISS_SETINTINFO:
6338         case CCISS_GETNODENAME:
6339         case CCISS_SETNODENAME:
6340         case CCISS_GETHEARTBEAT:
6341         case CCISS_GETBUSTYPES:
6342         case CCISS_GETFIRMVER:
6343         case CCISS_GETDRIVVER:
6344         case CCISS_REVALIDVOLS:
6345         case CCISS_DEREGDISK:
6346         case CCISS_REGNEWDISK:
6347         case CCISS_REGNEWD:
6348         case CCISS_RESCANDISK:
6349         case CCISS_GETLUNINFO:
6350                 return hpsa_ioctl(dev, cmd, arg);
6351
6352         case CCISS_PASSTHRU32:
6353                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6354         case CCISS_BIG_PASSTHRU32:
6355                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6356
6357         default:
6358                 return -ENOIOCTLCMD;
6359         }
6360 }
6361 #endif
6362
6363 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6364 {
6365         struct hpsa_pci_info pciinfo;
6366
6367         if (!argp)
6368                 return -EINVAL;
6369         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6370         pciinfo.bus = h->pdev->bus->number;
6371         pciinfo.dev_fn = h->pdev->devfn;
6372         pciinfo.board_id = h->board_id;
6373         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6374                 return -EFAULT;
6375         return 0;
6376 }
6377
6378 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6379 {
6380         DriverVer_type DriverVer;
6381         unsigned char vmaj, vmin, vsubmin;
6382         int rc;
6383
6384         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6385                 &vmaj, &vmin, &vsubmin);
6386         if (rc != 3) {
6387                 dev_info(&h->pdev->dev, "driver version string '%s' "
6388                         "unrecognized.", HPSA_DRIVER_VERSION);
6389                 vmaj = 0;
6390                 vmin = 0;
6391                 vsubmin = 0;
6392         }
6393         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6394         if (!argp)
6395                 return -EINVAL;
6396         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6397                 return -EFAULT;
6398         return 0;
6399 }
6400
6401 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6402                                IOCTL_Command_struct *iocommand)
6403 {
6404         struct CommandList *c;
6405         char *buff = NULL;
6406         u64 temp64;
6407         int rc = 0;
6408
6409         if (!capable(CAP_SYS_RAWIO))
6410                 return -EPERM;
6411         if ((iocommand->buf_size < 1) &&
6412             (iocommand->Request.Type.Direction != XFER_NONE)) {
6413                 return -EINVAL;
6414         }
6415         if (iocommand->buf_size > 0) {
6416                 buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6417                 if (buff == NULL)
6418                         return -ENOMEM;
6419                 if (iocommand->Request.Type.Direction & XFER_WRITE) {
6420                         /* Copy the data into the buffer we created */
6421                         if (copy_from_user(buff, iocommand->buf,
6422                                 iocommand->buf_size)) {
6423                                 rc = -EFAULT;
6424                                 goto out_kfree;
6425                         }
6426                 } else {
6427                         memset(buff, 0, iocommand->buf_size);
6428                 }
6429         }
6430         c = cmd_alloc(h);
6431
6432         /* Fill in the command type */
6433         c->cmd_type = CMD_IOCTL_PEND;
6434         c->scsi_cmd = SCSI_CMD_BUSY;
6435         /* Fill in Command Header */
6436         c->Header.ReplyQueue = 0; /* unused in simple mode */
6437         if (iocommand->buf_size > 0) {  /* buffer to fill */
6438                 c->Header.SGList = 1;
6439                 c->Header.SGTotal = cpu_to_le16(1);
6440         } else  { /* no buffers to fill */
6441                 c->Header.SGList = 0;
6442                 c->Header.SGTotal = cpu_to_le16(0);
6443         }
6444         memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6445
6446         /* Fill in Request block */
6447         memcpy(&c->Request, &iocommand->Request,
6448                 sizeof(c->Request));
6449
6450         /* Fill in the scatter gather information */
6451         if (iocommand->buf_size > 0) {
6452                 temp64 = dma_map_single(&h->pdev->dev, buff,
6453                         iocommand->buf_size, DMA_BIDIRECTIONAL);
6454                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6455                         c->SG[0].Addr = cpu_to_le64(0);
6456                         c->SG[0].Len = cpu_to_le32(0);
6457                         rc = -ENOMEM;
6458                         goto out;
6459                 }
6460                 c->SG[0].Addr = cpu_to_le64(temp64);
6461                 c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6462                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6463         }
6464         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6465                                         NO_TIMEOUT);
6466         if (iocommand->buf_size > 0)
6467                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6468         check_ioctl_unit_attention(h, c);
6469         if (rc) {
6470                 rc = -EIO;
6471                 goto out;
6472         }
6473
6474         /* Copy the error information out */
6475         memcpy(&iocommand->error_info, c->err_info,
6476                 sizeof(iocommand->error_info));
6477         if ((iocommand->Request.Type.Direction & XFER_READ) &&
6478                 iocommand->buf_size > 0) {
6479                 /* Copy the data out of the buffer we created */
6480                 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6481                         rc = -EFAULT;
6482                         goto out;
6483                 }
6484         }
6485 out:
6486         cmd_free(h, c);
6487 out_kfree:
6488         kfree(buff);
6489         return rc;
6490 }
6491
6492 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6493                                    BIG_IOCTL_Command_struct *ioc)
6494 {
6495         struct CommandList *c;
6496         unsigned char **buff = NULL;
6497         int *buff_size = NULL;
6498         u64 temp64;
6499         BYTE sg_used = 0;
6500         int status = 0;
6501         u32 left;
6502         u32 sz;
6503         BYTE __user *data_ptr;
6504
6505         if (!capable(CAP_SYS_RAWIO))
6506                 return -EPERM;
6507
6508         if ((ioc->buf_size < 1) &&
6509             (ioc->Request.Type.Direction != XFER_NONE))
6510                 return -EINVAL;
6511         /* Check kmalloc limits  using all SGs */
6512         if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6513                 return -EINVAL;
6514         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6515                 return -EINVAL;
6516         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6517         if (!buff) {
6518                 status = -ENOMEM;
6519                 goto cleanup1;
6520         }
6521         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6522         if (!buff_size) {
6523                 status = -ENOMEM;
6524                 goto cleanup1;
6525         }
6526         left = ioc->buf_size;
6527         data_ptr = ioc->buf;
6528         while (left) {
6529                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6530                 buff_size[sg_used] = sz;
6531                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6532                 if (buff[sg_used] == NULL) {
6533                         status = -ENOMEM;
6534                         goto cleanup1;
6535                 }
6536                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6537                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6538                                 status = -EFAULT;
6539                                 goto cleanup1;
6540                         }
6541                 } else
6542                         memset(buff[sg_used], 0, sz);
6543                 left -= sz;
6544                 data_ptr += sz;
6545                 sg_used++;
6546         }
6547         c = cmd_alloc(h);
6548
6549         c->cmd_type = CMD_IOCTL_PEND;
6550         c->scsi_cmd = SCSI_CMD_BUSY;
6551         c->Header.ReplyQueue = 0;
6552         c->Header.SGList = (u8) sg_used;
6553         c->Header.SGTotal = cpu_to_le16(sg_used);
6554         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6555         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6556         if (ioc->buf_size > 0) {
6557                 int i;
6558                 for (i = 0; i < sg_used; i++) {
6559                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6560                                     buff_size[i], DMA_BIDIRECTIONAL);
6561                         if (dma_mapping_error(&h->pdev->dev,
6562                                                         (dma_addr_t) temp64)) {
6563                                 c->SG[i].Addr = cpu_to_le64(0);
6564                                 c->SG[i].Len = cpu_to_le32(0);
6565                                 hpsa_pci_unmap(h->pdev, c, i,
6566                                         DMA_BIDIRECTIONAL);
6567                                 status = -ENOMEM;
6568                                 goto cleanup0;
6569                         }
6570                         c->SG[i].Addr = cpu_to_le64(temp64);
6571                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6572                         c->SG[i].Ext = cpu_to_le32(0);
6573                 }
6574                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6575         }
6576         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6577                                                 NO_TIMEOUT);
6578         if (sg_used)
6579                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6580         check_ioctl_unit_attention(h, c);
6581         if (status) {
6582                 status = -EIO;
6583                 goto cleanup0;
6584         }
6585
6586         /* Copy the error information out */
6587         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6588         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6589                 int i;
6590
6591                 /* Copy the data out of the buffer we created */
6592                 BYTE __user *ptr = ioc->buf;
6593                 for (i = 0; i < sg_used; i++) {
6594                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6595                                 status = -EFAULT;
6596                                 goto cleanup0;
6597                         }
6598                         ptr += buff_size[i];
6599                 }
6600         }
6601         status = 0;
6602 cleanup0:
6603         cmd_free(h, c);
6604 cleanup1:
6605         if (buff) {
6606                 int i;
6607
6608                 for (i = 0; i < sg_used; i++)
6609                         kfree(buff[i]);
6610                 kfree(buff);
6611         }
6612         kfree(buff_size);
6613         return status;
6614 }
6615
6616 static void check_ioctl_unit_attention(struct ctlr_info *h,
6617         struct CommandList *c)
6618 {
6619         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6620                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6621                 (void) check_for_unit_attention(h, c);
6622 }
6623
6624 /*
6625  * ioctl
6626  */
6627 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6628                       void __user *argp)
6629 {
6630         struct ctlr_info *h = sdev_to_hba(dev);
6631         int rc;
6632
6633         switch (cmd) {
6634         case CCISS_DEREGDISK:
6635         case CCISS_REGNEWDISK:
6636         case CCISS_REGNEWD:
6637                 hpsa_scan_start(h->scsi_host);
6638                 return 0;
6639         case CCISS_GETPCIINFO:
6640                 return hpsa_getpciinfo_ioctl(h, argp);
6641         case CCISS_GETDRIVVER:
6642                 return hpsa_getdrivver_ioctl(h, argp);
6643         case CCISS_PASSTHRU: {
6644                 IOCTL_Command_struct iocommand;
6645
6646                 if (!argp)
6647                         return -EINVAL;
6648                 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6649                         return -EFAULT;
6650                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6651                         return -EAGAIN;
6652                 rc = hpsa_passthru_ioctl(h, &iocommand);
6653                 atomic_inc(&h->passthru_cmds_avail);
6654                 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6655                         rc = -EFAULT;
6656                 return rc;
6657         }
6658         case CCISS_BIG_PASSTHRU: {
6659                 BIG_IOCTL_Command_struct ioc;
6660                 if (!argp)
6661                         return -EINVAL;
6662                 if (copy_from_user(&ioc, argp, sizeof(ioc)))
6663                         return -EFAULT;
6664                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6665                         return -EAGAIN;
6666                 rc = hpsa_big_passthru_ioctl(h, &ioc);
6667                 atomic_inc(&h->passthru_cmds_avail);
6668                 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6669                         rc = -EFAULT;
6670                 return rc;
6671         }
6672         default:
6673                 return -ENOTTY;
6674         }
6675 }
6676
6677 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6678 {
6679         struct CommandList *c;
6680
6681         c = cmd_alloc(h);
6682
6683         /* fill_cmd can't fail here, no data buffer to map */
6684         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6685                 RAID_CTLR_LUNID, TYPE_MSG);
6686         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6687         c->waiting = NULL;
6688         enqueue_cmd_and_start_io(h, c);
6689         /* Don't wait for completion, the reset won't complete.  Don't free
6690          * the command either.  This is the last command we will send before
6691          * re-initializing everything, so it doesn't matter and won't leak.
6692          */
6693         return;
6694 }
6695
6696 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6697         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6698         int cmd_type)
6699 {
6700         enum dma_data_direction dir = DMA_NONE;
6701
6702         c->cmd_type = CMD_IOCTL_PEND;
6703         c->scsi_cmd = SCSI_CMD_BUSY;
6704         c->Header.ReplyQueue = 0;
6705         if (buff != NULL && size > 0) {
6706                 c->Header.SGList = 1;
6707                 c->Header.SGTotal = cpu_to_le16(1);
6708         } else {
6709                 c->Header.SGList = 0;
6710                 c->Header.SGTotal = cpu_to_le16(0);
6711         }
6712         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6713
6714         if (cmd_type == TYPE_CMD) {
6715                 switch (cmd) {
6716                 case HPSA_INQUIRY:
6717                         /* are we trying to read a vital product page */
6718                         if (page_code & VPD_PAGE) {
6719                                 c->Request.CDB[1] = 0x01;
6720                                 c->Request.CDB[2] = (page_code & 0xff);
6721                         }
6722                         c->Request.CDBLen = 6;
6723                         c->Request.type_attr_dir =
6724                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725                         c->Request.Timeout = 0;
6726                         c->Request.CDB[0] = HPSA_INQUIRY;
6727                         c->Request.CDB[4] = size & 0xFF;
6728                         break;
6729                 case RECEIVE_DIAGNOSTIC:
6730                         c->Request.CDBLen = 6;
6731                         c->Request.type_attr_dir =
6732                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733                         c->Request.Timeout = 0;
6734                         c->Request.CDB[0] = cmd;
6735                         c->Request.CDB[1] = 1;
6736                         c->Request.CDB[2] = 1;
6737                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6738                         c->Request.CDB[4] = size & 0xFF;
6739                         break;
6740                 case HPSA_REPORT_LOG:
6741                 case HPSA_REPORT_PHYS:
6742                         /* Talking to controller so It's a physical command
6743                            mode = 00 target = 0.  Nothing to write.
6744                          */
6745                         c->Request.CDBLen = 12;
6746                         c->Request.type_attr_dir =
6747                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6748                         c->Request.Timeout = 0;
6749                         c->Request.CDB[0] = cmd;
6750                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6751                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6752                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6753                         c->Request.CDB[9] = size & 0xFF;
6754                         break;
6755                 case BMIC_SENSE_DIAG_OPTIONS:
6756                         c->Request.CDBLen = 16;
6757                         c->Request.type_attr_dir =
6758                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6759                         c->Request.Timeout = 0;
6760                         /* Spec says this should be BMIC_WRITE */
6761                         c->Request.CDB[0] = BMIC_READ;
6762                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6763                         break;
6764                 case BMIC_SET_DIAG_OPTIONS:
6765                         c->Request.CDBLen = 16;
6766                         c->Request.type_attr_dir =
6767                                         TYPE_ATTR_DIR(cmd_type,
6768                                                 ATTR_SIMPLE, XFER_WRITE);
6769                         c->Request.Timeout = 0;
6770                         c->Request.CDB[0] = BMIC_WRITE;
6771                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6772                         break;
6773                 case HPSA_CACHE_FLUSH:
6774                         c->Request.CDBLen = 12;
6775                         c->Request.type_attr_dir =
6776                                         TYPE_ATTR_DIR(cmd_type,
6777                                                 ATTR_SIMPLE, XFER_WRITE);
6778                         c->Request.Timeout = 0;
6779                         c->Request.CDB[0] = BMIC_WRITE;
6780                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6781                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6782                         c->Request.CDB[8] = size & 0xFF;
6783                         break;
6784                 case TEST_UNIT_READY:
6785                         c->Request.CDBLen = 6;
6786                         c->Request.type_attr_dir =
6787                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6788                         c->Request.Timeout = 0;
6789                         break;
6790                 case HPSA_GET_RAID_MAP:
6791                         c->Request.CDBLen = 12;
6792                         c->Request.type_attr_dir =
6793                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6794                         c->Request.Timeout = 0;
6795                         c->Request.CDB[0] = HPSA_CISS_READ;
6796                         c->Request.CDB[1] = cmd;
6797                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6798                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6799                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6800                         c->Request.CDB[9] = size & 0xFF;
6801                         break;
6802                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6803                         c->Request.CDBLen = 10;
6804                         c->Request.type_attr_dir =
6805                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6806                         c->Request.Timeout = 0;
6807                         c->Request.CDB[0] = BMIC_READ;
6808                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6809                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6810                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6811                         break;
6812                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6813                         c->Request.CDBLen = 10;
6814                         c->Request.type_attr_dir =
6815                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6816                         c->Request.Timeout = 0;
6817                         c->Request.CDB[0] = BMIC_READ;
6818                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6819                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6820                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6821                         break;
6822                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6823                         c->Request.CDBLen = 10;
6824                         c->Request.type_attr_dir =
6825                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6826                         c->Request.Timeout = 0;
6827                         c->Request.CDB[0] = BMIC_READ;
6828                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6829                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6830                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6831                         break;
6832                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6833                         c->Request.CDBLen = 10;
6834                         c->Request.type_attr_dir =
6835                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6836                         c->Request.Timeout = 0;
6837                         c->Request.CDB[0] = BMIC_READ;
6838                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6839                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6840                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6841                         break;
6842                 case BMIC_IDENTIFY_CONTROLLER:
6843                         c->Request.CDBLen = 10;
6844                         c->Request.type_attr_dir =
6845                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6846                         c->Request.Timeout = 0;
6847                         c->Request.CDB[0] = BMIC_READ;
6848                         c->Request.CDB[1] = 0;
6849                         c->Request.CDB[2] = 0;
6850                         c->Request.CDB[3] = 0;
6851                         c->Request.CDB[4] = 0;
6852                         c->Request.CDB[5] = 0;
6853                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6854                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6855                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6856                         c->Request.CDB[9] = 0;
6857                         break;
6858                 default:
6859                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6860                         BUG();
6861                 }
6862         } else if (cmd_type == TYPE_MSG) {
6863                 switch (cmd) {
6864
6865                 case  HPSA_PHYS_TARGET_RESET:
6866                         c->Request.CDBLen = 16;
6867                         c->Request.type_attr_dir =
6868                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6869                         c->Request.Timeout = 0; /* Don't time out */
6870                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6871                         c->Request.CDB[0] = HPSA_RESET;
6872                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6873                         /* Physical target reset needs no control bytes 4-7*/
6874                         c->Request.CDB[4] = 0x00;
6875                         c->Request.CDB[5] = 0x00;
6876                         c->Request.CDB[6] = 0x00;
6877                         c->Request.CDB[7] = 0x00;
6878                         break;
6879                 case  HPSA_DEVICE_RESET_MSG:
6880                         c->Request.CDBLen = 16;
6881                         c->Request.type_attr_dir =
6882                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6883                         c->Request.Timeout = 0; /* Don't time out */
6884                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6885                         c->Request.CDB[0] =  cmd;
6886                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6887                         /* If bytes 4-7 are zero, it means reset the */
6888                         /* LunID device */
6889                         c->Request.CDB[4] = 0x00;
6890                         c->Request.CDB[5] = 0x00;
6891                         c->Request.CDB[6] = 0x00;
6892                         c->Request.CDB[7] = 0x00;
6893                         break;
6894                 default:
6895                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6896                                 cmd);
6897                         BUG();
6898                 }
6899         } else {
6900                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6901                 BUG();
6902         }
6903
6904         switch (GET_DIR(c->Request.type_attr_dir)) {
6905         case XFER_READ:
6906                 dir = DMA_FROM_DEVICE;
6907                 break;
6908         case XFER_WRITE:
6909                 dir = DMA_TO_DEVICE;
6910                 break;
6911         case XFER_NONE:
6912                 dir = DMA_NONE;
6913                 break;
6914         default:
6915                 dir = DMA_BIDIRECTIONAL;
6916         }
6917         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6918                 return -1;
6919         return 0;
6920 }
6921
6922 /*
6923  * Map (physical) PCI mem into (virtual) kernel space
6924  */
6925 static void __iomem *remap_pci_mem(ulong base, ulong size)
6926 {
6927         ulong page_base = ((ulong) base) & PAGE_MASK;
6928         ulong page_offs = ((ulong) base) - page_base;
6929         void __iomem *page_remapped = ioremap(page_base,
6930                 page_offs + size);
6931
6932         return page_remapped ? (page_remapped + page_offs) : NULL;
6933 }
6934
6935 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6936 {
6937         return h->access.command_completed(h, q);
6938 }
6939
6940 static inline bool interrupt_pending(struct ctlr_info *h)
6941 {
6942         return h->access.intr_pending(h);
6943 }
6944
6945 static inline long interrupt_not_for_us(struct ctlr_info *h)
6946 {
6947         return (h->access.intr_pending(h) == 0) ||
6948                 (h->interrupts_enabled == 0);
6949 }
6950
6951 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6952         u32 raw_tag)
6953 {
6954         if (unlikely(tag_index >= h->nr_cmds)) {
6955                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6956                 return 1;
6957         }
6958         return 0;
6959 }
6960
6961 static inline void finish_cmd(struct CommandList *c)
6962 {
6963         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6964         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6965                         || c->cmd_type == CMD_IOACCEL2))
6966                 complete_scsi_command(c);
6967         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6968                 complete(c->waiting);
6969 }
6970
6971 /* process completion of an indexed ("direct lookup") command */
6972 static inline void process_indexed_cmd(struct ctlr_info *h,
6973         u32 raw_tag)
6974 {
6975         u32 tag_index;
6976         struct CommandList *c;
6977
6978         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6979         if (!bad_tag(h, tag_index, raw_tag)) {
6980                 c = h->cmd_pool + tag_index;
6981                 finish_cmd(c);
6982         }
6983 }
6984
6985 /* Some controllers, like p400, will give us one interrupt
6986  * after a soft reset, even if we turned interrupts off.
6987  * Only need to check for this in the hpsa_xxx_discard_completions
6988  * functions.
6989  */
6990 static int ignore_bogus_interrupt(struct ctlr_info *h)
6991 {
6992         if (likely(!reset_devices))
6993                 return 0;
6994
6995         if (likely(h->interrupts_enabled))
6996                 return 0;
6997
6998         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6999                 "(known firmware bug.)  Ignoring.\n");
7000
7001         return 1;
7002 }
7003
7004 /*
7005  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7006  * Relies on (h-q[x] == x) being true for x such that
7007  * 0 <= x < MAX_REPLY_QUEUES.
7008  */
7009 static struct ctlr_info *queue_to_hba(u8 *queue)
7010 {
7011         return container_of((queue - *queue), struct ctlr_info, q[0]);
7012 }
7013
7014 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7015 {
7016         struct ctlr_info *h = queue_to_hba(queue);
7017         u8 q = *(u8 *) queue;
7018         u32 raw_tag;
7019
7020         if (ignore_bogus_interrupt(h))
7021                 return IRQ_NONE;
7022
7023         if (interrupt_not_for_us(h))
7024                 return IRQ_NONE;
7025         h->last_intr_timestamp = get_jiffies_64();
7026         while (interrupt_pending(h)) {
7027                 raw_tag = get_next_completion(h, q);
7028                 while (raw_tag != FIFO_EMPTY)
7029                         raw_tag = next_command(h, q);
7030         }
7031         return IRQ_HANDLED;
7032 }
7033
7034 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7035 {
7036         struct ctlr_info *h = queue_to_hba(queue);
7037         u32 raw_tag;
7038         u8 q = *(u8 *) queue;
7039
7040         if (ignore_bogus_interrupt(h))
7041                 return IRQ_NONE;
7042
7043         h->last_intr_timestamp = get_jiffies_64();
7044         raw_tag = get_next_completion(h, q);
7045         while (raw_tag != FIFO_EMPTY)
7046                 raw_tag = next_command(h, q);
7047         return IRQ_HANDLED;
7048 }
7049
7050 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7051 {
7052         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7053         u32 raw_tag;
7054         u8 q = *(u8 *) queue;
7055
7056         if (interrupt_not_for_us(h))
7057                 return IRQ_NONE;
7058         h->last_intr_timestamp = get_jiffies_64();
7059         while (interrupt_pending(h)) {
7060                 raw_tag = get_next_completion(h, q);
7061                 while (raw_tag != FIFO_EMPTY) {
7062                         process_indexed_cmd(h, raw_tag);
7063                         raw_tag = next_command(h, q);
7064                 }
7065         }
7066         return IRQ_HANDLED;
7067 }
7068
7069 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7070 {
7071         struct ctlr_info *h = queue_to_hba(queue);
7072         u32 raw_tag;
7073         u8 q = *(u8 *) queue;
7074
7075         h->last_intr_timestamp = get_jiffies_64();
7076         raw_tag = get_next_completion(h, q);
7077         while (raw_tag != FIFO_EMPTY) {
7078                 process_indexed_cmd(h, raw_tag);
7079                 raw_tag = next_command(h, q);
7080         }
7081         return IRQ_HANDLED;
7082 }
7083
7084 /* Send a message CDB to the firmware. Careful, this only works
7085  * in simple mode, not performant mode due to the tag lookup.
7086  * We only ever use this immediately after a controller reset.
7087  */
7088 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7089                         unsigned char type)
7090 {
7091         struct Command {
7092                 struct CommandListHeader CommandHeader;
7093                 struct RequestBlock Request;
7094                 struct ErrDescriptor ErrorDescriptor;
7095         };
7096         struct Command *cmd;
7097         static const size_t cmd_sz = sizeof(*cmd) +
7098                                         sizeof(cmd->ErrorDescriptor);
7099         dma_addr_t paddr64;
7100         __le32 paddr32;
7101         u32 tag;
7102         void __iomem *vaddr;
7103         int i, err;
7104
7105         vaddr = pci_ioremap_bar(pdev, 0);
7106         if (vaddr == NULL)
7107                 return -ENOMEM;
7108
7109         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7110          * CCISS commands, so they must be allocated from the lower 4GiB of
7111          * memory.
7112          */
7113         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7114         if (err) {
7115                 iounmap(vaddr);
7116                 return err;
7117         }
7118
7119         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7120         if (cmd == NULL) {
7121                 iounmap(vaddr);
7122                 return -ENOMEM;
7123         }
7124
7125         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7126          * although there's no guarantee, we assume that the address is at
7127          * least 4-byte aligned (most likely, it's page-aligned).
7128          */
7129         paddr32 = cpu_to_le32(paddr64);
7130
7131         cmd->CommandHeader.ReplyQueue = 0;
7132         cmd->CommandHeader.SGList = 0;
7133         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7134         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7135         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7136
7137         cmd->Request.CDBLen = 16;
7138         cmd->Request.type_attr_dir =
7139                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7140         cmd->Request.Timeout = 0; /* Don't time out */
7141         cmd->Request.CDB[0] = opcode;
7142         cmd->Request.CDB[1] = type;
7143         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7144         cmd->ErrorDescriptor.Addr =
7145                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7146         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7147
7148         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7149
7150         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7151                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7152                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7153                         break;
7154                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7155         }
7156
7157         iounmap(vaddr);
7158
7159         /* we leak the DMA buffer here ... no choice since the controller could
7160          *  still complete the command.
7161          */
7162         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7163                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7164                         opcode, type);
7165                 return -ETIMEDOUT;
7166         }
7167
7168         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7169
7170         if (tag & HPSA_ERROR_BIT) {
7171                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7172                         opcode, type);
7173                 return -EIO;
7174         }
7175
7176         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7177                 opcode, type);
7178         return 0;
7179 }
7180
7181 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7182
7183 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7184         void __iomem *vaddr, u32 use_doorbell)
7185 {
7186
7187         if (use_doorbell) {
7188                 /* For everything after the P600, the PCI power state method
7189                  * of resetting the controller doesn't work, so we have this
7190                  * other way using the doorbell register.
7191                  */
7192                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7193                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7194
7195                 /* PMC hardware guys tell us we need a 10 second delay after
7196                  * doorbell reset and before any attempt to talk to the board
7197                  * at all to ensure that this actually works and doesn't fall
7198                  * over in some weird corner cases.
7199                  */
7200                 msleep(10000);
7201         } else { /* Try to do it the PCI power state way */
7202
7203                 /* Quoting from the Open CISS Specification: "The Power
7204                  * Management Control/Status Register (CSR) controls the power
7205                  * state of the device.  The normal operating state is D0,
7206                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7207                  * the controller, place the interface device in D3 then to D0,
7208                  * this causes a secondary PCI reset which will reset the
7209                  * controller." */
7210
7211                 int rc = 0;
7212
7213                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7214
7215                 /* enter the D3hot power management state */
7216                 rc = pci_set_power_state(pdev, PCI_D3hot);
7217                 if (rc)
7218                         return rc;
7219
7220                 msleep(500);
7221
7222                 /* enter the D0 power management state */
7223                 rc = pci_set_power_state(pdev, PCI_D0);
7224                 if (rc)
7225                         return rc;
7226
7227                 /*
7228                  * The P600 requires a small delay when changing states.
7229                  * Otherwise we may think the board did not reset and we bail.
7230                  * This for kdump only and is particular to the P600.
7231                  */
7232                 msleep(500);
7233         }
7234         return 0;
7235 }
7236
7237 static void init_driver_version(char *driver_version, int len)
7238 {
7239         memset(driver_version, 0, len);
7240         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7241 }
7242
7243 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7244 {
7245         char *driver_version;
7246         int i, size = sizeof(cfgtable->driver_version);
7247
7248         driver_version = kmalloc(size, GFP_KERNEL);
7249         if (!driver_version)
7250                 return -ENOMEM;
7251
7252         init_driver_version(driver_version, size);
7253         for (i = 0; i < size; i++)
7254                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7255         kfree(driver_version);
7256         return 0;
7257 }
7258
7259 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7260                                           unsigned char *driver_ver)
7261 {
7262         int i;
7263
7264         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7265                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7266 }
7267
7268 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7269 {
7270
7271         char *driver_ver, *old_driver_ver;
7272         int rc, size = sizeof(cfgtable->driver_version);
7273
7274         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7275         if (!old_driver_ver)
7276                 return -ENOMEM;
7277         driver_ver = old_driver_ver + size;
7278
7279         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7280          * should have been changed, otherwise we know the reset failed.
7281          */
7282         init_driver_version(old_driver_ver, size);
7283         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7284         rc = !memcmp(driver_ver, old_driver_ver, size);
7285         kfree(old_driver_ver);
7286         return rc;
7287 }
7288 /* This does a hard reset of the controller using PCI power management
7289  * states or the using the doorbell register.
7290  */
7291 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7292 {
7293         u64 cfg_offset;
7294         u32 cfg_base_addr;
7295         u64 cfg_base_addr_index;
7296         void __iomem *vaddr;
7297         unsigned long paddr;
7298         u32 misc_fw_support;
7299         int rc;
7300         struct CfgTable __iomem *cfgtable;
7301         u32 use_doorbell;
7302         u16 command_register;
7303
7304         /* For controllers as old as the P600, this is very nearly
7305          * the same thing as
7306          *
7307          * pci_save_state(pci_dev);
7308          * pci_set_power_state(pci_dev, PCI_D3hot);
7309          * pci_set_power_state(pci_dev, PCI_D0);
7310          * pci_restore_state(pci_dev);
7311          *
7312          * For controllers newer than the P600, the pci power state
7313          * method of resetting doesn't work so we have another way
7314          * using the doorbell register.
7315          */
7316
7317         if (!ctlr_is_resettable(board_id)) {
7318                 dev_warn(&pdev->dev, "Controller not resettable\n");
7319                 return -ENODEV;
7320         }
7321
7322         /* if controller is soft- but not hard resettable... */
7323         if (!ctlr_is_hard_resettable(board_id))
7324                 return -ENOTSUPP; /* try soft reset later. */
7325
7326         /* Save the PCI command register */
7327         pci_read_config_word(pdev, 4, &command_register);
7328         pci_save_state(pdev);
7329
7330         /* find the first memory BAR, so we can find the cfg table */
7331         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7332         if (rc)
7333                 return rc;
7334         vaddr = remap_pci_mem(paddr, 0x250);
7335         if (!vaddr)
7336                 return -ENOMEM;
7337
7338         /* find cfgtable in order to check if reset via doorbell is supported */
7339         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7340                                         &cfg_base_addr_index, &cfg_offset);
7341         if (rc)
7342                 goto unmap_vaddr;
7343         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7344                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7345         if (!cfgtable) {
7346                 rc = -ENOMEM;
7347                 goto unmap_vaddr;
7348         }
7349         rc = write_driver_ver_to_cfgtable(cfgtable);
7350         if (rc)
7351                 goto unmap_cfgtable;
7352
7353         /* If reset via doorbell register is supported, use that.
7354          * There are two such methods.  Favor the newest method.
7355          */
7356         misc_fw_support = readl(&cfgtable->misc_fw_support);
7357         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7358         if (use_doorbell) {
7359                 use_doorbell = DOORBELL_CTLR_RESET2;
7360         } else {
7361                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7362                 if (use_doorbell) {
7363                         dev_warn(&pdev->dev,
7364                                 "Soft reset not supported. Firmware update is required.\n");
7365                         rc = -ENOTSUPP; /* try soft reset */
7366                         goto unmap_cfgtable;
7367                 }
7368         }
7369
7370         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7371         if (rc)
7372                 goto unmap_cfgtable;
7373
7374         pci_restore_state(pdev);
7375         pci_write_config_word(pdev, 4, command_register);
7376
7377         /* Some devices (notably the HP Smart Array 5i Controller)
7378            need a little pause here */
7379         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7380
7381         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7382         if (rc) {
7383                 dev_warn(&pdev->dev,
7384                         "Failed waiting for board to become ready after hard reset\n");
7385                 goto unmap_cfgtable;
7386         }
7387
7388         rc = controller_reset_failed(vaddr);
7389         if (rc < 0)
7390                 goto unmap_cfgtable;
7391         if (rc) {
7392                 dev_warn(&pdev->dev, "Unable to successfully reset "
7393                         "controller. Will try soft reset.\n");
7394                 rc = -ENOTSUPP;
7395         } else {
7396                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7397         }
7398
7399 unmap_cfgtable:
7400         iounmap(cfgtable);
7401
7402 unmap_vaddr:
7403         iounmap(vaddr);
7404         return rc;
7405 }
7406
7407 /*
7408  *  We cannot read the structure directly, for portability we must use
7409  *   the io functions.
7410  *   This is for debug only.
7411  */
7412 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7413 {
7414 #ifdef HPSA_DEBUG
7415         int i;
7416         char temp_name[17];
7417
7418         dev_info(dev, "Controller Configuration information\n");
7419         dev_info(dev, "------------------------------------\n");
7420         for (i = 0; i < 4; i++)
7421                 temp_name[i] = readb(&(tb->Signature[i]));
7422         temp_name[4] = '\0';
7423         dev_info(dev, "   Signature = %s\n", temp_name);
7424         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7425         dev_info(dev, "   Transport methods supported = 0x%x\n",
7426                readl(&(tb->TransportSupport)));
7427         dev_info(dev, "   Transport methods active = 0x%x\n",
7428                readl(&(tb->TransportActive)));
7429         dev_info(dev, "   Requested transport Method = 0x%x\n",
7430                readl(&(tb->HostWrite.TransportRequest)));
7431         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7432                readl(&(tb->HostWrite.CoalIntDelay)));
7433         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7434                readl(&(tb->HostWrite.CoalIntCount)));
7435         dev_info(dev, "   Max outstanding commands = %d\n",
7436                readl(&(tb->CmdsOutMax)));
7437         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7438         for (i = 0; i < 16; i++)
7439                 temp_name[i] = readb(&(tb->ServerName[i]));
7440         temp_name[16] = '\0';
7441         dev_info(dev, "   Server Name = %s\n", temp_name);
7442         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7443                 readl(&(tb->HeartBeat)));
7444 #endif                          /* HPSA_DEBUG */
7445 }
7446
7447 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7448 {
7449         int i, offset, mem_type, bar_type;
7450
7451         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7452                 return 0;
7453         offset = 0;
7454         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7455                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7456                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7457                         offset += 4;
7458                 else {
7459                         mem_type = pci_resource_flags(pdev, i) &
7460                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7461                         switch (mem_type) {
7462                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7463                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7464                                 offset += 4;    /* 32 bit */
7465                                 break;
7466                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7467                                 offset += 8;
7468                                 break;
7469                         default:        /* reserved in PCI 2.2 */
7470                                 dev_warn(&pdev->dev,
7471                                        "base address is invalid\n");
7472                                 return -1;
7473                         }
7474                 }
7475                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7476                         return i + 1;
7477         }
7478         return -1;
7479 }
7480
7481 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7482 {
7483         pci_free_irq_vectors(h->pdev);
7484         h->msix_vectors = 0;
7485 }
7486
7487 static void hpsa_setup_reply_map(struct ctlr_info *h)
7488 {
7489         const struct cpumask *mask;
7490         unsigned int queue, cpu;
7491
7492         for (queue = 0; queue < h->msix_vectors; queue++) {
7493                 mask = pci_irq_get_affinity(h->pdev, queue);
7494                 if (!mask)
7495                         goto fallback;
7496
7497                 for_each_cpu(cpu, mask)
7498                         h->reply_map[cpu] = queue;
7499         }
7500         return;
7501
7502 fallback:
7503         for_each_possible_cpu(cpu)
7504                 h->reply_map[cpu] = 0;
7505 }
7506
7507 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7508  * controllers that are capable. If not, we use legacy INTx mode.
7509  */
7510 static int hpsa_interrupt_mode(struct ctlr_info *h)
7511 {
7512         unsigned int flags = PCI_IRQ_LEGACY;
7513         int ret;
7514
7515         /* Some boards advertise MSI but don't really support it */
7516         switch (h->board_id) {
7517         case 0x40700E11:
7518         case 0x40800E11:
7519         case 0x40820E11:
7520         case 0x40830E11:
7521                 break;
7522         default:
7523                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7524                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7525                 if (ret > 0) {
7526                         h->msix_vectors = ret;
7527                         return 0;
7528                 }
7529
7530                 flags |= PCI_IRQ_MSI;
7531                 break;
7532         }
7533
7534         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7535         if (ret < 0)
7536                 return ret;
7537         return 0;
7538 }
7539
7540 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7541                                 bool *legacy_board)
7542 {
7543         int i;
7544         u32 subsystem_vendor_id, subsystem_device_id;
7545
7546         subsystem_vendor_id = pdev->subsystem_vendor;
7547         subsystem_device_id = pdev->subsystem_device;
7548         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7549                     subsystem_vendor_id;
7550
7551         if (legacy_board)
7552                 *legacy_board = false;
7553         for (i = 0; i < ARRAY_SIZE(products); i++)
7554                 if (*board_id == products[i].board_id) {
7555                         if (products[i].access != &SA5A_access &&
7556                             products[i].access != &SA5B_access)
7557                                 return i;
7558                         dev_warn(&pdev->dev,
7559                                  "legacy board ID: 0x%08x\n",
7560                                  *board_id);
7561                         if (legacy_board)
7562                             *legacy_board = true;
7563                         return i;
7564                 }
7565
7566         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7567         if (legacy_board)
7568                 *legacy_board = true;
7569         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7570 }
7571
7572 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7573                                     unsigned long *memory_bar)
7574 {
7575         int i;
7576
7577         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7578                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7579                         /* addressing mode bits already removed */
7580                         *memory_bar = pci_resource_start(pdev, i);
7581                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7582                                 *memory_bar);
7583                         return 0;
7584                 }
7585         dev_warn(&pdev->dev, "no memory BAR found\n");
7586         return -ENODEV;
7587 }
7588
7589 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7590                                      int wait_for_ready)
7591 {
7592         int i, iterations;
7593         u32 scratchpad;
7594         if (wait_for_ready)
7595                 iterations = HPSA_BOARD_READY_ITERATIONS;
7596         else
7597                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7598
7599         for (i = 0; i < iterations; i++) {
7600                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7601                 if (wait_for_ready) {
7602                         if (scratchpad == HPSA_FIRMWARE_READY)
7603                                 return 0;
7604                 } else {
7605                         if (scratchpad != HPSA_FIRMWARE_READY)
7606                                 return 0;
7607                 }
7608                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7609         }
7610         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7611         return -ENODEV;
7612 }
7613
7614 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7615                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7616                                u64 *cfg_offset)
7617 {
7618         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7619         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7620         *cfg_base_addr &= (u32) 0x0000ffff;
7621         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7622         if (*cfg_base_addr_index == -1) {
7623                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7624                 return -ENODEV;
7625         }
7626         return 0;
7627 }
7628
7629 static void hpsa_free_cfgtables(struct ctlr_info *h)
7630 {
7631         if (h->transtable) {
7632                 iounmap(h->transtable);
7633                 h->transtable = NULL;
7634         }
7635         if (h->cfgtable) {
7636                 iounmap(h->cfgtable);
7637                 h->cfgtable = NULL;
7638         }
7639 }
7640
7641 /* Find and map CISS config table and transfer table
7642 + * several items must be unmapped (freed) later
7643 + * */
7644 static int hpsa_find_cfgtables(struct ctlr_info *h)
7645 {
7646         u64 cfg_offset;
7647         u32 cfg_base_addr;
7648         u64 cfg_base_addr_index;
7649         u32 trans_offset;
7650         int rc;
7651
7652         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7653                 &cfg_base_addr_index, &cfg_offset);
7654         if (rc)
7655                 return rc;
7656         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7657                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7658         if (!h->cfgtable) {
7659                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7660                 return -ENOMEM;
7661         }
7662         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7663         if (rc)
7664                 return rc;
7665         /* Find performant mode table. */
7666         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7667         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7668                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7669                                 sizeof(*h->transtable));
7670         if (!h->transtable) {
7671                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7672                 hpsa_free_cfgtables(h);
7673                 return -ENOMEM;
7674         }
7675         return 0;
7676 }
7677
7678 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7679 {
7680 #define MIN_MAX_COMMANDS 16
7681         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7682
7683         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7684
7685         /* Limit commands in memory limited kdump scenario. */
7686         if (reset_devices && h->max_commands > 32)
7687                 h->max_commands = 32;
7688
7689         if (h->max_commands < MIN_MAX_COMMANDS) {
7690                 dev_warn(&h->pdev->dev,
7691                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7692                         h->max_commands,
7693                         MIN_MAX_COMMANDS);
7694                 h->max_commands = MIN_MAX_COMMANDS;
7695         }
7696 }
7697
7698 /* If the controller reports that the total max sg entries is greater than 512,
7699  * then we know that chained SG blocks work.  (Original smart arrays did not
7700  * support chained SG blocks and would return zero for max sg entries.)
7701  */
7702 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7703 {
7704         return h->maxsgentries > 512;
7705 }
7706
7707 /* Interrogate the hardware for some limits:
7708  * max commands, max SG elements without chaining, and with chaining,
7709  * SG chain block size, etc.
7710  */
7711 static void hpsa_find_board_params(struct ctlr_info *h)
7712 {
7713         hpsa_get_max_perf_mode_cmds(h);
7714         h->nr_cmds = h->max_commands;
7715         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7716         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7717         if (hpsa_supports_chained_sg_blocks(h)) {
7718                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7719                 h->max_cmd_sg_entries = 32;
7720                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7721                 h->maxsgentries--; /* save one for chain pointer */
7722         } else {
7723                 /*
7724                  * Original smart arrays supported at most 31 s/g entries
7725                  * embedded inline in the command (trying to use more
7726                  * would lock up the controller)
7727                  */
7728                 h->max_cmd_sg_entries = 31;
7729                 h->maxsgentries = 31; /* default to traditional values */
7730                 h->chainsize = 0;
7731         }
7732
7733         /* Find out what task management functions are supported and cache */
7734         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7735         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7736                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7737         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7738                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7739         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7740                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7741 }
7742
7743 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7744 {
7745         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7746                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7747                 return false;
7748         }
7749         return true;
7750 }
7751
7752 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7753 {
7754         u32 driver_support;
7755
7756         driver_support = readl(&(h->cfgtable->driver_support));
7757         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7758 #ifdef CONFIG_X86
7759         driver_support |= ENABLE_SCSI_PREFETCH;
7760 #endif
7761         driver_support |= ENABLE_UNIT_ATTN;
7762         writel(driver_support, &(h->cfgtable->driver_support));
7763 }
7764
7765 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7766  * in a prefetch beyond physical memory.
7767  */
7768 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7769 {
7770         u32 dma_prefetch;
7771
7772         if (h->board_id != 0x3225103C)
7773                 return;
7774         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7775         dma_prefetch |= 0x8000;
7776         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7777 }
7778
7779 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7780 {
7781         int i;
7782         u32 doorbell_value;
7783         unsigned long flags;
7784         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7785         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7786                 spin_lock_irqsave(&h->lock, flags);
7787                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7788                 spin_unlock_irqrestore(&h->lock, flags);
7789                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7790                         goto done;
7791                 /* delay and try again */
7792                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7793         }
7794         return -ENODEV;
7795 done:
7796         return 0;
7797 }
7798
7799 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7800 {
7801         int i;
7802         u32 doorbell_value;
7803         unsigned long flags;
7804
7805         /* under certain very rare conditions, this can take awhile.
7806          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7807          * as we enter this code.)
7808          */
7809         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7810                 if (h->remove_in_progress)
7811                         goto done;
7812                 spin_lock_irqsave(&h->lock, flags);
7813                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7814                 spin_unlock_irqrestore(&h->lock, flags);
7815                 if (!(doorbell_value & CFGTBL_ChangeReq))
7816                         goto done;
7817                 /* delay and try again */
7818                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7819         }
7820         return -ENODEV;
7821 done:
7822         return 0;
7823 }
7824
7825 /* return -ENODEV or other reason on error, 0 on success */
7826 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7827 {
7828         u32 trans_support;
7829
7830         trans_support = readl(&(h->cfgtable->TransportSupport));
7831         if (!(trans_support & SIMPLE_MODE))
7832                 return -ENOTSUPP;
7833
7834         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7835
7836         /* Update the field, and then ring the doorbell */
7837         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7838         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7839         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7840         if (hpsa_wait_for_mode_change_ack(h))
7841                 goto error;
7842         print_cfg_table(&h->pdev->dev, h->cfgtable);
7843         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7844                 goto error;
7845         h->transMethod = CFGTBL_Trans_Simple;
7846         return 0;
7847 error:
7848         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7849         return -ENODEV;
7850 }
7851
7852 /* free items allocated or mapped by hpsa_pci_init */
7853 static void hpsa_free_pci_init(struct ctlr_info *h)
7854 {
7855         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7856         iounmap(h->vaddr);                      /* pci_init 3 */
7857         h->vaddr = NULL;
7858         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7859         /*
7860          * call pci_disable_device before pci_release_regions per
7861          * Documentation/driver-api/pci/pci.rst
7862          */
7863         pci_disable_device(h->pdev);            /* pci_init 1 */
7864         pci_release_regions(h->pdev);           /* pci_init 2 */
7865 }
7866
7867 /* several items must be freed later */
7868 static int hpsa_pci_init(struct ctlr_info *h)
7869 {
7870         int prod_index, err;
7871         bool legacy_board;
7872
7873         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7874         if (prod_index < 0)
7875                 return prod_index;
7876         h->product_name = products[prod_index].product_name;
7877         h->access = *(products[prod_index].access);
7878         h->legacy_board = legacy_board;
7879         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7880                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7881
7882         err = pci_enable_device(h->pdev);
7883         if (err) {
7884                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7885                 pci_disable_device(h->pdev);
7886                 return err;
7887         }
7888
7889         err = pci_request_regions(h->pdev, HPSA);
7890         if (err) {
7891                 dev_err(&h->pdev->dev,
7892                         "failed to obtain PCI resources\n");
7893                 pci_disable_device(h->pdev);
7894                 return err;
7895         }
7896
7897         pci_set_master(h->pdev);
7898
7899         err = hpsa_interrupt_mode(h);
7900         if (err)
7901                 goto clean1;
7902
7903         /* setup mapping between CPU and reply queue */
7904         hpsa_setup_reply_map(h);
7905
7906         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7907         if (err)
7908                 goto clean2;    /* intmode+region, pci */
7909         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7910         if (!h->vaddr) {
7911                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7912                 err = -ENOMEM;
7913                 goto clean2;    /* intmode+region, pci */
7914         }
7915         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7916         if (err)
7917                 goto clean3;    /* vaddr, intmode+region, pci */
7918         err = hpsa_find_cfgtables(h);
7919         if (err)
7920                 goto clean3;    /* vaddr, intmode+region, pci */
7921         hpsa_find_board_params(h);
7922
7923         if (!hpsa_CISS_signature_present(h)) {
7924                 err = -ENODEV;
7925                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7926         }
7927         hpsa_set_driver_support_bits(h);
7928         hpsa_p600_dma_prefetch_quirk(h);
7929         err = hpsa_enter_simple_mode(h);
7930         if (err)
7931                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7932         return 0;
7933
7934 clean4: /* cfgtables, vaddr, intmode+region, pci */
7935         hpsa_free_cfgtables(h);
7936 clean3: /* vaddr, intmode+region, pci */
7937         iounmap(h->vaddr);
7938         h->vaddr = NULL;
7939 clean2: /* intmode+region, pci */
7940         hpsa_disable_interrupt_mode(h);
7941 clean1:
7942         /*
7943          * call pci_disable_device before pci_release_regions per
7944          * Documentation/driver-api/pci/pci.rst
7945          */
7946         pci_disable_device(h->pdev);
7947         pci_release_regions(h->pdev);
7948         return err;
7949 }
7950
7951 static void hpsa_hba_inquiry(struct ctlr_info *h)
7952 {
7953         int rc;
7954
7955 #define HBA_INQUIRY_BYTE_COUNT 64
7956         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7957         if (!h->hba_inquiry_data)
7958                 return;
7959         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7960                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7961         if (rc != 0) {
7962                 kfree(h->hba_inquiry_data);
7963                 h->hba_inquiry_data = NULL;
7964         }
7965 }
7966
7967 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7968 {
7969         int rc, i;
7970         void __iomem *vaddr;
7971
7972         if (!reset_devices)
7973                 return 0;
7974
7975         /* kdump kernel is loading, we don't know in which state is
7976          * the pci interface. The dev->enable_cnt is equal zero
7977          * so we call enable+disable, wait a while and switch it on.
7978          */
7979         rc = pci_enable_device(pdev);
7980         if (rc) {
7981                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7982                 return -ENODEV;
7983         }
7984         pci_disable_device(pdev);
7985         msleep(260);                    /* a randomly chosen number */
7986         rc = pci_enable_device(pdev);
7987         if (rc) {
7988                 dev_warn(&pdev->dev, "failed to enable device.\n");
7989                 return -ENODEV;
7990         }
7991
7992         pci_set_master(pdev);
7993
7994         vaddr = pci_ioremap_bar(pdev, 0);
7995         if (vaddr == NULL) {
7996                 rc = -ENOMEM;
7997                 goto out_disable;
7998         }
7999         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8000         iounmap(vaddr);
8001
8002         /* Reset the controller with a PCI power-cycle or via doorbell */
8003         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8004
8005         /* -ENOTSUPP here means we cannot reset the controller
8006          * but it's already (and still) up and running in
8007          * "performant mode".  Or, it might be 640x, which can't reset
8008          * due to concerns about shared bbwc between 6402/6404 pair.
8009          */
8010         if (rc)
8011                 goto out_disable;
8012
8013         /* Now try to get the controller to respond to a no-op */
8014         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8015         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8016                 if (hpsa_noop(pdev) == 0)
8017                         break;
8018                 else
8019                         dev_warn(&pdev->dev, "no-op failed%s\n",
8020                                         (i < 11 ? "; re-trying" : ""));
8021         }
8022
8023 out_disable:
8024
8025         pci_disable_device(pdev);
8026         return rc;
8027 }
8028
8029 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8030 {
8031         kfree(h->cmd_pool_bits);
8032         h->cmd_pool_bits = NULL;
8033         if (h->cmd_pool) {
8034                 dma_free_coherent(&h->pdev->dev,
8035                                 h->nr_cmds * sizeof(struct CommandList),
8036                                 h->cmd_pool,
8037                                 h->cmd_pool_dhandle);
8038                 h->cmd_pool = NULL;
8039                 h->cmd_pool_dhandle = 0;
8040         }
8041         if (h->errinfo_pool) {
8042                 dma_free_coherent(&h->pdev->dev,
8043                                 h->nr_cmds * sizeof(struct ErrorInfo),
8044                                 h->errinfo_pool,
8045                                 h->errinfo_pool_dhandle);
8046                 h->errinfo_pool = NULL;
8047                 h->errinfo_pool_dhandle = 0;
8048         }
8049 }
8050
8051 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8052 {
8053         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8054                                    sizeof(unsigned long),
8055                                    GFP_KERNEL);
8056         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8057                     h->nr_cmds * sizeof(*h->cmd_pool),
8058                     &h->cmd_pool_dhandle, GFP_KERNEL);
8059         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8060                     h->nr_cmds * sizeof(*h->errinfo_pool),
8061                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8062         if ((h->cmd_pool_bits == NULL)
8063             || (h->cmd_pool == NULL)
8064             || (h->errinfo_pool == NULL)) {
8065                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8066                 goto clean_up;
8067         }
8068         hpsa_preinitialize_commands(h);
8069         return 0;
8070 clean_up:
8071         hpsa_free_cmd_pool(h);
8072         return -ENOMEM;
8073 }
8074
8075 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8076 static void hpsa_free_irqs(struct ctlr_info *h)
8077 {
8078         int i;
8079         int irq_vector = 0;
8080
8081         if (hpsa_simple_mode)
8082                 irq_vector = h->intr_mode;
8083
8084         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8085                 /* Single reply queue, only one irq to free */
8086                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8087                                 &h->q[h->intr_mode]);
8088                 h->q[h->intr_mode] = 0;
8089                 return;
8090         }
8091
8092         for (i = 0; i < h->msix_vectors; i++) {
8093                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8094                 h->q[i] = 0;
8095         }
8096         for (; i < MAX_REPLY_QUEUES; i++)
8097                 h->q[i] = 0;
8098 }
8099
8100 /* returns 0 on success; cleans up and returns -Enn on error */
8101 static int hpsa_request_irqs(struct ctlr_info *h,
8102         irqreturn_t (*msixhandler)(int, void *),
8103         irqreturn_t (*intxhandler)(int, void *))
8104 {
8105         int rc, i;
8106         int irq_vector = 0;
8107
8108         if (hpsa_simple_mode)
8109                 irq_vector = h->intr_mode;
8110
8111         /*
8112          * initialize h->q[x] = x so that interrupt handlers know which
8113          * queue to process.
8114          */
8115         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8116                 h->q[i] = (u8) i;
8117
8118         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8119                 /* If performant mode and MSI-X, use multiple reply queues */
8120                 for (i = 0; i < h->msix_vectors; i++) {
8121                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8122                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8123                                         0, h->intrname[i],
8124                                         &h->q[i]);
8125                         if (rc) {
8126                                 int j;
8127
8128                                 dev_err(&h->pdev->dev,
8129                                         "failed to get irq %d for %s\n",
8130                                        pci_irq_vector(h->pdev, i), h->devname);
8131                                 for (j = 0; j < i; j++) {
8132                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8133                                         h->q[j] = 0;
8134                                 }
8135                                 for (; j < MAX_REPLY_QUEUES; j++)
8136                                         h->q[j] = 0;
8137                                 return rc;
8138                         }
8139                 }
8140         } else {
8141                 /* Use single reply pool */
8142                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8143                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8144                                 h->msix_vectors ? "x" : "");
8145                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8146                                 msixhandler, 0,
8147                                 h->intrname[0],
8148                                 &h->q[h->intr_mode]);
8149                 } else {
8150                         sprintf(h->intrname[h->intr_mode],
8151                                 "%s-intx", h->devname);
8152                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8153                                 intxhandler, IRQF_SHARED,
8154                                 h->intrname[0],
8155                                 &h->q[h->intr_mode]);
8156                 }
8157         }
8158         if (rc) {
8159                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8160                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8161                 hpsa_free_irqs(h);
8162                 return -ENODEV;
8163         }
8164         return 0;
8165 }
8166
8167 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8168 {
8169         int rc;
8170         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8171
8172         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8173         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8174         if (rc) {
8175                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8176                 return rc;
8177         }
8178
8179         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8180         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8181         if (rc) {
8182                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8183                         "after soft reset.\n");
8184                 return rc;
8185         }
8186
8187         return 0;
8188 }
8189
8190 static void hpsa_free_reply_queues(struct ctlr_info *h)
8191 {
8192         int i;
8193
8194         for (i = 0; i < h->nreply_queues; i++) {
8195                 if (!h->reply_queue[i].head)
8196                         continue;
8197                 dma_free_coherent(&h->pdev->dev,
8198                                         h->reply_queue_size,
8199                                         h->reply_queue[i].head,
8200                                         h->reply_queue[i].busaddr);
8201                 h->reply_queue[i].head = NULL;
8202                 h->reply_queue[i].busaddr = 0;
8203         }
8204         h->reply_queue_size = 0;
8205 }
8206
8207 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8208 {
8209         hpsa_free_performant_mode(h);           /* init_one 7 */
8210         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8211         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8212         hpsa_free_irqs(h);                      /* init_one 4 */
8213         scsi_host_put(h->scsi_host);            /* init_one 3 */
8214         h->scsi_host = NULL;                    /* init_one 3 */
8215         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8216         free_percpu(h->lockup_detected);        /* init_one 2 */
8217         h->lockup_detected = NULL;              /* init_one 2 */
8218         if (h->resubmit_wq) {
8219                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8220                 h->resubmit_wq = NULL;
8221         }
8222         if (h->rescan_ctlr_wq) {
8223                 destroy_workqueue(h->rescan_ctlr_wq);
8224                 h->rescan_ctlr_wq = NULL;
8225         }
8226         if (h->monitor_ctlr_wq) {
8227                 destroy_workqueue(h->monitor_ctlr_wq);
8228                 h->monitor_ctlr_wq = NULL;
8229         }
8230
8231         kfree(h);                               /* init_one 1 */
8232 }
8233
8234 /* Called when controller lockup detected. */
8235 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8236 {
8237         int i, refcount;
8238         struct CommandList *c;
8239         int failcount = 0;
8240
8241         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8242         for (i = 0; i < h->nr_cmds; i++) {
8243                 c = h->cmd_pool + i;
8244                 refcount = atomic_inc_return(&c->refcount);
8245                 if (refcount > 1) {
8246                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8247                         finish_cmd(c);
8248                         atomic_dec(&h->commands_outstanding);
8249                         failcount++;
8250                 }
8251                 cmd_free(h, c);
8252         }
8253         dev_warn(&h->pdev->dev,
8254                 "failed %d commands in fail_all\n", failcount);
8255 }
8256
8257 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8258 {
8259         int cpu;
8260
8261         for_each_online_cpu(cpu) {
8262                 u32 *lockup_detected;
8263                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8264                 *lockup_detected = value;
8265         }
8266         wmb(); /* be sure the per-cpu variables are out to memory */
8267 }
8268
8269 static void controller_lockup_detected(struct ctlr_info *h)
8270 {
8271         unsigned long flags;
8272         u32 lockup_detected;
8273
8274         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8275         spin_lock_irqsave(&h->lock, flags);
8276         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8277         if (!lockup_detected) {
8278                 /* no heartbeat, but controller gave us a zero. */
8279                 dev_warn(&h->pdev->dev,
8280                         "lockup detected after %d but scratchpad register is zero\n",
8281                         h->heartbeat_sample_interval / HZ);
8282                 lockup_detected = 0xffffffff;
8283         }
8284         set_lockup_detected_for_all_cpus(h, lockup_detected);
8285         spin_unlock_irqrestore(&h->lock, flags);
8286         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8287                         lockup_detected, h->heartbeat_sample_interval / HZ);
8288         if (lockup_detected == 0xffff0000) {
8289                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8290                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8291         }
8292         pci_disable_device(h->pdev);
8293         fail_all_outstanding_cmds(h);
8294 }
8295
8296 static int detect_controller_lockup(struct ctlr_info *h)
8297 {
8298         u64 now;
8299         u32 heartbeat;
8300         unsigned long flags;
8301
8302         now = get_jiffies_64();
8303         /* If we've received an interrupt recently, we're ok. */
8304         if (time_after64(h->last_intr_timestamp +
8305                                 (h->heartbeat_sample_interval), now))
8306                 return false;
8307
8308         /*
8309          * If we've already checked the heartbeat recently, we're ok.
8310          * This could happen if someone sends us a signal. We
8311          * otherwise don't care about signals in this thread.
8312          */
8313         if (time_after64(h->last_heartbeat_timestamp +
8314                                 (h->heartbeat_sample_interval), now))
8315                 return false;
8316
8317         /* If heartbeat has not changed since we last looked, we're not ok. */
8318         spin_lock_irqsave(&h->lock, flags);
8319         heartbeat = readl(&h->cfgtable->HeartBeat);
8320         spin_unlock_irqrestore(&h->lock, flags);
8321         if (h->last_heartbeat == heartbeat) {
8322                 controller_lockup_detected(h);
8323                 return true;
8324         }
8325
8326         /* We're ok. */
8327         h->last_heartbeat = heartbeat;
8328         h->last_heartbeat_timestamp = now;
8329         return false;
8330 }
8331
8332 /*
8333  * Set ioaccel status for all ioaccel volumes.
8334  *
8335  * Called from monitor controller worker (hpsa_event_monitor_worker)
8336  *
8337  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8338  * transformation, so we will be turning off ioaccel for all volumes that
8339  * make up the Array.
8340  */
8341 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8342 {
8343         int rc;
8344         int i;
8345         u8 ioaccel_status;
8346         unsigned char *buf;
8347         struct hpsa_scsi_dev_t *device;
8348
8349         if (!h)
8350                 return;
8351
8352         buf = kmalloc(64, GFP_KERNEL);
8353         if (!buf)
8354                 return;
8355
8356         /*
8357          * Run through current device list used during I/O requests.
8358          */
8359         for (i = 0; i < h->ndevices; i++) {
8360                 int offload_to_be_enabled = 0;
8361                 int offload_config = 0;
8362
8363                 device = h->dev[i];
8364
8365                 if (!device)
8366                         continue;
8367                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8368                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8369                         continue;
8370
8371                 memset(buf, 0, 64);
8372
8373                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8374                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8375                                         buf, 64);
8376                 if (rc != 0)
8377                         continue;
8378
8379                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8380
8381                 /*
8382                  * Check if offload is still configured on
8383                  */
8384                 offload_config =
8385                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8386                 /*
8387                  * If offload is configured on, check to see if ioaccel
8388                  * needs to be enabled.
8389                  */
8390                 if (offload_config)
8391                         offload_to_be_enabled =
8392                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8393
8394                 /*
8395                  * If ioaccel is to be re-enabled, re-enable later during the
8396                  * scan operation so the driver can get a fresh raidmap
8397                  * before turning ioaccel back on.
8398                  */
8399                 if (offload_to_be_enabled)
8400                         continue;
8401
8402                 /*
8403                  * Immediately turn off ioaccel for any volume the
8404                  * controller tells us to. Some of the reasons could be:
8405                  *    transformation - change to the LVs of an Array.
8406                  *    degraded volume - component failure
8407                  */
8408                 hpsa_turn_off_ioaccel_for_device(device);
8409         }
8410
8411         kfree(buf);
8412 }
8413
8414 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8415 {
8416         char *event_type;
8417
8418         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8419                 return;
8420
8421         /* Ask the controller to clear the events we're handling. */
8422         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8423                         | CFGTBL_Trans_io_accel2)) &&
8424                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8425                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8426
8427                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8428                         event_type = "state change";
8429                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8430                         event_type = "configuration change";
8431                 /* Stop sending new RAID offload reqs via the IO accelerator */
8432                 scsi_block_requests(h->scsi_host);
8433                 hpsa_set_ioaccel_status(h);
8434                 hpsa_drain_accel_commands(h);
8435                 /* Set 'accelerator path config change' bit */
8436                 dev_warn(&h->pdev->dev,
8437                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8438                         h->events, event_type);
8439                 writel(h->events, &(h->cfgtable->clear_event_notify));
8440                 /* Set the "clear event notify field update" bit 6 */
8441                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8442                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8443                 hpsa_wait_for_clear_event_notify_ack(h);
8444                 scsi_unblock_requests(h->scsi_host);
8445         } else {
8446                 /* Acknowledge controller notification events. */
8447                 writel(h->events, &(h->cfgtable->clear_event_notify));
8448                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8449                 hpsa_wait_for_clear_event_notify_ack(h);
8450         }
8451         return;
8452 }
8453
8454 /* Check a register on the controller to see if there are configuration
8455  * changes (added/changed/removed logical drives, etc.) which mean that
8456  * we should rescan the controller for devices.
8457  * Also check flag for driver-initiated rescan.
8458  */
8459 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8460 {
8461         if (h->drv_req_rescan) {
8462                 h->drv_req_rescan = 0;
8463                 return 1;
8464         }
8465
8466         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8467                 return 0;
8468
8469         h->events = readl(&(h->cfgtable->event_notify));
8470         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8471 }
8472
8473 /*
8474  * Check if any of the offline devices have become ready
8475  */
8476 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8477 {
8478         unsigned long flags;
8479         struct offline_device_entry *d;
8480         struct list_head *this, *tmp;
8481
8482         spin_lock_irqsave(&h->offline_device_lock, flags);
8483         list_for_each_safe(this, tmp, &h->offline_device_list) {
8484                 d = list_entry(this, struct offline_device_entry,
8485                                 offline_list);
8486                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8487                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8488                         spin_lock_irqsave(&h->offline_device_lock, flags);
8489                         list_del(&d->offline_list);
8490                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8491                         return 1;
8492                 }
8493                 spin_lock_irqsave(&h->offline_device_lock, flags);
8494         }
8495         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8496         return 0;
8497 }
8498
8499 static int hpsa_luns_changed(struct ctlr_info *h)
8500 {
8501         int rc = 1; /* assume there are changes */
8502         struct ReportLUNdata *logdev = NULL;
8503
8504         /* if we can't find out if lun data has changed,
8505          * assume that it has.
8506          */
8507
8508         if (!h->lastlogicals)
8509                 return rc;
8510
8511         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8512         if (!logdev)
8513                 return rc;
8514
8515         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8516                 dev_warn(&h->pdev->dev,
8517                         "report luns failed, can't track lun changes.\n");
8518                 goto out;
8519         }
8520         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8521                 dev_info(&h->pdev->dev,
8522                         "Lun changes detected.\n");
8523                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8524                 goto out;
8525         } else
8526                 rc = 0; /* no changes detected. */
8527 out:
8528         kfree(logdev);
8529         return rc;
8530 }
8531
8532 static void hpsa_perform_rescan(struct ctlr_info *h)
8533 {
8534         struct Scsi_Host *sh = NULL;
8535         unsigned long flags;
8536
8537         /*
8538          * Do the scan after the reset
8539          */
8540         spin_lock_irqsave(&h->reset_lock, flags);
8541         if (h->reset_in_progress) {
8542                 h->drv_req_rescan = 1;
8543                 spin_unlock_irqrestore(&h->reset_lock, flags);
8544                 return;
8545         }
8546         spin_unlock_irqrestore(&h->reset_lock, flags);
8547
8548         sh = scsi_host_get(h->scsi_host);
8549         if (sh != NULL) {
8550                 hpsa_scan_start(sh);
8551                 scsi_host_put(sh);
8552                 h->drv_req_rescan = 0;
8553         }
8554 }
8555
8556 /*
8557  * watch for controller events
8558  */
8559 static void hpsa_event_monitor_worker(struct work_struct *work)
8560 {
8561         struct ctlr_info *h = container_of(to_delayed_work(work),
8562                                         struct ctlr_info, event_monitor_work);
8563         unsigned long flags;
8564
8565         spin_lock_irqsave(&h->lock, flags);
8566         if (h->remove_in_progress) {
8567                 spin_unlock_irqrestore(&h->lock, flags);
8568                 return;
8569         }
8570         spin_unlock_irqrestore(&h->lock, flags);
8571
8572         if (hpsa_ctlr_needs_rescan(h)) {
8573                 hpsa_ack_ctlr_events(h);
8574                 hpsa_perform_rescan(h);
8575         }
8576
8577         spin_lock_irqsave(&h->lock, flags);
8578         if (!h->remove_in_progress)
8579                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8580                                 HPSA_EVENT_MONITOR_INTERVAL);
8581         spin_unlock_irqrestore(&h->lock, flags);
8582 }
8583
8584 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8585 {
8586         unsigned long flags;
8587         struct ctlr_info *h = container_of(to_delayed_work(work),
8588                                         struct ctlr_info, rescan_ctlr_work);
8589
8590         spin_lock_irqsave(&h->lock, flags);
8591         if (h->remove_in_progress) {
8592                 spin_unlock_irqrestore(&h->lock, flags);
8593                 return;
8594         }
8595         spin_unlock_irqrestore(&h->lock, flags);
8596
8597         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8598                 hpsa_perform_rescan(h);
8599         } else if (h->discovery_polling) {
8600                 if (hpsa_luns_changed(h)) {
8601                         dev_info(&h->pdev->dev,
8602                                 "driver discovery polling rescan.\n");
8603                         hpsa_perform_rescan(h);
8604                 }
8605         }
8606         spin_lock_irqsave(&h->lock, flags);
8607         if (!h->remove_in_progress)
8608                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8609                                 h->heartbeat_sample_interval);
8610         spin_unlock_irqrestore(&h->lock, flags);
8611 }
8612
8613 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8614 {
8615         unsigned long flags;
8616         struct ctlr_info *h = container_of(to_delayed_work(work),
8617                                         struct ctlr_info, monitor_ctlr_work);
8618
8619         detect_controller_lockup(h);
8620         if (lockup_detected(h))
8621                 return;
8622
8623         spin_lock_irqsave(&h->lock, flags);
8624         if (!h->remove_in_progress)
8625                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8626                                 h->heartbeat_sample_interval);
8627         spin_unlock_irqrestore(&h->lock, flags);
8628 }
8629
8630 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8631                                                 char *name)
8632 {
8633         struct workqueue_struct *wq = NULL;
8634
8635         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8636         if (!wq)
8637                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8638
8639         return wq;
8640 }
8641
8642 static void hpda_free_ctlr_info(struct ctlr_info *h)
8643 {
8644         kfree(h->reply_map);
8645         kfree(h);
8646 }
8647
8648 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8649 {
8650         struct ctlr_info *h;
8651
8652         h = kzalloc(sizeof(*h), GFP_KERNEL);
8653         if (!h)
8654                 return NULL;
8655
8656         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8657         if (!h->reply_map) {
8658                 kfree(h);
8659                 return NULL;
8660         }
8661         return h;
8662 }
8663
8664 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8665 {
8666         int rc;
8667         struct ctlr_info *h;
8668         int try_soft_reset = 0;
8669         unsigned long flags;
8670         u32 board_id;
8671
8672         if (number_of_controllers == 0)
8673                 printk(KERN_INFO DRIVER_NAME "\n");
8674
8675         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8676         if (rc < 0) {
8677                 dev_warn(&pdev->dev, "Board ID not found\n");
8678                 return rc;
8679         }
8680
8681         rc = hpsa_init_reset_devices(pdev, board_id);
8682         if (rc) {
8683                 if (rc != -ENOTSUPP)
8684                         return rc;
8685                 /* If the reset fails in a particular way (it has no way to do
8686                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8687                  * a soft reset once we get the controller configured up to the
8688                  * point that it can accept a command.
8689                  */
8690                 try_soft_reset = 1;
8691                 rc = 0;
8692         }
8693
8694 reinit_after_soft_reset:
8695
8696         /* Command structures must be aligned on a 32-byte boundary because
8697          * the 5 lower bits of the address are used by the hardware. and by
8698          * the driver.  See comments in hpsa.h for more info.
8699          */
8700         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8701         h = hpda_alloc_ctlr_info();
8702         if (!h) {
8703                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8704                 return -ENOMEM;
8705         }
8706
8707         h->pdev = pdev;
8708
8709         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8710         INIT_LIST_HEAD(&h->offline_device_list);
8711         spin_lock_init(&h->lock);
8712         spin_lock_init(&h->offline_device_lock);
8713         spin_lock_init(&h->scan_lock);
8714         spin_lock_init(&h->reset_lock);
8715         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8716
8717         /* Allocate and clear per-cpu variable lockup_detected */
8718         h->lockup_detected = alloc_percpu(u32);
8719         if (!h->lockup_detected) {
8720                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8721                 rc = -ENOMEM;
8722                 goto clean1;    /* aer/h */
8723         }
8724         set_lockup_detected_for_all_cpus(h, 0);
8725
8726         rc = hpsa_pci_init(h);
8727         if (rc)
8728                 goto clean2;    /* lu, aer/h */
8729
8730         /* relies on h-> settings made by hpsa_pci_init, including
8731          * interrupt_mode h->intr */
8732         rc = hpsa_scsi_host_alloc(h);
8733         if (rc)
8734                 goto clean2_5;  /* pci, lu, aer/h */
8735
8736         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8737         h->ctlr = number_of_controllers;
8738         number_of_controllers++;
8739
8740         /* configure PCI DMA stuff */
8741         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8742         if (rc != 0) {
8743                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8744                 if (rc != 0) {
8745                         dev_err(&pdev->dev, "no suitable DMA available\n");
8746                         goto clean3;    /* shost, pci, lu, aer/h */
8747                 }
8748         }
8749
8750         /* make sure the board interrupts are off */
8751         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8752
8753         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8754         if (rc)
8755                 goto clean3;    /* shost, pci, lu, aer/h */
8756         rc = hpsa_alloc_cmd_pool(h);
8757         if (rc)
8758                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8759         rc = hpsa_alloc_sg_chain_blocks(h);
8760         if (rc)
8761                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8762         init_waitqueue_head(&h->scan_wait_queue);
8763         init_waitqueue_head(&h->event_sync_wait_queue);
8764         mutex_init(&h->reset_mutex);
8765         h->scan_finished = 1; /* no scan currently in progress */
8766         h->scan_waiting = 0;
8767
8768         pci_set_drvdata(pdev, h);
8769         h->ndevices = 0;
8770
8771         spin_lock_init(&h->devlock);
8772         rc = hpsa_put_ctlr_into_performant_mode(h);
8773         if (rc)
8774                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8775
8776         /* create the resubmit workqueue */
8777         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8778         if (!h->rescan_ctlr_wq) {
8779                 rc = -ENOMEM;
8780                 goto clean7;
8781         }
8782
8783         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8784         if (!h->resubmit_wq) {
8785                 rc = -ENOMEM;
8786                 goto clean7;    /* aer/h */
8787         }
8788
8789         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8790         if (!h->monitor_ctlr_wq) {
8791                 rc = -ENOMEM;
8792                 goto clean7;
8793         }
8794
8795         /*
8796          * At this point, the controller is ready to take commands.
8797          * Now, if reset_devices and the hard reset didn't work, try
8798          * the soft reset and see if that works.
8799          */
8800         if (try_soft_reset) {
8801
8802                 /* This is kind of gross.  We may or may not get a completion
8803                  * from the soft reset command, and if we do, then the value
8804                  * from the fifo may or may not be valid.  So, we wait 10 secs
8805                  * after the reset throwing away any completions we get during
8806                  * that time.  Unregister the interrupt handler and register
8807                  * fake ones to scoop up any residual completions.
8808                  */
8809                 spin_lock_irqsave(&h->lock, flags);
8810                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8811                 spin_unlock_irqrestore(&h->lock, flags);
8812                 hpsa_free_irqs(h);
8813                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8814                                         hpsa_intx_discard_completions);
8815                 if (rc) {
8816                         dev_warn(&h->pdev->dev,
8817                                 "Failed to request_irq after soft reset.\n");
8818                         /*
8819                          * cannot goto clean7 or free_irqs will be called
8820                          * again. Instead, do its work
8821                          */
8822                         hpsa_free_performant_mode(h);   /* clean7 */
8823                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8824                         hpsa_free_cmd_pool(h);          /* clean5 */
8825                         /*
8826                          * skip hpsa_free_irqs(h) clean4 since that
8827                          * was just called before request_irqs failed
8828                          */
8829                         goto clean3;
8830                 }
8831
8832                 rc = hpsa_kdump_soft_reset(h);
8833                 if (rc)
8834                         /* Neither hard nor soft reset worked, we're hosed. */
8835                         goto clean7;
8836
8837                 dev_info(&h->pdev->dev, "Board READY.\n");
8838                 dev_info(&h->pdev->dev,
8839                         "Waiting for stale completions to drain.\n");
8840                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8841                 msleep(10000);
8842                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8843
8844                 rc = controller_reset_failed(h->cfgtable);
8845                 if (rc)
8846                         dev_info(&h->pdev->dev,
8847                                 "Soft reset appears to have failed.\n");
8848
8849                 /* since the controller's reset, we have to go back and re-init
8850                  * everything.  Easiest to just forget what we've done and do it
8851                  * all over again.
8852                  */
8853                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8854                 try_soft_reset = 0;
8855                 if (rc)
8856                         /* don't goto clean, we already unallocated */
8857                         return -ENODEV;
8858
8859                 goto reinit_after_soft_reset;
8860         }
8861
8862         /* Enable Accelerated IO path at driver layer */
8863         h->acciopath_status = 1;
8864         /* Disable discovery polling.*/
8865         h->discovery_polling = 0;
8866
8867
8868         /* Turn the interrupts on so we can service requests */
8869         h->access.set_intr_mask(h, HPSA_INTR_ON);
8870
8871         hpsa_hba_inquiry(h);
8872
8873         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8874         if (!h->lastlogicals)
8875                 dev_info(&h->pdev->dev,
8876                         "Can't track change to report lun data\n");
8877
8878         /* hook into SCSI subsystem */
8879         rc = hpsa_scsi_add_host(h);
8880         if (rc)
8881                 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8882
8883         /* Monitor the controller for firmware lockups */
8884         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8885         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8886         schedule_delayed_work(&h->monitor_ctlr_work,
8887                                 h->heartbeat_sample_interval);
8888         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8889         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8890                                 h->heartbeat_sample_interval);
8891         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8892         schedule_delayed_work(&h->event_monitor_work,
8893                                 HPSA_EVENT_MONITOR_INTERVAL);
8894         return 0;
8895
8896 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8897         kfree(h->lastlogicals);
8898 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8899         hpsa_free_performant_mode(h);
8900         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8901 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8902         hpsa_free_sg_chain_blocks(h);
8903 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8904         hpsa_free_cmd_pool(h);
8905 clean4: /* irq, shost, pci, lu, aer/h */
8906         hpsa_free_irqs(h);
8907 clean3: /* shost, pci, lu, aer/h */
8908         scsi_host_put(h->scsi_host);
8909         h->scsi_host = NULL;
8910 clean2_5: /* pci, lu, aer/h */
8911         hpsa_free_pci_init(h);
8912 clean2: /* lu, aer/h */
8913         if (h->lockup_detected) {
8914                 free_percpu(h->lockup_detected);
8915                 h->lockup_detected = NULL;
8916         }
8917 clean1: /* wq/aer/h */
8918         if (h->resubmit_wq) {
8919                 destroy_workqueue(h->resubmit_wq);
8920                 h->resubmit_wq = NULL;
8921         }
8922         if (h->rescan_ctlr_wq) {
8923                 destroy_workqueue(h->rescan_ctlr_wq);
8924                 h->rescan_ctlr_wq = NULL;
8925         }
8926         if (h->monitor_ctlr_wq) {
8927                 destroy_workqueue(h->monitor_ctlr_wq);
8928                 h->monitor_ctlr_wq = NULL;
8929         }
8930         kfree(h);
8931         return rc;
8932 }
8933
8934 static void hpsa_flush_cache(struct ctlr_info *h)
8935 {
8936         char *flush_buf;
8937         struct CommandList *c;
8938         int rc;
8939
8940         if (unlikely(lockup_detected(h)))
8941                 return;
8942         flush_buf = kzalloc(4, GFP_KERNEL);
8943         if (!flush_buf)
8944                 return;
8945
8946         c = cmd_alloc(h);
8947
8948         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8949                 RAID_CTLR_LUNID, TYPE_CMD)) {
8950                 goto out;
8951         }
8952         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8953                         DEFAULT_TIMEOUT);
8954         if (rc)
8955                 goto out;
8956         if (c->err_info->CommandStatus != 0)
8957 out:
8958                 dev_warn(&h->pdev->dev,
8959                         "error flushing cache on controller\n");
8960         cmd_free(h, c);
8961         kfree(flush_buf);
8962 }
8963
8964 /* Make controller gather fresh report lun data each time we
8965  * send down a report luns request
8966  */
8967 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8968 {
8969         u32 *options;
8970         struct CommandList *c;
8971         int rc;
8972
8973         /* Don't bother trying to set diag options if locked up */
8974         if (unlikely(h->lockup_detected))
8975                 return;
8976
8977         options = kzalloc(sizeof(*options), GFP_KERNEL);
8978         if (!options)
8979                 return;
8980
8981         c = cmd_alloc(h);
8982
8983         /* first, get the current diag options settings */
8984         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8985                 RAID_CTLR_LUNID, TYPE_CMD))
8986                 goto errout;
8987
8988         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8989                         NO_TIMEOUT);
8990         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8991                 goto errout;
8992
8993         /* Now, set the bit for disabling the RLD caching */
8994         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8995
8996         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8997                 RAID_CTLR_LUNID, TYPE_CMD))
8998                 goto errout;
8999
9000         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
9001                         NO_TIMEOUT);
9002         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9003                 goto errout;
9004
9005         /* Now verify that it got set: */
9006         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9007                 RAID_CTLR_LUNID, TYPE_CMD))
9008                 goto errout;
9009
9010         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9011                         NO_TIMEOUT);
9012         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9013                 goto errout;
9014
9015         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9016                 goto out;
9017
9018 errout:
9019         dev_err(&h->pdev->dev,
9020                         "Error: failed to disable report lun data caching.\n");
9021 out:
9022         cmd_free(h, c);
9023         kfree(options);
9024 }
9025
9026 static void __hpsa_shutdown(struct pci_dev *pdev)
9027 {
9028         struct ctlr_info *h;
9029
9030         h = pci_get_drvdata(pdev);
9031         /* Turn board interrupts off  and send the flush cache command
9032          * sendcmd will turn off interrupt, and send the flush...
9033          * To write all data in the battery backed cache to disks
9034          */
9035         hpsa_flush_cache(h);
9036         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9037         hpsa_free_irqs(h);                      /* init_one 4 */
9038         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9039 }
9040
9041 static void hpsa_shutdown(struct pci_dev *pdev)
9042 {
9043         __hpsa_shutdown(pdev);
9044         pci_disable_device(pdev);
9045 }
9046
9047 static void hpsa_free_device_info(struct ctlr_info *h)
9048 {
9049         int i;
9050
9051         for (i = 0; i < h->ndevices; i++) {
9052                 kfree(h->dev[i]);
9053                 h->dev[i] = NULL;
9054         }
9055 }
9056
9057 static void hpsa_remove_one(struct pci_dev *pdev)
9058 {
9059         struct ctlr_info *h;
9060         unsigned long flags;
9061
9062         if (pci_get_drvdata(pdev) == NULL) {
9063                 dev_err(&pdev->dev, "unable to remove device\n");
9064                 return;
9065         }
9066         h = pci_get_drvdata(pdev);
9067
9068         /* Get rid of any controller monitoring work items */
9069         spin_lock_irqsave(&h->lock, flags);
9070         h->remove_in_progress = 1;
9071         spin_unlock_irqrestore(&h->lock, flags);
9072         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9073         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9074         cancel_delayed_work_sync(&h->event_monitor_work);
9075         destroy_workqueue(h->rescan_ctlr_wq);
9076         destroy_workqueue(h->resubmit_wq);
9077         destroy_workqueue(h->monitor_ctlr_wq);
9078
9079         hpsa_delete_sas_host(h);
9080
9081         /*
9082          * Call before disabling interrupts.
9083          * scsi_remove_host can trigger I/O operations especially
9084          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9085          * operations which cannot complete and will hang the system.
9086          */
9087         if (h->scsi_host)
9088                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9089         /* includes hpsa_free_irqs - init_one 4 */
9090         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9091         __hpsa_shutdown(pdev);
9092
9093         hpsa_free_device_info(h);               /* scan */
9094
9095         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9096         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9097         hpsa_free_ioaccel2_sg_chain_blocks(h);
9098         hpsa_free_performant_mode(h);                   /* init_one 7 */
9099         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9100         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9101         kfree(h->lastlogicals);
9102
9103         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9104
9105         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9106         h->scsi_host = NULL;                            /* init_one 3 */
9107
9108         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9109         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9110
9111         free_percpu(h->lockup_detected);                /* init_one 2 */
9112         h->lockup_detected = NULL;                      /* init_one 2 */
9113         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9114
9115         hpda_free_ctlr_info(h);                         /* init_one 1 */
9116 }
9117
9118 static int __maybe_unused hpsa_suspend(
9119         __attribute__((unused)) struct device *dev)
9120 {
9121         return -ENOSYS;
9122 }
9123
9124 static int __maybe_unused hpsa_resume
9125         (__attribute__((unused)) struct device *dev)
9126 {
9127         return -ENOSYS;
9128 }
9129
9130 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9131
9132 static struct pci_driver hpsa_pci_driver = {
9133         .name = HPSA,
9134         .probe = hpsa_init_one,
9135         .remove = hpsa_remove_one,
9136         .id_table = hpsa_pci_device_id, /* id_table */
9137         .shutdown = hpsa_shutdown,
9138         .driver.pm = &hpsa_pm_ops,
9139 };
9140
9141 /* Fill in bucket_map[], given nsgs (the max number of
9142  * scatter gather elements supported) and bucket[],
9143  * which is an array of 8 integers.  The bucket[] array
9144  * contains 8 different DMA transfer sizes (in 16
9145  * byte increments) which the controller uses to fetch
9146  * commands.  This function fills in bucket_map[], which
9147  * maps a given number of scatter gather elements to one of
9148  * the 8 DMA transfer sizes.  The point of it is to allow the
9149  * controller to only do as much DMA as needed to fetch the
9150  * command, with the DMA transfer size encoded in the lower
9151  * bits of the command address.
9152  */
9153 static void  calc_bucket_map(int bucket[], int num_buckets,
9154         int nsgs, int min_blocks, u32 *bucket_map)
9155 {
9156         int i, j, b, size;
9157
9158         /* Note, bucket_map must have nsgs+1 entries. */
9159         for (i = 0; i <= nsgs; i++) {
9160                 /* Compute size of a command with i SG entries */
9161                 size = i + min_blocks;
9162                 b = num_buckets; /* Assume the biggest bucket */
9163                 /* Find the bucket that is just big enough */
9164                 for (j = 0; j < num_buckets; j++) {
9165                         if (bucket[j] >= size) {
9166                                 b = j;
9167                                 break;
9168                         }
9169                 }
9170                 /* for a command with i SG entries, use bucket b. */
9171                 bucket_map[i] = b;
9172         }
9173 }
9174
9175 /*
9176  * return -ENODEV on err, 0 on success (or no action)
9177  * allocates numerous items that must be freed later
9178  */
9179 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9180 {
9181         int i;
9182         unsigned long register_value;
9183         unsigned long transMethod = CFGTBL_Trans_Performant |
9184                         (trans_support & CFGTBL_Trans_use_short_tags) |
9185                                 CFGTBL_Trans_enable_directed_msix |
9186                         (trans_support & (CFGTBL_Trans_io_accel1 |
9187                                 CFGTBL_Trans_io_accel2));
9188         struct access_method access = SA5_performant_access;
9189
9190         /* This is a bit complicated.  There are 8 registers on
9191          * the controller which we write to to tell it 8 different
9192          * sizes of commands which there may be.  It's a way of
9193          * reducing the DMA done to fetch each command.  Encoded into
9194          * each command's tag are 3 bits which communicate to the controller
9195          * which of the eight sizes that command fits within.  The size of
9196          * each command depends on how many scatter gather entries there are.
9197          * Each SG entry requires 16 bytes.  The eight registers are programmed
9198          * with the number of 16-byte blocks a command of that size requires.
9199          * The smallest command possible requires 5 such 16 byte blocks.
9200          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9201          * blocks.  Note, this only extends to the SG entries contained
9202          * within the command block, and does not extend to chained blocks
9203          * of SG elements.   bft[] contains the eight values we write to
9204          * the registers.  They are not evenly distributed, but have more
9205          * sizes for small commands, and fewer sizes for larger commands.
9206          */
9207         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9208 #define MIN_IOACCEL2_BFT_ENTRY 5
9209 #define HPSA_IOACCEL2_HEADER_SZ 4
9210         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9211                         13, 14, 15, 16, 17, 18, 19,
9212                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9213         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9214         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9215         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9216                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9217         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9218         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9219         /*  5 = 1 s/g entry or 4k
9220          *  6 = 2 s/g entry or 8k
9221          *  8 = 4 s/g entry or 16k
9222          * 10 = 6 s/g entry or 24k
9223          */
9224
9225         /* If the controller supports either ioaccel method then
9226          * we can also use the RAID stack submit path that does not
9227          * perform the superfluous readl() after each command submission.
9228          */
9229         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9230                 access = SA5_performant_access_no_read;
9231
9232         /* Controller spec: zero out this buffer. */
9233         for (i = 0; i < h->nreply_queues; i++)
9234                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9235
9236         bft[7] = SG_ENTRIES_IN_CMD + 4;
9237         calc_bucket_map(bft, ARRAY_SIZE(bft),
9238                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9239         for (i = 0; i < 8; i++)
9240                 writel(bft[i], &h->transtable->BlockFetch[i]);
9241
9242         /* size of controller ring buffer */
9243         writel(h->max_commands, &h->transtable->RepQSize);
9244         writel(h->nreply_queues, &h->transtable->RepQCount);
9245         writel(0, &h->transtable->RepQCtrAddrLow32);
9246         writel(0, &h->transtable->RepQCtrAddrHigh32);
9247
9248         for (i = 0; i < h->nreply_queues; i++) {
9249                 writel(0, &h->transtable->RepQAddr[i].upper);
9250                 writel(h->reply_queue[i].busaddr,
9251                         &h->transtable->RepQAddr[i].lower);
9252         }
9253
9254         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9255         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9256         /*
9257          * enable outbound interrupt coalescing in accelerator mode;
9258          */
9259         if (trans_support & CFGTBL_Trans_io_accel1) {
9260                 access = SA5_ioaccel_mode1_access;
9261                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9262                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9263         } else
9264                 if (trans_support & CFGTBL_Trans_io_accel2)
9265                         access = SA5_ioaccel_mode2_access;
9266         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9267         if (hpsa_wait_for_mode_change_ack(h)) {
9268                 dev_err(&h->pdev->dev,
9269                         "performant mode problem - doorbell timeout\n");
9270                 return -ENODEV;
9271         }
9272         register_value = readl(&(h->cfgtable->TransportActive));
9273         if (!(register_value & CFGTBL_Trans_Performant)) {
9274                 dev_err(&h->pdev->dev,
9275                         "performant mode problem - transport not active\n");
9276                 return -ENODEV;
9277         }
9278         /* Change the access methods to the performant access methods */
9279         h->access = access;
9280         h->transMethod = transMethod;
9281
9282         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9283                 (trans_support & CFGTBL_Trans_io_accel2)))
9284                 return 0;
9285
9286         if (trans_support & CFGTBL_Trans_io_accel1) {
9287                 /* Set up I/O accelerator mode */
9288                 for (i = 0; i < h->nreply_queues; i++) {
9289                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9290                         h->reply_queue[i].current_entry =
9291                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9292                 }
9293                 bft[7] = h->ioaccel_maxsg + 8;
9294                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9295                                 h->ioaccel1_blockFetchTable);
9296
9297                 /* initialize all reply queue entries to unused */
9298                 for (i = 0; i < h->nreply_queues; i++)
9299                         memset(h->reply_queue[i].head,
9300                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9301                                 h->reply_queue_size);
9302
9303                 /* set all the constant fields in the accelerator command
9304                  * frames once at init time to save CPU cycles later.
9305                  */
9306                 for (i = 0; i < h->nr_cmds; i++) {
9307                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9308
9309                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9310                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9311                                         (i * sizeof(struct ErrorInfo)));
9312                         cp->err_info_len = sizeof(struct ErrorInfo);
9313                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9314                         cp->host_context_flags =
9315                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9316                         cp->timeout_sec = 0;
9317                         cp->ReplyQueue = 0;
9318                         cp->tag =
9319                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9320                         cp->host_addr =
9321                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9322                                         (i * sizeof(struct io_accel1_cmd)));
9323                 }
9324         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9325                 u64 cfg_offset, cfg_base_addr_index;
9326                 u32 bft2_offset, cfg_base_addr;
9327
9328                 hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9329                                     &cfg_base_addr_index, &cfg_offset);
9330                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9331                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9332                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9333                                 4, h->ioaccel2_blockFetchTable);
9334                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9335                 BUILD_BUG_ON(offsetof(struct CfgTable,
9336                                 io_accel_request_size_offset) != 0xb8);
9337                 h->ioaccel2_bft2_regs =
9338                         remap_pci_mem(pci_resource_start(h->pdev,
9339                                         cfg_base_addr_index) +
9340                                         cfg_offset + bft2_offset,
9341                                         ARRAY_SIZE(bft2) *
9342                                         sizeof(*h->ioaccel2_bft2_regs));
9343                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9344                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9345         }
9346         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9347         if (hpsa_wait_for_mode_change_ack(h)) {
9348                 dev_err(&h->pdev->dev,
9349                         "performant mode problem - enabling ioaccel mode\n");
9350                 return -ENODEV;
9351         }
9352         return 0;
9353 }
9354
9355 /* Free ioaccel1 mode command blocks and block fetch table */
9356 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9357 {
9358         if (h->ioaccel_cmd_pool) {
9359                 dma_free_coherent(&h->pdev->dev,
9360                                   h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9361                                   h->ioaccel_cmd_pool,
9362                                   h->ioaccel_cmd_pool_dhandle);
9363                 h->ioaccel_cmd_pool = NULL;
9364                 h->ioaccel_cmd_pool_dhandle = 0;
9365         }
9366         kfree(h->ioaccel1_blockFetchTable);
9367         h->ioaccel1_blockFetchTable = NULL;
9368 }
9369
9370 /* Allocate ioaccel1 mode command blocks and block fetch table */
9371 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9372 {
9373         h->ioaccel_maxsg =
9374                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9375         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9376                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9377
9378         /* Command structures must be aligned on a 128-byte boundary
9379          * because the 7 lower bits of the address are used by the
9380          * hardware.
9381          */
9382         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9383                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9384         h->ioaccel_cmd_pool =
9385                 dma_alloc_coherent(&h->pdev->dev,
9386                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9387                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9388
9389         h->ioaccel1_blockFetchTable =
9390                 kmalloc(((h->ioaccel_maxsg + 1) *
9391                                 sizeof(u32)), GFP_KERNEL);
9392
9393         if ((h->ioaccel_cmd_pool == NULL) ||
9394                 (h->ioaccel1_blockFetchTable == NULL))
9395                 goto clean_up;
9396
9397         memset(h->ioaccel_cmd_pool, 0,
9398                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9399         return 0;
9400
9401 clean_up:
9402         hpsa_free_ioaccel1_cmd_and_bft(h);
9403         return -ENOMEM;
9404 }
9405
9406 /* Free ioaccel2 mode command blocks and block fetch table */
9407 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9408 {
9409         hpsa_free_ioaccel2_sg_chain_blocks(h);
9410
9411         if (h->ioaccel2_cmd_pool) {
9412                 dma_free_coherent(&h->pdev->dev,
9413                                   h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9414                                   h->ioaccel2_cmd_pool,
9415                                   h->ioaccel2_cmd_pool_dhandle);
9416                 h->ioaccel2_cmd_pool = NULL;
9417                 h->ioaccel2_cmd_pool_dhandle = 0;
9418         }
9419         kfree(h->ioaccel2_blockFetchTable);
9420         h->ioaccel2_blockFetchTable = NULL;
9421 }
9422
9423 /* Allocate ioaccel2 mode command blocks and block fetch table */
9424 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9425 {
9426         int rc;
9427
9428         /* Allocate ioaccel2 mode command blocks and block fetch table */
9429
9430         h->ioaccel_maxsg =
9431                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9432         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9433                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9434
9435         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9436                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9437         h->ioaccel2_cmd_pool =
9438                 dma_alloc_coherent(&h->pdev->dev,
9439                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9440                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9441
9442         h->ioaccel2_blockFetchTable =
9443                 kmalloc(((h->ioaccel_maxsg + 1) *
9444                                 sizeof(u32)), GFP_KERNEL);
9445
9446         if ((h->ioaccel2_cmd_pool == NULL) ||
9447                 (h->ioaccel2_blockFetchTable == NULL)) {
9448                 rc = -ENOMEM;
9449                 goto clean_up;
9450         }
9451
9452         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9453         if (rc)
9454                 goto clean_up;
9455
9456         memset(h->ioaccel2_cmd_pool, 0,
9457                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9458         return 0;
9459
9460 clean_up:
9461         hpsa_free_ioaccel2_cmd_and_bft(h);
9462         return rc;
9463 }
9464
9465 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9466 static void hpsa_free_performant_mode(struct ctlr_info *h)
9467 {
9468         kfree(h->blockFetchTable);
9469         h->blockFetchTable = NULL;
9470         hpsa_free_reply_queues(h);
9471         hpsa_free_ioaccel1_cmd_and_bft(h);
9472         hpsa_free_ioaccel2_cmd_and_bft(h);
9473 }
9474
9475 /* return -ENODEV on error, 0 on success (or no action)
9476  * allocates numerous items that must be freed later
9477  */
9478 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9479 {
9480         u32 trans_support;
9481         unsigned long transMethod = CFGTBL_Trans_Performant |
9482                                         CFGTBL_Trans_use_short_tags;
9483         int i, rc;
9484
9485         if (hpsa_simple_mode)
9486                 return 0;
9487
9488         trans_support = readl(&(h->cfgtable->TransportSupport));
9489         if (!(trans_support & PERFORMANT_MODE))
9490                 return 0;
9491
9492         /* Check for I/O accelerator mode support */
9493         if (trans_support & CFGTBL_Trans_io_accel1) {
9494                 transMethod |= CFGTBL_Trans_io_accel1 |
9495                                 CFGTBL_Trans_enable_directed_msix;
9496                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9497                 if (rc)
9498                         return rc;
9499         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9500                 transMethod |= CFGTBL_Trans_io_accel2 |
9501                                 CFGTBL_Trans_enable_directed_msix;
9502                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9503                 if (rc)
9504                         return rc;
9505         }
9506
9507         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9508         hpsa_get_max_perf_mode_cmds(h);
9509         /* Performant mode ring buffer and supporting data structures */
9510         h->reply_queue_size = h->max_commands * sizeof(u64);
9511
9512         for (i = 0; i < h->nreply_queues; i++) {
9513                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9514                                                 h->reply_queue_size,
9515                                                 &h->reply_queue[i].busaddr,
9516                                                 GFP_KERNEL);
9517                 if (!h->reply_queue[i].head) {
9518                         rc = -ENOMEM;
9519                         goto clean1;    /* rq, ioaccel */
9520                 }
9521                 h->reply_queue[i].size = h->max_commands;
9522                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9523                 h->reply_queue[i].current_entry = 0;
9524         }
9525
9526         /* Need a block fetch table for performant mode */
9527         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9528                                 sizeof(u32)), GFP_KERNEL);
9529         if (!h->blockFetchTable) {
9530                 rc = -ENOMEM;
9531                 goto clean1;    /* rq, ioaccel */
9532         }
9533
9534         rc = hpsa_enter_performant_mode(h, trans_support);
9535         if (rc)
9536                 goto clean2;    /* bft, rq, ioaccel */
9537         return 0;
9538
9539 clean2: /* bft, rq, ioaccel */
9540         kfree(h->blockFetchTable);
9541         h->blockFetchTable = NULL;
9542 clean1: /* rq, ioaccel */
9543         hpsa_free_reply_queues(h);
9544         hpsa_free_ioaccel1_cmd_and_bft(h);
9545         hpsa_free_ioaccel2_cmd_and_bft(h);
9546         return rc;
9547 }
9548
9549 static int is_accelerated_cmd(struct CommandList *c)
9550 {
9551         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9552 }
9553
9554 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9555 {
9556         struct CommandList *c = NULL;
9557         int i, accel_cmds_out;
9558         int refcount;
9559
9560         do { /* wait for all outstanding ioaccel commands to drain out */
9561                 accel_cmds_out = 0;
9562                 for (i = 0; i < h->nr_cmds; i++) {
9563                         c = h->cmd_pool + i;
9564                         refcount = atomic_inc_return(&c->refcount);
9565                         if (refcount > 1) /* Command is allocated */
9566                                 accel_cmds_out += is_accelerated_cmd(c);
9567                         cmd_free(h, c);
9568                 }
9569                 if (accel_cmds_out <= 0)
9570                         break;
9571                 msleep(100);
9572         } while (1);
9573 }
9574
9575 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9576                                 struct hpsa_sas_port *hpsa_sas_port)
9577 {
9578         struct hpsa_sas_phy *hpsa_sas_phy;
9579         struct sas_phy *phy;
9580
9581         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9582         if (!hpsa_sas_phy)
9583                 return NULL;
9584
9585         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9586                 hpsa_sas_port->next_phy_index);
9587         if (!phy) {
9588                 kfree(hpsa_sas_phy);
9589                 return NULL;
9590         }
9591
9592         hpsa_sas_port->next_phy_index++;
9593         hpsa_sas_phy->phy = phy;
9594         hpsa_sas_phy->parent_port = hpsa_sas_port;
9595
9596         return hpsa_sas_phy;
9597 }
9598
9599 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9600 {
9601         struct sas_phy *phy = hpsa_sas_phy->phy;
9602
9603         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9604         if (hpsa_sas_phy->added_to_port)
9605                 list_del(&hpsa_sas_phy->phy_list_entry);
9606         sas_phy_delete(phy);
9607         kfree(hpsa_sas_phy);
9608 }
9609
9610 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9611 {
9612         int rc;
9613         struct hpsa_sas_port *hpsa_sas_port;
9614         struct sas_phy *phy;
9615         struct sas_identify *identify;
9616
9617         hpsa_sas_port = hpsa_sas_phy->parent_port;
9618         phy = hpsa_sas_phy->phy;
9619
9620         identify = &phy->identify;
9621         memset(identify, 0, sizeof(*identify));
9622         identify->sas_address = hpsa_sas_port->sas_address;
9623         identify->device_type = SAS_END_DEVICE;
9624         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9625         identify->target_port_protocols = SAS_PROTOCOL_STP;
9626         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9627         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9628         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9629         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9630         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9631
9632         rc = sas_phy_add(hpsa_sas_phy->phy);
9633         if (rc)
9634                 return rc;
9635
9636         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9637         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9638                         &hpsa_sas_port->phy_list_head);
9639         hpsa_sas_phy->added_to_port = true;
9640
9641         return 0;
9642 }
9643
9644 static int
9645         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9646                                 struct sas_rphy *rphy)
9647 {
9648         struct sas_identify *identify;
9649
9650         identify = &rphy->identify;
9651         identify->sas_address = hpsa_sas_port->sas_address;
9652         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9653         identify->target_port_protocols = SAS_PROTOCOL_STP;
9654
9655         return sas_rphy_add(rphy);
9656 }
9657
9658 static struct hpsa_sas_port
9659         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9660                                 u64 sas_address)
9661 {
9662         int rc;
9663         struct hpsa_sas_port *hpsa_sas_port;
9664         struct sas_port *port;
9665
9666         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9667         if (!hpsa_sas_port)
9668                 return NULL;
9669
9670         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9671         hpsa_sas_port->parent_node = hpsa_sas_node;
9672
9673         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9674         if (!port)
9675                 goto free_hpsa_port;
9676
9677         rc = sas_port_add(port);
9678         if (rc)
9679                 goto free_sas_port;
9680
9681         hpsa_sas_port->port = port;
9682         hpsa_sas_port->sas_address = sas_address;
9683         list_add_tail(&hpsa_sas_port->port_list_entry,
9684                         &hpsa_sas_node->port_list_head);
9685
9686         return hpsa_sas_port;
9687
9688 free_sas_port:
9689         sas_port_free(port);
9690 free_hpsa_port:
9691         kfree(hpsa_sas_port);
9692
9693         return NULL;
9694 }
9695
9696 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9697 {
9698         struct hpsa_sas_phy *hpsa_sas_phy;
9699         struct hpsa_sas_phy *next;
9700
9701         list_for_each_entry_safe(hpsa_sas_phy, next,
9702                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9703                 hpsa_free_sas_phy(hpsa_sas_phy);
9704
9705         sas_port_delete(hpsa_sas_port->port);
9706         list_del(&hpsa_sas_port->port_list_entry);
9707         kfree(hpsa_sas_port);
9708 }
9709
9710 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9711 {
9712         struct hpsa_sas_node *hpsa_sas_node;
9713
9714         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9715         if (hpsa_sas_node) {
9716                 hpsa_sas_node->parent_dev = parent_dev;
9717                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9718         }
9719
9720         return hpsa_sas_node;
9721 }
9722
9723 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9724 {
9725         struct hpsa_sas_port *hpsa_sas_port;
9726         struct hpsa_sas_port *next;
9727
9728         if (!hpsa_sas_node)
9729                 return;
9730
9731         list_for_each_entry_safe(hpsa_sas_port, next,
9732                         &hpsa_sas_node->port_list_head, port_list_entry)
9733                 hpsa_free_sas_port(hpsa_sas_port);
9734
9735         kfree(hpsa_sas_node);
9736 }
9737
9738 static struct hpsa_scsi_dev_t
9739         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9740                                         struct sas_rphy *rphy)
9741 {
9742         int i;
9743         struct hpsa_scsi_dev_t *device;
9744
9745         for (i = 0; i < h->ndevices; i++) {
9746                 device = h->dev[i];
9747                 if (!device->sas_port)
9748                         continue;
9749                 if (device->sas_port->rphy == rphy)
9750                         return device;
9751         }
9752
9753         return NULL;
9754 }
9755
9756 static int hpsa_add_sas_host(struct ctlr_info *h)
9757 {
9758         int rc;
9759         struct device *parent_dev;
9760         struct hpsa_sas_node *hpsa_sas_node;
9761         struct hpsa_sas_port *hpsa_sas_port;
9762         struct hpsa_sas_phy *hpsa_sas_phy;
9763
9764         parent_dev = &h->scsi_host->shost_dev;
9765
9766         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9767         if (!hpsa_sas_node)
9768                 return -ENOMEM;
9769
9770         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9771         if (!hpsa_sas_port) {
9772                 rc = -ENODEV;
9773                 goto free_sas_node;
9774         }
9775
9776         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9777         if (!hpsa_sas_phy) {
9778                 rc = -ENODEV;
9779                 goto free_sas_port;
9780         }
9781
9782         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9783         if (rc)
9784                 goto free_sas_phy;
9785
9786         h->sas_host = hpsa_sas_node;
9787
9788         return 0;
9789
9790 free_sas_phy:
9791         hpsa_free_sas_phy(hpsa_sas_phy);
9792 free_sas_port:
9793         hpsa_free_sas_port(hpsa_sas_port);
9794 free_sas_node:
9795         hpsa_free_sas_node(hpsa_sas_node);
9796
9797         return rc;
9798 }
9799
9800 static void hpsa_delete_sas_host(struct ctlr_info *h)
9801 {
9802         hpsa_free_sas_node(h->sas_host);
9803 }
9804
9805 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9806                                 struct hpsa_scsi_dev_t *device)
9807 {
9808         int rc;
9809         struct hpsa_sas_port *hpsa_sas_port;
9810         struct sas_rphy *rphy;
9811
9812         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9813         if (!hpsa_sas_port)
9814                 return -ENOMEM;
9815
9816         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9817         if (!rphy) {
9818                 rc = -ENODEV;
9819                 goto free_sas_port;
9820         }
9821
9822         hpsa_sas_port->rphy = rphy;
9823         device->sas_port = hpsa_sas_port;
9824
9825         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9826         if (rc)
9827                 goto free_sas_port;
9828
9829         return 0;
9830
9831 free_sas_port:
9832         hpsa_free_sas_port(hpsa_sas_port);
9833         device->sas_port = NULL;
9834
9835         return rc;
9836 }
9837
9838 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9839 {
9840         if (device->sas_port) {
9841                 hpsa_free_sas_port(device->sas_port);
9842                 device->sas_port = NULL;
9843         }
9844 }
9845
9846 static int
9847 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9848 {
9849         return 0;
9850 }
9851
9852 static int
9853 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9854 {
9855         struct Scsi_Host *shost = phy_to_shost(rphy);
9856         struct ctlr_info *h;
9857         struct hpsa_scsi_dev_t *sd;
9858
9859         if (!shost)
9860                 return -ENXIO;
9861
9862         h = shost_to_hba(shost);
9863
9864         if (!h)
9865                 return -ENXIO;
9866
9867         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9868         if (!sd)
9869                 return -ENXIO;
9870
9871         *identifier = sd->eli;
9872
9873         return 0;
9874 }
9875
9876 static int
9877 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9878 {
9879         return -ENXIO;
9880 }
9881
9882 static int
9883 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9884 {
9885         return 0;
9886 }
9887
9888 static int
9889 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9890 {
9891         return 0;
9892 }
9893
9894 static int
9895 hpsa_sas_phy_setup(struct sas_phy *phy)
9896 {
9897         return 0;
9898 }
9899
9900 static void
9901 hpsa_sas_phy_release(struct sas_phy *phy)
9902 {
9903 }
9904
9905 static int
9906 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9907 {
9908         return -EINVAL;
9909 }
9910
9911 static struct sas_function_template hpsa_sas_transport_functions = {
9912         .get_linkerrors = hpsa_sas_get_linkerrors,
9913         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9914         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9915         .phy_reset = hpsa_sas_phy_reset,
9916         .phy_enable = hpsa_sas_phy_enable,
9917         .phy_setup = hpsa_sas_phy_setup,
9918         .phy_release = hpsa_sas_phy_release,
9919         .set_phy_speed = hpsa_sas_phy_speed,
9920 };
9921
9922 /*
9923  *  This is it.  Register the PCI driver information for the cards we control
9924  *  the OS will call our registered routines when it finds one of our cards.
9925  */
9926 static int __init hpsa_init(void)
9927 {
9928         int rc;
9929
9930         hpsa_sas_transport_template =
9931                 sas_attach_transport(&hpsa_sas_transport_functions);
9932         if (!hpsa_sas_transport_template)
9933                 return -ENODEV;
9934
9935         rc = pci_register_driver(&hpsa_pci_driver);
9936
9937         if (rc)
9938                 sas_release_transport(hpsa_sas_transport_template);
9939
9940         return rc;
9941 }
9942
9943 static void __exit hpsa_cleanup(void)
9944 {
9945         pci_unregister_driver(&hpsa_pci_driver);
9946         sas_release_transport(hpsa_sas_transport_template);
9947 }
9948
9949 static void __attribute__((unused)) verify_offsets(void)
9950 {
9951 #define VERIFY_OFFSET(member, offset) \
9952         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9953
9954         VERIFY_OFFSET(structure_size, 0);
9955         VERIFY_OFFSET(volume_blk_size, 4);
9956         VERIFY_OFFSET(volume_blk_cnt, 8);
9957         VERIFY_OFFSET(phys_blk_shift, 16);
9958         VERIFY_OFFSET(parity_rotation_shift, 17);
9959         VERIFY_OFFSET(strip_size, 18);
9960         VERIFY_OFFSET(disk_starting_blk, 20);
9961         VERIFY_OFFSET(disk_blk_cnt, 28);
9962         VERIFY_OFFSET(data_disks_per_row, 36);
9963         VERIFY_OFFSET(metadata_disks_per_row, 38);
9964         VERIFY_OFFSET(row_cnt, 40);
9965         VERIFY_OFFSET(layout_map_count, 42);
9966         VERIFY_OFFSET(flags, 44);
9967         VERIFY_OFFSET(dekindex, 46);
9968         /* VERIFY_OFFSET(reserved, 48 */
9969         VERIFY_OFFSET(data, 64);
9970
9971 #undef VERIFY_OFFSET
9972
9973 #define VERIFY_OFFSET(member, offset) \
9974         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9975
9976         VERIFY_OFFSET(IU_type, 0);
9977         VERIFY_OFFSET(direction, 1);
9978         VERIFY_OFFSET(reply_queue, 2);
9979         /* VERIFY_OFFSET(reserved1, 3);  */
9980         VERIFY_OFFSET(scsi_nexus, 4);
9981         VERIFY_OFFSET(Tag, 8);
9982         VERIFY_OFFSET(cdb, 16);
9983         VERIFY_OFFSET(cciss_lun, 32);
9984         VERIFY_OFFSET(data_len, 40);
9985         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9986         VERIFY_OFFSET(sg_count, 45);
9987         /* VERIFY_OFFSET(reserved3 */
9988         VERIFY_OFFSET(err_ptr, 48);
9989         VERIFY_OFFSET(err_len, 56);
9990         /* VERIFY_OFFSET(reserved4  */
9991         VERIFY_OFFSET(sg, 64);
9992
9993 #undef VERIFY_OFFSET
9994
9995 #define VERIFY_OFFSET(member, offset) \
9996         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9997
9998         VERIFY_OFFSET(dev_handle, 0x00);
9999         VERIFY_OFFSET(reserved1, 0x02);
10000         VERIFY_OFFSET(function, 0x03);
10001         VERIFY_OFFSET(reserved2, 0x04);
10002         VERIFY_OFFSET(err_info, 0x0C);
10003         VERIFY_OFFSET(reserved3, 0x10);
10004         VERIFY_OFFSET(err_info_len, 0x12);
10005         VERIFY_OFFSET(reserved4, 0x13);
10006         VERIFY_OFFSET(sgl_offset, 0x14);
10007         VERIFY_OFFSET(reserved5, 0x15);
10008         VERIFY_OFFSET(transfer_len, 0x1C);
10009         VERIFY_OFFSET(reserved6, 0x20);
10010         VERIFY_OFFSET(io_flags, 0x24);
10011         VERIFY_OFFSET(reserved7, 0x26);
10012         VERIFY_OFFSET(LUN, 0x34);
10013         VERIFY_OFFSET(control, 0x3C);
10014         VERIFY_OFFSET(CDB, 0x40);
10015         VERIFY_OFFSET(reserved8, 0x50);
10016         VERIFY_OFFSET(host_context_flags, 0x60);
10017         VERIFY_OFFSET(timeout_sec, 0x62);
10018         VERIFY_OFFSET(ReplyQueue, 0x64);
10019         VERIFY_OFFSET(reserved9, 0x65);
10020         VERIFY_OFFSET(tag, 0x68);
10021         VERIFY_OFFSET(host_addr, 0x70);
10022         VERIFY_OFFSET(CISS_LUN, 0x78);
10023         VERIFY_OFFSET(SG, 0x78 + 8);
10024 #undef VERIFY_OFFSET
10025 }
10026
10027 module_init(hpsa_init);
10028 module_exit(hpsa_cleanup);